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0 Introduction

0 Introduction
Question: how can we tell when two objects are different? This is in general a
difficult question and to answer it we need a variety of techniques.

• N ∼= Q is easier thatn Q � R.

• To show two finite dimensional vector spaces are not isomorphic we can
compute their dimensions.

• For simplicial complexes, we can compute that homology groups Hn(X).
Note that this is a partial invariant, in contrast to dimensiona which is a
complete invariant for finite dimensional spaces.

• We can also consider π1(X). However in contrast to H1(X), π1(X) is not
necessarily abelian. The Adian-Rabin theorem says that there can be no
algorithm which decides if a finitely presented group is trivial or not. Can
we build algorithm which sometimes work? We can solve the problem
for finite groups. For infinite groups we can build upon this idea. We
can write out the lists of finite quotiesnts of two groups G1 and G2 and
compare them. The question: when does this work?
Before we answer this question, note that a list of quotient groups is a
very unpleasant object. Instead, we can combine this list into a single
“limiting” object, called the profinite completion. This technique works
in other situations:

– p-adic integers Zp being the “limit” of Z/pnZ,
– Galois theory: let

K = Q(nth root of unit for all n)
KN = Q(nth root of unit for n ≤ N)

Then K =
⋃
KN and is a Galois extension over Q so we can consider

Gal(K/Q), which is the “limit” of Gal(Kn/Q).
– étale fundamental groups in algebraic geometry.

Aside from profinite groups, we will also study group cohomolgy in this
course. It is another invariant of groups. This is related to the homology of a
simplicial complex and gives abelian invariants. Among other things, it tells if
a group is free. It answers the question: given a group G and an abelian group
A, how many groups E exists such that A E E and E/A ∼= G?

2



1 Inverse limits

1 Inverse limits

1.1 Categories & Limits
Recap on categories and limits. Refer to III Category Theory.

1.2 Inverse limits and profinite groups

Definition (profinite completion). Let G be a group. Let N be the category
whose objects are finite index normal subgroups N Ef G and with an arrow
N1 → N2 if and only if N1 ⊆ N2. This is a poset category.

The assignment

N 7→ G/N

(N1 → N2) 7→ (G/N1 → G/N2)

is a functor N→ Grp.
The limit of this diagram is a group called the profinite completion Ĝ of

G.

Notation. Ĝ is equipped with homomorphisms making the following diagram
commutes:

Ĝ

G/N1 G/N2

In this course we refer to them as projection maps and the horizontal map as
transition map. In addition, we have a canonical map i : G → Ĝ which exists
by the definition of limit.

We haven’t shown profinite completion exists. We will prove it shortly in a
more general context, by showing that it is an exmaple of a particular kind of,
in some sense well-behaved, limit.

Definition (inverse system). A poset (J,�) is called an inverse system if
for all i, j ∈ J exists k ∈ J such that k � i and k � j.

Example. In N, N1 ∩N2 is a subgroup of both N1 and N2.

Definition (inverse system, inverse limit). An inverse system (of groups,
sets etc) is a functor J→ C where J is the poset category corresponding to
an inverse system.

If F : J→ Grp is an inverse system, the limit of F is called the inverse
limit of the objects F (j).

Since this is the central subject of this course, we spell out this definition
explicitly

3



1 Inverse limits

Definition. An inverse system of groups, indexed over an inverse system
(J,�), consists of

• a group Gj for all j ∈ J ,

• for all i � j, a transition map φij : Gi → Gj such that φii = idGi , φjk ◦
φij = φik.

The inverse limit of the system (Gj)j∈J is a group lim←−j∈J Gj with projection
maps pj : lim←−Gj → Gj such that φij ◦ pi = pj and such that for any Z with
qj : Z → Gj , a map q : Z → lim←−Gj such that pj ◦ q = qj .

Definition (profinite group). A profinite group is the inverse limit of an
inverse system of finite groups.

Example.

1. The profinite completion of a group G is a profinite group.

2. Zp, the p-adic integers, is lim←−Z/pnZ.

Proposition 1.1. Let (Gj)j∈J be an inverse system of groups indexed by
an inverse system J . lim←−Gj exists and is equal to

L = {(gj)j∈J ∈
∏
j∈J

Gj : ϕij(gi) = gj}.

Proof. Let pj : L → Gj be the restriction of the projection
∏
Gj → Gj . Then

ϕij ◦ pi = pj . Now let qj : Z → Gj be a cone. There is a unique map
f : Z →

∏
Gj such that pj ◦ f = qj and f(Z) ⊆ L.

Note that we do not use any properties of inverse system or posets. The
construction works equally well for sets (except that the resulting inverse limit
is not a group). We will see that the finiteness and inverse system requirement
ensures that the construction gives a nonempty set. To do so we need to bring
in topology.

1.3 Topology on a profinite group/set
Give each finite group Gj in an inverse system the discrete topology. Then give∏
Gj the product topology and lim←−Gj ⊆

∏
Gj the subspace topology.

∏
Gj is

Hausdorff and compact (Tychonoff). It follows that lim←−Gj is Hausdorff. Since
the conditions defining the subgroup are closed conditions, it is also compact.

Proposition 1.2. If (Xj)j∈J is an inverse system of nonempty finite sets
then lim←−Xj 6= ∅.

Proof. Consider the set

YI = {(xj) ∈
∏

XJ : φij(xi) = xj for all i, j ∈ I}
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1 Inverse limits

where I ⊆ J . The YI ’s are closed and
⋃
I finite YI = lim←−Xj .

To show for I finite, YI 6= ∅, by definition of inverse system exists k ∈ J such
that k ≤ i for all i ∈ I. Now Xk is nonempty so exists xk ∈ XK . For i ∈ J ,
set X = ϕki(xk). For j /∈ I, set xj to be arbitrary. Then this gives a sequence
(xi) ∈ YI .

Now use finite intersection property: suppose I1, . . . , Im are are finite, then

YI1 ∩ · · · ∩ YIm ⊇ YI1∪···∪Im 6= ∅

so lim←−Xj =
⋃
I⊆J finite YI 6= ∅.

It is perhaps psychologically comforting to point out that the topology on a
profinite group is metrisable, thanks to

Proposition 1.3. If (Xi) is a countable family of metric spaces then
∏
Xi

is a metric space.

Proof. IB Metric and Topological Spaces.

In applications to profinite completions this is often implied by

Proposition 1.4. If G is a finitely generated group then it has only count-
ably many finite index normal subgroups.

Proof. Every finite index normal subgroup arises as the kernel of some homo-
morphism G → Sn. For a fixed n the homomorphism is determined by the
image of the generators of G, so finitely many.

Proposition 1.5. Let G be a profinite group. Then multiplication µ :
G×G→ G and inversion i : G→ G are continuous maps.

Proof. Example sheet 1.

Thus G is a topological group.

Definition. An isomorphism of topological groups is an isomorphism f :
G→ H which is also a homeomorphism.

From now on we only consider homomorphism between profinite groups
which are continuous.

Lemma 1.6. Let H be a topological group and let G = lim←−Gj be an inverse
limit of finite groups with projections pj : G→ Gj. Then a homomorphism
f : H → G is continuous if and only if pj ◦ f : H → Gj is continuous, if
and only if ker(pj ◦ f) is an open subgroups of H.

Proof. The first iff is by definition of the product topology on
∏
Gj . For the

second, let fj = pj ◦ f . If fj : H → Gj is continuous then ker fj = f−1
j (1) is

open. Conversely, if ker fj is open then f−1
j (gj) = h ·ker(fj), where h ∈ f−1

j (gj)

if nonempty, is open for all gj ∈ Gj . Thus f−1
j (U) is open for all U ⊆ Gj .
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1 Inverse limits

Proposition 1.7. Let G be a compact topological group. Then a subgroup
U ⊆ G is open if and only if it is closed and has finite index.

Proof. Example sheet 1.

Proposition 1.8. Let G = lim←−Gj be an inverse system of finite groups.
Then the open subgroups Uj = ker pj form a basis of open neighbourhoods of
the identity.

Proof. Let V 3 1 be open. By definition of the product topology, V contains
a basic open set of the form p−1

j1
(Xj1) ∩ · · · ∩ p−1

jm
(Xjm) 3 1, where Xji ⊆

Gji open. Then 1 ∈ Xji ⊆ Gji so by shrinking wlog Xji = {1}. Thus 1 ∈
ker pj1 ∩ · · · ∩ ker pjm . Now can find k ∈ J such that k ≤ ji for all i. Then
1 ∈ Uk ⊆ ker pj1 ∩ · · · ∩ ker pjm ⊆ V .

Corollary 1.9. A basis of open sets in G is {p−1
j (gj) : j ∈ J, gj ∈ Gj}.

Corollary 1.10. Let X ⊆ G = lim←−Gj be a subset. Then X is dense in G
if and only if pj(X) = pj(X).

Proof. If X is not dense then exist nonempty open set U such that U ∩X = ∅.
wlog U = p−1

j (gj). Then gj ∈ pj(G) \ pj(X). Similarly if X is dense and U is
nonempty open, wlog U = p−1

j (gj), then gj ∈ pj(G) = pj(X) so X ∩U 6= ∅.

Proposition 1.11. Let (Gj) be an inverse system of finite groups and
G = lim←−Gj. Let X ⊆ G be a subset. Then X = lim←−Xj where Xj = pj(X).

Proof. Let

X ′ = lim←−Xj = {(gi) ∈
∏

Gj : gj ∈ Xj for all j, φij(gi) = gj}

=
⋂
p−1
j (Xj)

=
⋂
p−1
j (pj(X))

which is closed. X ⊆ X ′ so X ⊆ X ′. Let g ∈ G \X. Then exists a basic open
set p−1

j (gj) ⊆ G \X. Hence X ∩ p−1
j (gj) = ∅, so gj /∈ Xj , so g /∈ X ′.

Corollary 1.12. X is closed if and only if X = lim←−Xj.

Along the same line

Proposition 1.13. Let G be a profinite group. Then

X =
⋂

NEoG

XN.
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1 Inverse limits

Proof. Since ker pj form a neighbourhood basis of the identity,

X =
⋂
p−1
j (pj(X)) =

⋂
X · ker pj ⊆

⋂
NEoG

XN.

Conversely if g /∈ X then can find a neighbourhood p−1
j (gj) of g that is disjoint

from X. Then g /∈ X · ker pj .

Example. If Γ is an abstract group, Γ̂ its profinite completion with i : Γ→ Γ̂
then pj(i(Γ)) = Γ/Nj = pj(Γ̂), so i(Γ) is dense in Γ̂.

1.4 Change of inverse system
1.4.1 Surjective inverse system

Let (Gj)j∈J be an inverse system with transition funcitons ϕij and projections
pj .

Definition (surjective inverse system). An inverse system is surjective if
the transition maps ϕij are all surjective.

Proposition 1.14. Let (Xj) be a surjective inverse system of nonempty
finite sets. Then all projections pj : lim←−Xj → Xj are surjective.

Proof. Example sheet 1.

Proposition 1.15. Let (Xj) be an inverse system of finite sets. Then there
exists a surjective inverse system with the same inverse limit.

Proof. Recall that

lim←−Xj =
{
(xj) ∈

∏
Xj : ϕij(xi) = xj

}
.

Define Yj = pj(lim←−Xj). Then Yj with transition maps ϕij |Yi
form an inverse

system: if yi ∈ Yi then ϕij(yi) ∈ YJ . Then lim←−Yj = lim←−Xj , and this is a
surjective inverse system.

1.4.2 Cofinal subsystems

Definition (cofinal). If J is an inverse system, I ⊆ J is cofinal if for all
j ∈ J exists i ∈ I such that i ≤ j.

Therefore I is also an inverse system.

Example.

1. In the system of finite index subgroups of Z, one cofinal system is {n!Z}.

2. If k ∈ J , then J≤k = {j ∈ J : j ≤ k} is a principal cofinal system.

3. A cofinal system of Nop is the same as an increasing sequence of integers.

7



1 Inverse limits

Definition (linearly ordered inverse system). An inverse system is linearly
ordered if it is isomorphic to a subset of Nop.

Proposition 1.16. Let J be a countable inverse system with no initial
element. Then J has a linearly ordered cofinal system.

Proof. Example sheet 1.

Proposition 1.17. Let (Xj) be an inverse system of (finite) sets. Let I ⊆ J
be a cofinal system. Then lim←−j∈J Xj

∼= lim←−i∈I Xi.

