# Quadratic fields 

Qiangru Kuang

Let $d \in \mathbb{Z}$ be square-free and $d \neq 0,1$. Then

$$
L=\mathbb{Q}(\sqrt{d})=\mathbb{Q}[x] /\left(x^{2}-d\right)
$$

is a degree 2 extension over $\mathbb{Q}$. It is called a quadratic field. If $d>0$ then there are two real embeddings, in which case we call $L$ a real quadratic field. Otherwise $L$ is an imaginary quadratic field. Note that in using this notation, we implicitly assume that there is a complex embedding $\sigma: L \rightarrow \mathbb{C}$.

Ring of integers A particularly nice characterisation of algebraic intgers in a quadratic field is $\alpha \in \mathcal{O}_{L}$ if and only if $N_{L / \mathbb{Q}}(\alpha), \operatorname{tr}_{L / \mathbb{Q}}(\alpha) \in \mathbb{Z}$.

Suppose $\alpha=\frac{u}{2}+\frac{v}{2} \sqrt{d} \in \mathcal{O}_{L}$ where $u, v \in \mathbb{Q}$. Then multiplication by $\alpha$ has with respect to the basis $\{1, \sqrt{d}\}$ matrix representation

$$
\frac{1}{2}\left(\begin{array}{cc}
u & v d \\
v & u
\end{array}\right)
$$

so

$$
\begin{aligned}
& \mathrm{N}_{L / \mathbb{Q}}(\alpha)=\frac{1}{4}\left(u^{2}-v^{2} d\right) \in \mathbb{Z} \\
& \operatorname{tr}_{L / \mathbb{Q}}(\alpha)=u \in \mathbb{Z}
\end{aligned}
$$

so $v^{2} d \in \mathbb{Z}$. Suppose $v=\frac{r}{s}$ is an expression in coprime integers. Then $d^{2} r^{2} \in s^{2} \mathbb{Z}$ so $s^{2} \mid d^{2} r^{2}$. If $p$ is a prime dividing $s$ then $p^{2} \mid d^{2}$. As $d$ is square-free, $p \mid d$. Absurd. Thus $v \in \mathbb{Z}$ and

$$
\mathbb{Z}[\sqrt{d}] \subseteq \mathcal{O}_{L} \subseteq \frac{1}{2} \mathbb{Z}[\sqrt{d}]
$$

- If $d=2,3(\bmod 4)$ then $u^{2}=0,1(\bmod 4), v^{2}=0,1(\bmod 4)$. As $u^{2}=$ $v^{2} d(\bmod 4), u, v \in 2 \mathbb{Z}$ so $\alpha \in \mathbb{Z}[\sqrt{d}]$. Thus $\mathcal{O}_{L}=\mathbb{Z}[\sqrt{d}]$.
- If $d=1(\bmod 4)$ then $u^{2}=v^{2}(\bmod 4)$ so $u=v(\bmod 2)$. Thus

$$
\mathcal{O}_{L} \subseteq\left\{\frac{u}{2}+\frac{v}{2} \sqrt{d}: u=v \quad(\bmod 2)\right\}=\mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2}
$$

Now check that $\frac{1+\sqrt{d}}{2} \in \mathcal{O}_{L}$ so we conclude that $\mathcal{O}_{L}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

Discriminant Recall that

$$
D_{L}=\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)^{2}=\operatorname{det}\left(\operatorname{tr}_{L / \mathbb{Q}}\left(\alpha_{i} \alpha_{j}\right)\right)=(-1)^{\binom{n}{2}} \mathrm{~N}_{L / \mathbb{Q}}\left(f^{\prime}(\alpha)\right)
$$

where $\left\{\alpha_{i}\right\}$ is an integral basis, $\left\{\sigma_{i}\right\}$ are the complex embeddings, $\alpha$ is a generator of $\mathcal{O}_{L}$ as a $\mathbb{Z}$-algebra and $f$ is the minimal polynomial whereof.

- If $d=2,3(\bmod 4)$ then $\alpha=\sqrt{d}, f(x)=x^{2}-d$. Thus

$$
D_{L}=-\mathrm{N}_{L / \mathbb{Q}}(2 \sqrt{d})=4 d
$$

Alternatively, since $\operatorname{tr}_{L / \mathbb{Q}}(1)=2, \operatorname{tr}_{L / \mathbb{Q}}(\sqrt{d})=0$, we can easily compute the matrix $\operatorname{tr}_{L / \mathbb{Q}}\left(\alpha_{i} \alpha_{j}\right)$.

