
Quadratic fields
Qiangru Kuang

Let 𝑑 ∈ Z be square-free and 𝑑 ≠ 0, 1. Then

𝐿 = Q(
√

𝑑) = Q[𝑥]/(𝑥2 − 𝑑)

is a degree 2 extension over Q. It is called a quadratic field. If 𝑑 > 0 then
there are two real embeddings, in which case we call 𝐿 a real quadratic field.
Otherwise 𝐿 is an imaginary quadratic field. Note that in using this notation,
we implicitly assume that there is a complex embedding 𝜎 ∶ 𝐿 → C.

Ring of integers A particularly nice characterisation of algebraic intgers in a
quadratic field is 𝛼 ∈ 𝒪𝐿 if and only if N𝐿/Q(𝛼), tr𝐿/Q(𝛼) ∈ Z.

Suppose 𝛼 = 𝑢
2 + 𝑣

2
√

𝑑 ∈ 𝒪𝐿 where 𝑢, 𝑣 ∈ Q. Then multiplication by 𝛼 has
with respect to the basis {1,

√
𝑑} matrix representation

1
2

(𝑢 𝑣𝑑
𝑣 𝑢 )

so

N𝐿/Q(𝛼) = 1
4

(𝑢2 − 𝑣2𝑑) ∈ Z

tr𝐿/Q(𝛼) = 𝑢 ∈ Z

so 𝑣2𝑑 ∈ Z. Suppose 𝑣 = 𝑟
𝑠 is an expression in coprime integers. Then

𝑑2𝑟2 ∈ 𝑠2Z so 𝑠2 ∣ 𝑑2𝑟2. If 𝑝 is a prime dividing 𝑠 then 𝑝2 ∣ 𝑑2. As 𝑑 is
square-free, 𝑝 ∣ 𝑑. Absurd. Thus 𝑣 ∈ Z and

Z[
√

𝑑] ⊆ 𝒪𝐿 ⊆ 1
2
Z[

√
𝑑].

• If 𝑑 = 2, 3 (mod 4) then 𝑢2 = 0, 1 (mod 4), 𝑣2 = 0, 1 (mod 4). As 𝑢2 =
𝑣2𝑑 (mod 4), 𝑢, 𝑣 ∈ 2Z so 𝛼 ∈ Z[

√
𝑑]. Thus 𝒪𝐿 = Z[

√
𝑑].

• If 𝑑 = 1 (mod 4) then 𝑢2 = 𝑣2 (mod 4) so 𝑢 = 𝑣 (mod 2). Thus

𝒪𝐿 ⊆ {𝑢
2

+ 𝑣
2

√
𝑑 ∶ 𝑢 = 𝑣 (mod 2)} = Z ⊕ Z

1 +
√

𝑑
2

.

Now check that 1+
√

𝑑
2 ∈ 𝒪𝐿 so we conclude that 𝒪𝐿 = Z[ 1+

√
𝑑

2 ].
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Discriminant Recall that

𝐷𝐿 = det(𝜎𝑖(𝛼𝑗))2 = det(tr𝐿/Q(𝛼𝑖𝛼𝑗)) = (−1)(𝑛
2) N𝐿/Q(𝑓 ′(𝛼))

where {𝛼𝑖} is an integral basis, {𝜎𝑖} are the complex embeddings, 𝛼 is a generator
of 𝒪𝐿 as a Z-algebra and 𝑓 is the minimal polynomial whereof.

• If 𝑑 = 2, 3 (mod 4) then 𝛼 =
√

𝑑, 𝑓(𝑥) = 𝑥2 − 𝑑. Thus

𝐷𝐿 = − N𝐿/Q(2
√

𝑑) = 4𝑑.

Alternatively, since tr𝐿/Q(1) = 2, tr𝐿/Q(
√

𝑑) = 0, we can easily compute
the matrix tr𝐿/Q(𝛼𝑖𝛼𝑗).

• If 𝑑 = 1 (mod 4) then 𝛼 = 1+
√

𝑑
2 , 𝑓(𝑥) = 𝑥2 + 𝑥 + 1−𝑑

4 . Thus

𝐷𝐿 = − N𝐿/Q(
√

𝑑) = 𝑑.

Factorisation of ideals Recall that Dedekind’s criterion says that subject
to certain divisibility condition, given 𝐿 = Q(𝛼) and 𝛼 ∈ 𝒪𝐿 with minimal
polynomial 𝑓(𝑥) and 𝑝 prime, if

𝑓(𝑡) =
𝑟

∏
𝑖=1

𝑔𝑖(𝑡)
𝑒𝑖 ∈ F𝑝[𝑥]

is a factorisation into irreducibles then

(𝑝) =
𝑟

∏
𝑖=1

𝔭𝑒𝑖
𝑖

is a factorisation into prime ideals.

• If 𝑝 = 2,

– if 𝑑 = 2, 3 (mod 4) then let 𝛼 =
√

𝑑 so

𝑓(𝑥) = 𝑥2 − 𝑑 = (𝑥 − 𝑑)2 ∈ F2[𝑥]

so (2) = 𝔭2, i.e. ramifies.