Proof. We prove the proposition for profinite groups. Let G = lim←−j∈J Gj ,H =

lim←−i∈I Gi. The map
∏
Gj →

∏
Gi is a continuous homomorphism and restricts

to a map f : G→ H. Remains to check this is a bijection. Suppose (gj) ∈ ker f ,
then pi(g) = gi = 1 for all i ∈ I. For every j ∈ J exists i ∈ I such that i ≤ j so
gj = ϕij(gi) = 1. Thus (gj) = 1. For surjectivity, let (gi) ∈ H. For j /∈ I, let
i ∈ I be such that i ≤ j and set gj = ϕij(gi). It is well-defined and (gj) ∈ G.

8



2 Profinite groups

2 Profinite groups

2.1 Zp, the p-adic integers
Let p be a prime. Consider the inverse system

· · · Z/pn · · · Z/p2 Z/p 1

of finite rings. The inverse limit is the profinite ring p-adic integers

Zp = lim←−Z/pn.

An element α ∈ Zp is a sequence (an) of elements of Z/pn such that an =
am mod pn if n ≥ m, where an = α (mod pn) = pn(a).

Addition and multiplication are done component-wise. One way to get such
α is to take a ∈ Z and let an be reductions mod pn of a. This gives ι : Z→ Zp.

Definition (pro-p group, pro-p completion). A pro-p group is an inverse
limit of p-groups.

The pro-p completion of Γ is

Γ̂(p) = lim←−
NEΓ

Γ/N a p-group

Γ/N.

Therefore Zp = Ẑ(p). Usually we suppress ι and regard Z ⊆ Zp.
There is a natural metric on Zp: let α = (an), β = (bn). If α = β then

d(α, β) = 0. Otherwise let n be the smallest integer such that an 6= bn and set
d(α, β) = p−n. The restriction of this metric to Z is the “p-adic metric” on Z.

The open ball is

B(0, r) = {(an) : am = 0 for p−m ≥ r}
= {(an) : am = 0 for m ≤ − logp r}

= ker(Zp → Z/pb− logp rc)

which is an open subgroup of Zp.

Proposition 2.1. Zp is abelian and torsion-free.

Proof. Abelian is obvious. For torsion-free, let α = (an) ∈ Zp with α 6= 0 and
mα = 0 for some m > 0. Write m = prs where s is coprime to p. As α 6= 0,
exists n such that α 6= 0 (mod pn), i.e. an 6= 0 ∈ Z/pn. As m 6= 0, s 6= 0.
Now consider ma (mod pn+r). Claim this is nonzero: if pn+r | man+r then
pn | an+r, hence an+r = 0 (mod pn) = an (mod pn).

Proposition 2.2. The ring Zp is an integral domain.

Proof. Example sheet 1.

2.2 The profinite integers Ẑ

9



2 Profinite groups

Proposition 2.3. Ẑ is abelian and torsion-free.

Proposition 2.4. Ẑ has zero divisors.

Both follow from

Theorem 2.5 (Chinese remainder theorem). There is an isomorphism of
topological rings

Ẑ ∼=
∏

p prime
Zp.

Proof. There is a continuous homomorphism Ẑ→ Zp for every p as

Ẑ

Z/pn Z/pm

We thus have a continuous homomorphism f : Ẑ→
∏
p prime Zp.

f is surjective if and only if im f ⊆
∏

Zp is dense, if and only if im f inter-
sects all basic open sets of

∏
Zp non-trivially. A basic open set has the form

φ−1(x1, . . . , xr) where φ :
∏

Zp → Z/pn1
1 ×· · ·×Z/pnr

r . Now invoke the classical
Chinese remainder theorem: let m = pn1

1 · · · pnr
r , then we have a commutative

diagram
Ẑ

∏
Zp

Z/m Z/pn1
1 × · · · × Z/pnr

r

f

φ

∼=

As (x1, . . . , xr) ∈ im(φ ◦ f), have im f ∩ φ−1(x1, . . . , xr) 6= ∅.
Now suppose g ∈ Ẑ \ {0}. Then exists m such that the image of g in

Ẑ → Z/m is nonzero. Now use injectivity of the isomorphism to conclude f
must be injective.

2.3 Profinite matrix group
If R is a commutative ring with 1 then there is a matrix ring Matn(R) of n× n
matrices whose entries are in R. In particular

Matn(Zp) ∼= lim←−Matn(Z/pm)

Matn(Ẑ) ∼= lim←−Matn(Z/m)

for similar argument as above.
Define

SLn(R) = {A ∈ Matn(R) : detA = 1}
GLn(R) = {A ∈ Matn(R) : detA ∈ R×}

10



2 Profinite groups

As det : Matn(Zp)→ Zp is a polynomial so continuous, SLn(Zp) ⊆ Matn(Zp) is
a closed subset and is a group under multiplication. We will show in example
sheet that Z×

p and Ẑ× are closed subsets of Zp and Ẑ, and in fact they are
isomorphic to lim←−(Z/p

m)× and lim←−(Z/m)×. We have

SLn(Zp) = lim←−SLn(Z/pm)

etc. A version of Chinese remainder theorem also holds.
Problem: consider the inclusion SLn(Z) ⊆ SLn(Ẑ). How does this inclusion

look like? For example, is this inclusion dense? (the answer is yes, see example
sheet 2). We know from general theory this holds if and only if SLn(Z) →
SLn(Z/m) is surjecitve. But this is not obvious at all. For example how can we
find an element that is mapped to ( 7 9

4 9 ) ∈ SL2(Z/13)?
Another question: do we have SLn(Ẑ) = ŜLn(Z), i.e. does SLn(Z) have

any other finite quotients other than SLn(Z/m)? The answer is no for n = 2
(example sheet 2), and yes for n ≥ 3 (hard theorem of Bass-Lazard-Serre).

2.4 Subgroups, quotients and homomorphisms
A reminder that we are working in the category of topological groups so sub-
groups are closed and homomorphisms are continuous (non-closed subgroup can
be pretty wild: Ẑ ⊇

∏
Zp ⊇

∏
Z).

Proposition 2.6. A closed subgroup of a profinite group is a profinite group.

Proposition 2.7. Let G = lim←−Gj be a profinite group of a surjective inverse
system, H ≤ G a closed subgroup. Let Hj = pj(H). Then H has finite index
(i.e. open) if and only if [Gj : Hj ] is constant for j ∈ I for some cofinal
subsystem I ⊆ J , in which case [G : H] = [Gj : Hj ] for j ∈ I.

Proof. Exercise.

Proposition 2.8. Let G be a profinite group and N Ec G. Then G/N
equipped with the quotient topology is a profinite group.

Proof. Let G = lim←−Gj be a surjective inverse system. Define Nj = pj(N). Then
Nj E Gj and define Qj = Gj/Nj . Exists ψij such that the following diagram
commutes:

Gi Gj

Gi/Ni Gj/Nj

φij

ψij

Check that (Qj , ψij) is an inverse system. Let Q = lim←−Qj . There exists a
continuous map

∏
Gj →

∏
Qj restricting to f : G → Q. (gj) ∈ ker f if

and only if gj ∈ ker(Gj → Qj) = Nj for all j, if and only if g ∈ N . Thus

11



2 Profinite groups

ker f = N . By first isomorphism theorem for groups, exists group isomorphism
f : G/N → Q making the diagram commute

G Q

G/N

f

f

f is continuous by definition of quotient topology. f is a homeomorphism be-
cause G/N is compact and Q is Hausdorff.

Theorem 2.9 (first isomorphism theorem for profinite groups). If G and Q
are profinite groups, f : G → Q is a continuous surjective homomorphism,
then exists an isomorphism of topological groups f : G/ ker f → Q making
the following diagram commute

G Q

G/ ker f

f

f

Corollary 2.10. A (closed) quotient of a profinite group is a profinite group
when given the quotient topology.

Definition (morphism of inverse system). Let (Gj) and (Hj) be inverse
system of finite groups, indexed over the same poset J . A morphism of
inverse system is a family of group homomorphisms fj : Gj → Hj such that
for all i ≤ j, the following diagram commutes

Gi Hj

Gj Hj

fi

ϕG
ij ϕH

ij

fj

Proposition 2.11. Given a morphism of inverse systems as above, exists
a unique continuous homomorphism f : G→ H such that

G H

Gj Hj

f

pGj pHj

fj

commutes for all j.

Proof. Exercise.
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2 Profinite groups

Proposition 2.12. Let (Gj)j∈J , (Hi)i∈I be inverse systems of finite groups,
G = lim←−Gj ,H = lim←−Hj. Let f : G → H be a continuous homomorphism.
Assume J and I are countable. Then there are cofinal subsystems J ′ ⊆
J, I ′ ⊆ I with an isomorphism α : J ′ → I ′ and a morphism fj′ : Gj′ → Hα(j′)

of inverse system which induces f .

Proof. We may assume J and I are linearly ordered, i.e. isomorphic to Nop.
Also we may assume (Gj)j∈J is surjective. Set J ′ = J . Construct an increasing
sequence kn of natural numbers inductively as follows: the composition G →
H → Hn is continuous so the kernel is open, hence containing a basic open
subgroup ker pGkn of G. As ker pGkn ⊆ ker pHn f , exists a quotient map fn : Gkn →
Hn. Increase kn if necessary so kn > kn−1. Set I ′ = {kn}.

2.5 Generators of profinite groups

Definition (topological generating set). Let G be a topological group. A
subset S ⊆ G is a (topological) generating set for G if 〈S〉 is dense in G. G is
(topologically) finitely generated (tfg) if it has a finite topological generating
set.

Definition. Let G be a topological group and S ⊆ G. The closed sub-
group generated by S is the smallest closed subgroup of G which contains S.
Equivalently, it is the intersection of all closed subgroups which contain S.

Exercise. The closed subgroup generated by S is 〈S〉. More generally, the
closure of a subgroup is a subgroup.

Proposition 2.13. If G is a profinite group, U ≤o G then G is tfg if and
only if U is tfg.

Proof. If G = 〈S〉 for some finite S then U ∩ 〈S〉 is finitely generated. As U is
open, U ∩ 〈S〉 is dense in U .

Conversely if U = 〈S〉 and T is a set of coset representatives for U in G,
then S ∪ T is a finite generating set for G.

Proposition 2.14. Let G = lim←−Gj be an inverse system of finite groups.
Then S ⊆ G is a topological generating set if and only if pj(S) generates
pj(G).

Proof. 〈S〉 is dense if and only if pj(G) = pj(〈S〉) = 〈pj(S)〉 for all j.

Proposition 2.15. α ∈ Zp is a generator is and only if α 6= 0 (mod p).

Proof. Let α = (an). α is a generator if and only if an generates Z/pn for all n,
if and only if an is coprime to pn, if and only if an is coprime to p.
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2 Profinite groups

If α is a generator then consider multiplication by α, fα : Zp → Zp. The
image of fα contains 〈α〉 and hence im fα ⊇ 〈α〉 = Zp so exists β such that
αβ = 1. The converse is also true so we can identify the set of generators of Zp
with Z×

p .
Z×
p is an open subset of Zp and for all n the natural map Z×

p → (Z/pn)×
is surjective. Thus many elements of Z are invertible in Zp. For example to
compute the inverse of 2 ∈ Z×

3 , we can compute its inverse in (Z/3n)× for
increasingly large n to get

2−1 = (. . . , 41, 14, 5, 2) ∈
∏

Z/3n

so 2−1 = (. . . , 81, 27, 5, 2) ∈ Z3.

Proposition 2.16. α ∈ Ẑ is a generator if and only if α 6= 0 (mod p) for
all p.

By Chinese remainder theorem this set is
∏

Z×
p , and thus can be identified

with Ẑ×. It is a closed subset of Ẑ and just as in the p-adic integer case,
Ẑ× → (Z/n)× is surjective for all n.

Theorem 2.17 (Gaschütz’s lemma for finite groups). Let f : G→ H be a
surjective homomorphism of finite groups. Assume that G has a generating
set of size d. Then for any generating set {z1, . . . , zd} of H, there exists a
generating set {x1, . . . , xn} of G such that f(xi) = zi.

Proof. We formulate the theorem in terms of generating vectors: (x1, . . . , xd) ∈
Gd whose underlying set generates G. f extends to fd : Gd → Hd. Let y be a
generating vector for H and let NG(y) be the cardinality of the set of generating
vectors x for G such that fd(x) = y. We show NG(y) is independent of y, and
then the results follows.

Induction on |G|. Let y be a generating vector for H. Let C be the set of
≤ d-generated proper subgroups of G. Then for all x such that fd(x) = y, either
〈x〉 = G or 〈x〉 ∈ C. Therefore

| ker fd| = |{x ∈ Gd : fd(x) = y}| = NG(y) +
∑
C∈C

NC(y).

