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0 Introduction

0 Introduction
Quantum mechaniccs is a radical generalisation of classical physics involving a
new fundamental constant, Planck’s constant,

ℏ = ℎ/2𝜋 ≈ 1.05 × 10−34𝐽𝑠

Profund new features of quantum mechanics include:

• Quantisation: Physical quantities such as energy may be restricted to
discrete sets of values, or may appear only in specific amounts, called
quanta.

• Wave-particle duality: Classical concepts of a particle and a wave are
merged; they become different aspects of a single eneity that shows either
particle-like or wave-like behaviour, depending on the circumstances.

• Probability and uncertainty

Despite these radical changes, classical physics must be recovered in the limit
ℏ → 0 (which may require careful interpretation).

The followint sections provide some physical background and summarise key
experimental evidence for these novel features of quantum mechanics.

0.1 Light Quanta
An electromagnetic (EM) wave, e.g. light, consists of quanta called photons.
Photons can be regarded as particles with energy, 𝐸, and momentum, 𝑝, related
to frequence, 𝜈 or 𝜔, and wavelength 𝜆, or wavenumber, 𝑘, according to

𝐸 = ℎ𝜈 = ℏ𝜔
𝑝 = ℎ/𝜆 = ℏ𝑘

From the wave equation (satisfied by each EM field component)

𝑐 = 𝜔/𝑘 = 𝜈𝜆 or 𝐸 = 𝑐𝑝

and so the relations above are consistent with photons being particles of rest
mass zero, moving with the speed of light, 𝑐.

Compelling evidence for the existence of photons is provided by the photoelec-
tric effect. Consider light or EM radiation (𝛾) of frequence 𝜔 incident on a metal
surface. For certain metals and suitable frequencies this results in the emission
of electrons (𝑒−) and their maximum kinetic energy 𝐾 can be measured.

Experiments find that

1. the rate at which electrons are emitted is proportional to the intensity of
the radiation (the ‘brightness’ of the source);

2. 𝐾 depends linearly on 𝜔 but not on the intensity;

3. for 𝜔 < 𝜔0, some critical value, no electrons are emitted, irrespective of
the intensity.
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0 Introduction

These results are extremely hard to understand in terms of classical EM
waves. However, they follow naturally from the assumption that the wave consists
of photons, each with energy 𝐸 = ℏ𝜔, and with the intensity of the radiation
proportional to the number of photons incident per unit time. Suppose that an
electron is emitted as a result of absorbing a single photon with sufficiently high
energy. If 𝑊 is the minimum energy needed to liberate an electron from the
metal then

𝐾 = ℏ𝜔 − 𝑊
is the maximum kinetic energy of an emitted electron if 𝜔 > 𝜔0, where 𝜔0 = 𝑊/ℏ,
and no emission is possible if 𝜔 < 𝜔0. Furthermore, the rate at which electrons
are emitted wil be proportional to the rate at which incident photons arrive, and
hence the intensity.

The energy-frequency relation for photons was introduced by Planck and used
to derive the black body spectrum. This is the distribution of energy with frequency
for EM radiation in thermal euqilibrium, a fundamental result in thermodynamics
of far-reaching importance (understanding the cosmic microwave background,
for example). Einstein then applied the energy-frequency relation to explain
the photoelectric effect. Further conclusive evidence for photons as particles,
including the momentum-wavelength relation, came from subsequent experiments
involving Compton scattering.

Consider a photon of wavelength 𝜆 colliding with an electron that is statioinary
in the laboratory frame. Let 𝜆′ be the wavelength of the photon after the collision
and 𝜃 the angle through which it is deflected. Treating the photon as a massless
relativistic particle, conservation of four-momentum imples

𝜆′ − 𝜆 = ℎ
𝑚𝑒𝑐

(1 − cos 𝜃).

This dependence of the change in wavelength (or decrease in energy) on the
scattering angle 𝜃 can be verified experimentally (for X-rays or 𝛾-rays, for
instance).

