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0 Introduction

0 Introduction
Number theory is the study of Z and Q. It differs from other areas of mathematics
of being an experimental science. We list three conjectures:

1. congruent number problem: suppose 𝑁 ≥ 1 is an integer. Does there exist
a right angle triangle whose sides are rational whose area is 𝑁? This is
equivalent to find 𝑎, 𝑏, 𝑐 ∈ Q positive such that 𝑎2 + 𝑏2 = 𝑐2, 𝑎𝑏 = 2𝑁.
We expect if 𝑁 is of the form 8𝑛 + 5, 8𝑛 + 6 or 8𝑛 + 7 then there exist such
𝑎, 𝑏, 𝑐. It turns out to be equivalen to an unsolved problem about elliptic
curves, i.e. Birch-Swinnerton-Dyer conjecutre.

2. twin prime conjecture: do there exist infinitely many primes 𝑝 such that
𝑝 + 2 is prime? By a result of Chen in the 1950s, there exist infinitely
many 𝑝 such that 𝑝 + 2 is either prime or is the product of two primes.
In 2014 it is proven that there exist infinitely many primes 𝑝 such that
{𝑝 + 2, 𝑝 + 4, … , 𝑝 + 246} contains at least one prime.

3. let 𝜋(𝑥) = #{primes 𝑝 ≤ 𝑥}, the prime counting function. Define li(𝑥) =
∫𝑥
2

𝑑𝑡
log 𝑡 which grow asymptotically as 𝑥

log 𝑥 . Then prime number theory
asserts that 𝜋(𝑥)

li(𝑥) → 1 as 𝑥 → ∞. The question: is it true that |𝜋(𝑥) −
li(𝑥)| ≤

√
𝑥 log 𝑥? It turns out it would follow from Riemann Hypothesis.

Number theory is related to algebra, geometry and many other aspects of
mathematics. However in this course, we will focus on elementary number theory.
But that doesn’t mean we won’t be able to prove results with great importance
or implication. In fact, by the end of the course, we will be able to prove
Tchebychev’s theorem: there exist 𝑐1 > 𝑐2 > 0 such that

𝑐2
2

log 𝑥
< 𝜋(𝑥) < 𝑐1

𝑥
log 𝑥

for all 𝑥 > 2, which is an approximation to the prime number theorem.
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1 Euclid’s algorithm and factoring

1 Euclid’s algorithm and factoring

Proposition 1.1 (division algorithm). Given 𝑎, 𝑏 ∈ Z, 𝑏 > 0, then there
exist 𝑞, 𝑟 ∈ Z with 𝑎 = 𝑏𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑏.

Proof. Let 𝑆 = {𝑎 − 𝑛𝑏 ∶ 𝑛 ∈ Z}. Then 𝑆 contains some nonnegative integers.
Let 𝑟 be the least element of 𝑆, which is nonnegative. Then claim 𝑟 < 𝑏: if not,
𝑎 − (𝑛 + 1)𝑏 = 𝑟 − 𝑏 ∈ 𝑆 and 0 ≤ 𝑟 − 𝑏. So 𝑎 = 𝑛𝑏 + 𝑟, 0 ≤ 𝑟 < 𝑏.

Notation. If 𝑟 = 0, i.e. 𝑎 = 𝑏𝑞 for some 𝑞 ∈ Z, write 𝑏 ∣ 𝑎, read as “𝑏 is a divisor
of 𝑎” or “𝑏 divides 𝑎”. Otherwise write 𝑏 ∤ 𝑎.

Let 𝑎1, … , 𝑎𝑛 ∈ Z, not all zero. Let

𝐼 = {𝜆1𝑎1 + ⋯ + 𝜆𝑛𝑎𝑛 ∶ 𝜆𝑖 ∈ Z}.

Note that 𝐼 is an ideal of Z.

Lemma 1.2. There exists a unique 𝑑 ∈ Z, 𝑑 > 0 such that 𝐼 = {𝑚𝑑 ∶ 𝑚 ∈
Z} = 𝑑Z.

Proof. Uniqueness is obvious. For existence, let 𝑑 be the least positive element
of 𝐼. Then 𝑑Z ⊆ 𝐼. If 𝑎 ∈ 𝐼, write 𝑎 = 𝑑𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑑. Then 𝑟 = 𝑎 − 𝑑𝑞 ∈ 𝐼 so
by minimality of 𝑑, 𝑟 = 0, i.e. 𝑎 = 𝑑𝑞 ∈ 𝑑Z.

