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1 Perfection and Tilting

1 Perfection and Tilting
Let p be a ring. Recall that a ring R of characteristic p, is perfect if Frobenius
φ : R→ R is an isomorphism. We call R semiperfect if φ is surjective.

Definition (tilting). Let R be a ring.

• If R has characteristic p, set Rperf = lim−→φ
R and Rperf = lim←−φ

R.

• (Fountaine) Set R[ = (R/p)perf . We endow R[ with the profinite
topology (and R/p with the discrete topology).

Remark. Universal property of tilting: both Rperf and Rperf are perfect and
the canonical map Rperf → R (resp. R → Rperf) has the universal property
for maps from perfect rings to R (resp. from R into perfect rings). Moreover
Rperf → R is surjective if and only if R is semiperfect.

Example.

1. Fp[t]perf = Fp[t
1/p∞

],Fp[t]
perf = Fp.

2. Fp[t]
[ = Fp.

3. If R is perfect of characteristic p, then for any f ∈ R non-zero divisor,
(R/f)perf ∼= R̂, where R̂ is the completion with respect to the (f)-adic
topology. This is left as an exercise. In particular, (Fp[t

1/p∞
]/(t))perf ∼=

̂Fp[t1/p
∞ ], the perfect polynomial ring.

4. (Zp)
[ ∼= Fp.

5. ( ̂Zp[p1/p
∞ ])[ ∼= ̂Fp[t1/p

∞ ]. Note LHS before tilting is the completed direct
limit of Zp[t]/(t

pn − p).

Exercise. Show that if R → S is a surjective ring homomorphism of charac-
teristic p rings with nilpotent kernel then Rperf

∼= Sperf , Rperf ∼= Sperf . Slogan:
tilting kills nilpotent extensions.

An elementary but important lemma:

Lemma 1.1. Let R be a ring and t ∈ R such that p ∈ (t). Give a, b ∈ R
such that a = b (mod t), then ap

n

= bp
n

(mod tn+1).

Proof. Induction on n. Clear for n = 0. Assume it is true for n, then ap
n

=
bp

n

+ tn+1 · c. Raising to pth power,

ap
n+1

= bp
n+1

+ p · tn+1 · d+ t(n+1)p · cp.

Since p ∈ (t), the claim follows.

Crucial lemma:

Lemma 1.2. Assume that R is p-adically complete. The map R → R/p
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1 Perfection and Tilting

induces an isomorphism of multiplicative monoids

lim←−
φ

R→ lim←−
φ

R/p = R[.

Proof. Injectivity: let (an), (bn) ∈ lim←−φ
R such that an = bn (mod p) for all

n. Then since an+k = bn+k (mod p), by the previous lemma ap
k

n+k = bp
k

n+k

(mod pk+1) for all k. R is p-adically separated as it is complete so an = bn.
Surjectivity: let (an) ∈ R[. Choose lifts an ∈ R of an. Then ap

k

n+k =

an (mod p) for all n, k. Using the lemma again, (ap
k

n+k)k are Cauchy so by
completeness it has a limit bn. By construction bpn+1 = bn and bn’s are lifts of
an.

Remark. It is easy to see that bn’s do not depend on the chosen lifts and it
gives an explicit inverse to the map in the lemma. Composing this inverse with
projection to the last component, we get the map

] : R[ → R

f 7→ f ]

Its image is exactly those f ∈ R which admit compatible system {f1/p∞}. Such
elements are called the perfect elements in this course.

Lemma 1.3 (tilting and valuation). If a p-adically complete ring R is a
domain (resp. valuation ring), the same is true for R[. In fact, if | · | : R→
Γ ∪ {0} is the valuation on R, then the composition

| · |[ : R[ ]−→ R
|·|−→ Γ ∪ {0}

gives the valuation on R[. The rank of | · |[ is bounded above by the rank of
| · |.

Proof. Since R[ ∼= lim←−φ
R, if (an), (bn) ∈ R[ are such that (an) · (bn) = 0, then

in particular a0 ·b0 = 0 so a0 = 0 or b0 = 0 as R is a domain. Then ap
i

i = a0 = 0
so ai = 0. Thus R[ is a domain.

If R is a vaulation ring, its elements are totally ordered by divisibility and
given (an), (bn) ∈ R[, wlog a0 | b0. Then an | bn (since bn

an
∈ FracR must lie

in R, since pth root does). Thus R[ is a valuation ring. The rest follows from
definition.
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2 Perfectoid fields and their tilt

2 Perfectoid fields and their tilt

2.1 Perfectoid fields
We construct, as a first step, non-archimedean fields with “a lot of” p-power
roots and formulate almost purity in this case, which is already a deep theorem.
We identify the Galois theory of K and K[.

Definition (perfectoid field). A perfectoid field is a non-archimedean com-
plete field K of residue characteristic p > 0 such that

• the value group |K×| ⊆ R>0 is non-discrete,

• K◦/p is semiperfect.

Example.

1. K = ̂Qp(p1/p
∞). Then |K×| = Z[ 1p ]. Note that colimit and completion

of valuation ring is a valuation ring, hence K◦ = ̂Zp[p1/p
∞ ]: we have a

canonical injection ̂Zp[p1/p
∞ ] ↪→ K◦. Both are valuation rings with the

same fraction fields, hence equal. Then K is perfectoid.

2. The same argument shows that K = Q̂p[µp∞ ] is perfectoid.

3. Any characteristic p field K is perfectoid if and only if K is perfect.

Lemma 2.1. Let K be perfectoid.

1. The value group |K×| is p-divisible.

2. (K◦◦)2 = K◦◦. Moreover K◦◦ is a flat K◦-module.

3. K◦ is not noetherian.

Proof.

1. Let x ∈ K be such that |p| < |x| < 1 (these are called small elements). By
perfectoidness, exists y ∈ K◦ such that x = yp+pz. Then |x| = |yp| = |y|p.
In general, since |K×| is non-discrete, |p|Z ( |K×| so exists x ∈ K, |x| /∈
|p|Z. Multiplying by a suitable power of p we may assume |p| < |x| < 1.
As p does not divide x, by valuation property p = xy for some y ∈ K◦.
Then y is also small, therefore |y| is also p-divisible. Thus |p|Z is divisible
and we are done.

2. Pick f ∈ K◦◦. By perfectoidness f = gp + ph where g ∈ K◦◦, h ∈ K◦.
Since p = xy ∈ (K◦◦)2 in the previous part, (K◦◦)2 = K◦. Since K◦◦ is
torsion-free and over a valuation ring, it is flat.

3. K◦◦ is not finitely generated since it has elements with arbitrarily small
valuation. Alternatively use Nakayama.

Remark. The proof shows that |K×| is generated by |x| such that |p| < |x| < 1.
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2 Perfectoid fields and their tilt

2.2 Tilting of perfectoid fields
We are going to define the tilt of a perfectoid field. Fix a pseudo-uniformiser
π ∈ K◦ such that |p| ≤ |π| < 1 (we can pick p). Consider

lim←−φ
K◦ K◦

K◦[ = lim←−φ
K◦/p K◦/p

lim←−φ
K◦/π K◦/π

∼=

∼=

K◦[ → lim←−φ
K◦/π is an isomorphism since exists n such that |π|n < |p|, so

K◦/p→ K◦/π has nilpotent kernel, and hence (K◦/p)perf ∼= (K◦/π)perf .

Lemma 2.2. There exists some t ∈ K◦[ such that |t]| = |π|. Moreover t
maps to 0 in K◦/π and gives an isomorphism K◦[/t ∼= K◦/π.

Proof. By assumption (p) ⊆ (π) so we have surjective maps K◦[ → K◦/p →
K◦/π. By p-divisibility of |K×|, exists f ∈ K◦ such that |f |p = |π|. Thus
|f | > |π| and hence f 6= 0 in K◦/π. Choose a lift g ∈ K◦[ of f . By the above
diagram, g] = f (mod π). By non-archimedean property |g]| = |f |. Let t = gp

and
|t]| = |g]p| = |π|

by multiplicativity of ].
t maps to 0 in K◦/π by construction and we have a surjection K◦[/t →

K◦/π. It is an isomorphism: suppose h ∈ K◦[ is such that h maps to 0 in K◦/π.
Since |π| = |t]|, (π) = (t]). h] is also mapped to 0 by the commutative diagram
so h] = a · t]. Set an = (h1/pn )]

(t1/pn )]
∈ K. Then ap

n

n = a so ã = (an) ∈ lim←−φ
K◦.

Then h = ã · t in lim←−φ
K◦.

Corollary 2.3. K◦[ is t-adically complete and the t-adic topology coincides
with the inverse limit topology.

Proof. Exercise. Use lim←−n
K◦[/tn ∼= lim←−n

K◦[/tp
n .

Proposition 2.4. Fix an element t as in the previous lemma.

1. K◦[ is a valuation ring and K[ = K◦[[ 1t ] is a field (of characteristic
p).

2. The ideal (t1/p∞
) is maximal and the Krull dimension of K◦[ is 1.

3. The valuation topology on K◦[ coming from 1 coincides with the t-adic
topology. In this topology K[ is a perfectoid field and K[◦ = K◦[.
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2 Perfectoid fields and their tilt

4. The value groups of K and K[ are identified, so are their residue fields.

Proof. Observe that a ∈ K◦[ is a unit if and only if a] is a unit.

1. K◦[ is a valuation ring of rank 1 since the valuation is not trivial. It is a
general fact that K◦[[ 1t ] produces the fraction field: |t|[ = |t]| = |π| so for
any h ∈ K◦[, exists n such that |tn| < |h|. Thus 1

h = z
tn if tn = h · z.

2. It is a general fact that the Krull dimension of a valuation ring is the
rank of valuation. Since K◦[/t ∼= K◦/π, the maximal ideal of K◦/π is
its nilradical (since it is artinian) so the same is true for LHS. Certainly
(t1/p

∞
) ⊆ N(K◦[/t) and by construction K◦[/(t1/p

∞
) is perfect and hence

reduced, so equality.

