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0 Motivation

0 Motivation
Recall the following example from IB Groups, Rings and Modules:

Theorem 0.1. Let 𝑝 be an odd prime, then 𝑝 = 𝑎2 + 𝑏2 if and only if 𝑝 = 1
(mod 4).

Proof. If 𝑝 = 𝑎2 + 𝑏2 then 𝑝 = 0, 1 or 2 (mod 4) so this condition is necessary.
Suppose instead 𝑝 = 1 (mod 4), then (−1

𝑝 ) = 1 so there exists 𝑎 ∈ Z such that
𝑎2 = 1 (mod 𝑝), or 𝑝 ∣ 𝑎2 + 1. We can factor 𝑎2 + 1 = (𝑎 + 𝑖)(𝑎 − 𝑖) ∈ Z[𝑖]. We
know from IB Groups, Rings and Modules that Z[𝑖] is a UFD. As 𝑝 ∣ (𝑎+𝑖)(𝑎−𝑖),
if 𝑝 is irreducible in Z[𝑖] then 𝑝 ∣ 𝑎 + 𝑖 or 𝑝 ∣ 𝑎 − 𝑖. Thus 𝑝 ∈ Z[𝑖] is reducible so
𝑝 = 𝑧1𝑧2 with 𝑧1𝑧2 ∈ Z[𝑖]. If 𝑧1 = 𝐴+𝐵𝑖 where 𝐴, 𝐵 ∈ Z then 𝐴2 +𝐵2 = 𝑝.

Notation. If 𝑅 ⊆ 𝑆 are rings and 𝛼 ∈ 𝑆 then

𝑅[𝛼] = {∑ 𝑖 = 0𝑛𝑎𝑖𝛼𝑖 ∈ 𝑠 ∶ 𝑎𝑖 ∈ 𝑅}

which is the smallest subring of 𝑆 containing both 𝑅 and 𝛼.

Another example is given 𝑝 an odd prime, does the equation

𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝

have solutions such that 𝑥, 𝑦, 𝑧 ∈ Z, 𝑥𝑦𝑧 ≠ 0?

Theorem 0.2 (Kummer, 1850). If Z[𝑒2𝜋𝑖/𝑝] is a UFD then there are no
solutions.

The strategy is to factor

𝑥𝑝 + 𝑦𝑝 =
𝑝−1

∏
𝑗=0

(𝑥 + 𝑒2𝜋𝑖𝑗/𝑝𝑦) ∈ Z[𝑒2𝜋𝑖/𝑝].

We now know that Z[𝑒2𝜋𝑖/𝑝] is a UFD if and only if 𝑝 ≤ 19, so unfortunately
this does not lead us very far. Instead, we have the more powerful theorem

Theorem 0.3 (Kummer, 1850). If 𝑝 is a regular prime then there are no
solutions.

We will define regular prime later in this course. This theorem is more
powerful that the previous one. To give an idea, if 𝑝 < 100 then 𝑝 is regular if
and only if 𝑝 ≠ 37, 59, 67.

This course studies the ring of integers of a number field, which is a finite
extension of Q. In the end of the course we will come back to Kummer’s theorem.
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1 Ring of integers

1 Ring of integers
Recall that a field extension 𝐿/𝐾 is an inclusion 𝐾 ⊆ 𝐿 of fields. The degree of
𝐿/𝐾 is

[𝐿 ∶ 𝐾] = dim𝐾 𝐿.
We say 𝐿/𝐾 is finite if [𝐿 ∶ 𝐾] < ∞.

Definition (Number field). A number field is a finite extension 𝐿/Q.

Here are two ways to construct number fields:

1. Let 𝛼 ∈ C be an algebraic number. Then 𝐿 = Q(𝛼) is a number field.

2. Let 𝐾 be a number field 𝐾 and 𝑓(𝑥) ∈ 𝐾[𝑥] be irreducible. Then 𝐿 =
𝐾[𝑥]/(𝑓(𝑥)) is a number field. Recall Tower Law from IID Galois Theory:

[𝐿 ∶ Q] = [𝐿 ∶ 𝐾][𝐾 ∶ Q] < ∞.

Note that the first one comes with an embedding in C, but the second one
doesn’t (and in general there are more than one).

Definition (Algebraic integer).

1. Let 𝐿/𝐾 be a field extension. We say 𝛼 ∈ 𝐿 is algebraic over 𝐾 if
there exists a monic polynomial 𝑓(𝑥) ∈ 𝐾[𝑥] such that 𝑓(𝛼) = 0.

2. Let 𝐿/Q be a field extension. We say 𝛼 ∈ 𝐿 is an algebraic integer if
there exists a monic polynomial 𝑓(𝑥) ∈ Z[𝑥] such that 𝑓(𝛼) = 0.

Definition (Minimal polynomial). Let 𝐿/𝐾 be a field extension and let
𝛼 ∈ 𝐿 be an algebraic over 𝐾. We call the minimal polynomial of 𝛼 over 𝐾
the monic polynomial 𝑓𝛼(𝑥) ∈ 𝐾[𝑥] of the least degree such that 𝑓𝛼(𝛼) = 0.

Note that 𝑓𝛼(𝑥) is well-defined: firstly there exists some monic 𝑓(𝑥) ∈ 𝐾[𝑥]
such that 𝑓(𝛼) = 0 since 𝛼 is algebraic. If 𝑓𝛼(𝑥), 𝑓 ′

𝛼(𝑥) ∈ 𝐾[𝑥] both satisfy the
definition of minimal plynomial then we apply the polynomial division algorithm
to write

𝑓𝛼(𝑥) = 𝑞(𝑥)𝑓 ′
𝛼(𝑥) + 𝑟(𝑥)

where 𝑝(𝑥), 𝑟(𝑥) ∈ 𝐾[𝑥] and deg 𝑟 < deg 𝑓 ′
𝛼. Evaluate at 𝛼, we get

0 = 𝑓𝛼(𝛼) = 𝑝(𝛼)𝑓 ′
𝛼(𝛼) + 𝑟(𝛼) = 𝑟(𝛼)

so by minimality of deg 𝑓 ′
𝛼, 𝑟 = 0. Then deg 𝑓𝛼 = deg 𝑓 ′

𝛼 and they are both
monic so 𝑝 = 1. 𝑓𝛼 = 𝑓 ′

𝛼.

Lemma 1.1. Let 𝐿/Q be a field extension and let 𝛼 ∈ 𝐿 to be an algebraic
integer. Then

1. the minimal polynomial 𝑓𝛼(𝑥) of 𝛼 over Q lies in Z[𝑥];

2. if 𝑔(𝑥) ∈ Z[𝑥] satisfies 𝑔(𝛼) = 0 then there exists 𝑞(𝑥) ∈ Z[𝑥] such that
𝑔(𝑥) = 𝑓𝛼(𝑥)𝑞(𝑥);
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1 Ring of integers

3. the kernel of the ring homomorphism

Z[𝑥] → 𝐿
𝑓(𝑥) ↦ 𝑓(𝛼)

equals to (𝑓𝛼(𝑥)).

Proof.

1. Recall from IB Groups, Rings and Modules that given 𝑓(𝑥) = ∑𝑛
𝑖=0 𝑎𝑖𝑥𝑖 ∈

Z[𝑥], we define the content to be

𝑐(𝑓) = gcd(𝑎𝑛, … , 𝑎0).

Gauss’ Lemma says that if 𝑓(𝑥), 𝑔(𝑥) ∈ Z[𝑥] then 𝑐(𝑓𝑔) = 𝑐(𝑓)𝑐(𝑔).
Since 𝛼 ∈ 𝐿 is an algebraic integer, there exists a monic 𝑓(𝑥) ∈ Z[𝑥] such
that 𝑓(𝛼) = 0. Thus 𝑐(𝑓) = 1. Apply polynomial division in Q[𝑥] to get

𝑓(𝑥) = 𝑝(𝑥)𝑓𝛼(𝑥) + 𝑟(𝑥)

where 𝑝(𝑥), 𝑟(𝑥) ∈ Q[𝑥]. Same as before, we must have 𝑟(𝑥) = 0 so
𝑓(𝑥) = 𝑝(𝑥)𝑓𝛼(𝑥). Now choose integers 𝑛, 𝑚 ≥ 1 such that 𝑛𝑝(𝑥) ∈
Z[𝑥], 𝑐(𝑛𝑝) = 1 and 𝑚𝑓𝛼(𝑥) ∈ Z[𝑥], 𝑐(𝑚𝑓𝛼) = 1. Then

𝑛𝑚𝑓(𝑥) = 𝑛𝑝(𝑥) ⋅ 𝑚𝑓𝛼(𝑥).

Take contents,

𝑛𝑚 = 𝑐(𝑛𝑚𝑓(𝑥)) = 𝑐(𝑛𝑝 ⋅ 𝑚𝑓𝛼) = 𝑐(𝑛𝑝)𝑐(𝑚𝑓𝛼) = 1.

Thus 𝑛 = 𝑚 = 1 so 𝑓𝛼(𝑥) ∈ Z[𝑥].

2. This is similar to the previous one. Let 𝑔(𝑥) ∈ Z[𝑥] be such that 𝑔(𝛼) = 0.
wlog 𝑔(𝑥) ≠ 0 and 𝑐(𝑔) = 1. We deduce 𝑔(𝑥) = 𝑞(𝑥)𝑓𝛼(𝑥) where 𝑞(𝑥) ∈
Q[𝑥]. Choose 𝑘 ≥ 1 such that 𝑘𝑞(𝑥) ∈ Z[𝑥] and 𝑐(𝑘𝑞) = 1. Then

𝑘 = 𝑐(𝑘𝑔) = 𝑐(𝑘𝑞 ⋅ 𝑓𝛼) = 𝑐(𝑘𝑞)𝑐(𝑓𝛼) = 1

so 𝑞(𝑥) ∈ Z[𝑥].

3. Reformulation of (2).

Corollary 1.2. If 𝑎 ∈ Q, then 𝛼 is an algebraic integer if and only if 𝛼 ∈ Z.

Proof. By the above lemma, 𝛼 is an algebraic integer if and only if 𝑓𝛼(𝑥) ∈ Z[𝑥].
If 𝛼 ∈ Q then 𝑓𝛼(𝑥) = 𝑥 − 𝛼.

Notation. If 𝐿/Q is a field extension, we write

𝒪𝐿 = {𝛼 ∈ 𝐿 ∶ 𝛼 is an algebraic integer}.
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1 Ring of integers

Proposition 1.3. If 𝐿/Q is a field extension, 𝒪𝐿 is a ring.

Proof. 0, 1 ∈ 𝒪𝐿. If 𝛼 ∈ 𝒪𝐿 then

𝑓−𝛼(𝑥) = (−1)deg 𝑓𝛼𝑓𝛼(−𝑥)

so −𝛼 ∈ 𝒪𝐿. Easy. Now given 𝛼, 𝛽 ∈ 𝒪𝐿, we need to show 𝛼 + 𝛽, 𝛼𝛽 ∈ 𝒪𝐿.
First notice the following characterisation of algebraic integers: if 𝛼 ∈ 𝒪𝐿 then
Z[𝛼] ⊆ 𝐿 is a finitely generated Z-module: by definition, Z[𝛼] is generated by
1, 𝛼, 𝛼2, …. Let

𝑓𝛼(𝑥) = 𝑥𝑑 + 𝑎1𝑥𝑑−1 + ⋯ + 𝑎𝑑 ∈ Z[𝑥],
then

𝛼𝑑 = −(𝑎1𝛼𝑑−1 + ⋯ + 𝑎𝑑) ∈
𝑑−1
∑
𝑖=0

Z𝛼𝑖.

Thus by induction, 𝛼𝑛 ∈ ∑𝑑−1
𝑖=0 Z𝛼𝑖 for all 𝑛 ≥ 𝑑.

Now take 𝛼, 𝛽 ∈ 𝒪𝐿 and let 𝑑 = deg 𝑓𝛼, 𝑒 = deg 𝑓𝛽. By definition, Z[𝛼, 𝛽] =
Z[𝛼][𝛽] is generated as an Z-module by {𝛼𝑖𝛽𝑗}𝑖,𝑗∈N0

. The same argument shows
that in fact the ring is generated as a Z-module by {𝛼𝑖𝛽𝑗}0≤𝑖<𝑑,0≤𝑗<𝑒. Now use
classification of finitely generated Z-modules, there is an isomorphism

Z[𝛼, 𝛽] ≅ Z𝑟 ⊕ 𝑇

for some 𝑟 ≥ 1 and finite abelian group 𝑇. In fact 𝑇 = 0: if 𝛾 ∈ 𝑇 then |𝑇 |𝛾 = 0
by Lagrange. But Z[𝛼, 𝛽] ⊆ 𝐿, a Q-vector space, so this forces 𝛾 = 0. We can
therefore fix an isomorphism

Z[𝛼, 𝛽] ≅ Z𝑟

for some 𝑟 ≥ 1. Now there is a Z-module endomorphism

𝑚𝛼𝛽 ∶ Z[𝛼, 𝛽] → Z[𝛼, 𝛽]
𝛾 ↦ 𝛼𝛽𝛾

𝑚𝛼𝛽 can be represented by an 𝑟 × 𝑟 matrix 𝐴𝛼𝛽 ∈ ℳ𝑟×𝑟(Z). Let

𝐹𝛼𝛽(𝑥) = det(𝑥 ⋅ 𝐼𝑟 − 𝐴𝛼𝛽) ∈ Z[𝑥]

be the characteristic polynomial. Then by Cayley-Hamilton Theorem,

𝐹𝛼𝛽(𝑚𝛼𝛽) = 0.

Write
𝐹𝛼𝛽(𝑥) = 𝑥𝑟 + 𝑏1𝑥𝑟−1 + ⋯ + 𝑏𝑟 ∈ Z[𝑥]

so
𝑚𝑟

𝛼𝛽 + 𝑏1𝑚𝑟−1
𝛼𝛽 + ⋯ + 𝑏𝑟 ⋅ id = 0.

Apply the above endomorphism to 1 ∈ Z[𝛼, 𝛽], we get

(𝛼𝛽)𝑟 + 𝑏1(𝛼𝛽)𝑟−1 + ⋯ + 𝑏𝑟 = 𝐹𝛼𝛽(𝛼𝛽) = 0

so 𝛼𝛽 ∈ 𝒪𝐿.
The argument to show 𝛼 + 𝛽 ∈ 𝒪𝐿 is identical, replacing 𝑚𝛼𝛽 by

𝑚𝛼+𝛽 ∶ Z[𝛼, 𝛽] → Z[𝛼, 𝛽]
𝛾 ↦ (𝛼 + 𝛽)𝛾
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1 Ring of integers

Definition (Ring of integers). 𝒪𝐿 is the ring of algebraic integers of 𝐿.

Lemma 1.4. Let 𝐿/Q be a number field and let 𝛼 ∈ 𝐿. Then there exists
𝑛 ∈ Z, 𝑛 ≥ 1 such that 𝑛𝛼 ∈ 𝒪𝐿.

Proof. Let 𝑓(𝑥) ∈ Q[𝑥] be a monic polynomial such that 𝑓(𝛼) = 0. Then there
exists 𝑛 ∈ Z, 𝑛 ≥ 1 such that 𝑔(𝑥) = 𝑛deg 𝑓𝑓(𝑥/𝑛) ∈ Z[𝑥] is monic. Then

𝑔(𝑛𝛼) = 𝑛deg 𝑓𝑓(𝛼) = 0

so 𝑛𝛼 ∈ 𝒪𝐿.
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2 Complex Embeddings

2 Complex Embeddings
Let 𝐿 be a number field.

Definition (Complex embedding). A complex embedding of 𝐿 is a field
homomorphism

𝜎 ∶ 𝐿 → C.

Note. In this case 𝜎 is injective and 𝜎|Q is the unique embedding Q → C.

Proposition 2.1. Let 𝐿/𝐾 be an extension of number fields, and let 𝜎0 ∶
𝐾 → C be a complex embedding. Then there exist exactly [𝐿 ∶ 𝐾] embeddings
𝜎 ∶ 𝐿 → C such that 𝜎|𝐾 = 𝜎0.

Proof. By induction on [𝐿 ∶ 𝐾]. If [𝐿 ∶ 𝐾] = 1 then 𝐿 = 𝐾.
In general, choose 𝛼 ∈ 𝐿 \ 𝐾 and consider 𝐿/𝐾(𝛼)/𝐾. By the Tower Law

[𝐿 ∶ 𝐾] = [𝐿 ∶ 𝐾(𝛼)][𝐾(𝛼) ∶ 𝐾]

and [𝐾(𝛼) ∶ 𝐾] > 1. By induction, it suffices to show that there are exactly
[𝐾(𝛼) ∶ 𝐾] embeddings 𝜎 ∶ 𝐾(𝛼) → C extending 𝜎0. Let 𝑓𝛼(𝑥) ∈ 𝐾[𝑥] be the
minimal polynomial of 𝛼 over 𝐾. Notice that there is an isomorphism of fields

𝐾[𝑥]/(𝑓𝛼(𝑥)) → 𝐾(𝛼)
𝑥 ↦ 𝛼

To get a complex embedding 𝜎 ∶ 𝐾(𝛼) → C extending 𝜎0, it’s equivalent to give
a root 𝛽 of (𝜎0𝑓𝛼)(𝑥) in C. We have

[𝐾(𝛼) ∶ 𝐾] = deg 𝑓𝛼 = deg 𝜎0𝑓𝛼

so it suffices to show that 𝜎0𝑓𝛼 has distinct roots in C. The polynomial 𝑓𝛼(𝑥) ∈
𝐾[𝑥] is irreducible so is prime to its derivative 𝑓 ′

𝛼(𝑥). We can therefore find
𝐴(𝑥), 𝐵(𝑥) ∈ 𝐾[𝑥] such that

𝐴𝑓𝛼 + 𝐵𝑓 ′
𝛼 = 1.

Hence
(𝜎0𝐴)(𝜎0𝑓𝛼) + (𝜎0𝐵)(𝜎0𝑓 ′

𝛼) = 1.

Hence if 𝛽 ∈ C and (𝜎0𝑓𝛼)(𝛽) = 0, (𝜎0𝑓 ′
𝛼)(𝛽) ≠ 0.

Notation. If 𝜎 ∶ 𝐿 → C is a complex embedding, then 𝜎 is also a complex
embedding where 𝜎(𝛼) = 𝜎(𝛼). In the other words, complex conjugation is an
automorphism of C and we can post-compose it with any field embedding.

If 𝜎 = 𝜎 then 𝜎(𝐿) ⊆ R. Otherwise 𝜎 ≠ 𝜎 and 𝜎(𝐿) is not contained in R.
We write 𝑟 for the number of complex embeddings 𝜎 such that 𝜎 = 𝜎 and 𝑠 for
the number of pairs of embeddings {𝜎, 𝜎} where 𝜎 ≠ 𝜎. It then follows that

𝑟 + 2𝑠 = [𝐿 ∶ Q].
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2 Complex Embeddings

Example (Quadratic field). Let 𝑑 ∈ Z be square-free and 𝑑 ≠ 0, 1. Let

Q(
√

𝑑) = Q[𝑥]/(𝑥2 − 𝑑).

If 𝑑 > 0 then 𝑟 = 2, 𝑠 = 0, which we call real quadratic field. If 𝑑 < 0 then
𝑟 = 0, 𝑠 = 1, which we call imaginary quadratic field.

Example. Let 𝑚 ∈ Z be cube-free and 𝑚 ≠ −1, 0, 1. Let

Q( 3
√

𝑚) = Q[𝑥]/(𝑥3 − 𝑚).

Then 𝑟 = 1, 𝑠 = 1.

