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1 Complex analysis & Branching/Multivalued functions

1 Complex analysis & Branching/Multivalued
functions

1.1 Holomorphicity

Definition (holomorphic/analytic function). A smooth function 𝑓 ∶ 𝑈 → C
from a domain (i.e. an open connected subset of C) is holomorphic or analytic
if either of the following holds:

1. 𝑓 is differentiable in the sense of limits (which is equivalent to satisfying
the Cauchy-Riemann equations),

2. for each 𝑎 ∈ 𝑈, 𝑓 has a power series expansion

𝑓(𝑧) = ∑
𝑛≥0

𝑎𝑛(𝑧 − 𝑎)𝑛,

valid on some disk 𝐷(𝑎, 𝑟) with positive radius 𝑟 > 0.

Remark. 1 implies 2 since 𝑓 being differentiable allows us to construct 𝑎𝑛
using Cauchy Integral Formula. 2 implies 1 since 𝑓 having power series allows
term-by-term differentiation.

By 2, if 𝑎 ∈ 𝑈 and 𝑓 is not identically 0 near 𝑎, then there exists some minimal
𝑚 ≥ 0 such that 𝑎𝑚 ≠ 0. It follows that 𝑓(𝑧) = 𝑎𝑚(𝑧 − 𝑎)𝑚(1 + 𝑔(𝑧 − 𝑎)) where
lim𝑧→𝑎 𝑔(𝑧 − 𝑎) = 0. Therefore for 𝑧 sufficiently close to 𝑎, 𝑓 is nonzero. This is
known as

Theorem 1.1 (principle of isolated zeros). An analytic function on a do-
main 𝑈 which is not identically zero has isolated zeros, i.e. around each
𝑎 ∈ 𝑈, there exists a disk Δ𝑎 on which 𝑓(𝑧) ≠ 0 unless possibly at 𝑧 = 𝑎.

If 𝑓 is identically 0 near 𝑎, then there exists a disk Δ𝑎 on which 𝑓(𝑧) = 0
for all 𝑧 ∈ Δ𝑎. Consider 𝑉 ∶= ⋃𝑎∶𝑓|Δ𝑎=0 Δ𝑎 and 𝑊 ∶= ⋃𝑎∶𝑓≠0 near 𝑎 Δ𝑎. 𝑉 and
𝑊 are open and disjoint so by connectivity of 𝑈, one of them is empty so 𝑓 = 0
on 𝑈 or has isolated zeros. Thus having isolated zero is a property of a domain,
not a local property.

Corollary 1.2. If 𝑓 and 𝑔 are analytic on 𝑈 then either 𝑓 = 𝑔 on 𝑈 or
𝑓(𝑧) = 𝑔(𝑧) on a discrete set.

Definition (isolated singularity). If 𝑓 is analytic on the punctured disk
𝐷(𝑎, 𝑟)∗ ∶= 𝐷(𝑎, 𝑟) \ {𝑎} for some 𝑟 > 0, then 𝑓 has an isolated singularity
at 𝑎.

In this case, we obtain the analogue of power series, Laurent series at 𝑎

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑐𝑛(𝑧 − 𝑎)𝑛.

There are three possibilities:
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1 Complex analysis & Branching/Multivalued functions

1. removable singularity: 𝑐𝑛 = 0 for all 𝑛 < 0.

2. pole: there exists 𝑁 < 0 such that 𝑐𝑁 ≠ 0 and 𝑐𝑛 = 0 for all 𝑛 < 𝑁. We
say 𝑓 has a pole of order −𝑁 and can write 𝑓(𝑧) = (𝑧 − 𝑎)𝑁𝑔(𝑧) where 𝑔
is analytic and nonzero at 𝑎.

3. essential singularity: 𝑐𝑛 ≠ 0 for infinitely many 𝑛 < 0.

However, characterisation in terms of Laurent series is coordinate-dependent.
Intrinsically, recall that

Theorem 1.3. 𝑓 has a removable singularity at 𝑎 if and only if 𝑓 is bounded
on 𝐷(𝑎, 𝑟)∗.

Theorem 1.4 (Casorati-Weierstrass). 𝑓 has an essential singularity at 𝑎 if
and only if for every punctured disk 𝐷(𝑎, 𝑟)∗ in the domain of 𝑓, the image
𝑓(𝐷(𝑎, 𝑟)∗) is dense in C.

For completeness sake, we state that 𝑓 has a pole at 𝑎 if and only if neither
of the above happens (so lim𝑧→𝑎 |𝑓(𝑧)| = ∞).

This allows us, for example, to extend the definitions to infinity. Consider the
Riemann sphere C∞, on which a neighbourhood of infinity is the complement
of a closed set not including ∞. Mapping it to the complex plane, we define a
punctured disk around ∞ to be the complement of a closed disk in C. Then we
can talk conveniently about singularity at ∞.

Example. 𝑓(𝑧) = 1
𝑒𝑧−1 is meromorphic on C with poles at 𝑧 = 2𝜋𝑛𝑖 where

𝑛 ∈ Z. By considering 𝑔(𝑧) = 𝑧
𝑒𝑧−1 which has a removable singularity at 0, we

know 𝑓 has a pole of order 1 at 0, and therefore at all poles by periodicity.
At ∞, we have an essential singularity : along the imaginary axis, |𝑓(𝑧)| can

be arbitrarily big so it cannot be a removable singularity. Along the positive
real axis, |𝑓(𝑧)| → 0 so it cannot be a pole.

Definition (meromorphic function). 𝑓 is meromorphic on a domain 𝑈 ⊆
C∞ if it has only isolated singularies, none of which are essential.

1.2 Complex logarithm & Analytic continuation
Given nonzero 𝑧 = 𝑟𝑒𝑖𝜃, if 𝑒𝑤 = 𝑧, we know that 𝑤 = log 𝑟 + (2𝜋𝑛 + 𝜃)𝑖
for some 𝑛 ∈ Z. We can make a continuous choice of log 𝑧 on, for example,
𝑈 = C \ R≥0, by choosing 0 < 𝜃 < 2𝜋 and fixing some 𝑛 ∈ Z. This makes
𝑓𝑛(𝑧) ∶= log 𝑟 + (2𝜋𝑛 + 𝜃)𝑖 a well-defined continuous analytic function on 𝑈.

Note.

1. If 𝑔 ∶ 𝑈 → 𝑉 is an analytic bijection, then any inverse ℎ ∶ 𝑉 → 𝑈 is
analytic.

2. If 𝑔 ∶ 𝑈 → 𝑉 is analytic, then any continuous inverse ℎ ∶ 𝑉 → 𝑈 is analytic.

More naturally,
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1 Complex analysis & Branching/Multivalued functions

Proposition 1.5. Fix 𝑛 ∈ Z and define ℎ(𝑧) ∶= ∫𝑧
−1

𝑑𝑤
𝑤 + (2𝑛 + 1)𝜋𝑖 for

𝑧 ∈ 𝑈, where the integral is taken over the straight line from −1 to 𝑧, then
ℎ is analytic on 𝑈 and inverse to 𝑧 ↦ 𝑒𝑧.

Proof. First show ℎ is analytic with 𝑓 ′(𝑧) = 1
𝑧 .

ℎ(𝑧 + 𝜏) − ℎ(𝑧)
𝜏

= 1
𝜏

∫
𝑧+𝜏

𝑧

𝑑𝑤
𝑤

for 𝜏 sufficiently small (such that the triangle formed by −1, 𝑧 and 𝑧 + 𝜏 lies in
𝑈) by Cauchy’s Theorem. Then

∣ 1
𝜏

∫
𝑧+𝜏

𝑧

𝑑𝑤
𝑤

− 1
𝑧

∣ = ∣1
𝜏

∫
𝑧+𝜏

𝑧

𝑧 − 𝑤
𝑧𝑤

𝑑𝑤∣ → 0

as 𝜏 → 0.
Now define 𝑔(𝑧) = 𝑒ℎ(𝑧)

𝑧 so 𝑔′(𝑧) = 𝑧𝑒ℎ(𝑧)ℎ′(𝑧)−𝑒ℎ(𝑧)

𝑧 and so 𝑔′(𝑧) = 0 identically.
𝑔(−1) = 1 so 𝑒ℎ(𝑧) = 𝑧 for all 𝑧 ∈ 𝑈.

Definition (direct analytic continuation). A function element in a domain
𝑈 is a pair (𝑓, 𝐷) where 𝐷 is a subdomain of 𝑈 and 𝑓 is an analytic function
on 𝐷. Two function elements (𝑓, 𝐷) and (𝑔, 𝐸) are equivalent, write (𝑓, 𝐷) ∼
(𝑔, 𝐸) if 𝐷 ∩ 𝐸 ≠ ∅ and 𝑓 = 𝑔 on 𝐷 ∩ 𝐸.

We say (𝑔, 𝐸) is a direct analytic continuation of (𝑓, 𝐷).

Why do we make such a definition? We know the power series

∑
𝑟≥0

𝑧𝑘 = 1
1 − 𝑧

is defined on 𝐷(0, 1) and cannot be extended to any larger domain due to
natural boundary. However, 1

1−𝑧 is holomorphic on C \ {1} so sometimes the
domain forced by the definition of a function is not the maximal possible. In
other words, sometimes we are looking at the “correct” function with a “wrong”
domain.

Definition (analytic continuation along path). We say (𝑔, 𝐸) is an analytic
continuation of (𝑓, 𝐷) along 𝛾 if 𝛾 ∶ [0, 1] → 𝑈 and there exist function
elements (𝑓𝑖, 𝐷𝑖), 𝑖 ∈ {0, … , 𝑛} and 0 = 𝑡0 < 𝑡2 < ⋯ < 𝑡𝑛 = 1 such that

(𝑓, 𝐷) = (𝑓0, 𝐷0) ∼ (𝑓1, 𝐷1) ∼ ⋯ ∼ (𝑓𝑛−1, 𝐷𝑛−1) ∼ (𝑓𝑛, 𝐷𝑛) = (𝑔, 𝐸)

and 𝛾([𝑡𝑗, 𝑡𝑗+1]) ⊆ 𝐷𝑗 for 𝑗 ∈ {0, … , 𝑛 − 1}.
Write (𝑓, 𝐷) ≈𝛾 (𝑔, 𝐸).

Remark. As C has a path-connected basis for the topology, domains are path-
connected.
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1 Complex analysis & Branching/Multivalued functions

Definition (analytic continuation). We say (𝑔, 𝐸) is an analytic continu-
ation of (𝑓, 𝐷) if there exists a path 𝛾 such that (𝑓, 𝐷) ≈𝛾 (𝑔, 𝐸). In this
case we write (𝑓, 𝐷) ≈ (𝑔, 𝐸).

Remark.

1. If (𝑓, 𝐷) ≈𝛾 (𝑔, 𝐸) and (𝑓, 𝐷) ≈𝛾 (ℎ, 𝐸) then 𝑔 = ℎ by repeated applica-
tion of the identity principle. In other words, 𝑔 is completely determined
by 𝑓 and 𝛾.

2. Analytic continuation is an equivalence relation (exercise), but direct ana-
lytic continuation is not transitive, even if we require pairwise intersections
of the domains to be nonempty. If fact, that is the whole point of analytic
continuation along path.

Definition (complete analytic function). An equivalence class of a function
element under ≈ is a complete analytic function.

Example (complex logarithm). Let 𝑈 = C be the ambient space. Given 𝛼 < 𝛽
in R, define

𝐸(𝛼,𝛽) ∶= {𝑟𝑒𝑖𝜃 ∶ 𝑟 > 0, 𝛼 < 𝜃 < 𝛽}.

Note C \ R≥0 = 𝐸(0,2𝜋). If 𝛽 − 𝛼 ≤ 2𝜋, define

𝑓(𝛼,𝛽)(𝑧) = log 𝑟 + 𝑖𝜃

where 𝑧 = 𝑟𝑒𝑖𝜃, 𝛼 < 𝜃 < 𝛽. Then (𝑓(𝛼,𝛽), 𝐸(𝛼,𝛽)) is a function element for any
such 𝛼, 𝛽.

Let

𝐴 = (−𝜋
2

, 𝜋
2

)

𝐵 = (𝜋
6

, 7𝜋
6

)

𝐶 = (5𝜋
6

, 11𝜋
6

)

and 𝛾 ∶ [0, 1] → 𝑈, 𝑡 ↦ 𝑒2𝜋𝑖𝑡 and choose

0 = 𝑡0 < 𝑡1 = 1
6

< 𝑡2 = 1
2

< 𝑡3 = 5
6

< 𝑡4 = 1

and (𝑓𝐴, 𝐸𝐴), (𝑓𝐵, 𝐸𝐵), (𝑓𝐶, 𝐸𝐶) the corresponding function elements.
When the intervals overlap, the function elements agree so

(𝑓𝐴, 𝐸𝐴) ∼ (𝑓𝐵, 𝐸𝐵) ∼ (𝑓𝐶, 𝐸𝐶),

but
𝑓𝐶(𝑧) = 𝑓𝐴(𝑧) + 2𝜋𝑖, 𝑧 ∈ 𝐸𝐴 ∩ 𝐸𝐶

which shows nontransitivity of ∼. In fact, 𝑓𝐴 + 2𝜋𝑖 ∼ 𝑓𝐶. However we see
(𝑓𝐴, 𝐸𝐴) ≈𝛾 (𝑓𝐶, 𝐸𝐶) and so (𝑓𝐴, 𝐸𝐴) ≈ (𝑓𝐶, 𝐸𝐶). By repeating the process
with intervals moving to infinity in R, we see that all the log 𝑟 + (2𝜋𝑛 + 𝜃)𝑖 are
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1 Complex analysis & Branching/Multivalued functions

in the same class for ≈. On the other hand, if (𝑓, 𝐷) ≈𝛾 (𝑓𝐴′ , 𝐸𝐴′) for some
interval 𝐴′ then applying identity principle along the path to 𝑒𝑓𝑖 shows that 𝑓
is one of the branches of log.