As ker fd is manifestly independent of y, by induction hypothesis NG(y) is
independent of y.

Theorem 2.18 (Gaschütz’s lemma for profinite groups). Let f : G→ H be
a continuous surjective homomorphism of profinite groups. Assume G has a
topological generating set of size d. Then for every generating set {z1, . . . , zd}
of H, exists a generating set {x1, . . . , xn} of G such that f(xi) = zi.

Proof. wlog G = lim←−j∈J Gj ,H = lim←−j∈J Hj and f is induced by a morphism of
inverse systems fj : Gj → Hj (see lemma below) and the inverse systems are
surjective. Let

Xj = {xj generating vector for Gj : fj(xj) = pHj (z)}

14



2 Profinite groups

which is nonempty. (Xj)j∈J forms an inverse system so

lim←−Xj = {x ∈ Gd : x generator of G : f(x) = z}

is nonempty.

Proposition 2.19. Let G be a profinite group and U be a collection of
open normal subgroups of G which form a neighbourhood basis at 1. Then
G = lim←−U∈U G/U .

Proof. There exists a homomorphism f : G → lim←−U∈U G/U which is surjective
since G surjects G/U , and injective because U is a neighbourhood basis: for
all g ∈ G \ {1} exists V Eo G such that g /∈ V and exists U ∈ U such that
U ⊆ V .

Example. If G is tfg, take U = {Un} where

Un =
⋂
{normal subgroups of G of index ≤ n}

which is open since the collection is finite.

As a corollary

Lemma 2.20. If G is a tfg profinite group then G = lim←−j∈J Gj where J is
countable.

15



3 Profinite completion

3 Profinite completion

3.1 Residual finiteness

Let Γ be an abstract group (usually finitely generated), Γ̂ = lim←−NEfΓ
Γ/N its

profinite completion, and a canonical map ι = ιΓ : Γ→ Γ̂.
We have seen for Γ = Z this canonical map is an injection. This injection is

sufficiently important that it deserves its own name.

Definition (residually finite). Let Γ be an abstract group. Γ is called
residually finite if for every γ ∈ Γ \ {1} there exists N Ef Γ such that
γ /∈ N . Equivalently, γ is not in the kernel of Γ→ Γ/N .

Proposition 3.1. Γ is residually finite if and only if ιΓ : Γ→ Γ̂ is injective.

Proposition 3.2. A subgroup of a residually finite group is residually finite.

Proof. Suppose ∆ ≤ Γ. If γ ∈ ∆ \ {1}, exists N Ef Γ such that γ /∈ N . Then
N ∩∆ Ef ∆ and γ /∈ N ∩∆.

A partial converse holds, provided the subgroup has finite index:

Proposition 3.3. Let Γ be an abstract group, ∆ ≤ Γ of finite index. Then
if ∆ is residually finite so is Γ.

Proof. Let γ ∈ Γ \ {1}. If γ /∈ ∆, take

N = CoreΓ(∆) =
⋂
g∈Γ

g∆g−1 Ef Γ

and γ /∈ N . If γ ∈ ∆ then exists M Ef ∆ such that γ /∈ M . Then M ≤f Γ so
N = CoreΓ(M) Ef Γ and γ /∈ N .

Proposition 3.4. Direct product of residually finite groups is residually
finite.

Proof. Example sheet 2.

Proposition 3.5. All finitely generated abelian groups are residually finite.

Remark. Finite generation is necessary here. For example Q has no nontrivial
finite quotient.

A source of residually finite groups is matrix group.

Proposition 3.6. SLN (Z) and GLN (Z) are residually finite for all N .

Proof. If A ∈ GLN (Z), take a prime p greater than an entry of A. Then A is
not in the kernel of GLN (Z)→ GLN (Z/p).

16



3 Profinite completion

Proposition 3.7 (Non-examinable). [Mal’cev’s theorem] Let Γ be a finitely
generated subgroup of GLN (K) (resp. SLN ,PSLN ) where K is a field. Then
Γ is residually finite.

As a corollary, fundamental groups of surfaces are residually finite (as they
are contained in PSL2(R) by hyperbolic geometry).

Theorem 3.8. Let G and H be tfg profinite groups. Then G ∼= H if and
only if the set of isomorphism types of continuous finite quotients of G and
H are equal.

Proof. Let Gn be the intersection of all open normal subgroups of G of index
≤ n. Then Gn Eo G and G = lim←−G/Gn. Define Hn similarly. Now G/Gn is
a continuous finite quotient of G so it is also a continuous finite quotient of H.
Thus exists V Eo H such that G/Gn ∼= H/V . By definition the intersection
of all normal subgroups of G/Gn of index ≤ n is trivial, so upon taking their
preimages under H → H/V we have Hn ⊆ V . Then

|G/Gn| = |H/V | ≤ |H/Hn|.

By symmetry we have equality so Hn = V and thus G/Gn ∼= H/Hn.
To show there exists an isomorphism of inverse systems, let Sn be the set

of isomorphisms G/Gn → H/Hn, which is nonempty. If fn ∈ Sn then it takes
normal subgroups of G/Gn of index ≤ n − 1 to those in H/Hn, so defines an
isomorphism Gn−1/Gn → Hn−1/Hn. Thus fn descends to a map φn,n−1(fn) :
G/Gn−1 → H/Hn−1 which makes the following diagram commute

G/Gn H/Hn

G/Gn−1 H/Hn−1

fn

φn,n−1(fn)

(Sn, φn,n−1) is an inverse system of nonempty sets so lim←−Sn is nonempty and
its element defines an isomorphism of inverse systems.

As a corollary

Theorem 3.9. Let Γ,∆ be finitely generated abstract groups. Then Γ̂ ∼= ∆̂
if and only if the set of isomorphism types of finite quotients of Γ and ∆ are
the same.

The following lemma characterises open subgroups of profinite completion

Lemma 3.10. Let Γ be a finitely generated abstract group. Then the open
subgroups of Γ̂ are precisely the subgroups ιΓ(∆) for ∆ ≤f Γ.

Proof. If ∆ ≤f Γ then ιΓ(∆) is closed. It also has finite index so open: suppose
Γ =

⋃r
i=r gi∆ is a finite (disjoint) union, then

Γ̂ = ιΓ(Γ) =
⋃
ιΓ(gi∆) =

⋃
ιΓ(gi)ιΓ(∆)

Conversely, let U ≤o Γ̂, then U ∩ ιΓ(Γ) is dense in U . Let ∆ = ι−1
Γ (U) =

ι−1
Γ (U ∩ ιΓ(Γ)). Then ∆ ≤f Γ and ιΓ(∆) = U ∩ ιΓ(Γ).
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3 Profinite completion

Question: how much can we learn about Γ from Γ̂, if Γ is residually finite?

Proposition 3.11. If Γ̂ ∼= ∆̂, ∆ is abelian and Γ is residually finite then Γ
is abelian.

Proof. If ∆ is abelian, all its quotients are abelian, so ∆̂ is abelian. Then
ιΓ : Γ→ Γ̂ = ∆̂ shows Γ is abelian.

Proposition 3.12. If G and H are finitely generated and Ĝ ∼= Ĥ then
Gab

∼= Hab. In particular if G is abelian and H is residually finite then
G ∼= H.

Proof. If G and H have the same finite quotients then they have the same finite
abelian quotients, which are precisely the finite quotients of abelianisation. Thus
suffices to show we can recover a finitely generated abelian group G ∼= Zr × T
from its finite quotient. Have

r = max{k : G� (Z/n)k for all n}

and T the largest finite abelian group such that G� (Z/n)r × T .

Example (Baumslag). One does not have to go far from abelian groups to show
this fails in general. Let φ : C25 → C25 be the automorphism t 7→ t6 where t is a
fixed generator. φ has order 5. Form semidirect products G1 = C25 oφ Z, G2 =

C25 oφ2 Z. Write Z = 〈s〉 multiplicatively. Claim G1 � G2 but Ĝ1
∼= Ĝ2.

Proof. Suppose ψ : G2 → G1 is an isomorphism. Then ψ(C25) = C25 so
ψ(t, 1) = (ta, 1) where ta generates C25. Let ψ(1, s) = (tb, sc). As sc generates
Z, c = ±1. Now compute

ψ((1, s) •2 (t, 1) •2 (1, s−1)) = ψ(φ2(t), 1) = (φ2(ta), 1).

On the other hand

(tb, sc) •1 (ta, 1) •1 (φ−c(t−b), s−c) = (tbφc(ta), sc) •1 (φ−c(t−b), s−c)
= (tbφc(ta)φcφ−c(tb), 1)

= (φc(ta), 1)

so φ2(ta) = φc(ta) so 2 = c (mod 5), absurd.
To show the profinite completions are isomorphic, note Ĝ1 = C25oφ Ẑ, Ĝ2 =

C25 oφ2 Ẑ: let G1 → Q be a finite quotient. If the composition Z → G1 → Q
has image of order m, then f factors through the finite quotient C25oφ (Z/5m),
so the quotients C25 o Z/5m are cofinal in the finite quotients, so

Ĝ1 = lim←−(C25 o Z/5m) = C25 o Ẑ.

Same for G2.

It is worth noting that if we try to compute the same expressions in the
profinite completions, we can merely conclude c is a topological generator of
Ẑ — but Ẑ has many generators! In fact, for any c ∈ Ẑ× such that c = 2
(mod 5) we can define ψ′ : Ĝ2 → Ĝ1, (t

a, sb) 7→ (ta, sbc) which is continuous and
injective. As c is a generator, it is also surjective.
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3 Profinite completion

Open problem: If G is finitely generated and residually finite and F is a
finitely generated free group, does F̂ ∼= Ĝ imply F ∼= G? Equivalently, does
there exists a finitely generated residually finite group G and n ∈ N such that
a finite group Q is a quotient of G if and only if d(Q) ≤ n, where d is the
minimum number of generators?

Proposition 3.13. If F1, F2 are both finitely generated free and F̂1
∼= F̂2

then F1
∼= F2.

Proof. Immediate.

What about surface groups? They are fundamental groups of genus g ori-
entable surfaces and has presentation

Sg = 〈a1, b1, . . . , ag, bg|[a1, b1] · · · [ag, bg]〉.

Can we tell them apart from free groups? If Ŝg = F̂r then Z2g ∼= Zr so r = 2g.
What next?

Proposition 3.14 (basic correspondence). Let G1, G2 be finitely generated
residually finite groups. Suppose Ĝ1

∼= Ĝ2. Then there is a bijection

ψ : {H ≤f G1} → {H ≤f G2}

such that if K ≤f H ≤f G1 then

• [H : K] = [ψ(H) : ψ(K)].

• K E H if and only if ψ(K) E ψ(H).

• If K E H then H/K ∼= ψ(H)/ψ(K).

• Ĥ ∼= ψ̂(H).

Every finite-sheeted cover of a surface is a surface, so every finite index
subgroup of Sg is a surface group so has abelianisation Z2g′ . However Fr has an
index 2 subgroup, which is free of rank 2(r − 1) + 1 by Nielsen-Schreier. Thus
from the corrspondence we deduce Sg is not free.

The proposition itself follows from the correpondence between subgroups of
G and Ĝ.

Proposition 3.15. Let G be finitely generated residually finite and regard
G as a subgroup of Ĝ. Then there is a bijection

{H ≤f G} → {U ≤o Ĝ}
H 7→ H

U ∩G← [ U

Furthermore if K ≤f H ≤f G then

• [H : K] = [H : K],

• K E H if and only if K E H,
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3 Profinite completion

• If K E H then H/K ∼= H/K,

• H ∼= Ĥ.
Proof. Surjectivity is done in Lemma 3.10. To show injectivity enough to show
H ∩G = H. Consider the action of G on G/H, inducing a continuous α : Ĝ→
Sym(G/H). Then g ∈ StabĜ(H), an open subgroup. If g ∈ G \ H then it is
disjoint from H, so g /∈ H.

Let {gi} be a set of coset representatives of H in G. Then Ĝ =
⋃
giH. This

is a disjoint union since H ∩G = H, so {gi} is also a coset representative of H
in Ĝ, so there is a natural bijection G/H → Ĝ/H.

If K E H then K = K ∩G E H ∩G = H. H normalises K if and only if K
lies in the kernel of the action H → Sym(H/K), so K ⊆ H so K E H.