– if 𝑑 = 1 (mod 8) then let 𝛼 = 1+
√

𝑑
2 so

𝑓(𝑥) = 𝑥2 + 𝑥 + 1 − 𝑑
4

= 𝑥2 + 𝑥 = 𝑥(𝑥 + 1) ∈ F2[𝑥]

so (2) = 𝔭𝔮, i.e. splits completely.
– if 𝑑 = 5 (mod 8) then 𝑓(𝑥) ∈ F2[𝑥] is irreducible so 2 is inert.

• If 𝑝 is odd, let 𝛼 =
√

𝑑 and 𝑓(𝑥) = 𝑥2 − 𝑑 so

– if (𝑑
𝑝) = 0 then (𝑝) = 𝔭2, i.e. ramifies.

– if (𝑑
𝑝) = 1 then (𝑝) = 𝔭𝔮, i.e. splits completely.

– if (𝑑
𝑝) = −1 then 𝑝 is inert.
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Lattice Recall that the covolume of a lattice formed by an ideal of the ring of
integers is the volume of the parallelepiped spanned by its Z-basis.

Given an imaginary quadratic field 𝐿, claim that

𝐴(𝐼) = 1
2

√| disc(𝐼)| = N(𝐼)
2

√|𝐷𝐿|

for 𝐼 ⊆ 𝒪𝐿.

Proof. Let 𝛼1 = 𝑥1 + 𝑖𝑦1, 𝛼2 = 𝑥2 + 𝑖𝑦2 be an integral basis for 𝐼. Then

𝐴(𝐼) = ∣det (𝑥1 𝑥2
𝑦1 𝑦2

)∣ .

Meanwhile

disc(𝐼) = det (𝑥1 + 𝑖𝑦1 𝑥2 + 𝑖𝑦2
𝑥1 − 𝑖𝑦1 𝑥2 − 𝑖𝑦2

)
2

= (2𝑖)2 det (𝑥1 𝑥2
𝑦1 𝑦2

)
2

.

By Minkowski’s theorem and multiplicativity of norm, we can deduce that for
any number field 𝐿, the ideal class group Cl(𝒪𝐿) is finite and can be generated
by the class of prime ideals 𝔭 with N(𝔭) ≤ 𝑐𝐿 where 𝑐𝐿 = 2

𝜋 √|𝐷𝐿|.

Example.

1. 𝑑 = −7. As 𝑑 = 1 (mod 4), 𝐷𝐿 = −7. Thus

𝑐𝐿 = 2
𝜋

√
7 < 2

3
√

7 < 2

so Cl(𝒪𝐿) is generated by ideals of norm < 2. There are none except 𝒪𝐿.
Thus Cl(𝒪𝐿) is trivial. Hence 𝒪𝐿 = Z[ 1+

√
−7

2 ] is a UFD.

2. 𝑑 = −5. 𝐷𝐿 = −20 so

𝑐𝐿 = 2
𝜋

√
20 = 4

𝜋
√

5 < 4
3

√
5 < 3

so Cl(𝒪𝐿) is generated by prime ideals 𝔭 ⊆ 𝒪𝐿 of norm N(𝔭) = 2. We
know by Dedekind’s criterion that 2𝒪𝐿 = 𝔭2. Thus Cl(𝒪𝐿) is generated
by [𝔭] and [𝔭]2 = [2𝒪𝐿] = [𝒪𝐿] is the trivial class. Hence there are two
possibilities:

(a) if 𝔭 is principal then Cl(𝒪𝐿) is trivial.
(b) if 𝔭 is not principal then Cl(𝒪𝐿) ≅ Z/2Z.

But we already knew that 𝒪𝐿 is not a UFD so Cl(𝒪𝐿) is not trivial so
must have

Cl(𝒪𝐿) ≅ Z/2Z.

For real quadratic fields 𝐿 = Q(
√

𝑑), it is instructive as an exercise to derive
the baby Minkowski constant, which should be 𝑐𝐿 = 1

2 √|𝐷𝐿|.
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Example. 𝑑 = 10. Then 𝑐𝐿 = 1
2
√

4 ⋅ 10 < 4. By Dedekind’s criterion,

(2) = 𝔭2
2

(3) = 𝔭3𝔭′
3

What we can do at this stage is to compute the norm of some elements. For
example N(2 +

√
10) = 6 so (2 +

√
10) = 𝔭2𝔭′

3 or 𝔭2𝔭′
3. In either case, [𝔭2]

generates Cl(𝒪𝐿). If 𝔭2 is principal then there exists 𝑎, 𝑏 ∈ Z such that

𝑎2 − 10𝑏2 = ±2.

Reduce modulo 5, ±2 is not a quadratic residue so impossible. Thus Cl(𝒪𝐿) ≅
Z/2Z.

Exercise. Find the class group of ring of integers of Q(
√

−17).

