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0 Introduction

0 Introduction
Representation theory is the theory of how groups act as groups on vector spaces.
Here

1. groups are either finite or compact topological groups,

2. vector spaces are finite-diemnsional and usually over C,

3. actions are linear.
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1 Group actions

1 Group actions
Notation.

1. F is a field, usually C, R or Q. In particular F is a field of characteristic
zero. Thus in this course we mostly deal with what is known as ordinary
representation theory. Sometimes F = F𝑝 or F𝑝, and the study of which is
known as modular representation theory.

2. 𝑉 is a vector space over F and will always be finite-dimensional.

3. GL(𝑉 ) = {𝜃 ∶ 𝑉 → 𝑉 linear invertible}.

1.1 Review of linear algebra
If dimF 𝑉 = 𝑛, choose basis 𝑒1, … , 𝑒𝑛 over F so we can identify it with F𝑛. Then
𝜃 ∈ GL(𝑉 ) correponds to an 𝑛 × 𝑛 matrix 𝐴𝜃 = (𝑎𝑖𝑗), where

𝜃(𝑒𝑗) = ∑
𝑖

𝑎𝑖𝑗𝑒𝑖

for 1 ≤ 𝑗 ≤ 𝑛. In fact we have 𝐴𝜃 ∈ GL𝑛(F), the general linear group. Thus

Proposition 1.1. The map

GL(𝑉 ) → GL𝑛(F)
𝜃 ↦ 𝐴𝜃

is a group isomorphism.

Proof. Check 𝐴𝜃1𝜃2
= 𝐴𝜃1

𝐴𝜃2
and bijectivity.

Choosing a different basis gives different isomorphism to GL𝑛(F), but

Proposition 1.2. Matrices 𝐴1, 𝐴2 represent the same element of GL(𝑉 )
with respect to different basis if and only if they are conjugate or similar,
i.e. exists 𝑋 ∈ GL𝑛(F) such that 𝐴2 = 𝑋𝐴1𝑋−1.

Recall that the trace of a matrix 𝐴 is

tr 𝐴 = ∑
𝑖

𝑎𝑖𝑖.

Proposition 1.3. As tr(𝑋𝐴𝑋−1) = tr 𝐴 we can define

tr 𝜃 = tr(𝐴𝜃)

which is independent of the basis chosen.

Some notes on diagonalisation:

Example. Let 𝛼 ∈ GL(𝑉 ) where 𝑉 is a finite-dimensioanl vector space over C
with 𝛼𝑚 = id for some 𝑚. Then 𝛼 is diagonalisable.
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1 Group actions

Proposition 1.4. Let 𝑉 a finite-dimensional vector space over C and 𝛼 ∈
End(𝑉 ). Then 𝛼 is diagonalisable if and only if there exists a polynomial 𝑓
with distinct linear factors with 𝑓(𝛼) = 0.

Remark. In the previous example take 𝑓(𝑋) = 𝑋𝑚 −1 = ∏𝑚−1
𝑗=0 (𝑋−𝜔𝑗) where

𝜔 = 𝑒 2𝜋𝑖
𝑚 .

Proposition 1.5. A finite family of commuting separately diagonalisable
non-singular transformations of a C-vector space can be simultaneously di-
agonalised.

1.2 Basic group theory
We have an ample supply of basic groups:

1. symmetric group 𝑆𝑛 = Sym(𝑋) on a set 𝑋 = {1, … , 𝑛} is the set of all
permutations of 𝑋. |𝑆𝑛| = 𝑛!.

2. alternating group 𝐴𝑛 with |𝐴𝑛| = 𝑛!
2 consists of all even permutations.

3. cyclic group of order 𝑛: 𝐶𝑛 = ⟨𝑥 ∶ 𝑥𝑚 = 1⟩. For example (Z/𝑚Z, +). It’s
also

• the group of 𝑚th root of unity in C (which embeds to GL1(C) = C×),
• the group of rotations, centre 0 of a regular 𝑚-gon in R2 (which

embeds to GL2(R)).

4. diahedral groups: 𝐷2𝑚 = ⟨𝑥, 𝑦 ∶ 𝑥𝑚 = 𝑦2 = 1, 𝑦𝑥𝑦−1 = 𝑥−1⟩ of order
2𝑚. Think of this as set of rotations and reflections preserving a regular
𝑚-gon.

5. quaternion group: 𝑄8 = ⟨𝑥, 𝑦 ∶ 𝑥4 = 1, 𝑦2 = 𝑥2, 𝑦𝑥𝑦−1 = 𝑥−1⟩ of order 8.
In GL2(C), can put

𝑖 = (𝑖 0
0 −𝑖) 𝑗 = ( 0 1

−1 0) 𝑘 = (0 𝑖
𝑖 0)

then 𝑄8 = {±𝑖, ±𝑗, ±𝑘, ±𝐼2}.

Definition (conjugacy class, centraliser). The conjugacy class of 𝑔 ∈ 𝐺 is

𝒞𝐺(𝑔) = {𝑥𝑔𝑥−1 ∶ 𝑥 ∈ 𝐺}.

Then
|𝒞𝐺(𝑔)| = |𝐺 ∶ 𝐶𝐺(𝑔)|

where 𝐶𝑔(𝑔) = {𝑥 ∈ 𝑔 ∶ 𝑥𝑔 = 𝑔𝑥} is the centraliser of 𝑔 in 𝐺.

Definition (group action). Let 𝐺 be a group and 𝑋 be a set. 𝐺 acts on 𝑋
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1 Group actions

if there exists a map

𝐺 × 𝑋 → 𝑋
(𝑔, 𝑥) ↦ 𝑔𝑥

such that

1𝑥 = 𝑥 for all 𝑥 ∈ 𝑋
(𝑔ℎ)𝑥 = 𝑔(ℎ𝑥) for all 𝑔, ℎ ∈ 𝐺, 𝑥 ∈ 𝑋

Proposition 1.6 (permutation representation). Given an action of 𝐺 on
𝑋, we obtain a homomorphism 𝜃 ∶ 𝐺 → Sym(𝑋), called the permutation
representation of 𝐺.

Proof. For 𝑔 ∈ 𝐺 the function 𝜃𝑔 ∶ 𝑋 → 𝑋, 𝑥 ↦ 𝑔𝑥 is a permutation of 𝑋 (with
inverse 𝜃𝑔−1 . Moreover for all 𝑔1, 𝑔2 ∈ 𝐺,

𝜃𝑔1𝑔2
= 𝜃𝑔1

𝜃𝑔2

since (𝑔1𝑔2)𝑥 = 𝑔1(𝑔2𝑥) for all 𝑥 ∈ 𝑋.

In this course 𝑋 is often a finite-dimensional vector space over Fand the
action is required to be linear, namely

𝑔(𝑣1 + 𝑣2) = 𝑔𝑣1 + 𝑔𝑣2

𝑔(𝜆𝑣) = 𝜆𝑔(𝑣)

for all 𝑣1, 𝑣2 ∈ 𝑉 , 𝑔 ∈ 𝐺, 𝜆 ∈ F.

6



2 Basic definitions

2 Basic definitions
Let 𝐺 be a finite group, F a field.

Definition (representation). Let 𝑉 be a finite-dimensional vector space over
F. A (linear) representation of 𝐺 on 𝑉 is a group homomorphism

𝜌 = 𝜌𝑉 ∶ 𝐺 → GL(𝑉 ).

Write 𝜌𝑔 for 𝜌𝑉(𝑔).

So for each 𝑔 ∈ 𝐺, 𝜌𝑔 ∈ GL(𝑉 ), 𝜌1 = id and 𝜌𝑔1𝑔2
= 𝜌𝑔1

𝜌𝑔2
, 𝜌𝑔−1

1
= 𝜌−1

𝑔1
.

The dimension or degree of 𝜌 is dimF 𝑉.
Reall that ker 𝜌 ⊴ 𝐺 and 𝐺/ ker 𝜌 ≅ 𝜌(𝐺) ≤ GL(𝑉 ). We say 𝜌 is faithful if

ker 𝜌 = {1}.
We repeat what we said in introduction, namely the correspondence between

group representation and group action:

Definition (linear action). 𝐺 acts linearly on 𝑉 if ther exists a linear action
𝐺 × 𝑉 → 𝑉 , (𝑔, 𝑣) ↦ 𝑔𝑣 such that

(𝑔1𝑔2)𝑣 = 𝑔1(𝑔2𝑣), 1𝑣 = 𝑣
𝑔(𝑣1 + 𝑣2) = 𝑔𝑣1𝑔𝑣2, 𝑔(𝜆𝑣) = 𝜆𝑔(𝑣)

Now if 𝐺 acts on 𝑉, the map

𝐺 → GL(𝑉 )
𝑔 ↦ 𝜌𝑔

with 𝜌𝑔 ∶ 𝑣 ↦ 𝑔𝑣 is a representation. Conversely, given a representation 𝐺 →
GL(𝑉 ) we have a linear action of 𝐺 on 𝑉 via

𝑔𝑣 = 𝜌(𝑔)(𝑣).

Remark. We also say that 𝑉 is a 𝐺-space or that 𝑉 is a 𝐺-module. This use of
“module” might seen unconventional but if fact if you define the group algebra

F𝐺 = {∑
𝑔∈𝐺

𝛼𝑔𝑔 ∶ 𝛼𝑔 ∈ F}

with natural addition an multiplication, then 𝑉 is an F𝐺-module. F𝐺 is an ex-
ample of F-algebra, i.e. a ring which is also an F-module such that multiplication
is bilinear.

If we bring in a basis for 𝑉, we get yet another equivalent definition:

Definition (matrix representation). 𝑅 is a matrix representation of 𝐺 of
degree 𝑛 if 𝑅 is a homomorphism 𝐺 → GL𝑛(F).
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2 Basic definitions

Given a linear representation 𝜌 ∶ 𝐺 → GL(𝑉 ) with dim𝐹 𝑉 = 𝑛, fix a basis
ℬ then we get a matrix representation

𝐺 → GL𝑛(F)
𝑔 ↦ [𝜌(𝑔)]ℬ

Conversely, given a matrix representation 𝑅 ∶ 𝐺 → GL𝑛(F), you get a linear
representation

𝜌 ∶ 𝐺 → GL(F𝑛)
𝑔 ↦ 𝜌𝑔

via 𝜌𝑔(𝑣) = 𝑅𝑔(𝑣).

Example. Given any group 𝐺, take 𝑉 = F (the 1 dimensional space) and

𝜌 ∶ 𝐺 → GL(𝑉 )
𝑔 ↦ id𝑉

is known as the trivial representation. deg 𝜌 = 1.

Example. Let 𝐺 = 𝐶4 = ⟨𝑥 ∶ 𝑥4 = 1⟩. Take F = C and let 𝑛 = 2. Then
𝑅 ∶ 𝑥 ↦ 𝑋 will determine 𝑥𝑗 ↦ 𝑋𝑗 and thus the matrix representation 𝑅. We
need 𝑋4 = 𝐼. We can take

• either 𝑋 diagonal: any such with diagonal entries in {±1, ±𝑖} (16 choices),

• or 𝑋 is not diagonal: then it will be conjugate to a diagonal (by diagonal-
isability criterion).

2.1 Equivalent representations

Definition (𝐺-homomorphism, 𝐺-isomorphism). Fix 𝐺 and F. Let 𝑉 and
𝑉 ′ be F-vector spaces and 𝜌 ∶ 𝐺 → GL(𝑉 ), 𝜌′ ∶ 𝐺 → GL(𝑉 ′) be repre-
sentations of 𝐺. The linear map 𝜑 ∶ 𝑉 → 𝑉 ′ is a 𝐺-homomorphism or
intertwining homomorphism if

𝜑𝜌(𝑔) = 𝜌′(𝑔)𝜑.

In other words, the following diagram commutes:

𝑉 𝑉

𝑉 ′ 𝑉 ′

𝜌𝑔

𝜑 𝜑
𝜌′

𝑔

We say 𝜑 intertwines 𝜌 and 𝜌′. Write Hom𝐺(𝑉 , 𝑉 ′) for the F-space of
all such.

𝜑 is a 𝐺-isomorphism if 𝜑 is also bijective. If such a 𝜑 exists, say 𝜌 and
𝜌′ are isomorphic or equivalent. If 𝜑 is a 𝐺-isomorphism we can write the
intertwining condition as

𝜌′ = 𝜑𝜌𝜑−1.
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2 Basic definitions

Lemma 2.1. Being isomorphic is an equivalence relation on the set of all
representations of 𝐺 over F.

Proof. Exercise.

Remark. If 𝜌 and 𝜌′ are isomorphic representation then they have the same
dimension. The converse is false: 𝐶4 has four non-isomorphic 1 dimensional
representations.

Remark. Given 𝐺, 𝑉 ,F with dimF 𝑉 = 𝑛 and 𝜌 ∶ 𝐺 → GL(𝑉 ), fix a basis ℬ of
𝑉. We get an isomorphism

𝜑 ∶ 𝑉 → F𝑛

𝑣 ↦ [𝑣]ℬ

And 𝜑 gives a representation 𝜌′ ∶ 𝐺 → GL(F𝑛) isomorphic to 𝜌.

Proposition 2.2.

1. Transformations in terms of matrix representatives: 𝑅 ∶ 𝐺 → GL𝑛(F), 𝑅′ ∶
𝐺 → GL𝑛(F) are 𝐺-isomorphic or 𝐺-equivalent if exists 𝑋 ∈ GL𝑛(F)
with

𝑅′(𝑔) = 𝑋𝑅(𝑔)𝑋−1

for all 𝑔 ∈ 𝐺.

2. In terms of linear 𝐺-actions, the action of 𝐺 on 𝑉 , 𝑉 ′ are 𝐺-isomorphic
if there exists 𝜑 ∶ 𝑉 → 𝑉 ′ such that

𝑔𝜑(𝑣) = 𝜑(𝑔𝑣)

for all 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉.

2.2 Subrepresentation

Definition (𝐺-subspace). Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be a representation of 𝐺. We
say that 𝑊 ≤ 𝑉 is a 𝐺-subspace if it is a subspace and it is 𝜌(𝐺)-invariant,
i.e. 𝜌𝑔(𝑊) ⊆ 𝑊 for all 𝑔 ∈ 𝐺.

Obviously {0} and 𝑉 are 𝐺-subspaces. On the other hand,

Definition (irreducible/simple representation). 𝜌 is said to be irreducible
or simple representation if there are no proper 𝐺-subspaces.

Example. Any 1 dimensional representation of 𝐺 is irreducible. The converse
is not true. For example 𝐷8 has a 2 dimensional irreducible representation.

9



2 Basic definitions

Definition (subrepresentation). If 𝑊 is a 𝐺-subspace then the correspond-
ing map

𝐺 → GL(𝑊)
𝑔 ↦ 𝜌(𝑔)|𝑊

is a representation of 𝐺, known as a subrepresentation of 𝜌.

Lemma 2.3. If 𝜌 ∶ 𝐺 → GL(𝑉 ) is a representation, 𝑊 is a 𝐺-subspace
of 𝑉 and ℬ = {𝑣1, … , 𝑣𝑛} is a basis containing a basis {𝑣1, … , 𝑣𝑚} of 𝑊,
where 0 < 𝑚 ≤ 𝑛, then the matrix of 𝜌(𝑔) with respect to ℬ has block upper
triangular form

(∗ ∗
0 ∗)

for each 𝑔 ∈ 𝐺.

Example. Let F = C.

1. Irreducible representation of 𝐶4 = ⟨𝑥 ∶ 𝑥4 = 1⟩ are all 1 dimensional and
four of them are

𝑥 ↦ 𝑖, 𝑥 ↦ −1, 𝑥 ↦ −𝑖, 𝑥 ↦ 1.

In general 𝐶𝑚 has precisely 𝑚 inequivalent complex irreducible represen-
tations, all of degree 1. Actually all complex irreducible representations
of a finite abelian group are 1 dimensional, by simultaneous diagonalisa-
tion and primary decomposition. Alternatively, this follows from Schur’s
lemma.

2. 𝐺 = 𝐷6: every irreducible C-representation has dimension ≤ 2. Let
𝜌 ∶ 𝐺 → GL(𝑉 ) be an irreducible representation of 𝐺. Let 𝑟 be a rotation
and 𝑠 be reflection. Take an eigenvector 𝑣 of 𝜌(𝑟) so 𝜌(𝑟)𝑣 = 𝜆𝑣 for some
𝜆 ∈ C, 𝜆 ≠ 0. Let

𝑊 = ⟨𝑣, 𝜌(𝑠)𝑣⟩ ≤ 𝑉 .
Since

𝜌(𝑠)𝜌(𝑠)𝑣 = 𝑣
𝜌(𝑟)𝜌(𝑠)𝑣 = 𝜌(𝑠)𝜌(𝑟)−1𝑣 = 𝜆−1𝜌(𝑠)𝑣

so 𝑊 is 𝐺-invariant. Since 𝑉 is irreducible 𝑊 = 𝑉.

Definition ((in)decomposable representation, direct sum). We say that 𝜌 ∶
𝐺 → GL(𝑉 ) is decomposable if there are proper 𝐺-invariant subspaces 𝑈, 𝑊
with 𝑉 = 𝑈 ⊕ 𝑊. Say 𝜌 is the direct sum 𝜌𝑈 ⊕ 𝜌𝑊. If no such subspaces
exist we say 𝜌 is indecomposable.

Lemma 2.4. If 𝜌 ∶ 𝐺 → GL(𝑉 ) is decomposable, ℬ = {𝑣1, … , 𝑣𝑘, 𝑤1, … , 𝑤ℓ}
is a basis of 𝑉 consisting of a basis of 𝑈 and a basis of 𝑊, then 𝜌(𝑔) with
respect to ℬ is block diagonal for all 𝑔 ∈ 𝐺.

10



2 Basic definitions

Definition (direct sum). Let 𝜌 ∶ 𝐺 → GL(𝑉 ), 𝜌′ ∶ 𝐺 → GL(𝑉 ′) be two
representations. The direct sum of 𝜌, 𝜌′ is

𝜌 ⊕ 𝜌′ ∶ 𝐺 → GL(𝑉 ⊕ 𝑉 ′)
(𝜌 ⊕ 𝜌′)(𝑔)(𝑣 + 𝑣′) = 𝜌(𝑔)𝑣 + 𝜌′(𝑔)𝑣′

For matrix representations 𝑅 ∶ 𝐺 → GL𝑛(F), 𝑅′ ∶ 𝐺 → GL𝑛′(F), define
𝑅 ⊕ 𝑅′ ∶ 𝐺 → GL𝑛+𝑛′(F) is given by

𝑔 ↦ (𝑅(𝑔) 0
0 𝑅′(𝑔))

for all 𝑔.

11



3 Complete reducibility and Maschke’s theorem

3 Complete reducibility and Maschke’s theorem
Given 𝐺,F as usual.

Definition (completely reducible/semisimple representation). A represen-
tation 𝜌 ∶ 𝐺 → GL(𝑉 ) is completely reducible or semisimple if it is a direct
sum of irreducible representations.

Remark. Irreducible implies completely reducible. The converse is not true.
See example sheet 1 question 3.

From now on take 𝐺 to be finite and ch 𝐹 = 0 throughout this chapter.

Theorem 3.1 (complete reducibility theorem). Every finite-dimensional
representation 𝑉 of a finite group over a field of characteristic 0 is completely
reducible, i.e. 𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑟 is a direct sum of representations with each
𝑉𝑖 irreducible.

In fact it is enough to prove

Theorem 3.2 (Maschke). Suppose 𝐺 is finite and 𝜌 ∶ 𝐺 → GL(𝑉 ) is a
representation with 𝑉 finite-dimensional, ch 𝐹 = 0. If 𝑊 is a 𝐺-subspace of
𝑉 then there exists a 𝐺-subspace 𝑈 of 𝑉 such that 𝑉 = 𝑊 ⊕ 𝑈, a direct sum
of 𝐺-subspaces.

Proof. Let 𝑊 ′ be any complementary subspace of 𝑊 in 𝑉, i.e. 𝑉 = 𝑊 ⊕ 𝑊 ′.
Let 𝑞 ∶ 𝑉 → 𝑊 be the projection of 𝑉 onto 𝑊 along 𝑊 ′, i.e. if 𝑣 = 𝑤 + 𝑤′ then
𝑞(𝑣) = 𝑤. Define

𝑞 ∶ 𝑣 ↦ 1
|𝐺|

∑
𝑔∈𝐺

𝑔𝑞(𝑔−1(𝑣)),

the “average of 𝑞 over 𝐺”. Note that we’ve dropped the 𝜌 in 𝜌(𝑔) and 𝜌(𝑔−1) to
avoid excessive notations.

