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1 Definition

1 Definition
Let 𝑋 ∶ Ω → 𝑆 be a random variable. Then (𝑋0, 𝑋1, …), a sequence of random
variables, is called a stochastic/random process. The problem we are interested
in is whether there is any dependence between the random variables. Another
example of a stochastic process is (𝑋𝑡, 𝑡 ∈ R), representing, for example, the
evolution of a system with respect to time.

Definition. Let 𝑋 = (𝑋𝑛 ∶ 𝑛 = 0, 1, 2, …) be a sequence taking values in
some state space 𝑆, which is either finite or countably infinite. 𝑋 is a Markov
chain if it satisfies the Markov condition:

P(𝑋𝑛+1 = 𝑖𝑛+1|𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑛 = 𝑖𝑛) = P(𝑋𝑛+1 = 𝑖𝑛+1|𝑋𝑛 = 𝑖𝑛)
∀𝑛 ≥ 0, 𝑖0, … , 𝑖𝑛+1 ∈ 𝑆

𝑋 is called homogeneous if P(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) does not depend on the
value of 𝑛.

Example.

1. Random walk is a Markov chain: let 𝑍1, 𝑍2, … be independent, P(𝑍𝑖 =
1) = 𝑝,P(𝑍𝑖 = −1) = 1 − 𝑝, 𝑋𝑛 = 𝑍1 + ⋯ + 𝑍𝑛.

2. Branching process: let 𝑋𝑛 be the size of the 𝑛th generation, then (𝑋𝑛) is
a Markov chain.

Convention. Henceforth, unless contradicted, all chains are assumed to be
homogeneous.

Two quantities associated with a chain are:

1. initial distribution 𝜆 = (𝜆𝑖 ∶ 𝑖 ∈ 𝑆) where 𝜆𝑖 = P(𝑋0 = 𝑖), the probability
mass function at 0,

2. transition matrix 𝑃 = (𝑝𝑖,𝑗 ∶ 𝑖, 𝑗 ∈ 𝑆) given by 𝑝𝑖,𝑗 = P(𝑋1 = 𝑗|𝑋0 = 𝑖).

Proposition 1.1.

1. 𝜆 is a distribution in that 𝜆𝑖 ≥ 0 and ∑𝑖 𝜆𝑖 = 1.

2. 𝑃 is a stochastic matrix in that 𝑝𝑖,𝑗 ≥ 0, ∑𝑗 𝑝𝑖,𝑗 = 1.

Proof.

1. 𝜆𝑖 = P(𝑋0 = 𝑖) ≥ 0, ∑𝑖 𝜆𝑖 = ∑𝑖 P(𝑋0 = 𝑖) = 1, i.e. {𝑋0 = 𝑖}𝑖∈𝑋
partitions Ω.

2. 𝑝𝑖,𝑗 = P(𝑋1 = 𝑗|𝑋0 = 𝑖) ≥ 0, ∑𝑗 𝑝𝑖,𝑗 = ∑𝑗 P(𝑋1 = 𝑗|𝑋0 = 𝑖) = 1.
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1 Definition

Theorem 1.2. Let 𝜆 be a distribution on 𝑆 and 𝑃 be a stochastic matrix.
The sequence 𝑋 = (𝑋𝑛 ∶ 𝑛 ≥ 0) is a Markov chain with initial distribution 𝜆
and transition matrix 𝑃 if and only if

P(𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑛 = 𝑖𝑛) = 𝜆𝑖0
𝑝𝑖0,𝑖1

𝑝𝑖1,𝑖2
⋯ 𝑝𝑖𝑛−1,𝑖𝑛

∀𝑛 ≥ 0, 𝑖0, ⋯ , 𝑖𝑛 ∈ 𝑆 (∗)

Proof. Let 𝐴𝑘 = {𝑋𝑘 = 𝑖𝑘}. Equation (??) is

P(𝐴0 ∩ 𝐴1 ∩ ⋯ ∩ 𝐴𝑛) = 𝜆𝑖0
𝑝𝑖0,𝑖1

𝑝𝑖1,𝑖2
⋯ 𝑝𝑖𝑛−1,𝑖𝑛

(⋆)

Suppose 𝑋 is a (𝜆, 𝑃 ) Markov chain. Proof of equation (??) by induction on
𝑛. When 𝑛 = 0, P(𝑋0 = 𝑖0) = 𝜆𝑖0

. Suppose equation (??) holds for 𝑛 < 𝑁.

P(𝐴0 ∩ ⋯ ∩ 𝐴𝑁) = P(𝐴0 ∩ ⋯ ∩ 𝐴𝑁|𝐴0 ∩ ⋯ ∩ 𝐴𝑁−1)P(𝐴0 ∩ ⋯ ∩ 𝐴𝑁−1)
= P(𝐴𝑁|𝐴0 ∩ ⋯ ∩ 𝐴𝑁−1)P(𝐴0 ∩ ⋯ ∩ 𝐴𝑁−1)
MP= P(𝐴𝑁|𝐴𝑁−1)𝜆𝑖0

𝑝𝑖0,𝑖1
⋯ 𝑝𝑖𝑁−2,𝑖𝑁−1

Conversly, suppose equation (??) holds. By the equation, when 𝑛 = 0,

P(𝑋0 = 𝑖0) = 𝜆𝑖0
,

so 𝑋0 has p.m.f. 𝜆. Then

P(𝐴𝑛+1|𝐴0 ∩ ⋯ ∩ 𝐴𝑛) =
P(𝐴0 ∩ ⋯ ∩ 𝐴𝑛+1)
P(𝐴0 ∩ ⋯ ∩ 𝐴𝑛)

= 𝑝𝑖𝑛,𝑖𝑛+1
.