Definition (Trace & norm). Let 𝐿/𝐾 be a extension of number fields and
let 𝛼 ∈ 𝐿. Let 𝑚𝛼 be the 𝐾-linear map

𝑚𝛼 ∶ 𝐿 → 𝐿
𝛽 ↦ 𝛼𝛽

Then we define the trace of 𝛼 to be

tr𝐿/𝐾(𝛼) = tr 𝑚𝛼 ∈ 𝐾

and the norm of 𝛼 to be

N𝐿/𝐾(𝛼) = det 𝑚𝛼 ∈ 𝐾.

Lemma 2.2. If 𝐿/𝐾 is an extension of number fields and 𝛼 ∈ 𝐿, then

1. tr𝐿/𝐾(𝛼) = [𝐿 ∶ 𝐾(𝛼)] tr𝐾(𝛼)/𝐾(𝛼).

2. N𝐿/𝐾(𝛼) = N𝐾(𝛼)/𝐾(𝛼)[𝐿∶𝐾(𝛼)].

Proof. There is an isomorphism 𝐿 ≅ 𝐾(𝛼)[𝐿∶𝐾(𝛼)] of 𝐾(𝛼)-vector spaces.

Lemma 2.3. Let 𝐿/𝐾 be an extension of number fields and let 𝛼 ∈ 𝐿. Let
𝜎0 ∶ 𝐾 → C be a complex embedding and 𝜎1, … , 𝜎𝑛 ∶ 𝐿 → C be complex
embeddings extending 𝜎0. Then

𝜎0(tr𝐿/𝐾(𝛼)) =
𝑛

∑
𝑖=1

𝜎𝑖(𝛼)

𝜎0(N𝐿/𝐾(𝛼)) =
𝑛

∏
𝑖=1

𝜎𝑖(𝛼)

Proof. wlog 𝐿 = 𝐾(𝛼). Let 𝑓𝛼(𝑥) ∈ 𝐾[𝑥] be the minimal polynomial of 𝛼 over
𝐾. Recall that

(𝜎0𝑓𝛼)(𝑥) =
𝑛

∏
𝑖=1

(𝑥 − 𝜎𝑖(𝛼)).
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2 Complex Embeddings

Write 𝑓𝛼(𝑥) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛. Then

𝜎0(𝑎1) = −
𝑛

∑
𝑖=1

𝜎𝑖(𝛼)

𝜎0(𝑎𝑛) = (−1)𝑛
𝑛

∏
𝑖=1

𝜎𝑖(𝛼)

Let 𝑔(𝑥) ∈ 𝐾[𝑥] be the characteristic polynomial of 𝑚𝛼. If 𝑔(𝑥) = 𝑥𝑛 +𝑏1𝑥𝑛−1 +
⋯ + 𝑏𝑛 then

𝑏1 = − tr 𝑚𝛼 = − tr𝐿/𝐾(𝛼)
𝑏𝑛 = (−1)𝑛 det 𝑚𝛼 = (−1)𝑛 N𝐿/𝐾(𝛼)

so done if we can show 𝑓𝛼(𝑥) = 𝑔(𝑥). By Cayley-Hamilton, 𝑔(𝑚𝛼) = 0 so
𝑔(𝛼) = 0. Thus 𝑓𝛼(𝑥) = 𝑔(𝑥).

Corollary 2.4. If 𝛼 ∈ 𝒪𝐿 then tr𝐿/𝐾(𝛼), N𝐿/𝐾(𝛼) ∈ 𝒪𝐾.

Proof. We have the following characterisation of ring of integers: if 𝛽 ∈ 𝐾 then
𝛽 ∈ 𝒪𝐾 if and only if 𝜎0(𝛽) ∈ 𝒪C as for all 𝑓(𝑥) ∈ Z[𝑥], 𝑓(𝛽) = 0 if and only if
𝑓(𝜎0(𝛽)) = 0.

By the lemma, 𝜎0 tr𝐿/𝐾(𝛼) = 𝜎1(𝛼)+⋯+𝜎𝑛(𝛼). If 𝛼 ∈ 𝒪𝐿 then 𝜎𝑖(𝛼) ∈ 𝒪C
for all 𝑖. But 𝒪C is a ring so 𝜎0 tr𝐿/𝐾(𝛼) ∈ 𝒪C. Thus tr𝐿/𝐾(𝛼) ∈ 𝒪𝐾. Similar
for norm.

Proposition 2.5 (Classification of ring of integers of quadratic fields). Let
𝑑 ∈ Z be square-free and 𝑑 ≠ 0, 1. Let 𝐿 = Q(

√
𝑑). Then

𝒪𝐿 = {
Z[

√
𝑑] if 𝑑 = 2, 3 (mod 4)

Z[ 1+
√

𝑑
2 ] if 𝑑 = 1 (mod 4)

Proof. We have a nice characterisation of algebraic integers in quadratic fields:
if 𝛼 ∈ 𝐿, then 𝛼 ∈ 𝒪𝐿 if and only if tr𝐿/Q(𝛼), N𝐿/Q(𝛼) ∈ Z. (Why?)

Let 𝛼 ∈ 𝐿. Write 𝛼 = 𝑢
2 + 𝑣

2
√

𝑑 where 𝑢, 𝑣 ∈ Q. If 𝛼 ∈ 𝒪𝐿 then

tr𝐿/Q(𝛼) = 𝑢 ∈ Z

N𝐿/Q(𝛼) = 1
4

(𝑢 + 𝑣
√

𝑑)(𝑢 − 𝑣
√

𝑑) = 1
4

(𝑢2 − 𝑑𝑣2) ∈ Z

so 𝑢2 − 𝑑𝑣2 ∈ 4Z, 𝑑𝑣2 ∈ Z. Write 𝑣 = 𝑟
𝑠 where 𝑟, 𝑠 ∈ Z and are coprime. Then

𝑑𝑟2 ∈ 𝑠2Z so 𝑠2 ∣ 𝑑𝑟2. If 𝑝 is a prime and 𝑝 ∣ 𝑠 then 𝑝2 ∣ 𝑑. But this is absurd
as 𝑑 is square-free. Thus 𝑣 ∈ Z.

We have shown that if 𝛼 ∈ 𝒪𝐿 then 𝛼 = 𝑢
2 + 𝑣

2
√

𝑑 where 𝑢, 𝑣 ∈ Z and
𝑢2 = 𝑑𝑣2 (mod 4). Split into cases:

1. 𝑑 = 2, 3 (mod 4): 𝑢2 = 0, 1 (mod 4), 𝑣2 = 0, 1 (mod 4). Consider the
congruence 𝑢2 = 𝑑𝑣2 (mod 4) shows that 𝑢, 𝑣 ∈ 2Z. Hence 𝛼 ∈ Z[

√
𝑑].

Thus 𝒪𝐿 = Z[
√

𝑑].
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2 Complex Embeddings

2. 𝑑 = 1 (mod 4): 𝑢2 = 𝑣2 (mod 4) so 𝑢 = 𝑣 (mod 2). Hence

𝒪𝐿 ⊆ {𝑢
2

+ 𝑣
2

√
𝑑 ∶ 𝑢, 𝑣 ∈ Z, 𝑢 = 𝑣 (mod 2)} ≅ Z ⊕ Z ⋅ (1 +

√
𝑑

2
) .

It thus remains to show that 1+
√

𝑑
2 is an algebraic integer. But we know

tr𝐿/Q
1 +

√
𝑑

2
= 1

N𝐿/Q
1 +

√
𝑑

2
= 1 − 𝑑

4
∈ Z

so done.

Recall that if 𝑅 is a ring, then a unit in 𝑅 is an element 𝑢 ∈ 𝑅 such that
there exists 𝑣 ∈ 𝑅 such that 𝑢𝑣 = 1. The set

𝑅× = {𝑢 ∈ 𝑅 ∶ 𝑢 is a unit}

form a group under multiplication.

Lemma 2.6. If 𝐿 is a number field then

𝒪×
𝐿 = {𝛼 ∈ 𝒪𝐿 ∶ N𝐿/Q(𝛼) = ±1}.

Remark. We’ll prove later in the course that 𝒪×
𝐿 is a finite group if and only

if 𝐿 = Q or 𝐿 is an imaginary quadratic field.

Proof. Norm is multiplicative so

N𝐿/Q(𝛼𝛽) = N𝐿/Q(𝛼) N𝐿/Q(𝛽)

for all 𝛼, 𝛽 ∈ 𝐿. If 𝛼 ∈ 𝒪×
𝐿 then there exists 𝛽 ∈ 𝒪𝐿 such that 𝛼𝛽 = 1. Thus

N𝐿/Q(𝛼) N𝐿/Q(𝛽) = 1. As they are both integers,

N𝐿/Q(𝛼) ∈ Z× = {±1}.

Conversely, suppose 𝛼 ∈ 𝒪𝐿 and N𝐿/Q(𝛼) = ±1. Then 𝛼−1 ∈ 𝐿. Let
𝜎1, … , 𝜎𝑛 ∶ 𝐿 → C be distinct complex embeddings of 𝐿. Then

N𝐿/Q(𝛼) =
𝑛

∏
𝑖=1

𝜎𝑖(𝛼) = ±1

so
𝜎1(𝛼−1) = ±

𝑛
∏
𝑖=2

𝜎𝑖(𝛼) ∈ 𝒪C

so 𝛼−1 ∈ 𝒪𝐿.
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3 Discriminants and integral bases

3 Discriminants and integral bases
Let 𝐿 be a number field, 𝑛 = [𝐿 ∶ Q] and 𝜎1, … , 𝜎𝑛 ∶ 𝐿 → C be distinct complex
embeddings of 𝐿.

Definition (Discriminant). Let 𝛼1, … , 𝛼𝑛 ∈ 𝐿. Then their discriminant is

disc(𝛼1, … , 𝛼𝑛) = det 𝐷2

where 𝐷 ∈ ℳ𝑛×𝑛(C) is 𝐷𝑖𝑗 = 𝜎𝑖(𝛼𝑗).

Notation. Sometimes we use the alternative notation

Δ(𝛼1, … , 𝛼𝑛) = disc(𝛼1, … , 𝛼𝑛).

Note. This is independent of the choice of ordering of 𝜎𝑖’s and 𝛼𝑗’s, as changing
them amounts to permuting the rows and columns, which changes det 𝐷 by a
sign.

Lemma 3.1. Let 𝛼1, … , 𝛼𝑛 ∈ 𝐿. Then

disc(𝛼1, … , 𝛼𝑛) = det 𝑇

where 𝑇 ∈ ℳ𝑛×𝑛(Q) is 𝑇𝑖𝑗 = tr𝐿/Q(𝛼𝑖𝛼𝑗).

Proof.

𝑇𝑖𝑗 =
𝑛

∑
𝑘=1

𝜎𝑘(𝛼𝑖𝛼𝑗) =
𝑛

∑
𝑘=1

𝐷𝑘𝑖𝐷𝑘𝑗 = (𝐷𝑇𝐷)𝑖𝑗

Corollary 3.2. disc(𝛼1, … , 𝛼𝑛) ∈ Q and if further 𝛼1, … , 𝛼𝑛 ∈ 𝒪𝐿 then
disc(𝛼1, … , 𝛼𝑛) ∈ Z.

Proof. disc(𝛼1, … , 𝛼𝑛) = det 𝑇 ∈ Q.
If 𝛼𝑖’s are in 𝒪𝐿, then 𝐷𝑖𝑗 ∈ 𝒪C for all 𝑖, 𝑗. As det is a polynomial,

disc(𝛼1, … , 𝛼𝑛) ∈ 𝒪C ∩ Q = Z.

Proposition 3.3. Let 𝛼1, … , 𝛼𝑛 ∈ 𝐿. Then disc(𝛼1, … , 𝛼𝑛) ≠ 0 if and only
if 𝛼𝑖’s form a Q-basis of 𝐿.

Proof. Suppose 𝛼𝑖’s do not form a basis, i.e. they satisfy a non-trivial rela-
tion. Then the columns of the matrix 𝐷𝑖𝑗 = 𝜎𝑖(𝛼𝑗) are linearly dependent so
disc(𝛼1, … , 𝛼𝑛) = 0.

Conversely, suppose 𝛼1, … , 𝛼𝑛 are linearly independent. Then disc(𝛼1, … , 𝛼𝑛) ≠
0 if and only if det 𝑇 ≠ 0, if and only if the symmetric bilinear form

𝜙 ∶ 𝐿 × 𝐿 → Q
(𝛼, 𝛽) ↦ tr𝐿/Q(𝛼𝛽)

is non-degenerate. In other words, for all 𝛼 ∈ 𝐿×, there exists 𝛽 ∈ 𝐿 such that
𝜙(𝛼, 𝛽) ≠ 0. But if 𝛼 ∈ 𝐿× then 𝜙(𝛼, 𝛼−1) = tr𝐿/Q(1) = 𝑛 ≠ 0.
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3 Discriminants and integral bases

Definition (Integral basis). We say 𝛼1, … , 𝛼𝑛 ∈ 𝐿 form an integral basis
for 𝒪𝐿 if

1. 𝛼1, … , 𝛼𝑛 ∈ 𝒪𝐿,

2. 𝛼1, … , 𝛼𝑛 generate 𝒪𝐿 as a Z-module.

Lemma 3.4. If 𝛼1, … , 𝛼𝑛 form an integral basis for 𝒪𝐿 then the function

𝑓 ∶ Z𝑛 → 𝒪𝐿

(𝑚1, … , 𝑚𝑛) ↦
𝑛

∑
𝑖=1

𝑚𝑖𝛼𝑖

is an isomorphism of Z-modules.

Proof. 𝑓 is clearly a surjective homomorphism so remains to show it is injective.
Observe that 𝛼1, … , 𝛼𝑛 form a Q-basis of 𝐿: we know that if 𝛽 ∈ 𝐿 then there
exists 𝑁 ≥ 1, 𝑁 ∈ Z such that 𝑁𝛽 ∈ 𝒪𝐿. Write

𝑁𝛽 =
𝑛

∑
𝑖=1

𝑚𝑖𝛼𝑖

for some 𝑚𝑖 ∈ Z. Thus 𝛽 = ∑𝑚
𝑖=1

𝑚1
𝑁 𝛼𝑖. Thus 𝛼𝑖’s span 𝐿 and thus form a

basis of 𝐿.
If 𝑓(𝑚1, … , 𝑚𝑛) = 0 then ∑𝑛

𝑖=1 𝑚𝑖𝛼𝑖 = 0 so 𝑚𝑖 = 0 by linear independence
of 𝛼𝑖’s.

We will soon prove that every number field has an integral basis.

Lemma 3.5 (Sandwich lemma).

1. If 𝐻 ≤ 𝐺 are abelian groups and 𝐺 ≅ Z𝑎 for some integer 𝑎 ≥ 0, then
𝐻 ≅ Z𝑏 for some 𝑏 ≤ 𝑎.

2. If 𝐾 ≤ 𝐻 ≤ 𝐺 are abelian groups and 𝐾 ≅ Z𝑎, 𝐺 ≅ Z𝑎 for some
𝑎 ≥ 0, then 𝐻 ≅ Z𝑎.

3. If 𝐻 ≤ 𝐺 are abelian groups and 𝐻 ≅ Z𝑎, 𝐺 ≅ Z𝑎 for some 𝑎 ≥ 0 then
𝐺/𝐻 is finite.

This is a generalisation of results about finite dimensional vector spaces (i.e.
finitely generated free modules over fields) to finitely generated free Z-modules.

Proof.

1. 𝐺/𝐻 is a finitely generated abelian group. By the classification, 𝐺/𝐻 ≅
Z𝑛 ⊕𝐴 where 𝐴 is a finite abelian group. Choose 𝑝 prime such that 𝑝 ∤ |𝐴|.
Then the map

𝑓 ∶ 𝐺/𝐻 → 𝐺/𝐻
𝑥 + 𝐻 ↦ 𝑝𝑥 + 𝐻

12



3 Discriminants and integral bases

is injective. Consider the map

𝑓 ′ ∶ 𝐻/𝑝𝐻 → 𝐺/𝑝𝐺
𝑥 + 𝑝𝐻 ↦ 𝑥 + 𝑝𝐺

Claim this map is also injective: if 𝑥 ∈ 𝐻, 𝑥 ∈ 𝑝𝐺 then 𝑥 = 𝑝𝑦 for some
𝑦 ∈ 𝐺. Then 𝑦 + 𝐻 ∈ ker 𝑓 = 𝐻. Thus 𝑥 ∈ 𝑝𝐻.
By classification 𝐻 ≅ Z𝑏. As 𝑓 ′ is injective, |𝐻/𝑝𝐻| ≤ |𝐺/𝑝𝐺|, i.e. 𝑝𝑏 ≤ 𝑝𝑎

so 𝑏 ≤ 𝑎.

2. Apply 1 to 𝐾 ≤ 𝐻 and 𝐻 ≤ 𝐺 to get 𝐻 ≅ Z𝑏 where 𝑎 ≤ 𝑏 ≤ 𝑎 so 𝑎 = 𝑏.

3. Again 𝐺/𝐻 is finitely generated so by classification 𝐺/𝐻 ≅ Z𝑁 ⊕ 𝐴 where
𝐴 is a finite abelian group. Let 𝑝 be a prime such that 𝑝 ∤ |𝐴|. The
same proof as in 1 shows that 𝑓 ′ ∶ 𝐻/𝑝𝐻 → 𝐺/𝑝𝐺 is injective. Since
|𝐻/𝑝𝐻| = |𝐺/𝑝𝐺| = 𝑝𝑎, 𝑓 ′ is an isomorphism. Thus

𝐺/𝐻 + 𝑝𝐺 ≅ (Z/𝑝Z)𝑁

There is a surjective homomorphism 𝐺/𝑝𝐺 → 𝐺/𝐻 +𝑝𝐺 which has kernel
containing the image of 𝑓 ′. Hence the map is surjective with kernel 𝐺/𝑝𝐺.
This forces 𝑁 = 0.

Proposition 3.6. There exists an integral basis for 𝒪𝐿.

Proof. Let 𝛽1, … , 𝛽𝑛 ∈ 𝐿 be a Q-basis for 𝐿. wlog 𝛽1, … , 𝛽𝑛 ∈ 𝒪𝐿. Then
𝒪𝐿 ⊇ ⨁𝑛

𝑖=1 𝛽𝑖Z.
Recall that

𝜙 ∶ 𝐿 × 𝐿 → Q
(𝛼, 𝛽) ↦ tr𝐿/Q(𝛼𝛽)

is a non-degenerate symmetric bilinear form. Let 𝛽∗
1, … , 𝛽∗

𝑛 be the dual basis,
i.e. tr𝐿/Q(𝛽𝑖𝛽∗

𝑗) = 𝛿𝑖𝑗. If 𝛼 ∈ 𝒪𝐿 then we can write

𝛼 =
𝑛

∑
𝑖=1

𝑎𝑖𝛽∗
𝑖

where 𝑎𝑖 ∈ Q. We know 𝛼𝛽𝑖 ∈ 𝒪𝐿 hence

tr𝐿/Q(𝛼𝛽𝑖) =
𝑛

∑
𝑗=1

tr𝐿/Q(𝑎𝑗𝛽∗
𝑗𝛽𝑖) =

𝑛
∑
𝑗=1

𝑎𝑗 tr𝐿/Q(𝛽∗
𝑗𝛽𝑖) = 𝑎𝑖 ∈ Z

so 𝒪𝐿 ⊆ ⨁𝑛
𝑖=1 𝛽∗

𝑖Z. Thus by Sandwich lemma there is an isomorphism 𝒪𝐿 ≅
Z𝑛.