Any finite quotient K of H is the quotient of H by the open subgroup K.
Thus by universal property there is a continuous homomorphism H → Ĥ. It is
injective since for any 1 6= h ∈ H, exists U open in Ĝ such that h /∈ U . Then h
is not mapped to identity under the composition H → Ĥ → H/H ∩ U .

Definition (Hopf property). A (topological respectively) group G has the
Hopf property (or is Hopfian, or Hopf) if every (continuous respectively)
surjective homomorphism G→ G is an isomorphism.

Usually surjectivity is the easier condition to check — if we know a set of
generators then we only have to show that they lie in the image. On the other
hand to show injectivity requires understanding the image of each element.

Proposition 3.16. Let G be a tfg profinite group. Then G has the Hopf
property.

Proof. Let Gn be the intersection of all open normal subgroups of G of index
≤ n. Gn is open and G = lim←−G/Gn. If U ≤o G with [G : U ] ≤ n then
because f is surjective, [G : U ] = [G : f−1(U)] ≤ n so Gn ≤ f−1(U). Thus
Gn ⊆

⋂
f−1(U) = f−1(Gn) so f(Gn) ⊆ Gn, inducing a surjective map fn :

G/Gn → G/Gn. Finite groups are Hopfian so fn is an isomorphism. The result
thus follows.

Corollary 3.17. If Γ is finitely generated and residually finite then Γ has
the Hopf property.

Proof. Let f : Γ→ Γ be a surjection. Then f induces a unique map f̂ : Γ̂→ Γ̂.
Γ̂ is tfg and f̂ is surjective because its image is compact and contains a dense
subset. The result then follows from the Hopf property of Γ̂.

Proposition 3.18. Let G,H be (topological respectively) groups, G with
Hopf property. If there exists (continuous respectively) surjections f : G→
H, f ′ : H → G then both f and f ′ are isomorphisms.

Proof. f ′ ◦ f : G→ G is an isomorphism by Hopf property so f is injective and
an isomorphism. Then f ′ = (f ′ ◦ f) ◦ f−1 is also an isomorphism.
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3 Profinite completion

Proposition 3.19. Let Γ be a group and suppose exists a finite quotient Q
of Γ such that d(Γ) = d(Q), where d is the minimum number of generators.
Then for a free group F , F̂ � Γ̂ unless Γ is free, i.e. Γ ∼= F .

Proof. Let F be a free group with F̂ ∼= Γ̂. Then Q is also a quotient of F
so d(F ) ≥ d(Q) = d(Γ) so exists a surjection f : F → Γ, which induces a
continuous surjection f̂ : F̂ → Γ̂. By Hopf property f̂ is an isomorphism so f
is injective.

Example. Non-Hopfian groups are not residually finite. For an example of
non-Hopfian group, let

BS(n,m) = 〈a, t|ant−1 = am〉

where n,m coprime. Define

f : BS(n,m)→ BS(n,m)

y 7→ t

a 7→ an

f is a surjection as it surjects the generators. But f is not injective: a does not
commute with tat−1 (which we quote as a fact). But

f([a, tat−1]) = [an, tant−1] = [an, am] = 1

so BS(n,m) is not Hopfian. residually finite.

3.2 Finite quotients of free groups

Theorem 3.20. Free groups are residually finite.

There are two proofs. The first proof in online notes is non-examinable (and
omitted). The proof actually shows that

Corollary 3.21. For all p, a free group F is residually p-finite. In particular
F injects to its pro-p completion.

We record the second proof here, which is an algorithm to produce finite
quotients.

Proof. Let F be free on finite generating set S so F = π1
∨
S S

1. Write g ∈
F \ {1} as a reduced word s1 · · · sn. Write out g “along a line” to get a labelled
graph Y and there is a continuous map Y → X. We seek to make Y a covering
space of X by adding edges.

For each s ∈ S, the number of vertices having an outgoing s edge is the same
as those having an incoming one. Thus we can add s edges so that every vertex
has exactly one s edge entering and one leaving. This gives a finite covering Y
of X so corresponds to a finite index subgroup π1Y of F . g /∈ π1Y since it is
not a loop.

For each s ∈ S, following the edge s is a permutation of vertices to we have
an action of F on vertices of Y . g does not fix the initial vertex of Y as g is
not contained in the finite index normal subgroup corresponding to the kernel
of the action.
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Theorem 3.22 (Marshall Hall’s theorem). Let S ⊆ F be a finite subset. If
y /∈ 〈S〉 then exists a finite group Q and a homomorphism f : F → Q such
that f(y) /∈ f(〈S〉).

Corollary 3.23. If S does not generate F then exists Q, f such that
f(〈S〉) 6= f(F ).

Remark. Marshall Hall’s theorem actually says that exists H ≤f F such that
S ⊆ H and H = 〈S〉 ∗H ′.

Corollary 3.24. S generates F if and only if S (topologically) generates
F̂ .

Note. As a result 〈S〉 ∩ F = 〈S〉, which generalises the basic correspondence,
which holds only for finite index subgroup.

The proof uses monodromy action of the fundamental group. Let X be a
wedge of circles whose fundamental group is F . If we can find a finite covering
space Y of X such that S is contained in the image of π1Y then 〈S〉 is contained
in the stabiliser of a vertex of the covering action. Similar to the proof of
residually finiteness of free groups, if y /∈ 〈S〉 then we can construct Y so that
g does not lie in the stabiliser.

To construct the covering space first let Y be the graph with a distinguished
vertex and loops corresponding to words in S going around the vertex. We
would like to add edges as before so that Y becomes a covering space. Here
we encounter a problem as there might be more than one edge, say a, coming
from the distinguished vertex. We need to apply Stallings’ fold to identify
the repeated edges, and it is a fact that this procedure does not change the
fundamental group.

The formal proof is non-examinable. A worked example can be found in the
lecturer’s online notes.
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4 Pro-p groups

4 Pro-p groups
Recall that a pro-p group is an inverse limit of finite p-groups — finite groups
of order a power of p. The pro-p completion of Γ is

Γ̂(p) = lim←−
NEΓ

Γ/Np-group

Γ/N.

For example Zp = Ẑ(p).

4.1 Generators of pro-p groups

Definition (Frattini subgroup). Let G be a finite group. The Frattini
subgroup of G is

Φ(G) =
⋂
{M :M maximal proper subgroup of G}.

Proposition 4.1. If f : G → H is a surjective group homomorphism then
f(Φ(G)) ⊆ Φ(H). In particular Φ(G) is a characteristic normal subgroup,
i.e. if f : G→ G is an automorphism then f(Φ(G)) = Φ(G).

Proof. Let M be a maximal proper subgroup of H. Then f−1(M) is a proper
subgroup and it is maximal: if f−1(M) ⊆ N ⊆ G, assume f−1(M) 6= N . Then
f(N) = H as M is maximal. Therefore G = N · ker f = N as N ⊇ ker f .
Therefore Φ(G) ⊆ f−1(M), hence f(Φ(G)) ⊆ M . Taking intersection to get
f(Φ(G)) ⊆ Φ(H).

Note that we did not use finiteness anywhere.

Proposition 4.2. Let G be a finite group. For S ⊆ G a subset, TFAE:

1. S generates G.

2. SΦ(G) generates G.

3. SΦ(G)/Φ(G), the image of S in G/Φ(G), generates G/Φ(G).

In other words, the elements of Φ(G) are precisely the non-generators.

Proof. Only 3 =⇒ 1 is nonobvious. Suppose S does not generate G. Then 〈S〉
is contained in some maximal proper subgroup. Here we used the crucial fact
that G is finite. Since Φ(G) ⊆ M , M/Φ(G) is a proper subgroup of G/Φ(G).
Thus SΦ(G)/Φ(G) ⊆M/Φ(G) ( G/Φ(G).

Definition. Let G be a group, H,K subgroups of G and m ∈ Z. Define

HK = {hk : h ∈ H, k ∈ K}

which is a priori a set, but is a subgroup if either H or K is normal, and is
a normal subgroup if both H and G are.
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Define the commutator to be

[H,K] = 〈[h, k] = h−1k−1hk : h ∈ H, k ∈ K〉

which is a subgroup and is a normal subgroup if both H and K are normal.
Finally define

Hm = 〈hm : h ∈ H〉.

which is a subgroup.

Proposition 4.3. Let G be a p-group. Then

Φ(G) = [G,G]Gp = ker(G→ Gab → Gab/pGab) = 〈[g1, g2]gp3〉.

Note that Gab/pGab is an Fp-vector space, so is isomorphic to (Z/p)d for
some d. Thus G/Φ(G) ∼= Fdp where d = d(G) is the minimum size of a generating
set of G.

Proof. Example sheet 2.

Definition. Let G be a profinite group. Define

Φ(G) =
⋂
{M :M maximal proper closed subgroups of G},

where M maximal proper closed means that if N is a closed subgroup then
M ⊆ N ⊆ G implies N =M or N = G.

Proposition 4.4. Any proper closed subgroup of a profinite group G is
contained in a proper open subgroup, and hence is contained in a maximal
proper closed subgroup, and maximal proper closed subgroups are open.

Proof. Suppose H ≤c G, G 6= H and G = lim←−Gj . Since H is not dense, exists j
such that pj(H) 6= pj(G). Then p−1

j (pj(H)) is open proper and contains H.

Similar to the finite case we have

Lemma 4.5. If f : G → H is a surjective continuous homomorphism of
profinite groups then f(Φ(G)) ⊆ Φ(H).

Proposition 4.6. If S ⊆ G where G is a profinite group then TFAE

1. S is a tgs for G.

2. SΦ(G) is a tgs for G.

3. SΦ(G)/Φ(G) is a tgs for G/Φ(G).

Proposition 4.7. Let (Gj)j∈J be a surjective inverse system of finite
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groups. Let G = lim←−Gj. Then

Φ(G) = lim←−Φ(Gj).

Proof. Let pj : G → Gj be the projection. Then pj(Φ(G)) ⊆ Φ(Gj) for all j.
Hence Φ(G) ⊆ lim←−Φ(Gj).

Now let M be a maximal proper closed subgroup of G. M is open so exists i
such that ker pi ⊆M . Thus ker pj ⊆M for all j ≤ i. Then pj(M) is a maximal
proper subgroup of Gj so pj(M) ⊇ Φ(Gj) for all j ≤ i. Thus

M ⊇ lim←−
j≤i

Φ(Gj) = lim←−Φ(Gj).

Proposition 4.8. Let G be a tfg pro-p group. Then

Φ(G) = [G,G]Gp

and G/Φ(G) ∼= Fdp where d = d(G).

Later we will see that [G,G]Gp is in fact closed.
Note. G/Φ(G) is also denoted H1(G,Fp).
Proof. Write G = lim←−Gj as a surjective inverse limit of finite p-groups. Then
Φ(G) = lim←−[Gj , Gj ]G

p
j . If g1, g2, g3 ∈ G then

pj([g1, g2]g
p
3) = [pj(g1), pj(g2)]pj(g3)

p ∈ [Gj , Gj ]G
p
j

so pj([G,G]Gp) ⊆ [Gj , Gj ]G
p
j for all j so [G,G]Gp ⊆ Φ(G). Now G/[G,G]Gp

is tfg abelian and every element has order p. Therefore it is isomorphic to
Fdp for some d (if a1, . . . , ad tgs of G/[G,G]Gp then {an1

1 · · · a
nd

d : n1, . . . , nd ∈
{0, . . . , p − 1}} is a finite dense subgroup). Then since Φ(Fdp) = {0}, we find
Φ(G) ⊆ [G,G]Gp as required.

Corollary 4.9. Let f : G → H be a continuous homomorphism of tfg
pro-p groups. Then f(Φ(G)) ⊆ Φ(H) and hence there is an induced map
f∗ : G/Φ(G) → H/Φ(H), which is a map of vector spaces over Fp. f is
surjective if and only if f∗ is surjective.

Proof. If g1, g2, g3 ∈ G then

f([g1, g2]g
p
3) = [f(g1), f(g2)]f(g3)

p ∈ Φ(H)

so f(Φ(G)) ⊆ Φ(H).
f(G) generates H if and only if f(G)Φ(H)/Φ(H) = f∗(G/Φ(G)) generates

H/Φ(H). As the image of both are compact so closed, the result follows.

Example. Let F = 〈a, b〉, the free group of rank 2 and G = F̂(p). Then
G/Φ(G) = F2

p. Let S = {a4b2a, ba−2b}. Map S to G/Φ(G) to test generation:

a4b2a 7→ ( 52 )

ba−2b 7→
(−2

2

)
They generate F2

p if and only if det
(
5 −2
2 2

)
= 14 6= 0, if and only if p 6= 2, 7.
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4.2 Nilpotent groups

Definition. A commutator of length 2 is a commutator

[g1, g2] = g−1
1 g−1

2 g1g2 = g−1
1 gg21 .