Now we can define a space that contains all branches of logarithm. On
𝑈 = C \ R≥0, define

𝑓𝑛(𝑧) = log 𝑛 + (2𝜋𝑛 + 𝜃)𝑖

where 0 < 𝜃 < 2𝜋. Then (𝑓𝑛, 𝑈) are function elements in the complete analytic
function of log, and “almost” all of them. Take Z copies of 𝑈 and we can glue
them along R≥0. More precisely, for any 𝑛 ∈ Z and 𝛼 > 0, there exists a
neighbourhood 𝑉 of 𝛼 and a function element (𝑔, 𝑉 ) such that

(𝑓𝑛+1, 𝐸(0,𝜀)) ∼ (𝑔, 𝑉 ) ∼ (𝑓𝑛, 𝐸(2𝜋−𝜀,2𝜋))

for some 𝜀 > 0.
This object is the “gluing construction” of the Riemann surface associated

to log. Since these (𝑔, 𝑉 ) exist, the resulting surface 𝑅 will admit a continuous
function 𝑓 such that the following diagram commutes:

𝑅 C

C∗

𝑓

𝜋 exp

The rigorous construction is as follow. Let 𝑅 = ∐𝑘∈Z C
∗ and a basis for the

topology on 𝑅 is

1. disks contained in a single sheet: 𝐷((𝜂, 𝑘), 𝑟) disk of radius 𝑟 about 𝜂 ∈
C \R≥0 at level 𝑘, where 𝑟 is sufficently small such that the disk does not
intersect R≥0,

2. disks along R≥0: for 𝜂 > 0, 𝑘 ∈ Z, 𝑟 < |𝜂|,

𝐴((𝜂, 𝑘), 𝑟) = {(𝑧, 𝑘) ∶ |𝑧−𝜂| < 𝑟, Im 𝑧 ≥ 0}⨿{(𝑧, 𝑘−1), |𝑧−𝜂| < 𝑟, Im 𝑧 < 0}.

Check that this makes 𝑅 a Hausdorff, path-connected space. 𝑅 comes with
a natural projection 𝜋 ∶ 𝑅 → C∗, (𝜂, 𝑘) ↦ 𝜂. This is a continuous map as the
preimage of a small disk 𝐷(𝜂, 𝑟) ⊆ C∗ is the union of countably many copies of
that disk, one for each sheet. This is precisely the definition of a covering space.

Definition (covering space). A covering space of a topological space 𝑋 is
a continuous map 𝑝 ∶ 𝑋̃ → 𝑋 where 𝑋̃ and 𝑋 are Hausdorff and path-
connected and 𝑝 is a local homeomorphism, i.e. for each ̃𝑥 ∈ 𝑋̃, there exists
a neighbourhood ̃𝑁 of ̃𝑥 such that 𝑝|𝑁̃ is a homeomorphism.

𝑋 is the base space of 𝑝.
The cover is regular if for all 𝑥 ∈ 𝑋, there exists a neighbourhood 𝑁 of

𝑥 such that 𝑝−1(𝑁) is a disjoint union of sets mapped homeomorphically by
𝑝 to 𝑁.

Note. Whether including regularity in the definition of covering space is a mat-
ter of taste. It is ususally included in algebraic topology, e.g. in IID Algebraic
Topology.
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Remark. 𝜋 ∶ 𝑅 → C∗ is a regular cover.

Example (a non-regular cover). Consider 𝑝 ∶ 𝑋̃ → C∗, 𝑧 ↦ 𝑒𝑧 where

𝑋̃ = {𝑧 ∈ C ∶ 0 < Im 𝑧 < 4𝜋}.

It is a covering space but consider 1 ∈ C∗. Any preimage of a sufficiently small
disk centred at 1 will be the disjoint union of one disk at 2𝜋𝑖 and two half disks
at 0 and 4𝜋𝑖 each. Thus 𝑝 fails to be a regular cover as we choose the “wrong”
domain.

Define

𝑓 ∶ 𝑅 → C
(𝜂, 𝑘) ↦ log 𝑟 + (2𝜋𝑘 + 𝜃)𝑖

where 𝜂 = 𝑟𝑒𝑖𝜃, 0 ≤ 𝜃 < 2𝜋. Then 𝑓 is a continuous bijection and the following
diagram commutes:

𝑅 C

C∗

𝑓

𝜋 exp

A similar construction can be done for the multivalued function 𝑧1/𝑛 where
𝑛 ∈ N. As a multivalued function,

(𝑟𝑒𝑖𝜃)1/𝑛 = 𝑟1/𝑛𝑒𝑖𝜃/𝑛𝑒2𝜋𝑘𝑖/𝑛

for 𝑘 ∈ Z/𝑛Z. Define 𝑅𝑛 = ∐𝑘∈Z/𝑛Z C
∗ and glue near modulo 𝑛 (“top sheet to

bottom sheet”). Then we have 𝑓𝑛, 𝜋𝑛 such that the following diagram commutes:

𝑅𝑛 C∗

C∗

𝑓𝑛

𝜋𝑛 𝑧↦𝑧𝑛

Definition (regular/singular point). Let 𝑓(𝑧) = ∑𝑘≥0 𝑎𝑘𝑧𝑘 with radius of
convergence 1. A point 𝑧 ∈ 𝜕𝐷(0, 1) is regular if there exists a neighbour-
hood 𝑁 of 𝑧 and a holomorphic 𝑔 on 𝑁 such that 𝑔 = 𝑓 on 𝑁 ∩ 𝐷(0, 1), i.e.
𝑔 is a direct analytic continuation of 𝑓.

If 𝑧 ∈ 𝜕𝐷(0, 1) is not regular it is singular.

Remark.

1. The regular points of 𝜕𝐷(0, 1) form an open set in the subspace topology
on 𝜕𝐷(0, 1).

2. 𝑧 is regular does not mean that the series converges at 𝑧. Consider the
classical example 𝑓(𝑧) = ∑𝑘≥0 𝑧𝑘, which is regular everywhere except
𝑧 = 1 (𝑔(𝑧) = 1

1−𝑧 ).
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3. The converse does not hold either. A series converges at 𝑧 does not imply
that it is regular there. For example, 𝑔(𝑧) = ∑𝑘≥2

𝑧𝑘

(𝑘−1)𝑘 converges at all
𝑧 ∈ 𝜕𝐷(0, 1). If it was regular at such a point then the second derivative
𝑔″(𝑧) = ∑𝑘≥0 𝑧𝑘 would also be regular at 𝑧. But 𝑔″(𝑧) → ∞ as 𝑧 → 1 so
𝑓 cannot agree on a neighbourhood of 1 with any holomorphic function.

However, regularity does affect radius of convergence:

Proposition 1.6. Suppose 𝑓(𝑧) = ∑𝑘≥0 𝑎𝑘𝑧𝑘 with radius of convergence 1.
Then there exists a singular point on 𝜕𝐷(0, 1).

Proof. Suppose not so for each 𝑧 ∈ 𝜕𝐷(0, 1) there exists a neighbourhood 𝑁𝑧 of
𝑧 and 𝑔𝑧 on 𝑁𝑧 holomorphic with 𝑔𝑧 = 𝑓 on 𝑁𝑧 ∩ 𝐷(0, 1). These extensions can
be glued together by identity principle. As 𝜕𝐷(0, 1) is compact, there exists a
finite collection of 𝑧1, … , 𝑧𝑚 ∈ 𝜕𝐷(0, 1) such that 𝑁𝑧𝑖

’s cover 𝜕𝐷(0, 1). wlog let
the neighbourhoods be disks. Then we can choose 𝛿 > 0 sufficiently small such
that 𝑓 is holomorphic on 𝐷(0, 1 + 𝛿). Contradiction.

Definition (natural boundary). The disk boundary 𝜕𝐷(0, 1) is the natural
boundary for 𝑓 if all points on the boundary are singular.

Example. 𝑓(𝑧) = ∑𝑘≥0 𝑧𝑘! has natural boundary 𝜕𝐷(0, 1). Consider 𝜔 = 𝑒2𝜋𝑖 𝑝
𝑞

a root of unity. For 0 < 𝑟 < 1,

𝑓(𝑟𝜔) = ∑
𝑘≥0

𝑟𝑘!𝜔𝑘! = ∑
𝑘≤𝑞−1

𝑟𝑘!𝜔𝑘! + ∑
𝑘≥𝑞

𝑟𝑘!

so as 𝑟 → 1 the last term goes to infinity so this cannot agree with a holomorphic
function on a neighbourhood of 𝜔. Since the closure of roots of unity is 𝜕𝐷(0, 1),
every point is singular.

1.3 Definition of Riemann surface

Definition (Riemann surface). A Riemann surface 𝑅 is a connected, Haus-
dorff topological space, together with a collection of homeomorphisms 𝜙𝛼 ∶
𝑈𝛼 → 𝐷𝛼 ⊆ C with 𝑈𝛼 open, so that

1. ⋃𝛼 𝑈𝛼 = 𝑅,

2. if 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅ then 𝜙𝛽 ∘ 𝜙−1
𝛼 is analytic on 𝜙𝛼(𝑈𝛼 ∩ 𝑈𝛽).

For a given 𝛼, (𝑈𝛼, 𝜙𝛼) is a chart, and these compositions 𝜙𝛽 ∘ 𝜙−1
𝛼 are

transition functions. The collection of charts is known as an atlas on 𝑅.

In other words, a Riemann surface is precisely a connected one-dimensional
complex manifold.

Definition (analytic function between Riemann surfaces). Let 𝑅, 𝑆 be Rie-
mann surfaces with atlases {(𝑈𝛼, 𝜙𝛼)} and {(𝑉𝛽, 𝜓𝛽)} respectively. A contin-
uous map 𝑓 ∶ 𝑅 → 𝑆 is analytic or holomorphic if whenever 𝑈𝛼∩𝑓−1(𝑉𝛽) ≠ ∅,
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then
𝜓𝛽 ∘ 𝑓 ∘ 𝜙−1

𝛼

on 𝜙𝛼(𝑈𝛼 ∩ 𝑓−1(𝑉𝛽)) is analytic.

Remark. Analyticity is local. An equivalent definition is to say 𝑓 is analytic
at 𝑥 ∈ 𝑅 if whenever 𝑥 ∈ 𝑈𝛼 ∩ 𝑓−1(𝑉𝛽) then 𝜓𝛽 ∘ 𝑓 ∘ 𝜙−1

𝛼 is analytic on a
neighbourhood of 𝜙𝛼(𝑥).

Example. (C, 𝑧) is a Riemann surface with one chart where we denote by 𝑧
the map 𝑧 ↦ 𝑧, as is (C, 𝑧 + 1) and (C, 𝑧).

Example. The Möbius band cannot be made into a Riemann surface because
it is non-orientable. Informally, if we put an atlas on the Möbius band, we could
choose it so that the centre circle maps to a space homeomorphic to a circle.
And as analytic transition implies conformity, consistent choice of “inside” of
the circle leads to a consistent choice on “inside” on the Möbius band, which is
a contradiction.

Remark.

1. Each transition function has continuous inverses and so are conformal
equivalence on their domains.

2. 𝑅 is connected with a path-connected basis so 𝑅 is path-connected.

Definition (equivalent atlas). Two atlases {(𝑈𝛼, 𝜙𝛼)} and {(𝑉𝛽, 𝜓𝛽)} are
equivalent if their union is also an atlas, i.e. whenever 𝑈𝛼 ∩ 𝑉𝛽 ≠ ∅ then
𝜓𝛽 ∘ 𝜙−1

𝛼 on 𝜙(𝑈𝛼 ∩ 𝑉𝛽) is analytic.

Example. (C, 𝑧) and (C, 𝑧 + 1) are equivalent: 𝑧 ↦ 𝑧 + 1 (or 𝑧 ↦ 𝑧 − 1) are
analytic. On the other had (C, 𝑧) and (C, 𝑧) are not equivalent as 𝑧 ↦ 𝑧 is not
analytic.

We will see later that the notion of equivalence defines an equivalence relation
on the collection of atlases on a fixed 𝑅.

Definition (conformal structure). An equivalence class of atlases on 𝑅 is a
conformal structure on 𝑅.

Remark.

1. If 𝑅 is a Riemann surface and 𝑆 ⊆ 𝑅 is open and connected then restric-
tions of the charts provide a conformal structure on 𝑆, for which 𝑖 ∶ 𝑆 ↪ 𝑅
is analytic.

2. Two atlases are equivalent if and only if the identity map is analytic.

Proposition 1.7. Let 𝑓 ∶ 𝑅 → 𝑆, 𝑔 ∶ 𝑆 → 𝑇 be analytic maps of Riemann
surfaces. Then 𝑔 ∘ 𝑓 is analytic.

9
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Proof. Suppose {(𝑈𝛼, 𝜙𝛼)}, {(𝑉𝛽, 𝜓𝛽)} and {(𝑊𝛾, 𝜃𝛾)} are atlases on 𝑅, 𝑆 and 𝑇
respectively. Let ℎ = 𝑔 ∘ 𝑓 which is continuous. Suffices to show that whenever

𝑌 ∶= 𝑈𝛼𝑓−1(𝑉𝛽) ∩ ℎ−1(𝑊𝛾)

is nonempty then
𝜃𝛾 ∘ 𝑔 ∘ 𝑓 ∘ 𝜙−1

𝛼

is analytic on 𝑌. Since 𝜓𝛽 ∘𝑓 ∘𝜙−1
𝛼 is analytic on 𝜙𝛼(𝑌 ) and 𝜃𝛾 ∘𝑔∘𝜓−1

𝛽 is analytic
on 𝜓𝛽 ∘ 𝑓(𝑌 ), we concluded that

𝜃𝛾 ∘ 𝑔 ∘ 𝜓−1
𝛽 ∘ 𝜓𝛽 ∘ 𝑓 ∘ 𝜙−1

𝛼

is analytic on 𝛼𝛼(𝑌 ).

Corollary 1.8. Equivalence of atlas is an equivalence relation.

Proposition 1.9. Suppose 𝑅 is a Riemann surface and 𝜋 ∶ 𝑅̃ → 𝑅 is a
covering map. Then there is a unique conformal structure on 𝑅̃ which makes
𝜋 analytic.

Proof. Given ̃𝑧 ∈ 𝑅̃, we can find ̃𝑁 of ̃𝑧 on which 𝜋 ∶ ̃𝑁 → 𝑁 is a homeomorphism
onto its image. Let (𝑉 , 𝜑) be a chart containing the image 𝜋( ̃𝑧). Define 𝑈 ̃𝑧 =
𝜋−1(𝑉 ) ∩ ̃𝑁 and 𝜑 ̃𝑧 = 𝜑 ∘ 𝜋. This defines a chart on some neighbourhood of

̃𝑧 and {(𝑈 ̃𝑧, 𝜑 ̃𝑧)} ̃𝑧∈𝑅̃ defines an atlas: this is clearly a cover and the transition
functions 𝜑 ̃𝑧 ∘𝜑−1

𝑤̃ are the restrictions of transition functions for 𝑅. 𝜋 is analytic
with respect to this conformal structure as the composite maps are transition
maps of 𝑅. Uniqueness follows from a similar argument.

Example. Let 𝑅 = ∐𝑘∈Z C
∗ and 𝜋 ∶ 𝑅 → C∗, (𝜂, 𝑘) ↦ 𝜂 be a covering map.

Then there exists a unique conformal structure on 𝑅 for which 𝜋 is analytic.
Note that the following diagram commutes, 𝑓 is a continuous map and locally
𝑓 is the composition of inverse of exp and projection so 𝑓 is analytic.

𝑅 C

C∗

𝑓

𝜋 exp

As 𝑓 is a bijection by construction, it has a global analytic inverse.