0.2 The Bohr Model of the Atom
The Rutherford model of the atom was proposed to explain the results of scattering
experiments (e.g. alpha particles scattered by gold foil). The key assumption
is that most of the mass of the atom is concentrated in a compact, positively-
charged nucleus (subsequently understood to consist of protons and neutrons),
with light, negatively-charged electrons orbiting aroundit. The simplest case
is the hydrogen atom, in which a single electron with charge −𝑒 and mass 𝑚𝑒
orbits a nucleus consisting of a single proton with charge +𝑒 and mass 𝑚𝑝. Since
𝑚𝑝 >> 𝑚𝑒 it is a good approximation to assume that the proton is stationary,
at the origin, say. The electron and proton interact via Coulomb’s Law: the
potential energy of the electron and the force it experiences are

𝑉 (𝑟) = − 𝑒2

4𝜋𝜖0

1
𝑟

, 𝐅(𝐫) = −∇𝑉 = − 𝑒2

4𝜋𝜖0

1
𝑟2 ̂𝐫.

The classical equations of motion for the electron imply that its angular
momentum, 𝐋 = 𝐫 × 𝐩, and its total energy,

𝐸 = 1
2

𝑚𝑒𝑣2 − 𝑒2

4𝜋𝜖0

1
𝑟

,
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are constant. The orbits are therefore planar and they can be determined exactly.
For any value of 𝐸 < 0 there is a closed orbit and the electron is bound to the
proton to form a hydrogen atom. For orbits with 𝐸 > 0 the electron eventually
escapes to infinity: it is not bound to the proton.

Despite the success in accounting for Rutherford scattering, this model
has a number of problems. The treatment is identical, mathematically, to
planetary orbits governed by gravity but an importatnt additional feature of
electromagnetism has been left out. An accelerating charge radiates energy and
this means that the electron will actually spiral inwards towards the proton: this
is not a good model of a stable atom.

There is also experimental evidence for complex discrete structure within
atoms. This comes from line spectra: brigh emission lines (from a hot sample)
or dark absorption lines (if radiation is passed through a cooler sample), both
occuring at certain characteristic wavelengths or frequencies. This suggests that
an atom can emit or absorb radiation only at there particular frequencies or
wavelengths, which correspond to photons with particular energies.

The Bohr model restricts the classical orbits of the Rutherford model by pos-
tulating that the angular momentum of the electron obeys the Bohr quantisation
condition:

𝐿 = 𝑛ℏ, 𝑛 = 1, 2, … ,

with only these discrete values allowed. This might seem to be an unsatisfactory
way to address the issue of stability, but it proves to be remarkably successful in
reproducing the complex experimental data relating to line spectra.

Specialising to circular orbits, for simplicity, we have

𝐹 = 𝑚𝑒𝑣2/𝑟, 𝐿 = 𝑚𝑒𝑟𝑣.

It is then straightforward to check that the quantisation condition leads to the
following set of Bohr orbits:

𝑟𝑛 = 4𝜋𝜖0ℏ2

𝑚𝑒𝑒2 𝑛2

𝑣𝑛 = 𝑒2

4𝜋𝜖0ℏ
1
𝑛

𝐸𝑛 = −1
2

𝑚𝑒( 𝑒2

4𝜋𝜖0ℏ
)2 1

𝑛2 , 𝑛 = 1, 2, …

Note that the allowed energy levels are now discrete.
Suppose that an electron makes a transition between levels 𝑛 and 𝑛′ (with

𝑛′ > 𝑛, say) accompanied by emission or absorption of a photon of frequency 𝜔.
Then

ℏ𝜔 = 𝐸𝑛′ − 𝐸𝑛 = 1
2

𝑚( 𝑒2

4𝜋𝜖0ℏ
)2( 1

𝑛2 − 1
𝑛′2 ).