Define iteratively a commutator of length n

[g1, g2, . . . , gn] = [g1, [g2, . . . , gn]].

Definition (lower central series). The lower central series of G is the fol-
lowing sequence of subgroups:

G1 = G

Gn+1 = [G,Gn] = 〈[g, h] : g ∈ G,h ∈ Gn〉

We sometimes denote Gn by γn(G).

Definition (nilpotent group). A group G is nilpotent of class c if γc+1(G) =
1 but γc(G) 6= 1.

For a nilpotent group we have

G = γ1 ≥ γ2 ≥ · · · ≥ γc+1 = 1.

Note. γc(G) is central in G and nilpotent of class 1 is the same as abelian.

Proposition 4.10. γn is fully characteristic in the sense that if f : G→ H
is a homomorphism then f(γn(G)) ⊆ γn(H).

Proposition 4.11. Subgroups and quotients of nilpotent groups of class c
are nilpotent of class ≤ c.

Proposition 4.12. A finite p-group is nilpotent.

Exercise. If R is a ring, then the set of upper trianglular n× n matrices with
1 on the diagonal is a nilpotent group.

Definition. For G is tfg pro-p group, the lower central p-series is defined
by

G1 = G

Gn+1 = [G,Gn]G
p
n

γn(G) ⊆ Gn = γ
(p)
n (G).

Why are we doing this?
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4 Pro-p groups

1. Gn/Gn+1 are vector spaces over Fp.

2. γ(p)n (G) is open in G: inductively Φ(G) = γ
(p)
2 (G) and Φ(Gn−1) ≤ γ(p)n (G),

and Frattini subgroup of a tfg pro-p group is open.

3. {γ(p)n (G)} forms a neighbourhood basis for the identity: if N Eo G, G/N is
a finite p-group so γ(p)n (G/N) vanish for some n. Therefore γ(p)n (G) ⊆ N .

4.3 Invariance of topology

Theorem 4.13. Let G be a tfg pro-p group, H a profinite group and f :
G→ H a homomorphism. Then f is continuous.

Corollary 4.14. Let G be a tfg pro-p group. There is no other topology on
G making it into a profinite group.

Proof. If τ1 is our given topology and τ2 is another topology such that (G, τ2)
is profinite, then the identity homomorphism from τ1 to τ2 is continuous so a
homeomorphism.

“The group structure determines the topology”.
Theorem 4.13 follows from

Theorem 4.15. Let G be a tfg pro-p group. Then any finite index subgroup
of G is open.

Proof of Theorem 4.13. Suppose f : G → H is a homomorphism. Then for all
U Eo H, U has finite index so f−1(H) has finite index and hence open in G.
Thus f is continuous.

Lemma 4.16. Let G be a nilpotent group generated by a1, . . . , ad. Then
every g ∈ [G,G] can be written as

g = [a1, x1] · · · [ad, xd]

for some x1, . . . , xd ∈ G.

Proof. Induction on nilpotency class. c = 1 is trivial. Assume true for nilpo-
tency class c− 1. In particular it is true for G/γc(G) so

g = [a1, x1] · · · [ad, xd] · u

for some u ∈ γc(G). We can write u as a product

u =

N∏
i=1

[gi, vi]

where gi ∈ G, vi ∈ γc−1(G). Recall the commutator relations

[xy, z] = [x, z]y[y, z]

[x, yz] = [x, z][x, y]z
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which imply, for v ∈ γc−1(G)

[aiaj , v] = [ai, v][ajv]

[a−1
i , v] = [ai, v

−1] = [ai, v]
−1

[ai, v][ai, v] = [ai, v
2]

[ai, w][ai, v] = [ai, vw]

Now we can rewrite u in the form [a1, v
′
1] · · · [ad, v′d] so

g = [a1, x1] · · · [ad, xd][a1, v′1] · · · [ad, v′d] = [a1, x1v
′
1] · · · [ad, xdv′d].

Proposition 4.17. Let G be a tfg pro-p group. Then [G,G] is closed in G.

Proof. Let a1, . . . , ad be a tgs for G. Let

X = {[a1, x1] · · · [ad, xd] : xi ∈ G}.

X is the image of the map

Gd → G

(x1, . . . xd) 7→ [a1, x1] · · · [ad, xd]

so is compact so closed. Obviously X ⊆ [G,G]. Let g ∈ [G,G]. Let G = lim←−Gj
where pj : G → Gj . Then pj(g) ∈ [Gj , Gj ]. Gj is nilpotent as it is a p-group.
By the previous lemma

pj(g) = [pj(a1), x1] · · · [pj(ad), xd]

for some x1, . . . , xd ∈ Gj . Hence pj(g) ∈ pj(X) for all j so g ∈ X = X.

Proposition 4.18. Let G be a pro-p group and let K be a finite index
subgroup. Then [G : K] is a power of p.

Proof. wlog assume K is normal (otherwise replace K by its core). Let [G :
K] = m = prm′ where m′ is coprime to p. Consider X = {gm : g ∈ G}. Then
X ⊆ K by Lagrange. X is closed so

X = X =
⋂

NEoG

XN.

We will show that gpr ∈ X ⊆ K for all g ∈ G, and this shows [G : K] divides
pr (?). Let N Eo G be open normal. Let [G : N ] = ps for some s. Let
t = max(r, s). Then gp

s ∈ N for all g ∈ G. But (m, pt) = pr so exists a, b ∈ Z
such that am+ bpt = pr. Then

gp
r

= (ga)m · (gb)p
t

∈ XN.

This holds for all N Eo G so the result follows.
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Proposition 4.19. If G is a tfg pro-p group then [G,G]Gp is closed in G,
hence equal to Φ(G).

Proof. Let G{p} = {gp : g ∈ G}, Gp = 〈G{p}〉. As G/[G,G] is abelian,

[G,G]Gp = [G,G]G{p}

and [G,G]G{p} is closed as it is the image of the map

[G,G]×G→ G

(x, g) 7→ xgp

Proof of Theorem 4.15. Again wlog look at normal subgroups only. Suppose
K Ef G is a counterexample with [G : K] is minimal. Consider

M = [G,G]GpK Ef G

which contains K as a finite index subgroup.
Now G/K is a non-trivial p-group so

Φ(G/K) = [G/K,G/K](G/K)p,

which is the image of M in G/K. Hence M is a proper subgroup of G so either
M = K, so K ≥ [G,G]Gp = Φ(G) open, so K open, or M 6= K, therefore by
minimality K is open in M and M is open in G so K is open in G.

4.4 Hensel’s lemma & p-adic arithmetic
We saw earlier that solving the equation ax = 1 in Zp just depends on the image
of a in Z/p. Hensel’s lemma allows us to do so for all polynomials, and gives an
algorithm for finding the root.

Lemma 4.20. Let f(x) be a polynomial with Zp coefficients. Then f has a
root in Zp if and only if it has a root modulo Z/pk for all k.

The aim is to reduce just to mod p. To do so we use the method of Hensel
lifting. As an example let p = 7 and f(x) = x2−2. f(3) = 0 (mod 7) so to find
a solution mod 49, consider the element 3 + 7a, 0 ≤ a ≤ 6. Then

(3 + 7a)2 = 9 + 7 · 6a+ 49a2 = 2 + 7(1 + 6a) (mod 49)

so we only have to solve a linear equation since the square term vanishes. a = 1,
for example, gives a solution so (3 + 7 · 1)2 = 100 = 2 (mod 49). Next we can
consider 10 + 72 · a ∈ Z/343 etc.

Proposition 4.21 (Hensel’s lemma for square roots). Let p 6= 2 be prime.
Suppose λ ∈ Zp is congruent to a nonzero square r21 (mod p). Then exists
a unique ρ ∈ Zp such that ρ2 = λ and ρ = r1 (mod p).

Proof. We construct a sequence rk ∈ Z, unique modulo pk, such that
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• rk+1 = rk (mod pk),

• r2k = λ (mod pk).

The first condition can be either interpreted as (zk) forming a Cauchy sequence
in Zp, or as (rk) ∈

∏
Z/pk compatible with transition functions. In either case

it gives an elemnt ρ ∈ Zp. The second condition then says ρ2 = λ.
Suppose we have constructed rk. Consider the elements rk+apk, 0 ≤ a < p.

Since r2k = λ (mod pk), we can write r2k = λ+ bkp
k for some bk ∈ Zp. Then

(rk + pka)2 = λ+ pkbk + 2pkark + p2ka2 = λ+ pk(bk + 2ark) (mod pk+1)

Now modulo p,
bk + 2ark = bk + 2ar1 (mod p)

has a unique root for a (mod p), since 2r1 6= 0 (mod p). Set rk+1 = rk+p
ka.

Proposition 4.22 (Hensel’s lemma). Let f(x) be a polynomial with Zp coef-
ficients and let K ∈ N. Let r ∈ Zp be such that f(r) = 0 (mod pK), f ′(r) 6= 0
(mod p). Then exist a unique ρ ∈ Zp such that f(ρ) = 0 and ρ = r
(mod pK).

This follows immediately from

Lemma 4.23. For r, a ∈ Zp and k ≥ 1,

f(r + pka) = f(r) + pkaf ′(r) (mod pk+1).

Proof. The statement is linear in f so enough to show for f(x) = xn. By
binomial formula,

(r + pka)n = rn + npkarn−1 +

n∑
i=2

(
n

i

)
pkiairn−i

= rn + npkarn−1 (mod pk+1)

We can adapt Hensel’s lemma to matrix groups.

Definition. Define filtrations

GL
(k)
N (Zp) = ker(GLN (Zp)→ GLN (Z/pk))

= {I + pkA : A ∈ MatN×N (Zp)}

SL
(k)
N (Zp) = ker(SLN (Zp)→ SLN (Z/pk))

= {I + pkA : A ∈ MatN×N (Zp),det(I + pkA) = 1}

Proposition 4.24. GL
(1)
N (Zp) and SL

(1)
N (Zp) are pro-p groups.
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Proof. Write
GL

(1)
N (Zp) = lim←−

k∈Z
GL

(1)
N (Z/pk)

and GL
(1)
N (Z/pk) = {I+pA : A ∈ MatN×N (Z/pk)} has order pN2(k−1). SL(1)

N (Zp)
is a closed subgroup of GL

(1)
N (Zp) and is also a pro-p group.

For the rest of the section we assume p is an odd prime.

Proposition 4.25. The continuous function A 7→ Ap maps GL
(k)
N (Zp) onto

GL
(k+1)
N (Zp). Same for SL.

Slogan: every element in GLk+1
n (Zp) has a pth root.

Proof. The proof is by Hensel-like successive approximations. Claim for all
r ≥ 1, for all A,

(I + prA)p = I + pr+1A+ pr+2B = I + pr+1A (mod pr+2)

where B is some polynomial of A: for ` ≥ 2 the term(
p

p− `

)
pr`A`

always has a factor pr+2.
Let I+pk+1A ∈ GL

(k+1)
N (Zp). We show inductively that: for all n ≥ 1, exist

matrices Bn, En both expressible as polynomials in A such that

• Bn+1 = Bn (mod pn),

• (I + pkBn)
p = I + pk+1A+ pk+n+1En.

Note that Bn, En’s commute and therefore we can apply binomial theorem. For
n = 1, choose B1 = A. Then

(I + pkA)p = I + pk+1A+ pk+2E1.

Inductively define Bn+1 = Bn − pnEn,

(I + pkBn+1)
p = (I + pkBn − pk+nEn)p

= (I + pkBn)
p − p · pk+nEn(I + pkBn)

p−1 +O(pk+n+2)

= I + pk+1A+ pk+n+1En − pk+n+1En(I +O(pk)) +O(pk+n+2)

= I + pk+1A+ pk+n+2En+1

for some En+1. Thus the proposition holds for GL.
For SL, suffcies to show detCp = 1 then detC = 1. See example sheet 3

Q10: Z×
p = Zp × Cp−1.

Lemma 4.26.

(I + pkA)(I + pkB) = (I + pkB)(I + pkA) = I + pk(A+B) (mod pk+1).
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Proposition 4.27. For all k,

Φ(GL
(k)
N (Zp)) = GL

(k+1)
N (Zp)

and
GL

(k)
N /GL

(k+1)
N

∼= FN
2

p .

Proof. By the previous proposition

GL
(k+1)
N ⊆ (GL

(k)
N )p ⊆ Φ(GL(k)

n ).