Definition (conformal equivalence). An analytic map 𝑓 ∶ 𝑅 → 𝑆 of Rie-
mann surfaces is a conformal equivalence if there exists 𝑔 ∶ 𝑆 → 𝑅 analytic
inverse to 𝑓.

Example.

1. 𝑓 as above for the logarithm Riemann surface is a conformal equivalence:
the inverse of 𝑓 is continuous and locally it is given by 𝜋−1 ∘ exp so is
analytic. Therefore (𝑅, 𝜋) and (C, exp) cannot be “told apart”.

10
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2. (C, 𝑧) and (C, 𝑧) are conformally equivalent as 𝑓(𝑧) = 𝑧 is a conformal
equivalence.

3.
𝑅𝑛 C∗

C∗

𝑓𝑛

𝜋𝑛 𝑧↦𝑧𝑛

Again there exists a unique conformal structure on 𝑅𝑛 making 𝜋 analytic.
It follows that 𝑓𝑛 is analytic. Note that one could imagine adding two
points to 𝑅𝑛 and replacing C∗ with C ∪ {∞} = C∞. Doing so ruins 𝜋 as
a cover, but sometimes it’s worth it (compactness!).

4. C∞ = C ∪ {∞} equipped with the sphere topology via steoreographic
projection. Define two charts: (C, 𝑧) and (C∞ \ {0}, 1

𝑧 ). The transition
functions are 1

𝑧 which are anlaytic on C∗. It makes C∞ a compact Riemann
surface. This is sometimes denoted by Ĉ.

Definition (analytic function). If 𝑅 is a Riemann surface, an analytic map
𝑓 ∶ 𝑅 → C is an analytic function.

Therefore we use “map” to denote maps between Riemann surfaces and
reserve “function” for a C-valued map.

Recall from IB Analysis II and IB Complex Analysis

Theorem 1.10 (inverse function theorem). Given analytic 𝑔 on a domain
𝑉 ⊆ C and 𝑎 ∈ 𝑉 such that 𝑔′(𝑎) ≠ 0, there exists a neighbourhood 𝑁 of 𝑎
such that 𝑔|𝑁 ∶ 𝑁 → 𝑔(𝑁) is a conformal equivalence.

Consider an analytic function 𝑓 ∶ 𝑅 → C. Given 𝑝 ∈ 𝑅, choose a chart (𝑈, 𝜑)
with 𝑝 ∈ 𝑈. wlog 𝑓(𝑝) = 0. and write 𝑎 = 𝜑(𝑝). Locally around 𝑎, 𝑓 ∘ 𝜑−1 is
analytic so can be written as 𝑔(𝑧)𝑟 where 𝑔 is a conformal equivalence: we can
write any nonconstant analytic function sending 𝑎 ↦ 0 as (𝑧 − 𝑎)𝑟ℎ(𝑧) where ℎ
is analytic and nonzero on a neighbourhood of 𝑎. Then there is a neighbourhood
𝑉 of 𝑎 such that ℎ(𝑉 ) does not intersect some ray from the origin. This allows
us to define a logarithm on ℎ(𝑉 ) and 𝑟th root

ℓ(𝑧) ∶= exp(1
𝑟

log ℎ(𝑧)).

Then 𝑓 ∘𝜑−1 is of the form 𝑔(𝑧)𝑟 where 𝑔(𝑧) = (𝑧−𝑎)ℓ(𝑧). Then 𝑔′(𝑎) = ℓ(𝑎) ≠ 0
so conformal.

Define a chart on the intersection of 𝜑(𝑈) with domain of 𝑔, together with
the chart 𝜓 = 𝑔 ∘ 𝜙. Therefore up to translation, any analytic function on a
Riemann surface is locally equivalent to a powering map.

Definition (complex torus). Let

Λ = Z𝜏1 ⊕ Z𝜏2 ⊆ C

be a lattice where 𝜏1, 𝜏2 are nonzero in C with 𝜏1
𝜏2

∉ R, i.e. are linearly

11
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independent over R. The quotient group 𝑇 = C/Λ can be equipped with a
complex structure, known as a complex torus.

The complex structure is constructed as follow. Equip the quotient group
𝑇 = C/Λ with quotient topology. 𝜋 ∶ C → 𝑇 is continuous so 𝑇 is connected. 𝜋
is also open: if 𝑈 is an open set in C then

𝜋−1(𝜋(𝑈)) = ⋃
𝜔∈Λ

𝜔 + 𝑈

a union of open sets so open. Note that any closed parallelogram

𝑃𝑧 = {𝑧 + 𝑟𝜏1 + 𝑠𝜏2 ∶ 𝑟, 𝑠 ∈ [0, 1]}

maps onto 𝑇 by 𝜋. So 𝑇 is the continuous image of a compact set so compact.
𝑇 is also Hausdorff: note first that Λ is a discrete set: if Λ contained an accum-
multaion point then 0 would also be a limit point, i.e. for all 𝑘 ∈ N there exists
𝑚𝑘, 𝑛𝑘 ∈ Z (and wlog 𝑛𝑘 ≠ 0) such that

|𝑚𝑘𝜏1 − 𝑛𝑘𝜏2| < 1
𝑘

but then
∣𝑚𝑘
𝑛𝑘

− 𝜏2
𝜏1

∣ < 1
𝑘|𝑛𝑘|𝜏1

≤ 1
𝑘|𝜏1|

→ 0

as 𝑘 → ∞ so 𝜏2
𝜏1

∈ R, contradiction. Thus given two points 𝑤1, 𝑤2 ∈ 𝑇 we can
choose preimages 𝑥𝑖 ∈ 𝑝−1(𝑤𝑖) and neighbourhoods 𝑁𝑖 of 𝑥𝑖 such that

( ⋃
𝜔∈Λ

𝑁1 + 𝜔) ∩ ( ⋃
𝜔∈Λ

𝑁2 + 𝜔) = ∅,

i.e. 𝜋(𝑁1) and 𝜋(𝑁2) are open disjoint with 𝑤𝑖 ∈ 𝜋(𝑁𝑖).
Now show 𝜋 is a covering map: by the above 𝜋 is a covering map, in fact

regular: given 𝑤 ∈ 𝑇, choose 𝑧 ∈ C such that 𝜋−1(𝑤) lies in the interior of
Λ-translates of 𝑃𝑧, then choose a neighbourhood 𝑁 of the unique preimage of 𝑤
in 𝑃𝑧 which is contained in the interior of 𝑃𝑧. Then 𝜋(𝑁) satisfies

𝜋−1(𝜋(𝑁)) = ⋃
𝜔∈Λ

𝜔 + 𝑁

is a disjoint union of 𝜋(𝑁).
Finally for the complex structure of 𝑇, given 𝑎 ∈ 𝑇, choose 𝑧 ∈ C such that

𝜋(𝑧) = 𝑎 and a neighbourhood 𝑁𝑎 of 𝑎 on which the regularity is realised. In
particular, the component 𝑁𝑧 of 𝜋−1(𝑁𝑎) containing 𝑧 has 𝜋|𝑁𝑧

∶ 𝑁𝑧 → 𝑁𝑎 a
homeomorphism. Define a chart to be the image of a disk 𝐷𝑧 about 𝑧 contained
in 𝑁𝑧. Write 𝑈𝑎 = 𝜋(𝐷𝑧) and define a chart map 𝜙𝑎 = (𝜋|𝑁𝑧

)−1 on 𝑈𝑎. Claim
this defines an atlas on 𝑇: clearly this is a cover and claim the trasition maps
are translations: suppose 𝑈𝑎 ∩ 𝑈𝑏 ≠ ∅, then for each 𝑤 ∈ 𝑈𝑎 ∩ 𝑈𝑏 there exists
𝜔𝑤 ∈ Λ such that 𝜙−1

𝑏 ∘ 𝜙𝑎(𝑤) = 𝑤 + 𝜔𝑤. But 𝑤 ↦ 𝜔𝑤 is a continuous function
on a connected set and it takes values in a discrete set so is constant. Thus the
transition functions are translations so analytic.

In example sheet 1 we’ll show that different lattices can yield conformally
equivalent tori. In example sheet 2 we give characterisation of conformal equiv-
alence classes of tori in terms of Λ. Complex tori are an important class of
Riemann surfaces.
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Theorem 1.11 (open mapping theorem). Let 𝑓 ∶ 𝑅 → 𝑆 be a nonconstant
analytic map of Rieman surfaces. Then 𝑓 is an open map.

Proof. Suppose 𝑊 ⊆ 𝑅 is open. Choose 𝑧 ∈ 𝑊 and charts (𝑈, 𝜙) of 𝑧, (𝑉 , 𝜓) of
𝑓(𝑧). Choose a disk 𝐷 about 𝜙(𝑧) sufficiently small such that

𝜙−1(𝐷) ⊆ 𝑊 ∩ 𝑓−1(𝑉 ) ∩ 𝑈.

Then
(𝜓 ∘ 𝑓 ∘ 𝜙−1)(𝐷)

is open so (𝑓 ∘ 𝜙−1)(𝐷) = 𝑓(𝜙−1(𝐷)) is open. Thus

𝑓(𝑧) ∈ (𝑓 ∘ 𝜙−1)(𝐷)) ⊆ 𝑓(𝑊)

so 𝑓(𝑊) is open.

Corollary 1.12. Let 𝑓 ∶ 𝑅 → 𝑆 be a nonconstant analytic map. If 𝑅 is
compact then 𝑓(𝑅) = 𝑆 and 𝑆 is compact.

Proof. 𝑓(𝑅) is open because 𝑓 is open. It is also closed as it is compact in 𝑆, a
Hausdorff space. As 𝑆 is connected, the nonempty clopen set 𝑓(𝑅) is precisely
𝑆. The second claim follows.

Corollary 1.13. Complex tori and C∞ admit no analytic function which
are nonconstant.

We have seen a special case of this in IB Complex Analysis: if 𝑓 ∶ C∞ → C
is analytic then 𝑓(∞) ∈ C so 𝑓 is bounded on a neighbourhood of ∞. By
Liouville’s theorem 𝑓 is constant.

Definition (harmonic). Let ℎ ∶ 𝑅 → R be a continuous function on a
Riemann surface 𝑅. ℎ is harmonic if for all charts (𝑈, 𝜙) of 𝑅, ℎ ∘ 𝜙−1 is
harmonic on 𝜙(𝑈).

Recall that a harmonic function on a domain in C is the real part of some an-
alytic funciton locally, same is true for harmonic functions on Riemann surfaces.
Thus harmonicity is well-defined independent of charts.

Proposition 1.14. Suppose ℎ ∶ 𝑅 → R is harmonic on a Riemann surface
𝑅. Then if ℎ is nonconstant, ℎ is open. In particular if 𝑅 is compact, 𝑅
admits no nonconstant harmonic function.

Proof. Given such a nonconstant ℎ ∶ 𝑅 → R and open set 𝑈 ⊆ 𝑅 and 𝑧 ∈ 𝑈 ⊆ 𝑅,
choose 𝑧 ∈ 𝑉 ⊆ 𝑈 open such that ℎ = Re 𝑔 for some analytic function 𝑔 on 𝑉.

𝑉

𝑔(𝑉 ) R

𝑔 ℎ

Re

By open mapping theorem if 𝑔 is nonconstant then it is open. Since Re is open,
their composition ℎ is as well. For a proof that 𝑔 is nonconstant, see example
sheet 1 Q13.

The second claim follows.

13
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Here we digress a little bit on non-examibable content before heading to
the next chapter. A fundamental result about harmonic functions on Riemann
surfaces is that they “almost” exist. We cannot find nonconstant harmonic
function from a compact Riemann surface. But as the next best alternative we
have

Theorem 1.15. Let 𝑅 be a Riemann surface, 𝑃 ≠ 𝑄 ∈ 𝑅. Then there
exists a harmonic function ℎ ∶ 𝑅 \ {𝑃 , 𝑄} → R such that for any chart
𝜙 ∶ 𝑈 → C about 𝑃 with 𝜙(𝑃) = 0, ℎ ∘ 𝜙−1 is log |𝑧| plus a bounded function
near 0, and for any chart 𝜓 ∶ 𝑉 → C about 𝑄 with 𝜓(𝑄) = 0, ℎ ∘ 𝜓−1 is
− log |𝑧| plus a bounded function near 0.

Theorem 1.16 (Riemann existence theorem, classical version). Let 𝑅 be a
compact Riemann surface and 𝑃 ≠ 𝑄 in 𝑅. Then there exists a meromorphic
function 𝑓 on 𝑅 with 𝑓(𝑃 ) ≠ 𝑓(𝑄).

14
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2 Meromorphic functions

Definition (meromorphic). A meromorphic function on a Riemann surface
𝑅 is an analytic map to C∞.

Proposition 2.1. Let 𝑈 ⊆ C is a domain. A function 𝑓 ∶ 𝑈 → C∞ is
meromorphic if and only if it is meromorphic as a map from a Riemann
surface.

Proof. Assume 𝑓 ∶ 𝑈 → C∞ is analytic. Given 𝑎 ∈ 𝑈, if 𝑓(𝑎) ∈ C then 𝑓 is
an analytic function near 𝑎 so meromorphic. If 𝑓(𝑎) = ∞ then by considering
the chart (C \ {0}, 1

𝑧 ) of C∞ near ∞, we see that 𝑔(𝑧) = 1
𝑓(𝑧) is analytic on a

neighbourhood of 𝑎 with 𝑔(𝑎) = 0. Thus 𝑔(𝑧) = (𝑧 − 𝑎)𝑟ℎ(𝑧) where ℎ is analytic
nonzero on a neighbourhood of 𝑎 so 𝑓(𝑧) = (𝑧 − 𝑎)−𝑟 1

ℎ(𝑧) , which is meromorphic
as a complex function.

All the implications above are equivalences so the reverse also holds.

Example. In example sheet 1 Q15 we show that {(𝑧, 𝑤) ∶ 𝑤2 = 𝑧3 − 𝑧} ⊆ C2

admits a conformal structure via the coordinate projection maps. We may
alternatively do this geometrically by gluing. Define 𝑓(𝑧) = 𝑧3 − 𝑧 and define
𝑈 = C \ ([−1, 0] ∪ [1, ∞)). Claim that we can define a square root of 𝑓 on 𝑈 (in
other words, direct analytic continuation is transitive): this can be done locally
at any point of 𝑈. To show it’s well-defined, consider a closed path 𝛾 ⊆ 𝑈. By
a result about winding number in example sheet 1 Q1,

𝐼(𝑓 ∘ 𝛾, 0) = 𝐼(𝛾, −1) + 𝐼(𝛾, 0) + 𝐼(𝛾, 1).

