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1 Introduction

1 Introduction
What is non-archimedean geometry?

Definition (non-archimedean field). A non-archimedean field K is a field
that is complete with respect to a non-archimedean absolute value (multi ...
that satisfies the strict triangle inequality.

Notation. We define the valuation ring and its unique maximal ideal to be

R = K0 = {x ∈ K : |x| ≤ 1}
m = K00 = {x ∈ K : |x| < 1}

and we let k = K̃ = R/m = K0/K00.

Example.

1. A field K with trivial absolute value |x| =

{
0 x = 0

1 x 6= 0
. Then K = R =

K,m = 0.

2. Let F be a field. Let K = F ((t)) be the field of Laurent series with t-adic
valuation, i.e. let ε ∈ (0, 1) and define |x| = εordt(x). Then R = F [[t]],m =
(t) and k = F .

3. Let p be a prime. Then K = Qp with p-adic valuation. Usually we take
ε = 1

p . R = Zp,m = (p) and k = Fp.

More generally let K ′/K be an algebraic extension. Then | · |K extends
uniquely to | · |K′ which is non-archimedean and also a valuation on K ′.
If K ′ is finite then K ′ is complete with respect to | · |K′ , but in general it
is not.
We take the algebraic closure K and then its completion K̂. It is a theorem
of Krasner that K̂ is still algebraically closre. In the case K = Qp, Cp =

Q̂p is the field of p-adic complex numbers.

Why do we care about non-archimedean fields?
We want to solve Diophantine problems, which are in general very hard.

Hasse proposed in 1920s the local-global principle: trivially if we have a (non-
trivial) rational solution then we have a solution over R and Qp for all p. The
local-global principle asks for the converse: if we have (nontrivial) solutions over
R and Qp for all p, can we “patch” together to get a solution over Q?

Theorem 1.1 (Hasse-Minsowski). If Q(x1, . . . , xn) is a quadratic form over
Q, then Q(x1, . . . , xn) has a nontrivial Q-solution if and only if and only if
it has nontrivial solutions over R and Qp for all p.

Counterexample (Selmer): 3x3 +4y3 +5y3 = 0 have R and Qp-solutions for
all p, but not Q-solutions.

Now we use the algebraic geometric language of schemes. Let X be an
algebraic variety over Q (i.e. a scheme of finite typer). We are interested in

2



1 Introduction

X(Q). The local-global principle then says that we can extend it to XR (or
XC)) and XQp

.
Elliptic curves over C: we know that if Λ = τ1Z + τ2Z is a lattice, there is

a C-analytic isomorphism φ : C/Λ → EΛ(C) for some elliptic curve EΛ over C
which is also a group homomorphism. The converse is

Theorem 1.2 (uniformisation over C). Let E/C be an elliptic curve. Then
there exists a lattice Λ unique up to homothety (Λ1,Λ2 are homothetic if
exists λ ∈ C∗ such that λ ·Λ1 = λ2) and C-analytic isomorphism φ : C/Λ→
E(C) which is a group homomorphism.

We can rescale Λ to get normalised lattice 1
τ1
Λ = Z+ τZ where τ = τ1

τ2
. We

can further assume that τ ∈ H = {z ∈ C : Im(z) > 0}. Set u = e2πiz, q = e2πiτ .
There is a C-analytic isomorphism (or isomorphism of complex Lie groups)

C/Λ→ C∗/qZ

z 7→ e2πiz

Hence we have C-analytic an isomorphism E(C) ∼= C∗/qZ (multiplicative pa-
rameterisation). Conversely for each q ∈ C, |q| < 1, there exists an elliptic curve
Eq such that Eq(C) ∼= C∗/qZ.

Tate curves: let E/Qp be an elliptic curve. Then the “additive uniformi-
sation” cannot work since Qp has no non-trivial discrete subgroups (exercise).
But if we consider Q∗

p, there are a lot of discrete subgroups, e.g. q ∈ K∗ with
|q| < 1 gives a discrete subgroup qZ.

Theorem 1.3 (Tate). Let K be a non-archimedean field and q ∈ Q∗
p, |q| < 1.

Then

sk(q) =

∞∑
n=1

nkqn

1− qn
, a4(q) = −5s3(q), a6(q) =

−5s3(q) + 7s5(q)

12

then these series converge in K and the elliptic curve Eq : y2 + xy =
x3 + a4(q)x + a6(q) has j-invariant |j(Eq)| > 1. Moreover we have a p-
adic analytic isomorphism φ : K

∗
/qZ → Eq(K). φ is Galois invariant:

φ(ug) = φ(u)g for all u ∈ K
∗
, g ∈ Gal(K/K). In particular we have

L∗/qZ ∼= Eq(L) for all L/K algebraic. The elliptic curve Eq is called the
Tate curve.

Exercise (Nagell-Lutz). If E/Q has split multiplicative reduction at p (|j(Eq)| >
1) then E(Q)tors is finite.

Theorem 1.4 (Tate uniformisation). Let E/K be an elliptic curve with
|j(E)| > 1. Then there exists a unique q ∈ K∗, |q| < 1 such that Eq ∼= E.

What should be the “geometry”?
Naïve approach: define p-adic manifolds, analytic functions locally given by

power converging power series. Book: J-P. Serre: p-adic Lie groups.
Problem with this approach: if K is non-archimedean then it is totally

disconnected!
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1 Introduction

Exercise. Easy facts:

1. A series
∑∞
n=0 an is Cauchy if and only if lim |an| = 0 (for if use strict

triangle inequality).

2. |a+ b| = max{|a|, |b|} if |a| 6= |b|.

3. B(a, r), the closed ball of radius r, is both closed and open.

4. B̊(a, r), the open ball of radius r, is both closed and open.

5. ∂B(a, r) is also both open and closed.

It follows that the closed balls are not connected

Another more series problem: identity theorem does not hold. For example

f : K → K

x 7→

{
1 |x| ≤ 1

0 |x| > 1

Solution:

1. Tate’s “rigidity” analytic notion: analytic functions should have globally
a power series expansion if they are defined on a ball. In particular on
B = B(0, 1), f =

∑
aIx

I is analytic if and only if lim |aI | = 0. They
are called restricted power series, or strictly convergent power series. We
then obtain Tn, the Tate algebra. The is the analogue of k[x1, . . . , xn] in
algebraic geometry.

2. Berkovich spaces/adic spaces (Huber). More “schematic” approach. We
are going to focus mostly on the latter after rigid analytic varieties and
not so much on Berkovich spaces. Adic spaces are also the framework for
perfectoid spaces.
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2 Tate algebras

2 Tate algebras

Notation. We use multiindex notation: f =
∑
cIx

I where I = (i1, . . . , in),
and |I| =

∑n
j=1 ij .

We define OTn = R〈x1, . . . , xn〉 to be the set of restricted power series with
coefficients in R.

Lemma 2.1. A formal power series f =
∑
cIx

I ∈ K[[x1, . . . , xn]] converges
in B(K) if and only if lim |cI | = 0.

Proof. For only if use x = (1, . . . , 1). For if, given x ∈ B(K), exists K ′/K finite
such that xi ∈ K ′ for all i. If lim |cI | = 0 then lim |cI ||xI | = 0, so f(x) converges
in K ′ as K ′ is complete.

Define the Gauss norm on Tn∥∥∥∑ cIx
I
∥∥∥ = sup

I
{|cI |} = max

I
{|cI |}.

It is clear that ‖f‖ = 0 if and only if f = 0, ‖cf‖ = |c|‖f‖, and ‖f + g‖ ≤
max{‖f‖, ‖g‖}. What is not so obvious is that

Lemma 2.2. The Gauss norm is multiplicative.

Proof. It is clear that ‖fg‖ ≤ ‖f‖‖g‖. wlog ‖f‖ = ‖g‖ = 1, so f, g ∈ OTn .
We may reduce mod m to get k[x1, . . . , xn]. f, g 6= 0 implies fg 6= 0. Thus
‖fg‖ = 1.

Therefore ‖·‖ on Tn is a K-algebra norm.

Lemma 2.3. Tn is complete with respect to ‖·‖.

Proof. Suppose we have a Cauchy sequence
∑
fi with fi ∈ Tn, lim‖fi‖ = 0. Let

fi =
∑
ci,Ix

I . Then |ci,I | ≤ ‖fi‖ so limi |ci,I | = 0, thus we have
∑
i ci,I = cI .

Let f =
∑
cIx

I . It is an exercise to show f ∈ Tn.

Thus the Tate algebra Tn is a K-Banach algebra.

Lemma 2.4. For f normalised, i.e. ‖f‖ = 1, TFAE:

1. f is a unit in OTn
.

2. f is a unit in Tn.

3. f is constant.

4. |f(0)| = 1 and ‖f − f(0)‖ < 1.

Proof. 1 ⇐⇒ 2 by multiplicativity of norm. 1 =⇒ 3 by using units in
a polynomial ring are precisely the non-zero constants. 3 =⇒ 4 is clear.
4 =⇒ 1: we may assume f(0) = 1 so f = 1 − g, ‖g‖ < 1 and

∑
gi is an

inverse.
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2 Tate algebras

We would like to construct rigid analytic space using Tn as local models. In
complex geometry, we used Weierstrass preparation and division to derive basic
properties of the local ring of analytic functions, such as being locally factorial
and satisfying Nullstellensatz. We are going to do the same for Tate algebras.

Definition (distinguished power series). A power series f =
∑
gix

i
n where

gi ∈ Tn−1 is distinguished in xn of degree d if

1. ‖f‖ = ‖gd‖ and ‖gs‖ < ‖f‖ for s > d.

2. gd is a unit in Tn−1.

Thus if f is normalised then it is distinguished in xn of degree d if and only if
f = g0 + · · ·+ gdx

d
n with gd ∈ k∗.

Theorem 2.5. Suppose f is normalised.

1. Division: suppose f ∈ OTn is distinguished in xn of degree d. Then any
g ∈ Tn can be uniquely written as g = qf+r where q ∈ Tn, r ∈ Tn−1[xn]
with degxn

(r) < d. Moreover ‖g‖ = max{‖q‖, ‖r‖}.

2. Preparation: suppose f ∈ OTn
is distinguished in xn of degree d. Then

have a unique expression f = gk where g ∈ OTn−1
[xn] monic in xn of

degree d, h ∈ O∗
Tn

.

3. Distinction: if f1, . . . , fm ∈ OTn
are all normalised then exists an

automorphism τ of Tn (preserving ‖·‖) such that fτ1 , . . . , fτn are dis-
tinguished in xn.

Proof.

1. For uniqueness, suppose qf + r = q′f + r′, then (q − q′)f = r′ − r. Let c
be such that |c| = ‖q − q′‖−1. Then reduce c(q − q′)f = c(r′ − r) modulo
m and inspect the xdn term to derive a contradiction.
For the statement on norms, suppose for contradiction suppose ‖q‖ =
‖r‖ > ‖g‖. Choose c such that ‖c‖ = ‖q‖−1, reduce to get 0 = cqf + r.
Again contradiction.
For existence, suppose first f = f0 = c0 + c1xn + · · · + cdx

d
n where ci ∈

OTn−1
. Let g =

∑
dIx

I . Decompose xI = qIf+rI (ordinary long division)
in OTn−1

[xn] so degxn
(rI) < d. By the result on norms max{‖qI‖, ‖rI‖} =

‖xI‖ = 1. Then q =
∑
dIqI , r =

∑
dIrI converge in Tn and g = qf + r.