By the lemma GL
(k)
N /GL

(k+1)
N is abelian and of exponent p so is isomorphic

to Fdp for some d. But we have already seen that |GL
(k)
N /GL

(k+1)
N | = pN

2 so
d = N2. As Φ(FN2

p ) = 1, Φ(GL
(k)
N ) ⊆ GL

(k+1)
N .

Corollary 4.28. For any k, the continuous map A 7→ Ap induces an iso-
morphism

GL
(k)
N /GL

(k+1)
N → GL

(k+1)
N /GL

(k+2)
N .

Theorem 4.29. If H is a closed subgroup of GL
(1)
N then d(H) ≤ N2.

Proof. Suffices to show d(H) ≤ N2 for any subgroup H of each finite group
G = GL

(1)
N /GL

(k+1)
N for each k. For each H ≤ G, for m ≤ k, set

Gm = GL
(m)
N /GL

(k+1)
N

Hm = H ∩Gm

Induction to show d(Hm) ≤ N2: for m = k

Hk ≤ Gk = GL
(k)
N /GL

(k+1)
N

∼= FN
2

p .

Inductively, let e be the dimension of

Hm/Hm+1 ≤ Gm/Gm+1
∼= FN

2

p .

Have a surjection Hm/Φ(Hm) → Hm/Hm+1 (?). Take e elements h1, . . . , he
of Hm which generate Hm/Hm+1. The pth-power map gives an isomorphism
Gm/Gm+1

∼= Gm+1/Gm+2 and hence hp1, · · · , hpe are linearly independent in
Gm+1/Gm+2, thus linearly independent in Hm+1/Φ(Hm+1) (?). By extend-
ing to a basis, we can find y1, . . . , yd−e elements of Hm+1 such that Hm+1 =
〈hp1, . . . , hpe, y1, . . . , yd−e〉. Then

Hm = 〈h1, . . . , he〉Hm+1 = 〈h1, . . . , he, y1, . . . , yd−e〉

so d(Hm) ≤ d(Hm+1).
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Corollary 4.30 (Non-examinable). There is no closed nonabelian free pro-p
subgroup in GLN (Zp).

Sketch proof. F̂(p) has normal subgroups of index pn for all n. These subgroups,
by a form of basic correspondence, are free pro-p of rank pn(r−1)+1, absurd.

Compare this with the result that SL2(Z) contains a nonabelian free sub-
group.

As a converse we have

Theorem 4.31 (Non-examinable). If G is a pro-p group and exists R such
that d(H) ≤ R for all H ≤c G then there exists an abelian normal subgroup
A ∼= Zep ≤ G (e ≤ R) such that G/A ↪→ GLR(Zp) × F where F is a finite
p-group.
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5 Cohomology of groups

5 Cohomology of groups

5.1 Group rings and chain complexes
Let G be an abstract group.

Definition (group ring). The group ring ZG is the free abelian group with
basis G, with multiplication given on basis elements by g · h = gh.

ZG is in general noncommutative, but is commutative if G is abelian. The
multiplicative identity is 1e = e. Note that ZG is not necessarily an integral
domain, for example if G has torsion element.

Definition (G-module). A G-module is a ZG-module.

Remark.

1. We only need to think about the action of basis elements.

2. A G-module M is trivial if g ·m = m for all g ∈ G,m ∈M .

Definition. If M1,M2 are G-modules, a morphism of G-modules or a G-
linear map is a ZG-module homomorphism M1 →M2.

Definition. Let M1,M2 be G-modules. The Hom-group HomG(M1,M2) is
the set of G-linear maps M1 → G2 with the structure of an abelian group.

Definition (chain complex). A chain complex of G-modules is a sequence
of G-modules and G-module maps

Ms · · · Mn · · · Mt · · · Mt
dn dt+1

such that dn ◦ dn+1 = 0 for all n. Sometimes the chain complex is written
as (Mn, dn).

The complex is exact at Mn if im dn+1 = ker dn. The complex is exact
if it is exact at Mn for all t < n < s.

The homology of the complex is the sequence of abelian groupsHS(M•) =
ker dS ,Hm(M•) = ker dn/ im dn+1,Ht(M•) =Mt/ im dt+1.

Revision on free/projective modules and free/projective resolution.

Example. Let X be a simplicial complex whose universal cover X̃ is con-
tractible. let G = π1X and let Xn be the set of n-simplices of X. Now G acts
on X̃ with quotient X and no fixed points. Thus the set of n-simplices of X̃ is
in bijection with G×Xn. The reduced simplicial chain complex of X̃ takes the
form

· · · ZG{X2} ZG{X1} ZG{X0} Z 0

which is a free resolution of Z by G-modules.
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Definition (group cohomology). Let F• be a projective resolution of Z by
G-modules. Let M be a G-module. Apply the functor HomG(−,M) to get
a chain complex

HomG(F0,M) HomG(F1,M) · · ·d1 d2

The nth cohomoogy group with coefficients in M is then

Hn(G,M) = ker dn+1/ im dn.

Elements of ker dn+1 and im dn are called n-cocycles and n-coboundaries
respectively.

Example. Let G = Z = 〈t〉 (written multiplicatively). Consider the chain
complex

0 ZG ZG Z 0
d1 ε

where

ε(
∑

ngg) =
∑

ng

d1(x) = x(t− 1)

It is easy to check this is exact with perhaps the exception ker ε ⊆ im d1. To do
so suppose x =

∑L
k=K nkt

k ∈ ker ε so
∑
nk = 0. Then

x = nLt
L−1(t− 1) + nLt

L−1 +

L−1∑
k=K

nkt
k

= nLt
L−1(t− 1) + (nL + nL−1)t

L−2(t− 1) + (nL + nL−1)t
L−2 +

L−2∑
k=K

nkt
k

= · · ·
= some expression · (t− 1) + (nL + · · ·+ nK)tK−1︸ ︷︷ ︸

=0

Now let M be a G-module and apply HomG(−,M) to get

HomG(ZG,M) HomG(ZG,M) 0d1

Note that HomG(ZG,M) ∼= M as abelian groups so we can rewrite the chain
complex as

M M 0
(t−1)·

so

H0(G,M) = ker d1 = {m ∈M : tm = m} =MG

H1(G,M) =M/ im d1 =M/〈(t− 1)M〉 =MG

which are called invariants and coinvariants of M respectively. Hn(G,M) = 0
for n ≥ 2.
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Proposition 5.1. If G is a free group then Hn(G,M) = 0 for all n ≥ 2.

Non-examinable. Let X be a wedge of circles with π1X = G. The universal
cover X̃ is a tree so contractible. The simplicial chain complex of X̃ gives a free
resolution of G-modules of length 1.

Definition (cohomological dimension). A group G has cohomological di-
mension n, written cd(G) = n, if Hm(G,M) = 0 for all M for all m > n
but exists M such that Hn(G,M) 6= 0. If no such n exists then cd(G) =∞.

Thus free groups have cohomological dimension 1. The converse is a also
true, by a deep theorem of Stallings and Swan.

We now investigate morphisms between complexes of G-modules, which
should really be done in the context of homological algebra using derived cate-
gories. The proofs are omitted.

Definition (chain map). Let (An, αn) and (Bn, βn) be chain complexes of
G-modules. A chain map is a sequence of G-linear maps fn : An → Bn such
that

fn−1 ◦ αn = βn ◦ fn
for all n.

Proposition 5.2. A chain map (fn) : (An) → (Bn) induces maps f∗ :
Hn(A•)→ Hn(B•).

Corollary 5.3. A G-linear map f :M → N induces maps f∗ : H∗(G,M)→
H∗(G,N).

Proposition 5.4. If

0 M1 M2 M3 0

is a short exact sequence of G-modules then there is a long exact sequence

· · · Hn(G,M1) Hn(G,M1) Hn(G,M3) Hn+1(G,M1) · · ·

5.2 Different projective resolutions

Theorem 5.5. The definition of Hn(G,M) does not depend on the choice
of projective resolutions.

This follows from the homological algebra fact that projective resolutions
are unique up to quasi-isomorphism. The proof is non-examniable except for
the definition of the chain map between two complexes.
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5.3 Bar resolution
We define the so-called bar resolution for the trivial G-module Z. Let G(n) be
the set of symbols [g1|g2| · · · |gn], gi ∈ G. Let Fn = ZG{G(n)}. Define

d0 : F0 → Z∑
ngg 7→

∑
ng

i.e. the augmentation map. Define

dn : Fn → Fn−1

[g1| · · · |gn] 7→ g1[g2| · · · |gn]

+
∑

(−1)i[g1| · · · |gigi+1| · · · |gn]

+ (−1)n[g1| · · · |gn−1]

Proposition 5.6. The bar resolution is a free resolution of Z by G-modules.

Non-examinable. Fn is G-isomorphic to Z{Gn+1} (with diagonal G-action) via
[g1| · · · |gn] 7→ (1, g1, g1g2, . . . , g1 · · · gn). The latter is a chain complex with
boundary maps

(g0, . . . , gn) 7→
∑

(−1)i(g0, . . . , ĝi, . . . , gn)

and the complex is acyclic via the obvious chain homotopy

(g0, . . . , gn) 7→ (1, g0, . . . , gn).

Since different projective resolutions give the same cohomology groups we
might reinterpret group cohomology in terms of bar resolution.

Definition. The group of nth cochains of G with coefficients in M is

Cn(G,M) = {Gn →M} = HomG(Fn,M).

The nth coboundary map is

dn : Cn−1(G,M)→ Cn(G,M)

φ 7→ ((g1, . . . , gn) 7→ g1 · φ(g2, . . . , gn)

+
∑

(−1)iφ(g1g2, . . . , gn)

+ (−1)nφ(g1, . . . gn−1)

The nth cocycle and nth coboundary are

Zn(G,M) = ker dn+1

Bn(G,M) = im dn
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The nth cohomology is defined to be

Hn(G,M) = Zn(G,M)/Bn(G,M).

We can write out the low-dimensional cocyles and coboundaries explicitly.

H0(G,M) = ker d1 = {m ∈M : gm = m for all g} =MG

is called the set of invariants of M .

ker d2 = {φ : G→M : φ(gh) = gφ(h) + φ(g)}
im d1 = {φ : G→M : exists m such that φ(g) = (g − 1)m}

are called crossed homomorphisms and principal crossed homomorphisms.

Example. If M has trivial G-action then

H1(G,M) = Hom(G,M).

Proposition 5.7. Let α : G1 → G2 be a group homomorphism and M
a G2-module. Then there is a natural homomorphism α∗ : Hn(G2,M) →
Hn(G1,M).

Proof. Given f ∈ Cn(G2,M), set α∗f ∈ Cn(G1,M) to be the composition
f ◦ αn.

Suppose we have a short sequence of groups

1 H G Q 1.

There is in general no long exact sequence on cohomologies in the style of the
snake lemma.

Example. Let M = Z (with trivial actions) and a short exact sequence 0 →
Z→ Z2 → Z→ 0. Then the sequence

H2(Z,Z) H2(Z2,Z) H2(Z,Z)

0 0

cannot be exact as H2(Z2,Z) 6= 0.

There is, however, some exact sequences coming from spectral sequences,
namely the five-term exact sequence. In low dimensions they can be described
explicitly. We state the result below and sketch the proof.

Lemma 5.8. Let H E G and let M be a G-module. Let G act on Cn(H,M)
via

(g · φ)(h1, . . . , hn) = gφ(g−1h1g, . . . , g
−1hng).

Then this gives an action of G on Hn(H,M). Moreover H acts trivially.
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Proof. The first part is an easy computation:

(g · dnφ)(h1, . . . , hn) = gdnφ(g−1h1g, . . . , g
−1hng)

= g(g−1h1g)φ(g
−1h2g, . . . , g

−1hng)

+
∑

(−1)igφ(g−1h1g, . . . , g
−1hihi+1g, . . . , g

−1hng)

+ (−1)ngφ(g−1h1g, . . . , g
−1hn−1g)

= h1(g · φ)(h2, . . . , hn)

+
∑

(−1)id(g · φ)(h1, . . . , hihi+1, . . . , hn)

+ (−1)nd(g · φ)(h1, . . . , hn−1)

= (dn(g · φ))(h1, . . . , hn)

To show H acts trivially, we show if h ∈ H, φ ∈ Zn(G,M) then h · φ− φ ∈
im dn. Induction on n. n = 1,

0 = (d2φ)(h1, h2) = h1φ(h2)− φ(h1h2) + φ(h1)

so
φ(h1h2) = h1φ(h2) + φ(h1)

then

(h · φ− φ)(h1) = (h · φ)(h1)− φ(h1)
= hφ(h−1h1h)− φ(h1)
= h(h−1φ(h1h) + φ(h−1))− φ(h1)
= h1φ(h) + φ(h1) + hφ(h−1)− φ(h1)
= h1φ(h)− φ(h)
= (h1 − 1)φ(h) ∈ im d1

The induction process is another messy calculation and is left as an exercise.