3. Using that |t|[ < 1, we see that t-adic topology is equivalent to the valu-
ation topology. Since K◦[ is t-adically complete, K[ is non-archimedean.
It is also perfect so is perfectoid.

4. Easily |K[×| ⊆ |K×|. We’ve seen |K×| is generated by |x| such that
|p| < |x| < 1. Using the previous lemma, all generators of |K×| are in
|K[×| so equality.

Proposition 2.5 (tilting continuous valuations). For any continuous non-
archimedean valuation |·| : K → Γ∪{0} (of any rank), the function |·|[ is also
a continuous valuation. This identifies the space of continuous valuations
on K and K[.

Sketch proof. It is clear that |·|[ is multiplicative and |f |[ = 0 if and only if f = 0.
Check non-archimedean property: take (fn), (gn) ∈ lim←−φ

K◦ so f0 = f ], g0 = g].
Then

|f + g|[ = |(f + g)]|
= | lim(fn + gn)

pn

|
= lim |fn + gn|p

n

≤ limmax(|fn|p
n

, |gn|p
n

)

= max(|f ]|, |g]|)

For continuity, note that a valuation | · | is continuous if and only if for any
pseudo-uniformiser f ∈ K◦◦, we have |f |n → 0. Since any pseudo-uniformiser
can be tilted to a pseudo-uniformiser in K◦[, | · | is continuous implies | · |[ is
continuous.

We can also use this characterisation to prove

1. K◦◦ ⊆ R, where R is the valuation ring of | · |.

2. R ⊆ K◦.
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2 Perfectoid fields and their tilt

Standard fact (Matsumura, Commmutative Ring Theory Theorem 16.1): let
R ⊆ R′ ⊆ K be valuation rings in a field, mR,mR′ maximal ideals of R and R′.
Suppose R 6= R′. Then mR′ ⊆ mR ⊆ R and mR′ is a prime ideal of R. Moreover
R′ ∼= RmR′ . Hence if R has properties 1 and 2, R → K◦ is a localisation and
K◦◦ lies in SpecR. Thus |f |n → 0 for f ∈ K◦◦.

Passing to the quotient, there exists an bijection

{continuous valuations on K} ↔ {valuation rings in K◦/K◦◦}

Similar for K[ and use the identification K◦/K◦◦ ∼= K[◦/K[◦◦, we are done.

Theorem 2.6 (almost purity in dimension 0). Let L/K be a finite extension
and K be perfectoid. Then

1. L is perfectoid.

2. the field extension L[/K[ is finite of the same degree as L/K.

3. the association L 7→ L[ defines an equivalence of categories Kfét ' K[
fét

of finite étale algebras.

Corollary 2.7. Gal(K/K) ∼= Gal(K
[
/K[).

Remark. For ̂Qp(µp∞), it is the famous Fontaine-Wintenberger theorem.

Remark. It can be shown that if K = K then K[ = K[. See for example Prop.
3.8 in Scholze, Perfectoid Space.

Example. This example show that the tilting functor K 7→ K[ is not fully
faithful in general. Let K = ̂Qp(µp∞) so K◦ = ̂Zp[µp∞ ]. K◦ can be explicitly
described as the p-adic completion of Zp[ε

1/p∞
]/(1 + ε1/p + · · · + ε(p−1)/p) by

taking a compatible system of p-power roots of unity εn ∈ µpn and sending εn
to ε1/pn . Since xp−1

x−1 = (x− 1)p−1 (mod p),

K◦/p ∼= Fp[ε
1/p∞

]/(ε1/p − 1)p−1 ∼= Fp[t
1/p∞

]/tp−1

by substituting t for ε − 1. so K◦[ ∼= ̂Fp[t1/p
∞ ] ∼= ( ̂Zp[p1/p

∞ ])[. Thus K[ ∼=
( ̂Qp(p1/p

∞))[.
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3 Almost ring theory

3 Almost ring theory
The idea behind Faltings’ theory is to develop commutative algebra notions
whilst systematically “ignoring” some class of torsion modules. We follow Gab-
ber & Ramero, Almost Ring Theory.

The basic setup for almost mathematics is as follow. Assume R is a com-
mutative ring and I ⊆ R an ideal such that I2 = I and I is flat.

The cases of interest for us are

• for a perfectoid field K, let R = K◦ and I = K◦◦. We have shown I2 = I
and I is flat. In fact we know that for any pseudo-uniformiser t ∈ K[◦, t]
admits a compatible system of p-power roots and I = ((t])1/p

∞
).

• let R be a perfect ring of characteristic p and I = (f1/p
∞
) for f ∈ R. It is

straightfoward that I2 = I. If f is a non-zero divisor then I is flat.

Definition (almost zero module). We say that M ∈ModR is almost zero
if IM = 0, i.e. M is I-torsion. If f ∈ M is such that I · f = 0 then f is
called an almost zero element.

Definition (Serre subcategory). Let A be an abelain category. A Serre
subcategory is a full subcategory B ⊆ A such that

1. B is an abelian subcategory, i.e. clsoed under direct sumes, kernels
and cokernels,

2. B is closed under extensions, i.e. if

0 M N L 0

is a short exact sequence and M,L ∈ B then N ∈ B.

Construction (quotient category). Let A,B be as above. Then one can form
a quotient category A/B with the following properties:

1. A/B is an abelian category and there exists a quotient functor q : A →
A/B which is exact and sends every object of B to 0.

2. given any abelian category C and an exact functor F : A→ C such that
F (B) = 0 for all B ∈ B, F factors through q.

A C

A/B

F

q

Explicitly, Obj(A/B) are the objects of A and

HomA/B(X,Y ) = lim−→
X′→X

Hom(X ′, Y )

where X ′ → X has kernel and cokernel in B.

8



3 Almost ring theory

Definition (almost category). The almost category Moda
R is the quotient

of ModR by the Serre subcategory of ModR/I , i.e. the I-torsion modules.

Note that if

0 M N L 0

is a short exact sequence such that M and L are I-torsion then M is killed by
I2 = I.

We have an exact functor (−)a : ModR → Moda
R called almostification.

The objects of Moda
R are called almost R-modules or Ra-modules.

By construction

HomRa(Ma, Na) = lim−→
M ′→M

HomR(M
′, N)

where M ′ →M has almost zero kernel and cokernel, i.e. M ′ →M is an almost
isomorphism. In our case it is explicit: for any

the direct system has an initial object (?) I ⊗M →M , so

HomRa(Ma, Na) = HomR(I ⊗M,N)

which has a natural R-module structure.
Remark. It is straightforward to check that the tensor product on ModR

descends to Moda
R, i.e Moda

R is an abelian tensor category with tensor product

Ma ⊗Ra Na = (M⊗R)
a

(it is enough to show that M ⊗R N is I-torsion if either M or N is I-torsion).
Remark. It can be checked that there exists a right adjoint, the internal Hom,
to tensor product in Moda

R. We denote it by alHom(−,−) and it is given by

alHom(X,Y ) = HomRa(Ma, Na)a

for X =Ma, Y = Na, with an isomorphism

Hom(X ⊗ Y, Z) ∼= Hom(X, alHom(Y, Z)).

Construction (functors relating ModR and Moda
R). Consider this motivating

example of sheaves on topological spaces. If X is a topological space and U ⊆ X
open, then we have j∗ : Sh(X)→ Sh(U) (pullback). This functor is exact and
has two adjoints j!, j∗ (extension by zero and pushforward). The functor j! is
exact and j∗ is left exact.

Similar almostification (−)a : ModR →Moda
R admits adjoints

(−)!, (−)∗ : Moda
R →ModR.

It is enough to describe them on honest R-modules and check that they respect
almost isomorphisms. They are given by

M! = I ⊗M
M∗ = HomR(I,M)

The adjunction can be checked by

HomRa(Ma, Na) = HomR(I ⊗M,N) = HomR(M,HomR(I,N)).

Finally since I is flat, (−)! is flat.
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3 Almost ring theory

Construction. (almost category in disguise) Let A ⊆ModR be the full sub-
category of R-modules such that the multiplication map I ⊗ M → M is an
isomorphism. Equivalently, as I ⊗ I ∼= I2 ∼= I, A is the essential image of the
functor ModR → ModR,M 7→ I ⊗M . This functor is exact since I is flat.
Flatness also shows that A is an abelian category. We prove that A is a quotient
of ModR and it gives an explicit realisation of Moda

R.
Denote by j∗ : ModR → A the functor −⊗ I.

Proposition 3.1. The functor j∗ : ModR → A provides an explicitsation
of the quotient functor q : ModR →Moda

R.

Proof. We must check that j∗ satisfies the properties in the definition of a
quotient category.

• Let M be an I-torsion module. Then since M is canonically an R/I-
module, I ⊗R M = I ⊗R (R/I ⊗R M) = 0 as I/I2 = 0.

• j∗ is exact as I is flat.

• Universal property: if F : A → B is an exact funtor, B is abelian and F
sends I-torsion modules to 0, then F factors through j∗: if I⊗M →M is
the multiplication map then its kernel is TorR1 (R/I,M) and the cokernel
is R/I ⊗R M (as 0 → I → R → R/I → 0 is a flat resolution of R/I).
Both TorR1 (R/I,M) and R/I ⊗R M are I-torsion as

Tor1R(R/I,M)⊗R I ∼= Tor1R(R/I ⊗R I,M) = 0.

Thus F (I ⊗M) ∼= F (M) and F ◦ j∗(M) ∼= F (M), so F factors through
j∗.

Remark. We realised Moda
R as a full subcategory of ModR. Then it is

straightforward that Moda
R is an abelian tensor category and that

alHom(j∗(M), j∗(N)) = j∗ Hom(M,N).