Have r ∈ OTn−1
[xn] with degxn

(r) < d. For the general case, let f = f0+D
where ‖D‖ < 1. Let

g0 = g, gi = qif0 + ri = qif + ri − qiD, gi+1 = qiD.

Then q =
∑
qi, r =

∑
ri converges and g = qf + r.

2. For existence, apply division xdn = q′f+r′, q = xdn−r′. q ∈ OTn−1
[xn],degxn

(q) =

d, q = q′f . Reduce to get q = q′f . q and f have the same degree so q′ is
a unit. Thus q′ is a unit in Tn. Thus f = gh where g = q, h = (q′)−1. For
uniqueness, suppose f = gh then xdn = h−1f+(xdn−g). Apply uniqueness
of division.
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2 Tate algebras

3. Let

τ : Tn → Tn

xi 7→

{
xi + xαi

n i < n

xn i = n

where αi is to be chosen later. It is clear that τ is a K-algebra homo-
morphism and τ preserves the Gauss norm. It has an inverse so τ is a
K-algebra automorphism that preservse the norm.
To choose αi, suppose fj =

∑
cj,Ix

I . f j are polynomials and consider
those I such that |cj,I | = 1 and define t to be strictly larger than any of
the index in I = (i1, . . . , in) for all I. Let α1 = tn−1, . . . , αn−1 = t. Then

τ(fj) =
∑

cj,I(x1 + xα1
n )i1 · · · (xn−1 + xαn−1

n )in−1xinn

=
∑

cj,Ix
α1i1+···+αn−1in−1+in
n + g

where degxn
g < α1i1 + · · ·+ αn−1in−1 + in for all such indices. Exercise:

if I 6= J then α1i1 + · · · + αn−1in−1 + in 6= α1j1 + · · · + αn−1jn−1 + jn.
Thus there exists a maximum I0. Then

τ(fj) = cj,Ix
dj
n + poly of degree < dj .

Thus τ(fj) is distinguished of degree dj for all j = 1, . . . ,m.

Proposition 2.6 (Hilbert basis theorem). The K-algebra Tn is Noetherian.

Proof. Induction on n. The base case n = 0 is obvious. Assume the statement
is true for n− 1. Let I ⊆ Tn be a nonzero ideal and 0 6= f ∈ I. By Weierstrass
distinction exists τ such that fτ is distinguished in xn of some degree. By
division Iτ is generated by fτ and Iτ ∩ Tn−1[xn]. By induction hypothesis
Tn−1 is Noetherian, and therefore so is Tn−1[xn]. Thus Iτ ∩ Tn−1[xn] is finitely
generated so Iτ is finitely generated. I is finitely generated.

Proposition 2.7. The K-algebra Tn is a UFD.

Proof. Induction on n. Assume true for n−1. Take f ∈ Tn. fτ is distinguished
in xn. By preparation fτ = gh where g is monic in OTn−1

[xn] and h is a unit.
As Tn−1[xn] is a UFD fτ can be decomposed into irreducibles. Uniqueness is
similar.

Proposition 2.8. The Krull dimension on Tn is n.

Proof. 0 ⊆ (x1) ⊆ · · · ⊆ (x1, . . . , xn) is a chain of prime ideals of length n. If
f ∈ Tn irreducible, use distinction and preparation to get Tn/(g) (fτ = gh)
which is finite over Tn−1 so dimTn ≤ n.
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3 Affinoid algebra

3 Affinoid algebra

Definition (affinoid algebra). An affinoid algebra is a K-algebra of the form
Tn/I for some I ⊆ Tn.

Theorem 3.1 (Noether normalisation). Let I be an ideal of Tn, A = Tn/I.
Then there exists a finite injective map Td ↪→ A of K-algebras for some d.
Moreover dimA = d.

Proof. Induction on n. Assume the result is true for n − 1. We may asume
that I ⊆ Tn is proper. Take 0 6= f ∈ I. Apply Weierstrass distinction and
preparation to get a monic polynomial f ∈ Tn−1[xn] in I in xn (we write I for
Iτ ). Tn/(f) is a free Tn−1-module of finite rank. Let ϕ the composition Tn−1 →
Tn/(f)→ Tn/I. If kerϕ = 0 then done. If not then we may apply the induction
hypothesis for Tn−1/ kerϕ to get Td ↪→ Tn−1/ kerϕ, and Tn−1/ kerϕ ↪→ Tn/I is
finite and projective. The statement about dimension follows from integrality.

Remark. Warning: unlike in the affine case, it can happen that an affinoid
subalgebra has greater dimension than the affinoid algebra that contains it.
See example 2.3.3 in Fresnel & van der Put, Rigid Analytic Geometry and its
Applications.

Corollary 3.2 (Hilbert (weak) Nullstellensatz). Any maximal ideal m ⊆ Tn
has the property that Tn/m is finite over K.

Proof. Tn/m is a field so has dimension 0 so by Noether normalisation it is finite
over K.

3.1 Interlude on p-adic analysis
Facts that carry over from R and C:

1. For a finite dimensional Banach space over K, any two norms are equiva-
lent.

2. A linear map f : V →W of K-Banach spaces is continuous if and only if
f is bounded.

3. Open mapping theorem: if f : V → W is a bounded surjective linear
map between K-Banach spaces then f is open and the quotient topology
on W conincides with the original topology on W . More precisely, exists
c > 0 such that for any w ∈ W , there is some v ∈ V , w = f(v) satisfying
‖v‖ ≤ c‖w‖. As a corollary, any bounded bijective linear map f : V →W
is an isomorphism of Banach spaces.

4. Closed graph theorem: a linear map f : V → W between K-Banach
spaces is bounded if and only if its graph in V ×W with product topology
is closed.

Unique to p-adic analysis we have

8



3 Affinoid algebra

Lemma 3.3. Let A be a K-Banach algebra which is Noetherian. Let M be
a Banach A-module (i.e. M is Banach space with a norm compatible with
the A-module structure: ‖a · m‖M ≤ ‖a‖A‖m‖M ) such that M is finitely
generated over A. Then any A-submodule of M is closed.

Later we’ll use this to put a norm on affinoid algebras: Tn is Noetherian so
any ideal I is closed. Then we can equip Tn/I with the quotient norm.

Proof. Let N be a submodule of M . Let N be the closure of N . A Noethe-
rian, M finitely generated implies that N is finitely generated. Take generators
e1, . . . , en. Consider An � N . Equip An with the maximum norm. By open
mapping theorem, exists c ∈ (0, 1) such that every x ∈ N can be written as∑
aiei with c ·max‖ai‖ ≤ ‖x‖. N is dense in N so choose f1, . . . , fn ∈ N such

that
∑
‖ei − fi‖ ≤ c2. We show that f1, . . . fn generate N .

Given x ∈ N , write x0 = x =
∑
a0,iei where c · max‖ai‖ ≤ ‖x0‖. Then

x0 =
∑
a0,ifi + x1 where x1 =

∑
a0,i(ei − fi) and ‖x1‖ ≤ c · ‖x0‖. Then write

xm =
∑
am,iei with c ·max‖am,i‖ ≤ ‖xm‖. Take the infinite sum

x =

∞∑
m=0

xm − xm+1 =
∑

(
∑

am,i)fi =
∑

aifi.

3.2 Completed tensor product
Let A be a K-Banach algebra, M,N Banach A-modules. M ⊗A N is not com-
plete in general, but there is a seminorm

‖x‖ = inf{max‖mi‖‖ni‖ : x =
∑

mi ⊗ ni}.

Define the completed tensor product M⊗̂AN to be the completion of M ⊗A N
with respect to this seminorm.
Exercise. Let A,M,N be as above. If M,N are finitely generated then ‖·‖ is a
norm and M ⊗AN is complete. (Hint: choose some finite presentation of M,N
and reduce to the case of free modules of finite rank)

The completed tensor product has the following universal property: there
exists a continuous A-bilinear map α : M × N → M⊗̂AN such that for any
continuous bilinear map β :M ×N → T into some complete normed A-module,
there exists a continuous linear map ϕ such that the following diagram com-
mutes:

M ×N T

M⊗̂AN

α

β

ϕ

Example. Let A be an affinoid algebra. Define the restricted power series to
be

A〈x1, . . . , xn〉 = {
∑

aIx
I ∈ A[[x1, . . . , xn]] : aI ∈ A, lim |aI | = 0}.

It is complete with respect to the Gauss norm and is isomorphic to A⊗̂KTn.
This is a consequence of the following general observation.
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3 Affinoid algebra

Proposition 3.4. Let A1 → A2 be a homomorphism of affinoid algebras.
Then

A2⊗̂A1A1〈x1, . . . , xn〉 ∼= A2〈x1, . . . , xn〉.

Proof. Follows from universal property.

Theorem 3.5. Let A → A1, A → A2 be homomorphisms of affinoid alge-
bras. Then A1⊗̂AA2 is also affinoid.

Sketch proof. We know Tn+m ∼= Tn⊗̂KTm. Prove first the statement over A =
K. Let α1 : Tn → A1, α2 : Tm → A2. Then Tn+m/(kerα1, kerα2) ∼= A1⊗̂KA2.
By base change A1⊗̂KA2 � A1⊗̂RA2. Then show for R→ A,A→ A1, A→ A2,
we can exhibit an epimorphism A1⊗̂RA2 � A1⊗̂AA2.

As hinted in the previous section, every ideal I ⊆ Tn is closed, and hence
any affinoid A = Tn/I admits a residue norm∥∥∥q(∑ cIx

I)
∥∥∥
A
= inf
a∈I

∥∥∥∑ cIx
I + a

∥∥∥.
where q : Tn → A is the natural quotient. It then follows that A is a K-Banach
algebra with respect to ‖·‖A.

Proposition 3.6. Let B be a Noetherian K-Banach algebra. Suppose exists
S a collection of ideals of B such that

1. for any I ∈ S, dimK B/I <∞;

2.
⋂
I∈S I = (0),

then any K-algebra homomorphism A → B, where A is a Noetherian K-
Banach algebra, is continuous.

Proof. Applying the closed graph theorem, we need to show if xn → 0 and
f(xn)→ y then y = 0. Note that if I ⊆ B is closed then so is J = f−1(A) ⊆ A.
The induced map A/J → B/I is injective. If I ∈ S then since dimK B/I <∞,
have dimK A/J <∞. Any linear map between finite dimensional Banach space
is continuous, and all norms on finite dimensional spaces are equivalent, so the
map is bounded with respect to maximum norm. Thus y ∈ I. As this holds for
all I ∈ S, y ∈

⋂
I = (0) so y = 0.

Corollary 3.7. Any K-algebra homomorphism between affinoids is continu-
ous. In particular for a fixed affinoid A, all the residue norms are equivalent.
Thus the Gauss norm on Tn is canonical in the sense that every K-algebra
homomorphism Tn → Tn preserves the Gauss norm.