If 𝛼1, … , 𝛼𝑛 and 𝛽1, … , 𝛽𝑛 are both integral basis for 𝒪𝐿, then there exists
𝐴 ∈ ℳ𝑛×𝑛(Z) such that

𝛽𝑗 =
𝑛

∑
𝑖=1

𝐴𝑖𝑗𝛼𝑖
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3 Discriminants and integral bases

for each 1 ≤ 𝑗 ≤ 𝑛. Moreover, we must have det 𝐴 = ±1 and thus 𝐴 ∈ GL𝑛(Z).
Let 𝐷𝑖𝑗 = 𝜎𝑖(𝛼𝑗), 𝐷′

𝑖𝑗 = 𝜎𝑖(𝛽𝑗) and then disc(𝛽1, … , 𝛽𝑛) = det(𝐷′)2. We have

𝐷′
𝑖𝑗 =

𝑛
∑
𝑘=1

𝜎𝑖(𝐴𝑘𝑗𝛼𝑘) =
𝑛

∑
𝑘=1

𝜎𝑖(𝛼𝑘)𝐴𝑘𝑗 = (𝐷𝐴)𝑖𝑗

We thus conclude that

disc(𝛽1, … , 𝛽𝑛) = det(𝐷′)2 = det(𝐷𝐴)2 = det 𝐷2 = disc(𝛼1, … , 𝛼𝑛).

Definition (Discriminant). The discriminant 𝐷𝐿 of a number field 𝐿 is
disc(𝛼1, … , 𝛼𝑛) where 𝛼1, … , 𝛼𝑛 is any integral basis for 𝒪𝐿.

Proposition 3.7. Let 𝐿 = Q(𝛼) and let 𝑓(𝑥) ∈ Q[𝑥] be the minimal poly-
nomial of 𝛼 over Q. Then

disc(1, 𝛼, 𝛼2, … , 𝛼𝑛−1) = ∏
𝑖<𝑗

(𝜎𝑖(𝛼) − 𝜎𝑗(𝛼))2 = (−1)(𝑛
2) N𝐿/Q(𝑓 ′(𝛼)).

Note. In IID Galois Theory, we defined

disc 𝑓 = ∏
𝑖<𝑗

(𝜎𝑖(𝛼) − 𝜎𝑗(𝛼))2.

Proof. Let 𝐷𝑖𝑗 = 𝜎𝑖(𝛼𝑗−1). Then 𝐷 ∈ ℳ𝑛×𝑛(C) and disc(1, 𝛼, … , 𝛼𝑛−1) =
det 𝐷2. 𝐷 is a Vandermonde matrix with

det 𝐷 = ∏
𝑖<𝑗

(𝜎𝑗(𝛼) − 𝜎𝑖(𝛼)).

For the second equality, note that

N𝐿/Q(𝑓 ′(𝛼)) =
𝑛

∏
𝑖=1

𝜎𝑖(𝑓 ′(𝛼)) =
𝑛

∏
𝑖=1

𝑓 ′(𝜎𝑖(𝛼)).

Also since 𝑓(𝑥) = ∏𝑛
𝑖=1(𝑥 − 𝜎𝑖(𝛼)), 𝑓 ′(𝑥) = ∑𝑛

𝑖=1 ∏𝑗≠𝑖(𝑥 − 𝜎𝑗(𝛼)). Substitute
into the above formula to get

N𝐿/Q(𝑓 ′(𝛼)) =
𝑛

∏
𝑖=1

∏
𝑗≠𝑖

(𝜎𝑖(𝛼) − 𝜎𝑗(𝛼)) = (−1)(𝑛
2) ∏

𝑖<𝑗
(𝜎𝑖(𝛼) − 𝜎𝑗(𝛼))2.

Note. If 𝛼 ∈ 𝒪𝐿 and Z[𝛼] = 𝒪𝐿 then 1, 𝛼, … , 𝛼𝑛−1 is an integral basis for 𝒪𝐿.
We can then use the above proposition to calculate 𝐷𝐿.

Example. Let 𝑑 ∈ Z be square-free and 𝑑 ≠ 0, 1. Let 𝐿 = Q(
√

𝑑). Then

𝐷𝐿 = {4𝑑 if 𝑑 = 2, 3 (mod 4)
𝑑 if 𝑑 = 1 (mod 4)
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3 Discriminants and integral bases

If 𝑑 = 2, 3 (mod 4) then 𝒪𝐿 = Z[
√

𝑑]. Apply the proposition to 𝑓(𝑡) = 𝑡2 − 𝑑
to get

𝐷𝐿 = disc(1,
√

𝑑) = − N𝐿/Q(2
√

𝑑) = 4𝑑.

On the other hand if 𝑑 = 1 (mod 4) then 𝒪𝐿 = Z[𝛼] where 𝛼 = 1+
√

𝑑
2 . Apply

the proposition to 𝑓(𝑡) = 𝑡2 − 𝑡 + 1−𝑑
4 , 𝑓 ′(𝑡) = 2𝑡 − 1, 𝑓 ′(𝛼) =

√
𝑑. Thus

𝐷𝐿 = − N𝐿/Q(
√

𝑑) = 𝑑.

Proposition 3.8. If 𝛼1, … , 𝛼𝑛 ∈ 𝒪𝐿 are such that disc(𝛼1, … , 𝛼𝑛) is a
non-zero square-free integer then 𝛼1, … , 𝛼𝑛 form an integral basis for 𝒪𝐿.

Proof. Let 𝛽1, … , 𝛽𝑛 be an integral basis for 𝒪𝐿. Then there exists 𝐴 ∈ ℳ𝑛×𝑛(Z)
such that

𝛼𝑗 =
𝑛

∑
𝑖=1

𝐴𝑖𝑗𝛽𝑖

for 1 ≤ 𝑗 ≤ 𝑛. Then

disc(𝛼1, … , 𝛼𝑛) = det 𝐴2 disc(𝛽1, … , 𝛽𝑛)

using a previous argument. If disc(𝛼1, … , 𝛼𝑛) is square-free and non-zero then
det 𝐴 = ±1 so 𝐴 ∈ GL𝑛(Z). Thus 𝛼1, … , 𝛼𝑛 must generate 𝒪𝐿 and thus form
an integral basis.

Example. Let 𝑓(𝑡) = 𝑡3 − 𝑡 − 1. Use the formula

disc(𝑡3 + 𝑎𝑡 + 𝑏) = −4𝑎3 − 27𝑏2

to get disc(𝑓) = −23, which is square-free (and non-zero of course). If 𝐿 = Q(𝛼)
where 𝛼 is a root of 𝑓(𝑡) then 𝒪𝐿 = Z[𝛼].

We have defined integral basis for rings of integers. In fact, we can generalise
it to ideals of the ring:

Definition (Integral basis). Let 𝐼 ⊆ 𝒪𝐿 be a non-zero ideal. Then elements
𝛼1, … , 𝛼𝑛 ∈ 𝐿 form an integral basis for 𝐼 if

1. 𝛼1, … , 𝛼𝑛 ∈ 𝐼,

2. 𝛼1, … , 𝛼𝑛 generate 𝐼 as a Z-module.

Proposition 3.9. Let 𝐼 ⊆ 𝒪𝐿 be a non-zero ideal. Then there exists an
integral basis for 𝐼.

Proof. By definition 𝐼 ⊆ 𝒪𝐿 ≅ Z𝑛. Let 𝛼1, … , 𝛼𝑛 ∈ 𝒪𝐿 be an integral basis for
𝒪𝐿. Let 𝑎 ∈ 𝐼 be non-zero. Then (𝑎) ⊆ 𝐼 and thus

𝑛
⨁
𝑖=1

𝑎𝛼𝑖Z ⊆ 𝐼 ⊆ 𝒪𝐿.

By Sandwich lemma 𝐼 ≅ Z𝑛 as a Z-module. Thus there exists an integral basis
for 𝐼.
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3 Discriminants and integral bases

Definition (Norm). If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then its norm is

N(𝐼) = [𝒪𝐿 ∶ 𝐼].

Note that norm is finite by Sandwich lemma.

Definition (Discriminant). If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then its discrimi-
nant is

disc(𝐼) = disc(𝛼1, … , 𝛼𝑛)

where 𝛼1, … , 𝛼𝑛 is any integral basis for 𝐼.

Note that the same argument for discriminant of ring of integers shows that
this is well-defined.

Lemma 3.10. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then

disc(𝐼) = disc(𝒪𝐿) ⋅ N(𝐼)2.

Proof. Let 𝛼1, … , 𝛼𝑛 be an integral basis for 𝒪𝐿 and 𝛽1, … , 𝛽𝑛 be an integral
basis for 𝐼. Then there exists 𝐴 ∈ ℳ𝑛×𝑛(Z) such that

𝛽𝑗 =
𝑛

∑
𝑖=1

𝐴𝑖𝑗𝛼𝑖

for 1 ≤ 𝑗 ≤ 𝑛 and

disc(𝛽1, … , 𝛽𝑛) = disc(𝛼1, … , 𝛼𝑛) det 𝐴2.

It thus suffices to show that det 𝐴2 = [𝒪𝐿 ∶ 𝐼]2. In fact we’ll show that if
𝐵 ∈ ℳ𝑛×𝑛(Z) and det 𝐵 ≠ 0 then

|Z𝑛/𝐵Z𝑛| = | det 𝐵|.

Then the result follows from 𝒪𝐿 ≅ Z𝑛.

Proof. Recall from IB Groups, Rings and Modules that there exist 𝑃 , 𝑄 ∈
GL𝑛(Z) such that

𝑃𝐵𝑄 = 𝐷 = diag(𝑑1, … , 𝑑𝑛)

where 𝑑𝑖 ∈ Z (Smith normal form). Thus

Z𝑛/𝐵Z𝑛 ≅ Z𝑛/𝐷Z𝑛 ≅
𝑛

⨁
𝑖=1

Z/𝑑𝑖Z

so
|Z𝑛/𝐵Z𝑛| = |Z𝑛/𝐷Z𝑛| =

𝑛
∏
𝑖=1

|𝑑𝑖|.

On the other hand | det 𝐵| = | det 𝐷| = ∏𝑛
𝑖=1 |𝑑𝑖|.
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3 Discriminants and integral bases

Lemma 3.11. Let 𝛼 ∈ 𝒪𝐿 \ {0}. Then

N((𝛼)) = | N𝐿/Q(𝛼)|.

Proof. Let 𝛼1, … , 𝛼𝑛 be an integral basis for 𝒪𝐿. Then 𝛼𝛼1, … , 𝛼𝛼𝑛 is an inte-
gral basis for 𝐼 = (𝛼).

disc(𝐼) = disc(𝛼𝛼1, … , 𝛼𝛼𝑛)
= det(𝜎𝑖(𝛼𝛼𝑗))2

= det(𝜎𝑖(𝛼)𝜎𝑖(𝛼𝑗))2

= (
𝑛

∏
𝑖=1

𝜎𝑖(𝛼))
2

det(𝜎𝑖(𝛼𝑗))2

= N𝐿/Q(𝛼)2 disc(𝒪𝐿)

On the other hand, we showed last time that for any non-zero ideal 𝐽 ⊆ 𝒪𝐿,

disc(𝐽) = N(𝐽)2 disc(𝒪𝐿)

and the result follows.

Notation. If 𝛼 ∈ 𝒪𝐿 \ {0}, we write

N(𝛼) = N((𝛼)).

Also define N(0) = 0. Then for all 𝛼, 𝛽 ∈ 𝒪𝐿, N(𝛼𝛽) = N(𝛼) N(𝛽).

In fact later we will show N is multiplicative for all ideals.
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4 Unique factorisation in 𝒪𝐿

4 Unique factorisation in 𝒪𝐿

Recall that a ring 𝑅 is a unique factorisation domain (UFD) if
1. 𝑅 is an integral domain,

2. if 𝑥 ∈ 𝑅 is non-zero and not a unit, then there exists an expression

𝑥 = 𝑝1 ⋯ 𝑝𝑟

where 𝑝𝑖 ∈ 𝑅 are irreducibles. This expression is unique in the sense that
if

𝑥 = 𝑞1 ⋯ 𝑞𝑠

is another such expressions then 𝑟 = 𝑠 and after reordering each 𝑞𝑖 is an
associate of 𝑝𝑖, i.e. 𝑞𝑖 ∈ 𝑅×𝑝𝑖.

We know that Z is a UFD. However, if 𝐿 is a number field then 𝒪𝐿 need not
be a UFD. Let’s see an example where uniqueness fails.
Example. Let 𝐿 = Q(

√
−5). Then 𝒪𝐿 = Z[

√
−5]. From example sheet we

know 𝒪×
𝐿 = {±1}. In 𝒪𝐿 we have

6 = 2 × 3 = (1 +
√

−5)(1 −
√

−5).

We can check that 2, 3, 1 ±
√

−5 are irreducibles and no two are associates. For
example, suppose 2 = 𝑥𝑦 where N(𝑥) > 1, N(𝑦) > 1. As N(2) = 4, N(𝑥) =
N(𝑦) = 2. But N(𝑎 + 𝑏

√
−5) = 𝑎2 + 5𝑏2 which is never 2. Contradiction.

But this does not go terribly wrong. In fact, any non-zero 𝑥 ∈ 𝒪𝐿 which is
not a unit can be expressed as a product of irreducible elements:

Proof. If 𝑥 ∈ 𝒪𝐿 then 𝑥 is a non-zero non-unit if and only if N(𝑥) > 1. Sup-
pose 𝑥 ∈ 𝒪𝐿 is a non-zero non-unit which cannot be written as a product of
irreducibles, and with N(𝑥) minimal among such elements. Then 𝑥 = 𝑦𝑧 with
N(𝑦), N(𝑧) > 1, hence N(𝑦), N(𝑧) < N(𝑥). By minimality of N(𝑥), both 𝑦 and 𝑧
can be written as products of irreducibles.

The way to get around this is to consider multiplication of ideals insteads of
elements. Recall that if 𝑅 is a ring and 𝐼, 𝐽 are ideal of 𝑅, we can define

𝐼𝐽 = {
𝑘

∑
𝑖=1

𝑎𝑖𝑏𝑖 ∶ 𝑎𝑖 ∈ 𝐼, 𝑏𝑖 ∈ 𝐽}

𝐼 + 𝐽 = {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐼, 𝑏 ∈ 𝐽}

Definition (Irreducible ideal). A proper ideal 𝐼 ⊆ 𝑅 is irreducible if it does
not admit an expression 𝐼 = 𝐽𝐾 where 𝐽, 𝐾 are proper ideals of 𝑅.

One caveat: even if 𝛼 ∈ 𝒪𝐿 is irreducible, the principal ideal (𝛼) need not
be irreducible. For example in Z[

√
−5], we have

(2) = (2, 1 +
√

−5)2

(3) = (3, 1 +
√

−5)(3, 1 −
√

−5)

The aim of this chapter is to prove that factorisation of ideals into prime
ideals is unique. Recall from IB Groups, Rings and Modules
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4 Unique factorisation in 𝒪𝐿

Definition (Prime ideal). Let 𝑅 is a ring. We say that a proper ideal 𝔭 ⊆ 𝑅
is prime if for all 𝑥, 𝑦 ∈ 𝑅, 𝑥𝑦 ∈ 𝔭 ⟹ 𝑥 ∈ 𝔭 or 𝑦 ∈ 𝔭.

The following lemma gives us a way to characterise prime ideals:

Lemma 4.1. Let 𝑅 be a ring and 𝐼, 𝐽, 𝔭 ⊆ 𝑅 be ideals. Suppose 𝔭 is prime
and 𝐼𝐽 ⊆ 𝔭 then 𝐼 ⊆ 𝔭 or 𝐽 ⊆ 𝔭.

Proof. Wlog 𝐼 ⊈ 𝔭. Choose 𝑥 ∈ 𝐼 \ 𝔭. For all 𝑦 ∈ 𝐽, 𝑥𝑦 ∈ 𝐼𝐽 ⊆ 𝔭 so 𝑦 ∈ 𝔭.

Note that the converse is trivially true, so we can think about a prime ideal
as a “prime element” among all ideals, instead of breaking the ideal apart and
talking about properties of elements in the ideal.

From now on let 𝐿 be a number field.

Lemma 4.2. Any non-zero prime ideal 𝔭 ⊆ 𝒪𝐿 is a maximal ideal.

Proof. Recall that if 𝑅 is a ring and 𝐼 is a proper ideal of 𝑅, then 𝐼 is prime if
and only if 𝑅/𝐼 is an integral domain and 𝐼 is maximal if and only if 𝑅/𝐼 is a
field.

If 𝔭 ⊆ 𝒪𝐿 is a non-zero prime ideal, then 𝒪𝐿 is a finite integral domain as
its cardinality is N(𝔭). Any finite integral domain is a field.

Lemma 4.3. If 𝐼 ⊆ 𝒪𝐿 is a non-zero proper ideal then there exists non-zero
prime ideals 𝔭1, … , 𝔭𝑟 ⊆ 𝒪𝐿 such that 𝔭1 ⋯ 𝔭𝑟 ⊆ 𝐼.

Proof. For contradiction, let 𝐼 ⊊ 𝒪𝐿 be an ideal which does not have this
property with N(𝐼) minimal among all such ideals. Clearly 𝐼 is not prime so
there exists 𝑥, 𝑦 ∈ 𝒪𝐿 such that 𝑥𝑦 ∈ 𝐼 but 𝑥, 𝑦 ∉ 𝐼. It follows that

𝐼 ⊊ 𝐼 + (𝑥)
𝐼 ⊊ 𝐼 + (𝑦)

and therefore

N(𝐼 + (𝑥)) < N(𝐼)
N(𝐼 + (𝑦)) < N(𝐼)

By minimality of N(𝐼), we can find non-zero prime ideals 𝔭1, … , 𝔭𝑟, 𝔮1, … , 𝔮𝑠
such that

𝔭1 ⋯ 𝔭𝑟 ⊆ 𝐼 + (𝑥)
𝔮1 ⋯ 𝔮𝑠 ⊆ 𝐼 + (𝑦)

so
𝔭1 ⋯ 𝔭𝑟𝔮1 ⋯ 𝔮𝑠 ⊆ (𝐼 + (𝑥))(𝐼 + (𝑦)) ⊆ 𝐼2 + 𝑥𝐼 + 𝑦𝐼 + (𝑥𝑦) ⊆ 𝐼.

Absurd.
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4 Unique factorisation in 𝒪𝐿

Lemma 4.4. If 𝐼 ⊊ 𝒪𝐿 is a non-zero ideal then there exists 𝛾 ∈ 𝐿 \ 𝒪𝐿
such that 𝛾𝐼 ⊆ 𝒪𝐿.

Proof. Let 𝛼 ∈ 𝐼 \ {0}. Let 𝔭1, … , 𝔭𝑟 ⊆ 𝒪𝐿 be non-zero prime ideals such that
𝔭1 … 𝔭𝑟 ⊆ (𝛼). wlog 𝑟 is minimal among all such expressions. Let 𝔭 be a maximal
ideal containing 𝐼. Then

𝔭 ⊇ 𝐼 ⊇ (𝛼) ⊇ 𝔭1 ⋯ 𝔭𝑟

so 𝔭 ⊇ 𝔭𝑖 for some 𝑖. After reordering, assume 𝔭 ⊇ 𝔭1. Since non-zero prime
ideals are maximal, we have 𝔭 = 𝔭1. Since 𝑟 is minimal, we have 𝔭2 ⋯ 𝔭𝑟 ⊈ (𝛼).
Choose 𝛽 ∈ 𝔭2 ⋯ 𝔭𝑟\(𝛼). Claim that the element 𝛾 = 𝛽

𝛼 has the desired property:
if 𝛾 ∈ 𝒪𝐿 then 𝛽 = 𝛼𝛾 ∈ (𝛼). Absurd. In addition

𝛾𝐼 = 𝛽
𝛼

𝐼 ⊆ 1
𝛼

𝔭2 ⋯ 𝔭𝑟𝐼 ⊆ 1
𝛼

𝔭1 ⋯ 𝔭𝑟 ⊆ 𝒪𝐿.

