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0 Introduction

0 Introduction
Numerical analysis is the study of algorithms for continuous mathematics. Ex-
amples of problems in continuous mathematics are:

• solve 𝑓(𝑥) = 0 where 𝑓 ∶ R𝑛 → R,

• solve 𝑑𝑥
𝑑𝑡 = 𝑓(𝑥) where 𝑓 ∶ R𝑛 → R𝑛

• optimisation: find min 𝑓(𝑥) where 𝑥 ∈ R𝑛, 𝑓 ∶ R𝑛 → R.

A note on complexity: we measure the complexity of an algorithm by the
number of elementary operations (+, ×, −, /) it needs.

Big 𝑂 notation: for example 𝑂(𝑛), 𝑂(𝑛2), where 𝑛 is input size. We also
have complexity 𝑂(𝑓(𝑛)) if the number of operations is at most 𝑐𝑓(𝑛) where
𝑐 > 0.
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1 Polynomial Interpolations

1 Polynomial Interpolations
Denote a degree 𝑛 polynomial by

𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + ⋯ + 𝑝𝑛𝑥𝑛

and let 𝑃𝑛[𝑥] be the vector space of polynomials of degree at most 𝑛. The
interpolation problem is, given 𝑥0, 𝑥1, … , 𝑥𝑛 ∈ R and 𝑓0, 𝑓1, … , 𝑓𝑛 ∈ R, find
𝑝 ∈ 𝑃𝑛[𝑥] such that 𝑝(𝑥𝑖) = 𝑓𝑖 for 𝑖 = 0, … , 𝑛.

1.1 Lagrange formula
Claim that

𝑝(𝑥) =
𝑛

∑
𝑘=0

𝑓𝑘 ∏
ℓ≠𝑘

𝑥 − 𝑥ℓ
𝑥𝑘 − 𝑥ℓ⏟⏟⏟⏟⏟
𝐿𝑘(𝑥)

solves the problem.

Note that 𝐿𝑘(𝑥𝑗) = {1 𝑗 = 𝑘
0 𝑗 ≠ 𝑘

and the result easily follows.

Now we prove the uniqueness of the solution. Assume 𝑞 ∈ 𝑃𝑛[𝑥] is another
polynomial that interpolates the data. Then 𝑝−𝑞 has 𝑛+1 zeros. But a non-zero
polynomial in 𝑃𝑛[𝑥] has at most 𝑛 zeros. Thus 𝑝 − 𝑞 must be zero.

This is an easy solution but what is its complexity? For each 𝑘, the complexity
of evaluating 𝐿𝑘(𝑥) is 𝑂(𝑛) so the total complexity of evaluating 𝑝(𝑥) is 𝑂(𝑛2).

1.1.1 Error of polynomial interpolation

Let 𝐶𝑠[𝑎, 𝑏] be the space of functions [𝑎, 𝑏] → R that are 𝑠 times continuously
differentiable.

Theorem 1.1. Let 𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏] and let 𝑝 ∈ 𝑃𝑛[𝑥] interpolate 𝑓 at distinct
𝑥0, … 𝑥𝑛 , i.e. 𝑝(𝑥𝑖) = 𝑓(𝑥𝑖) for 𝑖 = 0, … , 𝑛. Then for all 𝑥 ∈ [𝑎, 𝑏], there
exists 𝜉 ∈ [𝑎, 𝑏] such that

𝑓(𝑥) − 𝑝(𝑥) = 1
(𝑛 + 1)!

𝑓 (𝑛+1)(𝜉)
𝑛

∏
𝑖=0

(𝑥 − 𝑥𝑖).

The last term ∏𝑛
𝑖=0(𝑥 − 𝑥𝑖) is called the nodal polynomial.

Proof. If 𝑥 = 𝑥𝑖 for some 𝑖 then the result is trivially true. Assume 𝑥 is distinct
from 𝑥𝑖’s for all 𝑖. Define

𝜑(𝑡) = 𝑓(𝑡) − (𝑝(𝑡) + (𝑓(𝑥) − 𝑝(𝑥))
𝑛

∏
𝑖=0

𝑡 − 𝑥𝑖
𝑥 − 𝑥𝑖

) .

Note that the second term is by construction the interpolating polynomial of 𝑓
at 𝑥0, … , 𝑥𝑛 and 𝑥. Thus

𝜑(𝑥0) = 𝜑(𝑥1) = ⋯ = 𝜑(𝑥𝑛) = 𝜑(𝑥) = 0
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1 Polynomial Interpolations

so 𝜑 has 𝑛 + 2 zeros. Recall from IA Analysis I Rolle’s Theorem: if 𝑔 ∈ 𝐶1[𝑎, 𝑏]
such that 𝑔(𝑎) = 𝑔(𝑏) then there exists 𝛼 ∈ (𝑎, 𝑏) such that 𝑔′(𝛼) = 0. Apply it
to 𝜑, we deduce that 𝜑′ has 𝑛 + 1 zeros. Inductively we find that 𝜑(𝑛+1) has 1
zero, i.e. there exists 𝜉 ∈ [𝑎, 𝑏] such that 𝜑(𝑛+1)(𝜉) = 0. Thus

0 = 𝜑(𝑛+1)(𝜉) = 𝑓 (𝑛+1)(𝜉) − (𝑝(𝑛+1)(𝜉)⏟
=0

+(𝑓(𝑥) − 𝑝(𝑥)) (𝑛 + 1)!
∏𝑛

𝑖=0(𝑥 − 𝑥𝑖)
) .

Rearrange,

𝑓(𝑥) − 𝑝(𝑥) = 1
(𝑛 + 1)!

𝑓 (𝑛+1)(𝜉)
𝑛

∏
𝑖=0

(𝑥 − 𝑥𝑖).

Example. [𝑎, 𝑏] = [−5, 5], 𝑥𝑗 = −5 + 10 𝑗
𝑛 for 𝑗 = 0, … , 𝑛. Plot ∏𝑛

𝑖=0(𝑥 − 𝑥𝑖),
we note that it vanishes at 𝑥𝑖’s but blows up near the endpoints.

This is called Runge’s phenomenon. If one attempts to interpolate 𝑓(𝑥) =
1

1+𝑥2 using equispaced points on [−5, 5] and plots the error 𝑓(𝑥) − 𝑝(𝑥)|.
Thus equispaced points may not be the most suitable to minimise the error.

The remedy is to look for points 𝑥0, … , 𝑥𝑛 such that | ∏𝑛
𝑖=0(𝑥 − 𝑥𝑖)| is small.

This leads us to Chebyshev points. For example in the previous case we should
choose

𝑥𝑗 = 5 cos (𝑛 − 𝑗)𝜋
𝑛

.

This choice of points is the one that minimises

max
𝑥∈[𝑎,𝑏]

∣
𝑛

∏
𝑖=0

(𝑥 − 𝑥𝑖)∣ .

1.2 Divided difference and Newton’s interpolation formula

Definition (Divided difference). Given pairwise distinct points 𝑥0, … , 𝑥𝑛,
let 𝑝 ∈ 𝑃𝑛[𝑥] interpolate 𝑓 ∈ 𝐶[𝑎, 𝑏] at these points. The coefficient of 𝑥𝑛 in 𝑝
is called the divided difference of 𝑓 at (𝑥0, … , 𝑥𝑛) and is denoted 𝑓[𝑥0, … , 𝑥𝑛].

We know from the last lecture that the interpolent is

𝑝(𝑥) =
𝑛

∑
𝑘=0

𝑓(𝑥𝑘) ∏
ℓ≠𝑘

𝑥 − 𝑥ℓ
𝑥𝑘 − 𝑥ℓ

.

Thus we get

𝑓[𝑥0, … , 𝑥𝑛] =
𝑛

∑
𝑘=0

𝑓(𝑥𝑘) ∏
ℓ≠𝑘

1
𝑥𝑘 − 𝑥ℓ

.

The next example illustrates the reason behind the name “divided difference”.

Example.

• 𝑓[𝑥0] = 𝑓(𝑥0).

• 𝑓[𝑥0, 𝑥1] = 𝑓(𝑥0) 1
𝑥0−𝑥1

+ 𝑓(𝑥1) 1
𝑥1−𝑥0

= 𝑓(𝑥1)−𝑓(𝑥0)
𝑥1−𝑥0

.

This observation is generalised by
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1 Polynomial Interpolations

Theorem 1.2.

𝑓[𝑥0, 𝑥1, … , 𝑥𝑛+1] =
𝑓[𝑥1, … , 𝑥𝑛+1] − 𝑓[𝑥0, … , 𝑥𝑛]

𝑥𝑛+1 − 𝑥0
.

Proof. Let 𝑝 ∈ 𝑃𝑛[𝑥] interpolate 𝑓 at 𝑥0, … , 𝑥𝑛 and 𝑞 ∈ 𝑃𝑛[𝑥] interpolate 𝑓 at
𝑥1, … , 𝑥𝑛+1 and let

𝑟(𝑥) =
𝑥 − 𝑥𝑛+1
𝑥0 − 𝑥𝑛+1

𝑝(𝑥) + 𝑥 − 𝑥0
𝑥𝑛+1 − 𝑥0

𝑞(𝑥) ∈ 𝑃𝑛+1[𝑥].

Observe that 𝑟 interpolates 𝑓 at 𝑥0, … , 𝑥𝑛+1. So the divided difference, i.e.
coefficient of 𝑥𝑛+1 in 𝑟(𝑥) is

1
𝑥0 − 𝑥𝑛+1

𝑓[𝑥0, … , 𝑥𝑛] + 1
𝑥𝑛+1 − 𝑥0

𝑓[𝑥1, … , 𝑥𝑛+1].

Theorem 1.3. Assume 𝑥0, … , 𝑥𝑛 are pairwise distinct in [𝑎, 𝑏] and 𝑓 ∈
𝐶𝑛[𝑎, 𝑏], then there exists 𝜉 ∈ [𝑎, 𝑏] such that

𝑓[𝑥0, … , 𝑥𝑛] = 1
𝑛!

𝑓 (𝑛)(𝜉).

Proof. Let 𝑝 ∈ 𝑃𝑛[𝑥] interpolate 𝑓 at 𝑥0, … , 𝑥𝑛. Then function 𝑓 − 𝑝 has 𝑛 + 1
zeros in [𝑎, 𝑏]. Applying Rolle’s Theorem 𝑛 times, we get that (𝑓 − 𝑝)(𝑛) has at
least one zero in [𝑎, 𝑏]. Let 𝜉 ∈ [𝑎, 𝑏] be such that 𝑓 (𝑛)(𝜉) − 𝑝(𝑛)(𝜉) = 0. As 𝑝 has
degree 𝑛, 𝑝(𝑛)(𝑥) = 𝑛! ⋅ leading coefficient. The result thus follows.

Theorem 1.4 (Newton’s interpolation formula). Let 𝑥0, … , 𝑥𝑛 be pairwise
distinct and let

𝑝(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + ⋯ + 𝑓[𝑥0, … , 𝑥𝑛]
𝑛−1
∏
𝑖=0

(𝑥 − 𝑥𝑖).

Then 𝑝(𝑥𝑖) = 𝑓(𝑥𝑖) for 𝑖 = 0, … , 𝑛.

Proof. Induction on 𝑛. If 𝑛 = 0 then 𝑝(𝑥) = 𝑓[𝑥0] which trivially satisfies
𝑝(𝑥0) = 𝑓[𝑥0] = 𝑓(𝑥0).

Suppose it holds for 𝑛 − 1. Let 𝑝𝑛 ∈ 𝑃𝑛−1[𝑥] interpolate 𝑓 at 𝑥0, … , 𝑥𝑛−1 and
𝑝 ∈ 𝑃𝑛[𝑥] interpolate 𝑓 at 𝑥0, … , 𝑥𝑛−1, 𝑥𝑛. 𝑝 − 𝑝𝑛 is a polynomial of degree 𝑛
that vanishes at 𝑥0, … , 𝑥𝑛−1, implying that

𝑝 − 𝑝𝑛 = 𝛼
𝑛−1
∏
𝑖=0

(𝑥 − 𝑥𝑖).

But 𝛼 is the coefficient of 𝑥𝑛 in 𝑝 and so we must have 𝛼 = 𝑓[𝑥0, … , 𝑥𝑛]. Thus
we deduce that

𝑝 = 𝑝𝑛 + 𝑓[𝑥0, … , 𝑥𝑛]
𝑛−1
∏
𝑖=0

(𝑥 − 𝑥𝑖).

By using induction hypothesis, the result follows.
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1 Polynomial Interpolations

1.2.1 Evaluating Newton’s interpolating formula

Recall that the divided difference is defined recursively by

𝑓[𝑥0, 𝑥1, … , 𝑥𝑛+1] =
𝑓[𝑥1, … , 𝑥𝑛+1] − 𝑓[𝑥0, … , 𝑥𝑛]

𝑥𝑛+1 − 𝑥0
.

We can draw a table to evaluate them:

𝑓[𝑥0]

𝑓[𝑥0, 𝑥1]

𝑓[𝑥1] ⋯

⋮ 𝑓[𝑥0, … , 𝑥𝑛]

𝑓[𝑥𝑛−1] ⋯

𝑓[𝑥𝑛−1, 𝑥𝑛]

𝑓[𝑥𝑛]

The output of this procedure is 𝑓[𝑥𝑗, 𝑥𝑗+1, … , 𝑥ℓ] for all 0 ≤ 𝑗 ≤ ℓ ≤ 𝑛. To
evaluate a new divided difference requires 3 operations (2 substractions and 1
division) so the complexity is

3(𝑛 − 1) + 3(𝑛 − 2) + ⋯ + 3 ≈ 3 ⋅ 𝑛2

2
∼ 𝑂(𝑛2).