Dirichlet’s unit theorem Dirichlet’s unit theorem states that there is an
isomorphism

𝒪×
𝐿 ≅ 𝜇𝐿 × Z𝑟+𝑠−1

where 𝜇𝐿 is the group of roots of unity in 𝒪×
𝐿.

Thus 𝒪×
𝐿 is finite if and only if

1. 𝑟 = 1, 𝑠 = 0, so 𝐿 = Q, or

2. 𝑟 = 0, 𝑠 = 1, so 𝐿 = Q(
√

𝑑) for some 𝑑 ∈ Z negative square-free.

For real quadratic fields 𝐿 = Q(
√

𝑑), let 𝜎 ∶ 𝐿 → R be the real embedding
such that 𝜎(

√
𝑑) > 0. As 𝜎(𝜇𝐿) ⊆ R×, must have 𝜇𝐿 = {±1}. Consider the

homomorphism

ℓ′ ∶ 𝒪×
𝐿 → R
𝛼 ↦ log |𝜎(𝛼)|

As ℓ′(𝒪×
𝐿) ⊆ R is a lattice, there is a unique element 𝛼 ∈ 𝒪×

𝐿 such that 𝜎(𝛼) > 0,
ℓ′(𝛼) generates the lattice. Then

𝒪×
𝐿 = {±𝛼𝑛 ∶ 𝑛 ∈ Z}.

This 𝛼 is called the fundamental unit. It has the property that log |𝜎(𝛼)| is
minimal, i.e. 𝜎(𝛼) > 1 is minimal. This gives us a way to find fundamental units.

Lemma 0.1. Suppose 𝑑 = 2, 3 (mod 4), 𝑣 ∈ 𝒪×
𝐿 and 𝑣 > 1. Then 𝑣 =

𝑎 + 𝑏
√

𝑑 where 𝑎 ≥ 𝑏 ≥ 1.

Proof. Let 𝑣′ = 𝑎 − 𝑏
√

𝑑. Then

𝑣𝑣′ = 𝑎2 − 𝑑𝑏2 = ±1.

As 𝑣 > 1, |𝑣′| < 1 so

2𝑎 = 𝑣 + 𝑣′ > 0
2𝑏 = 𝑣 − 𝑣′ > 0

Also
(𝑎

𝑏
)

2
= 𝑑 ± 1

𝑏2 > 1.
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There is an entirely analogous result for 𝑑 = 1 (mod 4) which is left as an
exercise.

Now suppose 𝑑 = 2, 3 (mod 4). Suppose 𝑢 = 𝑎+𝑏
√

𝑑 ∈ 𝒪×
𝐿 is the fundamental

unit. Let 𝑢𝑘 = 𝑎𝑘 + 𝑏𝑘
√

𝑑. Then

𝑢𝑘+1 = 𝑢 ⋅ 𝑢𝑘

= (𝑎1 + 𝑏1
√

𝑑)(𝑎𝑘 + 𝑏𝑘
√

𝑑)

= (𝑎1𝑎𝑘 + 𝑑𝑏1𝑏𝑘) + (𝑏1𝑎𝑘 + 𝑎1𝑏𝑘)
√

𝑑

so
𝑏𝑘+1 = 𝑏1𝑎𝑘 + 𝑎1𝑏𝑘 ≥ 2𝑏𝑘 > 𝑏𝑘

so (𝑏𝑘)𝑘∈N is strictly increasing. We can therefore characterise 𝑢 as follow: let
𝑏 ∈ N be the least positive integer such that 𝑑𝑏2 + 1 or 𝑑𝑏2 − 1 is of the form 𝑎2

for some 𝑎 ∈ N. Then 𝑢 = 𝑎 + 𝑏
√

𝑑 is the fundamental unit.
If instead 𝑑 = 1 (mod 4), we get

𝑏𝑘+1 = 1
2

(𝑏1𝑎𝑘 + 𝑎1𝑏𝑘) ≥ 𝑏𝑘

with equality if and only if 𝑎1 = 𝑏1 = 1, 𝑎𝑘 = 𝑏𝑘. In this case

N(𝑢) = ∣1 − 𝑑
4

∣ = 1

so 𝑑 = 5. In this case 𝑢 = 1
2 (1 +

√
5) is the fundamental unit.

If instead 𝑑 > 5, we proceed as before and characterise 𝑢 as follow: let 𝑏 ∈ N
be the least positive integer such that 𝑑𝑏2 + 4 or 𝑑𝑏2 − 4 is of the form 𝑎2 for
some 𝑎 ∈ N. Then 𝑢 = 1

2 (𝑎 + 𝑏
√

𝑑) is the fundamental unit.

Example.

1. 𝑑 = 2. Then 𝑏 = 1 works since 2 − 1 = 12 so 1 +
√

2 is a fundamental unit.

2. 𝑑 = 7.

𝑏 = 1 ∶ 7 ± 1 not a square
𝑏 = 2 ∶ 4 ⋅ 7 ± 1 not a square
𝑏 = 3 ∶ 9 ⋅ 7 + 1 = 82

so 8 + 3
√

7 is a fundamental unit.
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