Claim that 𝑞 ∶ 𝑉 → 𝑊: for 𝑣 ∈ 𝑉, 𝑞(𝑔−1(𝑣)) ∈ 𝑊 and 𝑔(𝑊) ⊆ 𝑊. Also
𝑞(𝑤) = 𝑤 for 𝑤 ∈ 𝑊 as

𝑞(𝑤) = 1
|𝐺|

∑
𝑔∈𝐺

𝑔𝑞(𝑔−1𝑤) = 1
|𝐺|

∑
𝑔∈𝐺

𝑔(𝑔−1𝑤) = 1
|𝐺|

∑
𝑔∈𝐺

𝑤 = 𝑤

Thus 𝑞 projects 𝑉 onto 𝑊.
As 𝑞 is a projection we can write 𝑉 = im 𝑞 ⊕ ker 𝑞 = 𝑊 ⊕ ker 𝑞. Need to

show ker 𝑞 is 𝐺-invariant. Note that if ℎ ∈ 𝐺

ℎ𝑞(𝑣) = ℎ 1
|𝐺|

∑
𝑔

𝑔𝑞(𝑔−1𝑣)

= 1
|𝐺|

∑
𝑔

ℎ𝑔𝑞(𝑔−1𝑣)

= 1
|𝐺|

∑
𝑔

(ℎ𝑔)𝑞((ℎ𝑔)−1ℎ𝑣)

= 1
|𝐺|

∑
𝑔

𝑔𝑞(𝑔−1(ℎ𝑣))

= 𝑞(ℎ𝑣).

12



3 Complete reducibility and Maschke’s theorem

Thus if 𝑣 ∈ ker 𝑞, ℎ ∈ 𝐺 then

ℎ𝑞(𝑣) = 0 = 𝑞(ℎ𝑣)

so ℎ𝑣 ∈ ker 𝑞. Therefore

𝑉 = im 𝑞 ⊕ ker 𝑞 = 𝑊 ⊕ ker 𝑞

which is a 𝐺-subspace decomposition.

In fact, we only need chF ∤ |𝐺|.

Remark. Complements are not unique. For example, take 𝐺 = 1. Then a
representation of 𝐺 is just a vector space. Take 𝑉 = C2. Then any proper
subspace 𝑊 ≤ 𝑉 will do.

Exercise. Deduce complete reducibility theorem from Maschke by induction
on dimension.

We’ll present another proof using inner product. This will generalise easily
to compact Lie groups. Take F = C.

Recall that for 𝑉 a C-vector space. ⟨⋅, ⋅⟩ is a Hermitian inner product if

1. ⟨𝑤, 𝑣⟩ = ⟨𝑣, 𝑤⟩ for all 𝑣, 𝑤.

2. sesquilinear: linear in second argument.

3. positive definite: ⟨𝑣, 𝑣⟩ > 0 if 𝑣 ≠ 0.

Furthermore ⟨⋅, ⋅⟩ is 𝐺-invariant if

⟨𝑔𝑣, 𝑔𝑤⟩ = ⟨𝑣, 𝑤⟩

for all 𝑣, 𝑤 ∈ 𝑉 , 𝑔 ∈ 𝐺.
If 𝑊 is a 𝐺-invariant subspace of 𝑉 (with a 𝐺-invariant inner product) then

𝑊 ⟂ is also 𝐺-invariant and 𝑊 = 𝑊⊕𝑊 ⟂: enough to show for all 𝑣 ∈ 𝑊 ⟂, 𝑔 ∈ 𝐺,
have 𝑔𝑣 ∈ 𝑊 ⟂. But by definition ⟨𝑣, 𝑤⟩ = 0 for all 𝑤 ∈ 𝑊. Thus by 𝐺-invariance
⟨𝑔𝑣, 𝑔𝑤⟩ = 0 for all 𝑔. Certainly ⟨𝑔𝑣, 𝑤′⟩ = 0 for all 𝑤′ ∈ 𝑊 as we can choose
𝑤 = 𝑔−1𝑤′ ∈ 𝑊. The result thus follows.

Therefore if there is a 𝐺-invariant inner product on any complex 𝐺-space
then we get another proof of Maschke’s theorem.

Lemma 3.3 (Weyl’s unitary trick). Let 𝜌 be a complex representation of a
finite group 𝐺 on the C-vector space 𝑉. Then there is a 𝐺-invariant inner
product on 𝑉.

Proof. There exists an inner product on 𝑉: take basis 𝑒1, … , 𝑒𝑛 and define
(𝑒𝑖, 𝑒𝑗) = 𝛿𝑖𝑗. Extend sesquilinearly. Now define

⟨𝑣, 𝑤⟩ = 1
|𝐺|

∑
𝑔

(𝑔𝑣, 𝑔𝑤).

13



3 Complete reducibility and Maschke’s theorem

Easy exercise that ⟨⋅, ⋅⟩ is a 𝐺-invariant inner product. For example for 𝐺-
invariance, for all ℎ ∈ 𝐺,

⟨ℎ𝑣, ℎ𝑤⟩ = 1
|𝐺|

∑
𝑔

((𝑔ℎ)𝑣, (𝑔ℎ)𝑤)

= 1
|𝐺|

∑
𝑔′

(𝑔′𝑣, 𝑔′𝑤)

= ⟨𝑣, 𝑤⟩

Corollary 3.4. Every finite subgroup of GL𝑛(C) is conjugate to a subgroup
of 𝑈(𝑛).

Proof. Example sheet 1 Q5, Q12.

Definition (regular representation). Recall group algebra of 𝐺 is the F-
space

F𝐺 = span{𝑒𝑔 ∶ 𝑔 ∈ 𝐺}.

There is a linear 𝐺-action

ℎ. ∑
𝑔

𝑎𝑔𝑒𝑔 = ∑
𝑔

𝑎𝑔𝑒ℎ𝑔 = ∑
𝑔′

𝑎ℎ−1𝑔′𝑒𝑔′ .

This is known as regular representation of 𝐺, denoted 𝜌reg.

This is a faithful representation of dimension |𝐺|. We call 𝑉 = F𝐺 (some-
times also written as F[𝐺]) the regular module.

It turns out that every irreducible representation of 𝐺 is a subrepresentation
of 𝜌reg:

Proposition 3.5. Let 𝜌 be an irreducible representation of 𝐺 over a field
of characteristic 0. Then 𝜌 is isomorphic to a subrepresentation of 𝜌reg.

Proof. Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be irreducible and let 𝑣 ∈ 𝑉 nonzero. Consider

𝜃 ∶ F𝐺 → 𝑉

∑
𝑔

𝑎𝑔𝑒𝑔 ↦ ∑
𝑔

𝑎𝑔𝑔𝑣

This is a 𝐺-homomorphism. Now 𝑉 is irreducible and im 𝜃 = 𝑉 since im 𝜃 is a
𝐺-subspace. Then ker 𝜃 is a 𝐺-subspace of F𝐺. Let 𝑊 be a 𝐺-complement of
ker 𝜃 in F𝐺. Thus

𝑊 ≅ F𝐺/ ker 𝜃 ≅ im 𝜃 = 𝑉 .

More generally,

14



3 Complete reducibility and Maschke’s theorem

Definition (permutation representation). Let 𝐺 act on a set 𝑋. Let F𝑋 =
span{𝑒𝑥 ∶ 𝑥 ∈ 𝑋} with 𝐺 action

𝑔. ∑
𝑥

𝑎𝑥𝑒𝑥 = ∑
𝑥

𝑎𝑥𝑒𝑔𝑥

so we have a 𝐺-space F𝑋. The representation 𝐺 → GL(F𝑋) is the corre-
sponding permutation representation.
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4 Schur’s lemma

4 Schur’s lemma

Theorem 4.1 (Schur’s lemma).

1. Assume 𝑉 and 𝑊 are irreducible 𝐺-spaces (over field F). Then any
𝐺-homomorphism 𝜃 ∶ 𝑉 → 𝑊 is either 0 or a 𝐺-isomorphism.

2. Assume F is algebraically closed and let 𝑉 be an irreducible 𝐺-space.
Then any 𝐺-endomorphism 𝑉 → 𝑉 is a scalar multiple of the identity
map 1𝑉 (a homothety).

Proof.

1. Let 𝜃 ∶ 𝑉 → 𝑊 be a 𝐺-homomorphism. Then ker 𝜃 is a 𝐺-subspace of 𝑉.
Since 𝑉 is irreducible either ker 𝜃 = 0 or ker 𝜃 = 𝑉. Similarly im 𝜃 = 0 or
im 𝜃 = 𝑊. Hence either 𝜃 = 0 or 𝜃 is injective and surjective.

2. Since F is algebraically closed, 𝜃 has an eigenvalue 𝜆. Then 𝜃 − 𝜆1𝑉 is a
singular 𝐺-endomorphism on 𝑉, so must be 0.

Recall the F-space Hom𝐺(𝑉 , 𝑊) of all 𝐺-homomorphisms 𝑉 → 𝑊, we can
restate Schur’s lemma

Corollary 4.2. If 𝑉 and 𝑊 are irreducible complex 𝐺-spaces then

dimC Hom𝐺(𝑉 , 𝑊) = {1 if 𝑉 , 𝑊 are 𝐺-isomorphic
0 otherwise

Proof. If 𝑉 and 𝑊 are not isomorphic then the only 𝐺-homomorphism 𝑉 → 𝑊
is 0. Assume 𝑉 ≅𝐺 𝑊 and 𝜃1, 𝜃2 ∈ Hom𝐺(𝑉 , 𝑊), both nonzero. Then 𝜃2 is
invertible and 𝜃−1

2 𝜃1 ∈ End𝐺(𝑉 ) and nonzero, so 𝜃−1
2 𝜃1 = 𝜆1𝑉. Then 𝜃1 =

𝜆𝜃2.

Corollary 4.3. If 𝐺 has a faithful complex irreducible representation then
𝑍(𝐺) is cyclic.

Remark. The converse is false. See example sheet Q10.

Proof. Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be a faithful representation over C. Let 𝑧 ∈ 𝑍(𝐺),
then 𝜑𝑧 ∶ 𝑣 ↦ 𝑧𝑣 is a 𝐺-endomorphism, hence multiplication by a scalar, say
𝜇𝑧. Then

𝑍(𝐺) → C×

𝑔 ↦ 𝜇𝑔

is a representation of 𝑍(𝐺) and is faithful since 𝜌 is. Thus 𝑍(𝐺) is isomorphic
to a finite subgroup of C× so cyclic.

This is our first group theoretic result based on representation theory. This
is a recurring theme in representation theory.
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4 Schur’s lemma

Corollary 4.4. The irreducible C-representations of a finite abelian group
𝐺 are all 1 dimensional.

Proof. One can use Proposition 1.5 to invoke simultaneous diagonalisation: if 𝑣
is an eigenvector for each 𝑔 ∈ 𝐺 and if 𝑉 is irreducible then 𝑉 = ⟨𝑣⟩.

Alternatively, let 𝑉 be an irreducible representation. Given 𝑔 ∈ 𝐺, the map

𝜃𝑔 ∶ 𝑉 → 𝑉
𝑣 ↦ 𝑔𝑣

is a 𝐺-endomorphism of 𝑉. Hence 𝜃𝑔 = 𝜆𝑔1𝑉 for some 𝜆𝑔 ∈ C. Thus 𝑔𝑣 = 𝜆𝑔𝑣
for any 𝑔 ∈ 𝐺. Thus as 𝑉 ≠ 0 is irreducible, 𝑉 = ⟨𝑣⟩.

Remark. This fails for R. For example 𝐶3 has two irreducible R-representations,
one of dimension 1 and one of dimension 2.

Recall that every finite abelian group 𝐺 is isomorphic to a product of cyclic
groups. In fact it can be written as product of 𝐶𝑝𝛼 for various primes 𝑝 and
𝛼 ≥ 1. The elements are uniquely determined up to order.

Proposition 4.5. The finite abelian group 𝐺 ≅ 𝐶𝑛1
×⋯×𝐶𝑛𝑟

has precisely
|𝐺| irreducible C-representations as described below.

Proof. Write 𝐺 = ⟨𝑥1⟩×⋯×⟨𝑥𝑟⟩ where |𝑥𝑗| = 𝑛𝑗. Suppose 𝜌 is irreducible so it
is 1 dimensional. Let 𝜌(1, … , 𝑥𝑗, … , 1) = 𝜆𝑗. Then 𝜆𝑛𝑗

𝑗 = 1 so 𝜆𝑗 is an 𝑛𝑗th root
of unity. Now the values (𝜆1, … , 𝜆𝑟) determine 𝜌, and no two are equivalent.

Note that however, there is no canonical bijective correspondence between
the elements of 𝐺 and the representations of 𝐺. If you choose an isomorphism
𝐺 ≅ 𝐶𝑎1

×… 𝐶𝑎𝑟
then we can identify the two sets, but it depends on the choice

of isomorphism.

4.1 Isotypical decompositions
We know that in characteristic 0, every representation 𝑉 of 𝐺 decomposes as
⨁ 𝑉𝑖 where each 𝑉𝑖 is irreducible. How unique is this?

A wishlist of properties:

1. uniqueness: for each 𝑉 there is only one way to decompose 𝑉 = ⨁ 𝑉𝑖 with
𝑉𝑖 irreducible.

2. uniqueness of isotypes: for each 𝑉 there exist unique subrepresentations
𝑈1, … , 𝑈𝑘 such that 𝑉 = ⨁ 𝑈𝑖 and if 𝑉𝑖 ≤ 𝑈𝑖, 𝑉 ′

𝑗 ≤ 𝑈𝑗 irreducible sub-
representations then 𝑉𝑖 ≅ 𝑉 ′

𝑗 if and only if 𝑖 = 𝑗.

3. uniqueness of factors: if ⨁𝑘
𝑖=1 𝑉𝑖 ≅ ⨁𝑘′

𝑖=1 𝑉 ′
𝑖 and 𝑉𝑖, 𝑉 ′

𝑖 are irreducible
then 𝑘 = 𝑘′ and there exists 𝜋 ∈ 𝑆𝑘 such that 𝑉 ′

𝜋(𝑖) ≅ 𝑉𝑖.

Evidently 1 is too strong (𝐺 = 1 acting on any 𝑉 with dimension > 1).
However 2 and 3 do work. We will skip the proof and refer the reader to
Teleman §5. However, we shall discuss how to calculate multiplicities of simples
in the isotypes.
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4 Schur’s lemma

Lemma 4.6. Let 𝑉 , 𝑉1, 𝑉2 be 𝐺-spaces.

1. Hom𝐺(𝑉 , 𝑉1 ⊕ 𝑉2) ≅ Hom𝐺(𝑉 , 𝑉1) ⊕ Hom𝐺(𝑉 , 𝑉2).

2. Hom𝐺(𝑉1 ⊕ 𝑉2, 𝑉 ) ≅ Hom𝐺(𝑉1, 𝑉 ) ⊕ Hom𝐺(𝑉2, 𝑉 ).

Proof. Let 𝜋𝑖 ∶ 𝑉1 ⊕ 𝑉2 → 𝑉𝑖 be the 𝐺-linear projections in 𝑉𝑖 with kernel 𝑉3−𝑖.
Then

Hom𝐺(𝑉 , 𝑉1 ⊕ 𝑉2) → Hom𝐺(𝑉 , 𝑉1) ⊕ Hom𝐺(𝑉 , 𝑉2)
𝜑 ↦ (𝜋1𝜑, 𝜋2𝜑)

has inverse (𝜓1, 𝜓2) ↦ 𝜓1 + 𝜓2.
Also the map

Hom𝐺(𝑉1 ⊕ 𝑉2, 𝑉 ) → Hom𝐺(𝑉1, 𝑉 ) ⊕ Hom𝐺(𝑉2, 𝑉 )
𝜑 ↦ (𝜑|𝑉1

, 𝜑|𝑉2
)

has inverse (𝜓1, 𝜓2) ↦ 𝜓1𝜋1 + 𝜓2𝜋2.

Corollary 4.7. Suppose F is algebraically closed and 𝑉 = ⨁𝑛
𝑖=1 𝑉𝑖 is a

decomposition into irreducibles. Then for each irreducible representation 𝑆
of 𝐺,

#{𝑗 ∶ 𝑉𝑗 ≅ 𝑆} = dim Hom𝐺(𝑆, 𝑉 ).

This is known as the multiplicity of 𝑆 in 𝑉.

Proof. By induction on 𝑛. Obvious for 𝑛 = 0, 1. For 𝑛 > 1, write

𝑉 = (
𝑛−1
⨁
𝑖=1

𝑉𝑖) ⊕ 𝑉𝑛.

Then

dim Hom𝐺(𝑆, (
𝑛−1
⨁
𝑖=1

𝑉𝑖) ⊕ 𝑉𝑛) = dim Hom𝐺(𝑆,
𝑛−1
⨁
𝑖=1

𝑉𝑖) + dim Hom𝐺(𝑆, 𝑉𝑛)

and use Schur’s lemma.

Definition (canonical decomposition). A decomposition 𝑉 = ⨁ 𝑊𝑖 where
each 𝑊𝑗 is isomorphic to 𝑛𝑗 copies of irreducible representation 𝑆𝑗 (each non-
isomorphic for each 𝑗) is the canonical decomposition or the decomposition
into isotypical components 𝑊𝑗.

For F closed, the above lemma says that 𝑛𝑗 = dim Hom𝐺(𝑆𝑗, 𝑉 ), i.e. 𝑛𝑗 is
detectable at 𝐺-homomorphism level.

Example. Teleman §5 gives an example on 𝐷6.
If 𝐺 is finite abelian then every complex representation 𝑉 of 𝐺 has unique

isotypical decomposition.
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5 Character theory

5 Character theory
We want to attach invariants to a representation 𝜌 of a finite group 𝐺 on 𝑉.
Matrix coefficients of 𝜌(𝑔) are basis-dependent so not true invariants. det is an
invariant but not a very useful one, as lots of inequivalent representations have
determinant 1. Instead we’ll use trace.

Let F = C and let 𝜌 = 𝜌𝑉 ∶ 𝐺 → GL(𝑉 ) be a representation.

Definition (character). The character 𝜒𝜌 = 𝜒𝑉 = 𝜒 is defined as

𝜒 ∶ 𝐺 → C
𝑔 ↦ tr 𝜌(𝑔)

The degree of 𝜒𝑉 is dim 𝑉.
𝜒 is linear if dim 𝑉 = 1, in which case 𝜒 is a homomorphism 𝐺 → C×.

𝜒 is irreducible/faithful/trivial (or principal) if 𝜌 is. In the last case we also
write 𝜒 = 1𝐺.

It turns out that 𝜒 is a complete invariant in the sense that it determines 𝜌
up to isomorphism. We’ll prove this later.

Theorem 5.1.

1. 𝜒𝑉(1) = dim 𝑉.

2. 𝜒𝑉 is a class function, namely it is conjugation invariant. Thus 𝜒𝑉 is
constant on conjugacy classes of 𝐺.

3. 𝜒𝑉(𝑔−1) = 𝜒𝑉(𝑔).

4. For two representations 𝑉 and 𝑊,

𝜒𝑉 ⊕𝑊 = 𝜒𝑉 + 𝜒𝑊.

Proof.

1. Clearly tr 𝐼𝑛 = 𝑛.

2. 𝜒(ℎ𝑔ℎ−1) = tr(𝑅ℎ𝑅𝑔𝑅−1
ℎ ) = tr 𝑅𝑔 = 𝜒(𝑔).

3. 𝑔 ∈ 𝐺 has finite order so diagonalisable so can assume 𝜌(𝑔) is represented
by diagonal matrix

⎛⎜
⎝

𝜆1 ⋯ 0
⋱

0 ⋯ 𝜆𝑛

⎞⎟
⎠

so 𝜒(𝑔) = ∑ 𝜆𝑖. Now 𝑔−1 is represented by

⎛⎜
⎝

𝜆−1
1 ⋯ 0

⋱
0 ⋯ 𝜆−1

𝑛

⎞⎟
⎠

hence
𝜒(𝑔−1) = ∑ 𝜆−1

𝑖 = ∑ 𝜆𝑖 = ∑ 𝜆𝑖 = 𝜒(𝑔).
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5 Character theory

4. Suppose 𝑉 = 𝑉1 ⊕ 𝑉2, 𝜌𝑖 ∶ 𝐺 → GL(𝑉𝑖), 𝜌 ∶ 𝐺 → GL(𝑉 ). Take basis
ℬ = ℬ1 ∪ ℬ2, where ℬ1 and ℬ2 are basis for 𝑉1 and 𝑉2 respectively, of 𝑉.
With respect to ℬ 𝜌(𝑔) has matrix

([𝜌1(𝑔)]ℬ1
0

0 [𝜌2(𝑔)]ℬ2

)

and so
𝜒(𝑔) = tr 𝜌1(𝑔) + tr 𝜌2(𝑔) = 𝜒1(𝑔) + 𝜒2(𝑔).

Remark. We’ll see later that if 𝜒1, 𝜒2 are characters of 𝐺 then 𝜒1𝜒2 is also a
character of 𝐺 (spoiler: tensor product).

Lemma 5.2. Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be a (complex) representation affording
the character 𝜒. Then for 𝑔 ∈ 𝐺, |𝜒(𝑔)| ≤ 𝜒(1) with equality if and only if
𝜌(𝑔) = 𝜆𝐼 for some 𝜆 ∈ C a root of unity. Moreover 𝜒(𝑔) = 𝜒(1) if and only
if 𝑔 ∈ ker 𝜌. In other words, the kernel of 𝜒 ker 𝜒 is

ker 𝜌 = {𝑔 ∈ 𝐺 ∶ 𝜒(𝑔) = 𝜒(1)}.

Proof. Example sheet 2 Q1.

Lemma 5.3.

1. If 𝜒 is a (complex irreducible, respectively) character of 𝐺 then so is
𝜒.

2. If 𝜒 is a (complex irreducible, respectively) character of 𝐺 then so is
𝜀𝜒 for any linear (i.e. 1 dimensional) character 𝜀 of 𝐺.