Proof. Take all ideals I in A such that dimK A/I < ∞, in particular all max-
imal ideals and their powers by Noether normalisation. Suppose y 6= 0. Then
Ann(y) ⊆ m for some m maximal. By Krull intersection

⋂
mn = 0 in Am. Thus

y /∈
⋂
mn.
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3 Affinoid algebra

3.3 Newton polygon

Lemma 3.8. Let P (z) = zn + an−1z
n−1 + · · · + a0 over K with roots

α1, . . . , αn in K. Sort the roots by |α1| ≥ |α2| ≥ · · · ≥ |αn|. Then |an−i| ≤
|α1 · · ·αi| with equality whenever |αi| > |αi+1| or i = n.

Proof. Write P (z) =
∏
(z − αi). Then an−i is up to sign the same as i-folds of

αj ’s. The first statement then follows from the strict triangle inequality. If |αi| >
|αi+1| then α1 · · ·αi is strictly greater than any other i-fold so equality.

Corollary 3.9. The maximum absolute value of the roots of P is equal to
maxj‖an−j‖1/j.

3.4 Maximum spectrum and spectral norm
Let A be an affinoid algebra. Let MaxA = SpA be the set of maximal ideals of
A. We refer to SpA together with its ring of “functions” A as an affinoid space,
although we haven’t defined a topology on SpA yet.

Nullstellensatz implies that for any x ∈ SpA, A/mx is finite over K. In
particular it admits a unique extension of | · |K . Write f(x) for the image of
f ∈ A in A/mx. Define the supremum/spectral norm to be

‖f‖spec = sup
x∈SpA

|f(x)|.

It is clear that ‖·‖spec is a seminorm and is submultiplicative. It is a norm
if and only if

⋂
x∈SpAmx = 0, and we will see that it is equivalent to A being

reduced.
Given ϕ : A→ B a homomorphism of affinoids, we can define

Spϕ : SpB → SpA

m 7→ ϕ−1(m)

It is well-defined: by Noether normalisation the composition K ↪→ A/ϕ−1(m)→
B/m is a finite extension so ϕ−1(m) is maximal.

Lemma 3.10 (maximum modulus principle for Tate algebra). Let f ∈ Tn.
Then for all x ∈ SpTn, |f(x)| ≤ ‖f‖ and exists x such that |f(x)| = ‖f‖,
i.e. ‖f‖spec = ‖f‖.

Proof. Let f =
∑
cIx

I . Let P (x1, . . . , xn) be the polynomial of terms in f such
that |cI | = ‖f‖. Then ‖P − f‖ < ‖P‖ so it is enough to show the statement
for P . Normalise P so P ∈ OK [x1, . . . , xn] and not all coefficients are in mK .
Consider K, k. P cannot vanish everywhere on k

n so exists (α1, . . . , αn) ∈ k
n

such that P (α1, . . . , αn) 6= 0. Any lift (r1, . . . , rn) of (α1, . . . , αn) to Rn
K

will
satisfy |P (r1, . . . , rn)| = 1.

In general, evaluating functions f ∈ Tn at x = (α1, . . . , αn) ∈ Rn
K

gives
a surjective map ϕx : Tn → K(α1, . . . , αn), and kerϕx is a maximal ideal of
Tn. Claim B(K) → SpTn is surjective: let m ⊆ Tn be maximal and consider
the induced map ϕ : Tn → K. Claim ϕ is contractive, i.e. |ϕ(f)| ≤ ‖f‖ for

11



3 Affinoid algebra

all f . Assume |ϕ(f)| > ‖f‖ for some f normalised. Write α = ϕ(f). Let
q(y) = yk + ck−1y

k−1 + · · · + c0 be its minimal polynomial over K. |αi| = |α|
for any root αi of q. Since |α| > 1, |cn−i| ≤ |α|i < |α|k = |c0| for all i <
k. Thus q(f) ∈ Tn is a unit by Lemma 2.4 so its image under ϕ is also a
unit, contradicting ϕ(q(f)) = q(a) = 0. Then (ϕ(x1), . . . , ϕ(xn)) ∈ B(K) so ϕ
coincides with ϕx.

Proposition 3.11 (maximum modulus principle for affinoid). For any affi-
noid algebra A and f ∈ A, there exists x ∈ SpA such that ‖f‖spec = |f(x)|.
Moreover ‖f‖spec = 0 if and only if f is nilpotent.

Proof. Noether normalisation says there is a finite map Td ↪→ A, so exists some
irreducible polynomial P (z) = zn+an−1z

n−1+ · · ·+a0 such that P (f) = 0. Use
corollary in Newton polygon subsection, for any x ∈ SpA and any y ∈ SpTd
such that x lies over y, we have |f(x)| = max{‖an−i(y)‖1/i}. Thus ‖f‖spec =

max{‖an−i‖1/ispec}. By maximum modulus principle for Tate algebra, exists y
such that the maximum is achieved at y.

If ‖f‖spec = 0 then ‖an−i‖spec = 0 so ‖an−i‖ = 0 so an−i = 0. Thus f is
nilpotent.

Corollary 3.12. For any affinoid algebra A, the Jacobson radical equals to
the nilradical. In particular ‖·‖spec is a norm if and only if N (A) = 0, i.e.
A is reduced.

Proof. Suppose f ∈ J (A), then ‖f‖spec = 0 so by maximum modulus principle
f is nilpotnent.

Remark. In fact more is true. Let A be a reduced affinoid algebra. Then A is
complete with respect to ‖·‖spec and ‖·‖spec is equivalent to any residual norm.
The first statement is Theorem 3.4.9 in Fresnel & van der Put.

12



4 Topology on maximum spectrum

4 Topology on maximum spectrum

4.1 Affinoid subdomain
Let A be an affinoid algebra.

Definition (affinoid subspace). An affinoid subspace (or affinoid subdo-
main) of X = SpA is a subset Y ⊆ X for which there exists a morphism
φ : A → B of affinoid algebra’s with Sp(φ)(SpB) ⊆ Y with the following
universal property: given any K-algebra homomorphism ψ : A → C where
C affinoid with Sp(ψ)(SpC) ⊆ Y , there exists a unique homomorphism
τ : B → C making the following diagram commute

A C

B

ψ

φ τ

Proposition 4.1. Let Y ⊆ X be an affinoid subdomain.

1. The map φ : A→ B is unique up to isomorphism.

2. The induced map Spφ : SpB → Y is a bijection.

3. For any y ∈ Y , let my by the corresponding maximal ideal of A. Then
A/mny → B/mnyB is an isomorphism for all n ≥ 1.

4. If Y is an affinoid subdomain of X and Z is an affinoid subdomain of
Y then Z is an affinoid subdomain of X.

5. If ψ : A → C is a homomorphism of affinoids and X ′ = SpB is
an affinoid subdomain of X then ((Spψ)−1(Y ), B⊗̂AC) is an affinoid
subdomain of SpC.

Proof.

1. Universal property.

2. See 3.

3. By universal property A → A/mny factors through B, so the square and
the upper triangle in the diagram commute

A B

A/mny B/mnyB

π π′
α

σ

Both π′ and σ ◦ α satisfy the universal property with respect to σ ◦ π :
A→ B/(m′

y)
n, so by uniqueness the lower triangle also commutes. As π′

is surjective, σ is surjective. As α is surjective and kerπ′ = mnyB ⊆ kerα,
σ must be injective. Set n = 1 we get 2.

13



4 Topology on maximum spectrum

4. Definition.

5. Let X ′ = SpC. The pushout of rings

A B

C B⊗̂AC

D

φ

ψ
α

β

gives

Z

Y ×X X ′ X ′

Y X

Sp β

Spα

p

q Spψ

Spφ

Using commutativity the image of projection p must be contained in
Sp(ψ)−1(Y ). Now let Z = SpD be affinoid. Assume that Spβ(Z) ⊆
Sp(ψ)−1(Y ), then Spψ ◦ Spβ : Z → Xso universal property of Y , we get
a unique morphism α : B → D such that Spα : Z → X. Then we use the
universal property of tensor product to get a morphism B⊗̂AC → D.

Corollary 4.2. If Y1, . . . , Yk are affinoid subdomains with coordinate rings
B1, . . . , Bk, then Y1 ∩ · · · ∩ Yk is an affinoid subdomain with coordinate ring
B1⊗̂AB2⊗̂A · · · ⊗̂ABk.

Definition (mild G-topology). We define the mild G-topology on SpA on
SpA to be the Grothendieck topology whose admissible opens (objects) are
affinoid subdomains and admissible coverings (coverings) are coverings that
have a finite subcovering.

We define the structure presheaf on mild G-topology by setting OX(A) = A
if U = SpA.

Definition ((locally) closed/open immersion). If X = SpB, Y = SpA,
φ : X → Y a morphism of affinoid spaces, we say that φ is a closed immersion
if the corresponding homomorphism A → B is surjective. It is a locally
closed immersion (resp. open immersion) if the induced homomorphism
OY,y → OX,x where x ∈ SpB, y = φ(x), is surjective (resp. bijective).

Exercise. A locally closed immersion SpB → SpA of affinoids such that the
induced map A→ B is finite is in fact a closed immersion.

14



4 Topology on maximum spectrum

4.2 Rational subdomain
Rational subdomains are analogous to distinguished open sets in affine schemes.

Definition (rational subdomain). Let A be an affinoid algebra, X = SpA.
We say that a subset Y ⊆ X is a rational subdomain if there exist f1, . . . , fn, g ∈
A such that they generate the unit ideal and

Y = {x ∈ X : |fi(x)| ≤ |g(x)| for all i} = X( f1,...,fng ).

Proposition 4.3. Any rational subdomain X( f1,...,fng ) is an affinoid sub-
domain with coordinate ring

A〈 f1,...,fng 〉 = A〈y1, . . . , yn〉/(f1 − gy1, . . . , fn − gyn).

Proof. Let B = A〈 f1,...,fng 〉. Then g is automatically a unit in B. A homo-
morphism ψ : A → C of affinoids such that Spψ(SpC) ⊆ X( f1,...,fng ), i.e.
|ψ(fi)(y)| ≤ |ψ(g)(y)| for all y ∈ SpC for all i can be characterised as

‖ψ(fi)ψ(g)−1‖spec ≤ 1.

Note ψ(g) is indeed a unit in C, for if not ψ(g) ∈ m for some maximal ideal m.
Then not all ψ(fi) can be in m so |ψ(fi)(ym)| > |g(ym)|, absurd.

Now let ψ be the canonical map A→ A〈 f1,...,fng 〉. Then∥∥∥∥fig
∥∥∥∥
spec

≤ ‖yi‖spec ≤ 1

so imSpψ ⊆ X( f1,...,fng ). If ϕ : A → C a map of affinoids satisfying the
hypothesis then define

ϕ̃ : A〈 f1,...,fng 〉 → C

y 7→ ϕ(fi)ϕ(g)
−1

so we have a factorisation of ϕ : A → C. It is unique because of universal
property of localisation and density of A[ 1g ].

Remark.