This formula accounts for a vast amount of experimental data on spectral
lines for hydrogen. The Bohr model also provides an estimate for the size of the
hydrogen atom 𝑟1 ≈ 5.29 × 10−11𝑚, the Bohr radius. Despite these considerable
successes, the origin of the Bohr quantisation condition seems obscure. A better
explanation is needed.
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0.3 Matter Waves
The relations used to associate particle properties (𝐸 and 𝑝) to waves can also be
used to associate wave properties (𝜈 or 𝜔 and 𝜆 and 𝑘) to particles. This applies
not just to relativistic photons but also to non-relativisitic particles, electrons for
example, and 𝜆 is called the de Broglie wavelength of the particle. A strong hint
that this might be important for a better understanding of the Bohr quantisatoin
condition comes from observing that for a circular orbit

𝐿 = 𝑟𝑝 = 𝑛ℏ ⇔ 𝑛𝜆 = 2𝜋𝑟.

The Bohr condition therefore says that the circumference of the orbit is exactly
an integral number of de Broglie wavelengths (e.g. 𝑛 = 3 in the figure).

It can also be verified experimentally that electrons do indeed exhibit wave-
like behaviour, and a helpful idealisaton is the double slit experiment. Consider
a source which emits a beam of electrons, a barrier with two slits that can be
open or closed, and a screen on which the electrons are detected.

Suppose first that one slit is open and the other is closed, as in Figure. We
cannot say with certainty where any particular electron will be detected, but after
many electrons have been emitted, the number detected varies with transverse
position according to the distributions shown. If both slits are open, however,
then the electrons produce (perhaps unexpectedly) an interference pattern (Fig).

This matches the interference pattern obtained for waves of wavelength
𝜆 incident on a barrier, as shown in Fig. Consider a point 𝑃 at some fixed
perpendicular distance from the barrier, and let 𝛿 be the difference of the
distances to 𝑃 from each of the slits. Constructive interference occurs for 𝛿 = 𝑛𝜆
while destructive interference occurs for 𝛿 = (𝑛 + 1/2)𝜆. The result is that the
suare of the amplitude of the superposed waves varies as shown in Fig, as 𝑃
varies.

In diffraction expreiments with electrons, we cannot predict what will happen
to any single particle; the most that can be said is that it will be detected at a
given position with a certain probability. The diffraction pattern is conclusive
evidence of interference and so confirms the existence of matter waves, and
diffraction expreiments allow an experimental determination of the de Broglie
wavelength. The results also suggest that the probability distribution for particles
can be expressed as the square of the amplitude of a wave.
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1 Wavefunctions and Operators
In the first few sections we consider quantum particle in one dimension and
introduce some key ideas and three postulates for how to extract physical
information from mathematical framework. Later we will state general axioms
from which these follow.

1.1 Wavefunctions and States
A classical point particle in one dimensional has a position 𝑥 at each time. In
quantum mechanis a particle has a state at each time given by a complex-valued
wavefunction 𝜓(𝑥).

Postulate (P1). A measurement of position gives a result with probability
density |𝜓(𝑥)|2. In other words, |𝜓(𝑥)|2𝛿𝑥 is the probability that the particle is
found between 𝑥 and 𝑥 + 𝛿𝑥. Equivalently, ∫𝑏

𝑎
|𝜓(𝑥)|2𝑑𝑥 is the probability that

the particle is found in [𝑎, 𝑏].

This requires that 𝜓(𝑥) is normalised:

∫
∞

−∞
|𝜓(𝑥)|2𝑑𝑥 = 1.

Example (Gaussian wavefunction). Let 𝜓(𝑥) = 𝐶𝑒−(𝑥−𝑥0)2/2𝛼 for some real
𝛼 > 0.