Proof. If 𝑅 ∶ 𝐺 → GL𝑛(C) is a (complex irreducible) representation then so is

𝑅 ∶ 𝐺 → GL𝑛(C)

𝑔 ↦ 𝑅(𝑔)

Similarly 𝑟′ ∶ 𝑔 ↦ 𝜀(𝑔)𝑅(𝑔). Check the details.

Definition (class function, class number). Define

𝒞(𝐺) = {𝑓 ∶ 𝐺 → C ∶ 𝑓(ℎ𝑔ℎ−1) = 𝑓(𝑔) for all ℎ, 𝑔 ∈ C},

the complex space of class functions. It is a C-vector space.
Let 𝑘 = 𝑘(𝐺) be the class number of 𝐺, i.e. number of conjugacy classes

of 𝐺. List conjugacy classes as 𝒞1 = {1}, 𝒞2, … , 𝒞𝑘. Choose 𝑔1 = 1, 𝑔2, … , 𝑔𝑘
representatives of the classes. Note that dim 𝒞(𝐺) = 𝑘, as the characteristic
functions 𝛿𝑗 of the conjugacy classes form a basis.
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5 Character theory

Define a Hermitian inner product on 𝒞(𝐺) as follow:

⟨𝑓, 𝑓 ′⟩ = 1
|𝐺|

∑
𝑔∈𝐺

𝑓(𝑔)𝑓 ′(𝑔)

= 1
|𝐺|

𝑘
∑
𝑗=1

|𝒞𝑗|𝑓(𝑔𝑗)𝑓 ′(𝑔𝑗)

=
𝑘

∑
𝑗=1

1
|𝐶𝐺(𝑔𝑗)|

𝑓(𝑔𝑗)𝑓 ′(𝑔𝑗)

For characters we have

⟨𝜒, 𝜒′⟩ =
𝑘

∑
𝑗=1

1
|𝐶𝐺(𝑔𝑗)|

𝜒(𝑔−1
𝑗 )𝜒′(𝑔𝑗)

which is a real symmetric form (in fact we will show it is an integer).

Theorem 5.4 (completeness of characters). The C-irreducible characters
of 𝐺 form an orthonormal basis of 𝒞(𝐺). More precisely,

1. if 𝜌 ∶ 𝐺 → GL(𝑉 ), 𝜌′ ∶ 𝐺 → GL(𝑉 ′) are irreducible representations of
𝐺, affording characters 𝜒 and 𝜒′ then

⟨𝜒, 𝜒′⟩ = {1 if 𝜌, 𝜌′ are isomorphic
0 otherwise

This is called row orthogonality.

2. each class function of 𝐺 is a linear combination of irreducible charac-
ters of 𝐺.

Proof. See chapter 6.

Corollary 5.5. Complex representations of finite groups are characterised
by their characters.

Note the finiteness condition. For counterexample otherwise take 𝐺 = Z,
1 ↦ 𝐼 and 1 ↦ ( 1 1

0 1 ).

Proof. Let 𝐺 be a finite group and 𝜌 ∶ 𝐺 → GL(𝑉 ) be a representation affording
𝜒. By Maschke’s theorem 𝜌 = 𝑚1𝜌1 ⊕ ⋯ ⊕ 𝑚𝑘𝜌𝑘 where 𝜌1, … , 𝜌𝑘 are irreducible
and 𝑚𝑗 ≥ 0. Then 𝑚𝑗 = ⟨𝜒𝑗, 𝜒⟩ where 𝜒𝑗 is afforded by 𝜌𝑗: for 𝜒 = 𝑚1𝜒1 +
⋯ + 𝑚𝑘𝜒𝑘 and thus

⟨𝜒𝑗, 𝜒⟩ = ⟨𝜒𝑗, 𝑚1𝜒1 + ⋯ + 𝑚𝑗𝜒𝑗⟩ = 𝑚𝑗
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5 Character theory

Corollary 5.6 (irreducibility criterion). If 𝜌 is a C-representation of 𝐺
affording 𝜒 then 𝜌 is irreducible if and only if ⟨𝜒, 𝜒⟩ = 1.

Proof. ⟹ is row orthogonality. For ⟸ , suppose ⟨𝜒, 𝜒⟩ = 1. Complete
reducibility says that 𝜒 = ∑ 𝑚𝑗𝜒𝑗 where 𝜒𝑗’s are irreducible and 𝑚𝑗 ≥ 0. Then
∑ 𝑚2

𝑗 = 1 so 𝜒 = 𝜒𝑗 for some 𝑗, so 𝜒 is irreducible.

Theorem 5.7. If the irreducible C-representations of 𝐺, 𝜌1, … , 𝜌𝑘 have
dimensions 𝑛1, … , 𝑛𝑘 then

|𝐺| =
𝑘

∑
𝑖=1

𝑛2
𝑖 .

Proof. Recall 𝜌reg ∶ 𝐺 → GL(C𝐺), the regular representation of 𝐺 of dimension
|𝐺|. Let 𝜋reg be its character, the regular character of 𝐺. Note that

𝜋reg(𝑔) = {|𝐺| 𝑔 = 1
0 otherwise

Also claim that 𝜋reg = ∑𝑗 𝑛𝑗𝜒𝑗 with 𝑛𝑗 = 𝜒𝑗(1):

𝑛𝑗 = ⟨𝜋reg, 𝜒𝑗⟩ = 1
|𝐺|

∑
𝑔∈𝐺

𝜋reg(𝑔)𝜒𝑗(𝑔) = 1
|𝐺|

|𝐺|𝜒𝑗(1) = 𝜒𝑗(1).

Corollary 5.8. The number of irreducible characters of 𝐺 (up to equiva-
lence) equals to the class number.

Corollary 5.9. Elements 𝑔1, 𝑔2 ∈ 𝐺 are conjugate if and only if 𝜒(𝑔1) =
𝜒(𝑔2) for all irreducible characters 𝜒 of 𝐺.

Proof. ⟹ : characters are class functions. ⟸ : if 𝜒(𝑔1) = 𝜒(𝑔2) for all
irreducible characters 𝜒 then 𝑓(𝑔1) = 𝑓(𝑔2) for all class fucntions of 𝐺. In
particular this is true for the characteristic function 𝛿 taking 1 on conjugacy
class of 𝑔1 and 0 otherwise.

Recall the inner prodcut on 𝒞(𝐺) and the real symmetric form ⟨⋅, ⋅⟩ for
characters.

Definition (character table). Let 𝐺 be a finite group and F = C. The
character table of 𝐺 is the 𝑘 × 𝑘 matrix 𝑋 = [𝜒𝑖(𝑔𝑗)] where 1 = 𝜒1, … , 𝜒𝑘
are the irreducible characters of 𝐺 and 𝒞1 = {1}, … , 𝒞𝑘 are the conjugacy
classes with 𝑔𝑗 ∈ 𝒞𝑗.

Example. 𝐺 = 𝑆3 = 𝐷6 = ⟨𝑟, 𝑠 ∶ 𝑟3 = 𝑠2 = 1, 𝑠𝑟𝑠−1 = 𝑟−1⟩. The conjugacy
classes are

𝒞1 = {1}, 𝒞2 = {𝑠, 𝑠𝑟, 𝑠𝑟2}, 𝒞3 = {𝑟, 𝑟−1}.

22



5 Character theory

Thus from the corollary there are three representations. It is easy to write
down two of them: the trivial representation 1 and the sign 𝑆 of permutation.
Think geometrically, it’s not hard to come up with a 2 dimensional irreducible
representation 𝑊 of symmetry of an equilateral triangle. 𝑠𝑟𝑗 acts by matrix
with eigenvalues ±1 so 𝜒(𝑠𝑟𝑗) = 0 for all 𝑗. 𝑟𝑘 acts by the matrix

(cos 2𝑘𝜋
3 − sin 2𝑘𝜋

3
sin 2𝑘𝜋

3 cos 2𝑘𝜋
3

)

so 𝜒(𝑟𝑘) = 2 cos 2𝑘𝜋
3 = −1 for all 𝑘. Thus we have character table

1 𝒞1 𝒞2
1 1 1 1
𝑆 1 −1 1
𝑊 2 0 −1

We can do a few sanity checks: the sum of squares of the first column is 6, which
equals to the order of 𝐺. Also

⟨𝜒𝑊, 𝜒𝑊⟩ = 22

6
+ 02

2
+ (−1)2

3
= 1

so indeed it is irreducible.
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6 Proof of orthogonality

6 Proof of orthogonality
Proof of completeness of characters 1. Fix bases of 𝑉 and 𝑉 ′. Write 𝑅(𝑔), 𝑅′(𝑔)
for matrices of 𝜌(𝑔) and 𝜌′(𝑔) with respect to these bases respectively. Then

⟨𝜒′, 𝜒⟩ = 1
|𝐺|

∑
𝑔∈𝐺

𝜒′(𝑔−1)𝜒(𝑔) = 1
|𝐺|

∑
𝑔∈𝐺

1≤𝑖,𝑗≤𝑛

𝑅′(𝑔−1)𝑖𝑖𝑅(𝑔)𝑗𝑗.

Let 𝜑 ∶ 𝑉 → 𝑉 ′ be linear and define its “average”

�̃� ∶ 𝑉 → 𝑉 ′

𝑣 ↦ 1
|𝐺|

∑
𝑔∈𝐺

𝜌′(𝑔−1)𝜑𝜌(𝑔)𝑣

then �̃� is a 𝐺-homomorphism. To see this, if ℎ ∈ 𝐺 then

𝜌′(ℎ−1)�̃�𝜌(ℎ)(𝑣) = 1
|𝐺|

∑
𝑔∈𝐺

𝜌′((𝑔ℎ)−1)𝜑𝜌(𝑔ℎ)(𝑣)

= 1
|𝐺|

∑
𝑔′∈𝐺

𝜌′(𝑔′−1)𝜑𝜌(𝑔′)(𝑣)

= �̃�(𝑣)

Case 1: 𝜌, 𝜌′ are not isomorphic Schur’s lemma says �̃� = 0 for any 𝜑 ∶
𝑉 → 𝑉 ′ linear. Take 𝜑 = 𝜀𝛼𝛽, having matrix 𝐸𝛼𝛽 with respect to our basis
with 0 everywhere except 1 in (𝛼, 𝛽)th entry. Then

0 = ̃𝜀𝛼𝛽 = 1
|𝐺|

∑
𝑔∈𝐺

(𝑅′(𝑔−1)𝐸𝛼𝛽𝑅(𝑔))𝑖𝑗

so
1

|𝐺|
∑
𝑔∈𝐺

𝑅(𝑔−1)𝑖𝛼𝑅(𝑔)𝛽𝑗 = 0

for all 𝑖, 𝑗. Specialise to 𝑖 = 𝛼, 𝑗 = 𝛽 and sum over 𝑖, 𝑗 to get

⟨𝜒′, 𝜒⟩ = 0.

Case 2: 𝜌, 𝜌′ are isomorphic 𝜒 = 𝜒′. Take 𝑉 = 𝑉 ′, 𝜌 = 𝜌′. If 𝜑 ∶ 𝑉 → 𝑉 is
linear endomorphism then �̃� ∈ End𝐺(𝑉 ). Now tr 𝜑 = tr �̃�:

tr �̃� = 1
|𝐺|

∑
𝑔

tr(𝜌(𝑔−1)𝜑𝜌(𝑔)) = 1
|𝐺|

∑
𝑔

tr 𝜑 = tr 𝜑

By Schur, �̃� = 𝜆 id𝑉 for some 𝜆 ∈ C. Then 𝜆 = 1
𝑛 tr 𝜑 where 𝑛 is the dimension

of 𝑉.
Let 𝜑 = 𝜀𝛼𝛽 so tr 𝜑 = 𝛿𝛼𝛽. Hence

�̃�𝛼𝛽 = 1
𝑛

𝛿𝛼𝛽 id = 1
|𝐺|

∑
𝑔

𝜌(𝑔−1)𝜀𝛼𝛽𝜌(𝑔)
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6 Proof of orthogonality

In terms of matrices, take (𝑖, 𝑗)th entry:

1
|𝐺|

∑
𝑔

𝑅(𝑔−1)𝑖𝛼𝑅(𝑔)𝛽𝑗 = 1
𝑛

𝛿𝛼𝛽𝛿𝑖𝑗

and put 𝛼 = 𝑖, 𝛽 = 𝑗 to get

1
|𝐺|

∑
𝑔

𝑅(𝑔−1)𝑖𝑖𝑅(𝑔)𝑗𝑗 = 1
𝑛

𝛿𝑖𝑗.

Finally sum over 𝑖, 𝑗 to get
⟨𝜒, 𝜒⟩ = 1.

Before proving 2, let’s prove column orthogonality, assuming Corollary 5.8.

Corollary 6.1 (column orthogonality relations).

𝑘
∑
𝑖=1

𝜒𝑖(𝑔𝑗)𝜒𝑖(𝑔ℓ) = 𝛿𝑗ℓ|𝐶𝐺(𝑔𝑗)|.

This has an easy corollary:

Theorem 6.2.

|𝐺| =
𝑘

∑
𝑖=1

𝜒2
𝑖 (1).

Proof.

𝛿𝑖𝑗 = ⟨𝜒𝑖, 𝜒𝑗⟩ =
𝑘

∑
ℓ=1

1
|𝐶𝐺(𝑔ℓ)|

𝜒𝑖(𝑔ℓ)𝜒𝑗(𝑔ℓ)

Consider the character table 𝑋 = (𝜒𝑖(𝑔𝑗)). Then

𝑋𝐷−1𝑋𝑡 = 𝐼𝑘

where

𝐷 = ⎛⎜
⎝

|𝐶𝐺(𝑔1)| 0
⋱

0 |𝐶𝐺(𝑔𝑘)|
⎞⎟
⎠

Since 𝑋 is square, it follows that 𝐷−1𝑋𝑡 is the inverse of 𝑋 so 𝑋𝑡𝑋 = 𝐷.

Proof of completeness of characters 2. List all the irreducible characters 𝜒1, … , 𝜒ℓ
of 𝐺. Claim these generate 𝒞(𝐺), the C-space of class functions on 𝐺. It’s
enough to show that the orthogonal complement to span(𝜒1, … , 𝜒ℓ) in 𝒞(𝐺)
is 0. To see this let 𝑓 ∈ 𝒞(𝐺) with ⟨𝑓, 𝜒𝑗⟩ = 0 for all 𝜒𝑗 irreducible. Let
𝜌 ∶ 𝐺 → GL(𝑉 ) be irreducible representation affording 𝜒 ∈ {𝜒1, … , 𝜒ℓ}. Then
⟨𝑓, 𝜒⟩ = 0.

Consider the 𝐺-endormophism

1
|𝐺|

∑
𝑔

𝑓(𝑔)𝜌(𝑔) ∶ 𝑉 → 𝑉
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6 Proof of orthogonality

so as 𝜌 is irreducible it must be 𝜆 id𝑉 for some 𝜆 ∈ C. Take trace,

𝑛𝜆 = tr 1
|𝐺|

∑
𝑔

𝑓(𝑔)𝜌(𝑔) = 1
|𝐺|

∑
𝑔

𝑓(𝑔)𝜒(𝑔) = ⟨𝑓, 𝜒⟩ = 0

so 𝜆 = 0. Hence ∑ 𝑓(𝑔)𝜌(𝑔) = 0 for all representation 𝜌 by complete reducibility.
Take 𝜌 = 𝜌reg so

∑
𝑔

𝑓(𝑔)𝜌reg(𝑔)(𝑒1) = ∑
𝑔

𝑓(𝑔)𝑒𝑔 = 0

so 𝑓(𝑔) = 0 for all 𝑔.
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7 Permutation representations

7 Permutation representations
Let 𝐺 be a finite group acting on 𝑋 = {𝑥1, … , 𝑥𝑛}. Recall that C𝑋 is the free
C-space generated by 𝑋. The corresponding permutation representation

𝜌𝑋 ∶ 𝐺 → GL(C𝑋)
𝑔 ↦ 𝜌(𝑔)

is given by 𝜌(𝑔) ∶ 𝑒𝑥𝑗
↦ 𝑒𝑔𝑥𝑗

. We call 𝜌𝑋 the permutation representation
corresponding to the action of 𝐺 on 𝑋. Matrices of 𝜌𝑋(𝑔) with respect to basis
{𝑒𝑥}𝑥∈𝑋 are permutation matices: 0 except for one 1 in each row and column
and (𝜌(𝑔))𝑖𝑗 = 1 when 𝑔𝑥𝑗 = 𝑥𝑖. The corresponding permutation character 𝜋𝑋
is

𝜋𝑋(𝑔) = |fix𝑋(𝑔)| = |{𝑥 ∈ 𝑋 ∶ 𝑔𝑥 = 𝑥}|.

Lemma 7.1. 𝜋𝑋 always contains 1𝐺.

Proof. span(𝑒𝑥1
+ ⋯ + 𝑒𝑥𝑛

) is a trivial 𝐺-subspace of C𝑋 with 𝐺-invariant com-
plement span(∑𝑥∈𝑋 𝑎𝑥𝑒𝑥 ∶ ∑ 𝑎𝑥 = 0).

Lemma 7.2.
⟨𝜋𝑋, 1𝐺⟩ = #𝐺-orbits of 𝐺 on 𝑋.

Proof. If 𝑋 = 𝑋1 ∪ ⋯ ∪ 𝑋ℓ is the disjoint union of orbits then

𝜋𝑋 = 𝜋𝑋1
+ ⋯ + 𝜋𝑋ℓ

with 𝜋𝑋𝑗
the permutation character of 𝐺 on 𝑋𝑗. So prove the lemma, it is

enough to show that if 𝐺 acts transitively on 𝑋 then ⟨𝜋𝑋, 1⟩ = 1. Assume 𝐺 is
transitive on 𝑋,

⟨𝜋𝑋, 1⟩ = 1
|𝐺|

∑
𝑔

𝜋𝑋(𝑔)

= 1
|𝐺|

|{(𝑔, 𝑥) ∈ 𝐺 × 𝑋 ∶ 𝑔𝑥 = 𝑥}|

= 1
|𝐺|

∑
𝑥∈𝑋

|𝐺𝑥|

= 1
|𝐺|

|𝑋||𝐺𝑋|

= 1
|𝐺|

|𝐺| orbit-stabiliser

= 1

The whole proof can be seen as different ways to write fixed points of 𝐺.
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7 Permutation representations

Lemma 7.3. Let 𝐺 act on the sets 𝑋1, 𝑋2. Then 𝐺 acts on 𝑋1 × 𝑋2 via
𝑔(𝑥1, 𝑥2) = (𝑔𝑥1, 𝑔𝑥2). The character 𝜋𝑋1×𝑋2

= 𝜋𝑋1
𝜋𝑋2

and so

⟨𝜋𝑋1
, 𝜋𝑋2

⟩ = #{orbits of 𝐺 on 𝑋1 × 𝑋2}

Proof. If 𝑔 ∈ 𝐺 then 𝜋𝑋1×𝑋2
(𝑔) = 𝜋𝑋1

(𝑔)𝜋𝑋2
(𝑔). And

⟨𝜋𝑋1
, 𝜋𝑋2

⟩ = ⟨𝜋𝑋1
𝜋𝑋2

, 1⟩ = ⟨𝜋𝑋1×𝑋2
, 1⟩ = #{orbits of 𝐺 on 𝑋1 × 𝑋2}

Definition (2-transitive). Let 𝐺 act on 𝑋, |𝑋| > 2. Then 𝐺 is 2-transitive
on 𝑋 if 𝐺 has exactly two orbits on 𝑋 × 𝑋: {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝑋} and {(𝑥1, 𝑥2) ∶
𝑥𝑖 ∈ 𝑋, 𝑥1 ≠ 𝑥2}.

Lemma 7.4. Let 𝐺 act on 𝑋 with |𝑋| > 2. Then

𝜋𝑋 = 1 + 𝜒

with 𝜒 irreducible if and only if 𝐺 is 2-transitive on 𝑋.

Proof. Write
𝜋𝑋 = 𝑚11 + 𝑚2𝜒2 + ⋯ + 𝑚ℓ𝜒ℓ

with 1, 𝜒2, … , 𝜒ℓ distinct irreducibles and 𝑚𝑖 ∈ N. Then

⟨𝜋𝑋, 𝜋𝑋⟩ =
ℓ

∑
𝑖=1

𝑚2
𝑖 .

Hence 𝐺 is 2-transitive if and only if ℓ = 2, 𝑚1 = 𝑚2 = 1.

Example. 𝑆𝑛 acting on 𝑋 = {1, … , 𝑛} is 2-transitive. Hence 𝜋𝑋 = 1 + 𝜒 with
𝜒 irreducible of degree 𝑛 − 1. Similar for 𝐴𝑛, 𝑛 > 3.