1. If f1, . . . , fn, g do not generate the unit ideal then we will not get the
subset of X we want. For example take T2 = K〈x1, x2〉 and consider
{y ∈ SpT2 : |x1(y)| ≤ |x2(y)|}.

2. Consider special kind of rational subspaces

X(f, ε) = {x ∈ X : |f(x)| ≤ ε}

for some f ∈ A, ε ∈ R>0. The topology generated by X(f, ε) is called the
canonical topology.
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4 Topology on maximum spectrum

Example. Consider Bn(K). We have seen that Bn(K) � SpTn. It is a
bijection if we take Bn(K)/AutK(K) (in the proof we choose an embedding
K ↪→ K ′ ↪→ K, and the norm is Galois-invariant). Then the quotient topology
is the canonical topology. In particular if K = K then SpTn is homeomorphic
to the closed ball. Note that this topology is not suitable for geometry, as for
example it is totally disconntected.

Upon convincing ourselves that the intersection of two rational subdomains
is rational, we define

Definition ((very) weak G-topology). We define the very weak G-topology
on X = SpA to be the Grothendieck topology whose admissible opens are
rational subdomains, admissible coverings are coverings that contain a finite
subcovering.

The weak G-topology on X is where admissible opens are finite unions
of rational subdomains and admissible coverings are coverings that have a
finite subcovering.

Among the three G-topologies, mild topology is finer than very weak topol-
ogy as we have shown above, and weak topology is finer than mild topology —
this is the famous theorem of Gerritzen-Grauert.
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5 Tate’s acyclicity theorem

5 Tate’s acyclicity theorem

Theorem 5.1 (Gerritzen-Grauert theorem). Let A be an affinoid algebra
and Y = SpB an affinoid subdomain of SpA = X. Then Y is a finite union
of rational subdomains.

Note. The converse is not true. A counterexample is given in Fresnel & van
der Put.

Detailed sketch. We have φ : A → B corresponding to Y ⊆ X. Then we may
choose a surjection ϕ : A〈x1, . . . , xn〉 � B. This is possible since B affinoid
implies that there is a surjection Tn � B. Since K ↪→ A, this extends to
ϕ : A〈x1, . . . , xn〉� B. Choose a minimal such n. Proceed by induction on n.

We need a relative version of Weierstrass preparation, division and distinc-
tion. Recall that in the abolute version, an element f =

∑
cix

i
n ∈ Tn where

ci ∈ Tn−1 is said to be distinguished in xn of degree d if

• cd is a unit in Tn−1,

• ‖cd‖ = ‖f‖,

• ‖cd‖ > ‖ci‖ for i > d.

Definition. We say f ∈ A〈x1, . . . , xn〉 is distinguished in xn of degree dx
at x ∈ X if f ∈ A/mx〈x1, . . . , xn〉 is distinguished in xn of degree dx. We
say f is distinguished in xn of degree ≤ d (resp. = d) if f is distinguished in
xn of degree ≤ d (resp. = d) at all x ∈ X.

Note that f is distinguished of degree 0 if and only if f is a unit.

Lemma 5.2. Assume f ∈ A〈x1, . . . , xn〉 is distinguished in xn of degree
≤ d. Then the set

Uf = {x ∈ X : f distinguished of degree d at x}

is a rational subdomain.

Proof. Write f =
∑
fix

i
n. f distinguished in xn of degree ≤ d means that for

all x ∈ X, exists dx ≤ d such that

• ‖f i‖ ≤ ‖fdx‖ if i ≤ dx and

• ‖f i‖ < ‖fdx‖ if i > dx in A/mx〈x1, . . . , xn〉,

• fdx ∈ A/mx〈x1, . . . , xn−1〉 is a unit.

Let ci ∈ A be the constant term of fi, which satisfies |ci(x)| ≤ ‖f i‖ and by
Lemma 2.4, for i = dx, |cdx(x)| = ‖fdx‖x. In particular |cdx | 6= 0. Since f is
distinguished of degree ≤ d at every point, we see that c0, . . . , cd cannot have a
common zero in X. Thus they generate the unit ideal in A so

U = {x ∈ X : |ci(x)| ≤ |cd(x)|}

is a rational subdomain. It is the same as Uf by definition.
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5 Tate’s acyclicity theorem

The next two lemmas set up Weierstrass preparation in the relative case.
The proofs are very similar to those over K and are left as exercises.

Lemma 5.3 (relative Weierstrass distinction). Suppose f ∈ A〈x1, . . . , xn〉
is such that its coefficients have no common zero in X. Then exists a K-
algebra automorphism τ of A〈x1, . . . , xn〉 such that τ(f) is distinguished in
xn of degree ≤ d for some d ≥ 0.

Lemma 5.4. Assume f ∈ A〈x1, . . . , xn〉 is distinguished of degree d. Then
the natural map A〈x1, . . . , xn−1〉 → A〈x1, . . . , xn〉/(f) is finite.

Claim that we may find f ∈ ker(ϕ : A〈x1, . . . , xn〉 � B) with coefficients
having no common zero in X.

Proof. Fix x ∈ X and consider ϕx : A/mx〈x1, . . . , xn〉 � B/mxB. B/mxB =
K ′ for some finite extension K ′ of K. As the domain of ϕx is not a field,
kerϕx 6= 0. Because kerϕ is mapped surjectively onto kerϕx, we can find
gx ∈ kerϕ which is nonzero modulo mx. Consider the coefficients of one of
these, say g1. Since A is Noetherian, we can find an integer d1 such that the
zero set of the coefficients of g1 is already defined by coefficients of total degree
< d1. Choose some α1, . . . , αn such that α1 + · · ·+ αn = d1. Then the zero set
of g1: X(g1) (the zero set of the coefficients of g1 in X) =⇒ there must be
some g2 such that g2(x) 6= 0. g′2 = g1+x

α1
1 · · ·xαn

n g1 so X(g′2) ⊆ X(g1). Repeat
this step, we get a descending chain

X(g1) ⊇ X(g′2) ⊇ · · ·

The chain stabilises after finitely many steps, so say X(g′r) = ∅. Then f =
g1 + xα1

1 · · ·xαn
n g2 + · · · ∈ kerϕ and the coefficients must have no common

zero.

Use relative distinction, we may assume that f ∈ kerϕ is distinguished in
xn of degree ≤ d. Then Uf is a rational subdomain. Let A(f) be its coordinate
ring. We show that Y ∩Uf is a finite union of rational subdomains of Y , hence
of X.

ϕ induces a surjection ϕ(f) : A(f)〈x1, . . . , xn〉 � B⊗̂AA(f). Note that
the image of f in A(f)〈x1, . . . , xn〉 is distinguished in xn of degree d. We
show earlier f ∈ kerϕ so its image is in kerϕ(f). Thus by lemma 5.4 ϕ′ :
A(f)〈x1, . . . , xn−1〉 → B⊗̂AA(f) is finite homomorphism of K-algebras. Use the
exercise (locally closed finite immersion is closed) (to show the exercise, we need
that the homomorphism does induce non-trivial extensions on the local rings
(prop 4.1 (3) plus M = 0 if and only if its localisation at maximal ideals are
zero)), we see ϕ′ is surjective. Use induction hypothesis Y ∩ Uf is a union of
rational subdomains.

Lemma 5.5. Let Y be an affinoid subdomain of X = SpA. Let U be a
rational subdomain of X given by

U = {x ∈ X : |fi(x)| ≤ |f0(x)|}

where f0, . . . , fn generates the unit ideal. Then exists some ε > 1 such that

18



5 Tate’s acyclicity theorem

the rational subspace

Uε = {x ∈ X : |fi(x)| ≤ ε · |f0(x)|}

has the property that Y ∩ Uε is also rational.
Proof. See Lemma 4.2.9 (extension lemma) in Bosch, Lectures on Formal and
Rigid Geometry.

Let us assume that U ∩ Uf =
⋃k
i=1 Ui. Claim that it is enough to find a

cover

X = (

s⋃
λ=1

Vλ) ∪ (

k⋃
i=1

Ui,εi)

of rationals such that Vλ ⊆ X − Uf for all λ.

Proof. If we have Uλ = SpBλ, tensor ϕ by Bλ to get ϕλ : Bλ〈x1, . . . , xn〉 →
B⊗̂ABλ. Then f ∈ A〈x1, . . . , xn〉 has image in kerϕλ and it is distinguished
in xn of dgree ≤ d − 1 (since Vλ ∩X − Uf ). Apply induction on the degree of
f .

How to find this cover? If k = 1, denote U1 by U , U1,ε1 = U ′. We know

U ′ = X(ε−1 f1
f0
, · · · , ε−1 fn

f0
).

Then define Vλ = X(ε f0fλ ,
fj
fλ

: j 6= λ, 0). Then Vλ’s are rational subcomains and
cover X − Uf .

For k > 1, for each i we find Vi,λ’s that cover X − Ui. Then

X −
⋃
Ui ⊆

⋃
V1,λ1

∩ · · ·Vk,λk

for all k tuples (λ1, . . . , λk). This is rational so we get the desired cover. This
completes the proof.

We will consider X = SpA with the mild G-topology. We may associate to
any finite generated A-module M the presheafM with sectionsM(U) =M⊗B
for U = SpB. Note that we do not have to pass to completed tensor product
since M is finitely generated. Once we prove that it is in fact a sheaf, we call
such M coherent sheaf .

Theorem 5.6 (Tate’s acyclicity theorem). Let X = SpA be an affinoid
space. Then M is an acyclic sheaf, i.e. it is a sheaf and all higher Čech
cohomology groups vanish.

In particular the structure presheaf is a sheaf and is acyclic, so we may call
it structure presheaf.

We need a technical result for Grothendieck topologies.

Lemma 5.7 (reduction). Let X be a G-topological space. Let F be a presheaf
on X, {Ui}i∈I , {Vj}j∈J covers such that {Vj} refines {Ui}. Assume that
F is an acyclic sheaf on the restriction of {Vj}j∈J to each intersection
Ui0 ∩ · · · ∩ Uin . Then F is an acyclic sheaf for {Ui}i∈I if and only if F is
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5 Tate’s acyclicity theorem

an acyclic sheaf for {Vj}j∈J .

Proof. A standard Leray spectral sequence argument. See Corollary 8.1.4/3
in Bosch, Güntzer, Remmert, Non-Archimedean Analysis, or refer to Stacks
project for a more general statement.

Definition (Laurent domain). A Laurent domain of X is a subset defined
by

X(f1, . . . , fn, g
−1
1 , . . . , g−1

n ) = {x ∈ X : |fi(x)| ≤ 1, |gj(x)| ≥ 1}

Lemma 5.8. Laurent domains are affinoid subdomains.

Proof. Denote a Laurent domain by X(f, g−1) where f = (f1, . . . , fn), g
−1 =

(g−1
1 , . . . , g−1

n ). Consider

A〈f, g−1〉 = A〈x1, . . . , xn, y1, . . . yn〉/(xi − fi, 1− gjyj).