𝑥

|𝜓(𝑥)|2

∫
∞

−∞
|𝜓(𝑥)|2𝑑𝑥 = |𝐶|2 ∫

∞

−∞
𝑒−(𝑥−𝑥0)2/𝛼𝑑𝑥

= |𝐶|2(𝛼𝜋)1/2

= 1

So 𝜓 is normalised if 𝐶 = ( 1
𝛼𝜋 )1/4. If 𝛼 is small, there is a sharp peak around

𝑥 = 𝑥0, and it exhibits “particle-like” behaviour. If 𝛼 is large, it is more spread
out/diffused.

It is convenient to deal more generaly with normalisable wavefunctions
satisfying

∫
∞

−∞
|𝜓(𝑥)|2𝑑𝑥 < ∞,

i.e. the integral is finite/convergent. Then 𝜓(𝑥) and 𝜙(𝑥) = 𝜆𝜓(𝑥) are physically
equivalent and represent the same state for any 𝜆 ≠ 0. Provided 𝜓 is normalisable,
we can choose 𝜆 so that 𝜙 is normalised. But if 𝜓 is normalised already, 𝜙(𝑥) =
𝑒𝑖𝛼𝜓(𝑥) for any real 𝛼 gives the same probability distribution |𝜙(𝑥)|2 = |𝜓(𝑥)|2.
This means that quantum state is strictly an equivalence class of non-zero
wavefunctions but in practice we often refer to 𝜓(𝑥) as “the state”.
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Any non-zero normalisable wavefunction 𝜓(𝑥) represents a physical state.
For our purpose we can assume, unless we say otherwise,

Assumption.

• 𝜓(𝑥) is smooth, i.e. can be differeniated any number of times, and

• 𝜓(𝑥) → 0 as |𝑥| → ∞.

If 𝜓1(𝑥) and 𝜓2(𝑥) are normalisble then so is

𝜓 = 𝜆1𝜓1 + 𝜆2𝜓2

for any complex numbers 𝜆1, 𝜆2. Physically, this is the principle of superposition
and mathematically, this endows the space of normalisable wavefunctions a
complex vector space structure.

Example (Superposition of Gaussians). Let 𝜓(𝑥) = 𝐵(𝑒−𝑥2/2𝛼 + 𝑒−(𝑥−𝑥0)2/2𝛼).
We can choose 𝐵 so that 𝜓 is normalised.

𝑥

|𝜓(𝑥)|2

1.2 Operators and Observables
A quantum state contains information about other physical quantities or observ-
ables, such as momentum and energy, not just position. In quantum mechanics,
each observable is represented by an operator (denoted by a hat when necessary)
acting on wavefunctions. For example:

• position: ̂𝑥 = 𝑥, ( ̂𝑥𝜓)(𝑥) = 𝑥𝜓(𝑥),

• momentum: ̂𝑝 = −𝑖ℏ 𝑑
𝑑𝑥 , ( ̂𝑝𝜓)(𝑥) = −𝑖ℏ𝜓′(𝑥),

• energy/Hamiltonian: 𝐻 = − 1
2𝑚 ̂𝑝 + 𝑉 ( ̂𝑥) = − ℏ2

2𝑚
𝑑2

𝑑𝑥2 + 𝑉 (𝑥) for a particle
of mass 𝑚 in a potential 𝑉.

If we measure one of these quantities, what answers can we get and what are
the probabilities? Partial answers are provides by P2 and P3.

1.2.1 Expectation Value

For any (normalisable) 𝜓(𝑥) and 𝜙(𝑥), define

(𝜓, 𝜙) = ∫
∞

−∞
𝜓(𝑥)∗𝜙(𝑥)𝑑𝑥,

the complex inner product on the vector space. For 𝜓(𝑥) normalised, define the
expectation value of an observable 𝑄 in this state to be

⟨𝑄⟩𝜓 = (𝜓, 𝑄𝜓) = ∫
∞

−∞
𝜓∗𝑄𝜓𝑑𝑥.
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Note
⟨ ̂𝑥⟩𝜓 = (𝜓, ̂𝑥𝜓) = ∫

∞

−∞
𝑥|𝜓(𝑥)|2𝑑𝑥,

the standard expression for mean, or expected value of 𝑥, given by P1.

