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1 Definition

1 Definition

Let X : @ — S be a random variable. Then (X, X1, ...), a sequence of random
variables, is called a stochastic/random process. The problem we are interested
in is whether there is any dependence between the random variables. Another
example of a stochastic process is (X,,t € R), representing, for example, the
evolution of a system with respect to time.

Definition. Let X = (X,, : n = 0,1,2,...) be a sequence taking values in
some state space S, which is either finite or countably infinite. X is a Markov
chain if it satisfies the Markov condition:

P(Xn+1 = Z.n+1|‘X’O = Z‘07)(1 = ila tee Xn = Zn) = ]P(XnJA = in+1|Xn = Zn)
Vn > 0,4g,...,0,.1 €S

X is called homogeneous if P(X,,; = j|X,, = ¢) does not depend on the
value of n.

Example.

1. Random walk is a Markov chain: let Z,, Z,, ... be independent, P(Z; =
D=pP(Z =-1)=1—p, X, =Z, ++ Z,,.

2. Branching process: let X,, be the size of the nth generation, then (X)) is
a Markov chain.

Convention. Henceforth, unless contradicted, all chains are assumed to be
homogeneous.

Two quantities associated with a chain are:

1. initial distribution A = (), : i € S) where \; = P(X,, = i), the probability
mass function at 0,

2. transition matrix P = (p; ; : i,j € S) given by p; ; = P(X; = j| X, =1).

Proposition 1.1.
1. X is a distribution in that \; > 0 and 3 A; = 1.

2. P is a stochastic matrix in that p; ; > 0, Zj pij =1

Proof.

partitions 2.

2. pi; =P(X; =j|X,=1) >0, iji,j = Z]« P(X, =j|Xy=1) = 1.



1 Definition

Theorem 1.2. Let A\ be a distribution on S and P be a stochastic matrix.
The sequence X = (X,, : n > 0) is a Markov chain with initial distribution
and transition matrix P if and only if

P(Xo =g, Xy =iy,..., X, =1,,) = )‘iopio,ilpil,iz B R
Vn > 0,6, 4, €S (*)

Proof. Let A, = {X,, =1i,}. Equation (??) is

(%)

Suppose X is a (A, P) Markov chain. Proof of equation (??) by induction on
n. When n =0, P(X, = iy) = A; . Suppose equation (??) holds for n < N.

P(Ag N Ay NN A,) = Ny Diy i i, = Pi

n—1>tn

P(Ay NN Ay) =P(Ag NN AxAg NN Ay )P(Ag NN Ay_y)
P(An[Ag NN AN )P(Ag NN Ay_q)
P

P(An[AN_1)Ni

Zopiwil “.piN—2a7;N—1

=l

Conversly, suppose equation (??) holds. By the equation, when n = 0,
]P<X0 = io) = /\ioa
so X, has p.m.f. A\. Then

P(AgN--NA, ) _
P(Ag N NA,)  Dinina’

P(A, 114N NA,) =

Therefore X is a Markov chain with transition matrix P. O

Theorem 1.3 (Extended Markov Property). Let X be a Markov chain
and n > 1. Let H be a historic event, i.e. H is given in terms of

{Xo,X1,.., X,,_1}, and let F be a future event, i.e. F is given in terms of
{X, 1, Xs0,---}. Then

P(F|H, X, =1i) =P(F|X,, =1).
Proof. For F that depends only on finitely many of the future variables,

_ E>n Z<n )\iopimil " PiyiPiyig g
22 NigPigiiy i i

=2 Pii
>n

P(F|H, X, =)

=P(FIX, =1)
The case for infinite variables can be deduced using continuity of probability
measure. O
Notation. > denotes the summation over all ig,...,7, ; contibutions to
<n
H/F.



2 Transition Probabilities

2 Transition Probabilities

The one-step transition probability is p” = P(X, = j|X, = ¢). The n-step
transition probability is p; ;(n) = P(X,, = j| X, =1).

Question. How to compute the n-step probabilities from the one-step probabil-
ities?

The answer is: matrix. The one-step transition matrix is P = (p; ;); jcs-

Similarly P(n) = (piyj(n))i,jes.

Theorem 2.1.
P(n) = P™.

Proposition 2.2 (Chapman-Kolmogorov equations).

p” m+n szk pk:,] )
keS

Proof.