We have a canonical map A → A〈f, g−1〉. Similar as before, for any Y → B
affinoids corresponding to ϕ : A→ B, imY ⊆ X(f, g−1) if and only if

|ϕ(fi)(y)| ≤ 1, |ϕ(gj)(y)| ≥ 1

for all y ∈ SpB. The is equivalent to (check ϕ(gj) are units)

|ϕ(fi)(y)| ≤ 1, |ϕ(gj)−1(y)| ≤ 1.

Thus SpA〈f, g−1〉 ⊆ X(f, g−1). Check B satisfies the universal property.

Definition (standard rational covering). Let X = SpA be affinoid and
f1, . . . , fn ∈ A have no common zero. Let

Ui = {x ∈ X : |fj(x)| ≤ |fi(x)| for all j 6= i}.

U1, . . . , Un form a covering of X, called the standard rational covering of X.

Lemma 5.9. Every finite covering of X by affinoids can be refined by a
standard rational covering.

Proof. By Gerritzen-Grauert we may start with a finite rational covering V1, . . . , Vn

Vi = {x ∈ X : |fj,i(x)| ≤ |f0,i(x)| : 0 ≤ j ≤ ni}

with {fj,i}j generates the unit ideal. Consider the product over a multiindex
(v1, . . . , vn), 0 ≤ vi ≤ ni

fv1,...,vn =

n∏
i=1

fvi,i

Choose those fv1,...,vn such that at least one of the vi’s is zero. Claim these
functions generate the unit ideal and thus give a standard covering of X.
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5 Tate’s acyclicity theorem

Proof. Assume exists x ∈ X such that all such functions vanish. Suppose x ∈
Vk. If f0,k(x) 6= 0 then

∏
i 6=k fvi,i must vanish. Thus we can find at least one

index i0 such that f0,i0 , . . . , fn,i0 vanish at x. But f0,i0 , . . . , fn,i0 generate the
unit ideal, contradiction.

Claim that the above standard rational covering is a refinement of {Vi}.

Proof. Let
Xv1,...,vn = X(

fλ1,...,λn

fv1,...,vn
)

where λ1, . . . , λn are as above. Suffice to show if vn = 0 then Xv1,...,vn ⊆ Vn as
other cases follow similarly. Need

|fλn,n(x)| ≤ |f0,n(x)| = |fvn,n(x)|

for all x ∈ Xv1,...,vn . Fix x. Then exists some index j such that x ∈ Vj . If j = n
then done. Otherwise wlog j = 1. We know

|fλ1,1(x)| ≤ |f0,1(x)|

so

|
∏
i 6=n

fvi,i(x)||fλn,n(x)| ≤ |f0,1(x)|
∏
i6=n

|fλi,i(x)||fλn,n(x) ≤
∏
|fvi,i(x)|

RHS is non-zero so we can divide through by
∏
i 6=n |fvi,i(x)| and the claim

follows.

Choose elements f1, . . . , fn ∈ A. Consider the sets

X+
i = X(fi), X

−
i = X(f−1

i ).

Then X∗
1 ∩ · · · ∩X∗

n where ∗ = ± is a Laurent domain and they give a covering
of X, called Laurent covering.

Lemma 5.10. Every finite covering by affinoids can be refined by a Laurent
covering.

Proof. We may start with a standard rational covering given by f1, . . . , fn. Since
fi is invertible in OX(Ui) and f−1

i assumes its maximum on Ui by maximum
modulus principle, we can find c ∈ K∗ such that

|c|−1 < inf
x∈X

max
i=0,...,n

|fi(x)|.

Let us consider the Laurent covering V1, . . . , Vn defined by cf1, . . . , cfn. Claim
if we restrict the standard rational covering to each of the Vj then we get a
standard rational covering on Vj generated by units in OX(Vj).
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5 Tate’s acyclicity theorem

Proof. Consider V = Vj for some fixed j.

V = X((cf0)
α1 , . . . , (cfn)

αn), αi = ±1.

We may assume that α1 = · · · = αs = 1, αs+1 = · · · = αn = −1 for some s.
Then X( f1,...,fnfi

) ∩ V = ∅ for all i = 0, ,̇s. Since

max
i=0,...,s

|fi(x)| ≤ |c|−1 ≤ max
i=0,...,n

|fi(x)|

for all x ∈ V . In particular

max
i=0,...,n

|fi(x)| = max
i=s+1,...,n

|fi(x)|

Hence {Ui|V } is a rational covering generated by f0|V , . . . , fn|V and all these
are units in OX(V ).

Claim if we have a rational covering generated by units f1, . . . , fn, then it
can be refined to a Laurent covering. From this the lemma follows.

Proof. Consider the Laurent covering generated by fj
fi
, 0 ≤ i < j ≤ n. Call

this covering {Vi}. Pick one V ∈ {Vi}. Write i <′ j if |fj(x)| ≤ |fi(x)| for all
x ∈ V . < is transitive and a total ordering so exists a maxumum i0. Then
V ⊆ X( f0,...,fnfi0

).

Proof of Tate’s acyclicity theorem. Using the reduction lemma and induction
on the number of functions generating the Laurent covering. We only need to
consider a Laurent covering generated by one element f ∈ A, X(f), X(f−1).

First prove for M = A. It suffices to prove

0 A A〈f〉 ⊕A〈f−1〉 A〈f, f−1〉 0

A〈x〉/(x− f)⊕A〈y〉/(1− yf) A〈x, y〉/(x− f, 1− yf)

is a short exact sequence. It is part of the following commutative diagram which
can be checked by diagram chasing

0 0

(x− f)A〈x〉 ⊕ (1− yf)A〈y〉 (x− f)A〈x, x−1〉 0

0 A A〈x〉 ⊕A〈y〉 A〈x, x−1〉 0

0 A A〈f〉 ⊕A〈f−1〉 A〈f, f−1〉 0

0 0

δ′′

ε′ δ′

ε δ
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5 Tate’s acyclicity theorem

Now for the general case, suffices to show after tensoring with a finitely
generated module preserves exactness, as −⊗M gives complete modules for M
finitely generated. This follows as the short exact sequence splits.

Proof. We have

A[x, y]→ A〈x〉 ⊕A〈y〉

xiyj 7→

{
xi−j i ≥ j
yj−i i < y

Compose with the natural map to A〈f〉 ⊕ A〈f−1〉 and extend continuously to
A〈x, y〉 → A〈f〉 ⊕A〈f−1〉. Observe that (x− f), (yf − 1) are in the kernel so it
induces A〈f, f−1〉 → A〈f〉 ⊕A〈f−1〉 which splits δ.

Definition (strong G-topology). Let X be an affinoid space. The strong
G-topology on X is given by

• U ⊆ X admissible open if exists a covering U =
⋃
i∈I Ui by affinoids

such that for any morphism ϕ : Z → X of affinoids with ϕ(Z) ⊆ U ,
{ϕ−1(Ui)} can be refined to a finite cover of affinoids of Z.

• an admissible covering {Vj} of an admissible open V is a covering such
that for any ϕ : Z → X of affinoids with ϕ(Z) ⊆ V , {ϕ−1(Vi)} admits
a refinement by a finite covering of affinoids of Z.

We need another technical lemma to extend the structure sheaf from the
weak G-topology to the strong G-topology.

Lemma 5.11 (extension lemma). Let X be a set with G-topologies T, T ′

such that

1. T ′ is finer than T ,

2. each T ′-open U ⊆ X admits a T ′-covering by T -open subsets,

3. each T ′-covering of a T -open admits a T -covering as a refinement.

Then any T -acyclic sheaf F on X admits a unique (up to isomorphism)
extension F ′ as a T ′-acyclic sheaf on X.

We omit the proof but outline the construction briefly. For any admissible
open U ⊆ X with respect to T ′, define the presheaf

U 7→ lim−→
{Ui→U}

H0({Ui},F)

where {Ui → U} runs through the set of T ′-coverings by T -opens. By condition
3 F ′ is an extension and using that F is an acyclic sheaf, it’s easy to prove that
F ′ is a T ′-acyclic sheaf.
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5 Tate’s acyclicity theorem

Corollary 5.12. OX extends from the mild topology to the strong topology.

Note that every affinoid space X is a ringed G-topological space with the
strong G-topology and sheaf OX . To show this is a locally G-ringed space we
show

Proposition 5.13. Let X be as above. Then OX,x is a local ring with
maximal ideal mxOX,x for every x ∈ X.

Proof. For any affinoid subdomain U 3 x, we knowOX(X)/mx ∼= OX(U)/mxOX(U).
By taking direct limit we get a surjection ϕ : OX,x → OX(X)/mx ∼= K ′. Thus
n = kerϕ is maximal. Obviously mxOX,x ⊆ n. Conversely, let fx ∈ n. Consider
the short exact sequence

0 mxOX(U) OX(U) OX(U)/mxOX(U) 0

Since direct limit is exact and commutes with tensor product, have an exact
sequence

0 mxOX,x OX,x K ′ 0

mxOX,x is the only maximal ideal so if fx ∈ OX,x−mxOX,x and fx is represented
by (f, U) then f(x) 6= 0 so we may assume that |f(x)| ≥ 1. Then x ∈ X(f−1)
and f |X(f−1) is a unit so fx is a unit in OX,x.
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6 Rigid analytic spaces

6 Rigid analytic spaces

Proposition 6.1. The contravariant functor A 7→ (SpA,OX) (viewed as
a locally G-ringed space with the strong topology) is an equivalence of cate-
gories. The quasi-inverse is given by the global section functors.

Sketch proof. Fully faithfulness follows from the universal property of affinoid
subdomains.

Definition (rigid analytic space). A rigid analytic K-space X is a G-ringed
space for which there exists an admissible covering {Ui}i∈I of X such that

• Ui’s are affinoid spaces,

• U ⊆ X is admissible if and only if U ∩ Ui is admisible.

Definition (coherent sheaf). A sheaf on X is coherent if there exists an
admissible covering {Ui} of affinoids such that F|Ui is induced by a finitely
generated OX(Ui)-module.

Definition (closed analytic subspace). A closed analytic subspace of X is
a subspace Y such that Y ∩Ui is isomorphic to the zero locus of some ideal
in OX(Ui).

Remark. Rigid analytic spaces are formally very similar to schemes.

• We can glue spaces: let Xi be rigid K-spaces and Xij ⊆ Xi open subspaces
and isomorphisms ϕij : Xij → Xji such that

– ϕij ◦ ϕji = id,
– Xii = Xi and ϕii = id,
– ϕij induces isomorphisms ϕijk : Xij ∩ Xik → Xji ∩ Xjk such that
ϕijk = ϕkji ◦ ϕikj .

Then there exists a rigid analytic space X with an admissible covering
{X ′

i} such that X ′
i
∼= Xi, X

′
i ∩X ′

j
∼= Xij and the diagram commutes:

Xij X ′
i ∩X ′

j

Xji X ′
i ∩X ′

j

ϕij

• We can also glue morphisms: let X,Y be rigid analytic spaces, {Xi}i∈I an
admissible cover of X and ϕi : Xi → Y such that ϕi|Xi∩Xj

: Xi ∩Xj → Y
coincides with ϕj |Xi∩Xj

. Then there exists a unique map ϕ : X → Y such
that ϕ|Xi = ϕi.
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6 Rigid analytic spaces

• If X,Y are rigid analytic spaces and Y is affinoid then the natural map

Hom(X,Y )→ Hom(OY (Y ),OX(X))

is bijective.