Note if G has trivial action and φ ∈ C1(H,M) then

(g · φ)(h) = φ(g−1hg)

so φ ∈ H1(H,M)G if and only if φ(h) = φ(g−1hg) for all g ∈ G,h ∈ H. Such a
φ : H →M is called a G-invariant homomorphism.

Theorem 5.9 (inflation-restriction exact sequence). Let H E G and Q =
G/H. Let M be a G-module. Then there is an exact sequence

0 H1(Q,MH) H1(G,M) H1(H,M)G

H2(Q,MH) H2(G,M)

Note that H1(H,M)G = H1(H,M)Q by the previous lemma.
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Non-examinable. We only define the maps appearing in the sequence. This is
done via the restriction map

Hn(G,M)→ Hn(H,M)G

φ 7→ φ|Hn

the inflation map

Hn(Q,MH)→ Hn(G,M)

φ 7→ φ ◦ qn

where q : G → Q, and the transgression map Tg : H1(H,M) → H2(Q,MH)
defined as follow: choose a set-theoretic section s : Q → G, i.e. a transversal,
with s(1) = 1. Define

ρ : G→ H

g 7→ g · s(gH)−1

If φ : H →M is a Q-invariant cocycle, define

Tg(φ) : G2 →M

(g1, g2) 7→ φ(ρ(g1)ρ(g2))− φ(ρ(g1g2))

Tg(φ) descends to Q2 →M .

Corollary 5.10 (Hopf formula). Let F be free, R E F and Q = F/R. If A
is abelian with trivial F -action then

H2(Q,A) ∼=
{F -invariant homomorphisms R→ A}
{restrictions of homomorphisms F → A}

.

Example. SupposeQ = 〈x1, . . . , xd|r1, . . . , rn〉 is a presentation, so F = F{x1, . . . , xd}, R =
〈〈r1, . . . , rm〉〉. Then

d(H1(Q,Z)) ≤ d
d(H2(Q,Z)) ≤ m

5.4 Cohomology and group extensions
Let E be a group, with an abelian normal subgroup M . Let G = E/M . Such
an E is called an extension of G by M . Two extensions are equivalent if there
is a commutative diagram of homomorphisms

1 M E G 1

1 M E′ G 1
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Lemma 5.11. Equivalent extensions are isomorphic as groups.

Proof. Same as five lemma.

Note that M comes with the structure of a G-module: the conjugation action
of E on M descends to a G-action. If this action is trivial, the extension is called
a central extension.

Given a G-module M , the group extension problem is concerned about the
classification of the extensions. We can always form the semidirect product
E =M oG. It is sometimes also called a split extension.

Definition (splitting). The splitting of an extension E is a group homo-
morphism G→ E that is a section to E → G.

Proposition 5.12. Extensions which have a splitting are equivalent to Mo
G.

Proof. Set M oG→ E, (m, g) 7→ i(m)s(g) where s is a section of E → G.

Let E be an arbitrary extension of G by M . Let s : G→ E be a set-theoretic
section with s(1) = 1. To measure how far s is from being a homomorphism,
consider the function

φ(g1, g2) = s(g1)s(g2)s(g1g2)
−1.

Then s is a homomorphism if and only if φ is constant. The image of φ is in M
so φ : G2 →M is an element of C2(G,M). Claim that in fact φ ∈ Z2(G,M).

Proof. We compute s(g1)s(g2)s(g3) in two ways:

s(g1)s(g2)s(g3) = φ(g1, g2)s(g1g2)s(g3)

= φ(g1, g2)φ(g1g2, g3)s(g1g2g3)

s(g1)s(g2)s(g3) = s(g1)φ(g2, g3)s(g2g3)

= s(g1)φ(g2, g3)s(g1)
−1s(g1)s(g2g3)

= s(g1)φ(g2, g3)s(g1)
−1φ(g1, g2g3)s(g1g2g3)

so
φ(g1, g2)φ(g1g2, g3) = s(g1)φ(g2, g3)s(g1)

−1φ(g1, g2g3).

Recognising the first three terms on RHS as the action of G on M and convert
to additive notation in M , we get

φ(g1, g2) + φ(g1g2, g3) = g1φ(g2, g3) + φ(g1, g2, g3).

In addition φ is a normalised cocycle, i.e.

φ(1, g) = φ(g, 1) = 0.
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If we had chosen a different section s′ : G→ E, consider ψ(g) = s′(g)s(g)−1

so ψ ∈ C1(G,M). Have

s′(g1)s
′(g2) = ψ(g1)s(g1)ψ(g2)s(g2)

= ψ(g1)s(g1)ψ(g2)s(g1)
−1s(g1)s(g2)

= ψ(g1)s(g1)ψ(g2)s(g1)
−1φ(g1, g2)s(g1g2)

= ψ(g1)s(g1)ψ(g2)s(g1)
−1φ(g1, g2)

and a comparison with s′(g1)s
′(g2) = φ′(g1, g2)s

′(g1g2) shows [φ] ∈ H2(G,M)
is well-defined. This shows part of

Theorem 5.13. Let G be a group and M a G-module. There exists a
bijection

{equivalence classes of extensions of G by M} ←→ H2(G,M).

Proof. Let to construct the inverse map. Let [φ] ∈ H2(G,M) where φ is a
normalised cocycle. Define a group structure on the set M ×G by

(m1, g1) · (m2, g2) = (m1 + g1 ·m2 + φ(g1, g2), g1g2).

By the assumption on φ, this defines a group structure with identity (0, 1) and
the inverse of (m, g) is (−g−1 · (m+ φ(g, g−1)), g−1). This is an extension.

If we choose a different normalised cocycle φ′ such that φ−φ′ = d2ψ, then the
obvious map Eφ → Eφ′ , (m, g) 7→ (m+ ψ(g), g) is an equivalence of extensions.

It is an exercise to check the two maps are inverses to each other.

One result that is used in the proof is

Lemma 5.14. Every cohomology class is represented by some normalised
cocycle.

Proof. Let φ ∈ Z2(G,M). Let ψ(g) = φ(1, g). Then φ− d2ψ is normalised:

(φ− d2ψ)(1, g) = φ(1, g)− (φ(1, g)− φ(1, g) + φ(1, 1)) = φ(1, g)− φ(1, 1)
(φ− d2ψ)(g, 1) = φ(g, 1)− gφ(1, 1)

and they both vanish since φ is a cocycle.

We may recover Hopf formula from this identification. Suppose G has pre-
sentation 〈x1, . . . , xn|r1, . . . , rm〉. Then take F to be the free groups on xi’s and
R = ker(F → G). Suppose E is a central extension of G by A. Choose some
preimages xi ∈ E of generators xi of G. Let ri be the element of E given by
replacing each occurrence of xi in ri with xi. Then ri ∈ A = ker(E → G), say
ai. Write down a group presentation

E = 〈x1, . . . , xn, A|r1 = a1, . . . , rm = am, A central, relations of A〉

There exists a natural diagram of exact rows

A E G 1

1 A E G 1
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It follows that A ↪→ E and E ∼= E. Can try to define F -invariant homomorphism
R → A by ri 7→ ai. Fact (non-examinable): this is a well-defined F -invariant
homomorphism if and only if A → E is an injection. We made a choice of
preimages xi of xi in E. A different choice x′i differ from xi by an element
bi ∈ A. Then xi 7→ bi gives a homomoprhism f : F → A and r′i = rif(bi).

Example. Let G = 〈x1, x2|x1x2x−1
1 x−1

2 x1〉. We show H2(G,Z) = 0. Any
central extension of G by Z has a presentation

E = 〈x1, x2, t|x1x2x−1
1 x−1

2 x1 = tk, t central〉.

Now we can make a substitution x1 7→ x1t
−k = x′1,

E ∼= 〈x′1, x2, t|x′1tk · x2(x′1tk)−1x−1
2 (x′1t

k) = tk, t central〉 = E′

E and E′ are equivalent as extensions and we can simplify E′

〈x′1, x2, t|x′1x2(x′1)−1x−1
2 x′1 = 1, t central〉 = Z×G

It follows that H2(G,Z) = 0.

5.5 Worked example: Z2

Let T = Z2 = 〈a, b〉. We will classify all central extensions of T by Z. Start
with a free resolution derived from topology

0 ZT (ZT )2 ZT Z 0
β α ε

where

• ε is the augmentation map.

• α(x, y) = x(a− 1) + y(b− 1).

• β(z) = (z(1− b), z(a− 1)).

Exactness can either be derived from topology (square tiling of the plane), or
direct computation.

Apply HomZT (−,Z) to get

HomZT (ZT,Z) HomZT ((ZT )2,Z) HomZT (ZT,Z) 0α∗ β∗

where

β∗(f)(z) = f(z(1− b), z(a− 1))

= f(z − zb, 0) + f(0, za− z)
= (b− 1) · f(z, 0) + (1− 1) · f(0, z)
= 0

so β∗ = 0. Similarly α∗ = 0. Thus

Hi(T,Z) =


Z i = 0

Z2 i = 1

Z i = 2
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To get extensions, we turn to bar resolutions. We seek a chain map

. . . ZT{T 2} ZT{T} ZT Z 0

0 ZT (ZT )2 ZT Z 0

d2

f2

d1

f1

ε

f0

β α ε

Obviously f0 = id. f1 should satisfy αf1 = f0d1 = d1. Want to find an element
(xr,s, yr,s) ∈ (ZT )2 such that

α(xr,s, yr,s) = d1([a
rbs]) = arbs − 1 = (ar − 1)bs + (bs − 1)

then define f1 by [arbs] 7→ (xr,s, yr,s). By commutativity of T ,

xr,s =
ar − 1

a− 1
bs = S(a, r)bs

yr,s =
bs − 1

b− 1
= S(b, s)

where

S(a, r) =

{
1 + a+ · · ·+ ar−1 r ≥ 0

−(a−1 + · · ·+ ar) r < 0

So f1([arbs]) = (S(a, r)bs, S(b, s)). By a messy calculation we similarly find

f2([a
rbs|atbu]) = S(a, r)bsS(b, u).

A cohomology class p ∈ Z ∼= HomZT (ZT,Z) is represented by the 2-cochain
given by the composition

(arbs, atbu) 7→ S(a, r)bsS(b, u) 7→ pru

so the group structure on the set Z× T corresponding to this cochain is

(m, arbs) · (n, atbu) = (m+ n+ pru, ar+tbn+s).

More concretely, this group has a 3-dimensional representation

(m, arbs) 7→

1 pr m
0 1 s
0 0 1


The group of central extensions of T by Z is generated by p = 1.

5.6 Cohomology of profinite groups
The cohomology theory works for profinite groups.

Definition (G-module). Let G be a profinite group. A finite G-module is
a finite abelian group M with a continuous G-action G×M →M .

To avoid defining the group ring of a profinite ring, we use the ad hoc
definition
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Definition. Let G be a profinite group and M a finite G-module. Define

Cn(G,M) = {Gn →M continuous}

and dn given by the same formula as before. DefineHn(G,M) = ker dn+1/ im dn.

Course convention: all general results in this chapter and example sheet 4
may be assumed to hold for profinite groups, where all groups are profinite, all
functions are continuous and all modules are finite.

Example. An extension ofG byM is a profinite group E withM E E such that
E/M ∼= G. Equivalence of extensions is a continuous homomorphism respecting
M and G. Then there exists a bijection between equivalent classes of extensions
and H2(G,M).

One can treat profinite groups as discrete groups, but the resulting cohomol-
ogy theory is horrid. Another question: why finite modules only? For example
consider the exact sequence of Ẑ-modules with trivial Ẑ-action

0 Z Q Q/Z 0

Have
H1(Ẑ,Z) = H1(Ẑ,Q) = 0

as the continuous map from Ẑ → Z has compact image. H1(Ẑ,Q/Z) ∼= Q/Z.
But we should have a long exact sequence, which implies that H2(Ẑ,Z). Thus
free profinite groups Ẑ does not have “cohomologicial dimension” 1.