Example. Let’s write down the table of 𝐺 = 𝑆4:

1 3 8 6 6
1 (12)(34) (123) (1234) (12)

𝜒1 1 1 1 1 1
sgn = 𝜒2 1 1 1 −1 −1

𝜋𝑋 − 1 = 𝜒3 3 −1 0 −1 1
𝜒3𝜒2 = 𝜒4 3 −1 0 1 −1

𝜒5 2 𝑥 𝑦 𝑧 𝑤

By column orthogonality, 𝑥 = 2, 𝑦 = −1, 𝑧 = 𝑤 = 0. Alternatively, we can use

𝜒reg = 𝜒1 + 𝜒2 + 3𝜒3 + 3𝜒4 + 2𝜒5

to deduce 𝜒5. It is the lifting character of 𝑆4/𝑉4 ≅ 𝑆3. See next chapter.
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7 Permutation representations

7.1 Alternating groups
Suppose 𝑔 ∈ 𝐴𝑛 then

|𝒞𝑆𝑛
(𝑔)| = |𝑆𝑛 ∶ 𝐶𝑆𝑛

(𝑔)|
|𝒞𝐴𝑛

(𝑔)| = |𝐴𝑛 ∶ 𝐶𝐴𝑛
(𝑔)|

𝐶𝐴𝑛
(𝑔) is contained in 𝐶𝑆𝑛

(𝑔) but they are not necessarily equal. For example,
let 𝑔 = (123) ∈ 𝐴3. 𝒞𝐴3

(𝑔) = 𝑔 but 𝒞𝑆3
(𝑔) = {𝑔, 𝑔−1}. Recall from IA Groups

Lemma 7.5.

1. If 𝑔 commutes with some odd permutation in 𝑆𝑛 then 𝒞𝑆𝑛
(𝑔) = 𝒞𝐴𝑛

(𝑔).

2. If 𝑔 does not commute with any odd permutation then 𝒞𝑆𝑛
(𝑔) splits

into two conjugacy classes in 𝐴𝑛 of equal size.

Exercise. Character table for 𝐴5. See Teleman §12.
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8 Normal subgroups and lifting characters

8 Normal subgroups and lifting characters

Lemma 8.1 (lifting). Let 𝑁 ⊴ 𝐺 and let ̃𝜌 ∶ 𝐺/𝑁 → GL(𝑉 ) be a represen-
tation of 𝐺/𝑁. Then

𝜌 ∶ 𝐺 → 𝐺/𝑁
̃𝜌

−→ GL(𝑉 )

is a representation of 𝐺 where 𝜌(𝑔) = ̃𝜌(𝑔𝑁). Moreover 𝜌 is irreducible if ̃𝜌
is. The corresponding characters satisfy

𝜒(𝑔) = �̃�(𝑔𝑁)

and deg 𝜒 = deg �̃�. We say that �̃� lifts to 𝜒.
Lifting �̃� → 𝜒 is a bijection between

{irreducible reps of 𝐺/𝑁} ↔ {irreducible reps of 𝐺 with 𝑁 lying in kernel}.

Proof. Example sheet 1 Q4.

Lemma 8.2. The derived subgroup 𝐺′ = ⟨[𝑎, 𝑏] ∶ 𝑎, 𝑏 ∈ 𝐺⟩ of 𝐺 is the unique
minimal normal subgroup of 𝐺 such that 𝐺/𝐺′ is abelian. 𝐺 has precisely
ℓ = |𝐺/𝐺′| representations of dimension 1, all with kernel containing 𝐺′

and obtained by lifting from 𝐺/𝐺′. In particular ℓ ∣ |𝐺|.

Proof. Easy to check 𝐺′ ⊴ 𝐺 and given 𝑁 ⊴ 𝐺, 𝐺′ ≤ 𝑁 if and only if 𝐺/𝑁
is abelian. By Proposition 4.5, 𝐺/𝐺′ has exactly ℓ characters �̃�1, … , �̃�ℓ, all of
degree 1. The lifts of these to 𝐺 also have degree 1 and thus by Lemma 8.1 these
are precisely the irreducible characters 𝜒 of 𝐺 such that 𝐺′ ≤ ker 𝜒. But any
linear character of 𝐺 is a homomorphism 𝜒 ∶ 𝐺 → C×, hence 𝜒(𝑔−1ℎ−1𝑔ℎ) = 1.
Thus 𝐺′ ≤ ker 𝜒. Thus 𝜒1, … , 𝜒ℓ are all the linear characters of 𝐺.

Example.

1. 𝐺 = 𝑆𝑛. Show 𝑆′
𝑛 = 𝐴𝑛. Since 𝐺/𝐺′ ≅ 𝐶2, 𝑆𝑛 must have exactly 2 linear

characters.

2. 𝐺 = 𝐴4. Let 𝑉 = {1, (12)(34), (13)(24), (14)(23)} ⊴ 𝐺 and 𝐺ab = 𝐺/𝑉 ≅
𝐶3. Hence there are three linear characters, all of them trivial on 𝑉. Thus
𝐴4 has character table

1 3 4 4
1 (12)(34) (123) (132)

1𝐺 1 1 1 1
𝜒2 1 1 𝜔 𝜔2

𝜒3 1 1 𝜔2 𝜔
𝜒4 3 −1 0 0

where the last row is from orthogonality.

Lemma 8.3. 𝐺 is not simple if and only if 𝜒(𝑔) = 𝜒(1) for some irreducible
character 𝜒 ≠ 1𝐺 and some 1 ≠ 𝑔 ∈ 𝐺. Moreover any normal subgroup of
𝐺 is the intersection of the kernels of some of the irreducible characters of
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8 Normal subgroups and lifting characters

𝐺.
Proof. If 𝜒(𝑔) = 𝜒(1) for some non-principal character 𝜒 (afforded by 𝜌) then
𝑔 ∈ ker 𝜌 by Lemma 5.2. So if 𝑔 ≠ 1 then ker 𝜌 is a nontrivial proper normal
subgroup of 𝐺. If 𝑁 is a nontrivial proper normal subgroup, take non-principal
irreducible �̃� of 𝐺/𝑁. Lift to get an irreducible 𝜒, afforded by 𝜌 of 𝐺, then
𝑁 ≤ ker 𝜌 ⊴ 𝐺. Hence 𝜒(𝑔) = 𝜒(1) for all 𝑔 ∈ 𝑁.

Claim that if 1 ≠ 𝑁 ⊴ 𝐺 then 𝑁 is the intersection of the kernels of the lifts
of all the irreducibles of 𝐺/𝑁: ≤ is clear. For ≥, if 𝑔 ∈ 𝐺 \ 𝑁 then 𝑔𝑁 ≠ 𝑁
so �̃�(𝑔𝑁) ≠ �̃�(𝑁) for some irreducible �̃� of 𝐺/𝑁. Lifting �̃� to 𝜒 we have
𝜒(𝑔) ≠ 𝜒(1).
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9 Dual spaces & tensor products

9 Dual spaces & tensor products
Recall that 𝒞(𝐺) is the C-space of class functions with dimension 𝑘. It has
an orthonormal basis 𝜒1, … , 𝜒𝑘 of irreducible characters of 𝐺. There exists an
involution 𝑓 ↦ 𝑓∗ where 𝑓∗(𝑔) = 𝑓(𝑔−1).

9.1 Duality

Lemma 9.1 (dual representation). Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be a representation
over F and let 𝑉 ∗ = HomF(𝑉 ,F), the dual space of 𝑉. Then 𝑉 ∗ is a 𝐺-space
under

(𝜌∗(𝑔)𝜑)(𝑣) = 𝜑(𝜌(𝑔−1)),

the dual representation to 𝜌. Its character is

𝜒𝜌∗(𝑔) = 𝜒𝜌(𝑔−1).

Proof. First show 𝜌∗ ∶ 𝐺 → GL(𝑉 ∗) is indeed a representation:

𝜌∗(𝑔1)(𝜌∗(𝑔2)𝜑)(𝑣) = (𝜌∗(𝑔2𝜑))(𝜌(𝑔−1
1 )(𝑣))

= 𝜑(𝜌(𝑔−1
2 )𝜑(𝑔−1

1 )(𝑣))
= 𝜑(𝜌(𝑔1𝑔2)−1(𝑣))
= (𝜌∗(𝑔1𝑔2)𝜑)(𝑣)

For the character, fix 𝑔 ∈ 𝐺 and let 𝑒1, … , 𝑒𝑛 be a basis of 𝑉 of eigenvectors
of 𝜌(𝑔), say

𝜌(𝑔)𝑒𝑗 = 𝜆𝑗𝑒𝑗.

Let 𝜀1, … , 𝜀𝑛 be the dual basis. Then

(𝜌∗(𝑔)𝜀𝑗)(𝑒𝑖) = 𝜀𝑗(𝜌(𝑔−1)𝑒𝑖) = 𝜀𝑗𝜆−1
𝑖 𝑒𝑖 = 𝜆−1

𝑗 𝜀𝑗𝑒𝑖

for all 𝑖 so 𝜌∗(𝑔)𝜀𝑗 = 𝜆−1
𝑗 𝜀𝑗. Thus

𝜒𝜌∗(𝑔) = ∑ 𝜆−1
𝑗 = 𝜒𝜌(𝑔−1).

Definition (self-dual). 𝜌 ∶ 𝐺 → GL(𝑉 ) is self-dual if 𝑉 ≅𝐺 𝑉 ∗. Over
F = C, this holds if and only if

𝜒𝜌(𝑔) = 𝜒𝜌(𝑔−1) = 𝜒𝜌(𝑔)

if and only if 𝜒𝜌(𝑔) ∈ R for all 𝑔.

Example.

1. All irreducible representations of 𝑆𝑛 are self-dual: the conjugacy classes
are determined by cycle types so 𝑔, 𝑔−1 are always 𝑆𝑛-conjugate. Not
always true for 𝐴𝑛.

2. Permutation representations C𝑋 are always self-dual.
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9.2 Tensor products

Definition (tensor product). Let 𝑉 , 𝑊 be F-spaces with dim 𝑉 = 𝑚, dim 𝑊 =
𝑛. Fix basis 𝑣1, … , 𝑣𝑚 of 𝑉, 𝑤1 … , 𝑤𝑛 of 𝑊. The tensor product space 𝑉 ⊗F𝑊
or 𝑉 ⊗ 𝑊 is an 𝑛𝑚-dimensional F-space with basis

{𝑣𝑖 ⊗ 𝑤𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}.

Thus

1.
𝑉 ⊗ 𝑊 = {∑ 𝜆𝑖𝑗𝑣𝑖 ⊗ 𝑤𝑗 ∶ 𝜆𝑖𝑗 ∈ F}

with obvious addition and multiplication.

2. If 𝑣 = ∑ 𝛼𝑖𝑣𝑖 ∈ 𝑉 , 𝑤 = ∑ 𝛽𝑗𝑤𝑗 ∈ 𝑊 define

𝑣 ⊗ 𝑤 = ∑ 𝛼𝑖𝛽𝑗(𝑣𝑖 ⊗ 𝑤𝑗).

Remark. Note not all elements of 𝑉 ⊗ 𝑊 are of this form — some are combi-
nations, e.g. 𝑣1 ⊗ 𝑤1 + 𝑣2 ⊗ 𝑤2, which can’t be further simplified.

Lemma 9.2.

1. For 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑊, 𝜆 ∈ F,

(𝜆𝑣) ⊗ 𝑤 = 𝜆(𝑣 ⊗ 𝑤) = 𝑣 ⊗ (𝜆𝑤).

2. If 𝑥, 𝑥1, 𝑥2 ∈ 𝑉 , 𝑦, 𝑦1, 𝑦2 ∈ 𝑊 then

(𝑥1 + 𝑥2) ⊗ 𝑦 = 𝑥1 ⊗ 𝑦 + 𝑥2 ⊗ 𝑦
𝑥 ⊗ (𝑦1 + 𝑦2) = 𝑥 ⊗ 𝑦1 + 𝑥 ⊗ 𝑦2

Proof. Easy verifications:

1. if 𝑣 = ∑ 𝛼𝑖𝑣𝑖, 𝑤 = ∑ 𝛽𝑗𝑣𝑗 then

𝜆𝑣 ⊗ 𝑤 = ∑
𝑖,𝑗

(𝜆𝛼𝑖)𝛽𝑗𝑣𝑖 ⊗ 𝑤𝑗

𝜆(𝑣 ⊗ 𝑤) = ∑
𝑖,𝑗

(𝜆𝛼𝑖)𝛽𝑗𝑣𝑖 ⊗ 𝑤𝑗

𝑣 ⊗ 𝜆𝑤 = ∑
𝑖,𝑗

(𝜆𝛼𝑖)𝛽𝑗𝑣𝑖 ⊗ 𝑤𝑗

2. exercise.

It follows that the map

𝑉 × 𝑊 → 𝑉 ⊗ 𝑊
(𝑣, 𝑤) ↦ 𝑣 ⊗ 𝑤

is bilinear.
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9 Dual spaces & tensor products

Lemma 9.3. If {𝑒1, … , 𝑒𝑚} is any basis of 𝑉, {𝑓1, … , 𝑓𝑛} any basis of 𝑊
then {𝑒𝑖 ⊗ 𝑓𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} is a basis of 𝑉 ⊗ 𝑊.

Proof. Writing 𝑣𝑘 = ∑𝑖 𝛼𝑖𝑘𝑒𝑖, 𝑤ℓ = ∑𝑗 𝛽𝑗ℓ𝑓𝑗, we have

𝑣𝑘 ⊗ 𝑤ℓ = ∑
𝑖,𝑗

𝛼𝑖𝑘𝛽𝑗ℓ𝑒𝑖 ⊗ 𝑓𝑗,

hence {𝑒𝑖 ⊗ 𝑓𝑗} spans 𝑉 ⊗ 𝑊. And since there are 𝑛𝑚 of them, they are a
basis.

Remark. One can define 𝑉 ⊗ 𝑊 in a basis independent way in the first place.
See Teleman §6.

Proposition 9.4. Let 𝜌 ∶ 𝐺 → GL(𝑉 ), 𝜌′ ∶ 𝐺 → GL(𝑉 ′) be complex repre-
sentations of 𝐺. Define

(𝜌 ⊗ 𝜌′)(𝑔) ∶ ∑ 𝜆𝑖𝑗𝑣𝑖 ⊗ 𝑤𝑗 ↦ ∑ 𝜆𝑖𝑗𝜌(𝑔)𝑣𝑖 ⊗ 𝜌′(𝑔)𝑤𝑗.

Then 𝜌 ⊗ 𝜌′ is a representation with character

𝜒𝜌⊗𝜒′(𝑔) = 𝜒𝜌(𝑔)𝜒𝜌′(𝑔)

for all 𝑔. Hence product of two characters of 𝐺 is also a character.

Remark. On example sheet 1, we saw 𝜌 irreducible, 𝜌′ of degree 1 implies that
𝜌 ⊗ 𝜌′ is irreducible. If 𝜌′ is not of degree 1 this is usually false.

Proof. It is clear that (𝜌 ⊗ 𝜌′)(𝑔) ∈ GL(𝑉 ⊗ 𝑉 ′) for all 𝑔 ∈ 𝐺 and so 𝜌 ⊗ 𝜌′ is a
homomorphism 𝐺 → GL(𝑉 ⊗ 𝑉 ′). Let 𝑔 ∈ 𝐺. Let 𝑣1, … , 𝑣𝑚 be a basis of 𝑉 of
eigenvectors of 𝜌(𝑔), 𝑤1, … , 𝑤𝑛 be a basis of 𝑉 ′ of eigenvectors of 𝜌′(𝑔), say

𝜌(𝑔)𝑣𝑗 = 𝜆𝑗𝑣𝑗, 𝜌′(𝑔)𝑤𝑗 = 𝜇𝑗𝑤𝑗.

Then

(𝜌 ⊗ 𝜌′)(𝑔)(𝑣𝑖 ⊗ 𝑤𝑗) = 𝜌(𝑔)𝑣𝑖 ⊗ 𝜌′(𝑔)𝑤𝑗 = 𝜆𝑖𝑣𝑖 ⊗ 𝜇𝑗𝑤𝑗 = (𝜆𝑖𝜇𝑗)(𝑣𝑖 ⊗ 𝑤𝑗)

so
𝜒𝜌⊗𝜌′(𝑔) = ∑

𝑖,𝑗
𝜆𝑖𝜇𝑗 = ∑ 𝜆𝑖 ∑ 𝜇𝑗 = 𝜒𝜌(𝑔)𝜒𝜌′(𝑔).

Let F = C. Take 𝑉 = 𝑉 ′ and define

𝑉 ⊗2 = 𝑉 ⊗ 𝑉 .

Let 𝜏 ∶ ∑ 𝜆𝑖𝑗𝑣𝑖 ⊗ 𝑣𝑗 ↦ ∑ 𝜆𝑖𝑗𝑣𝑗 ⊗ 𝑣𝑖, a linear 𝐺-endomorphism of 𝑉 ⊗2 such that
𝜏2 = 1, so has eigenvalues ±1.
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9 Dual spaces & tensor products

Definition (symmetric/exterior square). Define

𝑆2𝑉 = {𝑥 ∈ 𝑉 ⊗2 ∶ 𝜏(𝑥) = 𝑥}
Λ2𝑉 = {𝑥 ∈ 𝑉 ⊗2 ∶ 𝜏(𝑥) = −𝑥}

the symmetric and exterior square of 𝑉.

Lemma 9.5. 𝑆2𝑉 , Λ2𝑉 are 𝐺-subspaces of 𝑉 ⊗2 and

𝑉 ⊗2 = 𝑆2𝑉 ⊕ Λ2𝑉 .

𝑆2𝑉 has basis

{𝑣𝑖𝑣𝑗 = 𝑣𝑖 ⊗ 𝑣𝑗 + 𝑣𝑗 ⊗ 𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}

Λ2𝑉 has basis

{𝑣𝑖 ∧ 𝑣𝑗 = 𝑣𝑖 ⊗ 𝑣𝑗 − 𝑣𝑗 ⊗ 𝑣𝑖 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

(Note that in some conventions the definition of 𝑣𝑖𝑣𝑗 and 𝑣𝑖 ∧𝑣𝑗 is half what
we defined here.) Hence

dim 𝑆2𝑉 = 𝑛(𝑛 + 1)
2

dim Λ2𝑉 = 𝑛(𝑛 − 1)
2

Proof. Easy exercise by noting that for any 𝑥 ∈ 𝑉 ⊗2,

𝑥 = 1
2

(𝑥 + 𝜏(𝑥)) + 1
2

(𝑥 − 𝜏(𝑥)).

Lemma 9.6. If 𝜌 ∶ 𝐺 → GL(𝑉 ) is a representation affording character 𝜒,
then

𝜒2 = 𝜒𝑆 + 𝜒Λ

where 𝜒𝑆, 𝜒Λ are the characters of 𝐺 in the subrepresentations 𝑆2𝑉 and Λ2𝑉.
Moreover

𝜒𝑆(𝑔) = 1
2

(𝜒2(𝑔) + 𝜒(𝑔2))

𝜒Λ(𝑔) = 1
2

(𝜒2(𝑔) − 𝜒(𝑔2))

Proof. Compute the characters 𝜒𝑆, 𝜒Λ in the usual way: fix an element and
choose an eigenbasis.
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Example. 𝐺 = 𝑆4: We have worked out the character table before

1 3 8 6 6
1 (12)(34) (123) (1234) (12)

𝜒1 1 1 1 1 1
sgn = 𝜒2 1 1 1 −1 −1

𝜋𝑋 − 1 = 𝜒3 3 −1 0 −1 1
𝜒3𝜒2 = 𝜒4 3 −1 0 1 −1

𝜒5 2 2 −1 0 0

Take 𝜒3, we can work out its symmetric and exterior square

1 3 8 6 6
1 (12)(34) (123) (1234) (12)

𝜒2
3 9 1 0 1 1

𝜒3(𝑔2) 3 3 0 3 −1
𝑆2𝜒3 6 2 0 2 0
Λ2𝜒3 3 −1 0 −1 1

By simply calculating the inner prodcuct, we see that 𝜒4 = Λ2𝜒3 is irreducible.
We also see

𝑆2𝜒3 = 1 + 𝜒3 + 𝜒5.

9.3 Characters of product groups

Proposition 9.7. If 𝐺, 𝐻 are finite groups, with their irreducible characters
𝜒1, … , 𝜒𝑘 and 𝜓1, … , 𝜓𝑟 respectively, then the irreducible characters of their
direct product 𝐺 × 𝐻 are precisely {𝜒𝑖𝜓𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑟}, where

𝜒𝑖𝜓𝑗(𝑔, ℎ) = 𝜒𝑖(𝑔)𝜓𝑗(ℎ).