We can check that 𝐼(𝛾, 1) = 0 and 𝐼(𝛾, −1) = 𝐼(𝛾, 0) so 𝐼(𝑓 ∘ 𝛾, 0) ∈ 2Z.
Therefore if we define locally some exp( 1

2 log 𝑓(𝑧)), as we travel along 𝛾, the
change in log is

∫
𝛾

𝑓 ′(𝑧)
𝑓(𝑧) − 0

𝑑𝑧 = 2𝜋𝑖𝐼(𝑓 ∘ 𝛾, 0) = 2𝑛𝜋𝑖

for some 𝑛 ∈ 2Z by argument principle. Thus 1
2 log 𝑓(𝑧) change by 𝑛𝜋𝑖.

If we let 𝑈+, 𝑈− be two copies of 𝑈 and denote by 𝑔+ ∶ 𝑈+ → C the map we
just constructed and let 𝑔− = −𝑔+, glue according to the identifying segments
(see image) to obtain a single surface 𝑅 and an analytic function 𝑔 on 𝑅 which
agrees with 𝑔+ on 𝑈+ and 𝑔− on 𝑈−. Topologically, this is a torus minus four
points.

It might be instructive to compare algebraic and gemeotric/topological con-
struction and advantage of each. Later we’ll learn to extract topological infor-
mation directly from the algebraic definition.

2.1 Space of germs and monodromy

Definition (lift). Suppose 𝜋 ∶ 𝑋̃ → 𝑋 is a (topological) covering map, and
𝛾 ∶ [0, 1] → 𝑋 is a path. Then a lift of 𝛾 is a path ̃𝛾 ∶ [0, 1] → 𝑋̃ such that
𝜋 ∘ ̃𝛾 = 𝛾.
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Proposition 2.2. If ̃𝛾1, ̃𝛾2 are lifts of 𝛾 with 𝛾1(0) = 𝛾2(0) then 𝛾1 = 𝛾2.

Proof. Define

𝐼1 = {𝑡 ∈ [0, 1] ∶ ̃𝛾1(𝑡) = ̃𝛾2(𝑡)}
𝐼2 = {𝑡 ∈ [0, 1] ∶ ̃𝛾1(𝑡) ≠ ̃𝛾2(𝑡)}

Claim that both are open in [0, 1]. First suppose 𝜏 ∈ 𝐼2. As 𝑋̃ is Hausdorff, there
exist open disjoint 𝑈1, 𝑈2 with ̃𝛾1(𝜏) ∈ 𝑈1, ̃𝛾2(𝜏) ∈ 𝑈2. Paths are continuous so
̃𝛾−1
1 (𝑈1) and ̃𝛾−1

2 (𝑈2) are open neighbourhoods of 𝜏 in [0, 1], their intersection
is thus open and contained in 𝐼2, so 𝐼2 is open.

Suppose now that 𝜏 ∈ 𝐼1. Choose an open neighbourhood ̃𝑁 of ̃𝛾1(𝜏) = ̃𝛾2(𝜏)
in 𝑋̃ such that 𝜋|𝑁̃ is a homeomorphism onto its image. We have 𝜋( ̃𝛾1(𝑡)) =
𝜋( ̃𝛾2(𝑡)) for all 𝑡 as they are both lifts for 𝛾, so on ̃𝑁 this implies that ̃𝛾1(𝑡) =
̃𝛾2(𝑡). By continuity of paths, there exists 𝛿 > 0 such that 𝑡 ∈ (𝜏−𝛿, 𝜏+𝛿) ⊆ [0, 1]

implies ̃𝛾1(𝑡), ̃𝛾2(𝑡) ∈ ̃𝑁. So the interval (𝜏 − 𝛿, 𝜏 + 𝛿) ⊆ [0, 1] ⊆ 𝐼1 so 𝐼1 is open.
Thus 𝐼1 = [0, 1] by connectivity.

In summary, lifts are unique up to choice of basepoints.
As for existence, lifts may not exist if the cover is not regular. c.f. nonregular

cover exmaple. However, it is the only obstruction to the construction of a lift.

Proposition 2.3. Suppose 𝜋 ∶ 𝑋̃ → 𝑋 is a regular covering map. Given 𝛾
in 𝑋 and 𝑧 ∈ 𝑋̃ such that 𝜋(𝑧) = 𝛾(0), there is a (unique) lift ̃𝛾 of 𝛾 with
̃𝛾(0) = 𝑧.

Proof. Define

𝐼 = {𝑡 ∈ [0, 1] ∶ exists lift ̃𝛾 ∶ [0, 1] → 𝑋̃ of 𝛾 with ̃𝛾(0) = 𝑧}

and let 𝜏 = sup 𝐼. Suppose for contradiction 𝜏 ≠ 1. Choose an open neighbour-
hood 𝑈 of 𝛾(𝜏) such that 𝜋−1(𝑈) = ∐𝑗

̃𝑈𝑗 and 𝜋|𝑈̃𝑗
is a homeomorphism onto

𝑈. By continuity of 𝛾, there exists 𝛿 > 0 such that 𝛾([𝜏 − 𝛿, 𝜏 + 𝛿]) ⊆ 𝑈. Since
𝜏 is the supremum, exists 𝜏1 ∈ [𝜏 − 𝛿, 𝜏] such that 𝛾 lifts to ̃𝛾 on [0, 𝜏1] with
̃𝛾(0) = 𝑧. Choose 𝑗 such that ̃𝛾(𝜏1) ∈ ̃𝑈. Define an extension of ̃𝛾 on [𝜏 , 𝜏 + 𝛿]

by (𝜋|𝑈̃𝑗
)−1 ∘ 𝛾. This gives a lift of 𝛾 to [0, 𝜏 + 𝛿], contradicting 𝜏 = sup 𝐼. Thus

𝜏 = 1.

Definition (homotopy). We say paths 𝛼, 𝛽 in 𝑋 are homotopic in 𝑋 if there
exists a family 𝛾𝑠 of paths where 𝑠 ∈ [0, 1] such that

1. 𝛾0 = 𝛼, 𝛾1 = 𝛽,

2. 𝛾𝑠(0) = 𝛼(0) = 𝛽(0) and 𝛾𝑠(1) = 𝛼(1) = 𝛽(1) for all 𝑠 ∈ [0, 1],

3. [0, 1] × [0, 1] → 𝑋, (𝑠, 𝑡) ↦ 𝛾𝑠(𝑡) is continuous.

16
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Definition (simply connected). We say 𝑋 is simply connected if any closed
path in 𝑋 is homotopic to a constant path.

Theorem 2.4 (monodromy theorem). Let 𝜋 ∶ 𝑋̃ → 𝑋 be a covering map
and 𝛼, 𝛽 be paths in 𝑋. Assume that

1. 𝛼 and 𝛽 are homotopic in 𝑋,

2. 𝛼 and 𝛽 have lifts ̃𝛼 and ̃𝛽 respectively with ̃𝛼(0) = ̃𝛽(0),

3. every path in 𝑋 with 𝛾(0) = 𝛼(0) = 𝛽(0) has a lift ̃𝛾 with ̃𝛾(0) =
̃𝛼(0) = ̃𝛽(0).

Then the lifts ̃𝛼 and ̃𝛽 are homotopic. In particular, ̃𝛼(1) = ̃𝛽(1).

Proof. Non-examinable and omitted. See, for example, IID Algebraic Topology.

Example. Consider 𝑧 ↦ 𝑧𝑛 on C∗ = C \ {0}. This is a regular covering map.
Consider a loop 𝛾 based at 1. The preimages of 1 are the 𝑛th roots of unity
𝜁𝑘

𝑛, 1 ≤ 𝑘 ≤ 𝑛. Any lift of 𝛾 will start at some 𝜁𝑘
𝑛 and end at 𝜁𝑘+1

𝑛 . As this
is a regular cover, monodromy theorem tells that any path based at 1 has a
lift whose endpoints are the same as if we lifted 𝛾0𝑛 for some 𝑛 ∈ Z. Note
that to any path 𝛾 we have an associated permutation of the set {𝜁𝑘

𝑛}1≤𝑘≤𝑛
by considering where the lift starting at 𝜁𝑘

𝑛 ends, i.e. an element of 𝑆𝑛. The
subgroup of 𝑆𝑛 arising in this way is generated by (123 … 𝑛), which is the cyclic
subgroup 𝐶𝑛.

(It is an exercise to show that any closed path in the punctured plane is
homotopic to an integer multiple of 𝛾.)

2.2 Space of germs
Suppose 𝐺 ⊆ C is a domain throughout this section.

Definition (germ). Given 𝑧 ∈ 𝐺 and (𝑓, 𝐷) and (𝑔, 𝐸) function elements.
We say (𝑓, 𝐷) ≡𝑧 (𝑔, 𝐸) if 𝑧 ∈ 𝐷 ∩ 𝐸 and 𝑓 = 𝑔 on a neighbourhood of
𝑧. The equivalence class under ≡𝑧 of (𝑓, 𝐷) is called the germ of 𝑓 at 𝑧,
denoted by [𝑓]𝑧.

Compare this with direct analytic continuation, which is not an equivalence
relation.

Note that two germs [𝑓]𝑧, [𝑔]𝑤 are equal if and only if 𝑧 = 𝑤 and 𝑓 = 𝑔 on a
neighbourhood of 𝑧 = 𝑤.

Definition. The space of germs on 𝐺 is the set

𝒢 = {[𝑓]𝑧 ∶ 𝑧 ∈ 𝐺 and (𝑓, 𝐷) is a function element with 𝑧 ∈ 𝐷}.

Notation. Given a function element (𝑓, 𝐷), write

[𝑓]𝐷 = {[𝑓]𝑧 ∶ 𝑧 ∈ 𝐷} ⊆ 𝒢.
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2 Meromorphic functions

The goal is to show that 𝒢 is a Riemann surface. First we define the topology
on 𝒢 to be the one generated by basis element of the form [𝑓]𝐷. Given [𝑓]𝐷 and
[𝑔]𝐸, if [ℎ]𝑧 ∈ [𝑓]𝐷 ∩ [𝑔]𝐸 then 𝑧 ∈ 𝐷 ∩ 𝐸 and ℎ = 𝑓 = 𝑔 on a neighbourhood of
𝑧. Thus there exists domain 𝐷′ with 𝑧 ∈ 𝐷′ and [ℎ]𝐷′ ⊆ [𝑓]𝐷 ∩ [𝑔]𝐸.

The topology is Hausdorff: suppose [𝑓]𝑧 ≠ [𝑔]𝑤 in 𝒢, represented by (𝑓, 𝐷)
and (𝑔, 𝐸) repsectively. If 𝑧 ≠ 𝑤 choose 𝐷∩𝐸 = ∅ so [𝑓]𝑧 ∈ [𝑓]𝐷 and [𝑔]𝑤 ∈ [𝑔]𝐸
and these open sets are disjoint. If 𝑧 = 𝑤 choose 𝐷 = 𝐸. Claim that [𝑓]𝐷∩[𝑔]𝐸 =
∅: for suppose [ℎ]𝑠 ∈ [𝑓]𝐷 ∩ [𝑔]𝐸 then by definition exists neighbourhood 𝑁
of 𝑠 such that ℎ = 𝑓 = 𝑔 on 𝑁 so that 𝑓 = 𝑔 on 𝐷 = 𝐸. In particular
[𝑓]𝑧 = [𝑔]𝑧 = [𝑔]𝑤, contradiction.

The connected components of 𝒢 cover 𝐺 via the forgetful map 𝜋([𝑓]𝑧) = 𝑧.
To show this is a cover, let 𝑉 ⊆ 𝐺 be an open set, then

𝜋−1(𝑉 ) = {[𝑓]𝑧 ∶ 𝑧 ∈ 𝑉 } = ⋃
𝐷⊆𝑉

{[𝑓]𝐷 ∶ (𝑓, 𝐷) is a function element}

which is open. Locally on [𝑓]𝐷, 𝜋 is a bijection. On such a set [𝑓]𝐷, 𝑈 ⊆ [𝑓]𝐷
is open if and only if 𝑈 = ⋃𝛼[𝑓]𝐷𝛼

, if and only if 𝜋(𝑈) = ⋃𝛼 𝐷𝛼, if and only if
𝜋(𝑈) is open.

For conformal structure on 𝒢, we know by a previous proposition that on
each connected component of 𝒢, there exists a unique conformal structure mak-
ing 𝜋 analytic. These charts can be taken to be (𝑈, 𝜑) with 𝑈 = [𝑓]𝐷 and
𝜑 = 𝜋|𝑈.

Moreover 𝒢 comes with an evaluation map

𝐸 ∶ 𝒢 → C
[𝑓]𝑧 ↦ 𝑓(𝑧)

which is analytic: given a chart ([𝑓]𝐷, 𝜋|[𝑓]𝐷) of 𝒢,

𝐸 ∘ (𝜋|[𝑓]𝐷)−1(𝑧) = 𝐸([𝑓]𝑧) = 𝑓(𝑧)

which is analytic in 𝑧. So 𝐸 is analytic.
The stalk space 𝒢 incorporates all information about analytic functions on

𝐺. The following theorem translates topological information of 𝒢 to analytic
information of complete analytic functions:

Theorem 2.5. Let (𝑓, 𝐷) and (𝑔, 𝐸) be function elements on 𝐺 and 𝛾 ∶
[0, 1] → 𝐺 a path with 𝛾(0) ∈ 𝐷, 𝛾(1) ∈ 𝐸. Then (𝑔, 𝐸) is analytic contin-
uation of (𝑓, 𝐷) along 𝛾 if and only if there exists a lift ̃𝛾 ∶ [0, 1] → 𝒢 of 𝛾
such that ̃𝛾(0) = [𝑓]𝛾(0), ̃𝛾(1) = [𝑔]𝛾(1).