Having obtained the divided differences, we can use Horner’s scheme to
evaluate Newton’s formula in 𝑂(𝑛). Note that the term (𝑥 − 𝑥0), for example,
appears in every term except the first one in Newton’s interpolating formula so
we may group them together

𝑝(𝑥) = 𝑓[𝑥0] + (𝑥 − 𝑥0)(𝑓[𝑥0, 𝑥1] + (𝑥 − 𝑥1)(𝑓[𝑥0, 𝑥1, 𝑥2] + ⋯
+ (𝑥 − 𝑥𝑛−1)𝑓[𝑥0, 𝑥1, … , 𝑥𝑛])).

This way the evaluation requires 𝑂(𝑛) operations.
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2 Orthogonal Polynomials

2 Orthogonal Polynomials

2.1 Definitions

Definition (Inner product). An inner product is a function ⟨⋅, ⋅⟩ ∶ 𝑉 ×𝑉 → R
where 𝑉 is a real vector space which is

1. symmetric: for all 𝑥, 𝑦 ∈ 𝑉, ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩,

2. positive-definite: for all 𝑥 ∈ 𝑉, ⟨𝑥, 𝑥⟩ ≥ 0 with equality if and only if
𝑥 = 0,

3. linear: for all 𝑥, 𝑦, 𝑧 ∈ 𝑉, 𝑎, 𝑏 ∈ R, ⟨𝑎𝑥 + 𝑏𝑦, 𝑧⟩ = 𝑎⟨𝑥, 𝑧⟩ + 𝑏⟨𝑦, 𝑧⟩.

Definition (Orthogonality). Given an inner product, 𝑥, 𝑦 ∈ 𝑉 are orthogonal
if ⟨𝑥, 𝑦⟩ = 0.

In this section, let 𝑉 = 𝐶[𝑎, 𝑏] and let 𝑤 ∈ 𝑉 be a positive function and define
an inner product

⟨𝑓, 𝑔⟩ = ∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥.

It is easy to verify the axioms of inner product.

Definition (Orthogonal polynomial). Given an inner product in 𝑉 = 𝑃[𝑥],
the orthogonal polynomials are a sequence of polynomials 𝑝0, 𝑝1, … such that

1. deg 𝑝𝑛 = 𝑛 for all 𝑛 ≥ 0 and

2. ⟨𝑝𝑛, 𝑝𝑚⟩ = 0 for all 𝑛 ≠ 𝑚.

Remark. For any 𝑛 ≥ 0, {𝑝0, … , 𝑝𝑛} is an orthogonal basis of 𝑃𝑛[𝑥].

The next theorem shows that this object with the desired property does exist:

Theorem 2.1. For every 𝑛 ≥ 0 there exists a unique monic orthogonal
polynomial 𝑝𝑛 of degree 𝑛.

Proof. Let 𝑝0(𝑥) = 1 and proceed by induction on 𝑛. Suppose 𝑝0, … , 𝑝𝑛 satisfy
the induction hypothesis. To define 𝑝𝑛+1 let 𝑞(𝑥) = 𝑥𝑛+1 ∈ 𝑃𝑛+1[𝑥] and conduct
Gram-Schmidt on 𝑞(𝑥):

𝑝𝑛+1(𝑥) = 𝑞(𝑥) −
𝑛

∑
𝑘=0

⟨𝑞, 𝑝𝑘⟩
⟨𝑝𝑘, 𝑝𝑘⟩

𝑝𝑘(𝑥).

Clearly 𝑝𝑛+1 ∈ 𝑃𝑛+1[𝑥] and is monic. The orthogonality is a consequence of
Gram-Schmidt.

To prove uniqueness, suppose there exists ̃𝑝𝑛+1 ∈ 𝑃𝑛+1[𝑥] also monic orthog-
onal. Then 𝑝 = 𝑝𝑛+1 − ̃𝑝𝑛+1 ∈ 𝑃𝑛[𝑥] and thus we have

0 = ⟨𝑝𝑛+1, 𝑝⟩ − ⟨ ̃𝑝𝑛+1, 𝑝⟩ = ⟨𝑝, 𝑝⟩

so 𝑝 = 0.
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2 Orthogonal Polynomials

Example (Legendre polynomials). Define an inner product

⟨𝑓, 𝑔⟩ = ∫
1

−1
𝑓(𝑥)𝑔(𝑥)𝑑𝑥

for 𝑓, 𝑔 ∈ 𝑃 [𝑥]. The orthogonal polynomials arising from the scalar product is
called Legendre polynomials. The first few terms in the sequence are

𝑝0(𝑥) = 1
𝑝1(𝑥) = 𝑥

𝑝2(𝑥) = 𝑥2 − 1
3

𝑝3(𝑥) = 𝑥3 − 3
5

𝑥

𝑓4(𝑥) = 𝑥4 − 30
35

𝑥2 + 3
35

Some well-known examples of orthogonal polynomials:

Name Notation [𝑎, 𝑏] 𝑤(𝑥)
Legendre 𝑃𝑛 [−1, 1] 1

Chebyshev 𝑇𝑛 [−1, 1] (1 − 𝑥2)−1/2

Laguerre 𝐿𝑛 [0, ∞) 𝑒−𝑥

Hermite 𝐻𝑛 (−∞, ∞) 𝑒−𝑥2

Table 1: Common orthogonal polynomials

2.2 Three-term recurrence relation
Gram-Schmidt gives us a way to construct orthogonal polynomials, but it suffers
from loss of accuracy due to imprecisions in the calculation of scalar products.
A considerably better procedure follows from our next theorem, which relies on
the mild assumption that the inner product satisfies

⟨𝑥𝑝, 𝑞⟩ = ⟨𝑝, 𝑥𝑞⟩

for all 𝑝, 𝑞 ∈ 𝑃 [𝑥].

Theorem 2.2. Assume the scalar product on 𝑃 [𝑥] satisfies ⟨𝑥𝑝, 𝑞⟩ = ⟨𝑝, 𝑥𝑞⟩
for all 𝑝, 𝑞 ∈ 𝑃 [𝑥]. The orthogonal polynomials are given by

𝑝−1(𝑥) = 0
𝑝0(𝑥) = 1

𝑝𝑛+1(𝑥) = (𝑥 − 𝛼𝑛)𝑝𝑛(𝑥) − 𝛽𝑛𝑝𝑛−1(𝑥), 𝑛 ≥ 0

8
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where

𝛼𝑛 = ⟨𝑝𝑛, 𝑥𝑝𝑛⟩
⟨𝑝𝑛, 𝑝𝑛⟩

𝛽𝑛 = ⟨𝑝𝑛, 𝑝𝑛⟩
⟨𝑝𝑛−1, 𝑝𝑛−1⟩

Proof. Let 𝑛 ≥ 0 and 𝜓(𝑥) = 𝑝𝑛+1(𝑥)−(𝑥−𝛼𝑛)𝑝𝑛(𝑥)+𝛽𝑛𝑝𝑛−1(𝑥). Since 𝑝𝑛 and
𝑝𝑛+1 are monic, it follows that 𝜓 ∈ 𝑃𝑛[𝑥]. Moreover, because of orthogonality of
𝑝𝑛−1, 𝑝𝑛, 𝑝𝑛+1,

⟨𝜓, 𝑝ℓ⟩ = 0

for ℓ = 0, … , 𝑛 − 2 by linearity. Because of monicity, 𝑞 = 𝑥𝑝𝑛−1 − 𝑝𝑛 ∈ 𝑃𝑛−1[𝑥].
Thus from the definition of 𝛼𝑛 and 𝛽𝑛,

⟨𝜓, 𝑝𝑛−1⟩ = −⟨𝑝𝑛, 𝑥𝑝𝑛−1⟩ + 𝛽𝑛⟨𝑝𝑛−1, 𝑝𝑛−1⟩ = −⟨𝑝𝑛, 𝑝𝑛⟩ + 𝛽𝑛⟨𝑝𝑛−1, 𝑝𝑛−1⟩ = 0
⟨𝜓, 𝑝𝑛⟩ = −⟨𝑥𝑝𝑛, 𝑝𝑛⟩ + 𝛼𝑛⟨𝑝𝑛, 𝑝𝑛⟩ = 0

Every 𝑝 ∈ 𝑃𝑛[𝑥] that obeys ⟨𝑝, 𝑝ℓ⟩ = 0 for all 0 ≤ ℓ ≤ 𝑛 must necessarily be the
zero polynomials. Thus 𝜓 = 0 and the result follows.

Example (Chebyshev polynomials). Define an inner product on 𝐶[−1, 1]

⟨𝑓, 𝑔⟩ = ∫
1

−1

𝑓(𝑥)𝑔(𝑥)√
1 − 𝑥2

𝑑𝑥

and define

𝑇𝑛 ∈ 𝑃𝑛[𝑥]
𝑇𝑛(cos 𝜃) = cos(𝑛𝜃)

The first three terms are thus

𝑇0(𝑥) = 1
𝑇1(𝑥) = 𝑥
𝑇2(𝑥) = 2𝑥2 − 1

The inner product can be easily found by a change of vairable:

⟨𝑇𝑛, 𝑇𝑚⟩ = ∫
1

−1

𝑇𝑛(𝑥)𝑇𝑚(𝑥)√
1 − 𝑥2

𝑑𝑥

= ∫
𝜋

0
cos 𝑛𝜃 cos 𝑚𝜃𝑑𝜃

= 1
2

∫
𝜋

0
(cos(𝑛 + 𝑚)𝜃 + cos(𝑛 − 𝑚)𝜃)𝑑𝜃

= 0

whenever 𝑛 ≠ 𝑚.
The recurrence relation for Chebyshev polynomials is particularly simple:

𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥)

9
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which can be verified at once from the identity

cos(𝑛 + 1)𝜃 + cos(𝑛 − 1)𝜃 = 2 cos 𝜃 cos(𝑛𝜃).

Note that 𝑇𝑛’s are not monic. To obtain monic polynomials take 𝑇𝑛/2𝑛−1 for
𝑛 ≥ 1.

2.3 Least-squares polynomial fitting
Question. Fix a scalar product on 𝐶[𝑎, 𝑏] of the form

⟨𝑓, 𝑔⟩ = ∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥

where 𝑤 ∶ [𝑎, 𝑏] → R is positive. Given 𝑓 ∈ 𝐶[𝑎, 𝑏], find 𝑝 ∈ 𝑃𝑛[𝑥] such that

‖𝑓 − 𝑝‖2 = ⟨𝑓 − 𝑝, 𝑓 − 𝑝⟩

is minimised.

Let ̂𝑝𝑛 be the polynomial of degree 𝑛 minimising ‖𝑓 − 𝑝‖2.

Theorem 2.3. Let 𝑝0, 𝑝1, 𝑝2 be orthogonal polynomials with respect to ⟨⋅, ⋅⟩.
Then

̂𝑝𝑛 =
𝑛

∑
𝑘=0

⟨𝑓, 𝑝𝑘⟩
⟨𝑝𝑘, 𝑝𝑘⟩

𝑝𝑘.

Proof. We know that any 𝑝 ∈ 𝑃𝑛[𝑥] can be written as

𝑝 =
𝑛

∑
𝑖=0

𝑐𝑘𝑝𝑘

where 𝑐0, … , 𝑐𝑛 ∈ R. Then

⟨𝑓 − 𝑝, 𝑓 − 𝑝⟩ = ⟨𝑓 −
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘, 𝑓 −
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘⟩

= ⟨𝑓, 𝑓⟩ − 2⟨𝑓,
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘⟩ + ⟨
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘,
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘⟩

= ⟨𝑓, 𝑓⟩ − 2⟨𝑓,
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘⟩ +
𝑛

∑
𝑘=0

𝑛
∑
𝑘′=0

𝑐𝑘𝑐𝑘′ ⟨𝑝𝑘, 𝑝𝑘⟩⏟
=0 if 𝑘≠𝑘′

= ⟨𝑓, 𝑓⟩ − 2⟨𝑓,
𝑛

∑
𝑘=0

𝑐𝑘𝑝𝑘⟩ +
𝑛

∑
𝑘=0

𝑐2
𝑘⟨𝑝𝑘, 𝑝𝑘⟩

As usual, to minimise the quantity we take derivative with respect to 𝑐𝑖’s:

𝜕
𝜕𝑐𝑘

⟨𝑓 − 𝑝, 𝑓 − 𝑝⟩ = −2⟨𝑓, 𝑝𝑘⟩ + 2𝑐𝑘⟨𝑝𝑘, 𝑝𝑘⟩.

Set the derivative to 0, we get

𝑐𝑘 = ⟨𝑓, 𝑝𝑘⟩
⟨𝑝𝑘, 𝑝𝑘⟩

.
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In this case, the minimal error is

‖𝑓 − ̂𝑝𝑛‖2 = ⟨𝑓 − ̂𝑝𝑛, 𝑓 − ̂𝑝𝑛⟩ = ⟨𝑓, 𝑓⟩ −
𝑛

∑
𝑘=0

⟨𝑓, 𝑝𝑘⟩2

⟨𝑝𝑘, 𝑝𝑘⟩
= ⟨𝑓, 𝑓⟩ − ⟨ ̂𝑝𝑛, ̂𝑝𝑛⟩.