Proposition 4.5. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then there exists a non-zero
ideal 𝐽 ⊆ 𝒪𝐿 such that 𝐼𝐽 is principal.

Proof. Choose 𝛼 ∈ 𝐼 \ {0}. Define

𝐽 = {𝛽 ∈ 𝒪𝐿 ∶ 𝛽𝐼 ⊆ (𝛼)}.

𝐽 is a non-zero ideal as 𝛼 ∈ 𝐽. We have 𝐼𝐽 ⊆ (𝛼). Suffices to show equality.
Let 𝐾 = 1

𝛼 𝐼𝐽 ⊆ 𝒪𝐿. We will show in fact that 𝐾 = 𝒪𝐿: if 𝐾 ≠ 𝒪𝐿, there
exists 𝛾 ∈ 𝐿 \ 𝒪𝐿 such that 𝛾𝐾 ⊆ 𝒪𝐿. We have (𝛼) ⊆ 𝐼 hence 1

𝛼 𝐼 ⊇ 𝒪𝐿, hence
𝐾 = 1

𝛼 𝐼𝐽 ⊇ 𝐽. Hence 𝛾𝐽 ⊆ 𝛾𝐾 ⊆ 𝒪𝐿. We also have

𝛾𝐼𝐽 = 𝛾𝛼𝐾 ⊆ (𝛼).

If 𝛽 ∈ 𝛾𝐽 then 𝛽 ∈ 𝒪𝐿 and 𝛽𝐼 ⊆ (𝛼) so 𝛾𝐽 ⊆ 𝐽.
Recall that 𝐽 admits an integral basis so there is an isomorphism 𝐽 ≅ Z𝑛. Let

𝐴 ∈ ℳ𝑛×𝑛(Z) be the matrix representing multiplication by 𝛾, with 𝑓(𝑥) ∈ Z[𝑥]
its characteristic polynomial. Then by Cayley-Hamilton 𝑓(𝛾) = 0 so 𝛾 ∈ 𝒪𝐿.
Absurd.

This shows that 𝐼𝐽 = (𝛼).

Now we have the machinery to define “division” of ideals:

Corollary 4.6. If 𝐼, 𝐽, 𝐾 ⊆ 𝒪𝐿 are non-zero ideals and 𝐼𝐽 = 𝐼𝐾 then
𝐽 = 𝐾.

Proof. Choose a non-zero ideal 𝐴 ⊆ 𝒪𝐿 such that 𝐴𝐼 = (𝛼) is principal. Then

𝛼𝐽 = 𝐴𝐼𝐽 = 𝐴𝐼𝐾 = 𝛼𝐾

so 𝐽 = 𝐾.
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4 Unique factorisation in 𝒪𝐿

Definition (Ideal divisibility). If 𝐼, 𝐽 ⊆ 𝒪𝐿 are non-zero ideals, say 𝐼 divides
𝐽, written 𝐼 ∣ 𝐽, if there exists an ideal 𝐾 ⊆ 𝒪𝐿 such that 𝐼𝐾 = 𝐽.

Corollary 4.7. If 𝐼, 𝐽 ⊆ 𝒪𝐿 are non-zero ideals, then 𝐼 ∣ 𝐽 if and only if
𝐼 ⊇ 𝐽.

Proof. If 𝐼𝐾 = 𝐽 then 𝐽 ⊆ 𝐼. Conversely, suppose 𝐼 ⊇ 𝐽. Choose a non-zero
ideal 𝐴 ⊆ 𝒪𝐿 such that 𝐴𝐼 = (𝛼) is principal. Then (𝛼) = 𝐴𝐼 ⊇ 𝐴𝐽 and so
𝒪𝐿 ⊇ 1

𝛼 𝐴𝐽. So 𝐾 = 1
𝛼 𝐴𝐽 is a non-zero ideal of 𝒪𝐿 and 𝐼𝐾 = 1

𝛼 𝐴𝐼𝐽 = 𝐽.

Finally, the theorem we have promised:

Theorem 4.8. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal, then there exist prime ideals
𝔭1, … , 𝔭𝑟 ⊆ 𝒪𝐿 such that

𝐼 = 𝔭1 ⋯ 𝔭𝑟.

Moreover, the expression is unique up to reordering.

Proof. We show existence by contradiction. Suppose 𝐼 is an ideal which cannot
be written as a product of primes, and with N(𝐼) minimal subject to this con-
dition. We can find a maximal ideal 𝔭 ⊇ 𝐼, which is also prime. Then 𝔭 ∣ 𝐼 so
we can write 𝐼 = 𝔭𝐽 for some 𝐽 ⊆ 𝒪𝐿. Then 𝐽 ∣ 𝐼, hence 𝐽 ⊇ 𝐼. If 𝐽 = 𝐼 then
we get 𝐼 = 𝐼𝔭 and hence 𝒪𝐿 = 𝔭, contradicting the maximality of 𝔭. Therefore
𝐽 ⊋ 𝐼, hence 𝑁(𝐽) < 𝑁(𝐼). By minimality of 𝑁(𝐼), we can write 𝐽 = 𝔭2 ⋯ 𝔭𝑟
where 𝔭𝑖 ⊆ 𝒪𝐿 are prime ideals. Hence

𝐼 = 𝔭𝐽 = 𝔭𝔭2 ⋯ 𝔭𝑟.

Absurd.
For the uniqueness part, suppose 𝔭1, … , 𝔭𝑟 and 𝔮1, … , 𝔮𝑠 are non-zero ideals

in 𝒪𝐿 such that
𝔭1 ⋯ 𝔭𝑟 = 𝔮1 ⋯ 𝔮𝑠.

Then 𝔭1 ∣ 𝔮1 ⋯ 𝔮𝑠 so 𝔭1 ⊇ 𝔮𝑖 for some 1 ≤ 𝑖 ≤ 𝑠. wlog 𝔭1 ⊇ 𝔮1. But both 𝔭1 and
𝔮1 are maximal so 𝔭1 = 𝔮1. Cancel to get

𝔭2 ⋯ 𝔭𝑟 = 𝔮2 ⋯ 𝔮𝑠.

Continue in this way to obtain 𝑟 = 𝑠 and 𝔭𝑖 = 𝔮𝑖 after reordering.

Before going to construct prime ideals and do arithmetics on them, we first
define

Definition (Ideal class group). The ideal class group is defined to be

Cl(𝒪𝐿) = {𝐼 ⊆ 𝒪𝐿 non-zero ideal}/ ∼

where 𝐼 ∼ 𝐽 if there exists 𝛼 ∈ 𝐿× such that 𝛼𝐼 = 𝐽.
Write [𝐼] for the equivalence class containing 𝐼.
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4 Unique factorisation in 𝒪𝐿

Lemma 4.9. Cl(𝒪𝐿) is a group under the operation

[𝐼][𝐽 ] = [𝐼𝐽]

with identity [𝒪𝐿].

Proof. If 𝐼, 𝐽 ⊆ 𝒪𝐿 are non-zero ideals and 𝛼, 𝛽 ∈ 𝐿× are such that 𝛼𝐼, 𝛽𝐽 ⊆ 𝒪𝐿
then

(𝛼𝐼)(𝛽𝐽) = 𝛼𝛽𝐼𝐽
so the operation is well-defined.

For any 𝐼 ⊆ 𝒪𝐿, 𝒪𝐿𝐼 = 𝐼 so [𝒪𝐿] is the identity. We showed that if 𝐼 ⊆ 𝒪𝐿 is
any non-zero ideal then there exists a non-zero ideal 𝐽 ⊆ 𝒪𝐿 such that 𝐼𝐽 = (𝛼)
is principal. Then

[𝐼𝐽] = [𝐼][𝐽] = [(𝛼)] = [𝒪𝐿]
so [𝐼]−1 = [𝐽]. Associativity follows from associativity of ideal multiplication.

Proposition 4.10. TFAE:

1. 𝒪𝐿 is a PID.

2. 𝒪𝐿 is a UFD.

3. Cl(𝒪𝐿) is trivial.

Proof.

• 1 ⟹ 2: See IB Groups, Rings and Modules.

• 2 ⟹ 3: Suffices to show every ideal 𝐼 ⊆ 𝒪𝐿 is principal. We know that
we can write

𝐼 = 𝔭1 ⋯ 𝔭𝑟

as a product of prime ideals. As products of principal ideals are principal,
it suffices to show that every prime ideal of 𝒪𝐿 is principal. Let 𝔭 ⊆ 𝒪𝐿
be a prime ideal and 𝛼 ∈ 𝔭 non-zero, and let

𝛼 = 𝛼1 ⋯ 𝛼𝑟

be a factorisation of 𝛼 into irreducibles. Recall that if a ring is a UFD
then irreducible elements are prime. Since

𝔭 ⊇ (𝛼) = (𝛼1) ⋯ (𝛼𝑟)

so 𝔭 ∣ 𝔭1 ⋯ 𝔭𝑟 where 𝔭𝑖 = (𝛼𝑖). Since 𝛼𝑖’s are prime, 𝔭𝑖 is a prime ideal.
Hence we must have 𝔭 = 𝔭𝑖 = (𝛼𝑖) for some 𝑖. Thus 𝔭 is principal.

• 3 ⟹ 1: Let 𝐼 ⊆ 𝒪𝐿 be a non-zero ideal. Since Cl(𝒪𝐿) is trivial, we
have [𝐼] = [𝒪𝐿], so there exists 𝛼 ∈ 𝐿× such that 𝛼𝒪𝐿 = 𝐼. We have
𝛼 ⋅ 1 = 𝛼 ∈ 𝐼 ⊆ 𝒪𝐿 so 𝛼 ∈ 𝒪𝐿. Then 𝐼 = (𝛼) is principal.

Thus Cl(𝒪𝐿) can be seen as the obstruction to 𝒪𝐿 being a UFD.
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4 Unique factorisation in 𝒪𝐿

Lemma 4.11. If 𝐼, 𝐽 ⊆ 𝒪𝐿 are non-zero ideals then

N(𝐼𝐽) = N(𝐼) N(𝐽).

Proof. Example sheet.
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5 Dedekind’s criterion

5 Dedekind’s criterion
If 𝔭 ⊆ 𝒪𝐿 is a non-zero prime ideal, then there is a unique prime number 𝑝 ∈ Z≥0
such that 𝑝 ∈ 𝔭 since

(𝑝) = ker(Z → 𝒪𝐿/𝔭).

Then 𝔭 ∣ 𝑝𝒪𝐿 and N(𝔭) = 𝑝𝑓 for some 𝑓 ≥ 1.

Lemma 5.1. Let 𝑝 be a prime number and factor

𝑝𝒪𝐿 =
𝑟

∏
𝑖=1

𝔭𝑒𝑖
𝑖

where 𝔭1, … , 𝔭𝑟 are distinct prime ideals of 𝒪𝐿 and 𝑒𝑖 ≥ 1. Define 𝑓𝑖 ≥ 1 by
N(𝔭𝑖) = 𝑝𝑓𝑖 . Then

𝑟
∑
𝑖=1

𝑒𝑖𝑓𝑖 = [𝐿 ∶ Q].

In particular, 𝑟 ≤ [𝐿 ∶ Q].

Proof. Apply norm to get

𝑝[𝐿∶Q] = N(𝑝𝒪𝐿) =
𝑟

∏
𝑖=1

N(𝔭𝑖)𝑒1 = 𝑝∑𝑟
𝑖=1 𝑒𝑖𝑓𝑖 .

Definition (Ramification). Let 𝑝 be a prime number and let 𝑝𝒪𝐿 = ∏𝑟
𝑖=1 𝔭𝑒𝑖

𝑖
be the factorisation as above.

1. We say 𝑝 ramifies in 𝐿 if 𝑒𝑖 > 1 for some 𝑖. We say 𝑝 is totally ramified
if 𝑟 = 1 and 𝑒1 = [𝐿 ∶ Q], i.e. 𝑝𝒪𝐿 = 𝔭[𝐿∶Q]

1 .

2. We say 𝑝 is inert in 𝐿 if 𝑟 = 1 and 𝑒1 = 1, i.e. 𝑝𝒪𝐿 is prime.

3. We say 𝑝 splits completely in 𝐿 if 𝑟 = [𝐿 ∶ Q] and 𝑒𝑖 = 𝑓𝑖 = 1 for all 𝑖.

Theorem 5.2 (Dedekind’s criterion). Let 𝛼 ∈ 𝒪𝐿 be such that 𝐿 = Q(𝛼).
Let 𝑓(𝑥) ∈ Z[𝑥] be its minimal polynomial and let 𝑝 be a prime integer such
that 𝑝 ∤ [𝒪𝐿 ∶ Z[𝛼]]. Let 𝑓(𝑥) = 𝑓(𝑥) (mod 𝑝) and factor

𝑓(𝑥) =
𝑟

∏
𝑖=1

𝑔𝑖(𝑥)𝑒𝑖 ∈ F𝑝[𝑥]

where 𝑔1(𝑥), … , 𝑔𝑟(𝑥) ∈ F𝑝[𝑥] are distinct monic irreducible polynomials. Let
𝑔𝑖(𝑥) ∈ Z[𝑥] be any polynomial with 𝑔𝑖(𝑥) (mod 𝑝) = 𝑔𝑖(𝑥), and define

𝔭𝑖 = (𝑝, 𝑔𝑖(𝛼)) ⊆ 𝒪𝐿,

an ideal of 𝒪𝐿. Let 𝑓𝑖 = deg 𝑔𝑖(𝑥).
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5 Dedekind’s criterion

Then 𝔭1, … , 𝔭𝑟 are disjoint prime ideals of 𝒪𝐿 and

𝑝𝒪𝐿 =
𝑟

∏
𝑖=1

𝔭𝑒𝑖

N(𝔭𝑖) = 𝑝𝑓𝑖

Example. Let 𝐿 = Q(
√

−11) and 𝑝 = 5. As −11 = 1 (mod 4), 𝒪𝐿 =
Z[ 1+

√
−11

2 ]. Thus Z[
√

−11] ⊆ 𝒪𝐿 has index 2 as an additive subgroup. Therefore
we can apply Dedekind’s criterion to 𝛼 =

√
−11. 𝑓(𝑥) = 𝑥2 + 11.

𝑓(𝑥) = 𝑓(𝑥) (mod 5) = 𝑥2 + 1 = (𝑥 + 2)(𝑥 + 3) ∈ F5[𝑥]

so 5𝒪𝐿 = 𝔭𝔮 where

𝔭 = (5,
√

−11 + 2)

𝔮 = (5,
√

−11 + 3)

and 𝔭, 𝔮 are distinct prime ideals of 𝒪𝐿. Thus 5 splits completely in Q(
√

−11).

Proof. Recall that if 𝑅 is a ring and 𝐼 ⊆ 𝑅 is an ideal, then there is a bijection

{ideals 𝐽 ⊆ 𝑅 containing 𝐼} ↔ {ideals 𝐾 of 𝑅/𝐼}
𝐽 ↦ 𝐽/𝐼 ⊆ 𝑅/𝐼

Furthermore there is an isomorphism

𝑅/𝐽 ≅ (𝑅/𝐼)/(𝐽/𝐼).

We have Z[𝛼] ⊆ 𝒪𝐿 of finite index. Let 𝐴 = Z[𝛼], 𝜑 ∶ 𝐴 ↪ 𝒪𝐿. By reduction
mod 𝑝, get a ring homomorphism

𝜑 ∶ 𝐴/𝑝𝐴 → 𝒪𝐿/𝑝𝒪𝐿

𝛽 + 𝑝𝐴 ↦ 𝛽 + 𝑝𝒪𝐿

Claim that 𝜑 is an isomorphism. Since both the domain and the codomain have
the same cardinality 𝑝[𝐿∶Q], it suffices to show 𝜑 is surjective. Let 𝑁 = [𝒪𝐿 ∶
Z[𝛼]]. We can find 𝑎, 𝑏 ∈ Z such that 𝑎𝑁 + 𝑏𝑝 = 1. If 𝛽 ∈ 𝒪𝐿 then 𝑁𝛽 ∈ Z[𝛼]
by Lagrange, and 𝛽 = 𝑎𝑁𝛽 + 𝑏𝑝𝛽 so 𝜑(𝑎𝑁𝛽 + 𝑝𝐴) = 𝛽 + 𝑝𝒪𝐿.

Therefore

{ideals in 𝒪𝐿 containing 𝑝} ↔ {ideals of 𝐴/𝑝𝐴}
(𝑝) ⊆ 𝐼 ↔ 𝐼 ∋ 𝑝

We have

𝐴 = Z[𝛼] ≅ Z[𝑥]/(𝑓(𝑥))
𝛼 ↤ 𝑥

Reduction mod 𝑝 gives an isomorphism

𝐴/𝑝𝐴 ≅ Z[𝑥]/(𝑝, 𝑓(𝑥)) ≅ F𝑝[𝑥]/(𝑓(𝑥)).
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5 Dedekind’s criterion

We have 𝑓(𝑥) = ∏𝑟
𝑖=1 𝑔𝑖(𝑥)𝑒𝑖 , so there are homomorphisms

F𝑝[𝑥]/(𝑓(𝑥)) → F𝑝[𝑥]/(𝑔𝑖(𝑥))

given by quotienting by the ideal (𝑔𝑖(𝑥)) ⊇ (𝑓(𝑥)).
Define 𝔭𝑖 ⊆ 𝒪𝐿 to be the ideal containing 𝑝 such that 𝔭𝑖/(𝑝) is the kernel of

the ring homomorphism

𝒪𝐿/𝑝𝒪𝐿 𝐴/𝑝𝐴 F𝑝[𝑥]/(𝑓(𝑥)) F𝑝[𝑥]/(𝑔𝑖(𝑥))𝜑−1 ≅

This ring homomorphism is surjective and its image is a field of cardinality 𝑝𝑓𝑖 .
Hence 𝒪𝐿/𝔭𝑖 is a finite field of cardinality 𝑝𝑓𝑖 so 𝔭𝑖 is a prime ideal of norm

N(𝔭𝑖) = 𝑝𝑓𝑖 .

The 𝔭𝑖’s are distinct because their images in 𝒪𝐿/𝑝𝒪𝐿 are distinct, as if 𝑖 ≠ 𝑗
then (𝑔𝑖(𝑥), 𝑔𝑗(𝑥)) is the unit ideal of F𝑝[𝑥].

To show 𝔭𝑖 = (𝑝, 𝑔𝑖(𝑥)), it suffices to show 𝔭𝑖/(𝑝) ⊆ 𝒪𝐿/𝑝𝒪𝐿 is generated by
𝑔𝑖(𝛼). This is equivalent to showing

ker(F𝑝[𝑥]/(𝑓(𝑥)) → F𝑝[𝑥]/(𝑔𝑖(𝑥))

is generated by 𝑔𝑖(𝑥), which is true by definition.
It remains to show

𝔭𝑒1
1 ⋯ 𝔭𝑒𝑟𝑟 = 𝑝𝒪𝐿.