P(X =1 Xo =1) =Y P(X,y,, = 4, X, = k| Xy = 1)
kesS

Use the equality P(A N B|C) = P(A|BnN C)P(B|C),

kesS

By Markov property, the first term can be simplified

= me p/w

kesS

O

Proof of Theorem. By Chapman-Kolmogorov equation, P(m + n) = P(m)P(n).
Thus P(n) = P(1)P(n — 1) = - = P(1)"* = P". O

Example. Let S ={1,2}, P = (150‘ 1%5) where 0 < o, 3 < 1.

1. Diagonalisation method: det(P—xI) =0, hasroots k; =1,k = 1—a—f.

Then
1 0
_ 771
P-U <01_a_5)“

for some invertible U. Then

AT 0
P _U1<0 m_a_ﬁw>U

Thus we may write

Pyi(n)=A+B(l—a-p)",



2 Transition Probabilities

with P 1(0) =1, P (1) =1 — a. Solve to get

_ B
A_oz—|-5
a
B:a-i-ﬂ

For the other entries, note P 5(n) =1 — P, ;(n) and P, ;(n) and Py 5(n)
can be obtained by exchanging « and 8 due to symmetry.

2. Difference equation method:

pra(n+1)= ZPM n)py,1(1)
k=12

= P, 1(n)(1— )+P12( )B
= Pp1, ()1 —a)+(1 *pl,l(n))ﬂ

Thus 7, = p; ;(n) satisfies
Ty =1 —a—B)m, +
which can be solved.
It is convenient to think of A\ as a row vector and P as a matrix. Then

P(X; =j) = > \ip; ; becomes (P(X; = j) : j € S) = AP, i.e. pre-multiplying P
by A.
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3 Class Structure

Definition. We say a state i leads to a state j if p; ;(n) > 0 for some n > 0,
write ¢ — 7.
If i — j and j — 4, we say ¢ and j communicate and write ¢ <> j.

| Proposition 3.1. < is an equivalence relation.

Proof.
o reflexive: p;,; =1>0,
e symmetric: if i <> j then j <+ ¢ by definition,

o transitive: if i <> j, j <> k then exist m, n such that p, ;(m) > 0,p; ,(n) > 0.
Then

pzk m+n szr p'fk )Zpld(m)pjxk(n)>0

so ¢ — k. Similarly k — 4.

Definition. The equivalence classes of «», i.e. subsets of S of the form
C,={j€S:i+ j}, are called communicating classes.

Definition. If there is a unique equivalence class S, call S (or the chain)
irreducible.

Definition. A subset C C S is called closed if

ieC,i—j=jeC.

If ¢ € S is such that {i} is closed, i is called absorbing.
A closed set is different from communicating class as it is “one-way”.
Proposition 3.2. C C S is closed if and only if
p,;j=0forieC,j¢C. (%)

Proof. Let C C S. If (??) fails, then there exists i € C, j ¢ C such that p, ; >0
so ¢ — j and so C'is not closed.
Suppose (77?) holds and exists m > 0 such that p; ;(m) > 0. Then

0< pi,j(m) = Z pi,mlpzl,IZ '"pxm,l,j'
Tyyey®yy 1ES
Thus exists x4, ...,x,,_; € S such that a summand on RHS is larger than 0. By
(??) @y, e, Ty 1736050015 closed. O



3  Class Structure

Example.
i1 0000 a
0010 00 ‘
A H 020500
.
Pooo%%o
000 0 01
000 0 10

has communicating classes {1, 2,3}, {4}, {5,6}, only the last of which is closed.



4 Recurrence € Transience

4 Recurrence & Transience

4.1 Definition
Introduce notation P;(-) = P(-| X, =), E;(-) = E(:| X, = 9).
Definition. The first-passage time of j € S is
T, = min{n >1: X, = j}.
The first-passage probability are

fi,j(n) = Pi(Tj =n).

Definition. i € S is recurrent (or persistent) if

Py(T; < o0) =1,

and transient otherwise.

4.2 Recurrent Condition

Theorem 4.1. 7 is recurrent if and only if

ZE,@(”) = 0.
n=0
Before we prove the theorem, introduce two generating functions:

Pi,j(‘S) = Zpi7j(n)5n

n>0

Fi,j(s) = Zfi,j(n)sn

n>0

with the convention that
1 1=y
p’L,j( ) ] {O i 7&]
fi,j(()) =0Vi,j

Note that

which is the convolution of p and f.



4 Recurrence € Transience

It follows that for n > 1,

0 =53 35 (1 05) (0 i)

n>1 n>1m=1

be careful when dealing with double summations.

Theorem 4.2.
P, j(s) = 0; ; + F, j(s)P; ;(s) for|s| < 1.