The can be interpreted as the generalised Pythagoras Theorem for inner product
spaces.

It is obvious that ‖𝑓 − ̂𝑝𝑛‖2 is a non-increasing function of 𝑛, but

Question. Does ‖𝑓 − ̂𝑝𝑛‖2 → 0 as 𝑛 → ∞?

The answer is yes and can be proved using Weierstrass theorem, which we
state without giving a proof:

Theorem 2.4 (Weierstrass). Let 𝑓 ∈ 𝐶[𝑎, 𝑏] where [𝑎, 𝑏] is bounded. For all
𝜀 > 0, there exists a polynomial 𝑝 of high enough degree such that

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜀

for all 𝑥 ∈ [𝑎, 𝑏].

Using Weierstrass theorem, we can prove the claim above. For any 𝑝 we have

‖𝑓 − 𝑝‖2 = ∫
𝑏

𝑎
𝑤(𝑥)(𝑓(𝑥) − 𝑝(𝑥))2𝑑𝑥 ≤ ( max

𝑥∈[𝑎,𝑏]
|𝑓(𝑥) − 𝑝(𝑥)|)

2
∫

𝑏

𝑎
𝑤(𝑥)𝑑(𝑥).

Give any 𝛿 > 0, by Weierstrass theorem applied with 𝜑 = √𝛿/ ∫𝑏
𝑎

𝑤(𝑥)𝑑𝑥, there
is a polynomial 𝑝 of degree 𝑁 such that

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜀

for all 𝑥 ∈ [𝑎, 𝑏]. Then for any 𝑁 ≥ 𝑛,

‖𝑓 − ̂𝑝𝑁‖2 ≤ ‖𝑓 − 𝑝‖2 ≤ 𝜀2 ∫
𝑏

𝑎
𝑤(𝑥)𝑑𝑥 = 𝛿

as required.

Theorem 2.5 (Parseval identity).
∞

∑
𝑘=0

⟨𝑓, 𝑝𝑘⟩2

⟨𝑝𝑘, 𝑝𝑘⟩
= ⟨𝑓, 𝑓⟩.

Proof. Reformulation of the above claim.

2.4 Least-squares fitting to discrete data
Given the value of a function at pairwise distinct points 𝑥1, … , 𝑥𝑚, the goal of
this section is to find 𝑝 ∈ 𝑃𝑛[𝑥] that minimises

𝑚
∑
𝑘=1

(𝑓(𝑥𝑘) − 𝑝(𝑥𝑘))2.

11
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This can be thought as a generalisation of the interpolation problem, where
𝑚 = 𝑛 + 1 and the minimised error is always 0. In the generalised setting,
𝑛 ≤ 𝑚 − 1 (and usually much smaller).

This question can be reformulated as in terms of orthogonal polynomial,
where the inner product is defined to be

⟨𝑔, ℎ⟩ =
𝑚

∑
𝑘=1

𝑔(𝑥𝑘)ℎ(𝑥𝑘)

since then
⟨𝑓 − 𝑝, 𝑓 − 𝑝⟩ =

𝑛
∑
𝑘=0

(𝑓(𝑥𝑘) − 𝑝(𝑥𝑘))2.

We can proceed as follow, given 𝑛 ≤ 𝑚 − 1:

1. use three-term recurrence for the inner product to compute orthogonal
polynomials 𝑝0, … , 𝑝𝑛.

2. Form
̂𝑝𝑛 =

𝑛
∑
𝑘=0

⟨𝑓, 𝑝𝑘⟩
⟨𝑝𝑘, 𝑝𝑘⟩

𝑝𝑘.

The reason we require 𝑛 ≤ 𝑚 − 1 is for positive definiteness.

2.5 Gaussian quadrature
Question. Let 𝑤 ∶ [𝑎, 𝑏] → R be positive. We want to approximate the integral
∫𝑏
𝑎

𝑤(𝑥)𝑓(𝑥)𝑑𝑥 where 𝑓 ∈ 𝐶[𝑎, 𝑏].

A quadrature formula is an approximation of the above expression

∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑑𝑥 ≈

𝜈
∑
𝑘=1

𝑏𝑘𝑓(𝑐𝑘) (∗)

where 𝑏𝑘 are weights and 𝑐𝑘 are nodes.
We require the quadrature formula to be exact for 𝑓 ∈ 𝑃𝑛[𝑥].
Claim that if the quadrature formula (∗) is exact for any 𝑓 ∈ 𝑃𝑛[𝑥] then

necessarily 𝑛 ≤ 2𝜈 − 1.

Proof. We will construct a polynomial of degree 2𝜈 such that LHS and RHS are
different. Let

𝑓(𝑥) =
𝜈

∏
𝑘=1

(𝑥 − 𝑐𝑘)2

which has degree 2𝜈. RHS is equal to 0 while LHS is ∫𝑏
𝑎

𝑤(𝑥)𝑓(𝑥)𝑑𝑥 > 0.

Can we find a quadrature formula that is exact for all polynomials of degree
≤ 2𝜈 − 1? Yes, and this is Gaussian quadrature.

Let

⟨𝑓, 𝑔⟩ = ∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑔(𝑥)𝑑𝑥

and let 𝑝0, 𝑝1, 𝑝2 be orthogonal polynomials associated to this inner product.
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Theorem 2.6. For any 𝑛 ≥ 0, 𝑝𝑛 has 𝑛 real distinct roots in [𝑎, 𝑏].

Proof. Let 𝜉1, … , 𝜉𝑚 ∈ (𝑎, 𝑏) be the points where 𝑝𝑛 changes sign and let

𝑞(𝑥) =
𝑚

∏
𝑖=1

(𝑥 − 𝜉𝑖).

Note that 𝑝𝑛(𝑥)𝑞(𝑥) has constant sign in [𝑎, 𝑏], i.e. in this step we make every
root have even multiplicity. Since 𝑝𝑛𝑞 has constant sign on [𝑎, 𝑏],

|⟨𝑝𝑛, 𝑞⟩| = ∣∫
𝑏

𝑎
𝑤(𝑥)𝑝𝑛(𝑥)𝑞(𝑥)𝑑𝑥∣ = ∫

𝑏

𝑎
𝑤(𝑥)|𝑝𝑛(𝑥)𝑞(𝑥)|𝑑𝑥 > 0

This implies that deg 𝑞 ≥ 𝑛 so 𝑚 ≥ 𝑛. But 𝑚 ≤ 𝑛 because 𝑝𝑛 has degree 𝑛.
Thus 𝑝𝑛 has 𝑛 distinct real roots in (𝑎, 𝑏).

Given nodes 𝑐1, … , 𝑐𝜈, define the interpolatory weights

𝑏𝑘 = ∫
𝑏

𝑎
𝑤(𝑥)

𝜈
∏

𝑗=1,𝑗≠𝑘

𝑥 − 𝑐𝑗

𝑐𝑘 − 𝑐𝑗
𝑑𝑥 (∗∗)

for 𝑘 = 1, … , 𝜈.

Theorem 2.7.

1. The quadrature formula with weights given by (∗∗) is exact for polyno-
mials of degree up to 𝜈 − 1.

2. If furthermore the 𝑐𝑘’s are the roots of 𝑝𝜈, then the quadrature formula
is exact for polynomials up to degree 2𝜈 − 1.

Proof.

1. Let 𝑓 ∈ 𝑃𝜈−1[𝑥]. Write 𝑓 in terms of its interpolating formula at the 𝑐𝑘’s,

𝑓(𝑥) =
𝜈

∑
𝑘=1

𝑓(𝑐𝑘) ∏
𝑗≠𝑘

𝑥 − 𝑐𝑗

𝑐𝑘 − 𝑐𝑗
.

Then

∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑑𝑥 = ∫

𝑏

𝑎
𝑤(𝑥)

𝜈
∑
𝑘=1

𝑓(𝑐𝑘) ∏
𝑗≠𝑘

𝑥 − 𝑐𝑗

𝑐𝑘 − 𝑐𝑗
𝑑𝑥

=
𝜈

∑
𝑘=1

𝑓(𝑐𝑘) ∫
𝑏

𝑎
𝑤(𝑥) ∏

𝑗≠𝑘

𝑥 − 𝑐𝑗

𝑐𝑘 − 𝑐𝑗
𝑑𝑥

2. Assume now that 𝑐1, … , 𝑐𝜈 are the roots of 𝑝𝜈. Let 𝑓 ∈ 𝑃2𝜈−1[𝑥]. We can
write

𝑓 = 𝑝𝜈𝑞 + 𝑟

13
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with deg 𝑟 ≤ 𝜈 − 1, deg 𝑞 ≤ 𝜈 − 1. Then

∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑑𝑥 = ∫

𝑏

𝑎
𝑤(𝑥)𝑝𝜈(𝑥)𝑞(𝑥)𝑑𝑥 + ∫

𝑏

𝑎
𝑤(𝑥)𝑟(𝑥)𝑑𝑥

= ⟨𝑝𝜈, 𝑞⟩ +
𝜈

∑
𝑘=1

𝑏𝑘𝑟(𝑐𝑘)

= 0 +
𝜈

∑
𝑘=1

𝑏𝑘𝑓(𝑐𝑘)

2.6 Peano Kernel Theorem
How does the error behave when we use the quadrature formula to approximate
a function that is not a polynomial, or a polynomial of higher degree?

The error from a quadrature formula is

𝐿(𝑓) = ∫
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑑𝑥 −

𝜈
∑
𝑘=1

𝑏𝑘𝑓(𝑐𝑘)

Assume 𝐿(𝑓) = 0 for all 𝑓 ∈ 𝑃𝑛[𝑥]. The goal is to bound error |𝐿(𝑓)| for
𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏]. Recall from IA Analysis I the Taylor expansion formula with
integral remainder

𝑓(𝑥) =
𝑛

∑
𝑖=0

𝑓 (𝑖)(𝑎)(𝑥 − 𝑎)𝑖

𝑖!
+ 1

𝑛!
∫

𝑥

𝑎
(𝑥 − 𝜃)𝑛𝑓 (𝑛+1)(𝜃)𝑑𝜃.

Call the first part 𝑔(𝑥). Since 𝑔 ∈ 𝑃𝑛[𝑥], 𝐿(𝑔) = 0. Thus by linearity of 𝐿 we get

𝐿(𝑓) = 𝐿 (𝑥 ↦ 1
𝑛!

∫
𝑥

𝑎
(𝑥 − 𝜃)𝑛𝑓 (𝑛+1)(𝜃)𝑑𝜃) .

Let

(𝑥 − 𝜃)𝑛
+ = {(𝑥 − 𝜃)𝑛 if 𝜃 ≤ 𝑥

0 otherwise

Then

∫
𝑥

𝑎
(𝑥 − 𝜃)𝑛𝑓 (𝑛+1)(𝜃)𝑑𝜃 = ∫

𝑏

𝑎
𝟙𝜃≤𝑥(𝑥 − 𝜃)𝑛𝑓 (𝑛+1)(𝜃)𝑑𝜃

= ∫
𝑏

𝑎
(𝑥 − 𝜃)𝑛

+𝑓 (𝑛+1)(𝜃)𝑑𝜃

Assuming we can exchange 𝐿 and the integral, we get

𝐿(𝑓) = 1
𝑛!

∫
𝑏

𝑎
𝐾(𝜃)𝑓 (𝑛+1)(𝜃)𝑑𝑥

where
𝐾(𝜃) = 𝐿(𝑥 ↦ (𝑥 − 𝜃)𝑛

+)

is the Peano kernel.

14



2 Orthogonal Polynomials

Example (Simpson’s rule).

∫
1

−1
𝑓(𝑥)𝑑𝑥 ≈ 1

3
[𝑓(−1) + 4𝑓(0) + 𝑓(1)].

Then
𝐿(𝑓) = ∫

1

−1
𝑓(𝑥)𝑑𝑥 − 1

3
[𝑓(−1) + 4𝑓(0) + 𝑓(1)].

We can check that 𝐿(𝑓) = 0 for all 𝑓 ∈ 𝑃2[𝑥]. The Peano kernel for 𝐿 is

𝐾(𝜃) = 𝐿(𝑥 ↦ (𝑥 − 𝜃)2
+) =

⎧{
⎨{⎩

− 1
3 𝜃(1 + 𝜃)2 if − 1 ≤ 𝜃 ≤ 0

− 1
3 𝜃(1 − 𝜃)2 if 0 ≤ 𝜃 ≤ 0

0 otherwise

Assume 0 ≤ 𝜃 ≤ 1 for example,

𝐾(𝜃) = 𝐿(𝑥 ↦ (𝑥 − 𝜃)2
+)

= ∫
1

−1
(𝑥 − 𝜃)2

+𝑑𝑥 − 1
3

[(−1 − 𝜃)2
+ + 4(0 − 𝜃)2

+ + (1 − 𝜃)2
+]

= ∫
1

𝜃
(𝑥 − 𝜃)2𝑑𝑥 − 1

3
[0 + 0 + (1 − 𝜃)2]

= (𝑥 − 𝜃)3

3
∣
1

0
− 1

3
(1 − 𝜃)2

= −1
3

𝜃(1 − 𝜃)2

For any 𝑓 ∈ 𝐶3[−1, 1],

|𝐿(𝑓)| = 1
2

∣∫
1

−1
𝐾(𝜃)𝑓 (3)(𝜃)𝑑𝜃∣

≤ 1
2

max
𝜃∈[−1,1]

|𝑓 (3)(𝜃)| ∫
1

−1
|𝐾(𝜃)|𝑑𝜃

≤ 1
36

‖𝑓 (3)(𝜃)‖∞

In particular, applying the result to 𝑃2[𝑥] tells us that the quadrature is
exact for polynomials of degree 2 or smaller.