• The fibre product of X and Y exists (because of completed tensor prod-
uct).

6.1 Rigid analytification
Analogous to the complex analytic case, we want to construct a functor that
assigns to every K-scheme Z locally of finite type a rigid analytic space Zrig

called the rigid analytification. We begin by giving two hands-on examples.

Rigid analytic affinespace An,rigK Denote by

Tn(r) = {
∑

aIx
I ⊆ K[[x]] : lim |aIr|I|| = 0} = K〈r−1x〉

For r > 0, SpTn(r) = Bn(r). For any c ∈ K, |c| > 1 we may consider

Tn = Tn(c
0) ⊇ Tn(c) ⊇ · · · ⊇ K[x]

which corresponds to
Bn ↪→ SpTn(c) ↪→ · · ·

By gluing, the union of these balls is a rigid analytic space An,rigK =
⋃∞
i=0 SpTn(c

i).
Claim MaxK[x] =

⋃∞
i=0 MaxTn(c

i).

Proof. Let m ⊆ K〈x〉 maximal. Claim that m′ = m ∩ K[x] is maximal and
m = m′ ·K〈x〉.

Proof. For the first claim use the commutative diagram

K[x] K〈x〉

K K[x]/m′ K〈x〉/m ∼= K ′

Since K ′ is a finite field extension of K, K[x]/m′ is a field.
For the second claim, consider

K[x]/m′ K〈x〉/m′ ·K〈x〉

K[x]/m′ K〈x〉/m

Since K[x] is dense in K〈x〉 and finite dimensional vector spaces are closed, the
images of the horizontal maps are closed and dense. Thus the horizontal maps
are surjectections so isomrophisms. It follows that the vertical map on the right
is also an isomorphism
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6 Rigid analytic spaces

Thus have an injection MaxK〈c−ix〉 ↪→ MaxK[x]. For the other direction,
claim for any m′ ⊆ K[x], exists some integer i0 such that m′ · K〈c−i0x〉 is a
maximal ideal.

Sketch proof. By Nullstellensatz for polynomial algebras, K[x]/m′ ∼= K ′ is a
finite extension of K. Extend the valuation uniquely to K ′ and choose an
integer i0 such that xi ∈ K ′ satisfies |xi| ≤ |c|i0 . Have a factorisation

K[x] K ′

Tn(c
i0)

and it is easy to check the assertion.

Analytification of affine schemes Similarly as above, take a ⊆ K[x] and
consider the chain

Tn/a← Tn(c)/a← · · ·
where we also denote by a its extension. Then

⋃∞
i=0 SpTn(c

i)/a is the analyti-
fication of K[x]/a.

Lemma 6.2. Let Z be an affine K-scheme of finite type (with Zariski
topology), Y a rigid K-space. Then the natural map

Hom(Y, Z)→ Homk(OZ(Z),OY (Y )),

where LHS are morphisms in the category of locally G-ringed spaces, is a
bijection.

Sketch proof. Suffices to construct an inverse in the case Y = SpB affinoid,
Z = SpecC for σ : C → B. Pulling back maximal ideals gives

ϕ : MaxB → MaxC ↪→ SpecC.

For ε ∈ K, f ∈ C, consider

C B

C[f−1] B〈ε · σ(f)−1〉

σ

As B(ε · σ(f)−1) corresponds to the Laurent domain X(ε−1 · σ(f), by universal
property of localisation we get a unique map completing the square. By varying
ε we get

OZ(Z) OY (Y )

OZ(DZ(f)) OY (ϕ−1(DZ(f)))
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6 Rigid analytic spaces

Definition (rigid analytification). Let (Z,OZ) be a K-scheme locally of fi-
nite type. The rigid analytification of Z, Zrig, is a rigid K-space (Zrig,OZrig)
together with a morphism (Zrig,OZrig)→ (Z,OZ) of locally G-ringed spaces
with the following universal property: given any rigid analytic space (Y,OY ),
any morphism (Y,OY )→ (Z,OZ) factorises unqiuely through Zrig.

(Y,OY ) (Z,OZ)

(Zrig,OZrig)

Exercise. An,rigK → SpecK[x] and
⋃
SpecTn(c

i)/a → SpecK[x]/a are rigid
analytifications.

We conclude this chapter by giving two more examples.

Analytification of projective spaces PnK is covered by n + 1 affine opens
Ui = SpecK[x0

xi
, . . . , xn

xi
]. Take analytifications U rig

i and glue them together to
get Pn,rigK . Check that Pn,rigK is already covered by n+1 balls SpK〈x0

xi
, . . . , x0

xi
〉 ⊆

U rig
i : take x ∈ Pn,rigk . It has residue field L = K(x) some finite extension of K,

so defines an L-valued point of PnK . Represent x in homogeneous coordinates
x = (x0 : · · · : xn). For some i, maxj |xj | = |xi|. Then x factors through
SpK〈x0

x1
, . . . , xn

xi
〉.

Multiplicative group variety The annulus {x ∈ T1 : |a| ≤ |x| ≤ |b|}
where a, b ∈ K is the intersection X(ax ) ∩ X(xb ), which has coordinate ring
K〈x, y〉/(xy− a

b ). The set of K ′-rational points for any K ⊆ K ′ corresponds to
the annulus

{z ∈ K ′ : |a| ≤ |z| ≤ |b|}.

Define
Grig
m,K =

⋃
n∈Z

SpK〈a
n+1

x , xan 〉

for some a such that |a| < 1.
Let X be a rigid K-space. Assign to X a contravariant functor from the

category of affinoid algebras, send R/K to the set of morphisms SpR → X of
rigid spaces over K. G has the form R 7→ R∗.

Tate curve Recall that a Tate curve is given by Grig
m,K/q

Z for some q ∈
K

∗
, |q| < 1 (uniformisation). Pick a ∈ K, |a|k = |q| for some k ≥ 1. We

have the analytic covering Grig
m,K =

⋃
n∈ZAn where An = SpK〈a

n+1

x , xan 〉. Mul-
tiplication by q maps An isomorphically to An+k. We can glue the boundaries of
the annuli together. The Tate curve, being the union of finitely many affinoids,
is then quasicompact.
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7 Rigid GAGA
Since the category of rigid K spaces has fibre products, we can define

Definition ((quasi)separated). A rigid K-space X is separated (quasisepa-
rated respectively) if X → X ×K X is a closed immersion (a quasicompact
morphism respectively).

f : X → Y is separated if X → X ×Y X is closed immersion.

Proposition 7.1. A rigid K-space X is separated if and only if it admits
an admissible affinoid covering {Ui}i∈I such that for i 6= j with Ui∩Uj 6= ∅,
the intersection Ui ∩Uj is affinoid and the canonical map O(Ui)⊗̂O(Uj)→
O(Ui ∩ Uj) is surjective.

Proof. Same as schemes.

Example. All affinoids are separated.

The definition of properness, on the other hand, is a bit more subtle.

Definition (relatively compact). Let X and Y be affinoid spaces with co-
ordinate rings A and B respectively and let f : X → Y be a morphism. Let
U ∩X be an affinoid subdomain. We say U is relatively compact in X over
Y if there exists an affinoid generating system {f1, . . . , fn} (i.e. a surjection
B〈f1, . . . , fn〉 � A) such that U ⊆ {x ∈ X : |f1(x)| ≤ ε, . . . , |fn(x)| ≤ ε}
for some ε < 1.

Definition (proper). Let X and Y be rigid K-spaces and f : X → Y a
morphism. Then f is proper if f is separated and satsifies the following
condition: exists an affinoid covering {Yi}i∈I of Y and for any i ∈ I, there
exist two finite admissible coverings {Xij}j=0,...,ni

, {X ′
ij}j=0,...,ni

of f−1(Yi)
such that Xij is relatively compact in X ′

ij over Yi.
X is proper if it is proper over SpK.

For separated varieties, Čech cohomology agrees with sheaf cohomology.
We state here the rigid GAGA correspondence. The proof uses the rigid

analogue of Cartan-Serre

Theorem 7.2 (Khiel).

1. Let X be proper over SpK. Then Hi(X,F) are finite dimension over
K for any coherent sheaf F .

2. (Higher) direct image theorem: let X be proper, Y separated, f : X →
Y a morphism and F a coherent sheaf. Then f∗F and higher direct
images Rif∗F are cohernet.

Theorem 7.3 (rigid GAGA). Let X be a proper (maybe projective?) scheme
over K. Then

1. For any coherent sheaf F over X, the canonical homomorphism be-
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7 Rigid GAGA

tween coherent algebraic cohomology and analytic cohomology, induced
by f : (Xrig,OXrig)→ (X,OX) is an isomorphism.

2. The analytification functor from coherent sheaves on X to coherent
sheaves on Xrig is fully faithful.

3. Every coherent analytic sheaf is isomorphic to the pullback of some
algebraic coherent sheaf.

2 and 3 together say analytification induces an equivalence of categories
between coherent analytic and algebraic sheaves.
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8 Formal models à la Raynaud

8 Formal models à la Raynaud

Let R be a complete DVR with a uniformiser π. Let K = R[ 1π ]. We quote the
following facts:

1. An R-algebra A is topologically of finite type (tft) if it is isomorphic to
R〈x1, . . . , xn〉/I for some ideal I. We could do the same analytification
process as in affinoids. Raynaud’s theorem measures how far the functor
is from being an equivalence of a category.
Then A ∼= lim←−nA/π

n+1A = lim←−An

2. Define Spf A = lim−→SpecAn, the set of open prime ideals of A with the
natural π-adic topology. It has a structure sheaf

OSpf A = lim←−OSpecAn .

(Spf A,OSpf A) is a locally topologically ringed space, which is called an
affine tft formal scheme.

3. Given f ∈ A, let D(f) be the set of all open primes avoiding f . We have

OSpf A(D(f)) = Âf ,

the π-adic completion.

4. A locally tft formal scheme X is a locally topologically ringed space such
that it has an open covering by affine tft formal schemes.

5. As usual there is an isomorphism

Hom(Spf A,Spf B) ∼= Homcont(B,A).

6. If we have f : X → Y of tft affine formal schemes where X = Spf A, Y =
Spf B, then passing to the generic fibre gives

B ⊗R K → A⊗R K

of affinoid K-algebras, thus a mophism SpA⊗K → SpB⊗K of rigid K-
spaces. It induces a functor (−)rig from the cateogry of locally tft formal
schemes to the category of rigid K-spaces.

7. An R-algebra tft is admissible if it is flat, i.e. having no π-torsion. X is
admissible if it is covered by admissible affine formal schemes.

8. Given a rigid K-space X, any admissible formal scheme X over R such
that Xrig

∼= X is called a formal model of X.

9. A coherent sheaf on locally tft X is an OX -module F such that there
exists an open affine cover {Xi} such that F|Xi

∼= M̂i, where Mi is a
finitely generated OXi

(Xi)-modules, where M̂i is the sheaf induced by
Df 7→M ⊗ Âf .
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8 Formal models à la Raynaud

10. A formal blow-up associated to a coherent open ideal sheaf I ⊆ OX is

XI = lim−→Proj(

∞⊕
d=0

Id ⊗OX OX /π
nOX ).