Proof. If 𝜌 ∶ 𝐺 → GL(𝑉 ) affords 𝜒, 𝜌′ ∶ 𝐻 → GL(𝑊) affords 𝜓 then

𝜌 ⊗ 𝜌′ ∶ 𝐺 × 𝐻 → GL(𝑉 ⊗ 𝑊)
(𝑔, ℎ) ↦ 𝜌(𝑔) ⊗ 𝜌′(ℎ)

is a representation of 𝐺 × 𝐻 on 𝑉 ⊗ 𝑊 and 𝜒𝜌⊗𝜌′ = 𝜒𝜓.
Claim that 𝜒𝑖𝜓𝑗’s are distinct and irreducible:

⟨𝜒𝑖𝜓𝑗, 𝜒𝑟𝜓𝑠⟩𝐺×𝐻 = 1
|𝐺 × 𝐻|

∑
(𝑔,ℎ)

𝜒𝑖𝜓𝑗(𝑔, ℎ)𝜒𝑟𝜓𝑠(𝑔, ℎ)

= ( 1
|𝐺|

∑
𝑔

𝜒𝑖(𝑔)𝜒𝑟(𝑔)) ( 1
|𝐻|

∑
ℎ

𝜓𝑗(ℎ)𝜓𝑠(ℎ))

= 𝛿𝑖𝑟𝛿𝑗𝑠

To show that they are complete, we take their squares at identity:

∑
𝑖,𝑗

𝜒𝑖𝜓𝑗(1)2 = ∑
𝑖

𝜒2
𝑖 (1) ∑

𝑗
𝜓2

𝑗 (1) = |𝐺||𝐻| = |𝐺 × 𝐻|.
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9.4 Symmetric and exterior powers
Let 𝑉 be an F-space with dim 𝑉 = 𝑑. Choose a basis {𝑣1, … , 𝑣𝑑}. Let

𝑉 ⊗𝑛 = 𝑉 ⊗ ⋯ ⊗ 𝑉⏟⏟⏟⏟⏟
𝑛

which has a basis {𝑣𝑖1
⊗ ⋯ ⊗ 𝑣𝑖𝑛

∶ 𝑖1, … , 𝑖𝑛 ∈ {1, … , 𝑑}} so dim 𝑉 ⊗𝑛 = 𝑑𝑛.
There is an 𝑆𝑛-action on the space 𝑉: for each 𝜎 ∈ 𝑆𝑛, we can define a linear

map

𝜎 ∶ 𝑉 ⊗𝑛 → 𝑉 ⊗𝑛

𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 ↦ 𝑣𝜎(1) ⊗ ⋯ ⊗ 𝑣𝜎(𝑛)

for 𝑣1, … , 𝑣𝑛 ∈ 𝑉, which induces a (right) action of 𝑆𝑛 on 𝑉 ⊗𝑛.
Given a representation 𝜌 ∶ 𝐺 → GL(𝑉 ), define a (left) action of 𝐺 on 𝑉 ⊗𝑛

by
𝜌⊗𝑛 ∶ 𝑣1 ⊗ ⋯ ⊗ 𝑣𝑛 ↦ 𝜌(𝑔)𝑣1 ⊗ ⋯ ⊗ 𝜌(𝑔)𝑣𝑛

which commutes with the 𝑆𝑛-action. So we can decompose 𝑉 ⊗𝑛 as 𝑆𝑛-spaces,
and each isotypical component is a 𝐺-invariant subspace of 𝑉 ⊗𝑛. In particular

Definition (symmetric/exterior power). For 𝐺-space 𝑉, define

1. the 𝑛th symmetric power of 𝑉

𝑆𝑛𝑉 = {𝑥 ∈ 𝑉 ⊗𝑛 ∶ 𝜎(𝑥) = 𝑥 for all 𝜎 ∈ 𝑆𝑛},

2. the 𝑛th exterior power of 𝑉

Λ𝑛𝑉 = {𝑥 ∈ 𝑉 ⊗𝑛 ∶ 𝜎(𝑥) = (sgn 𝜎)𝑥 for all 𝜎 ∈ 𝑆𝑛}.

Both are 𝐺-subspaces of 𝑉 ⊗𝑛, but for 𝑛 > 2, 𝑆𝑛𝑉 ⊕ Λ𝑛𝑉 is a proper subspace
of 𝑉 ⊗𝑛. See example sheet 3 Q7 for bases of 𝑆𝑛𝑉 , Λ𝑛𝑉.

9.5 Tensor algebra
Take chF = 0.

Definition (tensor algebra). Let 𝑇 𝑛𝑉 = 𝑉 ⊗𝑛. The tensor algebra of 𝑉 is

𝑇 (𝑉 ) = ⨁
𝑛≥0

𝑇 𝑛𝑉

with 𝑇 0(𝑉 ) = F. This is an F-algebra. 𝑇 (𝑉 ) is a graded ring with product

𝑥 ∈ 𝑇 𝑛(𝑉 ), 𝑦 ∈ 𝑇 𝑚(𝑉 ) ⟹ 𝑥 ⋅ 𝑦 = 𝑥 ⊗ 𝑦 ∈ 𝑇 𝑛+𝑚(𝑉 ).

There are two graded quotient rings

𝑆(𝑉 ) = 𝑇 (𝑉 )/(𝑢 ⊗ 𝑣 − 𝑣 ⊗ 𝑢)
Λ(𝑉 ) = 𝑇 (𝑉 )/(𝑣 ⊗ 𝑣)
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9 Dual spaces & tensor products

the symmetric and exterior algebra respectively. Have

𝑆(𝑉 ) = ⨁
𝑛≥0

𝑆𝑛𝑉

Λ(𝑉 ) = ⨁
𝑛≥0

Λ𝑛𝑉

9.6 Character ring
𝒞(𝐺) is a commutative ring.

Definition (character ring, virtual character). The Z-submodule of 𝒞(𝐺)
spanned by irreducible characters of 𝐺 is called the character ring of 𝐺,
sometimes also known as Grothendieck ring, denoted 𝑅(𝐺). Elements of
𝑅(𝐺) are called generalised characters or virtual characters.

𝑅(𝐺) is a ring. Any generalised character is a difference of two ordinary
characters. {𝜒𝑖} form a Z-basis for 𝑅(𝐺) as a free Z-module.
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10 Induction and restriction

10 Induction and restriction
Throughout the chapter let F = C and 𝐻 ≤ 𝐺.

Definition (restriction). Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be a representation affording
𝜒. We can think of 𝑉 as a 𝐻-space by restricting attention to ℎ ∈ 𝐻. We
get Res𝐺

𝐻 𝜌 = 𝜌 ↓𝐻= 𝑟𝐻, the restriction of 𝜌 to 𝐻. It affords the character
Res𝐺

𝐻 𝜒 = 𝜒 ↓𝐻= 𝜒𝐻.

Lemma 10.1. If 𝜓 is any nonzero character of 𝐻 then there exists an
irreducible character 𝜒 of 𝐺 such that 𝜓 is a constituent of Res𝐺

𝐻 𝜒, i.e.

⟨Res𝐺
𝐻 𝜒, 𝜓⟩ ≠ 0.

Proof. List the irreducible characters of 𝐺 as 𝜒1, … , 𝜒𝑘. Recall 𝜋reg. Have

𝑘
∑
𝑖=1

deg 𝜒𝑖⟨Res𝐺
𝐻 𝜒𝑖, 𝜓⟩ = ⟨Res𝐺

𝐻 𝜋reg, 𝜓⟩ = |𝐺|
|𝐻|

𝜓(1) ≠ 0

so ⟨Res𝐺
𝐻 𝜒𝑖, 𝜓⟩ ≠ 0 for some 𝑖.

Lemma 10.2. Let 𝜒 be an irreducible character of 𝐺 and write

Res𝐺
𝐻 𝜒 = ∑

𝑖
𝑐𝑖𝜒𝑖

where 𝜒𝑖’s are irreducible characters of 𝐻. Then

∑
𝑖

𝑐2
𝑖 ≤ |𝐺 ∶ 𝐻|

with equality if and only if 𝜒(𝑔) = 0 for all 𝑔 ∈ 𝐺 \ 𝐻.

Proof. We have

1 = ⟨𝜒, 𝜒⟩

= 1
|𝐺|

∑
𝑔∈𝐺

|𝜒(𝑔)|2

= 1
|𝐺|

(∑
𝑔∈𝐻

|𝜒(𝑔)|2 + ∑
𝑔∈𝐺\𝐻

|𝜒(𝑔)|2)

= |𝐻|
|𝐺|

⟨Res𝐺
𝐻 𝜒, Res𝐺

𝐻 𝜒⟩ + 1
|𝐺|

∑
𝑔∈𝐺\𝐻

|𝜒(𝑔)|2

≥ 1
|𝐺 ∶ 𝐻|

∑
𝑖

𝑐2
𝑖

with equality if and only if 𝜒(𝑔) = 0 for all 𝑔 ∈ 𝐺 \ 𝐻.
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10 Induction and restriction

Definition (induction). If 𝜓 is a class function of 𝐻, define the induced
class function Ind𝐺

𝐻 𝜓 = 𝜓 ↑𝐺= 𝜓𝐺 by

Ind𝐺
𝐻 𝜓(𝑔) = 1

|𝐻|
∑
𝑥∈𝐺

̊𝜓(𝑥−1𝑔𝑥)

where
̊𝜓(𝑦) = {𝜓(𝑦) 𝑦 ∈ 𝐻

0 otherwise

Lemma 10.3. If 𝜓 ∈ 𝒞(𝐻) then Ind𝐺
𝐻 𝜓 ∈ 𝒞(𝐺) is a class function of 𝐺

and
Ind𝐺

𝐻 𝜓(1) = |𝐺 ∶ 𝐻|𝜓(1).

Proof. Obvious.

Let 𝑛 = |𝐺 ∶ 𝐻|. Let 𝑡1 = 1, 𝑡2, … , 𝑡𝑛 be a left transversal of 𝐻 in 𝐺, i.e.
𝑡1𝐻 = 𝐻, 𝑡2𝐻, … , 𝑡𝑛𝐻 are precisely the left cosets of 𝐻 in 𝐺.

Lemma 10.4. Given 𝜓 ∈ 𝒞(𝐻) and a left transversal 𝑡1, … , 𝑡𝑛, have

Ind𝐺
𝐻 𝜓(𝑔) =

𝑛
∑
𝑖=1

̊𝜓(𝑡−1
𝑖 𝑔𝑡𝑖).

Proof. Note that every 𝑥 ∈ 𝐺 can be written as 𝑡𝑖ℎ where ℎ ∈ 𝐻 and
̊𝜓(𝑥−1𝑔𝑥) = ̊𝜓(ℎ−1(𝑡−1

𝑖 𝑔𝑡𝑖)ℎ) = ̊𝜓(𝑡−1
𝑖 𝑔𝑡𝑖)

as 𝜓 is a class function of 𝐻.

Theorem 10.5 (Frobenius reciprocity). Let 𝜓 ∈ 𝒞(𝐻), 𝜑 ∈ 𝒞(𝐺). Then

⟨Res𝐺
𝐻 𝜑, 𝜓⟩ = ⟨𝜑, Ind𝐺

𝐻 𝜓⟩.

Proof.

⟨𝜑, Ind𝐺
𝐻 𝜓⟩ = 1

|𝐺|
∑
𝑔∈𝐺

𝜑(𝑔) Ind𝐺
𝐻 𝜓(𝑔)

= 1
|𝐺||𝐻|

∑
𝑥,𝑔∈𝐺

𝜑(𝑔) ̊𝜓(𝑥−1𝑔𝑥)

= 1
|𝐺||𝐻|

∑
𝑥,𝑦∈𝐺

𝜑(𝑦) ̊𝜓(𝑦) set 𝑥−1𝑔𝑥 = 𝑦

= 1
|𝐻|

∑
𝑦∈𝐺

𝜑(𝑦) ̊𝜓(𝑦)

= 1
|𝐻|

∑
𝑦∈𝐻

𝜑(𝑦)𝜓(𝑦)

= ⟨Res𝐺
𝐻 𝜑, 𝜓⟩
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10 Induction and restriction

Corollary 10.6. If 𝜓 is a character of 𝐻 then Ind𝐺
𝐻 𝜓 is a character of 𝐺.

Proof. If 𝜒 is an irreducible character of 𝐺 then by Frobenius reciprocity

⟨𝜒, Ind𝐺
𝐻 𝜓⟩ = ⟨Res𝐺

𝐻 𝜒, 𝜓⟩ ∈ Z≥0

since 𝜓, Res𝐺
𝐻 𝜒 are characters. Hence Ind𝐺

𝐻 𝜓 is a linear combination of irre-
ducible characters with nonnegative coefficients, hence a character.

Proposition 10.7. Let 𝜓 be a character of 𝐻 ≤ 𝐺 and let 𝑔 ∈ 𝐺. Let

𝒞𝐺(𝑔) ∩ 𝐻 =
𝑚
⋃
𝑖=1

𝒞𝐻(𝑥𝑖)

where 𝑥𝑖’s are representatives of the 𝑚 𝐻-conjugacy classes of elements of
𝐻 conjugate to 𝑔. Then if 𝑚 = 0 then Ind𝐺

𝐻 𝜓(𝑔) = 0. Otherwise

Ind𝐺
𝐻 𝜓(𝑔) = |𝐶𝐺(𝑔)|

𝑚
∑
𝑖=1

𝜓(𝑥𝑖)
|𝐶𝐻(𝑥𝑖)|

.

Proof. If 𝑚 = 0 then {𝑥 ∈ 𝐺 ∶ 𝑥−1𝑔𝑥 ∈ 𝐻} = ∅ and so Ind𝐺
𝐻 𝜓(𝑔) = 0. Assume

that 𝑚 > 0 and let

𝑋𝑖 = {𝑥 ∈ 𝐺 ∶ 𝑥−1𝑔𝑥 ∈ 𝐻 and conjugate in 𝐻 to 𝑥𝑖}.

The 𝑋𝑖’s are pairwise disjoint and their union is {𝑥 ∈ 𝐺 ∶ 𝑥−1𝑔𝑥 ∈ 𝐻}. By
definition

Ind𝐺
𝐻 𝜓(𝑔) = 1

|𝐻|
∑
𝑥∈𝐺

̊𝜓(𝑥−1𝑔𝑥)

= 1
|𝐻|

∑
𝑥∈𝐺

𝑥−1𝑔𝑥∈𝐻

𝜓(𝑥−1𝑔𝑥)

= 1
|𝐻|

𝑚
∑
𝑖=1

∑
𝑥∈𝑋𝑖

𝜓(𝑥−1𝑔𝑥)

= 1
|𝐻|

𝑚
∑
𝑖=1

∑
𝑥∈𝑋𝑖

𝜓(𝑥𝑖)

=
𝑚

∑
𝑖=1

|𝑋𝑖|
|𝐻|

𝜓(𝑥𝑖)

Need to understand the quotient |𝑋𝑖|
|𝐻| . Fix some 1 ≤ 𝑖 ≤ 𝑚 and choose some

𝑔𝑖 ∈ 𝐺 such that 𝑔−1
𝑖 𝑔𝑔𝑖 = 𝑥𝑖. So for all 𝑐 ∈ 𝐶𝐺(𝑔) and ℎ ∈ 𝐻,

(𝑐𝑔𝑖ℎ)−1𝑔(𝑐𝑔𝑖ℎ) = ℎ−1𝑔−1
𝑖 𝑐−1𝑔𝑐𝑔𝑖ℎ = ℎ−1𝑔−1

𝑖 𝑔𝑔𝑖ℎ = ℎ−1𝑥𝑖ℎ ∈ 𝐻

i.e. 𝑐𝑔𝑖ℎ ∈ 𝑋𝑖, hence 𝐶𝐺(𝑔)𝑔𝑖𝐻 ⊆ 𝑋𝑖.
Conversely, if 𝑥 ∈ 𝑋𝑖 then

𝑥−1𝑔𝑥 = ℎ−1𝑥𝑖ℎ = ℎ−1(𝑔−1
𝑖 𝑔𝑔𝑖)ℎ
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10 Induction and restriction

for some ℎ ∈ 𝐻. Thus 𝑥ℎ−1𝑔−1
𝑖 ∈ 𝐶𝐺(𝑔) and

𝑥 ∈ 𝐶𝐺(𝑔)𝑔𝑖ℎ ⊆ 𝐶𝐺(𝑔)𝑔𝑖𝐻

so we have equality
𝑋𝑖 = 𝐶𝐺(𝑔)𝑔𝑖𝐻.

Thus

|𝑋𝑖| = |𝐶𝐺(𝑔)𝑔𝑖𝐻|

= |𝐶𝐺(𝑔)||𝐻|
|𝐻 ∩ 𝑔−1

𝑖 𝐶𝐺(𝑔)𝑔𝑖|

Note that 𝑔−1
𝑖 𝐶𝐺(𝑔)𝑔𝑖 = 𝐶𝐺(𝑔−1

𝑖 𝑔𝑔𝑖) = 𝐶𝐺(𝑥𝑖),

= |𝐻 ∶ 𝐻 ∩ 𝐶𝐺(𝑥𝑖)||𝐶𝐺(𝑔)|
= |𝐻 ∶ 𝐶𝐻(𝑥𝑖)||𝐶𝐺(𝑔)|

where we used a formula for double coset size. The result thus follows.

Remark.

1. If 𝐻, 𝐾 ≤ 𝐺, an (𝐻, 𝐾)-double coset of 𝐻 and 𝐾 in 𝐺 is a set

𝐻𝑔𝐾 = {ℎ𝑔𝑘 ∶ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}

for some 𝑔 ∈ 𝐺. Facts:

(a) two double cosets are either disjoint or equal.
(b) for finite |𝐻𝐾|,

|𝐻𝑔𝐾| = |𝐻||𝐾|
|𝐻 ∩ 𝑔𝐾𝑔−1|

= |𝐻||𝐾|
|𝑔−1𝐻𝑔 ∩ 𝐾|

See chapter 12 for more on double cosets.

2. An alternative proof can be found in James and Liebeck, chapter 21, 23.

Example. 𝐻 = 𝐶4 = ⟨(1234)⟩ ≤ 𝐺 = 𝑆4 with index 6. We calculate the
character of induced representations Ind𝐺

𝐻(𝛼), where 𝛼 is a 1 dimensional faithful
representation of 𝐶4.

If 𝛼(1234) = 𝑖 then character of 𝛼 is

1 (1234) (13)(24) (1432)
𝜒𝛼 1 𝑖 −1 −𝑖

The induced representation of 𝑆4 is

1 6 8 3 6
1 (12) (123) (12)(24) (1234)

Ind𝐺
𝐻 𝜒𝛼 6 0 0 −2 0

The first three entries are easy. For (12)(34), only one of the three elements in
𝐶4 it’s conjugate to lies in 𝐻, namely (13)(24) so

Ind𝐺
𝐻 𝜒𝛼((12)(34)) = 8 ⋅ −1

4
= −2.
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10 Induction and restriction

For (1234) its conjugate to six elements of 𝑆4, of which two are in 𝐶4: (1234)
and (1432). So

Ind𝐺
𝐻 𝜒𝛼(1234) = 4 ⋅ ( 𝑖

4
− 𝑖

4
) = 0.

Lemma 10.8. If 𝜓 = 1𝐻 then

Ind𝐺
𝐻 1𝐻 = 𝜋𝑋,

the permutation character of 𝐺 on the set 𝑋 of left cosets of 𝐻 in 𝐺.

Proof.

Ind𝐺
𝐻 1𝐻(𝑔) =

𝑛
∑
𝑖=1

̊1𝐻(𝑡−1
𝑖 𝑔𝑡𝑖)

= |{𝑖 ∶ 𝑡−1
𝑖 𝑔𝑡𝑖 ∈ 𝐻}|

= |{𝑖 ∶ 𝑔 ∈ 𝑡𝑖𝐻𝑡−1
𝑖 }|

= |fix𝑋(𝑔)|
= 𝜋𝑋(𝑔)

Remark. It follows from Frobenius reciprocity

⟨𝜋𝑋, 1𝐺⟩𝐺 = ⟨Ind𝐺
𝐻 1𝐻, 1𝐺⟩𝐺 = ⟨1𝐻, 1𝐻⟩𝐻 = 1

as predicted in chapter 7.

10.1 Induced representations
What are the representations affording induced characters? Let 𝐻 ≤ 𝐺 with
index 𝑛. Let 1 = 𝑡1, … , 𝑡𝑛 be transversals. Let 𝑊 be an 𝐻-space.

Definition. Let
𝑉 = Ind𝐺

𝐻 𝑊 = ⨁
𝑖

𝑡𝑖 ⊗ 𝑊

where 𝑡𝑖 ⊗ 𝑊 = {𝑡𝑖 ⊗ 𝑤 ∶ 𝑤 ∈ 𝑊}.

Have dim 𝑉 = 𝑛 dim 𝑊.
We can define a 𝐺-action on 𝑉. If 𝑔 ∈ 𝐺 then for all 𝑖 there exists a unique

𝑗 with 𝑡−1
𝑗 𝑔𝑡𝑖 ∈ 𝐻 (namely 𝑡𝑗𝐻 is the coset containing 𝑔𝑡𝑖). Define

𝑔(𝑡𝑖 ⊗ 𝑤) = 𝑡𝑗 ⊗ ((𝑡−1
𝑗 𝑔𝑡𝑖)⏟
∈𝐻

𝑤) = 𝑡𝑗((𝑡−1
𝑗 𝑔𝑡𝑖)𝑤).

where we omit the tensor symbol in the last expression. Check this is a 𝐺-action:

𝑔1(𝑔2𝑡𝑖𝑤) = 𝑔1(𝑡𝑗(𝑡−1
𝑗 𝑔2𝑡𝑖)𝑤)

= 𝑡ℓ((𝑡−1
ℓ 𝑔1𝑡𝑗)(𝑡−1

𝑗 𝑔2𝑡𝑖)𝑤)
= 𝑡ℓ(𝑡−1

ℓ (𝑔1𝑔2)𝑡𝑖)𝑤
= (𝑔1𝑔2)(𝑡𝑖𝑤)
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10 Induction and restriction

where 𝑗, ℓ is unique such that 𝑔2𝑡𝑖𝐻 = 𝑡𝑗𝐻 and 𝑔1𝑡𝑗𝐻 = 𝑡ℓ𝐻. It follows that ℓ
is unique such that (𝑔1𝑔2)𝑡𝑖𝐻 = 𝑡ℓ𝐻. Note that 𝑔 permutes the cosets as

𝑔 ∶ 𝑡𝑖𝑤 ↦ 𝑡𝑗(𝑡−1
𝑗 𝑔𝑡𝑖)𝑤

so the contribution to the character is 0 unless 𝑗 = 𝑖, i.e. 𝑡−1
𝑖 𝑔𝑡𝑖 ∈ 𝐻, then it

contributes 𝜓(𝑡−1
𝑖 𝑔𝑡𝑖) so

Ind𝐺
𝐻 𝜓(𝑔) =

𝑛
∑
𝑖=1

̊𝜓(𝑡−1
𝑖 𝑔𝑡𝑖).