In fact Peano Kernel Theorem applies to other kind of numerical algorithms
as well.

Example (Numerical differentiation).

𝑓 ′(0) ≈ −3
2

𝑓(0) + 2𝑓(1) − 1
2

𝑓(2).

We can check that the formula is exact for 𝑓(𝑥) = 1, 𝑥, 𝑥2 so by linearity this
extends to all elements of 𝑃2[𝑥]. The error is

𝐿(𝑓) = 𝑓 ′(0) − [−3
2

𝑓(0) + 2𝑓(1) − 1
2

𝑓(2)]
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so

𝐾(𝜃) = 𝐿(𝑥 ↦ (𝑥 − 𝜃)2
+) =

⎧{
⎨{⎩

2𝜃 − 3
2 𝜃2 if 0 ≤ 𝜃 ≤ 1

1
2 (2 − 𝜃)2 if 1 ≤ 𝜃 ≤ 2
0 otherwise

For any 𝑓 ∈ 𝐶3[0, 2],

|𝐿(𝑓)| = 1
2

∣∫
2

0
𝐾(𝜃)𝑓 (3)(0)𝑑𝜃𝑑𝜃∣

≤ 1
2

∫
2

0
|𝐾(𝜃)||𝑓 (3)(𝜃)|𝑓𝑑𝜃

≤ 1
2

‖𝑓 (3)‖∞ ∫
2

0
|𝐾(𝜃)|𝑑𝜃

≤ 1
3

‖𝑓 (3)‖∞

16



3 Ordinary Differential Equations

3 Ordinary Differential Equations
Given an ordinary differential equation of the form

𝑑𝑦
𝑑𝑡

= 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0, 𝑡 ≥ 0

where 𝑓 ∶ R × R𝑁 → R𝑁, 𝑦 ∈ R𝑁, we want to solve it by compute 𝑦(𝑡𝑛) where
𝑡𝑛 = 𝑛ℎ. ℎ can be thought as the time step.

3.1 One-step methods
A one-step method is defined as a map

𝑦𝑛+1 = 𝜑ℎ(𝑡𝑛, 𝑦𝑛)

where 𝑦𝑛 is our approximation for 𝑦(𝑛ℎ). The map only depends on one previous
value, ergo the name.

The Euler method is a one-step method defined by

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛), 𝑛 ≥ 0.

The “deviation” is

𝑦((𝑛 + 1)ℎ) = 𝑦(𝑛ℎ + ℎ)
≈ 𝑦(𝑛ℎ) + ℎ𝑦′(𝑛ℎ)
= 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛)

Definition (Convergence of algorithm). We say that a method converges if
given 𝑡∗ > 0,

lim
ℎ→0

max
0≤𝑛≤⌊ 𝑡∗

ℎ ⌋
‖𝑦𝑛(ℎ) − 𝑦(𝑛ℎ)‖ = 0.

Theorem 3.1. Assume 𝑓 is Lipschitz in the second argument. Then Euler’s
method is convergent.

Proof. Let 𝑒𝑛(ℎ) = 𝑦𝑛(ℎ) − 𝑦(𝑛ℎ). Then

𝑒𝑛+1(ℎ) = 𝑦𝑛+1(ℎ) − 𝑦((𝑛 + 1)ℎ)
= [𝑦𝑛(ℎ) + ℎ𝑓(𝑛ℎ, 𝑦𝑛(ℎ))] − [𝑦(𝑛ℎ) + ℎ𝑦′(𝑛ℎ) + 𝜂(ℎ)]

where we Taylor expand the second term and 𝜂(ℎ) ∼ 𝑂(ℎ2)

= 𝑦𝑛(ℎ) − 𝑦(𝑛ℎ) + ℎ[𝑓(𝑛ℎ, 𝑦𝑛(ℎ)) − 𝑦′(𝑛ℎ)] − 𝜂(ℎ)
= 𝑒𝑛(ℎ) + ℎ[𝑓(𝑛ℎ, 𝑦𝑛(ℎ)) − 𝑓(𝑛ℎ, 𝑦(𝑛ℎ))] − 𝜂(ℎ)

Assume the Lipschitz constant is 𝜆, we thus get

‖𝑒𝑛+1(ℎ)‖ ≤ ‖𝑒𝑛(ℎ)‖ + ℎ𝜆‖𝑦𝑛(ℎ) − 𝑦(𝑛ℎ)‖ + ‖𝜂(ℎ)‖
= ‖𝑒𝑛(ℎ)‖(1 + ℎ𝜆) + 𝐶ℎ2

17



3 Ordinary Differential Equations

Continue recursively,

‖𝑒𝑛(ℎ)‖ ≤ ‖𝑒𝑛−1(ℎ)‖(1 + ℎ𝜆) + 𝐶ℎ2

≤ ‖𝑒𝑛−2(ℎ)‖(1 + ℎ𝜆)2 + 𝐶ℎ2(1 + ℎ𝜆) + 𝐶ℎ2

≤ ⋯

≤ ‖𝑒0(ℎ)‖⏟
0

(1 + ℎ𝜆)𝑛 + 𝐶ℎ2
𝑛−1
∑
𝑗=0

(1 + ℎ𝜆)𝑗

= 𝐶ℎ2 (1 + ℎ𝜆)𝑛 − 1
ℎ𝜆

= 𝐶ℎ
𝜆

[(1 + ℎ𝜆)𝑛 − 1]

As 𝑒𝑥 ≥ 1 + 𝑥,

≤ 𝐶ℎ
𝜆

(𝑒ℎ𝜆𝑛 − 1)

Since 𝑛 ≤ 𝑡∗

ℎ ,

≤ 𝐶ℎ
𝜆

(𝑒𝜆𝑡∗ − 1)

→ 0

as ℎ → 0.

3.2 Multistep methods
An 𝑠-step method is defined by a recursion rule

𝑠
∑
ℓ=0

𝜌ℓ𝑦𝑛+ℓ = ℎ
𝑠

∑
ℓ=0

𝜎ℓ𝑓(𝑡𝑛+ℓ, 𝑦𝑛+ℓ) (1)

where 𝜌𝑠 = 1.
The method is called explicit if 𝜎𝑠 = 0. Otherwise it is called implicit.
For example for Euler’s method,

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓(𝑡𝑛, 𝑦𝑛)

𝑠 = 1, 𝜌1 = 1, 𝜌0 = −1, 𝜎1 = 0, 𝜎𝑠 = 1. This is an explicit method.
By constrast, the implicit Euler method is

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1).

An example of a 2-step method is 2-step Adams-Bashforth defined by

𝑦𝑛+2 − 𝑦𝑛+1 = ℎ (3
2

𝑓(𝑡𝑛+1, 𝑦𝑛+1) − 1
2

𝑓(𝑡𝑛, 𝑦𝑛))

Definition (Order). The order of a multistep method is the biggest integer
𝑝 ≥ 0 such that

𝑠
∑
ℓ=0

𝜌ℓ𝑦(𝑡𝑛+ℓ) − ℎ
𝑠

∑
ℓ=0

𝜎ℓ𝑦′(𝑡𝑛+ℓ) = 𝑂(ℎ𝑝+1)

18
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for all sufficiently smooth functions 𝑦.

If we think 𝑦′(𝑡𝑛+ℓ) = 𝑓(𝑡𝑛+ℓ, 𝑦(𝑡𝑛+ℓ)), this is the error of starting at the
previous iteration, i.e. the “local error”.

Now we calculate the order of Euler method.

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) − ℎ𝑦′(𝑡𝑛) = 𝑦(𝑡𝑛 + ℎ) − 𝑦(𝑡𝑛) − ℎ𝑦′(𝑡𝑛)
= 𝑦(𝑡𝑛) + ℎ𝑦′(𝑡𝑛) + 𝑂(ℎ2) − 𝑦(𝑡𝑛) − ℎ𝑦′(𝑡𝑛)
= 𝑂(ℎ2)

so it has order 1.
Another example: the theta-method is given by

𝑦𝑛+1 = 𝑦𝑛 + ℎ[𝜃𝑓(𝑡𝑛, 𝑦𝑛) + (1 − 𝜃)𝑓(𝑡𝑛+1, 𝑦𝑛+1)]

which can thought as a parameterised Euler method, with the parameter 𝜃
controlling the “explicitness”. For 𝜃 = 1

2 , it is given a special name: trapezoidal
rule.

The order of the theta-method is

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) − ℎ[𝜃𝑦′(𝑡𝑛) + (1 − 𝜃)𝑦′(𝑡𝑛+1)]

= 𝑦(𝑡𝑛) + ℎ𝑦′(𝑡𝑛) + ℎ2

2
𝑦″(𝑡𝑛) + ℎ3

3!
𝑦‴(𝑡𝑛) + 𝑂(ℎ4)

− 𝑦(𝑡𝑛) − ℎ[𝜃𝑦′(𝑡𝑛) + (1 − 𝜃)(𝑦′(𝑡𝑛) + ℎ𝑦″(𝑡𝑛) + ℎ2

2
𝑦‴(𝑡𝑛) + 𝑂(ℎ3))]

= ℎ2 (𝑦″(𝑡𝑛)
2

− (1 − 𝜃)𝑦″(𝑡𝑛)) + 𝑂(ℎ3)

= 𝑦″(𝑡𝑛)(𝜃 − 1
2

)ℎ2 + 𝑂(ℎ3)

Thus if 𝜃 = 1
2 then it has order 2, otherwise order 11.

Theorem 3.2. Let 𝜌(𝑤) = ∑𝑠
ℓ=0 𝜌ℓ𝑤ℓ and 𝜎(𝑤) = ∑𝑠

ℓ=0 𝜎ℓ𝑤ℓ. Then the
order of the multistep method is the largest integer 𝑝 ≥ 0 such that

𝜌(𝑒𝑧) − 𝑧𝜎(𝑒𝑧) = 𝑂(𝑧𝑝+1)

as 𝑧 → 0.

Proof. This is just a tedious exercise using Taylor expansion. For analytic 𝑦, we
1Strictly speaking we conclude that the order when 𝜃 = 1

2 is at least 2. To show the order
is 2 we need to in addition show that the coefficient of ℎ3 does not vanish.
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have
𝑠

∑
ℓ=0

𝜌ℓ𝑦(𝑡𝑛+ℓ) − ℎ
𝑠

∑
ℓ=0

𝜎ℓ𝑦′(𝑡𝑛+ℓ)

=
𝑠

∑
ℓ=0

𝜌ℓ

∞
∑
𝑘=0

(ℓℎ)𝑘

𝑘!
𝑦(𝑘)(𝑡𝑛) − ℎ

𝑠
∑
ℓ=0

𝜎ℓ

∞
∑
𝑘=0

(ℓℎ)𝑘

𝑘!
𝑦(𝑘+1)(𝑡𝑛)

=
𝑠

∑
ℓ=0

𝜌ℓ𝑦(𝑡𝑛) +
∞

∑
𝑘=1

ℎ𝑘

𝑘!
[

𝑠
∑
ℓ=0

𝜌ℓℓ𝑘𝑦(𝑘)(𝑡𝑛) −
𝑠

∑
ℓ=0

𝜎ℓℓ𝑘−1𝑘𝑦(𝑘)(𝑡𝑛)]

=
𝑠

∑
ℓ=0

𝜌ℓ𝑦(𝑡𝑛) +
∞

∑
𝑘=1

ℎ𝑘

𝑘!
[

𝑠
∑
ℓ=0

𝜌ℓℓ𝑘 −
𝑠

∑
ℓ=0

𝜎ℓℓ𝑘−1𝑘] 𝑦(𝑘)(𝑡𝑛)

This shows that the method has order 𝑝 if and only if
𝑠

∑
ℓ=0

𝜌ℓ = 0

𝑠
∑
ℓ=0

𝜌ℓℓ𝑘 −
𝑠

∑
ℓ=0

𝜎ℓℓ𝑘−1𝑘 = 0

for all 1 ≤ 𝑘 ≤ 𝑝.
Now repeat the same for the exponentials,

𝜌(𝑒𝑧) − 𝑧𝜎(𝑒𝑧)

=
𝑠

∑
ℓ=0

𝜌ℓ𝑒ℓ𝑧 − 𝑧
𝑠

∑
ℓ=0

𝜎ℓ𝑒ℓ𝑧

=
𝑠

∑
ℓ=0

𝜌ℓ

∞
∑
𝑘=0

(ℓ𝑧)𝑘

𝑘!
− 𝑧

𝑠
∑
ℓ=0

𝜎ℓ

∞
∑
𝑘=0

(ℓ𝑧)𝑘

𝑘!

=
𝑠

∑
ℓ=0

𝜌ℓ +
∞

∑
𝑘=1

𝑧𝑘

𝑘!
[

𝑠
∑
ℓ=0

𝜌ℓℓ𝑘 −
𝑠

∑
ℓ=0

𝜎ℓℓ𝑘−1𝑘]

which is of 𝑂(𝑧𝑝+1) if and only if
𝑠

∑
ℓ=0

𝜌ℓ = 0

𝑠
∑
ℓ=0

𝜌ℓℓ𝑘 −
𝑠

∑
ℓ=0

𝜎ℓℓ𝑘−1𝑘 = 0

for all 1 ≤ 𝑘 ≤ 𝑝, which is exactly the same condition as before. The result thus
follows.