Remark. 𝑎𝑖 ∈ 𝐼 so for all 𝑎𝑖, 𝑑 ∣ 𝑎𝑖. On the other hand, if 𝑒 ∣ 𝑎𝑖 for all 𝑖 then 𝑒
divides 𝑑 = 𝜆1𝑎1 + … 𝜆𝑛𝑎𝑛 for some 𝜆𝑖’s.

Notation (greatest commmon divisor). Write 𝑑 = (𝑎1, … , 𝑎𝑛) = gcd(𝑎1, … , 𝑎𝑛),
the greatest common divisor of {𝑎𝑖}, justified by the previous remark.

Corollary 1.3. Let 𝑎, 𝑏, 𝑐 ∈ Z, 𝑎, 𝑏 not both 0. Then there exist 𝑥, 𝑦 ∈ Z
such that 𝑎𝑥 + 𝑏𝑦 = 𝑐 if and only if (𝑎, 𝑏) ∣ 𝑐. Espeically, (𝑎, 𝑏) = 1 if and
only if there exist 𝑥, 𝑦 ∈ Z such that 𝑎𝑥 + 𝑏𝑦 = 1.

This “algorithm” is not very constructive since to find the GCD, we have
to write down infinitely many numbers. So how to compute gcd(𝑎, 𝑏)? Assume
𝑎 > 𝑏 > 0. Write

𝑎 = 𝑞1𝑏 + 𝑟1, 0 ≤ 𝑟1 < 𝑏.
If 𝑟1 = 0 then stop, and gcd(𝑎, 𝑏) = 𝑏. Otherwise write

𝑏 = 𝑞2𝑟1 + 𝑟2, 0 ≤ 𝑟2 < 𝑟1.

If 𝑟2 = 0 then stop. Iterate by

𝑟1 = 𝑞3𝑟2 + 𝑟3, 0 ≤ 𝑟3 < 𝑟2,
⋮

𝑟𝑘−1 = 𝑞𝑘𝑟𝑘−1 + 𝑟𝑘, 𝑟𝑘 ≠ 0
𝑟𝑘−1 = 𝑞𝑘+1𝑟𝑘 + 0

It has to terminate as 𝑟1 > 𝑟2 > ⋯ ≥ 0. Claim that (𝑎, 𝑏) = 𝑟𝑘: indeed
𝑟1 = 𝑎 − 𝑞1𝑏 so (𝑎, 𝑏) = (𝑏, 𝑟1) = (𝑟1, 𝑟2) = ⋯ = (𝑟𝑘−1, 𝑟𝑘) = 𝑟𝑘.

This is know as Euclid’s algorithm, which, besides being constructive, is very
efficient.
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1 Euclid’s algorithm and factoring

Remark. We know (𝑎, 𝑏) = 𝑑 = 𝑟𝑎 + 𝑠𝑏 for some 𝑟, 𝑠 ∈ Z. Euclid’s algorithm
also can find 𝑟 and 𝑠. (table of extended Euclid’s algorithm)

′[prime, composite] Recall 𝑛 > 1 is (a) prime if its only positive divisors are
1 and 𝑛. Otherwise say that 𝑛 is composite.

Lemma 1.4. Let 𝑝 be prime and 𝑎, 𝑏 ∈ Z with 𝑝 ∣ 𝑎𝑏. Then either 𝑝 ∣ 𝑎 or
𝑝 ∣ 𝑏.

Proof. Suppose 𝑝 ∤ 𝑎, Then (𝑝, 𝑎) ∣ 𝑝 so (𝑝, 𝑎) = 1. Then there exist 𝑥, 𝑦 ∈ Z
such that 𝑎𝑥 + 𝑝𝑦 = 1. Then 𝑏 = (𝑎𝑏)𝑥 + 𝑝(𝑏𝑦) is divisible by 𝑝.

Theorem 1.5 (Fundamental Theorem of Arithmetic). Every integer larger
than 1 can be written as a product of primes. The expression is unique up to
order.

Proof. Existence is easy by induction on 𝑛. For uniqueness, suppose

𝑛 = 𝑝1 … 𝑝𝑟 = 𝑞1 … 𝑞𝑠

where 𝑝𝑖’s and 𝑞𝑖’s prime. Then 𝑝1 ∣ 𝑞1 … 𝑞𝑠 so by the above lemma 𝑝1 = 𝑞𝑖 for
some 𝑖. Reorder and assume 𝑝1 = 𝑞1 so

𝑛
𝑝1

= 𝑝2 … 𝑝𝑟 = 𝑞2 … 𝑞𝑠.

Proceed by induction.