𝔭𝑒1
1 ⋯ 𝔭𝑒𝑟𝑟 = (𝑝, 𝑔1(𝛼))𝑒1 ⋯ (𝑝, 𝑔𝑟(𝛼))𝑒𝑟

⊆ (𝑝, 𝑔1(𝛼)𝑒1) ⋯ (𝑝, 𝑔𝑟(𝛼)𝑒𝑟)
⊆ (𝑝, 𝑔1(𝛼)𝑒1 ⋯ 𝑔𝑟(𝛼)𝑒𝑟)
= (𝑝, 𝑓(𝛼))
= (𝑝)

by noting that
(𝑥, 𝑦)𝑛 = (𝑥𝑛, 𝑥𝑛−1𝑦, … , 𝑦𝑛) ⊆ (𝑥, 𝑦𝑛).

Take norm,

N(𝔭𝑒𝑞
1 ⋯ 𝔭𝑒𝑟𝑟 ) =

𝑟
∏
𝑖=1

N(𝔭𝑖)𝑒𝑖

= 𝑝∑𝑟
𝑖=1 𝑒𝑖𝑓𝑖

= 𝑝deg 𝑓

= 𝑝[𝐿∶Q]

= N(𝑝)

so equality holds.

One application is the classification of prime ideals in ring of integers of
quadratic fields:
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5 Dedekind’s criterion

Proposition 5.3. Let 𝑑 be a square-free integer, 𝑑 ≠ 0, 1, 𝐿 = Q(
√

𝑑) and
let 𝑝 be a prime number. Then

1. if 𝑝 is odd then

(a) if 𝑝 ∣ 𝑑, then (𝑝) = 𝔭2 so 𝑝 ramifies in 𝐿.
(b) if 𝑝 ∤ 𝑑 and (𝑑

𝑝) = 1 then (𝑝) = 𝔭𝔮 so 𝑝 splits completely in 𝐿.

(c) if 𝑝 ∤ 𝑑 and (𝑑
𝑝) = −1 then (𝑝) is prime and thus inert in 𝐿.

2. if 𝑝 = 2 then

(a) if 𝑑 = 2, 3 (mod 4) then 2 ramifies in 𝐿.
(b) if 𝑑 = 1 (mod 8) then 2 splits completely in 𝐿.
(c) if 𝑑 = 5 (mod 8) then 2 is inert in 𝐿.

Proof. The case for 𝑝 odd is similar to the worked example above and is left as
an exercise. We just do the case for 𝑝 = 2. If 𝑑 = 2, 3 (mod 4) then 𝒪𝐿 = Z[

√
𝑑]

so by Dedekind’s criterion, we must factor 𝑥2 − 𝑑 (mod 2). But

𝑥2 − 𝑑 = (𝑥 − 𝑑)2 (mod 2).

If 𝑑 = 1 (mod 4) then 𝒪𝐿 = Z[ 1+
√

𝑑
2 ] so we must factor 𝑥2 −𝑥+ 1−𝑑

4 (mod 2).
If 𝑑 = 1 (mod 8) then

𝑥2 + 𝑥 = 𝑥(𝑥 + 1) (mod 2).

If 𝑑 = 5 (mod 8) then the polynomial is irreducible.

27



6 Geometry of numbers

6 Geometry of numbers

Definition (Lattice). If 𝑉 is a finite-dimensional R-vector space, then a
lattice in 𝑉 is a subgroup of the form

Λ =
𝑛

⨁
𝑖=1

Z𝑣𝑖

where 𝑣1, … , 𝑣𝑛 is a basis of 𝑉 as an R-vector space.

This is a generalisation of the ususal lattice Z𝑛 ⊆ R𝑛.

Definition (Covolume). If 𝑉 is a finite-dimensional real inner product space
and Λ ⊆ 𝑉 is a lattice, then the covolume of Λ is

𝐴(Λ) = vol ({
𝑛

∑
𝑖=1

𝑡𝑖𝑣𝑖 ∶ 𝑡𝑖 ∈ [0, 1)})

where Λ = ⨁𝑛
𝑖=1 Z𝑣𝑖.

It is an exercise to check that it is independent of the choice of basis (that
generate Λ).

We first consider only a fixed imaginary quadratic field 𝐿 = Q(
√

𝑑) where
𝑑 < 0 is square-free. Let 𝜎 ∶ 𝐿 → C be a complex embedding. Our first
observation is that 𝜎(𝒪𝐿) is a lattice in C:

1. if 𝑑 = 2, 3 (mod 4), then 𝜎(𝒪𝐿) = Z ⊕ Z
√

𝑑.

2. if 𝑑 = 1 (mod 4), then 𝜎(𝒪𝐿) = Z ⊕ Z 1+
√

𝑑
2 .

More generally, if 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then 𝜎(𝐼) is a lattice in C.

Lemma 6.1. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then

𝐴(𝐼) = 1
2

√| disc(𝐼)| = N(𝐼)
2

√|𝐷𝐿|.

Proof. Let 𝛼1, 𝛼2 be an integral basis for 𝐼. Then

𝜎(𝐼) = Z𝜎(𝛼1) ⊕ Z𝜎(𝛼2).

If 𝜎𝛼1 = 𝑥1 + 𝑖𝑦1, 𝜎𝛼2 = 𝑥2 + 𝑖𝑦2 where 𝑥𝑖, 𝑦𝑖’s are real, then

𝐴(𝜎(𝐼)) = ∣det (𝑥1 𝑥2
𝑦1 𝑦2

)∣

which is the area of the parallelogram spanned by the two vectors. Also by
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6 Geometry of numbers

definition,

disc(𝐼) = det (𝑥1 + 𝑖𝑦1 𝑥2 + 𝑖𝑦2
𝑥1 − 𝑖𝑦1 𝑥2 − 𝑖𝑦2

)
2

= det (𝑥1 + 𝑖𝑦1 𝑥2 + 𝑖𝑦2
2𝑥1 2𝑥2

)
2

= (2𝑖)2 det (𝑦1 𝑦2
𝑥1 𝑥2

)
2

To demonstrate how to actually compute and use covolume, we state a the-
orem whose general version will be proved later:

Theorem 6.2 (Special case of Minkowski’s theorem). Let Λ ⊆ R2 be a
lattice and let 𝑆 = 𝐷(0, 𝑟) ⊆ R2 be the closed disk of radius 𝑟. Then if
area(𝑆) ≥ 4𝐴(Λ) then there exists 𝜆 ∈ Λ \ {0} such that 𝜆 ∈ 𝑆.

The surprising thing about this theorem is that it is independent of the
shape of the lattice.

In particular, there exists 𝜆 ∈ Λ \ {0} such that

|𝜆|2 ≤ 4
𝜋

𝐴(Λ).

Corollary 6.3. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then there exists 𝛼 ∈ 𝐼 \ {0}
such that

N(𝛼) ≤ 𝑐𝐿 N(𝐼)

where 𝑐𝐿 = 2
𝜋 √|𝐷𝐿|.

Proof. We apply the theorem to 𝜎(𝐼) ⊆ C to get there exists 𝜆 ∈ 𝜎(𝐼) \ {0}
such that

|𝜆|2 ≤ 4
𝜋

N(𝐼)
2

√|𝐷𝐿| = 𝑐𝐿 N(𝐼).

If 𝛼 ∈ 𝐼 is such that 𝜎(𝛼) = 𝜆 then

N(𝛼) = 𝜎(𝛼)𝜎(𝛼) = |𝜎(𝛼)|2 = |𝜆|2.

Corollary 6.4. If [𝐼] ∈ Cl(𝒪𝐿) then there exist 𝐽 ∈ [𝐼] such that

N(𝐽) ≤ 𝑐𝐿.

Proof. Choose 𝐾 ∈ [𝐼]−1 such that 𝐼𝐾 is principal. Apply the previous corollary
to find 𝛼 ∈ 𝐾 \ {0} such that

N(𝛼) ≤ 𝑐𝐿 N(𝐾).
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6 Geometry of numbers

As (𝛼) ⊆ 𝐾, 𝐾 ∣ (𝛼) so there exist 𝐽 ⊆ 𝒪𝐿 non-zero such that 𝐽𝐾 = (𝛼). Then
done since [𝐽 ] = [𝐾]−1 = [𝐼] and

N(𝐽) = N(𝛼)
N(𝐾)

≤ 𝑐𝐿.

Finally we can prove our first result in algebraic number theory:

Theorem 6.5. The group Cl(𝒪𝐿) is finite.

In fact, we will later prove that this is true for any number field 𝐿.

Proof. We’ve shown that every class [𝐼] ∈ Cl(𝒪𝐿) has a representative of norm
≤ 𝑐𝐿. Thus suffices to show that for every 𝑚 ∈ Z, 𝑚 ≥ 1, the number of ideals
𝐼 ⊆ 𝒪𝐿 of norm N(𝐼) = 𝑚 is finite.

If N(𝐼) = 𝑚 then [𝒪𝐿 ∶ 𝐼] = 𝑚 so by Lagrange 𝑚 ∈ 𝐼. Thus 𝐼 comes from
an ideal of the finite ring 𝒪𝐿/𝑚𝒪𝐿.

Note. We see Cl(𝒪𝐿) is generated by ideal classes [𝔭] where 𝔭 ⊆ 𝒪𝐿 is a non-
zero prime ideal of norm N(𝔭) ≤ 𝑐𝐿. To see this, any class has the form [𝐼]
where N(𝐼) ≤ 𝑐𝐿. If 𝐼 = ∏𝑟

𝑖=1 𝔭𝑒𝑖
𝑖 then

[𝐼] =
𝑟

∏
𝑖=1

[𝔭𝑖]𝑒𝑖

N(𝐼) =
𝑟

∏
𝑖=1

N(𝔭𝑖)𝑒𝑖

Thus N(𝔭𝑖) ≤ N(𝐼) ≤ 𝑐𝐿.

Example.

1. 𝑑 = −7. As 𝑑 = 1 (mod 4), 𝐷𝐿 = 𝑑 based on our results in previous
chapters. Thus

𝑐𝐿 = 2
𝜋

√
7 < 2

3
√

7 < 2

so Cl(𝒪𝐿) is generated by ideals of norm < 2. There are none except 𝒪𝐿.
Thus Cl(𝒪𝐿) is trivial. Hence 𝒪𝐿 = Z[ 1+

√
−7

2 ] is a UFD.

2. 𝑑 = −5. We already knew this is not a UFD. 𝐷𝐿 = 4𝑑 so

𝑐𝐿 = 2
𝜋

√
20 = 4

𝜋
√

5 < 4
3

√
5 < 3

so Cl(𝒪𝐿) is generated by prime ideals 𝔭 ⊆ 𝒪𝐿 of norm N(𝔭) = 2. We
know by Dedekind’s criterion that 2𝒪𝐿 = 𝔭2. Thus Cl(𝒪𝐿) is generated
by [𝔭] and [𝔭]2 = [2𝒪𝐿] = [𝒪𝐿] is the trivial class. Hence there are two
possibilities:

(a) if 𝔭 is principal then Cl(𝒪𝐿) is trivial.
(b) if 𝔭 is not principal then Cl(𝒪𝐿) ≅ Z/2Z.
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6 Geometry of numbers

But we already knew that 𝒪𝐿 is not a UFD so Cl(𝒪𝐿) is not trivial so
must have

Cl(𝒪𝐿) ≅ Z/2Z.

Having a grasp of the tools we have, we will now move on to a general number
field 𝐿.

First we have a theorem that does not necessarily have any relation with
number fields:

Theorem 6.6 (Minkowski). Let Λ ⊆ R𝑛 be a lattice and let 𝐸 ⊆ R𝑛 be a
measurable subset which is convex and centrally symmetric, i.e. 𝐸 = −𝐸 =
{𝑥 ∈ R𝑛 ∶ −𝑥 ∈ 𝐸}. Then

1. if vol(𝐸) > 2𝑛𝐴(Λ), then there exists 𝜆 ∈ Λ \ {0} such that 𝜆 ∈ 𝐸.

2. if vol(𝐸) ≥ 2𝑛𝐴(Λ) and 𝐸 is compact, then there exists 𝜆 ∈ Λ \ {0}
such that 𝜆 ∈ 𝐸.

Note that the special case we used above corresponds to 𝑛 = 2 and 𝐸 closed
disk.

Proof. Let Λ = ⨁𝑛
𝑖=1 Z𝑣𝑖, 𝑃 = {∑𝑛

𝑖=1 𝑡𝑖𝑣𝑖 ∶ 𝑡𝑖 ∈ [0, 1)}. Then vol(𝑃 ) = 𝐴(Λ)
and R𝑛 = ⋃𝜆∈Λ(𝑃 + 𝜆). Then

1.

vol(𝑃 ) < 1
2𝑛 vol(𝐸)

= vol(1
2

𝐸)

= ∑
𝜆∈Λ

vol(1
2

𝐸 ∩ (𝜆 + 𝑃))

= ∑
𝜆∈Λ

vol((1
2

𝐸 − 𝜆) ∩ 𝑃)

Claim that there exists 𝜆, 𝜇 ∈ Λ distinct such that ( 1
2 𝐸 − 𝜆) ∩ ( 1

2 𝐸 − 𝜇) is
non-empty: if not, the sets 1

2 𝐸 − 𝜆 are pairwise disjoint so

vol(𝑃 ) < ∑
𝜆∈Λ

vol((1
2

𝐸 − 𝜆) ∩ 𝑃) ≤ vol(𝑃 ),

absurd. Hence there exists 𝑧, 𝑤 ∈ 𝐸 such that 𝑧
2 − 𝜆 = 𝑤

2 − 𝜇. Thus

𝜆 − 𝜇 = 𝑧
2

− 𝑤
2

= 𝑧
2

+ −𝑤
2

.

As 𝐸 is centrally symmetric, −𝑤 ∈ 𝐸. Finally as 𝐸 is convex, 𝑧
2 + −𝑤

2 ∈ 𝐸.
Thus 𝜆 − 𝜇 ∈ (Λ \ {0}) ∩ 𝐸.

2. Given the further assumption that 𝐸 is compact, 𝐸 is closed and bounded.
vol(𝐸) ≥ 2𝑛𝐴(Λ) implies that for 𝑚 ≥ 1

vol((1 + 1
𝑚

)𝐸) > 2𝑛𝐴(Λ).
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6 Geometry of numbers

By 1, for all 𝑚 ∈ N there exists 𝜆𝑚 ∈ (Λ\{0})∩((1+ 1
𝑚 )𝐸). (1+ 1

𝑚 )𝐸 ⊆ 2𝐸
and 2𝐸 ∩ Λ is finite as 2𝐸 is bounded. By pigeonhole principle, we can
assume there exists 𝜆 ∈ Λ \ {0} such that 𝜆𝑚 = 𝜆 for all 𝑚 ≥ 1. 𝐸 is
closed and 𝜆 ∈ (1 + 1

𝑚 )𝐸 for all 𝑚 ≥ 1. Thus 𝜆 ∈ 𝐸.

Now let 𝐿 be a number field. Let 𝑛 = [𝐿 ∶ Q] and 𝜏1, … , 𝜏𝑟 ∶ 𝐿 → R be real
embeddings of 𝐿 and 𝜎1, 𝜎1, … , 𝜎𝑠, 𝜎𝑠 ∶ 𝐿 → R be complex embeddings. We
have 𝑛 = 𝑟 + 2𝑠.

Define a map

𝑆 ∶ 𝐿 → R𝑟 × C𝑠

𝛼 ↦ (𝜏1(𝛼), … , 𝜏𝑟(𝛼), 𝜎1(𝛼), … , 𝜎𝑠(𝛼))

This is a homomorphism of additive groups.

Lemma 6.7. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then 𝑆(𝐼) is a lattice.

Proof. Let 𝛼1, … , 𝛼𝑛 be an integral basis of 𝐼. Then

𝑆(𝐼) =
𝑛

⨁
𝑖=1

Z𝑆(𝛼𝑖)

and R𝑟×C𝑠 is an 𝑛-dimensional R-vector space. So we must show that 𝑆(𝛼1), … , 𝑆(𝛼𝑛)
are independent, or equivalently that

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜏1(𝛼1) ⋯ 𝜏1(𝛼𝑛)
⋮ ⋮

𝜏𝑟(𝛼1) ⋯ 𝜏𝑟(𝛼𝑛)
Re 𝜎1(𝛼1) ⋯ Re 𝜎1(𝛼𝑛)
Im 𝜎1(𝛼1) ⋯ Im 𝜎1(𝛼𝑛)

⋮ ⋮
Re 𝜎𝑠(𝛼1) ⋯ Re 𝜎𝑠(𝛼𝑛)
Re 𝜎𝑠(𝛼1) ⋯ Re 𝜎𝑠(𝛼𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≠ 0.

Note that for 𝑧 ∈ C, we have

(𝑧
𝑧) = (1 𝑖

1 −𝑖) (Re 𝑧
Im 𝑧) .

So this determinant equals to

( 1
−2𝑖

)
𝑠

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜏1(𝛼1) ⋯ 𝜏1(𝛼𝑛)
⋮ ⋮

𝜏𝑟(𝛼1) ⋯ 𝜏𝑟(𝛼𝑛)
𝜎1(𝛼1) ⋯ 𝜎1(𝛼𝑛)
𝜎1(𝛼1) ⋯ 𝜎1(𝛼𝑛)

⋮ ⋮
𝜎𝑠(𝛼1) ⋯ 𝜎𝑠(𝛼𝑛)
𝜎𝑠(𝛼1) ⋯ 𝜎𝑠(𝛼𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≠ 0

as disc(𝐼) ≠ 0.
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6 Geometry of numbers

Lemma 6.8. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal, then

𝐴(𝑆(𝐼)) = 1
2𝑠

√| disc(𝐼)| = N(𝐼)
2𝑠

√|𝐷𝐿|.

Proof. Same calculation with determinants as before.

Proposition 6.9. If 𝐼 ⊆ 𝒪𝐿 is a non-zero ideal then there exists 𝛼 ∈ 𝐼 \{0}
such that

N(𝛼) ≤ 𝑐𝐿 N(𝐼)

where
𝑐𝐿 = ( 4

𝜋
)

𝑠 𝑛!
𝑛𝑛

√|𝐷𝐿|.

Definition (Minkowski constant). 𝑐𝐿 above is called the Minkowski con-
stant of 𝐿.

Proof. Apply Minkowski to the lattice 𝑆(𝐼) and the region, which might not be
the most intuitive choice,

𝐵𝑟,𝑠(𝑡) = {(𝐱, 𝐳) ∈ R𝑟 × C𝑠 ∶
𝑟

∑
𝑖=1

|𝑥𝑖| + 2
𝑠

∑
𝑖=1

|𝑧𝑖| ≤ 𝑡} .

Check that it is convex, centrally symmetric and compact. If

vol(𝐵𝑟,𝑠(𝑡)) ≥ 2𝑛𝐴(𝑆(𝐼))

then there exists 𝛼 ∈ 𝐼 \ {0} such that 𝑆(𝛼) ∈ 𝐵𝑟,𝑠(𝑡).
Now we use AM-GM inequality to bound N(𝛼):

N(𝛼)1/𝑛 = (
𝑟

∏
𝑖=1

|𝜏𝑖(𝛼)|
𝑠

∏
𝑖=1

|𝜎𝑖(𝛼)|2)
1/𝑛

≤ 1
𝑛

(
𝑟

∑
𝑖=1

|𝜏𝑖(𝛼)| + 2
𝑠

∑
𝑖=1

|𝜎𝑖(𝛼)|)

≤ 𝑡
𝑛

and therefore N(𝛼) ≤ 𝑡𝑛

𝑛𝑛 . To get the optimal bound, choose 𝑡 so that

vol(𝐵𝑟,𝑠(𝑡)) = 2𝑛𝐴(𝑆(𝐼)).