We have a canonical projection XI → X with the universal property that
for any Y → X such that I · OY is invertible, Y → X factors uniquely
throught XI .

Theorem 8.1 (Raynaud). (−)rig induces an equivalence of categories be-
tween

• quasi-paracompact admissible formal R-schemes localised by the class
of formal blow-ups and

• quasi-separated quasi-paracompact rigid K-spaces.

Quasi-paracompact means there exists a covering (admissible respec-
tively) {Ui} of finite type (i.e. Ui is disjoint from almost all Uj) of qua-
sicompact (admissible respectively) opens.
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9 Adic spaces

9.1 Huber pairs

Definition (Huber ring). A Huber ring (or f -adic ring in old literature) is
a topological ring R such that there exists an open subring R0 ≤ R and a
finitely generated ideal I ⊆ R0 such that the topology on R0 is the I-adic
topology. R0 is called a ring of definition and I is an ideal of definition.

Remark. R0 may not be complete with respect to the I-adic topology. One
can always complete R0 to get the completion R̂0. Then R̂ is Huber with ring
of definition R̂0. We will see that in the case of adic spaces it does not make
any difference.

Example.

1. Schemes: any ring R with discrete topology, any subring R0 ≤ R and
I = 0.

2. Formal schemes: any adic ring R is Huber if it has a finitely generated
ideal of definition. Then R0 = R.

3. Rigid spaces: R0 any ring, g ∈ R0 a non-zero divisor and R = R0[
1
g ] with

the topology making {gnR0} the fundamental system of open neighbour-
hoods. Then R is Huber with ring of definition R0 and gR0 an ideal of
definition.
If R is a K-Banach algebra, we can take R0 ⊆ R to be the coordinate ring
of the unit ball, g any non-zero element with norm smaller than 1. For
example Tn = K〈x1, . . . , xn〉, R0 = OK〈x1, . . . , xn〉, g = πK .

Definition. A subset S ⊆ R of a topological ring R is bounded if for any
open neighbourhood U of 0, exists open neighbourhood V of 0 such that
S · V ⊆ U .

Remark. In verifying this condition in Huber rings, we may assume that U is
closed under addition as {In} is a basis of open neighbourhoods of 0.

Lemma 9.1. A subring R0 ⊆ R of a Huber ring R is a ring of definition if
and only if R0 is open and bounded.

Proof. We prove if and leave only if as an exercise. wlog we may assume that
U = In for some n. Then V = In suffices.

Definition (Tate ring). A Huber ring R is Tate if it contains a topological
nilpotent unit g ∈ R, called a pseudo-uniformiser (topological nilpotent
means gn → 0).
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9 Adic spaces

Proposition 9.2.

1. If R = R0[
1
g ] as in example 3 then R is Tate.

2. If R is Tate with topological nilpotent unit g, R0 ⊆ R any ring of
definition, then exists n large enough such that R0 is (gnR0)-adic.
Moreover R = R0[

1
gn ].

3. Let R,R0, g be as above. A subset S ⊆ R is bounded if and only if
S ⊆ gkR0 for some k.

Proof.

1. Clear from definition.

2. Let I ⊆ R0 be an ideal of definition. Since gn → 0, exists n such that
g′ = gn ∈ I. (g′)−1 : R0 → R0 is a continuous map. Then g′R0 is the
preimage of R0 under the map so is open and thus contains Im for some
m. Then

gnmR0 = (g′)mR0 ⊆ Im ⊆ gnR0

so R0 is gn-adic.
Clearly R0[

1
g′ ] ⊆ R. For any x ∈ R, gnx → 0 so exists k such that

(g′)kx ∈ I, so in R0. Thus x ∈ R[ 1g′ ].

3. Exercise.

Definition (power-bounded). Let R be a Huber ring. An element x ∈ R is
called power-bounded if {xn : n ≥ 0} is bounded. Denote by R0 ⊆ R the set
of power bounded elements and by R00 the subset of topological nilpotent
elements.

Example. If R = Tn then R0 = OK〈x1, . . . , xn〉, which is the same as the ring
of definition. In particular for n = 0 this agrees with the notation we gave in
introduction.

Lemma 9.3.

1. R0 is an integrally closed open subring of R.

2. R0 is the colimit of all rings of definitions of R.

3. R00 forms an open ideal of R0.

Proof.

1. Let f, g ∈ R0. Then fN · gN is a bounded set, since if S, T are bounded
sets then S · T is also bounded. Then since

fN · gN = {(f + g)n} ∪ {(fg)n},

both f + g and fg are power-bounded.
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9 Adic spaces

Suppose x is integral over R0, i.e. xn + an−1x
n−1 + · · · + a0 = 0 where

an−1, . . . , a0 ∈ R0. Then

xN ⊆ aN0 · · · aNn−1{1, x, . . . , xn−1}.

Since finite sets are bounded, it follows that x is power-bounded.

2. Let f ∈ R0. ThenR0f
N is anR0-subring ofR and open. SinceR0 ⊆ R0f

N,
R0f

N is a ring of definition and f ∈ R0f
N.

3. Exercise.

Definition (Huber pair). Let R be a Huber ring. A subring R+ is called a
subring of integral elements if it is open, integrally closed in R and R+ ⊆ R0.

R is called uniform if R0 is a ring of definition.
A Huber pair (R,R+) is a pair where R is a Huber ring and R+ is a ring

of integral elements.

We will often take R+ = R0. For example, all the rings that come from rigid
geometry are uniform.

Note R00 ⊆ R+: for any f ∈ R00, fn ∈ R+ for some n ≥ 1 since R+ is open.
R+ integrally closed implies f ∈ R+.

9.2 Adic spectrum of a Huber pair

Definition (valuation). A valuation on a ring R is the data of a totally
ordered abelian group Γ (written multiplicatively) and a map x : R→ Γ∪{0}
(with 0 < γ and 0 · γ = 0 for all γ ∈ Γ) such that

• x(0) = 0, x(1) = 1,

• x(fg) = x(f) · x(g),

• x(f + g) ≤ max(x(f), x(g)).

The value group Γx ⊆ Γ is the subgroup generated by x(R) \ {0}.
The support of x is the prime ideal Px = {f ∈ R : x(f) = 0}.
The residue field is k(x) = FracR/Px. We can extend the valuation to

k(x) by

x : k(x)→ Γ ∪ {0}
f

g
7→ x(f)

x(g)
.

Ox = {f ∈ k(x) : x(f) ≤ 1} ⊇ R/Px is the valuation ring of R.

Lemma 9.4. Let x : R → Γ1 ∪ {0}, y : R → Γ2 ∪ {0} be two valuations.
then TFAE:

1. for any f, g ∈ R, x(f) ≤ x(g) if and only if y(f) ≤ y(g).
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9 Adic spaces

2. suppx = supp y and Ox = Oy.

3. there exists an isomorphism of totally ordered abelian groups i : Γ1,x →
Γ2,x such that y = i ◦ x.

If any of the above holds then we say x and y are equivalent.
Proof. 3 =⇒ 1 is obvious. 1 =⇒ 2 is also immediate as x(f) = 0 if and
only if x(f) ≤ x(0) and f

g ∈ Ox if and only if x(f) ≤ x(g). For 2 =⇒ 3, x
induces a surjection k(x)× � Γ1,x with kernel O×

x , similar for y. Since Px = Py,
k(x) = k(y) so we can define i via

k(x)×/O×
x Γ1,x

k(y)×/O×
y Γ1,y

∼=

i

∼=

Definition (adic spectrum of a Huber pair). Let (R,R+) be a Huber pair.
Its asscociated adic spectrum, Spa(R,R+), is the set of equivalence classes
of valuations x : R→ Γ ∪ {0} such that

• x(f) ≤ 1 for all f ∈ R+.

• x is continuous with respect to the order topology, i.e. {f ∈ R : x(f) <
γ} is open for all γ ∈ Γ.

The topology on Spa(R,R+) is generated by

{x ∈ Spa(R,R+) : x(f) ≤ x(g) 6= 0}

for f, g ∈ R.

Sometimes we also denote the valuation x(f) by |f(x)|, to imitate the nota-
tion for rigid spaces.

Example. Consider Spa(Z,Z), where Z is given the discrete topology. Its
points are

• a point η, which corresponds to the trivial valuation, i.e. taking all non-
zero integers to 1.

• a special point sp for each prime p, which corresponds to the composition
Z→ Fp → {0, 1}.

• a point ηp for each prime p, which corresponds to Z→ Zp → pZ ∪ {0}.

These are all the points by Ostrowski (no archimedean valuation). {sp} are
closed, {ηp} = {ηp, sp} and {η} = Spa(Z,Z).

In general, for a discrete ring R, we have a map SpecR→ Spa(R,R) which
sends a prime ideal p to its corresponding special point sp. It has a left inverse

Spa(R,R)→ SpecR

x 7→ suppx
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9 Adic spaces

Example. Assume K is a non-archimedean field with absolute value | · | and
let R = K〈T 〉, R+ = R0 = OK〈T 〉. In general there are five types of points of
Spa(R,R+):

• type I points (classical points): they come from rigid geometry and cor-
respond to points of SpR. For any λ ∈ OK = K0, i.e. |λ| ≤ 1, for any
f ∈ R, evaluating f and λ and taking absolute value gives

f =
∑

aiT
i 7→

∑
aiλ

i 7→ |f(λ)|.

This is obviously a continuous valuation and for any f ∈ R0, |f | ≤ 1.

• type II + III points: let r ∈ R, 0 ≤ r ≤ 1, λ ∈ K0, then

f =
∑

an(T − λ)i 7→ sup
x∈B(λ,r)

|f(x)| = sup
n
|an| · rn

is a continuous valuation and for f ∈ R0, |f | ≤ 1. Thus “every closed disc
gives a point”. If r ∈ |K×| then the corresponding valuation is of type II,
otherwise of type III (irrational discs). If r = 0 we get the classical points.
If r = 1 every λ is a centre and the corresponding point, independent of
λ, is called the Gauss point.

• type IV points: if K is not spherically complete (e.g. Cp) then we have a
decreasing sequence

D1 ⊇ D2 ⊇ D3 ⊇ · · ·

with
⋂
Di = ∅. We get a correponding valuation

f 7→ inf
i

sup
x∈Di

|f(x)|.

• type V points: these are only visible in the theory of adic spaces. Let
λ ∈ K0 and fix r ∈ R, 0 < r ≤ 1 and define a totally ordered abelian
group

Γ<r = R>0 × γZ

endowed with the unique total ordering such that r′ < γ < r for all r′ < r.
Then

x<r : f =
∑

an(T − λ)n 7→ sup |an|γn

is a continuous valuation. Similar define

Γ>r = R>0 × γZ

with r < γ < r′ for all r < r′ and get

x>r : f =
∑

an(T − λ)n 7→ sup |an|γn

By definition if r /∈ |K×| then x<r = x>r = xr, corresponding to type III
point associated to B(λ, r). For each type II point we get an additional
type V point for each branching.