Definition (almost finitely generated/presented). An object Ma ∈Moda
R

is almost finitely generated if for every ε ∈ I, exists a finitely generated
R-module Mε and a map Mε →M such that the cokernel is annihilated by
ε. Mutatis mutandis define almost finitely presented modules.

If the number of generators can be bounded above independent of ε, we
say that M is uniformly almost finitely generated.

Remark. A priori the definition depends on the choice of the R-module M
giving Ma. However it is easy to check that it doesn’t.

Definition. Let M ∈ModR with image Ma ∈Moda
R. Then

• we say M or Ma is almost flat if Ma ⊗ − is exact, or equivalently
TorRi (M,N) is almost zero for any R-module N and i > 0.

• we say that M or Ma is almost projective if alHom(Ma,−) is exact,
or equivalently ExtiR(M,M) is almost zero for any R-module N and

10



3 Almost ring theory

i > 0.
Exercise. The bifunctor HomRa(Ma, Na) can be derived in either variable
to convert a short exact sequence to a long exact sequence. In fact we get
derivatives by formula

ExtiRa(Ma, Na) = ExtiR(I ⊗R M,N).

In particular, if 0 → M ′a → Ma → M ′′a → 0 is a short exact sequence in
Moda

R, we have a long exact sequence

ExtiRa(Ra,M ′a) ExtiRa(Ra,Ma) ExtiRa(Ra,M ′′a)

Exti+1
Ra (Ra,M ′a) Exti+1

Ra (Ra,Ma) Exti+1
Ra (Ra,M ′′a)

· · ·

deriving the functor (−)∗ of almost elements.

Remark. Note that almost projective modules are not projective objects in
Moda

R. Recall that an object P in some abelian category A is projective if
HomA(P,−) is exact. We have just shown that Ra is not a projective object in
Moda

R, but it is certainly an almost projective module.
For example, for K perfectoid field, let R = K◦, I = K◦◦ and k its residue

field. Using the above exercise, we can show

ExtiRa(Ra, Ra) ∼= Ext2R(k,R).

It is a standard fact that ifK is not spherically complete (e.g. Cp) then Ext2R(k,R)
is non-zero.

Exercise. Consider R = Fp[t
1/p∞

], I = (t1/p
∞
). Consider

0 R R R/tR 0t·

Applying (−)a and the (−)∗, we get

0 R R (R/tR)∗

which is not exact on the right because of elements such as
∑

n>0 t
1−1/pn .

But if K is spherically complete, then higher derived functors of (−)∗ vanish.
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4 Almost purity in characteristic p and for perfectoid fields

4 Almost purity in characteristic p and for per-
fectoid fields

Let R be a perfect Fp-algebra and for any non-zero divisor t ∈ R, let I = (t1/p
∞
).

Proposition 4.1. Let S → S′ be a map of perfect R-algebras and suppose
that S, S′ are integral over R. Assume that S[ 1t ]→ S′[ 1t ] is an isomorphism.
Then S → S′ is an almost isomorphism.

Proof. Let s ∈ S′. Let M ⊆ S′ be the S-module generated by s. Any finitely
generated R-module M ′ ⊆ S′ has the property that there exists N ∈ N such
that tN ·M ′ ⊆ S since S[ 1t ] ∼= S′[ 1t ] and S′ is integral over R. In particular
there exists N ∈ N such that for any n ∈ N, tN · sn ∈ S. Taking n = pr for
r ∈ N and extracting pr-th roots, we see that tN/pr · s ∈ S (tN/pr exists as
IN = I = (t1/p

∞
)). Hence s almost belongs to S. Similarly we can show almost

injectivity.

Corollary 4.2. There is an equivalence of categories

{perfect R[ 1
t
]-algberas} ←→ {perfect R-algebras integral over R}/ ∼almost iso

Definition (finite étale algebra). Let R be a commutative ring. An R-
algebra S is called finite étale if

1. S is finitely generated projective over R,

2. R → S is unramified, which is any of the following equivalent defini-
tions:

(a) the multiplication map m : S ⊗R S → S admits a section in
S ⊗R S-modules;

(b) exists an idempotent e ∈ S ⊗R S such that e gnerates the kernel
of m (then (1− e)S ⊗R S ∼= S and (1− e) kerm = 0);

(c) kerm/(kerm)2 = 0.

Construction. In general, if R → S is a ring map such that S is finitely
generated projective, then we have a trace map tr : S → R. If S is free of
finite rank then S ∼= Rn and tr(s) is the trace of the matrix that corresponds
to multiplication by s. If S is finitely generated projective then it corresponds
to a locally free sheaf F of rank n over SpecR. There is an open cover {Ui} of
Spec(R) such that F|Ui

∼= On
Ui
, so we can define trace maps on F(Ui) ∼= On

X(Ui).
Since tr(M) = tr(C−1MC) for any matrix M , the local data can be glued
together to give a trace map tr : S → R.

The trace map tr : S → R induces a trace pairing

Tr : S × S → R

(s1, s2) 7→ tr(s1s2)

12



4 Almost purity in characteristic p and for perfectoid fields

It is a standard fact that this symmetric bilinear map is nondegenerate if and
only if R→ S is finite étale (do it locally).

Using the idempotent e′ from the definition, we see that in fact S⊗RS ∼= S×
S′ (as rings) for some finite étale R-algebra S′. We write e′ =

∑
ai⊗bi ∈ S⊗RS.

Then we can explicitly realise S as a direct summand of Rn via S α−→ Rn β−→ S
where

α(f) =

(
tr(fa1)

...
tr(fan)

)

β

(
r1
...
rn

)
=
∑

ri · bi

To see that it works, we need that β ◦ α = id, i.e.∑
tr(f · ai) · bi = f

for f ∈ S. Use that S ⊗R S ∼= S′ and that the trace maps is additive across
products of finite étale algebras, we can show that if i2 : S → S ⊗ S, s 7→ 1⊗ s
then tri2(e

′) = trS/S(1) = 1. By compatiblitiy of the trace map with base
change of rings, we get that ∑

tr(ai) · bi = 1

so we get the statement for e′. Then repeat the same argument by replacing e′
with (f ⊗ 1) · e′.

Definition. A monoid (M,µ, i) in a monoidal category (C,⊗, I) is an object
M ∈ C with morphisms µ : M ⊗M → M , i : I → M called multiplication
and unit morphism making the following diagrams commute

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

µ⊗1

1⊗µ

µ

I ⊗M M ⊗M M ⊗ I

M
λ

µ
η

where λ and eta are left and right identity maps.

Example. In this course we meet monoidal categories (ModR,⊗R, R) and
(Moda

R,⊗, Ra). A monoid in (R,⊗, R) is just an R-algebra.

We define almost R-algebras or Ra-algebras to be the monoid objects in
Moda

R.
The functor (−)a restricts toAlgR → AlgRa . Moreover if A is anRa-algebra

then (A∗)
a ∼= A, A∗ being an honest R-algebra.

13



4 Almost purity in characteristic p and for perfectoid fields

Definition. A map A→ B of Ra-algebras is almost finite étale if

1. B is almost finite projective (i.e. almost finitely generated and almost
projective) over A,

2. (almost unramified) there exists an almost idempotent, i.e. e ∈ (B ⊗
B)∗ such that e2 = e, ker(µ)∗ · e = 0, where µ : B ⊗B → B.

We write Aafét for the category of almost finite étale A-algebras.

Theorem 4.3 (almost purity in characteristic p).

1. If S is a perfect R-algebra (R is a perfect Fp-algebra) which is integral
over R and S[ 1t ] is finite étale over R[ 1t ], then S is almost finite étale
over R.

2. Inverting t induces an equivalence of categories between finite étale
Ra-algebras and finite étale R[ 1t ]-algebras.

Proof. Reduce to the case S is t-torsion free: the ideal of t-power torsion ele-
ments in S is almost zero. Given a ∈ S which is t-power torsion, exists n ∈ N
such that tn · a = 0. Thus tn · apk

= 0 so by perfectness tn/pk · a = 0. Thus we
may replace S by S/{t− power torsion} since the kernel is almost zero.

Reduce to when R (resp. S) are integrallly closed in R[ 1t ] (resp. S[
1
t ]): let

Rint be the integral closure of R in R[ 1t ]. The R-submodule fN · R ⊆ R[ 1t ] for
f ∈ Rint is finitely generated. Thus exists c ∈ N such that tc · fN ∈ R. In
particular tc · fpn ∈ R so tc/pn · f ∈ R for all n. Thus f almost belongs to R,
i.e. R→ Rint is an almost isomorphism. Similarly for S.

Almost unramifniteness: R[ 1t ] → S[ 1t ] is finitely étale so exists e ∈ (S ⊗
S)[ 1t ] = S[ 1t ] ⊗ S[

1
t ] with property 2. Thus tc · e ∈ S ⊗R S for some c ∈ N. As

ep
n

= e, tc/pn · e ∈ S ⊗ S for all n ∈ N. Thus e almost belongs to S ⊗ S, i.e.
e ∈ (Sa ⊗ Sa)∗. Thus R→ S is almost unramified.

It remains to prove that S is almost finite projective over R. Since t1/pn ·e ∈
S ⊗ S, fix n ∈ N , t1/pn · e =

∑
ai ⊗ bi. Now we use the decomposition

S[
1

t
]

α−→ R[
1

t
]n

β−→ S[
1

t
]

and consider maps
S

α0−→ Rn β0−→ S

where

α0(f) =

(
tr(f ·ai)

...
tr(f ·an)

)

β0

(
r1
...
rn

)
=
∑

ri · bi

Since R is integrally closed these maps are well-defined. By (*) we have β0◦α0 =
t1/p

n (use S is t-torsion free). In particular, multiplication by t1/p
n factors

14



4 Almost purity in characteristic p and for perfectoid fields

through a finite free R-module. This is true for all n. Thus S is almost finite
projective.