]

The |s| < 1 condition: since |F; ;(s)| < oo if |s| < 2,

(s) <D lsl" < o0

A lemma from analysis before we finally prove Theorem ?77:

that -
s) = Z u;8°
=0
converges when |s| < 1, then

> - Jlim U(s),

=0

whether or not this limit is finite.

Proof. Exercise.

Proof of Theorem ??. For |s| < 1, then

pii(s) =14+ F ;P

P .=
2,1 1—F

Let s — 17, then by Abel’s Lemma
P, ,(1)=cc & F, (1) =1

0,7

i.e. ¢ is recurrent.

4.3 Properties of Recurrence

Lemma 4.3 (Abel’s Lemma). Let (u;);>o be a non-negative sequence such



4 Recurrence € Transience

Theorem 4.4 (Recurrence as a class property). Let C be a communicating
class, then

1. either every state in C' is recurrent or every state is transient,

2. if C contains some recurrent state then C is closed.
Proof.
1. Let 4,5 € C, i # j. There exist m,n > 1 such that
a=p; j(m)p; ;(n) > 0.
This is simply a restatement of the communicating property. Then
pij(m~+k+n)>p, ;(m)p; ;(k)p; ;(n) = ap; ;(k)

Intuitively, the middle term is the probability of going from ¢ to ¢ by
passing j at step m and m + k. Thus

me(m +k+n)> O‘ij,j(k)'
% &

Thus j recurrent implies that ¢ is recurrent. Vice versa.

2. Suppose i € C'is recurrent but C is not closed. Then there exists j €
C,k ¢ C with p; . > 0. By the previous part j is recurrent so

1= ]P’j(Tj <o0)=1 —IPj(no return to j) <1 —pip <1

Absurd.

Theorem 4.5. Assume |S| < oo, then
1. S contains some recurrent state,

2. if the chain is irreducible, all states are recurrent.
Similar as before, we need a proposition before the proof:
Proposition 4.6. If j is a transient state then
Vi, p; j(n) =0 asn — oo
Proof. Asuume j is transient. By (?7),
P; (1) < oo.

By Theorem 77,

Zpi,j(n) =P, ;(1) <o0

so nth term p; ;(n) tends to 0 as n — oo. O

10



4 Recurrence € Transience

Proof.

1. ZjESpivj(n) = 1 since Pis a stochastic matrix. If j is transient then each

summand tends to 0 as n — oo, which is absurd since |S| < .

2. Obvious.

4.4 Random Walks and Pélya’s Theorem

In this section, we discuss simple symmetric random walk on d-dimensional
lattices, i.e. Z%, in particular answering the question when the chain is recurrent.
It turns out that there is a surprisingly beautiful result.

We call two points x and y neighbours if

Z‘xi_yil =1,
7

i.e. they differ by 1 in only one coordinate. Let X be a symmetric random walk
on Z¢ where d > 1, i.e. X = (X, X,,...) is a Markov chains with state space
S = 74 and transition probability

P(XnJrl = y|Xn = LC) = 1

0 if  and y are not neighbours
5 if ¥ and y are neighbours

| Theorem 4.7 (Pélya’s). X is recurrent if d <2 and transient if d > 3.

Proof. First set d = 1. Recall that 0 is recurrent if and only if 3~ p(n) = 0.
However, it is not possible to return to the same place after an odd number of
steps so the expression simplifies to

Zpo,o(Qn) (*)

In the even case, the random walk returns to 0 if and only if there are equal
number of movement to either direction so by applying the binomial distribution,

po,o@”) = (;)2" (2:)

To simplify this, recall Sterling’s formula

n n
n! ~ (7> V2mn as n — 0o.

(&

So
1

po,o@”) ~ ﬁ

and the sum (??) tend to infinity.

INote that this chain is irreducible so by Theorem ?? either we can talk about recurrence
as a chain property.

11



4 Recurrence € Transience

Now let d = 2. By the same reasoning and generalising binomial to multino-
mial coeflicients, we get

(1)2” (Qn)!i n n
4 ()2 e=\m ) \n—m
Now pause and think: the summation represents the number of ways to take

m balls from a bag of n balls and take n — m balls from another bag of n balls,
for 0 < m < n, but this is precisely the number of ways to take n balls from 2n

balls!
1\2" (2n) (2n
NONEIE
= (p5'(2n))”

thus the sum (??) also tends to infinity and 0 is recurrent.
Let d = 3 (similar for d > 4) and we have

1\2%" 2n
p°’°(2”)_() ,Z (Hijk>

SO
-
-

<

where M,, = max{ -t 3"1‘ Rk

=]}

(=

1+j+k n

)

NS RE )
)2" ( )HM . (3n;lg|'k'>2
)

S| =

N = N

M, D
i+5Then 3 Z'J'k'

k=nj.