- If $d=1(\bmod 4)$ then $\alpha=\frac{1+\sqrt{d}}{2}, f(x)=x^{2}+x+\frac{1-d}{4}$. Thus

$$
D_{L}=-\mathrm{N}_{L / \mathbb{Q}}(\sqrt{d})=d
$$

Factorisation of ideals Recall that Dedekind's criterion says that subject to certain divisibility condition, given $L=\mathbb{Q}(\alpha)$ and $\alpha \in \mathcal{O}_{L}$ with minimal polynomial $f(x)$ and $p$ prime, if

$$
\bar{f}(t)=\prod_{i=1}^{r} \bar{g}_{i}(t)^{e_{i}} \in \mathbb{F}_{p}[x]
$$

is a factorisation into irreducibles then

$$
(p)=\prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}}
$$

is a factorisation into prime ideals.

- If $p=2$,
- if $d=2,3(\bmod 4)$ then let $\alpha=\sqrt{d}$ so

$$
\bar{f}(x)=x^{2}-d=(x-d)^{2} \in \mathbb{F}_{2}[x]
$$

so $(2)=\mathfrak{p}^{2}$, i.e. ramifies.

- if $d=1(\bmod 8)$ then let $\alpha=\frac{1+\sqrt{d}}{2}$ so

$$
\bar{f}(x)=x^{2}+x+\frac{1-d}{4}=x^{2}+x=x(x+1) \in \mathbb{F}_{2}[x]
$$

so $(2)=\mathfrak{p q}$, i.e. splits completely.

- if $d=5(\bmod 8)$ then $\bar{f}(x) \in \mathbb{F}_{2}[x]$ is irreducible so 2 is inert.
- If $p$ is odd, let $\alpha=\sqrt{d}$ and $f(x)=x^{2}-d$ so
- if $\left(\frac{d}{p}\right)=0$ then $(p)=\mathfrak{p}^{2}$, i.e. ramifies.
- if $\left(\frac{d}{p}\right)=1$ then $(p)=\mathfrak{p q}$, i.e. splits completely.
- if $\left(\frac{d}{p}\right)=-1$ then $p$ is inert.

Lattice Recall that the covolume of a lattice formed by an ideal of the ring of integers is the volume of the parallelepiped spanned by its $\mathbb{Z}$-basis.

Given an imaginary quadratic field $L$, claim that

$$
A(I)=\frac{1}{2} \sqrt{|\operatorname{disc}(I)|}=\frac{\mathrm{N}(I)}{2} \sqrt{\left|D_{L}\right|}
$$

for $I \subseteq \mathcal{O}_{L}$.
Proof. Let $\alpha_{1}=x_{1}+i y_{1}, \alpha_{2}=x_{2}+i y_{2}$ be an integral basis for $I$. Then

$$
A(I)=\left|\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)\right| .
$$

Meanwhile

$$
\operatorname{disc}(I)=\operatorname{det}\left(\begin{array}{ll}
x_{1}+i y_{1} & x_{2}+i y_{2} \\
x_{1}-i y_{1} & x_{2}-i y_{2}
\end{array}\right)^{2}=(2 i)^{2} \operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)^{2} .
$$

By Minkowski's theorem and multiplicativity of norm, we can deduce that for any number field $L$, the ideal class group $\mathrm{Cl}\left(\mathcal{O}_{L}\right)$ is finite and can be generated by the class of prime ideals $\mathfrak{p}$ with $\mathrm{N}(\mathfrak{p}) \leq c_{L}$ where $c_{L}=\frac{2}{\pi} \sqrt{\left|D_{L}\right|}$.