Proof. Suppose there exists (𝑓𝑗, 𝐷𝑗)𝑛
𝑗=1 and 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 with

(𝑓, 𝐷) = (𝑓1, 𝐷1) ∼ (𝑓2, 𝐷2) ∼ ⋯ ∼ (𝑓𝑛, 𝐷𝑛) = (𝑔, 𝐸)

and 𝑓𝑗−1 = 𝑓𝑗 on 𝐷𝑗−1 ∩ 𝐷𝑗 and 𝛾([𝑡𝑗−1, 𝑡𝑗]) ⊆ 𝐷𝑗 for all 𝑗. We can define a lift

̃𝛾(𝑡) = [𝑓𝑗]𝛾(𝑡), 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗]

which is well-defined. Claim it is continuous: suppose [ℎ]𝑈 ⊆ 𝒢 and ̃𝛾(𝜏) ∈ [ℎ]𝑈.
Then

̃𝛾(𝜏) = [𝑓𝑗]𝛾(𝜏)
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for some 𝑗 so 𝑓𝑗 = ℎ on an open neighbourhood 𝑁 of 𝛾(𝜏). As 𝛾 is continuous,
there exists 𝛿 > 0 such that if |𝑡 − 𝜏| < 𝛿 then 𝛾(𝑡) ∈ 𝑁. Then for such 𝑡,

̃𝛾(𝑡) = [𝑓𝑗]𝛾(𝑡) = [ℎ]𝛾(𝑡) ∈ [ℎ]𝑈

so ̃𝛾 is continuous. ̃𝛾 satisfies the lifting properties.
Conversely, suppose there is a lift ̃𝛾 of 𝛾 in 𝒢 with ̃𝛾(0) = [𝑓]𝛾(0) and ̃𝛾(1) =

[𝑔]𝛾(1). For each 𝑡 ∈ [0, 1], there exists a function element (𝑓𝑡, 𝐷𝑡) with ̃𝛾(𝑡) =
[𝑓𝑡]𝛾(𝑡). Note that [𝑓𝑡]𝐷𝑡

contains ̃𝛾(𝑡). We have for each 𝑡 an open interval 𝐼𝑡
with ̃𝛾(𝐼𝑡) ⊆ [𝑓𝑡]𝐷𝑡

. By compactness there exists a finite subcover, say intervals
[𝑎𝑘, 𝑏𝑘], ordered so that 𝑎𝑘+1 < 𝑏𝑘 for 𝑘 = 1, … , 𝑛 − 1. Choose for each 𝑘 some
𝑡𝑘 ∈ (𝑎𝑘+1, 𝑏𝑘) and rename the corresponding open sets in 𝒢 [𝑓𝑘]𝐷𝑘

. wlog assume
all 𝐷𝑘’s are disks. Since ̃𝛾(0) = [𝑓]𝛾(0) and ̃𝛾(1) = [𝑔]𝛾(1), we can also assume
𝐷1 ⊆ 𝐷, 𝐷𝑛 ⊆ 𝐸 so 𝑓 = 𝑓1 on 𝐷1 and 𝑔 = 𝑓𝑛 on 𝐷𝑛. for each 1 ≤ 𝑘 ≤ 𝑛 − 1,
we have

̃𝛾(𝑡𝑘) ∈ [𝑓𝑘]𝐷𝑘
⊆ [𝑓𝑘+1]𝐷𝑘+1

,

so 𝑓𝑘 = 𝑓𝑘+1 on 𝐷𝑘 ∩ 𝐷𝑘+1 by the identity principle, as 𝑓𝑘 = 𝑓𝑘+1 on a neigh-
bourhood of 𝛾(𝑡𝑘). So

(𝑓, 𝐷) ∼ (𝑓1, 𝐷1) ∼ ⋯ ∼ (𝑓𝑛, 𝐷𝑛) ∼ (𝑔, 𝐸).

Finally, on [𝑡𝑘−1, 𝑡𝑘], we have

𝛾([𝑡𝑘−1, 𝑡𝑘]) = 𝜋( ̃𝛾([𝑡𝑘−1, 𝑡𝑘])) ⊆ 𝜋([𝑓𝑘]𝐷𝑘
) = 𝐷𝑘,

thus completing the proof.

Once we have established the correspondence between analytic continuation
in the base space and lift of paths in stalk space, we can use monodromy thoerem
(which we stated as a result purely in topology) to deduce uniqueness of analytic
continuations:

Proposition 2.6. If (𝑔, 𝐸) and (ℎ, 𝐸) are analytic continuations of (𝑓, 𝐷)
along 𝛾 ⊆ 𝐺 then 𝑔 = ℎ on 𝐸.

Proof. Let (𝑔, 𝐸) and (ℎ, 𝐸) correspond to lifts ̃𝛾 and ̃𝛾′ respectively based at
[𝑓]𝛾(0). Uniqueness of lifts implies that ̃𝛾(1) = ̃𝛾′(1), i.e. [𝑔]𝛾(1) = [ℎ]𝛾(1), so
𝑔 = ℎ on a neighbourhood of 𝛾(1) so on 𝐸 by identity principle.

We can also derive the so-called classical monodromy theorem

Theorem 2.7 (classical monodromy theorem). Suppose (𝑓, 𝐷) can be con-
tinued analytically along all paths in 𝐺 starting in 𝐷. Then if (𝑔, 𝐸) and
(ℎ, 𝐸) are analytic continuations of 𝑓 along paths 𝛼 and 𝛽 respectively, and
𝛼 is homotopic to 𝛽 then 𝑔 = ℎ on 𝐸.

Proof. Find lifts ̃𝛼 and ̃𝛽 corresponding to (𝑔, 𝐸) and (ℎ, 𝐸) respectively. Note
̃𝛼(0) = [𝑓]𝛼(0) = [𝑓]𝛽(0) = ̃𝛽(0). By monodromy theorem we have ̃𝛼(1) = ̃𝛽(1)

so 𝑔 = ℎ on 𝐸 again by identity principle.
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Corollary 2.8. Suppose 𝐺 is a simply connected domain and (𝑓, 𝐷) is a
function element on 𝐺 which can be analytically continued along all 𝛾 ⊆ 𝐺
paths with 𝛾(0) ∈ 𝐷. Then 𝑓 extends to 𝐺.

Proof. Define for 𝑧 ∈ 𝐺, 𝑓(𝑧) as follows: we fix 𝑧0 ∈ 𝐷 and find a path 𝛾 on 𝐺
with 𝛾(0) = 𝑧0 and 𝛾(1) = 𝑧. By assumption 𝑓 can be analytically continued
along the path so by classical monodromy theorem and simply connectedness
this is well-defined for all 𝑧 ∈ 𝐺.

Corollary 2.9. Let ℱ be a complete analytic function on 𝐺 and define

𝒢ℱ = ⋃
(𝑓,𝐷)∈ℱ

[𝑓]𝐷.

Then 𝒢ℱ is a connected component of 𝒢.

Proof. Each 𝒢 is locally path-connected, so path-connected component is the
same as connected component. The corollary follows from the theorem.

Definition (Riemann surface associated to complete analytic function). 𝒢ℱ
is the Riemman surface associated to the complete analytic function ℱ.

Remark.

1. For each (𝑓, 𝐷) ∈ ℱ, the evaluation map 𝐸 provides a single valued ex-
tension 𝑓 ∘ 𝜋 on [𝑓]𝐷 to all of 𝒢ℱ.

[𝑓]𝐷 C

𝐷

𝐸

𝜋
𝑓

2. In example sheet 2 Q7 we will show that in general 𝜋 ∶ 𝒢ℱ → 𝐺 is not a
regular cover.

Example. Let 𝑅′ = {(𝑧, 𝑤) ∈ C2 ∶ 𝑤2 = 𝑧3 − 𝑧, 𝑤 ≠ 0} and let 𝒢ℱ be the
Riemann surface associated to

√
𝑧3 − 𝑧 over the domain 𝐺 = C \ {−1, 0, 1}.

Recall that the Riemann surface structure on 𝑅′ can be obtained via 𝜋𝑧.
Define

𝑔 ∶ 𝒢ℱ → 𝑅′

[𝑓]𝑧 ↦ (𝜋([𝑓]𝑧), 𝐸([𝑓]𝑧))

𝑔 is continuous as a product of continuous map. 𝑔 is also analytic: if ([𝑓]𝐷, 𝜋)
is a chart of 𝒢ℱ then

(𝜋𝑧 ∘ 𝑔 ∘ 𝜋−1)(𝑠) = (𝜋𝑧 ∘ 𝑔)([𝑓]𝑠) = 𝜋𝑧(𝜋([𝑓]𝑠), 𝐸([𝑓]𝑠)) = 𝜋([𝑓]𝑠) = 𝑠

so analytic and open.
Define an inverse ℎ of 𝑔: given (𝑧, 𝑤) ∈ 𝑅′, choose a neighbourhood 𝑁 on

which 𝜋𝑧 is a local homeomorphism. Define ℎ((𝑧, 𝑤)) = [𝜋𝑤 ∘ 𝜋−1
𝑧 ]𝑧, then this is

inverse to 𝑔 so 𝑔 is a conformal equivalence.
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We have so far seen three constructions of this Riemann surface:

1. embedded curve construction,

2. space of germs 𝒢ℱ of
√

𝑧3 − 𝑧,

3. gluing construction.

The above shows 1 and 2 are equivalent. 1 and 3 are shown to be equivalent in
example sheet 1, and 2 and 3 in example sheet 2. The advantage of each is

1. inherits properties of C2,

2. always exists, although quite abstract. Moreover it is a covering space and
is equipped with analytic maps 𝜋 and 𝐸,

3. can get our hands on topology. Compactification is easy to describe and
visualise.

2.3 Compactifying Riemann surfaces
Recall the construction of Riemann sphere. We one-point compactify C by
adding a point ∞. Then we define charts (C, 𝑧) and ((C \ {0}) ∪ {∞}, 1

𝑧 ). The
result is a map C ↪ C∞ that is not only a (dense) topological embedding into
a compact space, but also an analytic map.

In general, suppose 𝑋 and 𝑌 are topological spacs, 𝑈 ⊆ 𝑋, 𝑉 ⊆ 𝑌 open and
𝜙 ∶ 𝑈 → 𝑉 a homeomorphism. Let 𝑍 = 𝑋 ⨿ 𝑌 / ∼𝜙 where 𝑎 ∼𝜙 𝑏 if and only if
𝑎 = 𝑏, 𝑎 = 𝜙(𝑏) or 𝑎 = 𝜙−1(𝑏). 𝑍 is known as the gluing of 𝑋 and 𝑌 along 𝜙.

Proposition 2.10. Suppose 𝑋 and 𝑌 are Riemann surfaces and 𝑈 ⊆ 𝑋
and 𝑉 ⊆ 𝑌 are nonempty open sets with 𝜙 ∶ 𝑈 → 𝑉 an isomorphism of
Riemann surfaces. If 𝑍 = 𝑋 ⨿ 𝑌 / ∼𝜙 is Hausdorff then there exists a
unique conformal structure on 𝑍 for which 𝑖𝑋 ∶ 𝑋 ↪ 𝑍, 𝑖𝑌 ∶ 𝑌 ↪ 𝑍 are
analytic.

Proof. Note 𝑖𝑋, 𝑖𝑌 are homeomorphisms. For each chart (𝑊, 𝜓) of 𝑋 we define a
chart (𝑖𝑋(𝑊), 𝜓∘𝑖−1

𝑋 ) on 𝑍, similarly for charts of 𝑌. Transition maps come from
those of 𝑋 or 𝑌 or those composed with 𝜙 so are analytic. 𝑍 is connected for
if we could disconnect 𝑍 we could disconnect 𝑋 or 𝑌. So 𝑍 admits a conformal
structure which makes inclusions analytic. Uniqueness is immediate.

Example. 𝑅 = {(𝑧, 𝑤) ∈ C2 ∶ 𝑤2 = 𝑧3 − 𝑧}. We have seen via gluing that
𝑅 minus points where 𝑤 ≠ 0 is a topological torus minus 4 points. Now we
compactify it.

Consider 𝑡 = 1
𝑧 , 𝑢 = 1

𝑤 . Then the defining equation becomes

1
𝑢2 = 1

𝑡3 − 1
𝑡
,

i.e.
𝑡3 = 𝑢2 − 𝑢2𝑡2 = 𝑢2(1 − 𝑡2).

Unfortunately it is not a Riemann surface via either 𝜋𝑡 or 𝜋𝑢 at (0, 0). But not
all hope is lost. Write

𝑡 = (𝑢
𝑡

)
2

(1 − 𝑡2)
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and let 𝑣 = 𝑢
𝑡 = 𝑧

𝑤 . Then the surface becomes 𝑌 = {(𝑡, 𝑣) ∈ C2 ∶ 𝑡 = 𝑣2(1 −
𝑡2)}. 𝑌 does have one or both projections 𝜋𝑡, 𝜋𝑣 a local homeomorphism around
each point, including (0, 0), so 𝑌 admits a conformal structure. Consider the
isomorphism

𝑈 → 𝑉

(𝑧, 𝑤) ↦ (𝑡, 𝑣) = (1
𝑧

, 𝑧
𝑤

)

where 𝑈 ⊆ 𝑅 are points where neither 𝑧 nor 𝑤 is 0 and 𝑉 its isomorphic image
in 𝑌. Consider the gluing of 𝑅 and 𝑌 along this isomorphism, call it 𝑋, with
inclusions 𝑖𝑅 ∶ 𝑅 ↪ 𝑋, 𝑖𝑌 ∶ 𝑌 ↪ 𝑋. The image of 𝑅 in 𝑋 is 𝑋 \ {1 points} and
all points in 𝑖𝑅(𝑅) can be separated, similarly in 𝑖𝑌(𝑌 ). If 𝑃 ∈ 𝑋 \ 𝑖𝑌(𝑌 ) and
𝑄 ∈ 𝑋 \ 𝑖𝑅(𝑅) so 𝑃 is (0, 0) and 𝑄 is (0, 0) in local coordinates then

{(𝑧, 𝑤) ∈ 𝑅 ∶ |𝑧| < 1}
{(𝑡, 𝑣) ∈ 𝑌 ∶ |𝑡| < 1}

separate 𝑃 and 𝑄.
𝑋 admits a conformal structure for which 𝑖𝑅, 𝑖𝑌 are analytic. Consider

𝐷𝑅 = {(𝑧, 𝑤) ∈ 𝑅 ∶ |𝑧| ≤ 2}
𝐷𝑌 = {(𝑡, 𝑣) ∈ 𝑌 ∶ |𝑡| ≤ 2}

these are compact in 𝑅 ⨿ 𝑌 so map to compact sets in 𝑋 via the continuous
quotient map. Thus as a finite union of compact sets 𝑋 is compact. Note this
agrees with our topological intuition that 𝑅 can be compactified by the addition
of a single point.

2.4 Branching
Note these projection maps are not coverings on 𝑅 (or 𝑋) but they still have
controlled behaviour.

Definition (multiplicity/valency). Let 𝑓 ∶ 𝑅 → 𝑆 be an nonconstant ana-
lytic map of Riemann surfaces and 𝑧0 ∈ 𝑅. Locally we can write

̂𝑓(𝑧) = ̂𝑓(𝑧0) + (𝑧 − 𝑧0)𝑚𝑓(𝑧0)𝑔(𝑧)

where 𝑔(𝑧) nonzero analytic. 𝑚𝑓(𝑧0) is the multiplicity or valency of 𝑓 at
𝑧0.

Lemma 2.11. Suppose 𝑔, ℎ are nonconstant analytic on domains in C and
the image of ℎ is contained in the domain of 𝑔. Then

𝑚𝑔∘ℎ(𝑧) = 𝑚ℎ(𝑧)𝑚𝑔(ℎ(𝑧)).