Example (Adams-Bashforth). Recall

𝑦𝑛+2 − 𝑦𝑛+1 = ℎ (3
2

𝑓(𝑡𝑛+1, 𝑦𝑛+1) − 1
2

𝑓(𝑡𝑛, 𝑦𝑛)) .

We have

𝜌(𝑤) = 𝑤2 − 𝑤

𝜎(𝑤) = 3
2

𝑤 − 1
2
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Thus the exponential formula says

𝜌(𝑒𝑧) − 𝑧𝜎(𝑒𝑧) = 𝑒2𝑧 − 𝑒𝑧 − 𝑧(3
2

𝑒𝑧 − 1
2

)

= 1 + 2𝑧 + (2𝑧)2

2
+ (2𝑧)3

3!

− (1 + 𝑧 + 𝑧2

2
+ 𝑧3

3!
)

− 𝑧(3
2

+ 3𝑧
2

+ 3𝑧2

4
− 1

2
) + 𝑂(𝑧4)

= 𝑧3(8
6

− 1
6

− 3
4

) + 𝑂(𝑧4)

so it has order 2.

3.2.1 Convergence of multistep methods

Definition (Root condition). We say that a polynomial 𝜌(𝑤) = ∑𝑠
ℓ=0 𝜌ℓ𝑤ℓ

satisfies the root condition if all the roots of 𝜌 lie inside the unit disc
{𝑧 ∈ C ∶ |𝑧| ≤ 1} and any root with modulus 1 is simple.

Theorem 3.3 (Dahlquist equivalence theorem). The general 𝑠-step method
given by (1) is convergent if and only if it has order 𝑝 ≥ 1 and 𝜌(𝑤) =
∑𝑠

ℓ=0 𝜌ℓ𝑤ℓ satisfies the root condition.

Example (Adams-Bashforth).

𝑦𝑛+2 − 𝑦𝑛+1 = ℎ (3
2

𝑓(𝑡𝑛+1, 𝑡𝑛+2) − 1
2

𝑓(𝑡𝑛, 𝑦𝑛)) .

We have checked last time that the order is 2. 𝜌(𝑤) = 𝑤2 − 𝑤 with roots 0 and
1 so the method satisfies the root condition and converges.

Example. Consider
𝑦𝑛+2 − 2𝑦𝑛+1 + 𝑦𝑛 = 0.

To find the order,

𝑦(𝑡𝑛+2) − 2𝑦(𝑡𝑛+1) + 𝑦(𝑡𝑛) = 𝑦(𝑡𝑛 + 2ℎ) − 2𝑦(𝑡𝑛 + ℎ) + 𝑦(𝑡𝑛)
= …
= 𝑂(ℎ2)

and further computation shows 𝑝 = 1. 𝜌(𝑤) = 𝑤2 − 2𝑤 + 1 so 1 is a root of
multiplicity 2 so root condition is not satisfied.

To construct a convergent 𝑠-step method, follow the two steps:

1. Choose a polynomial 𝜌 of degree 𝑠 that satisfies the root condition and
𝜌(1) = 0.
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2. To get an implicit method, take 𝜎(𝑤) to be the 𝑠-degree truncation of
Taylor expansion of 𝜌(𝑤)

log 𝑤 around 𝑤 = 1 (which exists since 𝜌(1) = 0). For
an explicit method, take 𝜎 to be the (𝑠 − 1)-degree Taylor truncation of
𝜌(𝑤)
log 𝑤 .

We verify that the order ≥ 𝑠: for an implicit method, by construction

𝜎(𝑤) = 𝜌(𝑤)
log 𝑤

+ 𝑂(|𝑤 − 1|𝑠+1)

as 𝑤 → 1. Substitute 𝑤 = 𝑒𝑧 and since 𝑒𝑧 − 1 = 𝑧 + 𝑂(𝑧2)

𝜎(𝑒𝑧) = 𝜌(𝑒𝑧)
𝑧

+ 𝑂(𝑧𝑠+1)

as 𝑧 → 0. So the order ≥ 𝑠 + 1. In the case of an explicit method order ≥ 𝑠.

Example. 𝑠 = 2, 𝜌(𝑤) = 𝑤2 − 𝑤 satisfies the root equation.

𝜌(𝑤)
log 𝑤

= 𝑤(𝑤 − 1)
log 𝑤

= (𝑣 + 1)𝑣
log(1 + 𝑣)

= (𝑣 + 1)𝑣
𝑣 − 𝑣2

2 + 𝑣3

3 + 𝑂(𝑣4)
= …

= 1 + 3
2

𝑣 + 5
12

𝑣2 + 𝑂(𝑣3)

Thus
𝜎(𝑤) = 1 + 3

2
(𝑤 − 1) + 5

12
(𝑤 − 1)2

for an implicit method (which is called Adams-Moulton method) and

𝜎(𝑤) = 1 + 3
2

(𝑤 − 1) = −1
2

+ 3
2

𝑤

which gives Adams-Bashforth method.

3.3 Backward differentiation formula

Definition (Backward differentiation formula). A backward differentiation
formula (BDF) is an 𝑠-step methods with

𝜎(𝑤) = 𝜎𝑠𝑤𝑠. (2)

Theorem 3.4. For (2) to have order 𝑠, we must have

𝜌(𝑤) = 𝜎𝑠

𝑠
∑
ℓ=1

1
ℓ

𝑤𝑠−ℓ(𝑤 − 1)ℓ
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with 𝜎𝑠 = (∑𝑠
ℓ=1

1
ℓ )

−1
.

Proof. We want 𝜌 to satisfy

𝜌(𝑤) − 𝜎𝑠𝑤𝑠 log 𝑤 = 𝑂(|𝑤 − 1|𝑠+1)

as 𝑤 → 1. We have

log 𝑤 = − log 1
𝑤

= − log (1 − 𝑤 − 1
𝑤

) =
∞

∑
ℓ=1

1
ℓ

(𝑤 − 1
𝑤

)
ℓ
.

But our choice of 𝜌 is precisely the first 𝑠-terms in this expansion. The value of
𝜎𝑠 is chosen such that 𝜌𝑠 = 1.

Example. Let 𝑠 = 2, 𝜎𝑠 = (1 + 1
2 )−1 = 2

3 , then

𝜎(𝑤) = 2
3

(𝑤(𝑤 − 1) + 1
2

(𝑤 − 1)2) = 𝑤2 − 4
3

𝑤 + 1
3

which gives 2-step BDF

𝑦𝑛+2 − 4
3

𝑦𝑛+1 + 1
3

𝑦𝑛 = 2
3

ℎ𝑓(𝑡𝑛+2, 𝑦𝑛+2).

3.4 Runge-Kutta methods
Suppose we want to solve the ODE

𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(0) = 𝑦0.

The solution of this ODE satisfies

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + ∫
𝑡𝑛+1

𝑡𝑛

𝑦′(𝜏)𝑑𝜏

= 𝑦(𝑡𝑛) + ∫
𝑡𝑛+1

𝑡𝑛

𝑓(𝜏, 𝑦(𝜏))𝑑𝜏

= 𝑦(𝑡𝑛) + ℎ ∫
1

0
𝑓(𝑡𝑛 + 𝛼ℎ, 𝑦(𝑡𝑛 + 𝛼ℎ))𝑑𝛼

at this point we can apply quadrature formulæ

≈ 𝑦(𝑡𝑛) + ℎ
𝜈

∑
𝑗=1

𝑏𝑗 𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑦(𝑡𝑛 + 𝑐𝑗ℎ))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≈𝑘𝑗

and Runge-Kutta will give estimates to the 𝑘𝑗’s.
The explicit Runge-Kutta method is

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝜈

∑
𝑗=1

𝑏𝑗𝑘𝑗

23



3 Ordinary Differential Equations

with

𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛)
𝑘2 = 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑦𝑛 + 𝑐2ℎ𝑘1)

⋮

𝑘𝜈 = 𝑓(𝑡𝑛 + 𝑐𝜈ℎ, 𝑦𝑛 + ℎ
𝜈−1
∑
𝑗=1

𝑎𝑗,𝜈𝑘𝑗)

where ∑𝜈−1
𝑗=1 𝑎𝑗,𝜈 = 𝑐𝜈.

Example. 𝜈 = 2. We have

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑏1𝑘1 + 𝑏2𝑘2)

where

𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛)
𝑘2 = 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑦𝑛 + 𝑐2ℎ𝑘1)

The order of the Runge-Kutta method is defined to be the largest integer 𝑝 ≥ 0
such that

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) − ℎ(𝑏1𝑘1 + 𝑏2𝑘2) = 𝑂(ℎ𝑝+1)
where 𝑦 is the solution of the ODE. For the above case we have

𝑘1 = 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦′(𝑡𝑛)
𝑘2 = 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑦(𝑡𝑛 + 𝑐2ℎ))

= 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑦(𝑡𝑛) + 𝑐2ℎ𝑦′(𝑡𝑛) + 𝑂(ℎ2))

= 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝜕𝑓
𝜕𝑡

𝑐2ℎ + 𝜕𝑓
𝜕𝑦

(𝑐2ℎ𝑦′(𝑡𝑛) + 𝑂(ℎ2)) + 𝑂(ℎ2)

= 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + ℎ𝑐2 (𝜕𝑓
𝜕𝑡

+ 𝜕𝑓
𝜕𝑦

𝑦′(𝑡𝑛))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦″(𝑡𝑛)

+𝑂(ℎ2)

Thus after some calculation we find that

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) − ℎ(𝑏1𝑘1 + 𝑏2𝑘2)

= ℎ𝑦′(𝑡𝑛)(1 − 𝑏1 − 𝑏2) + ℎ2𝑦″(𝑡𝑛)(1
2

− 𝑏2𝑐2) + 𝑂(ℎ3)

Thus if

1 − 𝑏1 − 𝑏2 = 0
1
2

− 𝑏2𝑐2 = 0

the method has order ≥ 2.

Now let’s prove that the order cannot be ≥ 3, by exhibiting a ODE whose
analytic solution is known. Consider

𝑦′ = 𝑦
𝑦(0) = 1
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The solution of this ODE is 𝑦(𝑡) = 𝑒𝑡. Thus

𝑘1 = 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) = 𝑦(𝑡𝑛) = 𝑒𝑡𝑛

𝑘2 = 𝑓(𝑡𝑛 + 𝑐2ℎ, 𝑦(𝑡𝑛) + 𝑐2ℎ𝑘1) = 𝑦(𝑡𝑛) + 𝑐2ℎ𝑘1 = 𝑒𝑡𝑛(1 + 𝑐2ℎ)

so

𝑦(𝑡𝑛+1) − 𝑦(𝑡𝑛) − ℎ(𝑏1𝑘1 + 𝑏2𝑘2)
= 𝑒𝑡𝑛+ℎ − 𝑒𝑡𝑛 − ℎ𝑒𝑡𝑛(𝑏1 + 𝑏2(1 + 𝑐2ℎ))
= 𝑒𝑡𝑛(𝑒ℎ − 1 − ℎ(𝑏1 + 𝑏2(1 + 𝑐2ℎ)))

= 𝑒𝑡𝑛(ℎ + ℎ2

2
+ ℎ3

6
+ 𝑂(ℎ3) − ℎ(𝑏1 + 𝑏2) − ℎ2𝑏2𝑐2)

= 𝑒𝑡𝑛(ℎ(1 − 𝑏1 − 𝑏2) + ℎ2(1
2

− 𝑏2𝑐2) + ℎ3

6
+ 𝑂(ℎ3))

which has a non-vanishing ℎ3 term.
In general, a Runge-Kutta method has the form

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝜈

∑
ℓ=1

𝑏ℓ𝑘ℓ

where
𝑘ℓ = 𝑓(𝑡𝑛 + 𝑐ℓℎ, 𝑦𝑛 + ℎ

𝜈
∑
𝑗=1

𝑎ℓ,𝑗𝑘𝑗)

and ∑𝜈
𝑗=1 𝑎ℓ,𝑗 = 𝑐ℓ.

For explicit Runge-Kutta method, 𝑎ℓ,𝑗 = 0 for 𝑗 ≥ ℓ, i.e. the matrix 𝑎ℓ,𝑗 is
lower triangular.

3.5 Stiffness
Consider the ODE

𝑦′ = 𝜆𝑦, 𝑦(0) = 1.
The solution is 𝑦(𝑡) = 𝑒𝜆𝑡 and if 𝜆 < 0, lim𝑡→∞ 𝑦(𝑡) = 0. If we solve our ODE
using a numerical method, we want lim𝑛→∞ 𝑦𝑛 = 0.

For example, explicit Euler gives

𝑦𝑛 = (1 + ℎ𝜆)𝑛

which goes to zero as 𝑛 → ∞ if and only if |1 + ℎ𝜆| < 1, i.e. ℎ < 2
|𝜆| .

On the other hand, implicit Euler gives

𝑦𝑛+1 = (1 − ℎ𝜆)−𝑛

which goes to 0 as 𝑛 → ∞ for any ℎ > 0.

Definition (Linear stability domain). Consider a numerical method for the
ODE

𝑦′ = 𝜆𝑦, 𝑦(0) = 1

that produces sequence (𝑦𝑛)𝑛≥0. The linear stability domain of the method
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is
𝒟 = {ℎ𝜆 ∈ C ∶ lim

𝑛→∞
𝑦𝑛 = 0}.