It is an elementary exercise to show that

vol(𝐵𝑟,𝑠(𝑡)) = 2𝑟 (𝜋
2

)
𝑠 𝑡𝑛

𝑛!

by induction on 𝑟 and 𝑠. Thus

2𝑟 (𝜋
2

)
𝑠 𝑡𝑛

𝑛!
= 2𝑛𝐴(𝑆(𝐼)) = 2𝑟+𝑠 N(𝐼)√|𝐷𝐿|.
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Rearrange,
N(𝛼) ≤ 𝑡𝑛

𝑛𝑛 = 𝑐𝐿 N(𝐼).

Similar corollaries:

Corollary 6.10. For any class [𝐼] ∈ Cl(𝒪𝐿), there exists 𝐽 ∈ [𝐼] such that

N(𝐽) ≤ 𝑐𝐿.

Corollary 6.11. The group Cl(𝒪𝐿) is finite and generated by [𝔭] where 𝔭
is a prime ideal of norm N(𝔭) ≤ 𝑐𝐿.

Proof. Exactly the same as before.

Remark. In practice, the Minkowski constant is a very effective bound.

Example. Let 𝑓(𝑥) = 𝑥5 − 𝑥 + 1. This is irreducible modulo 5, so over Q. Let
𝐿 = Q(𝛼) where 𝛼 is a root of 𝑓(𝑥). In this case 𝑟 = 1, 𝑠 = 2. The discrimiant
is

disc 𝑓 = 2869 = 19 ⋅ 151

which is square-free. Thus 𝒪𝐿 = Z[𝛼] and 𝐷𝐿 = disc 𝑓. Thus

𝑐𝐿 = ( 4
𝜋

)
2 5!

55

√
2869 < 4.

Hence Cl(𝒪𝐿) is generated by prime ideals 𝔭 of norm N(𝔭) = 2 or 3. But by
Dedekind’s criterion, such primes exists if and only if 𝑓(𝑥) has a root in F2 or
F3. In this case there are not such roots so Cl(𝒪𝐿) is trivial so Z[𝛼] is a UFD.

Example. Let 𝐿 = Q(
√

10). Then

𝑐𝐿 = 1
2

√
4 ⋅ 10 =

√
10 < 4.

Thus Cl(𝒪𝐿) is generated by [𝔭] where N(𝔭) = 2 or 3. By Dedekind’s criterion,

(2) = 𝔭2
2

(3) = 𝔭3𝔭′
3

where

𝔭2 = (2,
√

10)

𝔭3 = (3, 1 +
√

10)

𝔭′
3 = (3, 1 −

√
10)

To find relations in Cl(𝒪𝐿), we can calculate the norm. For example,

N(2 +
√

10) = |4 − 10| = 6

34



6 Geometry of numbers

so
(2 +

√
10) = 𝔭2𝔭3 or 𝔭2𝔭′

3.
In either case we see that [𝔭2] generates Cl(𝒪𝐿) so Cl(𝒪𝐿) is either trivial or
isomorphic to Z/2Z, with the second case occurring if and only if 𝔭2 is not
principal. 𝔭2 is principal if and only if there exists 𝑎 + 𝑏

√
10 ∈ 𝒪𝐿 such that

(𝑎 + 𝑏
√

10) = 𝔭2. Taking norm,

𝑎2 − 10𝑏2 = ±2.

Reduce modulo 5, neither 2 or −2 is a quadratic residue. Absurd. Thus 𝔭2 is
not principal and

Cl(𝒪𝐿) ≅ Z/2Z.

Example. Let 𝐿 = Q(
√

−17). Then

𝑐𝐿 = 4
𝜋

⋅ 1
2

⋅
√

4 ⋅ 17 = 4
𝜋

√
17 < 4

3
√

17 < 6

So Cl(𝒪𝐿) is generated by primes of norm 2, 3 or 5.
By Dedekind’s criterion,

• 𝑥2 + 17 = 𝑥2 + 2 (mod 5) so (5) is prime of norm 25.

• 𝑥2 + 17 = 𝑥2 − 1 (mod 3) so

(3) = 𝔮3𝔮′
3

where

𝔮3 = (3, 1 +
√

−17)

𝔮′
3 = (3, 1 −

√
−17)

• 𝑥2 + 17 = (𝑥 + 1)2 (mod 2) so

(2) = 𝔮2
2

where
𝔮2 = (2, 1 +

√
−17).

Now compute, for example, the norm

N(1 +
√

−17) = 18 = 2 ⋅ 32.

Note that 1 +
√

−17 ∈ 𝔮3 so 𝔮3 ∣ (1 +
√

−17). So we must have one of

(1 +
√

−17) = 𝔮2𝔮3𝔮′
3

(1 +
√

−17) = 𝔮2𝔮2
3

Note that they result in different structures of Cl(𝒪𝐿). To decide between these,
we compute

𝔮2
3 = (9, 3 + 3

√
−17, (1 +

√
−17)2)

= (9, 3 + 3
√

−17, −16 + 2
√

−17)

= (9, 3 + 3
√

−17, 2 + 2
√

−17)

= (9, 1 +
√

−17)
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We see 1 +
√

−17 ∈ 𝔮2
3 so we have (1 +

√
−17) = 𝔮2𝔮2

3.1
We see [𝔮3] generates Cl(𝒪𝐿) and if 𝔮2 is not principal then Cl(𝒪𝐿) ≅ Z/4Z.

But 𝔮2 is principal if and only if we can solve

𝑎2 + 17𝑏2 = 2

in Z. This is impossible so
Cl(𝒪𝐿) ≅ Z/4Z.

Remark. There are many open questions about ideal class groups, even for
quadratic fields.

• We know: | Cl(𝒪Q(
√

𝑑))| → ∞ as 𝑑 → −∞ through square-free integers.
In particular, there are only finitely many imaginary quadratic fields of
given cardinality. For example, there are exactly 9 imaginary quadratic
fields with trivial ideal class group. See example sheet for the existence
(the uniqueness part is much more difficult).

• We don’t know: are there infinitely many real quadratic fields of trivial
ideal class group?

• Cohen-Lenstra heuristics: let 𝑝 be an odd prime and 𝐴 be a finite abelian
group of 𝑝-power order. Then for 𝑑 < 0 square-free, conjecture that

P(Cl(𝒪Q(
√

𝑑))𝑝 ≅ 𝐴) =
∏∞

𝑖=1(1 − 1
𝑝𝑖 )

| Aut(𝐴)|
.

where for a finite abelian group 𝑀, 𝑀𝑝 is the (unique) 𝑝-Sylow subgroup
and the probability on LHS is defined to be

lim
𝑥→∞

|{𝑑 < 0 ∶ |𝑑| < 𝑥, 𝑑 square-free, Cl(𝒪Q(
√

𝑑))𝑝 ≅ 𝐴}|
|{𝑑 < 0 ∶ |𝑑| < 𝑥, 𝑑 square-free}|

.

1In this specific case, one can take a shortcut by noting that 𝔮3𝔮′
3 = (3) which does not

divide (1 +
√

−17).
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7 Dirichlet’s unit theorem

7 Dirichlet’s unit theorem
Let 𝐿 be a number field of degree 𝑛 and Let 𝜏1, … , 𝜏𝑟 ∶ 𝐿 → R be real embed-
dedings, 𝜎1, … , 𝜎𝑠, 𝜎1, … , 𝜎𝑠 ∶ 𝐿 → C be distinct complex embeddings.

Theorem 7.1 (Dirichlet’s unit theorem). There is an isomorphism

𝒪×
𝐿 ≅ 𝜇𝐿 × Z𝑟+𝑠−1

where 𝜇𝐿 ⊆ 𝒪×
𝐿 is the finite cyclic group of roots of unity in 𝒪×

𝐿.

In fact, the proof shows more: define a map ℓ ∶ 𝒪×
𝐿 → R𝑟+𝑠 by

𝛼 ↦ (log |𝜏1(𝛼)|, … , log |𝜏𝑟(𝛼)|, 2 log |𝜎1(𝛼)|, … , 2 log |𝜎𝑠(𝛼)|).

Then this is a homomorphism of abelian groups, and ℓ(𝒪×
𝐿) is contained in the

hyperplane

𝐻 = {𝐱 ∈ R𝑟+𝑠 ∶
𝑟+𝑠

∑
𝑖=1

𝑥𝑖 = 0} ⊆ R𝑟+𝑠.

This implies that if 𝛼 ∈ 𝒪×
𝐿 then

log N(𝛼) =
𝑟

∑
𝑖=1

log |𝜏𝑖(𝛼)| + 2
𝑠

∑
𝑖=1

log |𝜎𝑖(𝛼)| = 0.

The proof of the theorem will show ℓ(𝒪×
𝐿) is a lattice in 𝐻.

Example. 𝒪×
𝐿 is finite if and only if 𝑟 + 𝑠 = 1, i.e.

• 𝑟 = 1, 𝑠 = 0, so 𝐿 = Q.

• 𝑟 = 0, 𝑠 = 1, so 𝐿 = Q(
√

𝑑) where 𝑑 < 0 is square-free.

The first case where 𝒪×
𝐿 is infinite is 𝐿 = Q(

√
𝑑), 𝑑 > 0 square-free. Then

𝑟 + 𝑠 − 1 = 1, so ℓ(𝒪×
𝐿) is infinite cyclic. Fix 𝜎 ∶ Q(

√
𝑑) → R to be the real

embedding with 𝜎(
√

𝑑) > 0. 𝜎(𝜇𝐿) ⊆ R× so 𝜇𝐿 = {±1}. In this case we can
consider the map

ℓ′ ∶ 𝒪×
𝐿 → R
𝛼 ↦ log |𝜎(𝛼)|

We know that ℓ′(𝒪×
𝐿) ⊆ R is a lattice. In particular, there is a unique charac-

terised unit 𝛼 ∈ 𝒪×
𝐿 satisfying 𝜎(𝛼) > 0, log |𝜎(𝛼)| > 0 and as small as possible.

In other words, 𝛼 ∈ 𝒪×
𝐿 is the unit for which 𝜎(𝛼) > 1 and 𝜎(𝛼) is minimal with

respect to this property. We call 𝛼 the fundamental unit of 𝐿 = Q(
√

𝑑). Then
we have

𝒪×
𝐿 = {±𝛼𝑛 ∶ 𝑛 ∈ Z}.

How to find fundamental units?

Lemma 7.2.

1. If 𝑑 = 2, 3 (mod 4) and 𝑣 ∈ 𝒪×
𝐿 satisfies 𝑣 > 1, then

𝑣 = 𝑎 + 𝑏
√

𝑑
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7 Dirichlet’s unit theorem

where 𝑎 ≥ 𝑏 ≥ 1.

2. If 𝑑 = 1 (mod 4) and 𝑣 ∈ 𝒪×
𝐿 satisfies 𝑣 > 1, then

𝑣 = 1
2

(𝑎 + 𝑏
√

𝑑)

where 𝑎 ≥ 𝑏 ≥ 1.
Proof.

1. Let 𝑣′ = 𝑎 − 𝑏
√

𝑑. Then

𝑣𝑣′ = 𝑎2 − 𝑑𝑏2 = N𝐿/Q(𝑣) = ±1

so 𝑣 > 1 implies that |𝑣′| < 1. Hence

𝑣 + 𝑣′ = 2𝑎 > 0

𝑣 − 𝑣′ = 2𝑏
√

𝑑 > 0

As 𝑎, 𝑏 are integers, we must have 𝑎 ≥ 1, 𝑏 ≥ 1. Also

(𝑎
𝑏

)
2

= 𝑑 ± 1
𝑏2 ≥ 1

as 𝑑 ≥ 2.

2. Let 𝑣′ = 1
2 (𝑎 − 𝑏

√
𝑑). Then 𝑣𝑣′ = ±1 and 𝑎2 − 𝑑𝑏2 = ±4. Then

𝑣 + 𝑣′ = 𝑎 > 0

𝑣 − 𝑣′ = 𝑏
√

𝑑 > 0

so 𝑎 ≥ 1, 𝑏 ≥ 1. Also
(𝑎

𝑏
)

2
= 𝑑 ± 4

𝑏2 ≥ 1

as 𝑑 ≥ 5.

We can use this to find the fundamental unit in a quadratic field Q(
√

𝑑)
where 𝑑 ∈ Z is positive square-free.

1. 𝑑 = 2, 3 (mod 4): let 𝑢 = 𝑎 + 𝑏
√

𝑑. Let 𝑢𝑘 = 𝑎𝑘 + 𝑏𝑘
√

𝑑. Then we have
the relation

𝑢𝑘+1 = 𝑢 ⋅ 𝑢𝑘

= (𝑎1 + 𝑏1
√

𝑑)(𝑎𝑘 + 𝑏𝑘
√

𝑑)

= (𝑎1𝑎𝑘 + 𝑑𝑏1𝑏𝑘) + (𝑏1𝑎𝑘 + 𝑎1𝑏𝑘)
√

𝑑

Hence
𝑏𝑘+1 = 𝑏1𝑎𝑘 + 𝑎1𝑏𝑘 > 𝑏𝑘

so the sequence (𝑏𝑘)𝑘∈N is strictly increasing.
We can therefore characterise 𝑢 as follow: let 𝑏 ∈ N be the least positive
integer such that 𝑑𝑏2 +1 or 𝑑𝑏2 −1 is of the form 𝑎2 for some 𝑎 ∈ N. Then
𝑢 = 𝑎 + 𝑏

√
𝑑.

38



7 Dirichlet’s unit theorem

2. 𝑑 = 1 (mod 4): let 𝑢 = 1
2 (𝑎 + 𝑏

√
𝑑). Let 𝑢𝑘 = 1

2 (𝑎𝑘 + 𝑏𝑘
√

𝑑). Then

𝑏𝑘+1 = 1
2

(𝑎1𝑏𝑘 + 𝑏1𝑎𝑘) ≥ 1
2

(𝑎1 + 𝑏1)𝑏𝑘 ≥ 𝑏𝑘.

We see 𝑏𝑘+1 ≥ 𝑏𝑘, with equality if and only if 𝑎𝑘 = 𝑏𝑘 and 𝑎1 = 𝑏1 = 1.
Note that if 𝑎1 = 𝑏1 = 1 then

N(𝑢) = ∣1 − 𝑑
4

∣ = 1

so 𝑑 = 5.

(a) 𝑑 > 5: the sequence (𝑏𝑘)𝑘∈N is strictly increasing. The fundamental
unit can therefore be found as follow: let 𝑏 ∈ N be the least integer
such that 𝑑𝑏2 + 4 or 𝑑𝑏2 − 4 is of the form 𝑎2 for some 𝑎 ∈ N. Then
1
2 (𝑎 + 𝑏

√
𝑑) is the fundamental unit.

(b) 𝑑 = 5: the sequence (𝑏𝑘)𝑘∈N is non-decreasing and each value 𝑏𝑖
can appear at most twice (as occurrence corresponds to solutions to
𝑑𝑏2

𝑖 ± 4 = 𝑎2
𝑖 ). We can therefore characterise the fundamental unit 𝑢

as follow: let 𝑏 ∈ N be the least positive integer for which 𝑑𝑏2+4 = 𝑎2

or 𝑑𝑏2 − 4 = 𝑎′2 for 𝑎, 𝑎′ ∈ N. Recall that the fundamental unit is
the least unit with 𝑢 > 1. Of these two possibilities, choose the
unit with the smaller value of 𝑎 or 𝑎′. In this case, 𝑏 = 1 gives
𝑑 + 4 = 32, 𝑑 − 4 = 12 so 1

2 (1 +
√

5) is the fundamental unit.

Example.

1. 𝑑 = 2. Then 𝑏 = 1 works since 2 − 1 = 12 so 1 +
√

2 is a fundamental unit.

2. 𝑑 = 7.

𝑏 = 1 ∶ 7 ± 1 not a square
𝑏 = 2 ∶ 4 ⋅ 7 ± 1 not a square
𝑏 = 3 ∶ 9 ⋅ 7 + 1 = 82

so 8 + 3
√

7 is a fundamental unit.

Note. This procedure is not always efficient. For example, the fundamental
unit in Q(

√
22) is 197 + 42

√
22. There is a more efficient algorithm which uses

continued fraction, but it is not discussed in this course.

Now we start the proof of Dirichlet’s unit theorem, which in non-examinable.

Proof of Dirichlet’s unit theorem. Recall the setup: let 𝐿 be a number field,
𝜏1, … , 𝜏𝑟 ∶ 𝐿 → R are the real embeddings and 𝜎1, 𝜎1, … , 𝜎𝑠, 𝜎𝑠 ∶ 𝐿 → C are the
complex embeddings of 𝐿. Define a map ℓ ∶ 𝒪×

𝐿 → R𝑟+𝑠 by

𝛼 ↦ (log |𝜏1(𝛼)|, … , log |𝜏𝑟(𝛼)|, 2 log |𝜎1(𝛼)|, … , 2 log |𝜎𝑠(𝛼)|).

The image is contained inside the subspace

𝐻 = {𝐱 ∈ R𝑟+𝑠 ∶
𝑟+𝑠

∑
𝑖=1

𝑥𝑖 = 0}.
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7 Dirichlet’s unit theorem

Lemma 7.3. Extend ℓ to 𝒪𝐿 \ {0}. Let 𝛼 ∈ 𝒪𝐿 \ {0} be such that ℓ(𝛼) =
(𝑎1, … , 𝑎𝑟+𝑠). Fix an integer 1 ≤ 𝑘 ≤ 𝑟 + 𝑠. Then there exists 𝛽 ∈ 𝒪𝐿 \ {0}
such that if ℓ(𝛽) = (𝑏1, … , 𝑏𝑟+𝑠) ∈ R𝑟+𝑠 then 𝑏𝑖 < 𝑎𝑖 if 𝑖 ≠ 𝑘. Moreover,

N(𝛽) ≤ ( 2
𝜋

)
𝑠

√|𝐷𝐿|.

Proof. This proof is similar to the derivation of Minkowski constant but using
a slightly different convex body. Let 𝑐1, … , 𝑐𝑟+𝑠 ∈ R>0 and let

𝐸 = {(𝐱, 𝐳) ∈ R𝑟 × C𝑠 ∶ |𝑥𝑖| ≤ 𝑐𝑖, |𝑧𝑖|2 ≤ 𝑐𝑟+𝑖}.

Then if vol(𝐸) ≥ 2𝑟+2𝑠𝐴(𝑆(𝒪𝐿)) = 2𝑟+𝑠√|𝐷𝐿|, then by Minkowski there exists
𝛽 ∈ 𝒪𝐿 \ {0} such that 𝑆(𝛽) ∈ 𝐸. In particular,

N(𝛽) =
𝑟

∏
𝑖=1

|𝜏𝑖(𝛽)|
𝑠

∏
𝑖=1

|𝜎𝑖(𝛽)|2 ≤
𝑟+𝑠

∏
𝑖=1

𝑐𝑖.

We choose 𝑐𝑖 so that 0 < 𝑐𝑖 < 𝑒𝑎𝑖 if 𝑖 ≠ 𝑘 and

vol(𝐸) = 𝜋𝑠2𝑟
𝑟+𝑠

∏
𝑖=1

𝑐𝑖 = 2𝑟+𝑠√|𝐷𝐿|.

The first property gives 𝑏𝑖 < 𝑎𝑖 if 𝑖 ≠ 𝑘 while the second gives

N(𝛽) ≤
𝑟+𝑠

∏
𝑖=1

𝑐𝑖 = ( 2
𝜋

)
𝑠

√|𝐷𝐿|.

Corollary 7.4. Fix an integer 1 ≤ 𝑘 ≤ 𝑟 + 𝑠. Then there exists 𝜀 ∈ 𝒪×
𝐿

such that if ℓ(𝜀) = (𝑎1, … , 𝑎𝑟+𝑠) then 𝑎𝑖 < 0 if 𝑖 ≠ 𝑘 and 𝑎𝑘 > 0.