The reason we introduce 3" becomes apparent in this step: 3“2”,7;%, is the proba-
bility of, upon throwing n balls into 3 urns, finding 4, j, k in each respectively.

Thus they sum up to 1.
(1)2" 2n n!
< (5 —_—
2 n ) 3*(In/3]Y)

The upper bound of M, is left as an exercise. By Sterling’s formula,

C
Po,o(2n) < 3

so the sum is finite and 0 is recurrent. O

12



4 Recurrence € Transience

We have seen that the probability p, z(2n) when d = 2 is the square of the
probability when d = 1, but when d = 3 it doesn’t become cubed. It should
inspire us to suspect that the d = 2 case is simple enough such that the random
walks in two directions are “independent”, but when n > 3 there is some hidden
structure that destroys such independence. What is so special about dimension
two?

There is an alternative way to tackle this problem that might be more lucid
and shed some light on the magical property of d = 2. Instead of cartesian coor-
dinates X,, = (4,,, B,), rotate the axes by 45° clockwise. The new coordinates,
scaled by a constant factor for convenience, are

_(U,\ _ cos4h®  —sin4b° (A, —B,
Yo = (Vn> =2 (sin45° cos 45° ) Xn = (An + Bn>

Claim U = (U,,) and V = (V,

") are independent random walks on Z:

Proof.

— P(U,

n

+1_Un:1aVn+1_Vn:1>

since during one step X,, can only change by 1 in one coordinate. Similar for
the other three cases.
So

1 2
PUpi—Un = Ve =V, = 8) = (5) = B2~ = @BV, 1=V, = B)

for o, f = £1. U,, and V,, are independent and each generates a random walk
on Z. O

By independence
Po(X,, = (0,0)) = Py (Y, = (0,0)) = Py (U, = 0)Py(V,, = 0)

SO
2

po°(2n) = (p65")"-
The moral of this calculation is, two dimensional random walk is indeed the
product of two one dimensional cases, but in a not-entirely-straightforward way.

13



5 Hitting Time and Probability

5 Hitting Time and Probability

Definition (Hitting Time). Given a subset A C S, the hitting time of A is
HA =inf{n >0: X, € A}

Note that inf() = oo so H4 : Q — {0,1,... } U {oco}.

Definition (Hitting probability). The hitting probability is h* = P,(HA <
00).

By Markov property, hitting probability satisfies the equation
1 ieA
h? = { MA it A (*)
Zjespij i ¢

Theorem 5.1. The vector h = (hf : i € S) is the minimal non-negative
solution to (??) in that for any x = (x; : i € S) satisfy

7

1 i€A
xi = .
ijijxj ig A

and x; >0 fori € S, hi* <, fori€ S.

Proof. By MP, h*t satisfies (??). Suppose = = (z; : i € S) satisfies the hypothesis
in the theorem. If i € A, z; = 1 = h! so h#* < z,. Let i ¢ A, then

€T = Zpijxj
J
= Zpij 1+ Zpijxj

JeA JEA
>
jeA
=P,(HA=1)
Similarly

r=PBi(HA=1)+) py, (Z Pk + ijkxk)

jEA keA k¢ A
>P,(HA=1)+P,(H* =2)

- 7

so by induction
z; > Y Py(HA =m)=P,(HA <n) - P,(H* <o0) = h{!
m=1

as n — oo. O

14



5 Hitting Time and Probability

Definition (Mean hitting time). The mean hitting time is
kfl =E;(H A)~

Note. k! = oo if h! < 1.

Theorem 5.2. The vector k* = (k{* : i € S) is the minimal non-negative

solution to the equation
0 i€ A
Yi = . (1)
1+ Zj PijYy; v ¢ A

Proof. By MP, k# satisfies (??). Let y = (y, : i € S) be a non-negative solution
to (??7). Let i € Atheny, =0==Fk,. Let i ¢ A.

Yy =1+ Zpijyj

jeSs
=1+> py
JjEA
A kg A

>P,(HA > 1)+ P,(HA > 2)

By induction

as n — oo. O

Example (Gambler’s ruin). Let S = {0,1,2,... } and 0 < p < 1. Take a random
walk on S which moves one step right with probability p and left with probability
g =1—p. 0is an absorbing barrier as as soon as the random walk hits 0 it ends.