Definition (𝐴-stable). We say the method is 𝐴-stable if C− ⊆ 𝒟 where
C− = {𝑧 ∈ C ∶ Re 𝑧 < 0}.

Example. For explicit Euler method,

𝒟 = {ℎ𝜆 ∈ C ∶ |1 + ℎ𝜆| < 1} = {𝑧 ∈ C ∶ |1 + 𝑧| < 1}.

which is not 𝐴-stable.
For implicit Euler method,

𝒟 = {𝑧 ∈ C ∶ |(1 − 𝑧)−1| < 1} = {𝑧 ∈ C ∶ |1 − 𝑧| > 1}

which is 𝐴-stable.

Example (Trapezoidal rule).

𝑦𝑛+1 = 𝑦𝑛 + ℎ
2

(𝑓(𝑡𝑛, 𝑦𝑛), 𝑓(𝑡𝑛+1, 𝑦𝑛+1))

Assume 𝑓(𝑡, 𝑦) = 𝜆𝑦 so

𝑦𝑛+1(1 − 1
2

ℎ𝜆) = (1 + 1
2

ℎ𝜆)𝑦𝑛

𝑦𝑛 = (
1 + 1

2 ℎ𝜆
1 − 1

2 ℎ𝜆
)

𝑛

𝑦0

so the linear stability domain is

𝒟 = {𝑧 ∈ C ∶ Re 𝑧 < 0}.

Thus trapezoidal rule is 𝐴-stable.

Theorem 3.5 (Second Dahlquist barrier). Any 𝐴-stable multistep method
has order ≤ 2.

This is a bad news for multistep methods. One way to get around this is
to relax 𝐴-stability condition. Recall that the backward differentiation formula
(BDF) is an 𝑠-step method with 𝜎(𝑤) = 𝜎𝑠𝑤𝑠. It is almost 𝐴-stable (see pictures
in lecture).

3.5.1 Stiffness and Runge-Kutta

Consider the 2-stage implicit Runge-Kutta method

𝑦𝑛+1 = 𝑦𝑛 + 1
4

ℎ(𝑘1 + 3𝑘2)
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where

𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛 + 1
4

ℎ(𝑘1 − 𝑘2))

𝑘2 = 𝑓(𝑡𝑛, +2
3

ℎ, 𝑦𝑛 + 1
12

ℎ(3𝑘1 + 5𝑘2))

Let’s compute its linear stability domain. Assume 𝑓(𝑡, 𝑦) = 𝜆𝑦 so

𝑘1 = 𝜆𝑦𝑛 + 1
12

𝜆ℎ(𝑘1 − 𝐾2)

𝑘2 = 𝜆𝑦𝑛 + 1
12

𝜆ℎ(3𝑘1 + 5𝑘2)

Solve to get

(𝑘1
𝑘2

) = 𝜆𝑦𝑛
1 − 2

3 ℎ𝜆 + 1
6 (ℎ𝜆)2 (1 − 2

3 ℎ𝜆
1 )

The solution to the original problem is

𝑦𝑛+1 =
1 + 1

3 ℎ𝜆
1 − 2

3 ℎ𝜆 + 1
6 (ℎ𝜆)2 𝑦𝑛

so the linear stability domain is the region where the modulus of the factor is
small than 1, i.e.

𝒟 = {𝑧 ∈ C ∶ |𝑟(𝑧)| < 1}

where 𝑟(𝑧) = 1+ 1
3 𝑧

1− 2
3 𝑧+ 1

6 𝑧2 . To show it is 𝐴-stable, we use maximum modulus
principle from IB Complex Analysis. First notice that 𝑟(𝑧) is a rational function
with poles 2 ±

√
2𝑖. As 𝑟(𝑧) is analytic in the negative real half plane, max |𝑟(𝑧)|

is attained at the boundary of the domain, i.e. 𝑖R. For all 𝑡 ∈ R,

|𝑟(𝑖𝑡)| =
|1 + 1

3 𝑖𝑡|
|1 − 2

3 𝑖𝑡 − 1
6 𝑡2|

so |𝑟(𝑖𝑡)|2 ≤ 1 if and only if

1 + 1
9

𝑡2 ≤ (1 − 1
6

𝑡2)2 + (2
3

𝑡)2,

if and only if
1
36

𝑡4 ≥ 0.

Thus the method is 𝐴-stable.
Let’s show that our implicit Runge-Kutta method has order ≥ 3. We will

restrict our attention to only scalar autonomous equations 𝑦′ = 𝑓(𝑡). Let 𝑦 be
the solution to our ODE. Write 𝑦 for 𝑦𝑛. Then

𝑘1 = 𝑓(𝑦 + 1
4

ℎ(𝑘1 − 𝑘2))

= 𝑓(𝑦) + 1
4

ℎ(𝑘1 − 𝑘2)𝑓 ′ + 1
32

ℎ2(𝑘1 − 𝑘2)2𝑓″ + 𝑂(ℎ3)

𝑘2 = 𝑓(𝑦 + 1
12

ℎ(3𝑘1 + 5𝑘2)

= 𝑓(𝑦) + 1
12

ℎ(3𝑘1 + 5𝑘2)𝑓 ′ + 1
288

ℎ2(3𝑘1 + 5𝑘2)2𝑓″ + 𝑂(ℎ3)
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It is difficult and tedious to solve this directly, but we could use a trick to extract
the coefficients iteratively. To first order

𝑘1 = 𝑓(𝑦) + 𝑂(ℎ)
𝑘2 = 𝑓(𝑦) + 𝑂(ℎ)

Plug in to get

𝑘1 = 𝑓(𝑦) + 𝑂(ℎ2)

𝑘2 = 𝑓(𝑦) + 8
12

ℎ𝑓 ′𝑓(𝑦) + 𝑂(ℎ2)

Plug in again,

𝑘1 = 𝑓(𝑦) − 1
6

ℎ2(𝑓 ′)2𝑓(𝑦) + 𝑂(ℎ3)

𝑘2 = 𝑓(𝑦) + 2
3

ℎ𝑓 ′𝑓(𝑦) + ℎ2( 5
18

(𝑓 ′)2𝑓(𝑦) + 2
9

𝑓″𝑓(𝑦)2) + 𝑂(ℎ3)

Use these values to compute local error,

⋯

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut,
ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed
interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.
Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia
lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

3.6 Implementation of ODE methods
3.6.1 Error control

Milne device Given the trapezoidal rule

𝑦𝑛+1 = 𝑦𝑛 + 1
2

ℎ(𝑓(𝑡𝑛, 𝑦𝑛) + 𝑓(𝑡𝑛+1, 𝑦𝑛+1),

we want to get an estimate of 𝑦𝑛+1 − 𝑦(𝑡𝑛+1),

𝑦(𝑡𝑛+1) − 𝑦𝑛+1 = − 1
12

ℎ3𝑦‴(𝑡𝑛) + 𝑂(ℎ4)

where − 1
12 is called the error constant of the trapezoidal rule.

We secretly run another method in the background: Adams-Bashforth

𝑦𝑛+1 = 𝑦𝑛 + …
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has order 2. By expansion,

𝑦(𝑡𝑛+1) − 𝑦𝑛+1 = 5
12

ℎ3𝑦‴(𝑡𝑛) + 𝑂(ℎ4)

so the error constant is 5
12 .

Then
𝑦AB

𝑛+1 − 𝑦TR
𝑛+1 = (− 1

12
− 5

12
)ℎ3𝑦‴(𝑡𝑛) + 𝑂(ℎ4)

so
ℎ3𝑦‴(𝑡𝑛) ≈ −2(𝑡AB

𝑛+1 − 𝑦TR
𝑛+1.

Plugging into the eqution for trapezoidal rule,

𝑦TR
𝑛+1 − 𝑦(𝑡𝑛+1) ≈ 1

6
(𝑦TR

𝑛+1 − 𝑦AB
𝑛+1.

More generally, we work with a pair of multistep methods of the same order

predictor explicit
corrector implicity

There are two goals for having a predictor:

1. get initial guess when solving algebraic equation for the (implicit) corrector
method.

2. error control: provide an estimate of the error incurred by the corrector.

Let 𝑡𝑜𝑙 > 0 be the error tolerance probided by user. Let ‖error‖ be the
estimate of the local error as computed in the previous.

1. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent
imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo,
lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus
nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent
in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis
fringilla tristique neque. Sed interdum libero ut metus. Pellentesque
placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis
sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet
aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum.
Nunc quis urna dictum turpis accumsan semper.

3.6.2 Embedded Runge-Kutta

The two-step Runge-Kutta method is

𝑘1 = 𝑓(𝑡𝑛, 𝑦𝑛)

𝑘2 = 𝑓(𝑡𝑛 + 1
2

ℎ, 𝑦𝑛 + 1
2

ℎ𝑘1)

𝑦1
𝑛+1 = 𝑦𝑛 + ℎ𝑘2
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which has order 2. We can further define

𝑘3 = 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 − ℎ + 2ℎ𝑘1)

𝑦2
𝑛+1 = 𝑦𝑛 + 1

6
ℎ(𝑘1 + ℎ𝑘2 + 𝑘3)

which has order 3. Then we can use the second method as the “true” value of
the function to estimate the error the first method, i.e.

𝑦1
𝑛+1 − 𝑦(𝑡𝑛+1) ≈ 𝑦1

𝑛+1 − 𝑦2
𝑛+2.

Zadunaisky device: the idea is to define another ODE

𝑧′ = 𝑔(𝑡, 𝑧) (∗)

“close” to our ODE
𝑦′ = 𝑓(𝑡, 𝑦) (∗∗)

and such that we know the exact solution to (∗). Our estimate of the error will
be

𝑦𝑛+1 − 𝑦(𝑡𝑛+1) ≈ 𝑧𝑛+1 − 𝑧(𝑡𝑛+1)

where the first term on RHS is what we get by running the numerical method
for (∗) and the second term is its analytic solution, which is known.

Let 𝑦𝑛, 𝑦𝑛−1, … , 𝑦𝑛−𝑝 be past solution values define by running the numerical
method for (∗∗). Let 𝑑 be a degree 𝑝 polynomial that interpolates these the
values 𝑑(𝑡𝑛−𝑘) = 𝑦𝑛−𝑘 for 0 ≤ 𝑘 ≤ 𝑝. Our approximate ODE is

𝑧′ = 𝑓(𝑡, 𝑧) + (𝑑′ − 𝑓(𝑡, 𝑑))

where the second term on RHS is small since 𝑑 ≈ 𝑦 and 𝑦′ = 𝑓(𝑡, 𝑦). The solution
of this ODE is just 𝑧 = 𝑑.

That’s all we are going to talk about error control.

3.7 Solving nonlinear algebraic equations using Newton-
Raphson

There is one problem we still haven’t discussed: solving nonlinear algebraic
equations.

An implicit 𝑠-step method has the form

𝑦𝑛+𝑠 = ℎ𝜎𝑠𝑓(𝑡𝑛+𝑠, 𝑦𝑛+𝑠) + 𝑣

where 𝑣 only depends on previous values 𝑦𝑛, … , 𝑦𝑛+𝑠−1. One way is to use
functional iteration or fixed point iteration:

1. given initial guess 𝑦0
𝑛+𝑠 for 𝑦𝑛+𝑠 (for example from predictor method)

2. iteration
𝑦𝑗+1

𝑛+𝑠 = ℎ𝜎𝑠𝑓(𝑡𝑛+𝑠, 𝑦𝑗
𝑛+𝑠) + 𝑣.

3. (Hope it converges to the actual value.)
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4 Numerical Linear Algebra

4.1 LU factorisation

Definition (LU factorisation). Let 𝐴 be a real 𝑛 × 𝑛 matrix. An LU
factorisation of 𝐴 is a factorisation 𝐴 = 𝐿𝑈 where 𝐿 is unit lower triangluar,
i.e. 𝐿𝑖𝑗 = 0 for 𝑗 > 𝑖, 𝐿𝑖𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑈 is upper triangular, i.e.
𝑈𝑖𝑗 = 0 if 𝑗 < 𝑖.

Application.

1. Determinant: given 𝐴 = 𝐿𝑈, the determinant can be computed by

det 𝐴 = (det 𝐿)(det 𝑈) =
𝑛

∏
𝑖=1

𝐿𝑖𝑖

𝑛
∏
𝑖=1

𝑈𝑖𝑖 =
𝑛

∏
𝑖=1

𝑈𝑖𝑖

which is much faster than using starting ab initio from the definition

det 𝐴 = ∑
𝜎∈𝑆𝑛

sgn(𝜎)
𝑛

∏
𝑖=1

𝐴𝑖,𝜎(𝑖)

which has 𝑛! terms in the sum and can be prohibitively expensive compu-
tationally.

2. Testing non-singularity: 𝐴 is singular if and only if det 𝐴 = 0, if and only
if there exists 𝑖 ∈ {1, … , 𝑛} such that 𝑈𝑖𝑖 = 0.

3. Solving linear equations: suppose 𝐴𝑥 = 𝑏 with 𝑥 unknown. Then it suffices
to solve

𝑈𝑥 = 𝑦
𝐿𝑦 = 𝑏

which are triangular systems and can be solved using (forward/backward)
substitution (the cost of which is 𝑂(𝑛2)).