## Example.

1. $d=-7$. As $d=1(\bmod 4), D_{L}=-7$. Thus

$$
c_{L}=\frac{2}{\pi} \sqrt{7}<\frac{2}{3} \sqrt{7}<2
$$

so $\operatorname{Cl}\left(\mathcal{O}_{L}\right)$ is generated by ideals of norm $<2$. There are none except $\mathcal{O}_{L}$. Thus $\operatorname{Cl}\left(\mathcal{O}_{L}\right)$ is trivial. Hence $\mathcal{O}_{L}=\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ is a UFD.
2. $d=-5 . D_{L}=-20$ so

$$
c_{L}=\frac{2}{\pi} \sqrt{20}=\frac{4}{\pi} \sqrt{5}<\frac{4}{3} \sqrt{5}<3
$$

so $\mathrm{Cl}\left(\mathcal{O}_{L}\right)$ is generated by prime ideals $\mathfrak{p} \subseteq \mathcal{O}_{L}$ of norm $\mathrm{N}(\mathfrak{p})=2$. We know by Dedekind's criterion that $2 \mathcal{O}_{L}=\mathfrak{p}^{2}$. Thus $\mathrm{Cl}\left(\mathcal{O}_{L}\right)$ is generated by $[\mathfrak{p}]$ and $[\mathfrak{p}]^{2}=\left[2 \mathcal{O}_{L}\right]=\left[\mathcal{O}_{L}\right]$ is the trivial class. Hence there are two possibilities:
(a) if $\mathfrak{p}$ is principal then $\operatorname{Cl}\left(\mathcal{O}_{L}\right)$ is trivial.
(b) if $\mathfrak{p}$ is not principal then $\operatorname{Cl}\left(\mathcal{O}_{L}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.

But we already knew that $\mathcal{O}_{L}$ is not a $\operatorname{UFD}$ so $\operatorname{Cl}\left(\mathcal{O}_{L}\right)$ is not trivial so must have

$$
\mathrm{Cl}\left(\mathcal{O}_{L}\right) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

For real quadratic fields $L=\mathbb{Q}(\sqrt{d})$, it is instructive as an exercise to derive the baby Minkowski constant, which should be $c_{L}=\frac{1}{2} \sqrt{\left|D_{L}\right|}$.

Example. $d=10$. Then $c_{L}=\frac{1}{2} \sqrt{4 \cdot 10}<4$. By Dedekind's criterion,

$$
\begin{aligned}
& (2)=\mathfrak{p}_{2}^{2} \\
& (3)=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}
\end{aligned}
$$

What we can do at this stage is to compute the norm of some elements. For example $\mathrm{N}(2+\sqrt{10})=6$ so $(2+\sqrt{10})=\mathfrak{p}_{2} \mathfrak{p}_{3}^{\prime}$ or $\mathfrak{p}_{2} \mathfrak{p}_{3}^{\prime}$. In either case, [ $\mathfrak{p}_{2}$ ] generates $\operatorname{Cl}\left(\mathcal{O}_{L}\right)$. If $\mathfrak{p}_{2}$ is principal then there exists $a, b \in \mathbb{Z}$ such that

$$
a^{2}-10 b^{2}= \pm 2
$$

Reduce modulo $5, \pm 2$ is not a quadratic residue so impossible. Thus $\operatorname{Cl}\left(\mathcal{O}_{L}\right) \cong$ $\mathbb{Z} / 2 \mathbb{Z}$.
Exercise. Find the class group of ring of integers of $\mathbb{Q}(\sqrt{-17})$.
Dirichlet's unit theorem Dirichlet's unit theorem states that there is an isomorphism

$$
\mathcal{O}_{L}^{\times} \cong \mu_{L} \times \mathbb{Z}^{r+s-1}
$$

where $\mu_{L}$ is the group of roots of unity in $\mathcal{O}_{L}^{\times}$.
Thus $\mathcal{O}_{L}^{\times}$is finite if and only if

1. $r=1, s=0$, so $L=\mathbb{Q}$, or
2. $r=0, s=1$, so $L=\mathbb{Q}(\sqrt{d})$ for some $d \in \mathbb{Z}$ negative square-free.