Question. What is the probability of absorption at 0 starting at ¢7
Answer. Let h; = h;-{o}, then

hy=1
hi = phipy +qhi
which can be regarded as a second order difference equation with initial condi-

tions.
First suppose p # ¢q. The general solution is

hi:A+B<€> for i > 0.
p

15



5 Hitting Time and Probability

Suppose p < ¢. Since h* < 1, B = 0 or otherwise for large i, h’ will blow up.
Thus h; = hy =1 for i« > 0. Now suppose p > ¢. Eliminate B to get

SOREE)

The minimality of h’ requires that A = 0 so

-(2)

Finally, consider the case p = ¢ = % As above B=0,A=1so0 h, =1 for
1 >0.

Example (Birth-death chain). This is similar to gambler’s ruin but with in-
homogeneuous transition probabilites: p, +¢; = 1,p; € (0,1). The governing
equations are

hO = ].
h; = pihigy + q;hi o

At first glance, it seems nothing like a second order differential equation. However,
rearrange to get

p;(h; — hi+1) =q;(h;—1 — h;)
Define u; = h;_; — h; then
b1 = q;U;

SO
u; = 4idia -9
PiPi—1---P1
= VU1
where .
1
T i .
I, 7
As

hy =1—(u; +uy + - +u,)
=1—u(y+-+7) fori>1
where 7y = 1. Let S =37 ;. If § = oo then uy =0 and h; = 1. If § < oo,
1—u;S=0s0 _
T
' Zio%’

16



6 Stopping Times € Strong Markov Property

6 Stopping Times & Strong Markov Property

Definition (Stopping time). Let X be a Markov chain. A stopping time (or
Markov time) is a random variable T : @ — {0, 1,... } U {oo} such that for
n > 0, the event {T" = n} is given in terms of X, ..., X

n*

Note. The definition can be equivalently formulated using languages of meausure
theory. Recall that in a probability space 2, F, P, a random variable X : Q@ — R
is measurable if

X1((—o0,n]) € F ¥n € R.

Define the o-field generated by X to be
o(X) =o({X!((—oo,n]) :n€R}) C T
and the definition basically says {T'=n} € c({X,,... X,, })-
Theorem 6.1 (Strong Markov property). Let X be a Markov chain with
transition matriz P and let T be a stopping time. Given T < oo and Xp =1,
Y i=(Xp Xr0, Xpig, ),

the future process of X, is a Markov chain with transition matrix P and Y is
independent of X, ..., Xp_1.

Example.

1. Hitting time H* is a stopping time:
n—1
{H* =n}={X, € A}n (ﬂ{Xm %A}>
m=0

2. HA +1 is a stopping time.
3. HA —1is not a stopping time: {H* —1 = n} obviously depends on X,, ;.
Example (Gambler’s ruin). Let H = H{%'. We have proved that

=1 g>p
<1l g<p

]P’i(H<oo):{

if ¢ > 1. However, we want to find the probability mass function of H given
Xy = 1. Use probability generating function:
where |s| < 1 so that s> can be interpreted as 0

= i s"P(H =n)
n=1

17



6 Stopping Times € Strong Markov Property

where the limit s — 1~ is studied via Abel’s Lemma.

G(s) =E,(s"1X; = 0)qg + E, (s"| X, =2)p
= g5 I (1)

where H’ is the hitting time of 1 starting at 2 and H” is the subsequent time
needed to reach 0. By strong Markov property, H and H” are independent and
distributed as H so

= g5 +psG(s)?

Hence
G(s) 1+ /1 — 4pgs?
§) = —— V- "
2ps
Note that G is continuous on (—1,1) since it is the a power series. Since

v 1—4pgqs? #+ 0 for |s| < 1, we must choose a sign and stick with it on (—1,1).
Since G convergens (—1, 1), + is impossible as otherwise G does not converge at

s = 0. Thus
1—1—4pgs? X,
G(s) = — s = s"Py(H =n)

n=1

hence P, (H = n) can be found by expanding G.
In addition

lim G(s) = iPl(H =n)

s—1- o
=P, (H < )
1T —4pq
2p
_1-Ip—1]
2p

_{1 qzp
B

1 q<p
To find E, (H) when g > p, differentiate to get

G’ = q+pG? + 2psGG’

SO

, g+ pG?
G =
(s) 1—2psG
By 7?7 Abel’s theorem
q+p 1

E,(H) = lim G'(s) = = —.