Let ℓ1, … , ℓ𝑛 be columns of 𝐿 and 𝑢𝑇
1 , … , 𝑢𝑇

𝑛 be rows of 𝑈 so

𝐴 = 𝐿𝑈 = (ℓ1 ⋯ ℓ𝑛) ⎛⎜
⎝

𝑢𝑇
1
⋮

𝑢𝑇
𝑛

⎞⎟
⎠

=
𝑛

∑
𝑖=1

ℓ𝑖𝑢𝑇
𝑖

Note that ℓ𝑘 has 1 at 𝑘th component and 0 at 𝑖th component for 𝑖 < 𝑘. Similarly
𝑢𝑘 has 0 at 𝑖th component for 𝑖 < 𝑘. Thus the first 𝑘 − 1 rows and columns of
ℓ𝑘𝑢𝑇

𝑘 are 0. Thus the only contribution to the first row and column of 𝐴 comes
from ℓ1𝑢𝑇

1 , implying that

𝑢𝑇
1 = 1st row of 𝐴

ℓ1 = 1
𝐴11

⋅ 1st column of 𝐴

31



4 Numerical Linear Algebra

Subsequently, let 𝐴1 = 𝐴 − ℓ1𝑢𝑇
1 . The only contribution to the second row and

column of 𝐴1 comes from ℓ2𝑢𝑇
2 so

𝑢𝑇
2 = 2nd row of 𝐴1

ℓ2 = 1
(𝐴1)22

⋅ 2nd column of 𝐴2

The general algorithm is

𝐴0 = 𝐴;
for 𝑘 = 1 to 𝑛 do

𝑢𝑇
𝑘 = 𝑘th row of 𝐴𝑘−1;

ℓ𝑘 = 1
(𝐴𝑘−1)𝑘𝑘

⋅ 𝑘th column of 𝐴𝑘−1;
𝐴𝑘 = 𝐴𝑘−1 − ℓ𝑘𝑢𝑇

𝑘 ;
end

Algorithm 1: LU factorisation

Complexity analysis The dominant cost is the last line in the for loop, where
the number of multiplications needed to form ℓ𝑘𝑢𝑇

𝑘 is (𝑛 − 𝑘 + 1)2 so the total
cost is 𝑛

∑
𝑘=1

(𝑛 − 𝑘 + 1)2 =
𝑛

∑
𝑗=1

𝑗2 = 𝑂(𝑛3).

A quick remark for implementation: we don’t have to store 𝐴𝑘’s so it is
possible to have even smaller spatial complexity.

The algorithm can be seen as a variant of Guassian elimination: the matrix
𝐴𝑘 constructed in the algorithm is of the form

(0 0
0 ∗)

and the lower right block is exactly the same as the one obtained after 𝑘 steps
of Gaussian elimination.

4.2 Pivoting
In the factorisation algorithm above, what happens if (𝐴𝑘−1)𝑘𝑘 = 0? Indeed,
not all matrices are LU factorisable. We have to pivot.

If we unfold the algorithm, we get

𝐴1 = 𝑃1𝐴 − ℓ1𝑢𝑇
1

𝐴2 = 𝑃2𝐴1 − ℓ2𝑢𝑇
2 = 𝑃2𝑃1𝐴 − 𝑃2ℓ1𝑢𝑇

1 − ℓ2𝑢𝑇
2

⋮
𝐴𝑛 = 𝑃𝑛−1 ⋯ 𝑃1𝐴 − 𝑃𝑛−1 ⋯ 𝑃2ℓ1𝑢𝑇

1 − ⋯ − ℓ𝑛𝑢𝑇
𝑛

by noting that 𝑃𝑛 = 𝐼. Since 𝐴𝑛 = 0, we get

𝑃𝐴 = 𝐿̃𝑈
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𝐴0 = 𝐴;
for 𝑘 = 1 to 𝑛 do

let 𝑝 ≥ 𝑘 be such that (𝐴𝑘−1)𝑝𝑘 ≠ 0;
let 𝑃𝑘 be the permutation matrix that swaps positions 𝑘 and 𝑝;
𝑙𝑘 = 1

(𝑃𝑘𝐴𝑘−1)𝑘𝑘
⋅ 𝑘th column of 𝑃𝑘𝐴𝑘−1;

𝑢𝑇
𝑘 = 𝑘th row of 𝑃𝑘𝐴𝑘−1;

𝐴𝑘 = 𝑃𝑘𝐴𝑘−1 − 𝑙𝑘𝑢𝑇
𝑘 ;

end
Algorithm 2: LU factorisation with pivoting

where

𝑃 = 𝑃𝑛−1 ⋯ 𝑃1

𝐿̃ = ( ̃ℓ1 ⋯ ̃ℓ𝑛)

and
̃ℓ𝑘 = 𝑃𝑛−1 ⋯ 𝑃𝑘+1ℓ𝑘.

Note that ̃ℓ𝑘 has 1 at 𝑘th component and 0 for 1, … , 𝑘 −1 since the permutations
only act on the components 𝑘 +1, … , 𝑛. Thus 𝐿 is a unit lower triangular matrix.

Note. The algorithm can still fail if (𝐴𝑘−1)𝑝𝑘 = 0 for all 𝑝 ≥ 𝑘. But we can
make a choice so that ℓ𝑘 have 1 in 𝑘th component and 0 elsewhere, and 𝑢𝑇

𝑘 to be
𝑘th row of 𝐴𝑘−1 so 𝐴𝑘−1 − ℓ𝑘𝑢𝑇

𝑘 has its 𝑘th row and column 0 (the factorisation
in this case is not unique and we made a choice in ℓ𝑘).

Pivoting is not only needed to prevent the algorithm from failing but also
to prevent round-off errors from accummulating. Thus it is always used for
numerical stability of the algorithm. A common choice of pivot is to take 𝑝 such
that |(𝐴𝑘−1)𝑝𝑘| is maximum for all 𝑝 ≥ 𝑘. With such a choice of pivot, all entries
of 𝐿 have abolute value ≤ 1.

4.3 Symmetric matrices
A symmetric matrix 𝐴 is such that 𝐴𝑖𝑗 = 𝐴𝑗𝑖 for all 𝑖, 𝑗. We aim to factorise it
in a way to exhibit this symmetry.

Definition (LDLT factorisation). An LDLT factorisation of a symmetric
matrix 𝐴 is

𝐴 = 𝐿𝐷𝐿𝑇

where 𝐿 is unit lower triangular and 𝐷 is diagonal.

Note that this is a special case of LU factorisation where 𝑈 = 𝐷𝐿𝑇.
We can construct an LDLT factorisation using an algorithm very similar to

the LU factorisation (without pivoting), with the final result being

𝐴 = 𝐷11ℓ1ℓ𝑇
1 + ⋯ + 𝐷𝑛𝑛ℓ𝑛ℓ𝑇

𝑛 = 𝐿𝐷𝐿𝑇

where
𝐿 = ℓ1ℓ𝑇

1 + ⋯ + ℓ𝑛ℓ𝑇
𝑛.
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𝐴0 = 𝐴;
for 𝑘 = 1 to 𝑛 do

ℓ𝑘 = 1
(𝐴𝑘−1)𝑘𝑘

⋅ 𝑘th column of 𝐴𝑘−1;
𝐷𝑘𝑘 = (𝐴𝑘−1)𝑘𝑘;
𝐴𝑘 = 𝐴𝑘−1 − 𝐷𝑘𝑘ℓ𝑘ℓ𝑇

𝑘 ;
end

Algorithm 3: LDLT factoriation

We will run into similar problems if all elements in a row below certain element
is zero. We can still use pivoting, but note that to preserve the symmetry we
must act it on both the rows and columns. Instead, in this section we will discuss
cases where our naïve algorithm always works.

Recall that a symmetric positive definite matrix 𝐴 is such that

𝑥𝑇𝐴𝑥 > 0

for all 𝑥 ∈ R𝑛 \ {0}.

Theorem 4.1. A symmetric matrix 𝐴 is positive definite if and only if it
has an LDLT factorisation where 𝐷𝑘𝑘 > 0 for all 1 ≤ 𝑘 ≤ 𝑛.

Proof. This is exactly the same as the proof in IB Linear Algebra, but numerical
analysis flavoured.

• ⟸ : Assume 𝐴 = 𝐿𝐷𝐿𝑇 of the form given. For any 𝑥 ∈ R𝑛 \ {0},

𝑥𝑇𝐴𝑥 = 𝑥𝑇𝐿𝐷𝐿𝑇𝑥 = 𝑦𝑇𝐷𝑦 =
𝑛

∑
𝑘=1

𝐷𝑘𝑘𝑢2
𝑘 > 0

where 𝑦 = 𝐿𝑇𝑥 ≠ 0 since 𝑥 ≠ 0 and 𝐿 is non-singular.

• ⟹ : We will show that at each step of the algorithm, (𝐴𝑘−1)𝑘𝑘 > 0.
Proceed by induction. If 𝑘 = 1,

(𝐴0)11 = 𝐴11 = 𝑒𝑇
1 𝐴𝑒1 > 0.

By definition

𝐴𝑘−1 = 𝐴 − 𝐷11ℓ1ℓ𝑇
1 − ⋯ − 𝐷𝑘−1ℓ𝑘−1ℓ𝑇

𝑘−1.

Define 𝑥 ∈ R𝑛 as the solution of the linear system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℓ𝑇
1

⋯
ℓ𝑇

𝑘−1
0 ⋯ 0 1

1
⋱

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
⋮
0
1
0
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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which has a unique solution as the matrix is non-singular. Then by
construction

(𝐴𝑘−1)𝑘𝑘 = 𝑥𝑇𝐴𝑘−1𝑥

= 𝑥𝑇(𝐴 −
𝑘−1
∑
𝑗=1

𝐷𝑗𝑗ℓ𝑗ℓ𝑇
𝑗 )𝑥

= 𝑥𝑡𝐴𝑥 −
𝑘−1
∑
𝑗=1

𝐷𝑗𝑗(ℓ𝑇
𝑗 𝑥)2

⏟⏟⏟⏟⏟⏟⏟
=0

= 𝑥𝑇𝐴𝑥
> 0

For a positive definite matrix 𝐴 = 𝐿𝐷𝐿𝑇 with 𝐷𝑘𝑘 > 0, let

𝐷1/2 = diag(𝐷1/2
11 , … , 𝐷1/2

𝑛𝑛 ).

Then
𝐴 = 𝐿𝐷1/2𝐷1/2𝐿𝑇 = 𝐿̃𝐿̃𝑇

where 𝐿̃ = 𝐿𝐷1/2 is lower triangular. This the Cholesky factorisation.

4.4 Sparse matrices
Informally, a sparse matrix is one with “many” zeros.

Example. A matrix 𝐴 is banded if 𝐴𝑖𝑗 = 0 whenever |𝑖 − 𝑗| > 𝑟 for some fixed
𝑟. For examlple, if 𝑟 = 1 then 𝐴 is diagonal. If 𝑟 = 2 then 𝐴 is tridiagonal.

We want the LU factorisation of a sparse matrix to inherit this property.

Theorem 4.2. Let 𝐴 = 𝐿𝑈 be an LU factorisation of 𝐴 (without pivoting).
Then

1. all leading zeros in the rows of 𝐴 to the left of the diagonal are inherited
by 𝐿,

2. all leading zeros in the columns of 𝐴 above the diagonal are inherited
by 𝑈.

Proof. We assume that the LU factorisation algorithm terminates without failing,
which implies that (𝐴𝑘−1)𝑘𝑘 = 𝑈𝑘𝑘 ≠ 0.

Assume 𝐴𝑖,1 = 𝐴𝑖,2 = ⋯ = 𝐴𝑖,𝑗 = 0 where 𝑗 < 𝑖. We want to show

𝐿𝑖,1 = 𝐿𝑖,2 = ⋯ = 𝐿𝑖,𝑗 = 0.

But
0 = 𝐴𝑖,1 = 𝐿𝑖,1 𝑈11⏟

≠0

+ 𝐿1,2𝑈2,1 + …⏟⏟⏟⏟⏟
=0
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so 𝐿𝑖,1 = 0. Similarly

0 = 𝐴𝑖,2 = 𝐿𝑖,1⏟
=0

𝑈1,2 + 𝐿1,2 𝑈2,2⏟
≠0

+ 𝐿1,3𝑈3,2 + …⏟⏟⏟⏟⏟
=0

so 𝐿𝑖,2 = 0 and so on. The statement about columns are exactly the same.

Application. If 𝐴 is banded with bandwidth 𝑟, then an LU factorisation of 𝐴
inherits this banded structure.

For banded matrices with bandwidth 𝑟, an LU facorisation can be computed
in 𝑂(𝑟2𝑛) time, and a linear system can be solved (given an LU factorisation) in
𝑂(𝑟𝑛) time. To see this,

𝐴0 = 𝐴;
for 𝑘 = 1 to 𝑛 do

ℓ𝑘 = 1
(𝐴𝑘−1)𝑘𝑘

⋅ 𝑘th column of 𝐴𝑘−1;
𝑈𝑇

𝑘 = 𝑘th row of 𝐴𝑘−1;
𝐴𝑘 = 𝐴𝑘−1 − ℓ𝑘𝑢𝑇

𝑘 = 𝐴𝑘−1 − ∑𝑘+𝑟−1
𝑖=𝑘 ℓ𝑖𝑘𝑢𝑘𝑖;

end
Algorithm 4: LU factorisation for 𝑟-banded matrix

so we only need 𝑟2 multiplications to form ℓ𝑘𝑢𝑇
𝑘 .