Remark. If

𝑎 =
𝑘

∏
𝑖=1

𝑝𝛼𝑖
𝑖 , 𝑏 =

𝑘
∏
𝑖=1

𝑝𝛽𝑖
𝑖

where 𝑝𝑖’s are distinct primes, then clearly

(𝑎, 𝑏) =
𝑘

∏
𝑖=1

𝑝𝛾𝑖
𝑖

where 𝛾(𝑖) = min(𝛼𝑖, 𝛽𝑖). However, this is not an efficient way to calculate GCDs
— Euclid’s algorithm is much better.

Definition. An algorithm with input an integer 𝑁 > 0 is polynomial-time if
it completes after ≤ 𝑐(log 𝑁)𝑏 “elementary operations” (for example, add or
multiply digits in some fixed base) for some constants 𝑏, 𝑐 > 0 (independent
of 𝑁).

Example. Addition and multiplication (in the usual way) and computing GCDs
using Euclid’s algorithm are obviously polynomial time. It is perhaps slighly
surprising that primality testing is also polynomial time.

On the other hand, factoring 𝑁, by naïve way to test divisibility by numbers
up to

√
𝑁, takes

√
𝑁 time. Later in the course, we will discuss better factoring

algorithms (but not polynomial-time), practial for 𝑁 up to 200 decimal digits.
Is there a polynomial-time algorithm for factoring? It is an unsolved problem
and is generally believed to be no.
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1 Euclid’s algorithm and factoring

Theorem 1.6 (Euclid). There are infinitely many primes.

Proof. IA Numbers and Sets.
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2 Congruences

2 Congruences
Diophantine equaitions, i.e. polynomial equations in Z whose solutions are also
in Z, such as 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛, are often difficult to solve. If 𝑓(𝑥, 𝑦, … ) = 0 then
for every 𝑛, 𝑓(𝑥, 𝑦, … ) = 0 (mod 𝑛) so it is useful to study the congruence first.

Fix integer 𝑛 ≥ 1 (the modulus, and usually 𝑛 > 1), recall that given 𝑎, 𝑏 ∈ Z,
𝑎 = 𝑏 (mod 𝑛) (“𝑎 is congruent to 𝑏 mod 𝑛”) if 𝑛 ∣ 𝑎 − 𝑏. This defines an
equivalence on Z. The equivalence classes are the sets 𝑎 + 𝑛Z (taking, say,
𝑎 = 0, … , 𝑛 − 1). Write Z/𝑛Z for the set of equivalence classes. Then addition
and multiplication are well-defined.

Lemma 2.1. Let 𝑎 ∈ Z. Then TFAE:

1. (𝑎, 𝑛) = 1,

2. there exists 𝑥 ∈ Z such that 𝑎𝑥 = 1 (mod 𝑛),

3. (the equivalence class of) 𝑎 is a generator of the group (Z/𝑛Z, +).

Proof.

• 1 ⟺ 2: (𝑎, 𝑛) = 1 if and only if there exists 𝑥, 𝑦 ∈ Z such that
𝑎𝑥 + 𝑛𝑦 = 1, if and only if 𝑎𝑥 = 1 (mod 𝑛).

• 2 ⟺ 3: 𝑎𝑥 = 1 (mod 𝑛) if and only if in the group (Z/𝑛Z, +), 1 is a
multiple of 𝑎, if and only if 𝑎 is a generator of the group.

Notation. For 𝑛 > 1, (Z/𝑛Z)∗ = set of elements of Z/𝑛Z with an inverse under
multiplication, i.e. units of Z/𝑛Z.

By the lemma above,

(Z/𝑛Z)∗ = {𝑎 + 𝑛Z ∶ (𝑎, 𝑛) = 1}

and define

Definition (Euler’s 𝜑-function).

𝜑(𝑛) = #(Z/𝑛Z)∗ = #{𝑎 ∈ Z ∶ 1 ≤ 𝑎 ≤ 𝑛 ∶ (𝑎, 𝑛) = 1}

where #𝑆 is the number of elements of 𝑆.
We put 𝜑(1) = 1.

Theorem 2.2 (Fermat-Euler). If (𝑎, 𝑛) = 1 then 𝑎𝜑(𝑛) = 1 (mod 𝑛). Espe-
cially when 𝑛 = 𝑝 a prime, for all 𝑎 ∈ Z, 𝑎𝑝 = 𝑎 (mod 𝑝).

Proof. 𝜑(𝑛) = #𝐺 where 𝐺 = ((Z/𝑛Z)∗, ×). By Lagrange’s theorem, the order
of 𝑎 in 𝐺 divides 𝜑(𝑛).
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