18
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7 Classification of States

Depending on ht mean time to return to the recurrent state: finite or infinite

Theorem 7.1. Let Xy =t and V;, = |{n > 1: X,, = i}|. ThenV, has a
geometric distribution

P(Vi=r)=f(1=f)r=1

where f = f;; €10,1].

Proof.
Pi(Vi 2 1) =P;(T" < o0)

=P,(T* < oo|T" ! < 0)P,(T" ! < 0)

=f-P(V,>2r—1)SMP

= fr
where

T — timeo frthreturn
00 itV, <r

Then

Py(Vi=r)=B;(V;2r)=P(V;Z2r+1) = fr(1-r)

Note. If f <1,P,(V; <o) =1land if f =1, P,(V; =c0) = 1.

Definition (Mean recurrence time). The mean recurrence time of ¢ € S is

00 if 4 is transient

220:1 nfi,i(n)

Let ¢ be recurrnet. Then ¢ is null if y;, = oo and positive if p; < oco.
The period of i € S is

My = E1<T@> = {

d; = ged{n : p; ;(n) > 0}.
i is aperiodic if d; = 1.
1 is ergodic if it is recurrent, positive and aperiodic.
Theorem 7.2. Leti <> j. Then
1. d; = d;, i.e. period is a class property.
2. i is recurrent if and only if j is recurrent.
3. 1 is positive recurrent if and only if j is positive recurrent.

4. 1 is ergodic if and only if j is ergodic.

19



7 Classification of States

Proof. 2 has already been proved and 4 follows from 1, 2 and 3. 3 will be proved
later. To prove 1:
Let i «» j and i # j.

Dy ={n>1:p;(n) >0}
d—k =ged{D,}
Since i — j, there exists m,n > 1 such that a = p; ;(m)p; ;(n) > 0. By CK,
pii(m+r+mn)>ap;(r).
Thus if r € D; U {0}, p; ;(m +7+n) > 0 and hence d; | m + 7+ n and hence

d; | rsince if r =0, d; | m + n.
Thus d; | d;. Similarly d; | d; and hence d; = d;. O

Proposition 7.3. If a chain is irreducible and let j € S be recurrent. Then
P(T; < 00) = P(X,, = j for somen >1) = 1.

Compare to the definition of recurrence, IP;

Proof. f; ; =P,;(T; < o0). Let i # j. Claim that p; ,(m)(1—f; ;) < 1—f; ; where
m = inf{r : p, ;(r) > 0}. Then p; ;(m) = P;(X,, =i, X, # jfor 1 <r < m).
We have f; ; =1 and hence f; ; = 1.

Thus P;(T; < o0) = 1. Let \; = P(X, =),

P(T; < 00) = Y _Py(T; < 00)A; = 1.
€S

20



8 Invariant Distributions

8 Invariant Distributions

What happens to X, as n — oco? Random variables are functions so we are
talking about convergence of a sequence of functions. There are lots of modes
of convergence on function space. When studying Markov chains, it turns out
there is a unique convergence that we need: does P(X,, = i) converge as n — oo.

T = Zpi,jﬂ—i
1
m = 7P, eigenvalue problem.

Definition (Invariant distribution). X is aMarkov chain with transition
matrix P. The vector m = (m; : ¢ € S) is an invariant distribution if

Lom>203 m=1
2. m=7wP
If X, has distribution m, X,, has distribution
aP" = (rP)P" 1 =qaP" ! = ..

Theorem 8.1. Let X be an irreducible Markov chain. Then

1. There exists an invariant distribution if and only if some state of the
chain is positive recurrent.

2. If there exists an invariant distribution 7 then every state is positive
recurrent and

1
7T, = —
]
M
for i € S where u,; is the mean recurrence time. In particular 7 is

unique.
Fix k € S, start at k. Let W, be the number of visits to ¢ up to the first

return time to k, i.e.

00 T,
W, =3 X, =i, T > m)= 31X, =)
m=1

where 1(-) is the indicator function.
Let p(i) = E,(W,).

Proposition 8.2. Suppose the chain is irreducible and recurrent, k € S.
p=(p;:1€S) satisfies

1. pk =1.
2. 3. p(i) = py, whether or not py, < oo.
3. p=pP.
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8 Invariant Distributions

| 4 0<p, <oofories.
Proof.

1. Immediate from the definition.

2.
Ey Z W; = E, T,
i€S
Assuming we can interchange summations (since E is the limit of a series),
since all summands are non-negative,

Z Ey(W;) =
€S

but the summand on LHS is precisely p,.