Proof. By the lemma we can find elements 𝛼1, 𝛼2, ⋯ ∈ 𝒪𝐿 \ {0} such that

N(𝛼𝑖) ≤ ( 2
𝜋

)
𝑠

√|𝐷𝐿|

for all 𝑖 ∈ N and if ℓ(𝛼𝑖) = (𝑏𝑖,1, … , 𝑏𝑖,𝑟+𝑠) then 𝑏𝑖+1,𝑗 < 𝑏𝑖,𝑗 if 𝑗 ≠ 𝑘 for all
𝑖 ≥ 1. The ideals (𝛼𝑖) have bounded norm, so are finite in number. So there
exist 𝑁 < 𝑀 such that (𝛼𝑁) = (𝛼𝑀). Then the element

𝜀 = 𝛼𝑁
𝛼𝑀

has the desired property.

Lemma 7.5. Let 𝑁 ≥ 1 and 𝐴 ∈ ℳ𝑁×𝑁(R) be such that

1. ∑𝑁
𝑖=1 𝐴𝑖𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑁,

2. 𝐴𝑖𝑗 > 0 if 𝑖 = 𝑗 and 𝐴𝑖𝑗 < 0 if 𝑖 ≠ 𝑗,

then 𝐴 has rank 𝑁 − 1.
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7 Dirichlet’s unit theorem

Proof. The rank is at most 𝑁 − 1. We show that the first 𝑁 − 1 rows of 𝐴 are
independent. Suppose there exists 𝑡𝑖 ∈ R for 1 ≤ 𝑖 < 𝑁, not all zero, such that

𝑁−1
∑
𝑖=1

𝑡𝑖𝐴𝑖𝑗 = 0

for 1 ≤ 𝑗 ≤ 𝑁. wlog after rescaling, there exists 1 ≤ 𝑘 < 𝑁 such that 𝑡𝑘 = 1
and 𝑡𝑖 ≤ 1 if 𝑖 ≠ 𝑘. Then

0 =
𝑁−1
∑
𝑖=1

𝑡𝑖𝐴𝑖𝑘 ≥
𝑁−1
∑
𝑖=1

𝐴𝑖𝑘 >
𝑁

∑
𝑖=1

𝐴𝑖𝑘 = 0

Absurd.

Lemma 7.6. Fix 𝐵 > 0. Let

𝑋𝐵 = {𝛼 ∈ 𝒪𝐿 ∶ ∀𝜎 ∶ 𝐿 → C, |𝜎(𝛼)| ≤ 𝐵},

then 𝑋𝐵 is finite.

Proof. Recall the map 𝑆 ∶ 𝒪𝐿 → R𝑟 ×C𝑠. 𝑆(𝒪𝐿) is a lattice in R𝑟 ×C𝑠. 𝑆(𝑋𝐵)
is the intersection of the lattice 𝑆(𝒪𝐿) with a compact subset of R𝑟 × C𝑠 so
must be finite.

Finally we get something we promised earlier:

Proposition 7.7. ℓ(𝒪×
𝐿) form a lattice in 𝐻 ≤ R𝑟+𝑠.

Proof. We must show that there exist units 𝑣1, … , 𝑣𝑟+𝑠−1 ∈ 𝒪×
𝐿 such that their

images under ℓ span 𝐻 as an R-vector space and generate ℓ(𝒪×
𝐿) as an abelian

group.
By Corollary 7.4, we can find 𝜀1, … , 𝜀𝑟+𝑠 ∈ 𝒪×

𝐿 such that if ℓ(𝜀𝑗) = (𝐴1,𝑗, … , 𝐴𝑟+𝑠,𝑗)
then 𝐴𝑖,𝑗 < 0 if 𝑖 ≠ 𝑗 and 𝐴𝑖,𝑗 > 0 if 𝑖 = 𝑗. By Lemma 7.5, the matrix 𝐴 has
rank 𝑟 + 𝑠 − 1 so we can find 𝑣1, … , 𝑣𝑟+𝑠−1 ∈ 𝒪×

𝐿 such that ℓ(𝑣1), … , ℓ(𝑣𝑟+𝑠−1)
span 𝐻 as an R-vector space.

Let Λ = ⨁𝑟+𝑠−1
𝑖=1 Zℓ(𝑣𝑖) ≤ 𝐻 which is a lattice. Then Λ ≤ ℓ(𝒪×

𝐿) and if
𝑢 ∈ 𝒪×

𝐿 then there exists 𝜆 ∈ Λ such that

ℓ(𝑢) − 𝜆 ∈ {
𝑟+𝑠−1

∑
𝑖=1

𝑡𝑖ℓ(𝑣𝑖) ∶ 𝑡𝑖 ∈ [0, 1) for all 1 ≤ 𝑖 ≤ 𝑟 + 𝑠 − 1} = 𝑃.

But the set of units in ℓ−1(𝑃 ) is finite by Lemma 7.6. Hence the quotient
ℓ(𝒪×

𝐿)/Λ is finite. By Lagrange, there exists 𝑁 ∈ Z, 𝑁 ≥ 1 such that 𝑁 ⋅ℓ(𝒪×
𝐿) ≤

Λ. Hence
Λ ≤ ℓ(𝒪×

𝐿) ≤ 1
𝑁

Λ.

By sandwich lemma, ℓ(𝒪×
𝐿) is a free abelian group of rank 𝑟+𝑠−1. In particular,

it is a lattice in 𝐻.
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7 Dirichlet’s unit theorem

Let’s now finish the proof the unit theorem, i.e. show there is an isomorphism

𝒪×
𝐿 ≅ 𝜇𝐿 × Z𝑟+𝑠−1

where 𝜇𝐿 is the (finite) group of roots of unity in 𝐿. Note that 𝜇𝐿 = ker ℓ:
if 𝜁 ∈ 𝜇𝐿 then 𝜁𝑁 = 1 for some 𝑁 ≥ 1. Hence ℓ(𝜁𝑁) = 𝑁 ⋅ ℓ(𝜁) = 0. As
ℓ(𝜁) ∈ R𝑟+𝑠, a vector space, we have ℓ(𝜁) = 0. Conversely, if 𝛼 ∈ 𝒪×

𝐿 and
ℓ(𝛼) = 0 then for all 𝜎 ∶ 𝐿 → C, |𝜎(𝛼)| = 1. By Lemma 7.6 ker ℓ is finite. By
Lagrange it consists of roots of unity.

Choose 𝑣1, … , 𝑣𝑟+𝑠−1 ∈ 𝒪×
𝐿 such that ℓ(𝑣1), … , ℓ(𝑣𝑟+𝑠−1) is a Z-basis of ℓ(𝒪×

𝐿).
Define a map

𝜇𝐿 × Z𝑟+𝑠−1 → 𝒪×
𝐿

(𝜁, 𝑛1, … , 𝑛𝑟+𝑠−1) ↦ 𝜁𝑣𝑛1
1 ⋯ 𝑣𝑛𝑟+𝑠−1

𝑟+𝑠−1

It is an exercise to check this is an isomorphism.
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8 Cyclotomic fields and the Fermat equation

8 Cyclotomic fields and the Fermat equation
An warm-up exercise:

Question. Find all Pythagorean triples 𝑥2 + 𝑦2 = 𝑧2 where 𝑥, 𝑦, 𝑧 ∈ Z not all
zero.

wlog gcd(𝑥, 𝑦, 𝑧) = 1. Consider the parity: if 2 divides both 𝑥 and 𝑦 then 2
divides 𝑧, so assume 𝑥 is odd, 𝑦 is even. The idea is to factor the equation in
Z[𝑖] to get

(𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑧2.

Claim that the ideals (𝑥 + 𝑖𝑦) and (𝑥 − 𝑖𝑦) of Z[𝑖] are coprime, i.e. there is
no prime ideal 𝔭 ∈ Z[𝑖] which divides both of them: if 𝔭 divides both then
𝔭 ∣ (2𝑥), 𝔭 ∣ (2𝑦). If ℓ is an odd prime such that ℓ ∣ N(𝔭) then this implies
ℓ ∣ 2𝑥, ℓ ∣ 2𝑦 so ℓ ∣ 𝑥 and ℓ ∣ 𝑦, impossible. Thus 𝔭 ∣ (2), hence 𝔭 ∣ (𝑧2), so 2 ∣ 𝑧,
absurd. Thus there is no such prime 𝔭.

Using the identity (𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = (𝑧)2, we see that (𝑥 + 𝑖𝑦) must be the
square of another ideal. Using the fact that Z[𝑖] is a UFD, we get

(𝑥 + 𝑖𝑦) = (𝑎 + 𝑖𝑏)2 = (𝑎2 − 𝑏2 + 2𝑎𝑏𝑖)

where 𝑎, 𝑏 ∈ Z. Hence 𝑥 + 𝑖𝑦 = 𝑢(𝑎2 − 𝑏2 + 2𝑎𝑏𝑖) for some 𝑢 ∈ Z[𝑖]× = {±1, ±𝑖}.
It is left as an exercise to show that there exists 𝐴, 𝐵 ∈ Z such that

𝑥 = 𝐴2 − 𝐵2

𝑦 = 2𝐴𝐵
𝑧 = 𝐴2 + 𝐵2

The aim of this section is to do something similar for

𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝

where 𝑝 is an odd prime.
From now on 𝑝 is an odd prime.

Definition (Cyclotomic field). The 𝑝th cyclotomic field is 𝐾 = Q(𝜁𝑝) where
𝜁𝑝 = 𝑒2𝜋𝑖/𝑝 ∈ C.

Lemma 8.1.

1. (1 − 𝜁𝑝)𝑝−1 = (𝑝) in 𝒪𝐾, N(1 − 𝜁𝑝) = 𝑝 and (1 − 𝜁𝑝) ⊆ 𝒪𝐾 is a prime
ideal.

2. Let 𝑓𝑝(𝑥) = 𝑥𝑝−1
𝑥−1 ∈ Z[𝑥]. Then 𝑓𝑝(𝑥) is irreducible and [𝐾 ∶ Q] = 𝑝−1.

Proof. We can factorise

𝑓𝑝(𝑥) =
𝑝−1

∏
𝑗=1

(𝑥 − 𝜁𝑖
𝑝).
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8 Cyclotomic fields and the Fermat equation

In particular, 𝑓𝑝(𝜁𝑝) = 0 and [𝐾 ∶ Q] ≤ 𝑝 − 1. We also have

𝑓𝑝(1) = 𝑝 =
𝑝−1

∏
𝑗=1

(1 − 𝜁𝑗
𝑝).

Claim that for 1 ≤ 𝑗 < 𝑝, we have (1 − 𝜁𝑗
𝑝) = (1 − 𝜁𝑝) as ideals of 𝒪𝐾. We show

this by exhibiting inclusion both ways:

1 − 𝜁𝑗
𝑝

1 − 𝜁𝑝
= 1 + 𝜁𝑝 + ⋯ + 𝜁𝑗−1

𝑝 ∈ 𝒪𝐾

so 1 − 𝜁𝑗
𝑝 ∈ (1 − 𝜁𝑝). Choose 𝑘 ∈ Z, 𝑘 ≥ 1 such that 𝑗𝑘 = 1 (mod 𝑝), then

1 − 𝜁𝑝

1 − 𝜁𝑗
𝑝

= 1 − 𝜁𝑗𝑘
𝑝

1 − 𝜁𝑗
𝑝

= 1 + 𝜁𝑗
𝑝 + ⋯ + 𝜁𝑗(𝑘−1)

𝑝 ∈ 𝒪𝐾

so 1 − 𝜁𝑝 ∈ (1 − 𝜁𝑗
𝑝).

Thus (𝑝) = (1−𝜁𝑝)𝑝−1 is an ideal in 𝒪𝐾. It follows that 𝑝[𝐾∶Q] = N(1−𝜁𝑝)𝑝−1.
But since we already know [𝐾 ∶ Q] ≤ 𝑝 − 1, we must have N(1 − 𝜁𝑝) = 𝑝 and
[𝐾 ∶ Q] = 𝑝 − 1.

Lemma 8.2.
disc(1, 𝜁𝑝, … , 𝜁𝑝−2

𝑝 ) = (−1) 𝑝−1
2 𝑝𝑝−2.

Proof. We know

disc(1, 𝜁𝑝, … , 𝜁𝑝−2
𝑝 ) = (−1)(𝑝−1

2 ) N𝐾/Q(𝑓 ′
𝑝(𝜁𝑝)),

but
𝑓 ′

𝑝(𝑥) = (𝑥 − 1)𝑝𝑥𝑝−1 − (𝑥𝑝 − 1)
(𝑥 − 1)2

so 𝑓 ′
𝑝(𝜁𝑝) = 𝑝𝜁−1

𝑝
𝜁𝑝−1 and its norm is

N𝐾/Q(𝑓 ′
𝑝(𝜁𝑝)) =

𝑝𝑝−1 N𝐾/Q(𝜁𝑝)−1

N𝐾/Q(𝜁𝑝 − 1)
.

Now notice that every embedding 𝜎 ∶ 𝐾 → C is purely complex so they appear
in conjugate pairs. Thus for any 𝛼 ∈ 𝐾×, N𝐾/Q(𝛼) ∈ Q is positive. We already
know

| N𝐾/Q(𝜁𝑝 − 1)| = N(1 − 𝜁𝑝) = 𝑝
| N𝐾/Q(𝜁𝑝)| = N(𝜁𝑝) = 1

so putting everything together,

disc(1, 𝜁𝑝, … , 𝜁𝑝−2
𝑝 ) = (−1) 𝑝−1

2
𝑝𝑝−1

𝑝
= (−1) 𝑝−1

2 𝑝𝑝−2.
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8 Cyclotomic fields and the Fermat equation

Proposition 8.3.
𝒪𝐾 = Z[𝜁𝑝].

Proof. We already know [𝒪𝐾 ∶ Z[𝜁𝑝]] < ∞ and

disc(𝒪𝐾)[𝒪𝐾 ∶ Z[𝜁𝑝]]2 = disc(1, 𝜁𝑝, … , 𝜁𝑝−2
𝑝 ) = ±𝑝𝑝−2.

Hence Z[𝜁𝑝] ⊆ 𝒪𝐾 is of 𝑝-power index, which we are going to prove to be 1. Look
at the quotient ring 𝒪𝐾/(1−𝜁𝑝), which has order N(1−𝜁𝑝) = 𝑝 so is just the finite
field of 𝑝 elements. Thus the characteristic homomorphism Z → 𝒪𝐾/(1 − 𝜁𝑝) is
surjective. Hence for any 𝑧0 ∈ 𝒪𝐾, there exists 𝑎0 ∈ Z, 𝑧1 ∈ 𝒪𝐾 such that

𝑧0 = 𝑎0 + (1 − 𝜁𝑝)𝑧1.

Repeat for 𝑧1, there exists 𝑎1 ∈ Z, 𝑧2 ∈ 𝒪𝐾 such that

𝑧0 = 𝑎0 + (1 − 𝜁𝑝)(𝑎1 + (1 − 𝜁𝑝)𝑧2)
= 𝑎0 + (1 − 𝜁𝑝)𝑎1 + (1 − 𝜁𝑝)2𝑧2

By induction, we see we can write

𝑧0 = 𝑎0 + (1 − 𝜁𝑝)𝑎1 + ⋯ + (1 − 𝜁𝑝)𝑛−1𝑎𝑛−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈Z[1−𝜁𝑝]

+(1 − 𝜁𝑝)𝑛𝑧𝑛

where 𝑎1, … , 𝑎𝑛−1 ∈ Z, 𝑧𝑛 ∈ 𝒪𝐾 for any 𝑛 ≥ 1, i.e.

𝒪𝐾 = Z[1 − 𝜁𝑝] + (1 − 𝜁𝑝)𝑛𝒪𝐾

for any 𝑛 ≥ 1.
Observe that Z[1−𝜁𝑝] = Z[𝜁𝑝] and (1−𝜁𝑝)(𝑝−1)𝑁𝒪𝐾 = 𝑝𝑁𝒪𝐾 for any 𝑁 ≥ 1.

Thus
𝒪𝐾 = Z[𝜁𝑝] + 𝑝𝑁𝒪𝐾.

We know Z[𝜁𝑝] ⊆ 𝒪𝐾 has 𝑝-power index, so by Lagrange there exists 𝑁 ≥ 1
such that 𝑝𝑁𝒪𝐾 ⊆ Z[𝜁𝑝]. Hence

𝒪𝐾 = Z[𝜁𝑝] + 𝑝𝑁𝒪𝐾 = Z[𝜁𝑝].

What are the roots of unity in this ring? The 𝜁𝑖
𝑝’s certainly are. Stare at it

a bit longer and you will find their negatives are as well. We use the following
lemma to show that’s all of them.

Lemma 8.4. If ℓ is a prime number, then ℓ ramifies in 𝐾 if and only if
ℓ = 𝑝.

Proof. Recall that by definition, ℓ ramifies in 𝐾 if and only if there exists 𝔭 ⊆ 𝒪𝐾
prime such that 𝔭2 ∣ ℓ𝒪𝐾.

We’ve seen that (1 − 𝜁𝑝)𝑝−1 = 𝑝𝒪𝐾, so 𝑝 is ramified in 𝐾. Let ℓ ≠ 𝑝 be a
prime. Since Z[𝜁𝑝] = 𝒪𝐾, Dedekind’s criterion tells us that ℓ is ramified in 𝐾 if
and only if 𝑓𝑝(𝑥) (mod ℓ) has a repeated root. We know disc 𝑓𝑝 = ±𝑝𝑝−2, hence
disc(𝑓𝑝 (mod ℓ)) ≠ 0 so 𝑓𝑝(𝑥) (mod ℓ) does not have any repeated roots.
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Proposition 8.5. Let 𝜇𝐾 ⊆ 𝒪×
𝐾 be the group of roots of unity in 𝐾. Then

𝜇𝐾 = {±𝜁𝑖
𝑝 ∶ 0 ≤ 𝑖 < 𝑝}.

Proof. {±𝜁𝑖
𝑝 ∶ 0 ≤ 𝑖 < 𝑝} ⊆ 𝜇𝐾 is a subgroup of order 2𝑝 so it suffices to show

|𝜇𝐾| = 2𝑝. If ℓ ≠ 𝑝 is an odd prime and ℓ ∣ |𝜇𝐾| then since 𝜇𝐾 is cyclic, 𝜁ℓ ∈ 𝐾
so Q(𝜁ℓ) ⊆ 𝐾. As (1 − 𝜁ℓ)ℓ−1𝒪Q(𝜁ℓ) = ℓ𝒪Q(𝜁ℓ), we get (1 − 𝜁ℓ)ℓ−1𝒪𝐾 = ℓ𝒪𝐾,
contradicting the fact that ℓ is unramified in 𝐾.

Similarly if 4 ∣ |𝜇𝐾| then 𝑖 ∈ 𝐾 and hence (1 + 𝑖)2𝒪𝐾 = 2𝒪𝐾, contradicting
the fact that 2 is unramified in 𝐾.

If 𝑝2 ∣ |𝜇𝐾|, then 𝜔 = 𝑒2𝜋𝑖/𝑝2 ∈ 𝐾. Let 𝑓(𝑥) = 𝑥𝑝2−1
𝑥𝑝−1 ∈ Z[𝑥], then

𝑓(𝑥) = ∏
1≤𝑎≤𝑝2

𝑝∤𝑎

(𝑥 − 𝜔𝑎).

Then
𝑓(1) = 𝑝 = ∏

1≤𝑎≤𝑝2

𝑝∤𝑎

(1 − 𝜔𝑎).