For 2, the functor Rafét → R[ 1t ]fét, S 7→ (Sa)∗[
1
t ] is an equivalence of cate-

gory:
essential surjectivity: follows from 1 since any integral extension of R[ 1t ] is

obtained by an integral extension R → S and then inverting t. By 1 R → S is
almost finite étale.

fully faithful: fix: fix S ∈ Rafét. Claim S ∼= T a for the integral losure T of
R in S∗[

1
t ]. So the claim recovers S functorially from the map S → S∗[

1
t ] as

desired

almost direct sum of a finite module.

15



5 Integral perfectoid rings

5 Integral perfectoid rings

Definition (integral perfectoid ring). Let A be a topological ring. We say
that A is integral perfectoid if there exists a non-zero divisor π ∈ A such
that

1. the topology on A is the π-adic topology and A is complete with
respect to π-adic topology,

2. p ∈ πpA,

3. φ : A/πA→ A/πpA is an isomorphism.

Example.

1. If K is a perfectoid field, by semiperfectness K◦/π → K◦/πp is surjective
for some appropriate non-zero divisor π ∈ K◦. To show injectivity, let
z ∈ K◦ be such that zp ∈ (πp). Then zp/πp is power bounded, therefore
so is z/π so z = π · a for some a ∈ K◦.

2. If A is integral perfectoid then so is the algebra of “perfectoid restricted
power series”

A〈t1/p
∞

1 , . . . , t1/p
∞

n 〉,

the π-adic completion of A[t1/p
∞

1 , . . . , t
1/p∞

n ].

3. Let A be integral perfectoid and B étale over A. Then B is also integral
perfectoid. This uses the fact that in characteristic p, the relative Frobenius
is an isomorphism for étale maps, i.e. (commutative diagram)

and étale maps are closed under base change.

Exercise. If A is a complete topological ring of characteristic p, then A is
integral perfectoid if and only if A is perfect and the topology is the π-adic
topology for some non-zero divisor π ∈ A.

Construction (tilt of an integral perfectoid ring). We have already defined
A[ and we have showed that lim←−φ

A → A[ is an isomorphism of multiplicative
monoids and a homeomorphism. We also defined the sharp map ] : A[ → A.
This is multiplicative but not additive in general. More specifically

(a+ b)] = lim
n
((a1/p

n

)] + (b1/p
n

)])p
n

.

Note also that modulo p, sharp is a ring homomorphism A[ → A→ A/pA.

Lemma 5.1. The tilt A[ of an integral perfectoid ring is integral perfectoid.

Proof. We know that A[ is perfect of characteristic p. We also know that A[

is complete with respect to the inverse limit topology. The only thing we need

16



5 Integral perfectoid rings

is a non-zero divisior π[ ∈ A[ such that the topology is given by the π[-adic
topology.

Let π ∈ A give the topology on A. Since φ : A/π → A/πp is surjective,
there exists some element lim←−φ

A/πpA of the form (π(πp), π1/p(πp), . . . ). The
very same proof that showed lim←−φ

A ∼= lim←−φ
A/πA can also be used to show that

lim←−φ
A ∼= lim←−φ

A/πpA. Thus exists (a0, a1, . . . ) such that a0 = π (mod πp) etc.
Therefore a0 = u ∈ π for u ∈ 1+πp−1A ⊆ A×, where the inclusion follows from
the fact that A is π-adically complete. After multiplication by a uit, we may
asume that π admits p-power roots.

Take π[ = (π, π1/p, . . . ) ∈ A[. Check that π[ is a non-zero divisor: for any
n ∈ N>0, we have an exact sequence

0 π1−1/pn

A/πA A/πA A/πA A/πA 0π1/pn φn

third last term: if a ∈ A is such that apn ∈ πA then a
π1/pn ∈ A[ 1π ] satisfies

( a
π1/pn )

pn ∈ A. (By exactness?) a
π1/pn ∈ A.

0 π1−1/pn

A/πA A/πA A/πA A/πA 0

0 π1−1/pn+1

A/πA A/πA A/πA A/πA 0

π1/pn φn

π1/pn

ϕ

φn

ϕ id

We have a compatible system of inverse systems. Since all connecting maps in
the inverse systems are surjective or 0, by Mittag-Leffler condition lim←− is exact,
we get an exact sequence

0 A[ A[ A/πA 0π[ ·] (mod p)

Hence π[ is indeed a non-zero divisor and A[/π[A[ ∼= A/πA.
Check that the topology on A[ is induced by π[: A[ ∼= lim←−A/πA is a homeo-

morphism so a basis of open neighbourhoods of 0 is give by ker prn : A[ → A/πA.
Now the composition

A[ φn

−−→ A[ prn−−→ A/A

is pr0, then
ker prn = φn(ker pr0) = φn(π[A[) = (π[)p

n

A

17



6 Fontaine’s Θ map

6 Fontaine’s Θ map

We introduce Θ : W (A[) → A (W (A[) also called Ainf) for integral perfectoid
rings.

Remark. Reminder on Witt ring, reference: Local Fields, Serre. Let R be a
commutative ring.

• W (R) = RN as a set.

• Addition and multiplication are given by certain polynomials over Z. For
example

(a0, a1, . . . ) + (b0, b1, . . . ) = (a0 + b0, a1 + b1 −
∑ 1

p

(
p

i

)
ai0b

p−i
0 , . . . , )

+(a0, a1, . . . )(b0, b1, . . . ) = (a0b0, a
p
0b1 + bp0a1 + a1b1, . . . )

• There is a natural ring homomorphism called ghost or phantom map gh :
W (R)→ RN, where

ghn : (a0, a1, . . . ) 7→
n∑

i=0

piap
n−i

i

• If Q ⊆ R, gh is an isomorphism and if R is p-torsion free, gh is injective.

• Given a ∈ R, its Teichmüller lift is

[a] = (a, 0, . . . ) ∈W (R)

and [−] :W (R)→ R is a multiplicative map (but not additive).

• If Fp ⊆ R thenW (R) is p-adically complete and for any ai ∈ R,
∑

[ai]p
i =

(a0, a
p
1, a

p2

2 , . . . ). In particular, if R is perfect, f ∈ W (R) may be written
uniquely as

∑
[ai]p

i for some ai ∈ R. The element p is a non-zero divisor
and W (R)/p ·W (R) ∼= R, (a0, . . . ) 7→ a0. Hence W (R) is a strict p-ring.

Theorem 6.1 (Fontaine). Let A be an integral perfectoid ring.

1. There is a unique homomorphism Θ : Ainf → A satisfying Θ([b]) = b]

2. Θ is surjective and its kernel is generated by a non-zero divisor (usually
denoted by ξ ∈W (A[).

3. χ ∈ kerφ is a generator if and only if (χ = (χ0, χ1, . . . ) ∈ W (A[) is
such that χ1 ∈ (A

We are going to require some results that we do not have time to prove
during this course. Instead, go through the following exercises on your own.

Exercise. Suppose that R is perfect of characteristic p and let t ∈ R be a
non-zero divisor and q ∈W (R) such that q = p (mod [t]), then

18



6 Fontaine’s Θ map

1. [t] ∈W (R) is a non-zero divisor.

2. using that p is a non-zero divisor, show that t is a non-zero divisor in
R =W (R)/p ·W (R), p is a non-zero divisor in W (R)/([t]).

3. q is a non-zero divisor in W (R)/[t], [t] is a non-zero divisor in W (R)/q ·
W (R).

Now assume that R is t-adically complete, prove that W (R) is [t]-adically
complete (by induction show that W (R)/pn ·W (R) is [t]-adically complete and
pass to inverse limit). In fact, it is even (p, [t])-adically complete.

Finally show that w is a non-zero divisor inW (R). Show thatW (R)/q·W (R)
is [t]-adically complete.

Proof.

1. Every element b ∈W (A[) may be written uniquely as b =
∑

i≥0[bi]p
i. We

define

Θ :W (A[) 7→ A∑
[bi]p

i 7→
∑

b]i · p
i

which makes sense as A is p-adically complete and is well-defined by
uniqueness of power series expansion. Left to show it is a ring homomor-
phism. Note that it is enough to check that Θ is a ring homomorphism
modulo pn as A is p-adically separated. Fix n and consider the ghost map
ghn. te that Cif ai = a′i (mod p) then piap

n−i

i = pi · a′p
n−i

i (mod pn+1).
Consider ghn (mod pn+1). The values only depend on the coordinates
modulo p, i.e. we have a commutative diagram

W (A) A

W (A/pA) A/pn+1A

ghn

ghn

Consider

W (A[) W (A[) W (A/pA) A/pn+1A
W (φ−n) W (·] (mod p)) ghn

this map is exactly Θ (mod pn+1) as

∑
[bi]p

i = (b0, b1, b
p2

2 , . . . ) (bp
−n

0 , bp
1−n

1 , . . . ) ((bp
−n

0 )], . . . )
∑n

i=0(b
pi−n

n

]
)p

n−i · pi =
∑n

i=0 b
]
i · pi

Since all the maps in the composition are ring homomorphisms, so isΘ (mod pn+1).
Both W (A[) and A are p-adically complete so to prove surjectivity it is enough
to check it modulo p. But since ·] (mod p) : A[ → A/pA is surjective, Θ is
surjective.

Now we construct a generator for kerΘ. Let π ∈ A be a perfectoid pseudo-
uniformiser (a pseudo-uniformiser whcih satisfies a, b, c, in Def 5. 1 (integral
perfectoid ring) that admits p-power roots and π[ = (π, π1/p, . . . ). Since p ∈

19



6 Fontaine’s Θ map

πpA and Θ is surjective, we may write p = πp · Θ(z) (note Θ(π[) = π). Hence
ξ = p+[π[] · z′, where z′ = −z, is a generator: ξ ∈ kerΘ and by exercise earlier,
ξ is a non-zero divisor of W (A[) (R = A[, t = π[, q = ξ). kerΘ = ξ ·W (A[): by
exercise W (A[) is [π[]-adically complete and A is Θ([π[]) = π-adically complete
and π-torsion free. We see that W (A[)/ξ ·W (A[) → A is an isomorphism if
and only if it is an isomorphism modulo ([π[]), i.e. W (A[)/(ξ, [π[]) → A/πA
is an isomorphism. But as ξ = p (mod [π[]), A[/π[A[ → A/πA must be an
isomorphism (prove in lecture 6).