Proof. Exercise.
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As a corollary, multiplicity is well-defined. Indeed if 𝑧 ∈ 𝑅, 𝑓(𝑧) ∈ 𝑆 and
(𝑈, 𝜙), ( ̃𝑈, ̃𝜙) are charts for 𝑧, (𝑉 , 𝜓), ( ̃𝑉 , ̃𝜓) are charts for 𝑓(𝑧) then 𝑚𝑓(𝑧) is
given by the multiplicity of its local expression, which is

̃𝜓 ∘ 𝑓 ∘ ̃𝜙−1 = ̃𝜓 ∘ (𝜓−1 ∘ 𝜓 ∘ 𝑓 ∘ 𝜙−1 ∘ 𝜙) ∘ ̃𝜙−1

= ( ̃𝜓 ∘ 𝜓−1) ∘ (𝜓 ∘ 𝑓 ∘ 𝜙−1) ∘ (𝜙 ∘ ̃𝜙−1)

the transition maps have multiplicity 1 everywhere so by the lemma the multi-
plicity of the local expressions agree.

Note that the points at which 𝑚𝑓(𝑧) > 1 are isolated, by the (local) principle
of isolated zeros. In particular if 𝑅 is compact then {𝑧 ∈ 𝑅 ∶ 𝑚𝑓(𝑧) > 1} is
finite.

Definition (ramification point, ramification index, branch point). Let 𝑓 ∶
𝑅 → 𝑆 be nonconstant analytic. If 𝑧 ∈ 𝑅 has 𝑚𝑓(𝑧) > 1, we call 𝑧 a
ramification point of 𝑓 and 𝑚𝑓(𝑧) in this case is called the ramification
index at 𝑧, and 𝑓(𝑧) is a branch point of 𝑓.

Example. Let 𝑝(𝑧) = ∑𝑑
𝑘=0 𝑎𝑘𝑧𝑘 be an analytic map C → C with 𝑑 ≥ 1, 𝑎𝑑 ≠ 0.

𝑝 extends to an analytic map of the Riemann sphere via 𝑝(∞) = ∞. At ∞ the
local expression is

1
𝑝( 1

𝑧 )
= 1

∑𝑑
𝑘=0 𝑎𝑘𝑧−𝑘

= 𝑧𝑑

∑𝑑
𝑘=0 𝑎𝑘𝑧𝑑−𝑘

= 𝑧𝑑𝑔(𝑧)

for some 𝑔 analytic and nonzero near 0. Thus 𝑚𝑝(∞) = 𝑑.

Theorem 2.12 (valency theorem). Let 𝑓 ∶ 𝑅 → 𝑆 be a nonconstant analytic
map of Riemann surfaces. If 𝑅 is compact then there exists 𝑛 ≥ 1 such that
𝑓 is an 𝑛-to-1 map counting multiplicity, i.e. for all 𝑤 ∈ 𝑆,

∑
𝑧∈𝑓−1(𝑤)

𝑚𝑓(𝑧) = 𝑛.

See how false this can be for noncompact Riemann surfaces!

Proof. By the principle of isolated zeros 𝑓−1(𝑤) is a finite set for all 𝑤 ∈ 𝑆.
Define then

𝑛(𝑤) = ∑
𝑧∈𝑓−1(𝑤)

𝑚𝑓(𝑧).

We want to show 𝑛 ∶ 𝑆 → Z is constant. But 𝑆 is connected so suffice to show
𝑛 is locally constant. Fix 𝑤0 ∈ 𝑆 and let 𝑓−1(𝑤0) = {𝑧1, … , 𝑧𝑞}. For each 𝑧𝑘,
By choosing appropriate charts centred at 𝑧𝑘 and 𝑤0, 𝑓 is locally 𝑧 ↦ 𝑧𝑚𝑓(𝑧𝑘).
Moreover we can wlog choose a chart (𝑁𝑘, 𝜙) around 𝑧𝑘 such that 𝜙(𝑁𝑘) is a disk
around 𝜙(𝑧𝑘), on which 𝑓|𝑁𝑘

is an 𝑚𝑓(𝑧𝑘)-to-1 map to its image. wlog choose
the 𝑁𝑘 disjoint. Note that 𝑅 \ ⋃ 𝑁𝑘 is compact so 𝑓(𝑅 \ ⋃ 𝑁𝑘) is compact,
and there exists open neighbourhood 𝑀 of 𝑤0 such that 𝑓(𝑅 \ ⋃ 𝑁𝑘) ∩ 𝑀 = ∅.
Let 𝑁 = 𝑓(𝑁1) ∩ ⋯ ∩ 𝑓(𝑁𝑞) ∩ 𝑀, an open neighbourhood of 𝑤0. For 𝑤 ∈ 𝑁,
𝑓−1(𝑤) ⊆ ⋃𝑞

𝑘=1 𝑁𝑘 so

𝑛(𝑤) = ∑
𝑧∈𝑓−1(𝑤)

𝑚𝑓(𝑧) = ∑
𝑧∈𝑓−1(𝑤0)

𝑚𝑓(𝑧) = 𝑛(𝑤0).
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Definition (degree/valency). Let 𝑓 ∶ 𝑅 → 𝑆 be a nonconstant analytic
map with 𝑅 compact. Then we call the number 𝑛 the degree or valency of
𝑓.

Corollary 2.13 (fundamental theorem of algebra). Let 𝑝 be nonconstant
polynomial of degree 𝑑. Then 𝑝 has 𝑑 roots in C.

Proof. 𝑝 extends to a map 𝑝 ∶ C∞ → C∞ and 𝑝−1(∞) = ∞ with multiplicity 𝑑.
So by valency theorem 0 also has 𝑑 preimages counting multiplicity.

As a consequence we have

Proposition 2.14. Let 𝑓 ∶ C∞ → C∞ be an nonconstant analytic map.
Then we can write 𝑓 as a rational function

𝑓(𝑧) = 𝑐(𝑧 − 𝑎1) ⋯ (𝑧 − 𝑎𝑚)
(𝑧 − 𝑏1) ⋯ (𝑧 − 𝑏𝑛)

where 𝑎𝑖, 𝑏𝑗 ∈ C, 𝑐 ∈ C∗.

Proof. Assume wlog 𝑓−1(∞) ⊆ C, so that 𝑓−1(∞) = {𝑏1, … , 𝑏𝑛}. 𝑓 analytic at
𝑏𝑖 is equivalent to saying that 1

𝑓 is an analytic function on a neighbourhood of
𝑏𝑖, i.e.

1
𝑓(𝑧)

= (𝑧 − 𝑏𝑖)𝑚𝑓(𝑏𝑖)𝑔(𝑧)

where 𝑔 is nonzero analytic at 𝑏𝑖, so 𝑓 has Laurent series

𝑓(𝑧) =
∞

∑
𝑗=−𝑘𝑖

𝑎𝑗,𝑖(𝑧 − 𝑏𝑖)𝑗

so the function

𝑓(𝑧) −
𝑛

∑
𝑖=1

(
−1
∑

𝑗=−𝑘𝑖

𝑎𝑗,𝑖(𝑧 − 𝑏𝑖)𝑗)

has no preimage of ∞ so is constant.

Remark. If 𝑓(∞) ≠ ∞ then 𝑚 ≤ 𝑛, in which case deg 𝑓 = 𝑛. In general, by
considering 𝑓−1(∞) and 𝑓−1(0) to see that

deg 𝑓 = max{𝑚, 𝑛}.

Corollary 2.15. The analytic isomorphisms of C∞ are Möbius transfor-
mations.
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3 Riemann-Hurwitz formula

3 Riemann-Hurwitz formula

3.1 Triangulation and Euler characteristic
Let 𝑆 be a compact Riemann surface. We say 𝑇 ⊆ 𝑆 is a topological triangle if
it is the homeomorphic image of a closed triangle in R2.

Definition (triangulation). A triangulation of 𝑆 is a finite collection of
topological triangles {𝑇1, … , 𝑇𝑛} in 𝑆 such that

1. ⋃𝑛
𝑖=1 𝑇𝑖 = 𝑆,

2. If 𝑇𝑖 ∩ 𝑇𝑗 ≠ ∅ then 𝑇𝑖 ∩ 𝑇𝑗 is a common edge or a common vertex,

3. every edge is the edge of exactly two triangles.

Definition (Euler characteristic). The Euler characteristic of 𝑆 is

𝜒(𝑆) = 𝐹 − 𝐸 + 𝑉

where 𝐹, 𝐸, 𝑉 are the number of faces, edges and vertices respectively for
any choice of triangulation of 𝑆.

We state without proof the following results:

Fact.

1. 𝜒(𝑆) is independent of choice of triangulation (to check this suffices to
check it is invariant under refinement).

2. (corollary of classification of compact surfaces) every compact Riemann
surface is homeomorphic to a surface with handles. The number of handles
is the genus of the surface.

3. Every compact Riemann surface can be triangulated and 𝜒(𝑆) = 2 − 2𝑔
where 𝑔 is the genus of 𝑆. It is possible to check this by assuming 2 and
induct on 𝑔.

Example. Let 𝑆 = C∞. Take three orthogonal great cricles. Then 𝑆 is divided
into 8 topological triangles. We have

𝐹 = 8, 𝑉 = 6, 𝐸 = 12

so
𝜒(𝑆) = 8 − 12 + 6 = 2

which agrees with 2 − 2𝑔 = 2 as 𝑆 has genus 0.

Example. Let 𝑆 be a complex torus and triangulate the fundamental parallel-
ogram. Triangulate it into 18 triangles. Have

𝐹 = 18, 𝐸 = 27, 𝑉 = 9

so
𝜒(𝑆) = 0

which agrees with 2 − 2𝑔 as 𝑆 has genus 1.
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Remark. The topological torus admits infinitely many nonisomorphic confor-
mal structures. See example sheet 2. For future reference, the collection for a
fixed surface of the conformal structures it admits is known as the Teichmüller
space. It is the key object in the advanced study of Riemann surfaces.

Theorem 3.1 (Riemann-Hurwitz formula). Let 𝑓 ∶ 𝑅 → 𝑆 be a nonconstant
analytic map of compact Riemann surfaces of degree 𝑛 ≥ 1. Then

𝜒(𝑅) = 𝑛𝜒(𝑆) − ∑
𝑃∈𝑅

(𝑒𝑃 − 1)

where 𝑒𝑃 = 𝑚𝑓(𝑃 ), the ramification index of 𝑓 at 𝑃.

Intuitively, the first term on RHS says that in a covering every sufficiently
small triangle in 𝑆 have 𝑛 homeomorphic preimages in 𝑅. The second terms
add a correction term in case of ramification, as at a branch point 𝑃, 𝑒𝑃 vertices,
each from a preimage, are mapped to a single point.

Proof. The idea is to consider preimage of triangulations of 𝑆 under 𝑓 and com-
pute its Euler characterisic. Call {𝑄1, … , 𝑄𝑟} the branch points of 𝑓. Choose
chart preimages of disks (as in the proof of valency theorem) and use compact-
ness, we can find open sets 𝑈1, … , 𝑈𝑟, 𝑈𝑟+1, … , 𝑈𝑠 of 𝑆 so that

1. if 𝑗 > 𝑟 then 𝑓−1(𝑈𝑗) is a disjoint union of preimages 𝑉1, … , 𝑉𝑛, and
𝑓|𝑉𝑖

∶ 𝑉𝑖 → 𝑈𝑗 is an isomorphism,

2. if 1 ≤ 𝑗 ≤ 𝑟 then for each component 𝑉 of 𝑓−1(𝑈𝑗), we have a unique
preimage 𝑃 of 𝑄𝑗, and 𝑓|𝑉 ∶ 𝑉 → 𝑈𝑗 is an 𝑒𝑃-to-1 map, whose local
expression is an 𝑒𝑃-to-1 powering map.

Let 𝒯 be a triangulation of 𝑆 which contains the 𝑄𝑖’s as vertices. We can refine
the triangulation to assume wlog that every triangle is contained in some 𝑈𝑗.
Given 𝑇 ∈ 𝒯, if 𝑗 > 𝑟 and 𝑇 ⊆ 𝑈𝑗 then 𝑓−1(𝑇 ) is a disjoint union of copies
of 𝑇. If 1 ≤ 𝑗 ≤ 𝑟 and 𝑇 ⊆ 𝑈𝑗, if 𝑄𝑗 is not a vertex of 𝑇, refine if necessary
so triangles are contained in some 2𝜋/𝑒𝑝 sector, then again 𝑓−1(𝑇 ) is a disjoint
union of triangles, by valency theorem. If, however, 𝑄𝑗 is a vertex of 𝑇, again
refine if needed, we have 𝑒𝑃 triangles as preimage, which have common vertex
𝑃.

Thus we have that the preimage of 𝒯 is a triangulation of 𝑅. Let 𝐹 ′, 𝐸′, 𝑉 ′

be the number of faces, edges and vertices of this triangulation. Have

𝐹 ′ = 𝑛𝐹, 𝐸′ = 𝑛𝐸, 𝑉 ′ = 𝑛𝑉 − ∑
𝑃∈𝑅

(𝑒𝑃 − 1)

so
𝜒(𝑅) = 𝑛𝜒(𝑆) − ∑

𝑃∈𝑅
(𝑒𝑃 − 1).

Remark. Equivalently we may express Euler characteristic in terms of genus,

2𝑔𝑅 − 2 = 𝑛(2𝑔𝑆 − 2) + ∑
𝑃∈𝑅

(𝑒𝑃 − 1).
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There are lots we can say about this. At the very least, ramification satisfies
certain relation modulo 2. In addition as 𝑒𝑃 −1 ≥ 0, Riemann-Hurwitz restricts
the existence of degree 𝑛 maps in terms of genus of surfaces. We list a few
implications here.

Corollary 3.2.

1.
∑
𝑃∈𝑅

(𝑒𝑃 − 1) = 0 (mod 2).

2. 𝑔𝑅 ≥ 𝑔𝑆.

3. If 𝑔𝑆 = 0 and 𝑔𝑅 > 1 then 𝑓 must be ramified.

4. If 𝑓 is unramified and 𝑔𝑆 > 1 then either 𝑔𝑅 = 𝑔𝑆 and 𝑛 = 1 or
𝑔𝑅 > 𝑔𝑆.

5. If 𝑅 admits an unramified self-map with degree 𝑛 > 1 then 𝑔𝑅 = 1.

Example. Let 𝑅′ = {(𝑧, 𝑤) ∶ 𝑤2 = 𝑧3 − 𝑧} ⊆ C2. Let 𝑓(𝑧) = 𝑧3 − 𝑧. The
ramification points of 𝜋𝑧 ∶ 𝑅′ → C are precisely (−1, 0), (0, 0) and (1, 0). Charts
around these points are given by 𝜋𝑤 so for example, the valency of 𝜋𝑧 at (0, 0)
is the degree of

𝜋𝑧 ∘ 𝜋−1
𝑤

at 0. But 𝜋−1(𝑤) = (𝑓−1(𝑤2), 𝑤) for some branch of 𝑓−1 locally so 𝜋𝑧 ∘𝜋−1
𝑤 (𝑤) =

𝑓−1(𝑤2). We can show

𝑑
𝑑𝑤

𝑓−1(𝑤2) = 0

𝑑2

𝑑𝑤2 𝑓−1(𝑤2) ≠ 0

so these points ramify with multiplicity 2 each.
We have seen that 𝑅′ embeds analytically in its compactification 𝑅. Claim

that 𝜋𝑧 extends to some analytic map 𝜋𝑧 ∶ 𝑅 → C∞ with 𝜋𝑧(𝑅 \ 𝑅′) = {∞}:
1

𝜋𝑧
is a bounded analytic function on a punctured neighbourhood of 𝑃 ∈ 𝑅 \ 𝑅′

with
lim

𝑄→𝑃

1
𝜋𝑧(𝑄)

= 0

so 𝑃 is a removable singularity of 1
𝜋𝑧

. Thus extends to 𝑃 and takes value 0. This
is precisely an analytic map to C∞.