Proposition 10.9 (properties of induced modules).

1. Ind𝐺
𝐻(𝐴 ⊕ 𝐵) = Ind𝐺

𝐻 𝐴 ⊕ Ind𝐺
𝐻 𝐵 where 𝐴, 𝐵 are 𝐻-spaces.

2. dim Ind𝐺
𝐻 𝑊 = |𝐺 ∶ 𝐻| dim 𝑊.

3. Ind𝐺
{1} 1 = 𝜌reg.

4. If 𝐻 ≤ 𝐾 ≤ 𝐺 then

Ind𝐺
𝐾 Ind𝐾

𝐻 𝑊 ≅ Ind𝐺
𝐻 𝑊.

5. (Frobenius reciprocity)

Hom𝐻(𝑊, Res𝐺
𝐻 𝑉 ) ≅ Hom𝐺(Ind𝐺

𝐻 𝑊, 𝑉 )

naturally.

Proof. Exercises. For 4 see exmaple sheet 3. For 5 see Teleman 15.6.
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11 Frobenius groups

11 Frobenius groups

Theorem 11.1. Let 𝐺 be a transitive permutation group on finite set 𝑋, say
|𝑋| = 𝑛. Assume that each non-identity element fixes at most one element
of 𝑋. Then

𝐾 = {1} ∪ {𝑔 ∈ 𝐺 ∶ 𝑔𝛼 ≠ 𝛼 for all 𝛼 ∈ 𝑋}

is a normal subgroup of 𝐺 of order 𝑛.

Note that 𝐺 is necessarily finite, being isomorphic to a subgroup of Σ𝑋.

Proof Due to I. M. Issacs. Required to show that 𝐾 ⊴ 𝐺. Let 𝐻 = 𝐺𝛼, the
stabiliser of 𝛼 for some 𝛼 ∈ 𝑋, so conjugates of 𝐻 are the stabilisers of single
elements of 𝑋, i.e.

𝐺𝑔𝛼 = 𝑔𝐺𝛼𝑔−1.

No two conjugates can share a non-identity element by hypothesis so 𝐻 has 𝑛
distinct conjugates and 𝐺 has 𝑛(|𝐻| − 1) elements that fix exactly one element
of 𝑋. Now

|𝐺| = |𝑋||𝐻| = 𝑛|𝐻|

because 𝑋 and 𝐺/𝐻 are isomorphic as 𝐺-sets by transitivity. Hence

|𝐾| = |𝐺| − 𝑛(|𝐻| − 1) = 𝑛

If 1 ≠ ℎ ∈ 𝐻 and suppose ℎ = 𝑔ℎ′𝑔−1 for some 𝑔 ∈ 𝐺, ℎ′ ∈ 𝐻, then ℎ lies in both
𝐻 = 𝐺𝛼 and 𝑔𝐻𝑔−1 = 𝐺𝑔𝛼, by hypothesis 𝑔𝛼 = 𝛼, hence 𝑔 ∈ 𝐻. Therefore the
intersection of conjugacy class in 𝐺 of ℎ with 𝐻 is precisely the conjugacy class
in 𝐻 of ℎ.

Similarly if 𝑔 ∈ 𝐶𝐺(ℎ) then

ℎ = 𝑔ℎ𝑔−1 ∈ 𝐺𝑔𝛼

and hence 𝑔 ∈ 𝐻, which implies

𝐶𝐺(ℎ) = 𝐶𝐻(ℎ).

Every element of 𝐺 is either an element of 𝐾 or lies in one of the 𝑛 stabilisers,
each of which is conjugate to 𝐻. Thus every element of 𝐺 \ 𝐾 is conjugate to a
non-identity element of 𝐻. Hence

{1, ℎ2, … , ℎ𝑡, 𝑦1, … , 𝑦𝑢}

is a set of conjugacy class representatives for 𝐺, with 1, … , ℎ𝑡 representatives
of 𝐻-conjugacy classes and 𝑦1, … , 𝑦𝑢 representatives of conjugacy classes of 𝐺
comprises 𝐾 \ {1}.

Let 1𝐻 = 𝜓1, 𝜓2, … , 𝜓𝑡 be irreducible characters of 𝐻. Fix 1 ≤ 𝑖 ≤ 𝑡. Then

Ind𝐺
𝐻 𝜓𝑖(𝑔) =

⎧{
⎨{⎩

|𝐺 ∶ 𝐻|𝜓𝑖(1) = 𝑛𝜓𝑖(1) 𝑔 = 1
𝜓𝑖(ℎ𝑗) 𝑔 = ℎ𝑗, 2 ≤ 𝑗 ≤ 𝑡
0 𝑔 = 𝑦𝑘, 1 ≤ 𝑘 ≤ 𝑢
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11 Frobenius groups

Let 𝜃1 = 1𝐺. Fix some 2 ≤ 𝑖 ≤ 𝑡 and define virtual characters

𝜃𝑖 = 𝜓𝐺
𝑖 − 𝜓𝑖(1)𝜓𝐺

1 + 𝜓𝑖(1)𝜃1 ∈ 𝑅(𝐺)

Write down a table

1 ℎ𝑗 𝑦𝑘
𝜓𝐺

𝑖 𝑛𝜓𝑖(1) 𝜓𝑖(ℎ𝑗) 0
𝜓𝑖(1)𝜓𝐺

1 𝑛𝜓𝑖(1) 𝜓𝑖(1) 0
𝜓𝑖(1)𝜃1 𝜓𝑖(1) 𝜓𝑖(1) 𝜓𝑖(1)

𝜃𝑖 𝜓𝑖(1) 𝜓𝑖(ℎ𝑗) 𝜓𝑖(1)

Check the inner product:

⟨𝜃𝑖, 𝜃𝑖⟩ = 1
|𝐺|

∑
𝑔∈𝐺

|𝜃𝑖(𝑔)|2

= 1
|𝐺|

(∑
𝑔∈𝐾

|𝜃𝑖(𝑔)|2 + ∑
𝛼∈𝑋

∑
1≠𝑔∈𝐺𝛼

|𝜃𝑖(𝑔)|2)

= 1
|𝐺|

(𝑛𝜓𝑖(1)2 + 𝑛 ∑
1≠ℎ∈𝐻

|𝜃𝑖(ℎ)|2)

= 1
|𝐻|

∑
ℎ∈𝐻

|𝜓𝑖(ℎ)|2

= ⟨𝜓𝑖, 𝜓𝑖⟩
= 1

Thus either 𝜃𝑖 or −𝜃𝑖 is an irreducible character of 𝐺. But since 𝜃𝑖(1) > 0, it
must be that 𝜃𝑖 is an actual character.

Now define 𝜃 = ∑𝑡
𝑖=1 𝜃𝑖(1)𝜃𝑖. By column orthogonality, for 1 ≠ ℎ ∈ 𝐻

𝜃(ℎ) =
𝑡

∑
𝑖=1

𝜓𝑖(1)𝜓𝑖(ℎ) = 0,

and for any 𝑦 ∈ 𝐾,

𝜃(𝑦) =
𝑡

∑
𝑖=1

𝜓𝑖(1)2 = |𝐻|.

Hence 𝜃(𝑔) = {|𝐻| 𝑔 ∈ 𝐾
0 𝑔 ∉ 𝐾

so

𝐾 = {𝑔 ∈ 𝐺 ∶ 𝜃(𝑔) = 𝜃(1)} = ker 𝜃 ⊴ 𝐺.

Definition (Frobenius group). A Frobenius group is a group 𝐺 having a
subgroup 𝐻 such that 𝐻 ∩ 𝑔𝐻𝑔−1 = 1 for all 𝑔 ∉ 𝐻. 𝐻 is the Frobenius
complement of 𝐺.
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11 Frobenius groups

Proposition 11.2. Any finite Frobenius group satisfies the hypothesis of
Theorem 11.1. The normal subgroup 𝐾 is a Frobenius kernel of 𝐺.

Proof. Suppose 𝐺 is Frobenius with complement 𝐻. Then the action of 𝐺 on
𝐺/𝐻 is transitive and faithful. Furthermore, if 1 ≠ 𝑔 ∈ 𝐺 fixes both 𝑥𝐻 and
𝑦𝐻 then 𝑔 ∈ 𝑥𝐻𝑥−1 ∩ 𝑦𝐻𝑦−1 and hence

𝐻 ∩ (𝑦−1𝑥)𝐻(𝑦−1𝑥)−1 ≠ 1

so 𝑥𝐻 = 𝑦𝐻.

Example.

1. If 𝑝, 𝑞 are distinct primes and 𝑝 = 1 (mod 𝑞), the unique non-abelian
group of order 𝑝𝑞 is a Frobenius group. See JL §25 and Teleman §11.

2. If 𝑛 is odd, 𝐷2𝑛 is a Frobenius group with complement 𝐶2. The smallest
example is 𝑆3 with 𝐾 = 𝐶3, 𝐻 = 𝐶2.

Remark.

1. J. Thompson (thesis, 1959) proved that any finite group having a fixed-
point-free automorphism of prime power order is nilpotent. This implies
that the Frobenius kernel of a Frobenius group is nilpotent (which is equiv-
alent to 𝐾 being the direct product of its Sylow subgroups).

2. There is no known proof of Theorem 11.1 in which character theory is not
used.
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12 Mackey theory
Let F = C. Mackey theory describes restriction to a subgroup 𝐾 ≤ 𝐺 of an
induced representation Ind𝐺

𝐻 𝑊. 𝐾 and 𝐻 are unrelated, but usually we take
𝐾 = 𝐻, in which case we can characterise when Ind𝐺

𝐻 𝑊 is irreducible.
We’ll work with the special case 𝑊 = 1𝐻 first. Then Ind𝐺

𝐻 1𝐻 is the permu-
tation representation of 𝐺 on 𝐺/𝐻. Recall that if 𝐺 is transitive on a set 𝑋 and
𝐻 = 𝐺𝛼 for some 𝛼 ∈ 𝑋 then the action of 𝐺 on 𝑋 is isomorphic to the action
of 𝐺 on 𝐺/𝐻, namely

𝑔.𝛼 ↔ 𝑔𝐻
is a well-defined bijection and commutes with the 𝐺-action

𝑥(𝑔𝛼) = (𝑥𝑔)𝛼 ↔ 𝑥(𝑔𝐻) = (𝑥𝑔)𝐻.

Consider the action of 𝐺 on 𝐺/𝐻 and let 𝐾 ≤ 𝐺. Then 𝐺/𝐻 splits into 𝐾-orbits:
those correspond to double cosets

𝐾𝑔𝐻 = {𝑘𝑔ℎ ∶ 𝑘 ∈ 𝐾, ℎ ∈ 𝐻},

namely the 𝐾-orbits containing 𝑔𝐻.

Notation. Denote by 𝐾\𝐺/𝐻 the set of (𝐾, 𝐻)-double cosets. They partition
𝐺. Let 𝑆 be a set of representatives. Note

#𝐾\𝐺/𝐻 = ⟨𝜋𝐺/𝐾, 𝜋𝐺/𝐻⟩

by Lemma 7.3.

Clearly 𝐺𝑔𝐻 = 𝑔𝐻𝑔−1. Restricting to 𝐾, we get

𝐻𝑔 ∶= 𝐾𝑔𝐻 = 𝑔𝐻𝑔−1 ∩ 𝐾.

So by above as 𝐾-set, 𝐾𝑔𝐻 ≅ 𝐾/𝐾 ∩ 𝑔𝐻𝑔−1 = 𝐾/𝐻𝑔. As

Ind𝐺
𝐻 1𝐻 = C𝑋

where 𝑋 = 𝐺/𝐻, and if 𝑋 = ⋃ 𝑋𝑖 then it decomposes into orbits C𝑋 = ⋃C𝑋𝑖
we have

Proposition 12.1. If 𝐺 is finite, 𝐻, 𝐾 ≤ 𝐺 then

Res𝐺
𝐾 Ind𝐺

𝐻 1 ≅ ⨁
𝑔∈𝑆

Ind𝐾
𝐾∩𝑔𝐻𝑔−1 1.

Let 𝑆 = {1 = 𝑔1, … , 𝑔𝑟} be the such that 𝐺 = ⋃𝑖 𝐾𝑔𝑖𝐻 as a union of disjoint
set. Let 𝐻𝑔 = 𝑔𝐻𝑔−1 ∩ 𝐾 ≤ 𝐾. Take a representation (𝜌, 𝑊) of 𝐻. For 𝑔 ∈ 𝐺
define (𝜌𝑔, 𝑊𝑔) to be the representation of 𝐻𝑔 with the same underlying vector
space 𝑊 but now the 𝐻𝑔-action is

𝜌𝑔(𝑥) = 𝜌(ℎ) = 𝜌(𝑔−1𝑥𝑔)

where 𝑥 = 𝑔ℎ𝑔−1. This is well-defined because 𝑔−1𝑥𝑔 ∈ 𝐻 for 𝑥 ∈ 𝑔𝐻𝑔−1. Since
𝐻𝑔 ≤ 𝐾 we obtain an induced representation Ind𝐾

𝐻𝑔
𝑊𝑔.
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12 Mackey theory

Theorem 12.2 (Mackey’s restriction formula). Let 𝑊 be an 𝐻-space. Then

Res𝐺
𝐾 Ind𝐺

𝐻 𝑊 ≅ ⨁
𝑔∈𝑆

Ind𝐾
𝐻𝑔

𝑊𝑔

as representations of 𝐾.

Corollary 12.3 (character version of Mackey’s restriction formula). If 𝜓 is
a character of a representation of 𝐻 then

Res𝐺
𝐾 Ind𝐺

𝐻 𝜓 = ∑
𝑔∈𝑆

Ind𝐾
𝐻𝑔

𝜓𝑔

where 𝜓𝑔 is the character of 𝐻𝑔 given as 𝜓𝑔(𝑥) = 𝜓(𝑔−1𝑥𝑔).

Corollary 12.4 (Mackey’s irreducibility criterion). Let 𝐻 ≤ 𝐺 and 𝑊 an
𝐻-space. Then 𝑉 = Ind𝐺

𝐻 𝑊 is irreducible if and only if

1. 𝑊 is irreducible,

2. and for each 𝑔 ∈ 𝑆 \ 𝐻 the two 𝐻𝑔-spaces 𝑊𝑔 and Res𝐻
𝐻𝑔

𝑊 have no
irreducible constituents in common.

Remark. The set of representatives is arbitrary so we could just as easily
demand in 2 that 𝑔 ∈ 𝐺 \ 𝐻. However it suffices to check for 𝑔 ∈ 𝑆 \ 𝐻.

Proof of Mackey’s irreducibility criterion. Use characters and recall that 𝑊 is
irreducbile if and only if ⟨𝜓, 𝜓⟩ = 1 where 𝑊 affords the character 𝜓. Take
𝐾 = 𝐻 in Mackey’s restriction formula. Note 𝐻𝑔 = 𝑔𝐻𝑔−1 ∩ 𝐻. Use Frobenius
reciprocity,

⟨Ind𝐺
𝐻 𝜓, Ind𝐺

𝐻 𝜓⟩𝐺 = ⟨𝜓, Res𝐺
𝐻 Ind𝐺

𝐻 𝜓⟩𝐻

= ∑
𝑔∈𝑆

⟨𝜓, Ind𝐻
𝐻𝑔

𝜓𝑔⟩𝐻

= ∑
𝑔∈𝑆

⟨Res𝐻
𝐻𝑔

𝜓, 𝜓𝑔⟩𝐻𝑔

= ⟨𝜓, 𝜓⟩𝐻 + ∑
𝑔∈𝑆
𝑔∉𝐻

𝑑𝑔

where 𝑑𝑔 = ⟨Res𝐺
𝐻𝑔

𝜓, 𝜓𝑔⟩𝐻𝑔
. For 𝑔 ∈ 𝐻 we have 𝐻𝑔 = 𝐻. Hence this is a

sum of nonnegative integers which is ≥ 1, so Ind𝐺
𝐻 𝜓 is irreducible if and only if

⟨𝜓, 𝜓⟩ = 1 and all the other terms are 0. In other words 𝑊 is irreducible and
for all 𝑔 ∉ 𝐻, 𝑊 and 𝑊𝑔 are disjoint representations (of 𝐻 ∩ 𝑔𝐻𝑔−1).

Corollary 12.5. If 𝐻 ⊴ 𝐺 and 𝜓 is an irreducible character of 𝐻 then
Ind𝐺

𝐻 𝜓 is irreducible if and only if 𝜓 is distinct from all its conjugates 𝜓𝑔
for 𝑔 ∈ 𝐺 \ 𝐻.
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Proof. Take 𝐾 = 𝐻. Double cosets are left or right cosets and 𝐻𝑔 = 𝑔𝐻𝑔−1 ∩
𝐻 = 𝐻 for all 𝑔. Moreover 𝑊𝑔 is irreducible since 𝑊 is irreducible. Thus Ind𝐺

𝐻
is irreducible precisely if 𝑊 ≇ 𝑊𝑔 for all 𝑔 ∈ 𝐺 \ 𝐻. This is equivalent to
𝜓 ≠ 𝜓𝑔. (Again could check condition on set of representatives: actually the
isomorphism class of 𝑊𝑔, where 𝑔 ∈ 𝐺, depends only on 𝑔𝐻)

Proof of Mackey’s restriction formula. Write 𝑉 = Ind𝐺
𝐻 𝑊. Fix 𝑔 ∈ 𝐺. Now

𝑉 is direct sum of 𝑥 ⊗ 𝑊 with 𝑥 running through set of representatives of left
cosets of 𝐻 in 𝐺. Consider a particular double coset 𝐾𝑔𝐻 ∈ 𝐾\𝐺/𝐻. The
terms

𝒱(𝑔) = ⨁
𝑥 rep

𝑥∈𝐾𝑔𝐻

𝑥 ⊗ 𝑊

form a subspace invariant under the action of 𝐾 (it is the direct sum of an orbit
of subspaces permuted by 𝐾 as 𝑘𝑥 ∈ 𝐾𝑔𝐻 for all 𝑥 ∈ 𝐾𝑔𝐻).

Now viewing 𝑉 as a 𝐾-space, Res𝐺
𝐾 𝑉 = ⨁𝑔∈𝑆 𝒱(𝑔). Thus need to show

𝒱(𝑔) ≅ Ind𝐾
𝐻𝑔

𝑊𝑔 as 𝐾-spaces for each 𝑔 ∈ 𝑆.
Now

Stab𝐾(𝑔 ⊗ 𝑊) = {𝑘 ∈ 𝐾 ∶ 𝑘𝑔 ⊗ 𝑊 = 𝑔 ⊗ 𝑊}
= {𝑘 ∈∶ 𝑔−1𝑘𝑔 ∈ Stab𝐺(1 ⊗ 𝑊) = 𝐻}
= 𝐾 ∩ 𝑔𝐻𝑔−1

= 𝐻𝑔

This implies that if 𝑥 = 𝑘𝑔ℎ, 𝑥′ = 𝑘′𝑔ℎ′ then 𝑥⊗𝑊 = 𝑥′ ⊗𝑊 if and only if 𝑘, 𝑘′

lie in the same coset in 𝐾/𝐻𝑔. Hence 𝒱(𝑔) is the direct sum ⨁rep 𝑘∈𝐾/𝐻𝑔
𝑘 ⊗

(𝑔 ⊗ 𝑊).
Therefore as a representation of 𝐾, this space is

𝒱(𝑔) ≅ Ind𝐾
𝐻𝑔

(𝑔 ⊗ 𝑊).

But 𝑊𝑔 ≅ 𝑔 ⊗ 𝑊 as representations of 𝐻𝑔 using linear isomorphism 𝑤 ↦ 𝑔 ⊗ 𝑤.
Putting all these expressions together gives the result.
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13 Integrality and group algebra

Definition (algebraic integer). 𝑎 ∈ C is an algebraic integer if 𝑎 is a root
of a monic polynomial in Z[𝑥]. Equivalently, the subring of C

Z[𝑎] = {𝑓(𝑎) ∶ 𝑓(𝑥) ∈ Z[𝑥]}

is a finitely-generated Z-algebra.

Fact.

1. The algebraic integers form a subring of C.

2. If 𝑎 ∈ C is both an algebraic integer and a rational number then 𝑎 ∈ Z.

3. Any subring 𝑆 of C which is a finitely-generately Z-module consists of
algebraic integers. (suppose 𝑠1, … , 𝑠𝑛 are generators of 𝑆 as Z-module
and 𝑎 ∈ 𝑆. Then for all 𝑖 exists 𝑎𝑖𝑗 ∈ Z such that 𝑎𝑠𝑖 = ∑𝑗 𝑎𝑖𝑗𝑠𝑗. Put
𝐴 = (𝑎𝑖𝑗) then 𝐴𝑣 = 𝑎𝑣 where 𝑣 = (𝑠1, … , 𝑠𝑛), so 𝑎 is the root of the
characteristic polynomial of 𝐴, and is thus an algebraic integer)

Proposition 13.1. If 𝜒 is a character of 𝐺 and 𝑔 ∈ 𝐺 then 𝜒(𝑔) is an
algebraic integer.