ξ = (ξ0, ξ1, . . . ) = p+[π[]p·x = (0, 1, 0, . . . )+(π[px0, π
[p2

·x1, . . . ) = (π[p·x0, 1+π[p2

·x1, . . . )

ξ1 ∈ A[× (π[-adically complete), ξ1 ∈ π[A[. χ = (χ0, χ1, . . . ) ∈ kerΘ and write
χ = β · ξ.

χ = (β0, β1, . . . )(ξ0, ξ1, . . . ) = (β0ξ0, β1ξ
p
0 + βp

0ξ1, . . . )

kerΘ = χ ·A[ if and only if ξ ·W (A[) = βξ ·W (A[) if and only if β ∈W (A[)×

(using ξ is a non-zero divisor), if and only if β0 ∈ A[× (use W (A[) is p-adically
complete and W (A[)/p ·W (A[) = A[), if and only if βp

0 · ξ1 ∈ A[×, if and only
if β1ξp0 + βp

0ξ ∈ A[× (A[ is π[-adically complete and ξ0 ∈ π[A[), if and only if
χ1 ∈ A[×.
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7 Tilting correspondence for integral perfectoid rings

7 Tilting correspondence for integral perfectoid
rings

Definition (perfectoid algebra). Given an integral perfectoid ring A and B
an A-algebra, we equip B with the topology induced by the image of π, the
perfectoid pseudo-uniformiser of A.

We say that B is a perfectoid A-algebra if B is an integral perfectoid ring
with respect to this topology.

Note that if π ∈ A is a perfectoid pseudo-uniformiser then its image in B is
a pefectoid pseudo-uniformiser of B.

Theorem 7.1 (tilting correspondence). Fix an integral perfect ring A. Tilt-
ing gives an equivalence of categories

{perfectoid A-algebras} ←→ {perfectoid A[-algebras}
B 7→ B[

C] =W (C)⊗W (A[),Θ A← [ C

The ] map is sometimes called untilt.

Proof. Let π ∈ A be a perfectoid pseudo-uniformiser admitting p-power roots
and let π[ = (π, π1/p, . . . ) ∈ A[. Recall ξ = p+ [π[]p ·x ∈ kerΘ generates kerΘ.

Step 1: let B be a perfectoid A-algebra. We show (B[)] = B. We have a
commutative diagram

W (A[) A

W (B[) B

ΘA

ΘB

and hence ξ lands in kerΘB . Since ξ1 ∈ A[×, its image is also a unit in B[. By
Fontaine 3, image of ξ generates kerΘB . Thus the commutative diagram is a
pushout. Thus W (B[)⊗A→ B is an isomorphism.

Step 2: if C is a perfectoid A[-algebra, we show that C] is a perfectoid
A-algebra and (C])[ = C. Since ΘA is surjective with kernel generated by
ξ, C] = W (C) ⊗ A = W (C)/ξW (C) as A ∼= W (A[)/ξW (A[). By exercise
(R = C, t = π[, q = ξ), C] is π-adically complete and π is a non-zero divisor. We
need φ : C]/πC] → C]/πpC] to be an isomorphism. But C] =W (C)/ξ ·W (C)
and ξ = p (mod [π[]p) so we need C/π[C → C/(π[)p ·C to be an isomorphism.
This follows from definition as C is integral perfectoid. Finally

(C])[ = lim←−
φ

C]/pC] = lim←−
φ

C/π[C = C[ = C.
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8 Perfectoid Tate rings

8 Perfectoid Tate rings
Recall that a Tate ring is a Huber ring such that there exists a pseudo-uniformiser
π (i.e. a topological nilpotent unit). Some facts:

1. if R0 ⊆ R is any subring of definition, then R0 is (πn)-adic for some n;

2. if R0 is any ring with non-zero divisor π ∈ R0 and R = R0[
1
π ] equipped

with the topology induced by {πn ·R0} as a basis of open neighbourhoods
of 0, then R is a Tate ring with ring of definition R0 and ideal of definition
I = (π).

Given an integral perfectoid ring A, let π be a perfectoid pseudo-uniformiser.
Then A[ 1π ] is a Tate ring. It does not depend on the choice of π: if π′ is
another perfectoid pseudo-uniformiser then by definition π and π′ induce the
same topology on A. Hence they divide a power of each other and A[ 1π ] = A[ 1π ].
We thus have a generic fibre functor from the category of integral perfectoid
rings to Tate rings, mapping A 7→ A[ 1π ].

Definition (perfectoid Tate ring). A Tate ring R is called a perfectoid Tate
ring if any of the following equivalent conditions is satisfied:

1. R has a subring of definition R0 which is integral perfectoid;

2. R is in the image of the generic fibre functor;

3. the subring R◦ is integral perfectoid;

4. (Fontaine) R is uniform (i.e. R◦ is bounded) and there exists a pseudo-
uniformiser π ∈ R such that p ∈ πpR◦ and φ : R◦/πR◦ → R◦/πpR◦ is
an isomorphism.

Proposition 8.1. Let R be a perfectoid Tate ring and R0 ⊆ R a subring
of definition. Then R0 is integral perfectoid if and only if it is p-closed, i.e.
if f ∈ R is such that fp ∈ R0 then f ∈ R0. In particular every subring of
integral elements R+ ⊆ R is integral perfectoid.

Proof of the equivalence of conditions in definition.

• 4 =⇒ 1: if R is uniform then R◦ is a ring of definition, π ∈ R◦ so by the
above reminder R◦ is π-adic. The other conditions hold directly.

• 1 =⇒ 2: note that any perfectoid pseudo-uniformiser π ∈ R0 is a pseudo-
uniformsier of R, since πR0 is open, so fixing some pseudo-uniformiser
$ ∈ R, it follows that $n ∈ πR. Thus π ∈ R× so R = R0[

1
π ].

• 2 =⇒ 3: suppose that R = A[ 1π ] where A is integral perfectoid and π
is a perfectoid pseudo-uniformiser. Note R◦◦ ⊆ A since if f ∈ R◦◦ then
fp

n ∈ A (?). Thus f ∈ A: For n = 1, let ` ≥ 0 be the smallest integer
such that π`f ∈ A. If ` > 0 then π`·p · fp ∈ πp·`A ⊆ πpA so π` · f ∈ πA
by condition 3 of definition 4.5.1. So π`−1 · f ∈ A, absurd. In partcicular
πR◦ ⊆ A so R◦ is uniform.
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8 Perfectoid Tate rings

• 3 =⇒ 4: since any subring of definition is bounded, R is uniform and
any perfectoid pseudo-uniformiser π ∈ R◦ will give all the assumptions.

Proof. ⇐= : Let R0 be a p-closed subring of definition (e.g. R◦). By p-
closedness R◦◦ ⊆ R0, so π ∈ R0, so R0 is π-adic. Every element is pth power
modulo π: let f ∈ R0. Then π · f ∈ R◦◦. Since π · f ∈ R◦, by condition 3 exists
y, z ∈ R◦ such that π · f = yp + yp + πp · z. We may assume that π admits
p-power roots. Then f − πp−1 · z = (π−1/p · y)p ∈ R0. Hence π−1/p · y ∈ R0.
Thus f is indeed a pth power modulo π. Note p ∈ (π1/p)pR◦, p ∈ πpR◦ ⊆ πR◦◦.
By p-closedness φ : R0/π

1/pR0 → R0/πR0 is injective.
=⇒ is a consequence of 2.

Recall that if R is uniform then any subring of integral elements is a subring
of definition (R0 ⊆ R is a subring of definition if and only if it is open and
bounded).

Corollary 8.2. Let R be a perfectoid Tate. Then any subring of defition
contains R◦◦ and the resulting functor R0 7→ R0/R

◦◦ defines a bijection

{integral perfectoid subring of definition of R} ←→ {p-closed subring of R◦/R◦◦}

which restricts to a bijection

{subring of integral elements R+ ⊆ R} ←→ {integrally closed subring of R◦/R◦◦}

Proof. Use the previous proposition and the observation that if R0 is p-closed
then R◦◦ ⊆ R0.

Remark. Using that R is integral perfectoid of characteristic p if and only if
R is perfect and the topology is π-adic for some pseudo-uniformiser, one can
show that a characteristic p complete Tate ring is perfectoid if and only if it is
perfect.

So the only non-trivial part is to show that R is uniform. Let R0 ⊆ R be a
subring of definition, π ∈ R0 a pseudo-uniformiser. Set

RN = φ−n(R0) = {f ∈ R : fp
n

∈ R0},

which is a subring as charR = p. Since φ is a continuous isomorphism, it is
a homeomorphism by open mapping theorem (which holds for complete Tate
rings). φ(R0) is open so πmR0 ⊆ φ(R0) for somem ≥ 1. Apply φ−n, πm/pn

Rn ⊆
Rn−1 for all n. By induction π

∑n
i=1 m/pi

Rn ⊆ R0. Thus πmRn ⊆ R0 as m ≥∑
m/pi. Given f ∈ R◦, {fN} is bounded if and only if πpn · fN ⊆ R0 for some

n ≥ 0. In particular πpn

fp
n ∈ R0, i.e. π · f ∈ R0. Thus πm+1R◦ ⊆ R0, i.e. R◦

is bounded.

Lemma 8.3. Let B be a perfect A-algebra where A is integral perfectoid.
Then A → B is an almost isomorphism if and only if A[ → B[ is an
isomorphism.
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8 Perfectoid Tate rings

Proof. Let π, π[ be as before, i.e. π a perfectoid pseudo-uniformiser that admits
p-power roots and π[ = (π, π1/p, . . . ). Then π[ is a pseudo-uniformiser for A[.