For real quadratic fields $L=\mathbb{Q}(\sqrt{d})$, let $\sigma: L \rightarrow \mathbb{R}$ be the real embedding such that $\sigma(\sqrt{d})>0$. As $\sigma\left(\mu_{L}\right) \subseteq \mathbb{R}^{\times}$, must have $\mu_{L}=\{ \pm 1\}$. Consider the homomorphism

$$
\begin{aligned}
\ell^{\prime}: \mathcal{O}_{L}^{\times} & \rightarrow \mathbb{R} \\
\alpha & \mapsto \log |\sigma(\alpha)|
\end{aligned}
$$

As $\ell^{\prime}\left(\mathcal{O}_{L}^{\times}\right) \subseteq \mathbb{R}$ is a lattice, there is a unique element $\alpha \in \mathcal{O}_{L}^{\times}$such that $\sigma(\alpha)>0$, $\ell^{\prime}(\alpha)$ generates the lattice. Then

$$
\mathcal{O}_{L}^{\times}=\left\{ \pm \alpha^{n}: n \in \mathbb{Z}\right\}
$$

This $\alpha$ is called the fundamental unit. It has the property that $\log |\sigma(\alpha)|$ is minimal, i.e. $\sigma(\alpha)>1$ is minimal. This gives us a way to find fundamental units.

Lemma 0.1. Suppose $d=2,3(\bmod 4), v \in \mathcal{O}_{L}^{\times}$and $v>1$. Then $v=$ $a+b \sqrt{d}$ where $a \geq b \geq 1$.
Proof. Let $v^{\prime}=a-b \sqrt{d}$. Then

$$
v v^{\prime}=a^{2}-d b^{2}= \pm 1
$$

As $v>1,\left|v^{\prime}\right|<1$ so

$$
\begin{aligned}
& 2 a=v+v^{\prime}>0 \\
& 2 b=v-v^{\prime}>0
\end{aligned}
$$

Also

$$
\left(\frac{a}{b}\right)^{2}=d \pm \frac{1}{b^{2}}>1
$$

There is an entirely analogous result for $d=1(\bmod 4)$ which is left as an exercise.

Now suppose $d=2,3(\bmod 4)$. Suppose $u=a+b \sqrt{d} \in \mathcal{O}_{L}^{\times}$is the fundamental unit. Let $u^{k}=a_{k}+b_{k} \sqrt{d}$. Then

$$
\begin{aligned}
u^{k+1} & =u \cdot u^{k} \\
& =\left(a_{1}+b_{1} \sqrt{d}\right)\left(a_{k}+b_{k} \sqrt{d}\right) \\
& =\left(a_{1} a_{k}+d b_{1} b_{k}\right)+\left(b_{1} a_{k}+a_{1} b_{k}\right) \sqrt{d}
\end{aligned}
$$

so

$$
b_{k+1}=b_{1} a_{k}+a_{1} b_{k} \geq 2 b_{k}>b_{k}
$$

so $\left(b_{k}\right)_{k \in \mathbb{N}}$ is strictly increasing. We can therefore characterise $u$ as follow: let $b \in \mathbb{N}$ be the least positive integer such that $d b^{2}+1$ or $d b^{2}-1$ is of the form $a^{2}$ for some $a \in \mathbb{N}$. Then $u=a+b \sqrt{d}$ is the fundamental unit.

If instead $d=1(\bmod 4)$, we get

$$
b_{k+1}=\frac{1}{2}\left(b_{1} a_{k}+a_{1} b_{k}\right) \geq b_{k}
$$

with equality if and only if $a_{1}=b_{1}=1, a_{k}=b_{k}$. In this case

$$
\mathrm{N}(u)=\left|\frac{1-d}{4}\right|=1
$$

so $d=5$. In this case $u=\frac{1}{2}(1+\sqrt{5})$ is the fundamental unit.
If instead $d>5$, we proceed as before and characterise $u$ as follow: let $b \in \mathbb{N}$ be the least positive integer such that $d b^{2}+4$ or $d b^{2}-4$ is of the form $a^{2}$ for some $a \in \mathbb{N}$. Then $u=\frac{1}{2}(a+b \sqrt{d})$ is the fundamental unit.

## Example.

1. $d=2$. Then $b=1$ works since $2-1=1^{2}$ so $1+\sqrt{2}$ is a fundamental unit.
2. $d=7$.

$$
\begin{aligned}
& b=1: 7 \pm 1 \text { not a square } \\
& b=2: 4 \cdot 7 \pm 1 \text { not a square } \\
& b=3: 9 \cdot 7+1=8^{2}
\end{aligned}
$$

so $8+3 \sqrt{7}$ is a fundamental unit.