Proof. 𝜒(𝑔) is the sum of 𝑛th roots of unity, where 𝑛 is the order of 𝑔. Each
root of unity is an algebraic integer.

Corollary 13.2. There are no entries in the character table of any finite
group which are rational but not integers.

13.1 The centre of 𝐶𝐺
Recall that the group algebra C𝐺 of a finite group 𝐺, the C-space with basis 𝐺
and dimension |𝐺|. It is also a ring and a C-algebra.

Let {1} = 𝒞1, 𝒞2, … , 𝒞𝑘 be the 𝐺-conjugacy classes. Define the class sums

𝐶𝑗 = ∑
𝑔∈𝒞𝑗

𝑔 ∈ C𝐺.

Now each 𝐶𝑗 ∈ 𝑍(C𝐺), the centre of C𝐺. Moreover

Proposition 13.3. 𝐶1, … , 𝐶𝑘 is a basis of 𝑍(C𝐺). There exist non-negative
integers 𝑎𝑖𝑗ℓ, 1 ≤ 𝑖, 𝑗, ℓ ≤ 𝑘 with

𝐶𝑖𝐶𝑗 = ∑
ℓ

𝑎𝑖𝑗ℓ𝐶ℓ.

These are the class algebra constants or structure constants for 𝑍(C𝐺).
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13 Integrality and group algebra

Proof. Check 𝑔𝐶𝑗𝑔−1 = 𝐶𝑗 for all 𝑔 ∈ 𝐺 so 𝐶𝑗 ∈ 𝑍(C𝐺). Clearly 𝐶𝑗’s are
linearly independent because 𝒞𝑗’s are disjoint. For spanning, suppose 𝑧 =
∑𝑔∈𝐺 𝑎𝑔𝑔 ∈ 𝑍(C𝐺). Then for all ℎ ∈ 𝐺, 𝑎ℎ−1𝑔ℎ = 𝛼𝑔 so the function 𝑔 ↦ 𝑎𝑔 is
constant on 𝐺-conjugacy classes. Writing 𝑎𝑔 = 𝛼𝑗 if 𝑔 ∈ 𝒞𝑗. Then

𝑧 =
𝑘

∑
𝑗=1

𝛼𝑗𝐶𝑗.

Finally 𝑍(C𝐺) is a C-algebra so 𝐶𝑖𝐶𝑗 = ∑𝑘
ℓ=1 𝑎𝑖𝑗ℓ𝐶ℓ as the 𝐶ℓ’s span. We claim

that 𝑎𝑖𝑗ℓ ∈ Z≥0: fix 𝑔ℓ ∈ 𝒞ℓ then

𝑎𝑖𝑗ℓ = |{(𝑥, 𝑦) ∈ 𝒞𝑖 × 𝒞𝑗 ∶ 𝑥𝑦 = 𝑔ℓ}| ∈ Z≥0.

Definition (representation of algebra). Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be an irre-
ducible representation over C affording character 𝜒. Extend linearly to a
map 𝜌 ∶ 𝐴 = C𝐺 → End(𝑉 ), an algebra homomorphism. Such a homomor-
phism of algebra 𝐴 into End(𝑉 ) is called a representation of 𝐴.

A central homomorphism is a ring homomorphism 𝑍(𝐴) → C.

Let 𝑧 ∈ 𝑍(C𝐺). Then 𝜌(𝑧) commutes with 𝜌(𝑔) for all 𝑔 ∈ 𝐺, so by Schur’s
lemma 𝜌(𝑧) = 𝜆𝑧𝐼 for some 𝜆𝑧 ∈ C. Consider the central homomorphism

𝜔𝜒 = 𝜔 ∶ 𝑍(C𝐺) → C
𝑧 ↦ 𝜆𝑧

Now 𝜌(𝐶𝑖) = 𝜔𝜒(𝐶𝑖)𝐼 so taking traces,

𝜒(1)𝜔𝜒(𝐶𝑖) = ∑
𝑔∈𝒞𝑖

𝜒(𝑔) = |𝒞𝑖|𝜒(𝑔𝑖).

Thus
𝜔𝜒(𝐶𝑖) = 𝜒(𝑔𝑖)

𝜒(1)
|𝒞𝑖|.

Lemma 13.4. The values of 𝜔𝜒(𝐶𝑖) are algebraic integers.

Proof. Since 𝜔𝜒 is a homomorphism

𝜔𝜒(𝐶𝑖)𝜔𝜒(𝐶𝑗) =
𝑘

∑
ℓ=1

𝑎𝑖𝑗ℓ𝜔𝜒(𝐶ℓ)

where 𝑎𝑖𝑗ℓ ∈ Z≥0. Thus the span of {𝜔𝜒(𝐶𝑗) ∶ 1 ≤ 𝑗 ≤ 𝑘} is a subring of C, and
is a finitely-generated abelian group, so consists of algebraic integers.

Exercise. Show that 𝑎𝑖𝑗ℓ can be obtained from the character table. In fact,

𝑎𝑖𝑗ℓ = |𝐺|
|𝐶𝐺(𝑔𝑖)|𝐶𝐺(𝑔𝑗)|

𝑘
∑
𝑠=1

𝜒𝑠(𝑔𝑖)𝜒𝑠(𝑔𝑗)𝜒𝑠(𝑔−1
ℓ )

𝜒𝑠(1)
.

See JL 30.4.
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13 Integrality and group algebra

Theorem 13.5. The degree of any irreducible complex character of 𝐺 di-
vides |𝐺|.

Proof. Given an irreducible character 𝜒,

|𝐺|
𝜒(1)

= 1
𝜒(1)

∑
𝑔∈𝐺

𝜒(𝑔)𝜒(𝑔−1)

= 1
𝜒(1)

𝑘
∑
𝑖=1

|𝒞𝑖|𝜒(𝑔𝑖)𝜒(𝑔−1
𝑖 )

=
𝑘

∑
𝑖=1

|𝒞𝑖|𝜒(𝑔𝑖)
𝜒(1)⏟⏟⏟⏟⏟

alg integer

𝜒(𝑔−1
𝑖 )

which is algebraic integer. LHS is rational.

Example.

1. If 𝐺 is a 𝑝-group then 𝜒(1) is a 𝑝-power. In particular if |𝐺| = 𝑝2 then
𝜒(1) = 1 for all 𝜒, hence 𝐺 must be abelian.

2. If 𝐺 = 𝑆𝑛 then every prime 𝑝 dividing the degree of an irreducible char-
acter also divides 𝑛!, so in particular 𝑝 ≤ 𝑛.

3. No simple group has an irreducible character of degree 2. See James and
Liebeck 22.13.

Theorem 13.6. If 𝜒 is irreducible then 𝜒(1) divides |𝐺 ∶ 𝑍(𝐺)|.

Proof. Exercise.
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14 Burnside’s theorem

Theorem 14.1 (Burnside). Let 𝑝, 𝑞 be primes. Let |𝐺| = 𝑝𝑎𝑞𝑏 where 𝑎, 𝑏 ∈
Z≥0, with 𝑎 + 𝑏 ≥ 2. Then |𝐺| is not nonabelian simple.

Remark.

1. If fact more is true: 𝐺 is soluble.

2. This is the best possible in the sense that |𝐴5| = 22 ⋅ 3 ⋅ 4 has exactly 3
prime factors.

3. If either 𝑎 or 𝑏 = 0 then 𝐺 is 𝑝-group, so nilpotent so soluble.

4. Feit and Thompson proved in 1963 that any group of odd order is soluble.

5. H. Bender and D. Goldschmidt independently found the first proof without
the use of representation.

The theorem follows from two lemmas, one of which is starred.

Lemma 14.2. Suppose 0 ≠ 𝛼 = 1
𝑚 ∑𝑚

𝑗=1 𝜆𝑗 with 𝜆𝑛
𝑗 = 1 is an algebraic

integer. Then |𝛼| = 1.

Proof*. Clearly 0 < |𝛼| ≤ 1. Observe that 𝛼 ∈ 𝐹 = Q(𝜀) where 𝜀 = 𝑒 2𝜋𝑖
𝑛 . Let

𝐺 = Gal(𝐹/Q). We know

{𝛽 ∈ 𝐹 ∶ 𝜎(𝛽) = 𝛽 for all 𝜎 ∈ 𝐺} = Q.

Define norm
𝑁(𝛼) = ∏

𝜎∈𝐺
𝜎(𝛼).

Then 𝑁(𝛼) is fixed by every element of 𝐺 so 𝑁(𝛼) ∈ Q. Now 𝑁(𝛼) is an alge-
braic integer since Galois conjugates of algebraic integers are algebraic integers.
Thus 𝑁(𝛼) ∈ Z. But for 𝜎 ∈ 𝐺,

|𝜎(𝛼)| = ∣ 1
𝑚

∑ 𝜎(𝜆𝑗)∣ ≤ 1.

Thus 𝑁(𝛼) = ±1, which implies that |𝛼| = 1.

Lemma 14.3. Suppose 𝜒 is an irreducible character of 𝐺 and 𝒞 is a con-
jugacy class in 𝐺 such that 𝜒(1) and |𝒞| are coprime. Then for all 𝑔 ∈ 𝒞,
|𝜒(𝑔)| = 𝜒(1) or 0.

Proof. By Bézout’s theorem exist 𝑎, 𝑏 ∈ Z with 𝑎𝜒(1) + 𝑏|𝒞| = 1. Define

𝛼 = 𝜒(𝑔)
𝜒(1)

= 𝑎𝜒(𝑔) + 𝑏𝜒(𝑔)
𝜒(1)

|𝒞|

which is an algebraic integer. Thus 𝛼 satisfies the conditions of the previous
lemma.
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14 Burnside’s theorem

Proposition 14.4. If in a finite group 𝐺, the number of elements in a
conjugacy class 𝒞𝑖 ≠ 1 is of prime power order then 𝐺 is not nonabelian
simple.

Granted this, we can prove Burnside: if 𝑎, 𝑏 > 0 let 𝑄 be a Sylow 𝑞-subgroup,
so 𝑄 ≠ 1 (otherwise 𝐺 is 𝑝-group). Now 1 ≠ 𝑍(𝑄) so exists 1 ≠ 𝑔 ∈ 𝑍(𝑄).
Then as 𝐶𝐺(𝑔) ≥ 𝑄, we have

|𝒞𝐺(𝑔)| = |𝐺 ∶ 𝐶𝐺(𝑔)| = 𝑝𝑟

for some 0 ≤ 𝑟 ≤ 𝑎.

Proof. Suppose 𝐺 is nonabelian simple, and there exists 1 ≠ 𝑔 ∈ 𝐺 lying in the
conjugacy class 𝒞 of order 𝑝𝑟. If 𝜒 ≠ 1𝐺 is a non-trivial irreducible character
of 𝐺 then |𝜒(𝑔)| < 𝜒(1) (otherwise 𝐺 not simple). Then for every non-trivial
irreducible character, either 𝑝 ∣ 𝜒(1) or |𝜒(𝑔)| = 0. By column orthogonality
applied to {1} and 𝒞,

0 = 1 + ∑
𝜒≠1𝐺
𝑝∣𝜒(1)

𝜒(1)𝜒(𝑔)

so
−1

𝑝
= ∑

𝜒≠1

𝜒(1)
𝑝

𝜒(𝑔)

is an algebraic integer in Q. Absurd.
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15 Representations of compact groups
See Teleman §19 - 22 and C. Thomas §6 for more detailed treatment of this
chapter.

Definition (topological group). A topological group 𝐺 is a group which
is also a topological space and for which multiplication 𝐺 × 𝐺 → 𝐺 and
inversion 𝐺 → 𝐺 are continuous. It is compact if it is so as a topological
space.

Example.

1. Any finite group 𝐺 with discrete topology.

2. GL𝑛(C) and GL𝑛(R) are topological groups (as open subsets of C𝑛2 or
R𝑛2).

3. Examples of compact groups:

(a) finite groups,
(b) 𝑆1 = {𝑧 ∈ C ∶ |𝑧| = 1} under multiplication, the circle group,
(c) torus: finite product 𝑆1 × ⋯ × 𝑆1,
(d) O(𝑛) = {𝐴 ∈ GL𝑛(R) ∶ 𝐴𝐴𝑡 = 𝐼𝑛}, orthogonal group,
(e) SO(𝑛) = {𝐴 ∈ 𝑂(𝑛) ∶ det 𝐴 = 1}, special orthogonal group,

(f) U(𝑛) = {𝐴 ∈ GL𝑛(C) ∶ 𝐴𝐴𝑡 = 𝐼𝑛}, unitary group,
(g) SU(𝑛) = {𝐴 ∈ 𝑈(𝑛) ∶ det 𝐴 = 1}, speical unitary group.

Remark.

1. 𝑈(1) ≅ SO(2) ≅ℎ 𝑆1 where ≅ℎ means the homomorphism is also a home-
omorphism.

2. SU(2) = {(𝑧1, 𝑧2) ∈ C2 ∶ 𝑧1𝑧1 + 𝑧2𝑧2 = 1} ⊆ R4 ≅ C2 is isomorphic and
homeomorphic to 𝑆3.

Definition (representation of topological group). A representation of a
topological group 𝐺 on a finite-dimensional space 𝑉 is a continuous group
homomorphism 𝜌 ∶ 𝐺 → GL(𝑉 ).

Remark. If 𝑋 is a topological space then 𝜌 ∶ 𝑋 → GL(𝑉 ) ≅ GL𝑛(C) is
continuous if and only if 𝑥 ↦ 𝜌(𝑥)𝑖𝑗 are continuous for all 𝑖, 𝑗.

15.1 The compact group U(1)
We prove

Theorem 15.1. Every 1-dimensional continuous representation of 𝑆1 is of
the form 𝑧 ↦ 𝑧𝑛 for some 𝑛 ∈ Z.
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15 Representations of compact groups

Remark. It can be easily seen that these are representations. Why are they
the only ones? If one drops continuity condition, the number of 1-dimensional
representations is uncountably infinite. See Teleman §19.8.

To prove the theorem we need two lemmas from real analysis

Lemma 15.2. If 𝜓 ∶ (R, +) → (R, +) is a continuous group homomorphism
then there exists 𝑐 ∈ R such that 𝜓(𝑥) = 𝑐𝑥 for all 𝑥 ∈ R.

Proof. Given 𝜓 ∶ (R, +) → (R, +) continuous, let 𝑐 = 𝜓(1). As 𝜓 is a homomor-
phism,

𝜓(𝑛𝑥) = 𝜓(𝑥 + ⋯ + 𝑛) = 𝑛𝜓(𝑥)
for 𝑥 ∈ R, 𝑛 ∈ Z≥0. In particular 𝜓(𝑛) = 𝑐𝑛. Also 𝜓(−𝑛) = −𝜓(𝑛) = −𝑐𝑛 so
𝜓(𝑛) = 𝑐𝑛 for all 𝑛 ∈ Z. Put 𝑥 = 𝑚

𝑛 ∈ Q,

𝑛𝜓(𝑥) = 𝜓(𝑛𝑥) = 𝜓(𝑚) = 𝑐𝑚

so 𝜓(𝑥) = 𝑐𝑥 for all 𝑥 ∈ Q. As Q ⊆ R is dense and 𝜓 is continuous, 𝜓(𝑥) = 𝑐𝑥
for all 𝑥 ∈ R.

Lemma 15.3. Continuous homomorphisms 𝜑 ∶ (R, +) → 𝑆1 are of the form
𝜑(𝑥) = 𝑒𝑖𝑐𝑥 for some 𝑐 ∈ R.

Proof. Define

𝜀 ∶ (R, +) → 𝑆1

𝑥 ↦ 𝑒𝑖𝑥

This homomorphism wraps real line around 𝑆1 with period 2𝜋.
Claim given any continuous map 𝜑 ∶ (R, +) → 𝑆1 such that 𝜑(0) = 1, there

exists a unique continuous map 𝜓 ∶ R → R, called a lifting, such that 𝜓(0) = 0,
making the diagram

(R, +)

(R, +) 𝑆1

𝜀
𝜓

𝜑

commute. (The lifting is constructed by starting with 𝜓(0) = 0 and then ex-
tending a small interval at a time to get a continuous map (R, +) → (R, +))

If 𝜑 is a homomorphism then so is its lifting 𝜓: 𝜑(𝑥 + 𝑦) = 𝜑(𝑥)𝜑(𝑦) so
𝜀(𝜓(𝑥 + 𝑦) − 𝜓(𝑥) − 𝜓(𝑦)) = 1. Thus 𝜓(𝑥 + 𝑦) − 𝜓(𝑥) − 𝜓(𝑦) = 2𝑘𝜋 for some
integer 𝑘 depending continuously on 𝑥, 𝑦, so must be constant. Setting 𝑥 = 𝑦 = 0
we get 𝑘 = 0.

Proof of Theorem 15.1. Let 𝜌 ∶ 𝑆1 → C× be a continuous 1-dimensional repre-
sentation. Then 𝜌 ∶ 𝑆1 → 𝑆1: since 𝑆1 is compact and 𝜌 is continous, 𝜌(𝑆1) is
closed and bounded. As 𝜌(𝑧𝑛) = 𝜌(𝑧)𝑛 for all 𝑛 ∈ Z, we must have 𝜌(𝑆1) ⊆ 𝑆1.
We get a continuous homomorphism

R → 𝑆1

𝑥 ↦ 𝜌(𝑒𝑖𝑥)

so exists 𝑐 ∈ R such that 𝜌(𝑒𝑖𝑥) = 𝑒𝑖𝑐𝑥. But 1 = 𝜌(𝑒2𝜋𝑖) = 𝑒2𝜋𝑖𝑐 so 𝑐 ∈ Z. Put
𝑛 = 𝑐, 𝜌(𝑧) = 𝑧𝑛 as claimed.
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15 Representations of compact groups

In studying representations of finite groups we “averaged” over the group
via the operation 1

|𝐺| ∑. An analogous operation exists for topological groups,
if we replace “sum” by ∫

𝐺
d𝑔.

Definition (Haar measure). If 𝐺 is a topological group, let

𝒞(𝐺) = {𝑓 ∶ 𝐺 → C ∶ 𝑓 continuous, 𝑓(𝑔𝑥𝑔−1) = 𝑓(𝑥) for all 𝑔, 𝑥 ∈ 𝐺}

Then a non-trivial functional

∫
𝐺

∶ 𝒞(𝐺) → C

is called a Haar measure if

1. normalisation: ∫
𝐺

1d𝑔 = 1,

2. translation invariance: ∫
𝐺

𝑓(𝑥𝑔)d𝑔 = ∫
𝐺

𝑓(𝑔)d𝑔 = ∫
𝐺

𝑓(𝑔𝑥)d𝑔 for all
𝑥 ∈ 𝐺.

Example.

1. If 𝐺 is finite then
∫

𝐺
𝑓 = 1

|𝐺|
∑
𝑔∈𝐺

𝑓(𝑔)

is a Haar measure.

2. 𝐺 = 𝑆1:
∫

𝐺
𝑓 = 1

2𝜋
∫

2𝜋

0
𝑓(𝑒𝑖𝜃)𝑑𝜃.

3. 𝐺 = SU(2): see later.

Theorem 15.4. If 𝐺 is compact and Hausdorff then there exists a unique
Haar measure on 𝐺.

Proof. Omitted.

We compute Haar measure for SU(2) below. Henceforth “compact” means
“compact Hausdorff”.

As a general theme, results we proved using “averaging” techniques work for
compact groups by replacing averaging by the Haar measure on the topological
group.

Corollary 15.5 (Weyl’s unitary trick). Let 𝐺 be compact. Then every
representation (𝜌, 𝑉 ) has 𝐺-invariant inner product.

Proof. Take any inner product (⋅, ⋅) on 𝑉. Then

⟨𝑣, 𝑤⟩ = ∫
𝐺

(𝜌(𝑔)𝑣, 𝜌(𝑔)𝑤)d𝑔

is a 𝐺-invariant inner product.
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Corollary 15.6 (Maschke). If 𝐺 is compact then every representation of 𝐺
is completely reducible.

We can use the Haar measure to endow 𝒞(𝐺), the space of continuous func-
tions, with an inner product

⟨𝑓, 𝑓 ′⟩ = ∫
𝐺

𝑓(𝑔)𝑓 ′(𝑔)d𝑔.

If 𝜌 ∶ 𝐺 → GL(𝑉 ) is a representation then 𝜒𝑉 = 𝜒𝜌 = tr 𝜌 is a continuous class
function since each 𝜌(𝑔)𝑖𝑖 is continuous.

Theorem 15.7 (row orthogonality). Suppose 𝐺 is compact and 𝑉 , 𝑊 are
irreducible representations of 𝐺. Then

⟨𝜒𝑉, 𝜒𝑊⟩ = {1 𝑉 ≅ 𝑊
0 𝑉 ≇ 𝑊

Naturally one may wonder if irreducible characters form a basis of 𝒞(𝐺). The
answer is not quite. We need some Hilbert space theory and Peter-Weyl theo-
rem. For 𝑆1 see Teleman §19.14, 19.15.