• =⇒ : Since A is π-torsion free, A → B is injective. π1/pn

B ⊆ A for
all n ≥ 0. By injectivity A[ ∼= lim←−φ

A → lim←−φ
B ∼= B[ is also injective.

Moreover given b[ ∈ B[, b[ = (b0, b1, . . . ) and (b0π
1/pn

, b1π
1/pn

, . . . ) ∈ A[.
Thus A[ → B[ is almost surjective.

• ⇐= : A[ → B[ is an almost isomorphism if and only if A[/π[A[ →
B[/π[B[ is an almost isomorphism. But we have showed A[/π[A[ ∼=
A/πA,B[/π[B[ ∼= B/πB. Thus A→ B is an almost isomorphism.

Lemma 8.4. Let B be a perfect A-algebra where A is integral perfectoid.
Then A → B is an almost isomorphism if and only if A[ 1π ] → B[ 1π ] is an
isomorphism, where π is a perfectoid pseudouniformiser that admits p-power
roots.

Proof.

• =⇒ : let φ : A→ B. kerφ and cokerφ are killed by (π1/p∞
), in particular

killed by π. Thus both kerφ and cokerφ vanish after inverting π.

• ⇐= : Let R = A[ 1π ] = B[ 1π ]. Then A and B are integral perfectoid
subrings of definitions of R. Thus R◦◦ ⊆ A,B. In particular π1/pn

B ⊆ A,
so we have an almost surjection A→ B. Almost injection is automatic as
A is π-torsion free.
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9 Tilting perfectoid Tate rings

Definition (tilt of a perfectoid Tate ring). The tilt of a perfectoid Tate ring
R is by definition R[ = R[

0[
1
π[ ], the generic fibre of R[

0.

This does not depend on the choice of either R0 or π: R0 ⊆ R◦ (R◦ is the
colimit of all subrings of definition) and they have the same generic fibre. Thus
by last lemma in the previous section R0 → R◦ is an almost isomorphism. THus
R[

0 → R◦[ is also an isomorphism, hence R[
0[

1
π[ ] ∼= R0[[ 1

π[ ].

Theorem 9.1 (tilting correspondence of lattice of subrings). Let R be a
perfectoid Tate ring. Then R◦[ = R[◦. Moreover tilting gives a bijection

{integral perfectoid subrings of definitions of R} ←→ {integral perfectoid subrings of definitions of R[}

which restricts to a bijection

{subrings of integral elements of R} ←→ {subrings of integral elements of R[}

Proof. We show R◦[ = R[◦. R◦[ is a subring of definition of R[ so R◦[ ⊆ R[◦, so
R[◦ is a perfectoid R◦[-algebra. Since passing to generic fibre gives an isomor-
phism R◦[[ 1

π[ ] → R[◦[ 1
π[ ]. Thus R◦ → B = (R[◦)] is an almost isomorphism.

Thus R◦[ 1π ] → B[ 1π ] is an ismophism, so B is a subring of definition. Thus by
tilting correspondence R◦[ = R[◦.

The rest of the statement follows from corollary 8.8.3.

Theorem 9.2 (tilting correspondence for perfectoid Tate rings). Let R be
a perfectoid Tate ring. Then tilting defines an equivalence of categories

{perfectoid Tate algebras over R} → {perfectoid Tate algebras over R[}

Proof. Exercise.

Theorem 9.3 (tilting in dimension 0). Let K be a perfectoid field. Then
K 7→ K[ defines an equivalence

{perfectoids fields over K} ←→ {perfectoid fields over K[}

Proof. Claim that if R is a perfectoid K-algebra then R is a perfctoid field if
and only if R[ is a perfectoid field.

Proof. One direction is clear. For if, we know that R is a uniform Tate complete
algebra over K. Consider the spetral norm on R

‖x‖R = inf{|t|−1 : t ∈ K×, tx ∈ R◦},

a priori only submultiplicative. Since R is a uniform complete Tate algebra,
‖·‖R defines the topology on R, i.e. a neighbourhood basis of 0 is given by the
sets ‖·‖−1

R ((0, ε)). We need to show ‖·‖R is multiplicative and R is a field.
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9 Tilting perfectoid Tate rings

For multiplicativity, let x, y ∈ R. After multiplying by elements in K we
may assume x, y ∈ R◦, but not in π1/p · R◦. But we can find x[, y[ ∈ R[◦

with x − (x[)], y − (y[)] ∈ πR◦. Then ‖x‖R = ‖x[‖R[ , ‖y‖R = ‖y[‖R[ and
‖xy‖R = ‖x[y[‖R[ .

To show R is a field, choose x such that x ∈ R◦ but not in πR◦ and take x[
as above. By multiplicativity of ‖·‖R, ‖1− x

(x[)]
‖R < 1. Hence x

(x[)]
is invertible,

so is x.
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10 Perfectoid spaces and tilting

10 Perfectoid spaces and tilting

Definition (adic space). We define the category U
objects: triples (X,OX , (| · |x)x∈X), where X is a topological space, OX a

sheaf of topological rings, (|·|x) an equivalence class of continuous valuations
on OX,x (Recall from Non-archimedean Geometry that this determines O+

X)
morphisms: f : X → Y of topoogically ringed spaces such that the

following diagram commutes (up to equivalence) for all x ∈ X

OY,f(x) OX,x

Γf(x) ∪ {0} Γx ∪ {0}

An adic space is an object in U such that it has an open covering of
(Ui,OX |Ui

, (| · |x)x∈Ui
) ∼= Spa(Ai, A

+
i ) for some sheafy Huber pair (Ai, A

+
i )

called affinoid adic spaces.
Equivalently, one can define adic spaces as a topological spaceX equipped

with a sheaf of topological rings and a subsheaf O+
X ⊆ OX such that for

each x ∈ X, exists an open neighbourhood x ∈ U ⊆ X, a sheafy Huber pair
(R,R+) and an isomorphism (U,OX |U ,O+

X |U ) ∼= (Spa(R,R+),OSpa(R,R+),O+
Spa(R,R+)).

Definition (perfectoid space). An adic space X is a perfectoid space if we
can choose each R to be perfectoid.

Remark. It is not clear that a perfectoid Tate ring induces a sheafy Huber
pair. But we know that a Tate-Huber pair which is stably uniform is sheafy
(Buzzard-Verberkmoes).

In characteristic p it is eay to see that perfectness is preserved under rational
localisation. Then using Theorem 9.9.4, one can show that rational subsets are
perfectoid Tate rings. By Fontaine’s definition they are uniform so R is stably
uniform.

Fix a perfectoid Huber pair (R,R+), i.e. R is perfectoid Tate. Equivalently,
R+ is integral perfectoid as it is p-closed. Fix a perfectoid pseudo-uniformiser
π ∈ R admitting p-power roots and let π[ = (π, π1/p, . . . ) ∈ R[. Let by X =
Spa(R,R+), X[ = Spa(R[, R[+). Define, as before, the tilting map [ : X → X[

as follow: given a continuous valuation | · | : R→ Γ ∪ {0}, we define

| · |[ : R[ → Γ ∪ {0}
f 7→ |f ]|

Lemma 10.1. The tilting map [ is well-defined, i.e. | · |[ is a continuous
valuation. Moreover [ : X → X[ is continuous.

Proof. We already proved the first statement in chapter 1. To show the tilt-
ing map is continuous, it is enough to check that the preimage of a rational
subset U ⊆ X[ is a rational subset. The following is a general argument: let
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10 Perfectoid spaces and tilting

f1, . . . , fn, g ∈ R[ induce U = X( f1,...,fng ) (so f1, . . . , fn generate an open ideal in
R (?)). We may assume that f1, . . . , fn, g ∈ R+[ and fn = (π[)N : by multiply-
ing by a suitable power of π[ we may assume f1, . . . , fn, g ∈ R+[ (multiplication
by a unit does not change U). Moreover for Tate-Huber pairs the only open
ideal is R. Hence

∑
hifi = 1 for some hi ∈ R[. We may find M > 0 such that

(π[)Mhi ∈ R+◦, then for any x ∈ X[,

|πM |x = |
∑

πM · hifi|x ≤ max |πM · hi|x · |fi|[x ≤ |g|x

We may “add” πM , i.e. f1, . . . , fn, πM , g induce the same rational subset U .
Then the untilts f ]1, . . . , f ]n, g] define a rational subset V ⊆ X (since πN ∈

(f1, . . . , fn) hence it is open) and by definition [−1(U) = X(
f]
1 ,...,f

]
n

g] ).

Theorem 10.2 (tilting correpondence for (analytic topology of) perfectoid
space). The tilting map [ : X → X is a homeomorphism which identifies
rational subsets. Moreover if V ⊆ X,U ⊆ X[ are corresponding subsets then

1. OX(U) is a perfectoid Tate algebra over R;

2. OX[(U) is a perfectoid Tate algebra over R[;

3. there exists a unique continuous R[-algebra homomorphism OX(U)[ →
OX[(U). It is an isomorphism. It restricts to an isomorphism of
integral perfectoid R+[-algebras O+

X(U)[ → O+
X[(U).

Proposition 10.3. Let A be an integral perfectoid ring, π ∈ A a perfec-
toid pseudo-uniformiser admitting p-power roots, π[ = (π, π1/p, . . . ). Let
f1, . . . , fn, g ∈ A[ where fn = (π[)N . Let C be the A[-subalgebra of A[[ 1g ]

generated by f
1/pk

1

g1/pK
, . . . ,

f1/pk

n

g1/pk
for all k ≥ 0. Similarly let B be the A-

subalgebra of A[ 1
g[ ] generated by ... Then

1. ...