5.6.1 Pro-p groups of cohomological dimension 1

For simplicity in this section assuming all pro-p groups are tfg. The aim of this
section is to prove Stallings-Swan for tfg pro-p groups, i.e. Proposition 5.1 and
its converse:

Theorem 5.15. A tfg pro-p group G is free if and only if cd(G) = 1, if and
only if H2(G,Fp) = 0.

Note that for any non-trivial tfg pro-p group G, in particular free pro-p
groups, cd(G) ≥ 1 as

H1(G,Fp) ∼= Hom(G,Fp) 6= 0.

We first show the equivalence of the characterisations

Theorem 5.16. Let G be a pro-p group. Then

cd(G) = max(n : Hn(G,Fp) 6= 0).

Definition (simple). A G-module M is simple if the only G-submodules
are 0 and M .
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Proposition 5.17. Fix n ≥ 0. Let G be a profinite group and suppose
Hn(G,S) = 0 for all simple finite G-modules S. Then Hn(G,M) = 0 for
all finite M .

Proof. Suppose for contradictionM of minimal size has nonvanishingHn(G,M).
M is not simple so exists G-submodule N ≤ M , giving rise to a short exact
sequence

0 N M M/N 0

of G-modules. By using long exact sequence and minimality of M , Hn(G,M) =
0, absurd.

Definition (p-primary component). Let M be a finite G-module. Let Mp

be the Sylow p-subgroup of M , called the p-primary component of M . Then
M =

⊕
pMp.

Proposition 5.18. Let G be a pro-p group, M a finite G-module. Then

Hn(G,M) = Hn(G,Mp)

for n ≥ 1.

Proof. Write M = Mp ⊕ M ′ where M ′ is the direct sum of other q-primary
components. Then

Hn(G,M) = Hn(G,Mp)⊕Hn(G,M ′)

(finite p-group case is an exercise in example sheet 4) and we show Hn(G,M ′) =
0. Let φ : Gn → M ′ be a continuous function. Claim φ factors as Gn →
(G/K)n →M ′ for some K Eo G.

Proof. We want to find K such that each fibre of φ is a union of cosets of
Kn. For each m ∈ M ′, φ−1(m) is open and closed, so can be written as
φ−1(m) =

⋃
(ai + Kn

i ) where Ki Eo G. The cover may be taken to be finite
and we take K to be the intersection of all the Ki’s.

ButHn(G/K,M ′) = 0 asG/K is a finite p-group, so exists ψK : (G/K)n−1 →
M such that φK = dnψK . Now set ψ : Gn−1 → (G/K)n−1 → M ′ so φ =
dnψ.

Remark. The argument actually shows that if G = lim←−G/K then Hn(G,M) =
lim−→Hn(G/K,M).

Proposition 5.19. Let G be a pro-p group. The only simple p-primary
G-module is Fp.

Proof. Example sheet 4.

Combining these gives
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Proposition 5.20. Let G be a pro-p group. If Hn(G,Fp) = 0 then Hn(G,M) =
0 for all finite modules M .

Proposition 5.21. Suppose exists n such that Hn(G,M) = 0 for all M
then cd(G) ≤ n− 1.

Non-examinable. By course convention we shall prove this for an abstract group
G. The main idea is dimension shifting: suppose there is a short exact sequence
of G-modules

0 M N M ′ 0

where N is cohomologically trivial. Then from the long exact sequence one
know Hi(G,M ′) ∼= Hi+1(G,M).

Example sheet 4 shows that for K ≤ G, the following holds for the coinduced
module coindKG (M) = HomZK(ZG,M):

Hn(G, coindKG (M)) ∼= Hn(K,M).

So take K = 1, have coindKG (M) = HomZ(ZG,M) cohomologically trivial.
Finally the map

α :M → Hom(ZG,M)

m 7→ (x 7→ xm)

is an injection so gives the required short exact sequence.

Corollary 5.22. Free pro-p groups have cohomological dimension 1.

Proof. Suffice to show H2(G,Fp) = 0, i.e. to show every extension of G by Fp
splits. Let G be free on X for some X finite. Suppose we have an extension

1 Fp E F (X) 1

E is again a pro-p group. For each x ∈ X choose a preimage ex ∈ E. It extends
to a unique homomorphism F (X)→ E.

Note that the proof works for free groups as well, so providing an algebraic
proof of Proposition 5.1.

Theorem 5.23. Let G and G′ be tfg pro-p groups. Let f : G → G′ be a
continuous homomorphism. Assume

• f∗ : H1(G′,Fp)→ H1(G,Fp) is an isomorphism,

• f∗ : H2(G′,Fp)→ H2(G,Fp) is an injection.

Then f is an isomorphism.

Heuristics: H1(G,Fp) = Hom(G,Fp) = Hom(G/Φ(G),Fp), the dual of the
Fp-vector space G/Φ(G). The first condition tells us something about genera-
tors. In particular f is a surjection. H2 is related to relations, and the second
condition says that we impose no additional relations so f is an injection.
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Non-examinable. Let Gn = γ
(p)
n (G), the lower central p-series. Recall that Gn

are all open, G = lim←−G/Gn. Gn’s are fully characteristic, therefore inducing
maps fn : G/Gn → G′/G′

n. We will show that they are all isomorphisms and
so is f .

Induction on n. For n = 2, f2 : G/Φ(G)→ G′/Φ(G′). By the remark before
the transpose of f2 is an isomorphism, so is f2 itself.

Suppose the result holds for n. If we can show Gn/Gn+1 → G′
n/G

′
n+1 is an

isomorphism then combining the induction hypothesis we deduce the result for
n+ 1 from the diagram

1 Gn/Gn+1 G/Gn+1 G/Gn 1

1 G′
n/G

′
n+1 G′/G′

n+1 G′/G′
n 1

∼= ∼=

Gn/Gn+1 is a finite-dimensional Fp-vector space so Gn/Gn+1 → G′
n/G

′
n+1 is

an isomorphism if and only if its dual H1(G′
n/G

′
n+1,Fp) → H1(Gn/Gn+1,Fp)

is. A homomorphism φ : Gn → Fp factors through Gn/Gn+1 if and only if
φ([g, g′]) = 0 for all g ∈ G, g′ ∈ Gn, if and only if

0 = φ(g−1(g′)−1gg′) = −φ(g−1g′g) + φ(g′),

if and only if φ is G-invariant. Thus H1(Gn/Gn+1,Fp) = H1(Gn,Fp)G. The
five term exact sequence induced by

1 Gn G G/Gn 1

says we have a commutative diagram of exact sequences

H1(G′/G′
n) H1(G′) H1(G′

n)
G′

H2(G′/G′
n) H2(G′)

H1(G/Gn) H1(G) H1(Gn)
G H2(G/Gn) H2(G)

∼= ∼= ∼=

By induction hypothesis and injectivity on H2, the middle vertical map is an
isomorphism by five lemma. Therefore Gn/Gn+1

∼= G′
n/G

′
n+1.

In fact we get for free from the proof

Theorem 5.24. If Γ and Γ′ are finitely generated abstract groups and f :
Γ → Γ′ is a homomorphism and the same conditions hold, then f̂ : Γ̂(p) →
Γ̂′
(p) is an isomorphism.

Proof. Set Γn = γ
(p)
n (Γ). Then Γ̂(p) = lim←−Γ/Γn. Proceed as before.

Proof of Theorem 5.15. Suppose x1, . . . , xd is a generating set of minimal size.
Let F be the free pro-p group on xi and consider f : F → G. F/Φ(F )→ G/Φ(G)
is an isomorphism since they are the same Fp-vector space and H2(G,Fp) →
H2(F,Fp) is an injecition. Thus f is an isomorphism.
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Example. Let Γ = 〈x1, x2|x1x2x−1
1 x−1

2 x1〉. Recall H2(Γ,Z) = 0. The same
argument shows H2(Γ,Fp) = 0. H1(Γ,Fp) = Hom(Γ,Fp). Let φ : Γ → Fp.
Then

0 = φ(x1x2x
−1
1 x−1

2 x1) = φ(x1)

and no further relation so H1(Γ,Fp) = Fp generated by x1 7→ 0, x2 7→ 1. Let
f : Z→ Γ, 1 7→ x2. Then f induces Γ̂(p)

∼= Zp.

5.6.2 Presentation of pro-p groups

Definition (presentation of pro-p group). Let X be a finite set and F a free
pro-p group on X. Let R ⊆ F . The pro-p group with presentation bX|Rcp
is defined to be F/〈〈R〉〉.

Note that not all elements in bX|Rcp can be written as a product of elements
of X.

Lemma 5.25. Let Fabs be the abstract free group on X and let R ⊆ Fabs.
Let Γ = 〈X|R〉, G = bX|Rcp. Then G = Γ̂(p).

Proof. Suffices to look at the p-group quotients of G and Γ. A quotient Γ→ P ,
where P is a p-group, is the same as a function X → P such that its extension
to Fabs contains R in the kernel. But this is exactly the same as a continuous
quotient G→ P .

Theorem 5.26. Let G be a tfg pro-p group. Let X be a finite tgs of G. Let
rX be the minimal size of a set R ⊆ F (X) such that G = bX|Rcp. Then

|X| − rX = dimFp
H1(G,Fp)− dimFp

H2(G,Fp).

In particular if X is a minimal generating set then rX = dimH2(G,Fp).

Remark.

1. One may ask the same question for abstract groups. If Γ is a finitely gen-
erated (abstract) group, X a finite generating set, let ρX be the minimal
size of an R such that Γ = 〈X|R〉. Then what can we say about |X|−ρX?
It is a subtle question and in general the answer depends on X.

2. For G finite p-group, let X be a generating set. One may ask must ρX =
rX? Certainly rX ≤ ρX by the lemma. The other direction is open.

Lemma 5.27. Let G and L be profinite groups. Assume L acts continuously
on G by homomorphism via ρ : L × G → G. Then there is a proper open
normal subgroup of G which is invariant under the action of L.

Note that if we assume G is tfg then this follows from the old trick of taking
all intersections.
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5 Cohomology of groups

Proof. Let U be a proper open normal subgroup of G. Claim L̃ = {` ∈ L :
` · U = U} is open in L. If this claim holds, there are finitely many subgroups
of the form ` · U by orbit-stabiliser. Their intersection is then an L-invariant
open normal subgroup.

Let ` ∈ L̃. For each u ∈ U we have ` · u ∈ U . Can find Au ⊆ L,Bu ⊆ U
open such that

(`, u) ∈ Au ×Bu ⊆ ρ−1(U).

Bu’s cover U which is compact so we can take a finite subcover Bu1
, . . . , Buk

.
Take A = Au1

∩ · · · ∩ Auk
. Left to show A ⊆ L̃: if a ∈ A, u ∈ U then exists

ui such that u ∈ Bui
and a ∈ Aui

, hence (a, u) ∈ Aui
× Bui

⊆ ρ−1(U). Thus
A · U ⊆ U .

Lemma 5.28. Let F be a free pro-p group, N E F a closed proper normal
subgroup of F . Then exists a set R ⊆ N of size r such that N = 〈〈R〉〉 if
and only if dimFp

H1(N,Fp)F ≤ r.

Proof. Recall

H1(N,Fp)F = {φ : N → Fp homomorphism such that φ(f−1nf) = φ(n)}
= {φ : N/Np[N,F ]→ Fp}

If N = 〈〈R〉〉, an F -invariant map φ : N → Fp is determined by the restriction
to R, so there is an injection H1(N,Fp)F ↪→ F|R|

p .
Conversely suppose dimH1(N,Fp)F = r, then dimN/Np[N,F ] = r. Let

R ⊆ N be a lift of a basis of the vector space. R has the property that every
F -invariant homomorphism N → Fp which kills R is trivial. Claim N = 〈〈R〉〉:
suppose N ′ = 〈〈R〉〉 6= N . Then N ′Φ(N) 6= N by definition of Frattini sub-
group, so M = N/N ′Φ(N) 6= 0. M is an abelian pro-p group with a continuous
action of F . By the previous lemma M has a F -invariant proper open sub-
group U . Now M/U is a finite F -module which is an abelian p-group, so by the
characterisation of simple modules there is a map M/U → Fp. This contradicts

N → N/N ′Φ(N) =M →M/U → Fp

which kills all of R.

Non-examinable proof of Theorem 5.26. This follows from minimal generating
set has size equal to dimG/Φ(G) = dimH1(G,Fp).

Let N = ker(F (X)→ G). We obtain the five term exact seqeunce

0 H1(G) H1(F ) H1(N)F H2(G) H2(F ) = 0

dimH1(G) |X| rX dimH2(G)

Now take Euler characteristic.
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