Recall that to solve a linear system 𝐴𝑥 = 𝑏 given LU factorisation 𝐴 = 𝐿𝑈,
we instead solve

𝑈𝑥 = 𝑦
𝐿𝑦 = 𝑏

using substitutions, which in general takes 𝑂(𝑛2) opeartions. If 𝐴 is 𝑟-banded,
in each step at most 𝑟 opeartions is needed so the complexity is 𝑂(𝑟𝑛).

For a general sparse matrice 𝐴, however, an LU factorisation can have
significantly more nonzero elements than 𝐴. Ideally we want an LU factorisation
that minimises fill-ins, which is a zero entry of 𝐴 that is nonzero in 𝐿 or 𝑈. One
way to minimise fill-ins is via pivoting.

4.5 QR factorisation
Recall from IB Linear Algebra: we endow R𝑛 with the Euclidean inner product

⟨𝑥, 𝑦⟩ =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 = 𝑥𝑇𝑦.

Two vectors are called orthogonal if 𝑥𝑇𝑦 = 0. An orthonormal system (𝑞1, … , 𝑞𝑚)
in R𝑛 is a system such that

𝑞𝑇
𝑖 𝑞𝑗 = {1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗

A matrix 𝑄 ∈ ℳ𝑛,𝑛(R) is orthogonal if its columns form an orthonormal basis
of R𝑛. Equivalently, a matrix 𝑄 is orthogonal if any one of the following holds:
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• 𝑄𝑇𝑄 = 𝐼,

• 𝑄−1 = 𝑄𝑇,

• 𝑄𝑄𝑇 = 𝐼.
Remark. If 𝑄 ∈ ℳ𝑛,𝑛(R) is orthogonal then det 𝑄 = ±1.

Definition (QR factorisation). Let 𝐴 ∈ ℳ𝑚,𝑛(R). A QR factorisation of
𝐴 is a factorisation 𝐴 = 𝑄𝑅 where

• 𝑄 ∈ ℳ𝑚,𝑚(R) is orthogonal,

• 𝑅 ∈ ℳ𝑚,𝑛(R) is upper triangular.

In the case where 𝑚 ≥ 𝑛, a reduced QR factorisation is 𝐴 = 𝑄𝑅 where

• 𝑄 ∈ ℳ𝑚,𝑛(R) has orthogonal columns,

• 𝑅 ∈ ℳ𝑛,𝑛(R) is upper triangular.

Application fo QR factorisation to linear system solving Suppose 𝐴 is
𝑛 × 𝑛. 𝐴𝑥 = 𝑏 is equivalent to

𝑅𝑥 = 𝑦
𝑄𝑦 = 𝑏

but 𝑄 is orthogonal so 𝑄−1 = 𝑄𝑇 so

𝑅𝑥 = 𝑦
𝑦 = 𝑄𝑇𝑏

which takes 𝑂(𝑛2) operations.

Gram-Schmidt algorithm Assume 𝑚 ≥ 𝑛, and we want to construct a
reduced QR factorisation. Let 𝑎1, … , 𝑎𝑛 ∈ R𝑛 be the columns of 𝐴. We want to
find 𝑞1, … , 𝑞𝑛 ∈ R𝑚 such that

1. 𝑞𝑘 is a linear combination of 𝑎1, … , 𝑎𝑘,

2. (𝑞1, … , 𝑞𝑛) is an orthonormal system.

1. 𝑞1 = 𝑎1
‖𝑎1‖ , 𝑅11 = ‖𝑎1‖.

2. 𝑑2 = 𝑎2 − (𝑎𝑇
2 𝑞1)𝑞1, 𝑞2 = 𝑑2

‖𝑑2‖ . 𝑅12 = 𝑎𝑇
2 𝑞1, 𝑅22 = ‖𝑑2‖.

Cost of algorithm Assume the columns of 𝐴 to be linearly independent, at
each iteration 𝑗 we have to compute ∼ 𝑗 inner products between vectors in R𝑚,
so 𝑂(𝑚𝑗) operations at each iteration. Thus the total cost is 𝑂(𝑚(1 + ⋯ + 𝑛)) =
𝑂(𝑚𝑛2).

However, note that this version of Gram-Schmidt is not numerically stable.
Gram-Schmidt is “triangular orthogonalisation” process, i.e. use triangular

operations to put a matrix into orthogonal form. The next two algorithms are
instances of “orthogonal triangularisation”, i.e. use orthognal transformations to
turn a matrix into a triangular one.
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𝑞1 = 𝑎1
‖𝑎1‖ ;

𝑅11 = ‖𝑎1‖;
for 𝑗 = 2 to 𝑛 do

𝑑𝑗 = 𝑎𝑗 − ∑𝑗−1
𝑖=1(𝑎𝑇

𝑗 𝑞𝑖)𝑞𝑖;
𝑞𝑗 = 𝑑𝑗

‖𝑑𝑗‖ ;
for 𝑖 ≤ 𝑗 − 1 do

𝑅𝑖𝑗 = 𝑎𝑇
𝑗 𝑞𝑖;

end
𝑅𝑗𝑗 = ‖𝑑𝑗‖;

end
Algorithm 5: Gram-Schmidt

4.5.1 Givens algorithm

We seek orthogonal transformations Ω1, … , Ω𝑘 such that 𝑅 = Ω𝑘 ⋯ Ω1𝐴 is upper
triangular. Then 𝐴 = 𝑄𝑅 where 𝑄 = (Ω𝑘 ⋯ Ω1)𝑇 is orthogonal.

Givens rotations Recall that clockwise rotation through 𝜃 in R2 is given by

( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃)

Definition (Givens rotation matrix). A Givens rotation martrix Ω ∈ R𝑚×𝑚

is specified by 1 ≤ 𝑝 < 𝑞 ≤ 𝑚 and 𝜃 ∈ [−𝜋, 𝜋) and defined by

Ω𝑝,𝑝 = cos 𝜃
Ω𝑝,𝑞 = sin 𝜃
Ω𝑞,𝑝 = − sin 𝜃
Ω𝑞,𝑞 = cos 𝜃

Ω𝑖,𝑗 = {1 if 𝑖 = 𝑗
0 otherwise

Denote it as Ω[𝑝,𝑞].

Example. Let 𝑚 = 4.

Ω[1,2] =
⎛⎜⎜⎜
⎝

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

1
1

⎞⎟⎟⎟
⎠

Ω[2,4] =
⎛⎜⎜⎜
⎝

1
cos 𝜃 sin 𝜃

1
− sin 𝜃 sin 𝜃

⎞⎟⎟⎟
⎠
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut,
ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed
interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.
Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia
lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Theorem 4.3. Let 𝐴 ∈ R𝑚×𝑛. Let 1 ≤ 𝑝 < 𝑞 ≤ 𝑚 and 𝑗 ∈ {1, … , 𝑛}.
There is a Givens rotation matrix Ω[𝑝,𝑞] such that

(Ω[𝑝,𝑞]𝐴)𝑞,𝑗 = 0.

Furthermore, the rows of Ω[𝑝,𝑞]𝐴, except for the 𝑝th and 𝑞th row, are identical
to those of 𝐴. The 𝑝th and 𝑞th rows of Ω[𝑝,𝑞]𝐴 are linear combinations of the
𝑝th and 𝑞th row of 𝐴.

Proof. (𝐴𝑝,𝑗, 𝐴𝑞,𝑗) ∈ R2 is a vector and we can find a clockwise rotation through
𝜃 sending to the direction along postiive 𝑥-axis. 𝜃 satisfies

cos 𝜃 =
𝐴𝑝,𝑗

√𝐴2
𝑝,𝑗 + 𝐴2

𝑞,𝑗

sin 𝜃 =
𝐴𝑞,𝑗

√𝐴2
𝑝,𝑗 + 𝐴2

𝑞,𝑗

Then
( cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃) (𝐴𝑝,𝑗
𝐴𝑞,𝑗

) = (∗
0)

The Givens algorithm is given by

for 𝑗 = 1 to 𝑛 do
for 𝑖 = 𝑗 + 1 to 𝑚 do

Find a Givens rotation such that (Ω[𝑗,𝑖]𝐴)𝑖,𝑗 = 0;
𝐴 ∶= Ω[𝑗,𝑖]𝐴;

end
end

Algorithm 6: Givens algorithm

At the end of the algorithm, 𝐴 is upper triangular. Note that this does not
explicitly compute 𝑄. To do so we

But in practice this is rarely necessary. For example in solving linear equations,
it suffices to act on the RHS by the Ω’s, which can be done so by adding a few
lines to the original code.
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𝑄 ∶= 𝐼;
for 𝑗 = 1 to 𝑛 do

for 𝑖 = 𝑗 + 1 to 𝑚 do
Find a Givens rotation such that (Ω[𝑗,𝑖]𝐴)𝑖,𝑗 = 0;
𝐴 ∶= Ω[𝑗,𝑖]𝐴;
𝑄 ∶= Ω[𝑗,𝑖]𝑄;

end
end
𝑄 ∶= 𝑄𝑇;

Algorithm 7: Givens algorithm, with 𝑄 stored

4.5.2 Householder algorithm

The reflection in R𝑛 sending a vector 𝑢 to −𝑢 is given by

𝐻 = 𝐼 − 2 𝑢𝑢𝑇

‖𝑢‖2 .

This is called the Householder reflection matrix. We can check that 𝐻𝑇𝐻 = 𝐼.
Given a matrix 𝐴 which we which to use triangularise using relfection matrix,

suppose 𝑣1 is the first column, then we want 𝐻𝑣1 to be a multiple of 𝑒1. In
general we are free to choose the sign. If we want it to be in +𝑒1 direction,
choose 𝑢1 = 𝑎1 − ‖𝑎1‖𝑒1. Otherwise, choose 𝑢1 = 𝑎1 − (−‖𝑎1‖𝑒1).

Use notation

𝐴𝑘∶𝑚,𝑗 = ⎛⎜
⎝

𝐴𝑘,𝑗
⋮

𝐴𝑚,𝑗

⎞⎟
⎠

∈ R𝑚−𝑘+1

Suppose 𝐴 ∈ R𝑚×𝑛, 𝑚 ≥ 𝑛,

for 𝑘 = 1 to 𝑛 do
̃𝑎𝑘 = 𝐴𝑘∶𝑚,𝑘 = (𝐴𝑘,𝑘, … , 𝐴𝑚,𝑘)𝑇;

𝑢̃𝑘 = ̃𝑎𝑘 + sgn(𝐴𝑘,𝑘)‖ ̃𝑎𝑘‖ ̃𝑒1;
for 𝑗 = 𝑘 to 𝑛 do

𝐴𝑘∶𝑚,𝑗 = 𝐴𝑘∶𝑚,𝑗 − 2 𝑢̃𝑇𝐴𝑘∶𝑚,𝑗
‖𝑢̃‖2 𝑢̃;

end
end

Algorithm 8: Householder algorithm

This algorithm transforms 𝐴 into upper triangular form by a series of or-
thogonal transformations. Like for the Givens algorithm, the matrix 𝑄 is not
explicitly. If necessary, we can initialise an identity matrix, left multiply by the
matrix operation corresponding to the operation in each inner loop, and finally
take the transpose to get 𝑄.

Cost of Householder algorithm For each 𝑘 = 1 to 𝑛, and 𝑗 from 𝑘 + 1 to
𝑛, we have to compute the inner product 𝑢̃𝑇𝐴𝑘∶𝑚,𝑗, which has 𝑚 − 𝑘 + 1 = 𝑂(𝑛)
multiplications. Thus the total cose is 𝑂(𝑚𝑛2), same as Givens.
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4.6 Least-square problem
Suppose 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚 where 𝑚 ≥ 𝑛. We want to find 𝑥 such that
𝐴𝑥 ≈ 𝑏. A popular choice is the least-squares approximation, aiming to minimise
‖𝐴𝑥 − 𝑏‖2.

Theorem 4.4. 𝑥 is a solution to the least-squares problem if and only if

𝐴𝑇(𝐴𝑥 − 𝑏) = 0.

The equation is called normal equation.

Proof. Let

𝑓(𝑥) = ‖𝐴𝑥 − 𝑏‖2 = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏) = 𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏.

Then
𝛁𝑓(𝑥) = 2𝐴𝑇𝐴𝑥 − 2𝐴𝑇𝑏.

Thus at optimality we have 𝛁𝑓(𝑥) = 0, so 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏.
Since 𝑓 is (by assumption) convex, it is also a sufficient condition for optimality.

Note that 𝐴𝑇(𝐴𝑥 − 𝑏) = 0 if and only if 𝐴𝑥 − 𝑏 is orthogonal to all the
columns of 𝐴. Suppose

𝐴 = (𝑎1 | ⋯ | 𝑎𝑛),

then this is equivalent to 𝑎𝑇
𝑖 (𝐴𝑥 − 𝑏) = 0 for all 𝑖. Geometrically, 𝐴𝑥 is the

projection of 𝑏 onto the subspace spanned by 𝑎1, … , 𝑎𝑛.
Assume 𝐴 = 𝑄𝑅 is a reduce QR factorisation. By definition 𝑄 has orthonor-

mal columns and these columns span the same subspace as the columns of 𝐴.
Thus

𝐴𝑇(𝐴𝑥 − 𝑏) = 0
⟺ 𝑄𝑇(𝐴𝑥 − 𝑏) = 0
⟺ 𝑄𝑇𝐴𝑥 = 𝑄𝑇𝑏
⟺ 𝑅𝑥 = 𝑄𝑇𝑏

Check these conditions carefully using column space. The end result is a
triangular system that can be solved using back substitution in 𝑂(𝑛2) operations.
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