Now we have an analytic map 𝜋𝑧 ∶ 𝑅 → C∞ between compact Riemann
surfaces. By considering, for example, that for finite 𝑧, 𝑤2 = 𝑧3 − 𝑧 has two
solutions, 𝜋𝑧 has degree 2. Thus the only point 𝑃 in 𝑅 \ 𝑅′ ramifies with
multiplicity 2.

Suppose we merely knew 𝜋𝑧 ∶ 𝑅 → C∞ existed but didn’t know how many
points over ∞ were in 𝑅 \ 𝑅′. Must have 𝜋−1(∞) = 𝑅 \ 𝑅′ so either there
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are two points in 𝑅 \ 𝑅′ each with degree 1 or one point with degree 2. By
Riemann-Hurwitz,

2𝑔𝑅 − 2 = 2(0 − 2) + ∑
𝑃∈𝑅

(𝑒𝑃 − 1)

Reduce mod 2, there must be ramification above ∞, and so there is a single
point in 𝑅 \ 𝑅′, mapped with degree 2 to ∞ and 2𝑔𝑅 − 2 = −4 + 4 so 𝑔𝑅 = 1.

Example. Let 𝑅 and 𝑅′ be as above and 𝑋′ = {(𝑥, 𝑦) ∶ 𝑦2 = 𝑥4 −1} ⊆ C2. 𝑋′

admits a complex structure via 𝜋𝑥, 𝜋𝑦, and a compactification 𝑋 via topological
gluing such that both 𝜋𝑥 and 𝜋𝑦 extend to 𝑋. There exists a map

𝑋′ → 𝑅′

(𝑥, 𝑦) ↦ (𝑥2, 𝑥𝑦)

which extends to an analytic map 𝑓 ∶ 𝑋 → 𝑅. This map has degree 2, and is
ramified if and only if 𝑥 = −𝑥 and 𝑦 = −𝑦, so in particular 𝑓 is unramified on
𝑋′. By Riemann-Hurwitz,

2𝑔𝑋 − 2 = 2(2 ⋅ 1 − 2) + ∑
𝑃∈𝑋

(𝑒𝑃 − 1).

The points of 𝑋 \ 𝑋′ are mapped to 𝑅 \ 𝑅′. Again reduce mod 2, there are two
points of 𝑋 \ 𝑋′ and 𝑓 is unramified at both. 𝑔𝑋 = 1.

Example (Fermat curve). For 𝑑 ≥ 3, define the Fermat curve

𝐹 ′
𝑑 = {(𝑥, 𝑦) ∈ C2 ∶ 𝑥𝑑 + 𝑦𝑑 = 1}.

By example sheet 3 Q13 there exists a compactification 𝐹𝑑 of 𝐹 ′
𝑑 by gluing

{(𝑡, 𝑢) ∈ C2 ∶ 1 + 𝑢𝑑 = 𝑡𝑑}

via 𝑡 = 1
𝑥 , 𝑢 = 𝑦

𝑥 , and 𝜋𝑥, 𝜋𝑦 extend to analytic maps 𝐹𝑑 → C∞. Note that
there are 𝑑 points in 𝐹𝑑 \ 𝐹 ′

𝑑. 𝜋𝑥 has degree 𝑑 with ramification at (𝜁𝑑, 0) for
all 𝑑th roots of unity 𝜁𝑑. By Riemann-Hurwitz, as 𝜋𝑥 has multiplicity 𝑑 at such
point,

2𝑔𝐹𝑑
− 2 = 𝑑(2 ⋅ 0 − 2) + 𝑑(𝑑 − 1)

so
𝑔𝐹𝑑

= (𝑑 − 1)(𝑑 − 2)
2

.

Corollary 3.3. There exist Riemann surfaces of arbitrarily large genus.

Our next goal is to show complex tori are algebraic, i.e. they are all com-
pactification of {(𝑥, 𝑦) ∈ C2 ∶ 𝑝(𝑥, 𝑦) = 0} where 𝑝 is some polynomial.

Definition (period). Let 𝑓 ∶ C → C∞ be nonconstant analytic. 𝜔 ∈ C is a
period of 𝑓 if

𝑓(𝑧 + 𝜔) = 𝑓(𝑧)

for all 𝑧 ∈ C.
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3 Riemann-Hurwitz formula

It is immediate by principle of isolate zeros that periods of 𝑓 consists of
isolated point and they form an additive group. By example sheet 3 Q1, let Λ
be the set of periods of 𝑓, then exactly one of the following happens:

1. Λ = {0},

2. Λ = Z𝜔 for some 𝜔 ≠ 0,

3. Λ = Z𝜔1 ⊕ Z𝜔2 with 𝜔2
𝜔1

∉ R.

In case 2 we say 𝑓 is simply periodic and in case 3 𝑓 is doubly periodic, or elliptic.

Proposition 3.4. Suppose 𝑓 is simply periodic. By composing with scalar,
assuming wlog Λ = Z. Then there exists analytic map ̃𝑓 ∶ C× → C∞ such
that

̃𝑓(𝑒2𝜋𝑖𝑧) = 𝑓(𝑧).

Proof. Since Λ = Z there is a well-defined function ̃𝑓 ∶ C× → C∞ via ̃𝑓(𝑒2𝜋𝑖𝑧) =
𝑓(𝑧). Left to show this is analytic.

C C∞

C×

𝑓

𝑧↦𝑒2𝜋𝑖𝑧

̃𝑓

̃𝑓 is continuous as 𝑒2𝜋𝑖𝑧 and 𝑓 are continuous and open. Locally ̃𝑓(𝑤) = 𝑓( log 𝑤
2𝜋𝑖 )

so 𝑓 is analytic.

Let 𝑓 be doubly periodic with Λ = Z𝜔1 ⊕ Z𝜔2, so that 𝑓 takes all its values
on a fundamental parallelogram

𝑃𝑧 = {𝑧 + 𝑡1𝜔1 + 𝑡2𝜔2 ∶ 𝑡1, 𝑡2 ∈ [0, 1)}.

If 𝑓 has no pole then 𝑓 is bounded on C so constant by Liouville.

Proposition 3.5. Let 𝑓 be doubly periodic with periods Λ. Then there exists
̃𝑓 ∶ C/Λ → C∞ nonconstant analytic so that 𝑓 = ̃𝑓 ∘ 𝜋 where 𝜋 ∶ C → C/Λ

is the quotient.

Proof. Ditto.
C C∞

C/Λ

𝑓

𝜋
̃𝑓

Corollary 3.6. If 𝑓 is nonconstant elliptic then exists 𝑛 ≥ 1 such that
deg 𝑓 = 𝑛, i.e. every point in C∞ has 𝑛 preimages, counting multiplicity, on
any period parallelogram.

Proof. Immediate from valency theorem.

Here we say 𝑓 has degree 𝑛 to mean ̃𝑓 ∶ C/Λ → C∞ has degree 𝑛.
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3 Riemann-Hurwitz formula

Corollary 3.7. If 𝑓 is nonconstant elliptic of degree 𝑛 then 𝑛 ≥ 2.

Proof. If 𝑛 = 1 then ̃𝑓 is a conformal isomorphism. But C/Λ and C∞ are not
even homeomorphic.

Alternatively, choose a period parallelogram 𝑃 for Λ with no zeros or poles
of 𝑓 on its boundary (exists by principle of isolated zeros and discreteness of
lattice). Then by residue theorem,

∑
𝑧∈𝑃

res𝑧(𝑓) = ∮
𝜕𝑃

𝑓(𝑧)𝑑𝑧 = 0

where the last equality is because 𝑓 is doubly periodic. Thus there are at least
2 poles of 𝑓 counting multiplicity.

3.2 Weierstrass 𝑝-function
We exhibit a degree 2 elliptic function asssociated to each lattice.

Definition (Weierstrass ℘-function). Let Λ be a lattice in C. The Weier-
strass ℘-function associated to Λ is

℘(𝑧) = ℘Λ(𝑧) = 1
𝑧2 + ∑

𝜔∈Λ\{0}
( 1

(𝑧 − 𝜔)2 − 1
𝜔2 ) .

To show that we have written down a sensible thing we should check this
converges. We use the following lemma:

Lemma 3.8. Let Λ be a lattice. Then ∑𝜔∈Λ\{0}
1

|𝜔|𝑡 converges if and only
if 𝑡 > 2.

As a comment, in general when trying to understand a series defined in terms
of a lattice Λ, we always relate Λ to the square lattice Z ⊕ Z𝑖.

Proof. Let Λ = Z𝜔1 ⊕Z𝜔2. Consider the function (𝑡1, 𝑡2) ↦ |𝑡1𝜔1 + 𝑡2𝜔2|. This
is continuous, and since 𝜔1

𝜔2
∉ R, this is nonzero on R2 \ {0}, and so achieves

positive bounds 𝑐1, 𝑐2 on the compact set {(𝑡1, 𝑡2) ∶ |𝑡1| + |𝑡2| = 1}, i.e.

0 < 𝑐1 ≤ |𝑡1𝜔1 + 𝑡2𝜔2| ≤ 𝑐2

on this set.
Given (𝑘, ℓ) ∈ Z2 \ {(0, 0)}, let

𝑡1 = 𝑘
|𝑘| + |ℓ|

𝑡2 = ℓ
|𝑘| + |ℓ|

so that
𝑐1(|𝑘| + |ℓ|) ≤ |𝑘𝜔1 + ℓ𝜔2| ≤ 𝑐2(|𝑘| + |ℓ|).
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3 Riemann-Hurwitz formula

So ∑𝜔∈Λ\{0}
1

|𝜔|2 converges if and only if ∑(𝑘,ℓ)∈Z\{0}
1

(|𝑘|+|ℓ|)𝑡 converges but

∑
(𝑘,ℓ)∈Z\{0}

1
(|𝑘| + |ℓ|)𝑡 =

∞
∑
𝑞=1

∑
|𝑘|+|ℓ|=𝑞

1
𝑞𝑡 =

∞
∑
𝑞=1

4𝑞
𝑞𝑡

which converges if and only if 𝑡 > 2.

Proposition 3.9. ℘ converges to an elliptic function with period lattice Λ.
Moreover ℘ is an even function of degree 2.

Proof. We show ℘ converges on compact sets: choose 𝑅 ≫ 1 and let |𝑧| ≤ 𝑅.
There exist finitely many points Λ ∩ 𝐷(0, 2𝑅) and if |𝜔| > 2𝑅 for 𝜔 ∈ Λ,

∣ 1
(𝑧 − 𝜔)2 − 1

𝜔2 ∣ = ∣ 2𝜔𝑧 − 𝑧2

𝜔2(𝑧 − 𝜔)2 ∣ ≤ 𝑅|2𝜔 − 𝑧|
|𝜔|4 ⋅ 1

4
≤ 12𝑅

|𝜔|3

so by the lemma we have convergence.
Thus ℘ is meromorphic with well-define derivative

℘′(𝑧) = ∑
𝜔∈Λ

−2
(𝑧 − 𝜔)3 .

℘′ has all 𝜔 ∈ Λ as periods so ℘(𝑧 + 𝜔) − ℘(𝑧) is constant. Evaluate at, for
example, 𝑧 = − 𝜔

2 , we get ℘( 𝜔
2 ) − ℘(− 𝜔

2 ). But ℘ is manifestly even so this
constant is 0. Thus every 𝜔 ∈ Λ is a period for ℘. Moreover since these are the
only poles, they are the only periods for ℘.

Finally since 0 ↦ ∞ with degree 2, and we can choose a period parallelogram
with no other lattice points so no other pole of ℘, by a previous corollary deg ℘ =
2.

Remark.

1. Using factorisation through quotient, we can show that ℘ is the unique
meromorphic function that satisfy the following:

(a) elliptic with periods Λ,
(b) have poles only in Λ,
(c) ℘(𝑧) − 1

𝑧2 → 0 as 𝑧 → 0.

2. ℘′ has degree 3, with a pole of degree 3 at lattice points, ℘′ is odd and
℘′( 𝜔

2 ) = ℘′(− 𝜔
2 ) for 𝜔 ∈ Λ by periodicity. Thus ℘′( 𝜔

2 ) = 0, i.e. ℘′ = 0 at
the half-lattice points. There are 3 of these, so these are the only zeros
of ℘′. So ℘ ramifies at the lattice points and half-lattice points. Because
deg ℘ = 2, the multiplicity is 2 at all such points. Additionally, the branch
points ∞ = ℘(0), 𝑒1, 𝑒2, 𝑒3 are distinct.
Note that Riemann-Hurwitz is satisfied on C/Λ: ℘ induces an analytic
℘̃ ∶ C/Λ → C∞ of degree 2 so

2𝑔C/Λ − 2 = 2(2𝑔C∞
− 2) + 4.
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3 Riemann-Hurwitz formula

Proposition 3.10. Let Λ be a lattice. There exist constants 𝑔2, 𝑔3 (depend-
ing on Λ) such that ℘Λ satisfies

(℘′)2 = 4℘3 − 𝑔2℘ − 𝑔3.

Proof. Locally around 0, we have Laurent series

℘(𝑧) = 1
𝑧2 + 𝑎𝑧2 + …

because ℘(𝑧) − 1
𝑧2 = 0 at 𝑧 = 0 and the first order term vanishes because ℘ is

even. So
℘′(𝑧) = − 2

𝑧3 + 2𝑎𝑧 + …

square and set 𝑔2 = 20𝑎,

(℘′)2 − 4℘3 = −𝑔2
𝑧2 + analytic

so
(℘′)2 − 4℘3 + 𝑔2℘(𝑧)

is analytic so constant as it has no poles. Thus

(℘′)2 = 4℘3 − 𝑔2℘ − 𝑔3

as required.

Note.

1. Note that 4℘3 − 𝑔2℘ − 𝑔3 = 4(℘ − 𝑒1)(℘ − 𝑒2)(℘ − 𝑒3) where 𝑒1, 𝑒2, 𝑒3 are
the branch points of ℘. In particular, the sum 𝑒1 + 𝑒2 + 𝑒3 = 0.