The subspace of Spa(R,R+) of points of type I to IV is the Berkovich space.
The classification theorem of Berkovich says we get all rank 1 valuations.
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Note. If Γ is a totally ordered abelian group, we define a convex subgroup ∆
to be a subgroup such that if γ ≤ δ ≤ γ′ and γ, γ′ ∈ ∆ then δ ∈ ∆. The number
of non-trivial convex subgroups of Γ for a valuation x : R → Γ ∪ {0} is called
its rank. For example Γ has rank 0 if and only if Γ = 1. R≥0 or any subgroup
have rank 1.

There is a nice way to visualise Spa(K〈T 〉,K0〈T 〉). Let Xr, Xr′ correspond
to B(a, r), B(b, r′). There are two possibilities:

1. B(a, r) ⊆ B(b, r′) (or the other way round): there exists a unique path
which consists of all closed balls that contain B(a, r) and contained in
B(b, r′). For example if a = b then the path just corresponds to [r, r′] ⊆ R.

2. B(a, r)∩B(b, r′) = ∅: this implies r, r′ ≤ |a− b|. Then the smallest closed
ball containing both B(a, r) and B(b, r′) is just B(a, |a−b|) = B(b, |a−b|).
The corresponding point is denoted by Xr ∨ Xr′ . So the unique map
Xr  X ′

r is the concatenation Xr  Xr ∨Xr′  Xr′ . In other words, we
have all the closed ball B(a, t) such that r ≤ t ≤ |a − b|, or B(b, t′) such
that r′ ≤ t′ ≤ |a− b|.

(pic)

Definition (rational subset). Let (R,R+) be a Huber pair. Let U ⊆
Spa(R,R+). We say U is a rational subset of Spa(R,R+) if there exist
f1, . . . , fn ∈ R which generate an open ideal and g ∈ R such that

U = Spa(R,R+)( f1,...,fng ) = {x ∈ Spa(R,R+) : |fi(x)| ≤ |g(x)| 6= 0}.

Remark. For Tate-Huber pair, the only open ideal of R is R itself, since for
any open ideal I, some power of the pseudo-uniformiser is in I.

Lemma 9.5. Let (R,R+) be a Huber pair. Then rational subsets are open
in Spa(R,R+) and are closed under finite intersection.

Proof. Let U1, . . . , Uk be rational subsets. Almost by definition, U1 ∩ · · · ∩ Uk
is open. By the defintion of valuation on (R,R+), it is clear that if U,U ′ are
rational given by f1, . . . , fn, g and f ′1, . . . , f

′
k, g

′ respectively then

U ∩ U ′ = Spa(R,R+)(
fi·f ′

j

gg′ ).

Note that {fi · f ′j : 1 ≤ i ≤ n, 1 ≤ j ≤ k} does generate an open ideal as

In ⊆ (f1, . . . , fn), I
m ⊆ (f ′1, . . . , f

′
k)

implies In+m ⊆ (fi · f ′j).

Definition (morphism of Huber pairs). A morphism of Huber pairs (R,R+)→
(S, S+) is a countinuous ring homomorphism ϕ : R→ S such that ϕ(R+) ⊆
S+.

It is clear that such a morphism induces a continuous map Spa(S, S+) →
Spa(R,R+).
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9 Adic spaces

Definition (spectral topological space). A topological space is spectral it
is quasicompact, has a basis of quasicompact open subsets that are closed
under finite intersections and is sober (every irreducible subset has a unique
generic piont).

It can be shown that it is equivalent to being homeomorphic to the spectrum
of a ring.

The upshot is

Theorem 9.6. Let (R,R+) be a Huber pair.

1. The topological space Spa(R,R+) is spectral.

2. The rational subsets form a basis of for the topology on Spa(R,R+).

3. Any rational subset is quasicompact.

4. Spa(R,R+) = ∅ if and only if the topology on Spa(R,R+) is trivial.

5.

R+ = {f ∈ R : x(f) ≤ 1 for all x ∈ Spa(R,R+)}
R00 = {f ∈ R : x(f) < 1 for all x ∈ Spa(R,R+)}

Proof. Huber Continuous Valuation section 2, 3.

Note. The defining opens in Spa(R,R+) are not quasicompact in general. Con-
sider a Tate-Huber pair with pseudo-uniformiser t ∈ R, then

Spa(R,R+)( fg ) =
⋃
n

Spa(R,R+)( f,t
n

g ),

a union of rational subsets since {f, tn} generates an open ideal. |g(x)| 6= 0
implies that |g(x)| > |tn(x)| for n� 0. Typically it is no a finite union (exercise:
look at the Zariski open corresponding to f = g).

9.3 Completion of Huber pairs

Recall that for a metric space X, its completion X̂ is defined as the quotient of
all Cauchy sequences under the equivalence relation (xn) ∼ (yn) if and only if
limn d(xn, yn) = 0.

Similarly for a topological ring R with an ideal of definition I, a sequence
(xn) is Cauchy if for all n0, xn−xm ∈ In0 for all n,m� 0. The set of all Cauchy
sequences form a ring. Let I0 be the ideal of all Cauchy sequences such that all
but finitely many xn’s are zero. Then define R → R̂ = {Cauchy sequences}/I0
to be the completion of R.

Proposition 9.7. R̂ is a Huber ring. If I ⊆ R0 is an ideal (resp. ring) of
definition of R then

1. I · R̂0 ⊆ R̂0 is an ideal (resp. ring) of definition in R̂, where R̂0 =
lim←−R0/I

n.
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9 Adic spaces

2. the canonical map R̂0 ⊗R0
R→ R̂ is an isomorphism.

3. R̂+ is a subring of integral elements of R̂ and (R̂, R̂+) is called the
completion of (R,R+).

Proof. 1 is well-known (see stacks project). To define the map in 2, consider
the commutative diagram

R̂

R̂0 ⊗R0
R R

R̂0 R0

h

f

i

g
α

i(R) is dense in R̂ and R̂0 is open in R̂. Thus R̂ = i(R)+ R̂0 and i−1(R̂0) = R0.
Thus the outer square is also a pushout so exists unique h such that h ◦ i =
f, h ◦ α = g.

Corollary 9.8. (R,R+)→ (R̂, R̂+) is a morphism of Huber pairs.

Theorem 9.9. Spa(R̂, R̂+)→ Spa(R,R+) is a homeomorphism. Moreover,
rational subsets are mapped to rational subsets.

Proof. Theorem 3.9 in Huber, Continuous Valuations.

Proposition 9.10. Let (R,R+) be a complete Huber pair. Then

1. R× = {f ∈ R : x(f) 6= 0 for all x ∈ Spa(R,R+)}.

2. if I ⊆ R is a proper ideal then exists x ∈ Spa(R,R+) such that x(f) = 0
for all f ∈ I.

Proof. For the first part ⊆ is clear. For the other direction, assume f ∈ R is
a non-unit. Then exists m ⊆ R maximal containing f . We show that R \ m
contains 1 + R00, and therefore m is closed. Claim R× contains 1 + R00: let
I ⊆ R0 be an ideal (resp. ring) of definition in R. Then if g ∈ R00 then gm ∈ I
for some m ∈ N. R0 is I-adic complete by assumption so 1 − gm ∈ R×

0 ⊆ R×.
But

(1− g)(1 + g + · · ·+ gm−1) = 1− gm

and therefore 1− g ∈ R×.
Let K = R/m and K+ be the integral closure of R+ in K. Consider the

pair (K,K+). Since m is closed, the topology on K is separable. Thus by
Theorem 9.6 4, Spa(K,K+) 6= ∅. Then the image of an x ∈ Spa(K,K+)
satisfies x(f) = 0.

For the second part apply the same argument to a maximal m containing
I.
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Theorem 9.11. Let U ⊆ Spa(R,R+) be a rational subset. Then exists a
complete Huber pair (R,R+) → (OX(U),OX(U)+) over (R,R+) such that
the map

Spa(OX(U),OX(U)+)→ Spa(R,R+)

factors through U and has the unique property that if we have a morphism
ϕ : (R,R+) → (S, S+) to a complete Huber pair such that the image of
Spa(S, S+) is contained in U then we have a unique map making the follow-
ing diagram commute:

(R,R+) (S, S+)

(OX(U),OX(U)+)

ϕ

Here the notation OX(U) is purely formal but should prompt one to think about
the possibility of attaching a structure sheaf of adic spectrum.

Sketch proof. Let f1, . . . , fn, g be elements that define U . Let I ⊆ R0 be an
ideal (resp. ring) of definition in R. Take ϕ : (R,R+)→ (S, S+) as in statement.
Then by part 1 of the above proposition, g is invertible in S and therefore we
have a unique ring homomorphism R[ 1g ] → S. By definition all fi

g have image
in S such that x(ϕ(fi)ϕ(g) ) ≤ 1 for all x ∈ Spa(S, S+), so ϕ(fi)

ϕ(g) ∈ S+ ⊆ S0 by
Theorem 9.6 5. Recall S0 is the colimit of all rings of definitions so we can
choose some ring of definition S0 such that ϕ(fi)

ϕ(g) ∈ S0 for all i.
We get a ring homomorphism R0[

f1,...,tn
g ] → S0. Endow it with the I ·

R0[
f1,...,tn

g ]-adic topology. Technical claim: this defines a topology on R[ 1g ]

making I · R0[
f1,...,fn

g ] ⊆ R0[
f1,...,fn

g ] an ideal (resp. ideal) of definition, and
R[ 1g ] is a Huber ring.

DefineR[ 1g ]
+ to be the integral closure ofR+[ fig ] inR[ 1g ] and (R〈 f1,...,fng 〉, R〈 f1,...,fng 〉+)

be its completion. By construction we have an induced morphism of Huber pairs
(R〈 f1,...,fng 〉, R〈 f1,...,fng 〉+)→ (S, S+).

Definition. Define the structure presheaf of topological rings onX = Spa(R,R+)
as follow: if U ⊆ X is rational then let

OX(U) = R〈 f1,...,fng 〉

OX(U)+ = R〈 f1,...,fng 〉+

For general open W , define

OX(W ) = lim←−
U⊆W

OX(U)

and OX(W )+ similarly.

Observe that since

O+
X(U) = {f ∈ OX(U) : x(f) ≤ 1 for all x ∈ U},
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9 Adic spaces

O+
X is a sheaf if OX is a sheaf.

Theorem 9.12 (Tate, Bosch-Günter-Remert, Huber). Let (R,R+) be a
Huber pair and let X = Spa(R,R+). Assume

1. either R is Tate-Huber and is strongly noetherian (i.e. R〈x1, . . . , xn〉
is noetherian for all n ≥ 0),

2. or R+ has a subring of definition which is noetherian,

then OX is an acyclic sheaf. X is called sheafy.

The most recent result when this set of notes is taken is

Theorem 9.13 (Buzzard-Verberkmoes). Let (R,R+) be a Tate-Huber pair
which is stably uniform (i.e. all rational subsets U ⊆ X are uniform). Then
OX is an acyclic sheaf.
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