Postulate (P2). For any observable, ⟨𝑄⟩𝜓 is the mean result (expected value)
if 𝑄 is measured many times (as times 𝑁 → ∞) with particle in state 𝜓 before
each measurement.

Consider wavefunction
𝜙(𝑥) = 𝜓(𝑥)𝑒𝑖𝑘𝑥

with 𝑘 a real constant. Clearly

|𝜙(𝑥)|2 = |𝜓(𝑥)|2

so
⟨ ̂𝑥⟩𝜙 = ⟨ ̂𝑥⟩𝜓.

But

⟨ ̂𝑝⟩𝜙 = ∫
∞

−∞
𝜙∗(−𝑖ℏ𝜙′)𝑑𝑥

= ∫
∞

−∞
𝜓∗(−𝑖ℏ𝜓′)𝑑𝑥 + ℏ𝑘 ∫

∞

−∞
𝜓∗𝜓𝑑𝑥

= ⟨ ̂𝑝⟩𝜓 + ℏ𝑘

Example. Let 𝜓(𝑥) = 𝐶𝑒−𝑥2/2𝛼, then ⟨ ̂𝑝⟩𝜓 = 0 and 𝜓(𝑥) = 𝐶𝑒−𝑥2/2𝛼𝑒𝑖𝑘𝑥 with
⟨ ̂𝑝⟩𝜙 = ℏ𝑘.

If we accept P2 then the result in the example above accounts for the choice
of momentum poperator ̂𝑝 = −𝑖ℏ𝑑/𝑑𝑥.

1.2.2 Eigenstates & Eigenvalues

Definition. A state 𝜓 ≠ 0 is an eigenstate or eigenfunction of an operator
or observable 𝑄 with eigenvalue 𝑞 if

𝑄𝜓 = 𝑞𝜓.

Postulate (P3). If 𝑄 is measured when the particle is an eigenstate 𝜓 as above,
then the results is the eigenvalue 𝑞 with probability 1.

Example.

1. 𝑄 = ̂𝑥: no (continuous) eigenfunctions since ̂𝑥𝜓(𝑥) = 𝑥𝜓(𝑥) = 𝑞𝜓(𝑥)
implies that 𝜓(𝑥) = 0 for 𝑥 ≠ 𝑞.

2. 𝑄 = ̂𝑝 = −𝑖ℏ 𝑑
𝑑𝑥 : eigenfunctions obey −𝑖ℏ𝜓′ = 𝑞𝜓 so 𝜓(𝑥) = 𝐶𝑒𝑖𝑘𝑥 with

𝑞 = ℏ𝑘. But this is not normalisable as |𝜓(𝑥)|2 = |𝐶|2 so we can’t interpret
this directly as wavefunction for a single particle on −∞ < 𝑥 < ∞.
However, we could normalise it on an interval of length ℓ by choosing
𝐶 = 1/

√
ℓ but then need to look carefully at boundary conditions on

interval.
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3. 𝑄 = 𝐻, Hamiltonian with a particular potential 𝑉 (𝑥) = 1
2 𝐾𝑥2, 𝐾 > 0:

𝐻 = 1
2𝑚 ̂𝑝2 + 1

2 𝐾 ̂𝑥2 so the eigenfunction satisfies

𝐻𝜓 = − ℏ2

2𝑚
𝜓″ + 1

2
𝐾𝑥2𝜓 = 𝐸𝜓.

This is satisfied by
𝜓(𝑥) = 𝐶𝑒−𝑥2/2𝛼

if we choose 𝛼2 = ℏ2/𝐾𝑚. It follows that

𝐸 = ℏ
2

√𝐾
𝑚

is the energy eigenvalue.