2. The ramification points of ℘ are precisely the elements of the group C/Λ
which are 2-torsion, i.e. 2𝑃 = 0.

Corollary 3.11. Let C/Λ be a complex torus and 𝑔2, 𝑔3 as in the previous
proposition. Then C/Λ is conformally isomorphic to the Riemann surface
𝑋 compactifiying

𝑋′ = {(𝑧, 𝑤) ∈ C2 ∶ 𝑤2 = 4𝑧3 − 𝑔2𝑧 − 𝑔3}.

Every complex torus is algebraic.

Proof. Exercise: As the 𝑒𝑖’s are distinct, the coodinates define a Riemann sur-
face, and add a single point via gluing to give 𝑋 with analytic embedding.

Define

𝐹 ∶ C/Λ → 𝑋
𝑧 ↦ (℘(𝑧), ℘′(𝑧))

Claim 𝐹 has degree 1, which will imply that 𝐹 is an isomorphism by valency
theorem. Let 𝑃 be the period parallelogram for Λ centred at 0. For 𝑧 in interior
of 𝑃, ℘(𝑧) = ℘(𝑤) if and only if 𝑧 = ±𝑤 for 𝑤 in the interior of 𝑃. If 𝑧 = −𝑤
then ℘′(𝑧) = ℘′(−𝑧), and since it is odd, ℘′(𝑧) = −℘′(𝑧) = 0. Thus 𝑧 ≠ 0 is
the unique preimage under 𝐹 of 𝐹(𝑧), i.e. deg 𝐹 = 1.
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3 Riemann-Hurwitz formula

Remark. In example sheet we show C/(Z𝜔1⊕Z𝜔2) ≅ C/(Z⊕𝜏Z) where 𝜏 = 𝜔2
𝜔1

,
and C/(Z ⊕ 𝜏1Z) ≅ C/(Z ⊕ 𝜏2Z) if and only if 𝜏1, 𝜏2 are in the same orbit of
action of SL2(Z). Algebraically, 𝑔2, 𝑔3 do not quite determine C/Λ, rather we
have the 𝑗-invariant defined by

𝑗(Λ) = 1728𝑔3
2

𝑔3
2 − 27𝑔2

3

and 𝑗(Λ1) = 𝑗(Λ2) if and only if C/Λ1 ≅ C/Λ2.

Theorem 3.12. Let 𝑓 be elliptic with periods Λ. Then

𝑓 = 𝑄1(℘) + ℘′𝑄2(℘)

for some 𝑄1, 𝑄2 rational. Moreover, if 𝑓 is even then we can take 𝑄2 = 0.

Compare this with the statement that meromorphic functions on C∞ are
precisely rationals.

Proof. First assume 𝑓 is even. Let

𝐸 = {𝑧 ∈ C ∶ 𝑧 ∈ 1
2

Λ or 𝑓 ′(𝑧) = 0}

so to avoid branch points of ℘. As 𝑓(𝐸) is finite, we can find 𝑐 ≠ 𝑑 in C \ 𝑓(𝐸)
so that

𝑔(𝑧) = 𝑓(𝑧) − 𝑑
𝑓(𝑧) − 𝑐

has only simple zeros and poles. Then in a period parallelogram centred at 0, we
can write the zeros of 𝑔 as {𝑎1, … , 𝑎𝑛, −𝑎1, … , −𝑎𝑛} and poles as {𝑏1, … , 𝑏𝑛, −𝑏1, … , −𝑏𝑛}.
Define

ℎ(𝑧) = (℘(𝑧) − ℘(𝑎1)) ⋯ (℘(𝑧) − ℘(𝑎𝑛))
(℘(𝑧) − ℘(𝑏1)) ⋯ (℘(𝑧) − ℘(𝑏𝑛))

so that ℎ has the same poles and zeros (counting multiplicity) as 𝑔. Thus
𝑔(𝑧) = 𝑘ℎ(𝑧) for some constant 𝑘, so that

𝑓 = 𝑄1(℘)

for some rational 𝑄1.
If 𝑓 is odd then 𝑓

℘′ is even so

𝑓 = ℘′𝑄2(℘)

by the same argument. Any 𝑓 can be written as sum of an even and odd
function.
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4 Quotients of Riemann surfaces

Definition (properly discontinuous action). Given a group 𝐺 of homeomor-
phisms of a topological space 𝑋, we say 𝐺 acts properly discontinuously if for
every 𝑥 ∈ 𝑋 there exists a neighbourhood 𝑈 of 𝑥 such that if 𝑔(𝑈)∩ℎ(𝑈) ≠ ∅
then 𝑔 = ℎ.

Remark.
1. If there exists 𝑔 ∈ 𝐺 nontrivial with a fixed point then 𝐺 does not act

properly discontinuously.

2. If 𝐺 is finite, 𝐺 acts properly discontinuously implies that all stabilisers
are trivial so all orbits have size |𝐺|.

Given such a group action, we can form the quotient 𝑋/𝐺 and equip it with
quotient topology via 𝜋 ∶ 𝑋 → 𝑋/𝐺. 𝜋 is a local homeomorphism, 𝑋 is path-
connected so 𝜋 is a regular cover. Note that if 𝐺 is finite then 𝜋 has well-defined
degree |𝐺|.

Lemma 4.1. If 𝑋 is a Riemann surface and 𝐺 ≤ Aut(𝑋) acting properly
discontinuously, then 𝑋/𝐺 is a Riemann surface via 𝜋−1 together with charts
of 𝑋. Moreover the transition maps are in 𝐺.

Proof. Easy.

Example. C/Λ is the lattice resulted from translation action.

Proposition 4.2 (Hurwitz). Let 𝑋 be a compact Riemann surface of genus
𝑔𝑋 ≥ 2. Let 𝐺 ≤ Aut(𝑋) act properly discontinuously on 𝑋. Then 𝐺 is
finite and

|𝐺| ≤ 𝑔𝑋 − 1.

Proof. Suppose 𝐺 is not finite. Fix 𝑃0 ∈ 𝑋. Then {𝑔(𝑃0) ∶ 𝑔 ∈ 𝐺} is infinite.
By compactness of 𝑋 it has a converging subsequence 𝑔𝑛(𝑃 ) → 𝑄. For any
neighbourhood 𝑉 of 𝑄 and 𝑛, 𝑚 ≫ 1, we have

𝑃0 ∈ 𝑔−1
𝑛 (𝑉 ) ∩ 𝑔−1

𝑚 (𝑉 ).
Absurd.

By previous remark 𝜋 ∶ 𝑋 → 𝑋/𝐺 is a degree |𝐺| map of compact Riemann
surfaces so by Riemann-Hurtwitz

2𝑔𝑋 − 2 = |𝐺|(2𝑔𝑋/𝐺 − 2)
as there is no ramification (𝜋 is a local homeomorphism). As both sides are
positive and 2𝑔𝑋/𝐺 − 2 ≥ 2,

|𝐺| ≤ 𝑔𝑋 − 1.

Remark. There is no such bound on |𝐺| for 𝑔𝑋 = 1: complex tori admit
translations via the group structure so choosing an arbitrarily large discrete
subgroup of C/Λ to translate by, we obtain arbitrarily large |𝐺|. For example
let 𝐺 be the points 𝑃 ∈ C/Λ such that

[𝑛]𝑃 = idC/Λ .
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4.1 Uniformisation theorem and consequences

Theorem 4.3 (uniformisation theorem). Let 𝑅 be a simply connected Rie-
mann surface. Then 𝑅 is conformally isomorphic to one of C,C∞,D (or H,
the upper half plane).

Proof. Non-examinable. Omitted.

Fact. Any Riemann surface 𝑋 is the quotient 𝜋 ∶ 𝑋̃ → 𝑋 of a simply connected
Riemann surface 𝑋̃ by the deck transformation of 𝜋, i.e. automorphisms 𝑝 ∶
𝑋̃ → 𝑋̃ such that 𝜋 ∘ 𝑝 = 𝜋. This group acts properly discontinuously. Note
then that 𝜋 is regular.

Definition (universal cover). 𝜋 ∶ 𝑋̃ → 𝑋 is the universal cover of 𝑋.

Remark. C,C∞,D are distinct: C∞ is the only compact one, and if there is
an isomorphism C ≅ D then it is bounded and entire, contradicting Liouville’s
theorem.

Let’s discuss different cases.

1. 𝑋 has C∞ as universal cover: i.e. there exists 𝐺 ≤ Aut(C∞) acting prop-
erly discontinuously such that 𝑋 ≅ C∞/𝐺. We’ve already figured out
that Aut(C∞) is the set of Möbius transformations. Since any Möbius
transformation has a fixed point in C∞, 𝐺 is trivial so 𝑋 ≅ C∞.
This also agrees with Riemann-Hurwitz: we can only decrease genus.

2. 𝑋 has C as universal cover. As any automorphism of C extends to an
automorphism of C∞, we concluded that Aut(C) = {𝑎𝑧+𝑏 ∶ 𝑎 ≠ 0, 𝑏 ∈ C}.
If 𝑎 ≠ 1 then 𝑧 ↦ 𝑎𝑧 + 𝑏 has a fixed point so 𝐺 ≤ {𝑧 + 𝑏 ∶ 𝑏 ∈ C}. Identify
𝑧 ↦ 𝑧 + 𝑏 with 𝑏, 𝐺 must consist of isolated points. By example sheet 3
Q1, 𝐺 is one of 0,Z𝜔 or Z𝜔1 ⊕ Z𝜔2. So one of the following happens:

𝑋 ≅ C
𝑋 ≅ C/2𝜋Z ≅ C∗

𝑋 ≅ C/Λ

where Λ is a lattice.

Remark. If 𝑋 is compact with C∞ or C as universal cover, 𝑔𝑋 ∈ {0, 1}.
Equivalently if 𝑔𝑋 ≥ 2 then 𝑋 must have D as universal cover.

3. 𝑋 has D as universal cover: we can only barely scratch the surface the
final, and most interesting family. Recall (or note) that

Aut(D) = {𝑧 ↦ 𝑒𝑖𝜃 𝑧 − 𝑎
1 − 𝑎𝑧

}.

Alternatively,
Aut(H) = PSL2(R) = SL2(R)/{±1}.

The subgroups of PSL2(R) which act properly discontinuously are Fuschsian
groups, studied in hyperbolic geometry.
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Corollary 4.4. If 𝑋 is uniformised by D then 𝑋 is a metric space.

Proof. Aut(D) are isometries for the hyperbolic metric.

Corollary 4.5 (Picard). If 𝑓 ∶ C → C\{0, 1} is analytic then 𝑓 is constant.

Proof. Claim that C \ {0, 1} has D as universal cover: if not then as it is non-
compact it is isomorphic to either C or C∗. Suppose 𝜑 ∶ C \ {0, 1} → C is an
isomorphism, then by Liouville this is unbounded near ∞. If the singularity
at ∞ is essential then by Casorati-Weierstrass deg 𝜑 > 1. So there is a pole of
order 1 at ∞, so 𝜑 extends to an isomorphism C∞ \ {0, 1} → C∞. Similar for
C∗.

Given such an 𝑓, as C is simply connected it can be lifted to ̃𝑓 ∶ C → D.
Can check ̃𝑓 is analytic so constant, so 𝑓 is too.

D

C C \ {0, 1}

𝜋
̃𝑓

𝑓

Corollary 4.6 (Riemann mapping theorem). Let 𝑈 ⊊ C be a domain. If
𝑈 is simply connected then 𝑈 ≅ D.

Proof. Similar to above, suffices to show 𝑈 ≇ C. If it were we would have
C∞ ≅ 𝑈 ∪ {pt}, contradicting compactness.
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5 Non-examinable collection
Let

𝑋′ = {(𝑥, 𝑦) ∈ C2 ∶ 𝑦2 = (𝑥 − 𝛼1) ⋯ (𝑥 − 𝛼2𝑔+2)}

where 𝛼1, … , 𝛼2𝑔+2 are distinct points in C. 𝑋′ is a Riemann surface via 𝜋𝑥, 𝜋𝑦,
and can be compactified via gluing to

𝑌 ′ = {(𝑧, 𝑤) ∈ C2 ∶ 𝑤2 = (1 − 𝛼1𝑧) ⋯ (1 − 𝛼2𝑔+2𝑧)}

and (𝑥, 𝑦) ↦ ( 1
𝑥 , 𝑦

𝑥𝑔+1 ). Call the compactification 𝑋 and note that 𝑋 \ 𝑋′

contains 2 points. 𝜋𝑥 extends to 𝑋 with 𝜋𝑥(𝑋 \ 𝑋′) = {∞}, has degree 2 so by
Riemann-Hurwitz

2𝑔𝑋 − 2 = 2(−2) + (2𝑔 + 2)

so 𝑔𝑋 = 𝑔. This is a natural generalisation of Fermat curve and in particular
shows that we can construct a Riemann surface with arbitrary genus.

Define 𝑖ℎ ∶ 𝑋 → 𝑋 by (𝑥, 𝑦) ↦ (𝑥, −𝑦) on 𝑋′ and (𝑧, 𝑤) ↦ (𝑧, −𝑤) on 𝑌 ′.
Check it is well-defined.

𝐺 = ⟨𝑖ℎ⟩ ≤ Aut(𝑋)

does not act properly discontinuously as (𝛼𝑖, 0) is a fixed point for all 𝑖. Nonethe-
less we have a topological covering 𝜋𝑥 ∶ 𝑋 → 𝑋/𝐺, which is isomorphic to C∞.
We study Riemann surfaces via understanding the collection of such quotients.
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analytic, 8
analytic continuation, 5

along path, 4
direct, 4

atlas
equivalent, 9

branch point, 23

complete analytic function, 5
complex torus, 11
conformal equivalence, 10
conformal structure, 9
covering space, 6

regular, 6

degree, 24

elliptic, 29
Euler characteristic, 25

Fermat curve, 28, 37
Fuschsian group, 35

genus, 25
germ, 17

harmonic, 13
homotopy, 16
Hurwitz theorem, 34

lift, 15

meromorphic, 15
meromorphic function, 3
monodromy theorem, 17

classical, 19
multiplicity, 22

natural boundary, 8

open mapping theorem, 13

period, 28
periodic

doubly, 29
simply, 29

Picard theorem, 36
properly discontinuous action, 34

ramification index, 23
ramification point, 23
regular point, 7
Riemann existence theorem, 14
Riemann mapping theorem, 36
Riemann surface, 8

associated to complete
analytic function, 20

Riemann-Hurtiwz formula, 26

simply connected, 17

Teichmüller space, 26
topological triangle, 25
triangulation, 25

uniformisation theorem, 35
universal cover, 35

valency, 22, 24
valency theorem, 23

Weierstrass ℘-function, 30
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