2. Similarly the kernel of

A[x1/p
∞
]→ B

x
1/pk

i 7→ f ]

...

is generated by

3. the π[-adic completion of C is an integral perfectoid A[-algebra (then
Ĉ] is an integral perfectoid A-algebra, hence Ĉ][ 1π ] is perfectoid Tate);

4. there is a unique continuous map of R-algebras B̂[ 1π ] → Ĉ][ 1π ] which
is an isomorphism (B̂[ 1π ] is perfectoid Tate). This restricts to an
injective almost surjection B̂ → Ĉ];

5. Ĉ] is integral over B̂;
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10 Perfectoid spaces and tilting

6. Ĉ is integral over the subring Â[[ fig ] and coker(Â[[ fig ] → Ĉ) is killed
by a power of π[.

Similarly B̂ is integral over its subring
̂
A[

f]
i

g] ] and coker is killed by a
power of π.

Proof. We show 3 first. C is clearly perfect and π[ is a non-zero divisor. There-
fore Ĉ with respect to the π[-adic topology is integral perfectoid.

1: let J = (g1/p
k · x1/p

k

i − f1/p
k

i )k≥0,i=1,...,k. J ⊆ kerψ[. Note that φ acts as
an isomorphism on both J and kerψ[. Hence it is enough to prove that kerψ[/J
vanishes after inverting π[, i.e. A[[ 1

π[ ][x
1/p∞

]/J → C[ 1π ] is an isomorphism, i.e.
injective. Since fn = (π[)N , fn is invertible on LHS. Then g is also invertible
on both sides g · xn − fn. By rescaling the relations, we need

A[[
1

π[
,
1

g
][x1/p

∞
]/(x

1/pk

i − f
1/pk

i

g1/pk )→ C[
1

π[
,
1

g
] = A[[

1

π[
,
1

g
]

is injection. But this is now elementary that it is an isomorphism.

2 + 4: by 3 Ĉ] is integral perfectoid and (
f
1/pk

i

g1/pk
)] satisfies

(g])1/p
k

· (f
1/pk

i

g1/pk )
] = ((g])1/p

k

· f
1/pk

i

g1/pk )
] = (f ]i )

1/pk

and g] is an non-zero divisor (apply the above for i = n). So there is a unique
map of A-algebras

eB → Ĉ]

f
]1/pk

i

g]1/pk 7→ (
f
1/pk

i

g1/pk )
?

Taking π-adic completion we get ê : B̂ → Ĉ]. Inverting π gives B̂[ 1π ]→ Ĉ][ 1π ]...

e ◦ ψ : A[x1/p
∞
]/(g]1/p

k

· x1/p
k

i − f ]1/p
k

i )→ B → Ĉ]

Using
A[/π[A[ ∼= A/πA, Ĉ/π[Ĉ ∼= Ĉ]/πĈ],

we see e◦ψ (mod π) is the same as ψ[ (mod π[). By 1 ψ[ (mod π[) is an almost
isomorphism. Then ψ is almost injective modulo π and surjective. Hence ψ is
an almost injection, proving 2.

Since e ◦ψ is an almost isomorphism and ψ is surjection, e is also an almost
isomorphism modulo π. By induction e is an almost isomorphism modulo πn for
all n ≥ 1. Then by taking inverse limit ê is an almost isomorphism. Inverting
π, we get 4.

5: we don’t know if B̂ is integral perfectoid, so let B′ be its integral closure
in Ĉ]. Since Ĉ] is an open integral perfectoid subring of B̂[ 1π ], B

′ is integral

perfectoid (p-closedness). B′ contains f
]1/pk

i

g]1/pk
, hence its tilt contains f

1/pk

i

g1/pk
. Thus

B
′[ ⊇ C. But B′[ ⊆ Ĉ, so Ĉ = B

′[. Thus Ĉ] = B′.
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10 Perfectoid spaces and tilting

6: A[[ fig ] ⊆ C. Since fn = (π[)N , it is enough that coker(Â[[ fig ] → Ĉ is
killed by fnn . By

...

for any k1, . . . , kn ≥ 0. Taking π[-adic completion, Â[[ fig ] ⊆ Ĉ such that

Â[[ fig ] ⊇ (π[)M Ĉ. But C is clearly integral over A[[ fig ], so if combine these

two observations Ĉ is integral over Â[[ fig ]. Do the same in the untilted case.

Corollary 10.4. Let X,X[ be as before. Let U ⊆ X[ be a rational subset.
Then V = [−1(U) is a rational subset and all three assertions of theorem
20.2 are true.

Proof. We have already seen that V is a rational subset. Let f1, . . . , fn, g ∈ R+[

with fn = (π[)N such that U = X[( f1,...,fng ). Let B, B̂, C, Ĉ be as in the
previous proposition. Recall that for any Huber pair (S, S+) and elements
f1, . . . , fn, g ∈ R such that (f1, . . . , fn) is an open ideal,

R〈 f1,...,fng 〉 = ̂R[ f1,...,fng ]

R〈 f1,...,fng 〉+ = completion of the integral closure of R[ f1,...,fng ] ⊆ R[ 1g ]

then
Spa(S f1,...,fn

g , S f1,...,fn
g

+
) = Spa(S, S+)( f1,...,fng ).

By part 6 of the previous proposition, Ĉ[ 1
π[ ] = OX[(U), B̂[ 1π ] = OX(V ). There-

fore part 3 and 4 shows OX[(U),OX(U) are perfectoid Tate and exists a unique
isomorphism OX(V )→ OX[(U)]. Then we have

O+
X(V ) = completion of integral closure of R+(

f]
i

g] ) ⊆ OX(V )[ 1
g] ].

Observe 1
g] ∈ OX[(U)] = OX(U) as f ]n = πN and Ĉ] contains f]

n

g] . Thus O+
X(V )

is the completion of the integral closure of R+[
f]
i

g] ] ⊆ OX(U)] = Ĉ][ 1π ], which as

an exercise can be show to be the integral closure of
̂
R+[

f]
i

g] ] ⊆ OX](U)],
same as integral closure of B̂ ⊆ B̂[ 1π ] by 6
same as integral closure of Ĉ ⊆ Ĉ][ 1π ] by 5
same as the sharp of the integral closure of Ĉ ⊆ Ĉ[ 1

π[ ] (compatibility of
tilting with integral closure

same as the sharp of the integral closure of R̂+[[ fg ] ⊆ OX[(U)

same as O+
X[(U)]

The second ingredient is a subtle approximation lemma which roughly says
that we can approximate elements in R by perfect elements.

Proposition 10.5 (approximation lemma). Let S be a perfectoid Tate R-
algebra. Let f ∈ R and fix rational number c ≥ 0 and real number ε > 0.
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10 Perfectoid spaces and tilting

Then exists gc,ε ∈ R[ such that for any x ∈ Spa(R,R◦),

|f(x)− g]c,ε(x)| ≤ |π(x)|1−ε ·max(|f(x)|, |π(x)|c).

Proof. Omitted. See Scholze, Perfectoid Space

Corollary 10.6. Any rational subset V ⊆ X is of the form [−1(U) where
U ⊆ X[ rational.

Proof. Pick f1, . . . , fn, g ∈ R+ with fn = πN such that V = X( f1,...,fng ). Then
V =

⋂
X( fi,π

N

g ) so suffice to show the result for X( fi,π
N

g ). Applying the ap-
proximation lemma with f = fi, c = N, ε ∈ (0, 1), get a ∈ R[ such that

max(|f(x)|, |π(x)|N ) = max(|a](x)|, |π(x)|N )

(use approximation lemma to show this equality for any ε < 1). Use approxi-
mation lemma again with f = g, c = N, ε = 1. Exists b ∈ R[ such that

|g(x)− b](x)| ≤ max(|g(x)|, |π(x)|N ).

Now let x ∈ X( fi,π
N

g ). We show x ∈ X(a
],πN

b]
). As |π(x)N | ≤ |g(x)|,

|g(x)− b](x)| < |g(x)|

so by strict triangle inequality |b](x)| = |g(x)|, so |π(x)|N ≤ |b](x)|. Also we
have |a](x)| ≤ |π(x)|N or |a](x)| = |f(x)|. The former implies

|a](x)| ≤ |π(x)|N ≤ |g(x)| = |b](x)|

and the latter implies

|a](x)| = |f(x)| ≤ |g(x)| = |b](x)|

so we do have x ∈ X(a
],πN

b]
). The converse is similar.

Proof of tilting correspondence in general case. We know that the elements of
the basis for the topology are pullbacks from X[ so [ : X → X[ is injective
by general topology (X is T0). Suffice to show surjectivity since then rational
subsets are mapped to rational subsets, so continuity of the inverse follows.

Pick x ∈ X[. We then have a map of Huber pairs (R[, R+[)→ (k̂(x), k̂(x)
+
),

where k̂(x) is a perfectoid field.
(recall

OX,x = lim−→
x∈U

OX(U)

O+
X,x = lim−→

x∈U

O+
X(U)

Facts:

1. OX,x is local, the valuation | · |x extends to OX,x.
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10 Perfectoid spaces and tilting

2. OX,x = {f ∈ OX,x : |f(x)| ≤ 1}

3. mOX,x
is the support of | · |x on OX,x.

4. O+
X,x is local with mO+

X,x
= {f ∈ OX,x : |f(x)| < 1}.

5. OX,x → k(x),O+
X,x → k(x) and let (x)+ be its image. ThenO+

X,x → k(x)+

is an isomorphism after π-adic completion.

)
k̂(x) is a non-archimedean field with valuation | · |x and with corresponding

valuation ring k̂(x)+. Therefore k̂(x)
+
is the completion of the colimit of integral

perfectoid R-algebras, so is indeed integral perfectoid. Thus k̂(x) is perfect Tate,
so a perfectoid field.