15.2 Representations of SU(2)
Let

𝐺 = SU(2) = {𝐴 ∈ GL2(C) ∶ 𝐴𝑡𝐴 = 𝐼, det 𝐴 = 1}

= {( 𝑎 𝑏
−𝑏 𝑎) , 𝑎, 𝑏 ∈ C, |𝑎|2 + |𝑏|2 = 1}

Topologically 𝐺 ≅ℎ 𝑆3. More precisely, let

H = {( 𝑧 𝑤
−𝑤 𝑧)}

Hamilton’s quaternion algebra. H is a 4 dimensional Euclidean space and ‖𝐴‖2 =
det 𝐴 defines a norm on H ≅ R4 with 𝐺 the unit ball. If 𝐴 ∈ 𝐺 and 𝑋 ∈ H then

‖𝐴𝑋‖ = ‖𝑋‖ = ‖𝑋𝐴‖.

Thus after normalisation (by 1
2𝜋2 ), usual integration of functions on 𝑆3 defines

Haar measure on 𝐺.
We first discuss conjugacy classes in 𝐺. Let

𝑇 = {(𝑎 0
0 𝑎) ∶ 𝑎 ∈ C, |𝑎| = 1} ≅ 𝑆1

the maximal torus in 𝐺. Let 𝑠 = ( 0 1
−1 0) ∈ 𝐺.
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Lemma 15.8.

1. If 𝑡 ∈ 𝑇 then 𝑠𝑡𝑠−1 = 𝑡−1.

2. 𝑠2 = −𝐼 ∈ 𝑍(𝐺).

3. 𝑁𝐺(𝑇 ) = 𝑇 ∪ 𝑠𝑇 = {(𝑎 0
0 𝑎−1) , ( 0 𝑎

−𝑎−1 0) ∶ 𝑎 ∈ C, |𝑎| = 1}

4. Every conjugacy class 𝒞 in 𝐺 contains an element of 𝑇, i.e. 𝒞∩𝑇 ≠ ∅.
In fact,

5. 𝒞∩𝑇 = {𝑡, 𝑡−1} for some 𝑡 ∈ 𝑇. Moreover 𝑡 = 𝑡−1 if and only if 𝑡 = ±𝐼
when 𝒞 = {𝑡}.

6. There exists a bijection {conjugacy classes of 𝐺} ↔ [−1, 1] given by
𝐴 ↦ 1

2 tr 𝐴.

Proof.

1. Direct computation.

2. Ditto.

3. Ditto.

4. Every unitary matrix 𝑋 has an orthonormal basis of eigenvectors, hence
is conjugate in U(2) to one in 𝑇, say 𝑄𝑋𝑄𝑡 ∈ 𝑇. We want 𝑄 such that
det 𝑄 = 1. Put 𝛿 = det 𝑄 so |𝛿| = 1. If 𝜀 is a square root of 𝛿 then
𝑄1 = 𝜀𝑄 ∈ SU(2) and 𝑄1𝑋𝑄𝑡

1 ∈ 𝑇.

5. Let 𝑔 ∈ 𝐺 and suppose 𝑔 ∈ 𝒞. If 𝑔 = ±𝐼 then 𝒞 ∩ 𝑇 = {𝑔}. Otherwise
𝑔 has distinct eigenvalues 𝜆, 𝜆−1 and 𝒞 = {ℎ( 𝜆 0

0 𝜆−1 )ℎ−1 ∶ ℎ ∈ 𝐺}. Hence
𝒞 ∩ 𝑇 = {( 𝜆 0

0 𝜆−1 ), ( 𝜆−1 0
0 𝜆 )}, by noting that

𝑠 (𝜆 0
0 𝜆−1) 𝑠−1 = (𝜆−1 0

0 𝜆) .

Furthermore, if ( 𝜇 0
0 𝜇−1 ) ∈ 𝒞 then {𝜇, 𝜇−1} = {𝜆, 𝜆−1} (i.e. eigenvalues

preserved under conjugation).

6. By 5 matrices are conjugate in 𝐺 if and only if their eigenvalues agree up
to reordering. Now

1
2

tr (𝜆 0
0 𝜆−1) = 1

2
(𝜆 + 𝜆) = Re 𝜆 = cos 𝜃

where 𝜆 = 𝑒𝑖𝜃. Hence the map is surjective. It’s also injective: if 1
2 tr 𝑔 =

1
2 tr 𝑔′ then 𝑔, 𝑔′ have the same characteristic polynomial, namely

𝑋2 − (tr 𝑔)𝑋 + 1,

hence the same eigenvalues and are conjugate.
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Thus we write
𝒞𝑡 = {𝑔 ∈ 𝐺 ∶ 1

2
tr 𝑔 = 𝑡}

for 𝑡 ∈ [−1, 1]. In particular 𝒞1 = {𝐼}, 𝒞−1 = {−𝐼}. In fact

Proposition 15.9. For 𝑡 ∈ (−1, 1), 𝒞𝑡 ≅ℎ 𝑆2.

Proof. Exercise.

Now we can study the representations of 𝐺. Let 𝑉𝑛 be the space of all
homogeneous polynomials of degree 𝑛 in variables 𝑥, 𝑦, i.e.

𝑉𝑛 = {𝑟0𝑥𝑛 + 𝑟1𝑥𝑛−1𝑦 + ⋯ + 𝑟𝑛𝑦𝑛 ∶ 𝑟𝑖 ∈ C},

an (𝑛 + 1) dimensional C-space, with standard basis 𝑥𝑛, 𝑥𝑛−1𝑦, … , 𝑦𝑛. Then
GL2(C) = GL(C2) acts on 𝑉𝑛 via

𝜌𝑛 ∶ GL(C2) → GL(𝑉𝑛)
𝜌𝑛( 𝑎 𝑏

𝑐 𝑑 )𝑓(𝑥, 𝑦) = 𝑓(𝑎𝑥 + 𝑐𝑦, 𝑏𝑥 + 𝑑𝑦)

Exercise.

1. If 𝑛 = 0 then 𝜌0 is trivial.

2. If 𝑛 = 1 then 𝜌1 is the natural 2 dimensional representation where 𝜌1( 𝑎 𝑏
𝑐 𝑑 )

has matrix ( 𝑎 𝑏
𝑐 𝑑 ) with respect to standard basis of 𝑉1.

3. If 𝑛 = 2 then

𝜌2 (𝑎 𝑏
𝑐 𝑑) = ⎛⎜

⎝

𝑎2 𝑎𝑏 𝑏2

2𝑎𝑐 𝑎𝑑 + 𝑏𝑐 2𝑏𝑑
𝑐2 𝑐𝑑 𝑑2

⎞⎟
⎠

with repsect to standard basis of 𝑉2.

Now 𝐺 ≤ GL2(C) so view 𝑉𝑛 as a representation of 𝐺 by restriction.

Lemma 15.10. A continuous class function 𝑓 ∶ 𝐺 → C is determined by
its restriction to 𝑇, and 𝑓|𝑇 is even (in the sense that 𝑓( 𝜆 0

0 𝜆−1 ) = 𝑓( 𝜆−1 0
0 𝜆 )).

Proof. Each conjugacy class in 𝐺 meets 𝑇 so a class function is determined by
its restriction to 𝑇. Evenness follows from 𝑇 ∩ 𝒞 = {𝑡, 𝑡−1}.

Lemma 15.11. If 𝜒 is a character of a representation of 𝐺 then 𝜒|𝑇 is a
Laurent polynomial, i,e. finite N0-linear combination of functions ( 𝜆 0

0 𝜆−1 ) ↦
𝜆𝑛 where 𝑛 ∈ Z.

Proof. If 𝑉 is a representation of 𝐺 then Res𝐺
𝑇 𝑉 is a representation of 𝑇 and its

character 𝜒Res𝐺
𝑇 𝑉 is the restriction of 𝜒𝑉 to 𝑇. But every representation of 𝑇 has

character of given form by Theorem 15.1.
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Put

N0[𝑧, 𝑧−1] = {∑
𝑛∈Z

𝑎𝑛𝑧𝑛 ∶ 𝑎𝑛 ∈ N0, finitely many 𝑎𝑛 ≠ 0}

N0[𝑧, 𝑧−1]ev = {𝑓 ∈ N0[𝑧, 𝑧−1] ∶ 𝑓(𝑧) = 𝑓(𝑧−1)}

By these lemmas for continuous representations of 𝐺, the character 𝜒𝑉 is in
N0[𝑧, 𝑧−1]ev by identifying it with its restriction to 𝑇. We calculate the character
𝜒𝑛 of (𝜌𝑛, 𝑉𝑛). Recall

𝜌𝑛 (𝑎 𝑏
𝑐 𝑑) ∶ 𝑥𝑛−𝑗𝑦𝑗 ↦ (𝑎𝑥 + 𝑐𝑦)𝑛−𝑗(𝑏𝑥 + 𝑑𝑦)𝑗

and extend linearly. To find 𝜒𝑛(𝑔) = tr 𝜌𝑛(𝑔), note that 𝑔 ∼ ( 𝑧 0
0 𝑧−1 ) ∈ 𝑇 and

𝜌𝑛((𝑧 0
0 𝑧) (𝑥𝑖𝑦𝑗) = (𝑧𝑥)𝑖(𝑧−1𝑦)𝑗 = 𝑧𝑖−𝑗𝑥𝑖𝑦𝑗

so 𝜌𝑛( 𝑧 0
0 𝑧−1 ) has matrix

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑧𝑛

𝑧𝑛−2

⋱
𝑧2−𝑛

𝑧−𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

with respect to standard basis. Hence

𝜒𝑛 (𝑧 0
0 𝑧−1) = 𝑧𝑛 + 𝑧𝑛−2 + ⋯ + 𝑧−𝑛.

Exercise. 𝜒0 = 1𝐺, 𝜒1 = 𝑒𝑖𝜃 + 𝑒−𝑖𝜃 = 2 cos 𝜃, 𝜒3 = 1 + 2 cos 2𝜃. In general it
equals to 𝑧𝑛+1−𝑧−(𝑛+1)

𝑧−𝑧−1 unless 𝑧 = ±1.

Theorem 15.12. The representations 𝜌𝑛 ∶ 𝐺 → GL(𝑉𝑛) of dimension 𝑛+1
are irreducible for all 𝑛 ∈ Z≥0.

Proof. Assume 0 ≠ 𝑊 ≤ 𝑉𝑛 is a 𝐺-invariant subspace. Claim 𝑉𝑛 = 𝑊. Claim
if 0 ≠ 𝑤 = ∑ 𝑟𝑗𝑥𝑛−𝑗𝑦𝑗 ∈ 𝑊 with some 𝑟𝑖 ≠ 0 then 𝑥𝑛−𝑖𝑦𝑖 ∈ 𝑊. Argue by
induction on the number of non-zero 𝑟𝑗. If unique 𝑟𝑖 ≠ 0 then result is clear
(as 𝑤 is a non-zero multiple of 𝑥𝑛−𝑖𝑦𝑖). So assume more than one and choose 𝑖
such that 𝑟𝑖 ≠ 0. Pick 𝑧 ∈ 𝑆1 with 𝑧𝑛, 𝑧𝑛−2, … , 𝑧2−𝑛, 𝑧−𝑛 distinct in C. Then

𝜌𝑛((𝑧 0
0 𝑧−1))𝑤 − 𝑧𝑛−2𝑖𝑤 = ∑

𝑗
𝑟𝑗(𝑧𝑛−2𝑗 − 𝑧𝑛−2𝑖)(𝑥𝑛−𝑗𝑦𝑗) ∈ 𝑊

as 𝑊 is 𝐺-invariant. Now 𝑟𝑗(𝑧𝑛−2𝑗 −𝑧𝑛−2𝑖) ≠ 0 precisely when 𝑟𝑗 ≠ 0 and 𝑗 ≠ 𝑖.
By induction 𝑥𝑛−𝑗𝑦𝑗 ∈ 𝑊 for all 𝑗 ≠ 𝑖 with 𝑟𝑗 ≠ 0. Hence also

𝑥𝑛−𝑖𝑦𝑖 = 1
𝑟𝑖

(𝑤 − ∑
𝑗

𝑟𝑗𝑥𝑛−𝑗𝑦𝑗) ∈ 𝑊
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as required.
We now know 𝑥𝑛−𝑖𝑦𝑖 ∈ 𝑊 for some 𝑖. We find matrices in 𝐺, the action of

which will give all 𝑥𝑛−𝑖𝑦𝑖 ∈ 𝑊. Since

1√
2

(1 −1
1 1 ) ∶ 𝑥𝑛−𝑖𝑦𝑖 ↦ 1

√
2𝑛 (𝑥 + 𝑦)𝑛−𝑖(−𝑥 + 𝑦)𝑖 ∈ 𝑊

and we can use the claim to deduce 𝑥𝑛 ∈ 𝑊. Similarly if 𝑎, 𝑏 ≠ 0

(𝑎 −𝑏
𝑏 𝑎 ) ∶ 𝑥𝑛 ↦ (𝑎𝑥 + 𝑏𝑦)𝑛 ∈ 𝑊

and so by the claim 𝑥𝑛−𝑖𝑦𝑖 ∈ 𝑊 for all 𝑖. Thus 𝑊 = 𝑉𝑛.

Remark. Alternatively, see Teleman §21.1 we can evaluate ⟨𝜒𝑛, 𝜒𝑛⟩ = 1 using
Weyl’s integration formula.

Now show all irreducible representations of 𝐺 are of this form.

Theorem 15.13. Every finite-dimensional continuous irreducible represen-
tation of 𝐺 is one of the 𝜌𝑛 ∶ 𝐺 → GL(𝑉𝑛) above.

Proof. Assume 𝜌𝑉 ∶ 𝐺 → GL(𝑉 ) is irreducible affording character 𝜒𝑉 ∈ N0[𝑧, 𝑧−1]ev.
We show 𝜒 = 𝜒𝑛 for some 𝑛. Now 𝜒0, 𝜒1, … form a basis of Q[𝑧, 𝑧−1]ev. Hence
𝜒𝑉 = ∑𝑛 𝑎𝑛𝜒𝑛, a finite Q-linear combination. Clearing the denominators and
moving all summands with negative coefficients to LHS gives the relation

𝑚𝜒𝑉 + ∑
𝑖∈𝐼

𝑚𝑖𝜒𝑖 = ∑
𝑗∈𝐽

𝑛𝑗𝜒𝑗

with 𝐼, 𝐽 disjoint finite subsets of N0 and 𝑚, 𝑚𝑖, 𝑛𝑖 ∈ N0. The left and right
hand sides are characters of 𝐺. Hence

𝑚𝑉 ⊕ ⨁
𝑖∈𝐼

𝑚𝑖𝑉𝑖 ≅ ⨁
𝑗∈𝐽

𝑛𝑗𝑉𝑗.

Since 𝑉 is irreducible we must have 𝑉 ≅ 𝑉𝑛 for some 𝑛 ∈ 𝐽.

15.2.1 Tensor products of representations of 𝐺

We know from Lemma 15.10 for 𝑉 , 𝑊 representation of 𝐺, Res𝐺
𝑇 𝑉 ≅ Res𝐺

𝑇 𝑊
implies 𝑉 ≅ 𝑊. We want to understand tensor products of representations for
𝐺.

Proposition 15.14. If 𝐺 = SU(2) or 𝑆1, 𝑉 , 𝑊 representations of 𝐺 then

𝜒𝑉 ⊗𝑊 = 𝜒𝑉𝜒𝑊.

Proof. Suffice to consider 𝐺 ≅ 𝑆1. 𝑉 , 𝑊 have eigenbases 𝑒1, … , 𝑒𝑛, 𝑓1, … , 𝑓𝑚
such that

𝑧𝑒𝑖 = 𝑧𝑛𝑖𝑒𝑖

𝑧𝑓𝑗 = 𝑧𝑚𝑗𝑓𝑗
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respectively. Then
𝑧(𝑒𝑖 ⊗ 𝑓𝑗) = 𝑧𝑛𝑖+𝑚𝑗(𝑒𝑖 ⊗ 𝑓𝑗)

so
𝜒𝑉 ⊗𝑊(𝑧) = ∑

𝑖,𝑗
𝑧𝑛𝑖+𝑚𝑗 = 𝜒𝑉(𝑧)𝜒𝑊(𝑧).

Example.

𝜒𝑉1⊗𝑉1
(𝑧) = (𝑧 + 𝑧−1)2 = 𝑧2 + 2 + 𝑧−2 = (𝑧2 + 1 + 𝑧−1) + 1 = 𝜒𝑉2

+ 𝜒𝑉0

𝜒𝑉1⊗𝑉2
(𝑧) = (𝑧2 + 1 + 𝑧−2)(𝑧 + 𝑧−1) = 𝑧3 + 2𝑧 + 2𝑧−1 + 𝑧−3 = 𝜒𝑉3

+ 𝜒𝑉1

The next result analyses the product structure of representations

Theorem 15.15 (Clebsch-Gordon formula). For any 𝑛, 𝑚 ∈ N0,

𝑉𝑛 ⊗ 𝑉𝑚 ≅ 𝑉𝑛+𝑚 ⊕ 𝑉𝑛+𝑚−2 ⊕ ⋯ ⊕ 𝑉|𝑛−𝑚|+2 ⊕ 𝑉|𝑛−𝑚|.

Proof. Use characters. Wlog 𝑛 ≥ 𝑚 so

(𝜒𝑛𝜒𝑚)(𝑧) = 𝑧𝑛+1 − 𝑧−𝑛−1

𝑧 − 𝑧−1 (𝑧𝑚 + 𝑧𝑚−2 + ⋯ + 𝑧−𝑚)

=
𝑚

∑
𝑗=0

𝑧𝑛+𝑚+1−2𝑗 − 𝑧2𝑗−𝑛−𝑚−1

𝑧 − 𝑧−1

=
𝑚

∑
𝑗=0

𝜒𝑛+𝑚−2𝑗(𝑧)

15.2.2 Representation of some closely related groups

Proposition 15.16.

1. SO(3) ≅ SU(2)/{±1} = PSU(2).

2. SO(4) ≅ SU(2) × SU(2)/{±(𝐼, 𝐼)}.

3. U(2) ≅ U(1) × SU(2)/{±(𝐼, 𝐼)}.

In fact, these are not only group isomorphisms but also homeomorphisms.

The homeomorphism bit can be deduced from a continuous bijection from com-
pact space to Hausdorff space being a homeomorphism.

Corollary 15.17. Every irreducible representation of SO(3) is of the form

𝜌2𝑚 ∶ SO(3) → GL(𝑉2𝑚)

for some 𝑚 ≥ 0.
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Proof. Irreducible representations of SO(3) correspond to irreducible represen-
tations of SU(2) such that −𝐼 acts trivially. But −𝐼 acts on 𝑉𝑛 as −1 when 𝑛
is odd, and as 1 when 𝑛 is even.

Sketch proof of Proposition 15.16 1. Recall SU(2) can be viewd as the space of
unit norm quaternions in H ≅ R4. Let H0 = {𝐴 ∈ H ∶ tr 𝐴 = 0}, called pure
quaternions, which are spanned as R-space by

𝐢 = (𝑖 0
0 −𝑖) , 𝐣 = ( 0 1

−1 0) , 𝐤 = (0 𝑖
𝑖 0) ,

equipped with norm ‖𝐴‖2 = det 𝐴. It is a 3 dimensional Euclidean space and
SU(2) acts by isometries on H0:

𝑋 ⋅ 𝐴 = 𝑋𝐴𝑋−1.

This gives a group homomorphism 𝜑 ∶ SU(2) → O(3) with kernel 𝑍(SU(2)) =
{±𝐼}. Now SU(2) is compact, O(3) is Hausdorff, hence we have a continuous
group isomorphism 𝜑 ∶ SU(2)/{±𝐼} → im 𝜙 which is also a homeomorphism.

Left to show im 𝜑 = SO(3). im 𝜑 ≤ SO(3): we know SU(2) is path-
connected, so only one of the two possible values ±1 can be taken by the
continuous function det 𝜑. But 𝜑(𝐼2) = 𝐼3 with determinant 1, so have value 1.

Need to show that all rotations in (𝐢, 𝐣)-plane are implemented by elements
𝑎 + 𝑏𝐤, and similarly with any permutations of 𝐢, 𝐣, 𝐤. (the rotations generate
SO(3)). Now

(𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃) ( 𝑎𝑖 𝑏

−𝑏 −𝑎𝑖) (𝑒−𝑖𝜃 0
0 𝑒𝑖𝜃) = ( 𝑎𝑖 𝑒2𝑖𝜃𝑏

−𝑏𝑒−2𝑖𝜃 −𝑎𝑖 )

so ( 𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃 ) acts on R⟨𝐢, 𝐣, 𝐤⟩ = H0 by rotation in (𝐣, 𝐤)-plane through an angle

2𝜃. Check
( cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃) , ( sin 𝜃 𝑖 sin 𝜃
−𝑖 sin 𝜃 cos 𝜃 )

act by rotation of 2𝜃 in (𝐢, 𝐤)- and (𝐢, 𝐣)-planes respectively.

Exercise. Mimick this for SO(4) and U(2).

To get the representations in 2 and 3, we need results about products 𝐺× 𝐻
of two compact groups 𝐺 and 𝐻. Complete list of irreducible representations
comprises the tensor products 𝑉 ⊗𝑊, as 𝑉 , 𝑊 ranges over the irreudibles of 𝐺, 𝐻
respectively. Compare with the finite case. So complete list of irreducibles of
SO(4) is 𝜌𝑚 ⊗ 𝜌𝑛, 𝑚, 𝑛 ≥ 0, 𝑚 = 𝑛 mod 2. Complete list of U(2) is det⊗𝑚 ⊗𝜌𝑛,
𝑚, 𝑛 ∈ Z, 𝑛 ≥ 0.
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of topological group, 56
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