Note. Classically for a fixed 𝐸 we have |𝑥| ≤ (2𝐸/𝐾)1/2 but the wavefunction
above gives non-zero probability density along the entire 𝑥-axis.

In general, the energy eigenvalue equation

𝐻𝜓 = − ℏ2

2𝑚
𝜓″ + 𝑉 (𝑥)𝜓 = 𝐸𝜓

for a particle of mass 𝑚 in a potential 𝑉 (𝑥) determines states of definite energy
and allowed energy values. This is the time-independent Schrödinger equation.
Solving this equation for hydrogen atom is our eventual aim.

1.2.3 Some Comments

1. We defined ⟨𝑄⟩𝜓 = (𝜓, 𝑄𝜓) in P2 for 𝜓 normalised. If 𝜓 is not normalised,

⟨𝑄⟩𝜓 = (𝜓, 𝑄𝜓)
(𝜓, 𝜓)

.

2. We defined 𝑄 = ̂𝑥 which reproduces the standard definiton of mean. For
̂𝑝 and 𝐻 we can check explicitly (by taking complex conjugation and

integrating by parts) that ⟨ ̂𝑝⟩𝜓 and ⟨𝐻⟩𝜓 are real.

3. P3 is consistent with P2. Consider energy, for example,

𝐻𝜓 = 𝐸𝜓 ⇒ (𝜓, 𝐻𝜓) = ⟨𝐻⟩𝜓

= (𝜓, 𝐸𝜓) = 𝐸

if 𝜓 is normalised. In other words, the measurement of energy gives result
𝐸 with probability 1. The mean result is 𝐸.

4. From 2 and 3 we can deduce that any eigenvalue of 𝐻 is real.
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1.3 Infinite Potential Well or Particle in a Box
Define an infinite potential well

𝑉 (𝑥) = {0 |𝑥| ≤ 𝑎
𝑢 |𝑥| > 𝑎

−𝑎 𝑎
𝑥

𝑉 (𝑥)

in limit 𝑢 → ∞. The time-independent Schrödinger equation is

− ℏ2

2𝑚
𝜓″ = 𝐸𝜓, |𝑥| ≤ 𝑎

− ℏ2

2𝑚
𝜓″ + 𝑢𝜓 = 𝐸𝜓, |𝑥| > 𝑎

Taking limit 𝑢 → ∞, the second equation suggests we must take 𝜓 = 0 for
|𝑥| > 𝑎, whose rationale will be addressed shortly. The appropriate boundary
conditions are 𝜓 = 0 for |𝑥| = 𝑎 and 𝜓 continuous at 𝑥 = ±𝑎. So we are left to
solve

− ℏ2

2𝑚
𝜓″ = 𝐸𝜓, −𝑎 ≤ 𝑥 ≤ 𝑎

𝜓(±𝑎) = 0

For 𝐸 > 0, set 𝐸 = ℏ2𝑘/2𝑚 with 𝑘 > 0 and we get

𝜓″ + 𝑘𝜓 = 0.

So

𝜓 = 𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥
𝐴 cos 𝑘𝑎 ± 𝐵 sin 𝑘𝑎 = 0
or 𝐴 cos 𝑘𝑎 = 𝐵 sin 𝑘𝑎 = 0

so

either 𝐵 = 0, 𝑘𝑎 = 𝑛𝜋
2

for 𝑛 = 1, 3, …

or 𝐴 = 0, 𝑘𝑎 = 𝑛𝜋
2

for 𝑛 = 2, 4, …

Hence
𝐸𝑛 = ℏ2𝜋2𝑛

8𝑚𝑎2
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for 𝑛 = 1, 2, 3, …. We obtain a discrete set of allowed energies, with normalised
wavefunctions

𝜓𝑛(𝑥) = √1
𝑎

{cos
sin

}𝑛𝜋
2𝑎

𝑥 for 𝑛{ odd
even
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