By tilting correspondence (k̂(x)
]
, k̂(x)

+]
) is a perfect Huber pair such that

k̂(x)
]
is a perfectoid field. Then it corresponds to a point y ∈ X as we have

(R,R+)→ (k̂(x)
]
, k̂(x)

+]
), and by construction [(y) = x.
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11 Tilting étale topology and almost purity

11 Tilting étale topology and almost purity
Motivation: this allows us to study étale cohomology of objects over Qp via
étale cohomology in characteristic p.

Theorem 11.1 (almost purity). Let R be a perfectoid Tate ring.

1. Let S be a finite étale R-algebra. Give S the canonical topology (see
below). Then S is a perfectoid Tate R-algebra, S◦ is almost finite étale
over R◦.

2. Tilting S 7→ S[ induces an equivalence of categories Rfét → R[
fét.

Remark. If R is Tate and S is finite étale over R, there is a unique way to give
S a topology so that S is Tate and R→ S is continuous. This is the canonical
topology on S. Pick any subring of definition R0 ⊆ R and pseudo-uniformiser
π ∈ R. Then we pick ga finitely generated R0-submodule M ⊆ S such that
M [ 1π ] = S and give M the unique linear topology induced by topology on R0.
Then put the induced topology on S.

Proof. The outline of the strategy is

1. part 1 is easy in characteristic p;

2. hence we will obtain an untilting functor ] : R[
fét → R[

fét and the theorem
can be reformulated as this functor is essentially surjective;

3. we prove the theorem for perfectoid fields;

4. finally observe that the adic spectra X and X[ are locally given by per-
fectoid fields. We use X ∼= X[ to glue the results in the case of fields.

We begin with step A.

Lemma 11.2. Let T be a finite étale R[-algebra. Then T is a perfectoid
Tate algebra over R[ and T ◦ is almost finite étale over R[◦.

Proof. (note that we cannot just use the old result in characteristic p as we do
not necessarily have integral ring extension) Note that since R[ is perfect and
R[ → T is étale, T is perfect (see example lecture 6, 5.2). Thus since T is
Tate with the canonical topology, T is perfect Tate. Therefore T ◦ is an integral
perfect R[◦-algebra. We have showed in Theorem lecture 5 4.6(2) that inverting
π[ induces an equivalenceR[◦

afét → R[[ 1
π[ ]fét. Hence exists some almost finiteétale

R[◦-algebra S such that R[◦[ 1
π[ ]→ S[ 1

π[ ]. But S is also integral perfect as it is a
subring of integral elements in S[ 1

π[ ]. Then S → T ◦ is an almost isomorphism.
By lemma (lecture 9) 8.6 (almost isomorphism if and only if iso by inverting
one element), so T ◦ is almost finite étale.

Lemma 11.3. Let A be an integral perfectoid ring and π a perfectoid pseudo-
uniformiser which admits p-power roots. Let M be an A-module that is
π-adically complete and π-torsion free. Then if M/πM is almost finitely
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11 Tilting étale topology and almost purity

generated (resp. almost finitely presented) then M is almost finitely generated
(resp. almost finitely presented).

Proof. We prove the finitely generated case. Fix some ε ∈ (0, 1) ⊆ Z[ 1p ]. Then
exists Mε finitely generated such that πε ·M/πM ⊆ Mε. Let Mε be a finitely
generated submodule of M which projects onto Mε. Then for any x ∈ M we
can write

πε · x = πz0 +m0

where z0 ∈M,m0 ∈Mε. Then πz0 = π1−ε(πεz0) and repeat to get

πεx = m0 + π1−εm1 + (π1−ε)2m2 + · · ·

As M is π-adically complete, it is π1−ε-adically complete so πεM ⊆Mε.

Lemma 11.4. Let A and π be as in the previous lemma. Let B be a
π-adically complete and π-torsion freee A-algebra. Then TFAE

1. B is almost finite étale over A;

2. B/πB is almost finite étale over A/πA.

Proof. B is almost finitely presented by the previous lemma so 2 =⇒ 1.
Then the existence of idempotent follows from the lifting property of idem-

potent via nilpotent (complete) ideal.

Lemma 11.5. T ] is finite étale over R, T ]◦ is almost finite étale over R◦.

Proof. By lemma we know R[◦ → T ◦ is almost finite étale. Thus R[◦/π[R[◦ →
T ◦/π[R[◦ finite étale. As R◦/πR◦ ∼= R[◦/π[R[◦, T ◦/π[T ◦ ∼= T ]◦/πT ]◦, have R◦

...
Use lemma 3 to show R◦ → T ]◦ is almost finite étale.

In other words untilting defines a fully faithful functor whose image consists
of perfectoid Tate algebra S such that S◦ is almost finite étale over R0. Thus
almost purity is a matter of essential surjectivity of the untilting functor.

We now carry out step c, proving almost purity for perfectoid fields. Let K
be a perfectoid field.

1. Any finite extension L/K is perfectoid.

2. L 7→ L[ is a degree-preserving equivalence of categories between finite
extensions of K and finite extensions of K[. It follows that Gal(K/K) ∼=
Gal(K

[
/K).

Proof. We know OL is π-adically complete and π-torsion free, so we need that
every element in OL/pOL is a pth power. In characteristic p, every finite ex-
tension of perfect fields is perfect so L is perfectoid and we know 2 since tilting
doesnt do anything in characteristic p.

In characteristic 0, we already know that tilting and untilting gives an equiv-
alence of categories between perfectoid fields over K and K[. Left to prove it
is degree preserving.

Let M/K[ be a finite extension. Claim that OM/π
[OM is almost free over

OK[/π[OK[ of rank [M : K[].
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11 Tilting étale topology and almost purity

Proof. This is a special case of the proof of almost purity in characteristic p.

Claim also that it is easy to check that if A is integral perfectoid, π a perfec-
toid pseudo-uniformsier which admits p-power roots, then a π-adically complete,
π-torsion free module M is almost free of rank d if and only if M/πM is almost
free of rank d. (exercise)

Use this and the fact that O]
M/πO

]
M
∼= OM/π

]OM to get that O]
M is almost

free of rank [M : K[] over OK . Thus M/K is a finite extension of degree
[M : K[]. Thus untilting is a fully functor whose images are finite extensions of
K that are perfectoid.

Left to show it is essentially surjective. We quote

Lemma 11.6 (Krasner’s lemma). Let F be a field which is complete with
respect to an absolute value | · | : F → R≥0, α, β ∈ F sep and α1 =
α, α2, . . . , αd ∈ F sep be conjugates of α. If |α−β| < |α−αi| for i = 2, . . . , d
then α ∈ F (β).

and its corollary

Corollary 11.7. Let F be a field complete with respect to | · | : F → R≥0

and F0 ⊆ F a dense subfield. Then F = F sep if and only if F0 = F sep
0 .

Now let Q be the completion of an algebraic closure of K[. By the corollary,
Q is algebraically closed (it is perfect and separably closed so algebraically
closed as perfect implies every algebraic extension is separable). By previous
lemma Q] is algebraically closed over K. Moreover for any finite subextension
K[ ⊆ M ⊆ Q, we have K ⊆ M ] ⊆ Q]. Now let N =

⋃
M ] ⊆ Q] over all M

finite, then N is an algebraic extension of K which is dense in Q]: on the level
of rings of integers

ON/π = lim−→
M

OM]/π = lim−→
M

OM/π
[ = OQ]/π[.

Thus by the corollary N is algebraically closed. In particular for any finite
extension K ⊆ L we have L ⊆ N so exists a finite extension M/K[ such
that L ⊆ M ]. Replace M by its Galois closure, we have shown untilting from
subextensions of M/K[ to subextensions of M ]/K is essentially surjective. But
as untilting is degree-preserving and Gal(M ]/K) = Gal(M/K[) as it is fully
faithful, the two categories have the same cardinality. Then essential surjectivity
follows.

Step d: we are going to be handwaving here. Recall two facts from commu-
tative algebra

1. Let A be a ring that is Henselian along an ideal tA, where t ∈ A is a non-
zero divisor (i.e. Hensel’s lemma holds modulo tA, e.g. if A is t-adically
complete). Then A[ 1t ]fét → Â[ 1t ] is an equivalence of categories.

2. Let lim−→i
Ai be a filteded colimit of rings. Then the 2-limit lim−→i

(Ai)fét →
(lim−→Ai)fét (LHS is a filtered colimit of categories).
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11 Tilting étale topology and almost purity

Recall k̂+(x) ∼= Ô+
X,x, k̂(x)

∼= Ô+
X,x[

1
π ] for any x ∈ X = Spa(R,R+) and

analogously for X[. Note also that O+
X,x is Henselian along πO+

X,x since it is a
filtered dolmit of π-adically complete rings. Similarly O+

X[,x[ is Henselian along
π[. Then the two results above translate to

k̂(x)fét = Ô
+
X,x[

1
π ]fét ∼=(1) O+

X,x[
1
π ]fét ∼=(2) lim−→

x∈U⊆X

OX(U)fét.

Thus any finite étale k̂(x)-algebra spreads out to a finite étale OX(U)-algebra
for a sufficiently small U . Moreover spreading out is unique, i.e. another choice
must agree on a smaller rational subset.

Consider the commutative diagram
Conclusion: given a finite R-algebra S, the finite étale k̂(x)-algebra S⊗R k̂(x)

may be writeen as T ]
x ⊗OX(U) k̂(x) for some finite étale OX(Ux)

[-algebra Tx,
where Ux is some sufficiently small rational subset containing x. Since OX ,OX[

are sheafs with vanishing higher cohomology (we did not prove this), one can
glue Tx as we vary x to a finite étale R[-algebra T such that T ] ∼= S.

Remark. Fact: for any perfectoid space X, it is true that Xét ∼= X[
ét.

1. Fibre products exist in the category of perfectoid spaces over X.

2. étale morphisms: f : X → Y is étale if locally around any point we have
open neighbourhoods U and V for x ∈ X and f(x) ∈ Y such that

U W

V

j

f |U
p

where p is finite étale.
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