P = Ek(Wj)
= Z P.(X,, = j,T; > m) again we interchange the summations
m>1

= Z Z]P)k(Xm = jaXm—l = ika > m)

m>1ieS
= Z Z]Pk(Xm = Jjl X =41 =2 m)P(X,,_y =0, T} = m)
m>1 €8

(X,, =J1 X1 =1, T > m)P,(X,,_; =) Markov property

Il
M
1

- Z Zpimjpk(mel =1i,T, > m)

m>1 ieS

- Zpivj Z HD/i’(‘X'm—l =1,T), > m)

€S m>1

= ZP%JZPK(XT :i,Tk > 7"+1>

€S r>1

consider two cases: if ¢ # k, the term when r = 0is 0 and T}, > r + 1 if
and only if T}, > r. If ¢ = k, the term when r = 0 is 1 and all the other
terms are zero. Thus

= Zpi,jpi
ieS

4. Pivot off the fact that p, = 1. Since p = pP, we have p = pP" for r > 1.
Thus
Pi = PrPri(Mm), pr. > pip; (1)
By irreducibility, there exists m,n > 1 with p, ;(m), p; ,.(m) > 0 so

1
0 <pgi(m) <p; < <00

T pik(n)
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8 Invariant Distributions

Proof.

1. Let k be positive recurrent, hence p;, < oo. Then 7; := p,/uk is an
invariant distribution.

2. Let 7 be an invariant distribution. Claim m; > 0 for all 7 € S:

Proof. Since m = 7wp, we have m = mp” for n > 0 and hence

T = Z ijj,i(n) > TpPp,i(n)
J

for k € S. Since Zl m; = 1 we may pick k € Swith 7, > 0. By irreducibility
there exists n > 0 such tat p; ;(n) > 0. Hence m; > 0.

Suppose every state is transient, since 7 = 7p”,
T = Zﬂ-ipi,j(n)
i
taking limit as n — oo,
> m0=0
i

absurd.

Proof of the limiting process.
0< Zﬂ'ipi’j(n) = Z+Z ¢ F--- where FF C S, |F| < o0
i = i

< pr(”) + Z 7; by boundedness
el igF
— 0+ Zﬂ'i as n — 0o
it F
—0as FF— S~

Thus every state is recurrent. O

Using stationarity,

7(-75/1“7,' =T + Z(a‘n72 - a‘nfl) Where (l,,, = IP)(‘XVO :/é iv 7Xr 7& Z)
n=2
=7 +ay,— lim a,,
m—00

=m+(1-m)— P(T, =)

2

=0 by recurrence
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8 Invariant Distributions

Since m;p; =1,

1
Hy = — <0

Ly

since m; > 0. Thus ¢ is positive recurrent.
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9 Convergence to Equilibrium

9 Convergence to Equilibrium

Theorem 9.1. Consider an irreducible aperiodic, positive recurrent Markov
chain. Fori,j €S, pm»(n) — m; as n — 00 where T is the unique invariant
distribution.

Ergodic theorem

Proof. “coupling” is the main idea.

Let X = (X,,),Y = (Y,,) be independent Markov chains with the appropriate
common invariant distribution. Let Z = (Z, = (X,,,Y},))n50- Then Z is a
Markov chain with state space S x S and transition matrix

Pijkt = PikPj
Fix s € S| let
T=inf{n>1:2,=1(s,s)}

Since X and Y have invariant distribution 7, Z has invariant distribution v,; =

T, since
§ VijPij el = E T;Pik § TiPj1 = TETp = Vgt
(2% i J

J
Hence Z is positive recurrent and P(T < o0) = 1.

We are still lacking one thing: Z is irreducible. This has something to do
with aperiodicity.

A digression about number theory: if D is a finite subset of non-negative
integers with ged(D) = 1, there exists N such that for n > N and expression

n:Zadd

with ay € {0,1,2,... }.
Since X is aperiodic, we deduce that p, ;(n) > 0 for all large n. Thus

Pijij(n) = p; ;(n)p; ;(n) >0

for all large n. Therefore Z is aperiodic.
Similarly Z is irreducible (oops, check the book!) O

=Y P(X, =kT=tPy;(T=k) +> P, (T=t)
t<n t>n

=> P(Y, =kT =k +Py(T>n)
t<n

<p;r(n) +Py(T >n)
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9 Convergence to Equilibrium

SO
pir(n) —pj (n)| <Py (T >n) =0

as n — o0o. This says that if it converges they converge the the same value. Now
we are just one line from the final result:

Ty — pij(”) = Zﬂ(pi,k(n) *pj,k(”D —0

?

by bounded convergence theorem.