By the same argument as for 𝜁𝑝, (1 − 𝜔𝑎)𝒪𝐾 = (1 − 𝜔)𝒪𝐾 if (𝑎, 𝑝) = 1. Hence

𝑝𝒪𝐾 = (1 − 𝜔)𝜙(𝑝2) = (1 − 𝜔)𝑝(𝑝−1).

Taking norm, get 𝑝𝑝−1 = N(1 − 𝜔)𝑝(𝑝−1), absurd. Thus |𝜇𝐾| = 2𝑝.

Lemma 8.6 (Kummer). If 𝑢 ∈ 𝒪×
𝐾, there exists 𝑔 ∈ Z such that

𝜁𝑔
𝑝𝑢 ∈ 𝐾 ∩ R.

For those familiar with Galois theory, we have the tower of fields

𝐾 = Q(𝜁𝑝)

𝐾 ∩ R = Q(𝜁𝑝 + 𝜁−1
𝑝 )

Q

2

𝑝−1
2

Proof. Claim that if 𝜎 ∶ 𝐾 → C is a complex embedding, then for all 𝛼 ∈ 𝐾,
𝜎(𝛼) = 𝜎(𝛼): suffices to check this for 𝛼 = 𝜁𝑝. If 𝜎(𝜁𝑝) = 𝜁𝑎

𝑝 then

𝜎(𝜁𝑝) = 𝜎(𝜁−1
𝑝 ) = 𝜁−𝑎

𝑝 = 𝜁𝑎
𝑝 = 𝜎(𝜁𝑝).

If 𝑢 ∈ 𝒪×
𝐾, then for any embedding 𝜎 ∶ 𝐾 → C,

|𝜎(𝑢/𝑢)| = |𝜎(𝑢)𝜎(𝑢)
−1

| = 1.

Hence 𝑢/𝑢 ∈ 𝜇𝐾, so we can write 𝑢/𝑢 = (−1)𝑏𝜁𝑘
𝑝 for some 𝑏 ∈ {0, 1}, 𝑘 ∈ Z.

After replacing 𝑘 by 𝑘 + 𝑝, wlog 𝑘 = 2𝑔. Then 𝑢 = 𝑢(−1)𝑏𝜁2𝑔
𝑝 .
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Now look at the residue ring 𝒪𝐾/(1 − 𝜁𝑝) ≅ Z/𝑝Z. The ideal (1 − 𝜁𝑝)𝒪𝐾 is
stable under complex conjugation, so complex conjugation induces an automor-
phism of 𝒪𝐾/(1 − 𝜁𝑝). As Z → 𝒪𝐾/(1 − 𝜁𝑝) is surjective, this automorphism is
trivial, so for all 𝛼 ∈ 𝒪𝐾, 𝛼 = 𝛼 mod (1 − 𝜁𝑝)𝒪𝐾. Hence for all 𝑢 ∈ 𝒪×

𝐾,

𝑢 = 𝑢 mod (1 − 𝜁𝑝)

= 𝑢(−1)𝑏𝜁2𝑔
𝑝 = 𝑢(−1)𝑏 mod (1 − 𝜁𝑝)

Since 𝑢 ∈ 𝒪×
𝐾, 𝑢 ≠ 0 (mod (1 − 𝜁𝑝)) so must have 𝑏 = 0. Hence 𝑢 = 𝑢𝜁2𝑔

𝑝 , so
𝜁−𝑔

𝑝 𝑢 = 𝜁−𝑔
𝑝 𝑢 ∈ 𝐾 ∩ R.

Lemma 8.7. If 𝛼 ∈ 𝒪𝐾, then there exists 𝑎 ∈ Z such that

𝛼𝑝 = 𝑎 mod 𝑝𝒪𝐾.

Proof. For all 𝛼 ∈ 𝒪𝐾, there exists 𝑏 ∈ Z such that 𝛼 = 𝑏 mod (1 − 𝜁𝑝). Note
the identity

𝛼𝑝 − 𝑏𝑝 =
𝑝−1

∏
𝑖=0

(𝛼 − 𝜁𝑖
𝑝𝑏).

For any 𝑖 ≥ 0,
𝛼 − 𝜁𝑖

𝑝𝑏 = 𝛼 − 𝑏 = 0 mod (1 − 𝜁𝑝).
Hence

𝛼𝑝 − 𝑏𝑝 ∈ (1 − 𝜁𝑝)𝑝 ⊆ (1 − 𝜁𝑝)𝑝−1 = 𝑝𝒪𝐾.

We now discuss Fermat’s Last Theorem:

Theorem 8.8 (Wiles, 1994). Let 𝑛 ≥ 3 be an integer, and let 𝑥, 𝑦, 𝑧 ∈ Z be
such that

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛

then 𝑥𝑦𝑧 = 0.

A little history: in early 19th century, there are many false proofs of this
theorem relying on the false assumption that Z[𝑒2𝜋𝑖/𝑛] is a UFD. In 1840s,
Kummer invented the theory of ideal factorisation in number fields in order
to try to give a correct proof, which worked for a large class of primes. The
complete proof was announced by Wiles in 1993 in a room less than 100 yards
from where we are now. Despite the geographical proximity, we are NOT going
to prove it in this course!

Definition (Regular prime). An prime 𝑝 is regular if

𝑝 ∤ | Cl(Z[𝜁𝑝])|.

Theorem 8.9 (Kummer). Let 𝑝 be an regular prime, then Fermat’s Last
Theorem holds in exponent 𝑛 = 𝑝.

Again we will not prove this. Instead we will prove
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Theorem 8.10. Let 𝑝 be an odd regular prime. Let 𝑥, 𝑦, 𝑧 ∈ Z be such that
𝑝 ∤ 𝑥𝑦𝑧. Then

𝑥𝑝 + 𝑦𝑝 ≠ 𝑧𝑝.

Kummer called this the “first case” of Fermat’s Last Theorem. He dealt
with the “second case” (where 𝑝 ∣ 𝑥𝑦𝑧) using similar techniques.

Proof. Let 𝑥, 𝑦, 𝑧 ∈ Z such that 𝑥𝑝 + 𝑦𝑝 + 𝑧𝑝 = 0, 𝑝 ∤ 𝑥𝑦𝑧. wlog gcd(𝑥, 𝑦, 𝑧) = 1.
Then we factor

𝑥𝑝 + 𝑦𝑝 =
𝑝−1

∏
𝑖=0

(𝑥 + 𝜁𝑖
𝑝𝑦) = −𝑧𝑝 ∈ Z[𝜁𝑝].

Claim that the ideals (𝑥 + 𝜁𝑖
𝑝𝑦) are pairwise coprime:

Proof. Suppose 𝔮 ⊆ 𝒪𝐾 is a prime ideal dividing (𝑥 + 𝜁𝑖
𝑝𝑦) and (𝑥 + 𝜁𝑗

𝑝𝑦) where
0 ≤ 𝑖 < 𝑗 < 𝑝. Then

𝔮 ∣ ((𝜁𝑖
𝑝 − 𝜁𝑗

𝑝)𝑦) = (1 − 𝜁𝑝)(𝑦).

If 𝔮 ∣ (𝑦) then 𝔮 ∣ (𝑧) so 𝔮 ∣ (𝑥). Taking norm, we get ℓ ∣ gcd(𝑥, 𝑦, 𝑧) where
N(𝔮) = ℓ𝑓, absurd.

If 𝔮 ∣ (1 − 𝜁𝑝) then 𝔮 = (1 − 𝜁𝑝) and (1 − 𝜁𝑝) ∣ (𝑧) so 𝑝 ∣ 𝑧, absurd.

Thus by
𝑝−1

∏
𝑖=0

(𝑥 + 𝜁𝑖
𝑝𝑦) = (𝑧)𝑝

there exists an ideal 𝐼 ⊆ 𝒪𝐾 such that (𝑥 + 𝜁𝑝𝑦) = 𝐼𝑝. Since 𝑝 is regular, i.e.
𝑝 ∤ | Cl(𝒪𝐾)|, this implies that 𝐼 is principal. If 𝐼 = (𝛿) then (𝑥+𝜁𝑝𝑦) = (𝛿𝑝), so
there exists 𝑢 ∈ 𝒪×

𝐾 such that 𝑥 + 𝜁𝑝𝑦 = 𝑢𝛿𝑝. By previous lemmas, there exists
𝑣 ∈ 𝒪×

𝐾 ∩ R, 𝑔 ∈ Z, 𝑎 ∈ Z such that

𝑢𝛿𝑝 = 𝜁𝑔
𝑝𝑣𝑎 mod 𝑝𝒪𝐾.

Hence 𝜁−𝑔
𝑝 (𝑥 + 𝜁𝑝𝑦) = 𝑣𝑎 mod 𝑝𝒪𝐾.

Observe that 𝑣𝑎 ∈ 𝒪𝐾 ∩ R so is invariant under complex conugation. Hence

𝜁−𝑔
𝑝 (𝑥 + 𝜁𝑝𝑦) = 𝜁𝑔

𝑝(𝑥 + 𝜁−1
𝑝 𝑦) mod 𝑝𝒪𝐾

so
𝜁−𝑔

𝑝 𝑥 + 𝜁1−𝑔
𝑝 𝑦 − 𝜁𝑔

𝑝𝑥 − 𝜁𝑔−1
𝑝 𝑦 = 0 mod 𝑝𝒪𝐾.

What is 𝑔? First note that 𝑔 ≠ 0, 1 (mod 𝑝): if 𝑔 = 0 (mod 𝑝), then

𝑥 + 𝜁𝑝𝑦 − 𝑥 − 𝜁−1
𝑝 𝑦 = 𝜁𝑝(1 − 𝜁−2

𝑝 )𝑦 = 0 mod (1 − 𝜁𝑝)𝑝−1

and hence 𝑦 ∈ (1 − 𝜁𝑝)𝑝−2, so 𝑝 ∣ 𝑦. Similar if 𝑔 = 1 (mod 𝑝).
Now observe that two of −𝑔, 1 − 𝑔, 𝑔, 𝑔 − 1 must be congruent module 𝑝, as

otherwise the identity

𝜁−𝑔
𝑝 𝑥 + 𝜁1−𝑔

𝑝 𝑦 − 𝜁𝑔
𝑝𝑥 − 𝜁𝑔−1

𝑝 𝑦 = 0 mod 𝑝𝒪𝐾

together with the fact that {𝜁𝑖
𝑝}𝑝−1

𝑖=1 is an integral basis of Z[𝜁𝑝], forces 𝑝 ∣ 𝑥, 𝑝 ∣ 𝑦,
absurd.
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Since 𝑔 ≠ 0, 1 (mod 𝑝), the only possibility is −𝑔 = 𝑔−1 (mod 𝑝), i.e. 2𝑔 = 1
(mod 𝑝). Hence

𝜁−𝑔
𝑝 (𝑥 + 𝜁𝑝𝑦 − 𝜁2𝑔

𝑝 𝑥 − 𝜁2𝑔−1
𝑝 𝑦)

= 𝜁−𝑔
𝑝 (𝑥 + 𝜁𝑝𝑦 − 𝜁𝑝𝑥 − 𝑦)

= 𝜁−𝑔
𝑝 (𝑥 − 𝑦)(1 − 𝜁𝑝)

= 0 mod (1 − 𝜁𝑝)𝑝−1

Thus 𝑥 − 𝑦 = 0 mod (1 − 𝜁𝑝)𝑝−2, hence 𝑥 = 𝑦 (mod 𝑝). Recall the equation

𝑥𝑝 + 𝑦𝑝 + 𝑧𝑝 = 0

is symmetric in 𝑥, 𝑦, 𝑧 so the same argument also gives 𝑦 = 𝑧 (mod 𝑝), hence

3𝑥𝑝 = 0 (mod 𝑝).

If 𝑝 ≠ 3 then 𝑝 ∣ 𝑥, absurd. If 𝑝 = 3 then reducing modulo 9 shows there are no
solutions, which is left as an exercise.

The rest of the course is non-examinable.
The question now is how to decide if 𝑝 is regular. Unfortunately Minkowski’s

bound is not very effective. To give an idea let ℎ𝑝 = | Cl(Z[𝜁𝑝])| be the class
number. The table of class number of cyclotomic fields begins with

𝑝 ℎ𝑝 𝑝 ℎ𝑝
3 1 37 37
5 1 41 121
7 1 43 211
11 1 47 695
13 1 53 4889
17 1 59 41241
19 1 61 76301
23 3 67 853513
29 8 71 3882809
31 9 73 11957417

We observe that ℎ𝑝 seems to grow quickly with 𝑝. Also most primes seem
to regular: of those in the table, all but 𝑝 = 37, 59, 67 are regular.

Kummer gave a criterion to decide whether or not 𝑝 is regular in terms of
the Bernoulli numbers 𝐵𝑛.

Definition (Bernoulli number). For 𝑛 ≥ 0, the 𝑛th Bernoulli number is
defined by the formula

𝑡
1 − 𝑒−𝑡 = ∑

𝑛≥0
𝐵𝑛

𝑡𝑛

𝑛!
.

Note that 𝐵𝑛 ∈ Q. The first few Bernoulli numbers are
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𝑛 𝐵𝑛 𝑛 𝐵𝑛
0 1 6 1

42
1 1

2 7 0
2 1

6 8 − 1
30

3 0 9 0
4 − 1

30 10 5
66

5 0 11 0
12 − 691

2730

Theorem 8.11 (Kummer’s criterion). If 𝑝 is an odd prime, then 𝑝 is regular
if and only if 𝑝 does not divide the numerator of 𝐵𝑛 for any 𝑛 = 2, 4, … , 𝑝−3.

Example. 𝑝 = 691 is prime. 691 divides the numerator of 𝐵12 so by Kummer’s
criterion 691 ∣ ℎ691.

Alternatively we may define 𝐵𝑛 as

𝐵𝑛 = −𝑛𝜁(1 − 𝑛)

where 𝜁(𝑠) is the Riemann zeta function. This is not coincidental. In fact the
Riemann zeta function and its generalisation are closely related to the arith-
metics of number fields.

Definition (Dedekind zeta function). Let 𝐿 be a number field. Its Dedekind
zeta function is

𝜁𝐿(𝑠) = ∑
𝐼⊆𝒪𝐿

N(𝐼)−𝑠

where the sum is over all non-zero ideals.

Note.

1. One can show that the sum is absolutely convergent in the region Re 𝑠 > 1
and it defines a holomorphic function there. This boils down to bound
the number of ideals with certain norm.

2. If 𝐿 = Q then
𝜁𝐿(𝑠) = 𝜁(𝑠) = ∑

𝑛≥1
𝑛−𝑠

is the usual Riemann zeta function. Other properties such as Euler prod-
uct generalises as well.

In general, unique factorisation of ideals gives an identity

𝜁𝐿(𝑠) = ∏
𝔭⊆𝒪𝐾

(1 − N(𝔭)−𝑠)−1

where the sum is over all non-zero prime ideals.

Definition (Regulator). Let 𝐿 be a number field. The regulator of 𝐿,
𝑅𝐿, is defined as follow: let 𝑣1, … , 𝑣𝑟1+𝑟2−1 ∈ 𝒪×

𝐿 generate the free abelian
group 𝒪×

𝐿/𝜇𝐿. Let 𝐴 be the matrix with columns ℓ(𝑣1), … , ℓ(𝑣𝑟1+𝑟2−1) where
ℓ ∶ 𝒪×

𝐿 → R𝑟1+𝑟2 is the logarithmic map from the proof of Dedekind’s unit
theorem. Then 𝑅𝐿 is the absolute value of any (𝑟1 + 𝑟2 − 1) × (𝑟1 + 𝑟2 − 1)
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minor of the matrix 𝐴.
The idea is that ℓ(𝒪×

𝐿) is a lattice in the hyperplane 𝐻 and 𝑅𝐿 is essentially
the covolume of the lattice. This is a generalisation of fundamental unit.

Theorem 8.12.

1. 𝜁𝐿(𝑠) has a meromorphic continuation to all 𝑠 ∈ C with no poles except
a simple pole at 1. It satisfies the functional equation

Λ𝐿(𝑠) = Λ𝐿(1 − 𝑠)

where by definition

Λ𝐿(𝑠) = 𝜁𝐿(𝑠)|𝐷𝐿|𝑠/2(𝜋−𝑠/2Γ(𝑠/2))𝑟1 ⋅ (2(2𝜋)−𝑠Γ(𝑠))𝑟1

where 𝑟1 is the number of real embeddings of 𝐿 and 𝑟2 is the number
of pairs of complex embeddings.

2. Analytic class number formula: the residue of 𝜁𝐿(𝑠) at 𝑠 = 1 is

2𝑟1(2𝜋)𝑟2ℎ𝐿𝑅𝐿

𝑤𝐿√|𝐷𝐿|

where by definition ℎ𝐿 = | Cl(𝒪𝐿)| and 𝑤𝐿 = |𝜇𝐿|.

What does this have to do with cyclotomic fields? Let 𝑝 be an odd prime
and 𝐾 = Q(𝜁𝑝) and 𝐸 = 𝐾 ∩ R = Q(𝜁𝑝 + 𝜁−1

𝑝 ).
There exists factorisation

𝜁𝐾(𝑠) = ∏
𝜒∶(Z/𝑝Z)×→C×

𝐿(𝜒, 𝑠)

where 𝜒 is a group character and 𝐿(𝜒, 𝑠) is the Dirichlet 𝐿-function

𝐿(𝜒, 𝑠) = ∏
ℓ≠𝑝

(1 − 𝜒(ℓ mod 𝑝)ℓ−𝑠)−1.

There is a similar factorisation

𝜁𝐸(𝑠) = ∏
𝜒∶𝜒(−1)=1

𝐿(𝜒, 𝑠).

In fact, if 𝑀/Q is any finite Galois extension, then there is a factorisation

𝜁𝑀(𝑠) = ∏
𝜌

𝐿(𝜌, 𝑠)dim 𝜌

induced by irreducible representations 𝜌 of Gal(𝑀/Q).
Taking the quotient of these two factorisations gives

𝜁𝐾(𝑠)
𝜁𝐸(𝑠)

= ∏
𝜒∶𝜒(−1)=−1

𝐿(𝜒, 𝑠).

Note that both sides are holomorphic at 𝑠 = 1. Kummer’s criterion for the
regularity of the prime 𝑝 is proved by evaluating either side at 𝑠 = 1.
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8 Cyclotomic fields and the Fermat equation

On LHS, we can apply the analytic class number formula for 𝐾 and 𝐸
together to get

ℎ𝐾𝑅𝐾
ℎ𝐸𝑅𝐸

⋅ explicit factor.

Note that 𝑟1 + 𝑟2 is the same for 𝐾 and 𝐸:

𝑟1 𝑟2

𝐾 0 𝑝−1
2

𝐸 𝑝−1
2 0

Q 1 0

𝒪×
𝐿 is a subgroup of 𝒪×

𝐾 of finite index and thus 𝑅𝑘/𝑅𝐸 is an integer which
can be explicitly evaluated. Thus LHS is ℎ𝐾/ℎ𝐸 ⋅ explicit factor.

On RHS, each 𝐿(𝜒, 𝑠) is holomorphic at 𝑠 = 1 and 𝐿(𝜒, 1) can be evaluated
explicitly in terms of (generalised) Bernoulli numbers using purely analytic tech-
niques.

With more work, this leads to Kummer’s criterion for the 𝑝-divisibility of
ℎ𝐾.
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ideal class group, 21
ideal divisibility, 21
inert, 24
integral basis, 12, 15
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Kummer’s lemma, 46

lattice, 28

minimal polynomial, 3
Minkowski constant, 33
Minkowski’s theorem, 31

norm, 8, 16
number field, 3

prime ideal, 19

quadratic field, 8

ramification, 24
regular prime, 47
regulator, 50
ring of integers, 6

split completely, 24

trace, 8
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