This is an extremely elegant proof and it took a long time before this proof
was found.

We are left with one final bit

Theorem 9.2. Let V;(n) = ZZZI 1(x), =1i) be the total number of visits to
i up to time n. If the chain is irreducible and positive recurrent then

Vi) 1
n M

as n — 0o, where = means weak convergence, i.e.

IP’(Vi(n)<a1)—> 0 a<l1
n 1 1 a>1

We are not going prove this. Renewal theorem.

Remark. Let u; be a typical interval length between successive visits to i.
V,(n) > z if and only if Y. u;(m) < n where the u,(m) are iid copies of u,.
m=1 1 i 7
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10 Time Reversal

10 Time Reversal

some ruminations bout physics: in real life time reversal is possible but extremely
unlikely. The typical explanation is entropy.

Let X = (X,, : n = 0,1,---,N) be an irreducible and positive recurrent
Markov chain with transition matrix P and invariant distribution 7. Let Y,, =
Xy_p,s0Y = (Y, -, Yy) = (X,,, -, Xy), the reverse of X.

We have to make some assumptions for our reversed chain to make sense:
assume that X has distribution .

Theorem 10.1. Y is an irreducible Markov chain with transition matrizc

~ T
bij; = ij,i
and invariant distribution .

Proof. First check that P = (P; ;) is a stochastic matrix: the entries are non-

negative and
U 1
~ _ ] _ _
D obig=D =D mpa =1
j g i
Claim 7 = P
D mibig =D WP =
i i

Now to prove it is a Markov chain,

P(Yy =g, ..., Y, =i,) =P(Xn_, =ip, ., Xy = io)

=T, Pi i Piy g
= Trin—lf)inJrl7inpin—17in—1 7pi11in
= Wioﬁimil .“ﬁinflﬂ;n
Hence Y has the stated properties. O

We call mY the time-reversal of X and we say X is reversible if Y and X
have the same transition probabilities. By (*) (the equation is the statement of
the theorem), X is recursive if and only if

TiDij = T4Pji

for all 7,5 € S. This is the detailed balance equation.

More generally, we say a transition matrix P and a distribution A\ are in
detailed balance if

)‘ipi,j = )‘jpj,i

for all 4,5 € S. An irreducible chain X with invariant distribution 7 is called
reversible in equilibrium if its P is in detailed balance with .

Equation such as 7 = 7P can be difficult and may depend on some special
structure on P. On the other hand the detailed balance equation is almost trivial.
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10 Time Reversal

Proposition 10.2. If 7 is a distribution satisfying
Tilij = T4Pji

for alli,j €S and S is irreducible, then m is the only invariant distribution
of the chain and the chain is reversible in equilibrium

Proof. Let m be a distribution satisfying the hypothesis. Then
Z TiPji = Z TiPij = T
i J

as (mP); = m;. Therefore m = wP. O

Example (Birth-death with retaining barrier). Try the detailed balance equation

Ti—1Pi—1 = T4,

SO
Pi—1Pi—2 DPo
= =R 2 = T (2)
‘ 9 91 0 oo

IS I
i i

If =3, p; satisfies S < oo then m; = p;/S is an invariant distribution and if
S = oo there is no invariant distribution.
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11 Random Walk on a Graph

11 Random Walk on a Graph

A finite graph consists of vertices and edges and is denoted G = (V, E). We
discuss graphs are simple (in which there are no parallel edges and loops) and
connected. If (u,v) € E then v is called an neighbour of u. The degree of u, d(u),
is the number of its neighbours.

A random walk on G is a Markov chain with state space V and transition
probability

_Jo if v is not a neighbour of «
Pum = if v is a neighbour of u

1
d(u)
This is irreducible if and only if G is connected, which we assume henceforth.
As always, the natural question to ask is if there is an invariant distribution.
Try to solve
Pup = Pou

for (u,v) € E. We try to find “things” to multiply for the above relation to hold.
The obvious choice is 7, = d(u). But we have to normalise it since

> d(u) =2|E|

Then 7, = % satsifies the above detailed balance equation, and hence is the

unique invariant distribution.

Example (Erratic Knight). A knight performs independent legal knight moves
about a 8 x 8 chessboard. This is a Markov chain on the state space S, the
smallest square on hte board. (Exercise: show this is irreducible). The question
is: what is its invariant distribution?

The answer is simple:

No. of legal moves from square
. =
! 336

Exercise (Erratic Bishop). There are two types of bishops, depending on the
colour of the intial checkerboard. Consequently there are two commutative
classes.
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