Therefore 𝑋 is a Markov chain with transition matrix 𝑃.

Theorem 1.3 (Extended Markov Property). Let 𝑋 be a Markov chain
and 𝑛 ≥ 1. Let 𝐻 be a historic event, i.e. 𝐻 is given in terms of
{𝑋0, 𝑋1, … , 𝑋𝑛−1}, and let 𝐹 be a future event, i.e. 𝐹 is given in terms of
{𝑋𝑛+1, 𝑋𝑛+2, …}. Then

P(𝐹 |𝐻, 𝑋𝑛 = 𝑖) = P(𝐹 |𝑋𝑛 = 𝑖).

Proof. For 𝐹 that depends only on finitely many of the future variables,

P(𝐹 |𝐻, 𝑋𝑛 = 𝑖) =
∑>𝑛 ∑<𝑛 𝜆𝑖0

𝑝𝑖0,𝑖1
⋯ 𝑝𝑖𝑛,𝑖𝑝𝑖,𝑖𝑛+1

⋯
∑<𝑛 𝜆𝑖0

𝑝𝑖0,𝑖1
⋯ 𝑝𝑖𝑛−1,𝑖

= ∑
>𝑛

𝑝𝑖,𝑖𝑛+1
⋯

= P(𝐹 |𝑋𝑛 = 𝑖)

The case for infinite variables can be deduced using continuity of probability
measure.

Notation. ∑<𝑛 denotes the summation over all 𝑖0, … , 𝑖𝑛−1 contibutions to
𝐻/𝐹.
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2 Transition Probabilities

2 Transition Probabilities
The one-step transition probability is 𝑝𝑖,𝑗 = P(𝑋1 = 𝑗|𝑋0 = 𝑖). The 𝑛-step
transition probability is 𝑝𝑖,𝑗(𝑛) = P(𝑋𝑛 = 𝑗|𝑋0 = 𝑖).

Question. How to compute the 𝑛-step probabilities from the one-step probabil-
ities?

The answer is: matrix. The one-step transition matrix is 𝑃 = (𝑝𝑖,𝑗)𝑖,𝑗∈𝑆.
Similarly 𝑃(𝑛) = (𝑝𝑖,𝑗(𝑛))𝑖,𝑗∈𝑆.

Theorem 2.1.
𝑃(𝑛) = 𝑃 𝑛.

Proposition 2.2 (Chapman-Kolmogorov equations).

𝑝𝑖,𝑗(𝑚 + 𝑛) = ∑
𝑘∈𝑆

𝑝𝑖,𝑘(𝑚)𝑝𝑘,𝑗(𝑛).

Proof.

P(𝑋𝑚+𝑛 = 𝑗|𝑋0 = 𝑖) = ∑
𝑘∈𝑆

P(𝑋𝑚+𝑛 = 𝑗, 𝑋𝑚 = 𝑘|𝑋0 = 𝑖)

Use the equality P(𝐴 ∩ 𝐵|𝐶) = P(𝐴|𝐵 ∩ 𝐶)P(𝐵|𝐶),

= ∑
𝑘∈𝑆

P(𝑋𝑚+𝑛 = 𝑗|𝑋𝑚 = 𝑘, 𝑋0 = 𝑖)P(𝑋𝑚 = 𝑘|𝑋0 = 𝑖)

By Markov property, the first term can be simplified

= ∑
𝑘∈𝑆

𝑝𝑖,𝑗(𝑚)𝑝𝑘,𝑗(𝑛)

Proof of Theorem. By Chapman-Kolmogorov equation, 𝑃(𝑚 + 𝑛) = 𝑃(𝑚)𝑃(𝑛).
Thus 𝑃(𝑛) = 𝑃(1)𝑃(𝑛 − 1) = ⋯ = 𝑃(1)𝑛 = 𝑃 𝑛.

Example. Let 𝑆 = {1, 2}, 𝑃 = ( 1−𝛼 𝛼
𝛽 1−𝛽 ) where 0 < 𝛼, 𝛽 < 1.

1. Diagonalisation method: det(𝑃 −𝜅𝐼) = 0, has roots 𝜅1 = 1, 𝜅2 = 1−𝛼−𝛽.
Then

𝑃 = 𝑈−1 (1 0
0 1 − 𝛼 − 𝛽) 𝑈,

for some invertible 𝑈. Then

𝑃 𝑛 = 𝑈−1 (1𝑛 0
0 (1 − 𝛼 − 𝛽)𝑛) 𝑈

Thus we may write

𝑃1,1(𝑛) = 𝐴 + 𝐵(1 − 𝛼 − 𝛽)𝑛,
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2 Transition Probabilities

with 𝑃1,1(0) = 1, 𝑃1,1(1) = 1 − 𝛼. Solve to get

𝐴 = 𝛽
𝛼 + 𝛽

𝐵 = 𝛼
𝛼 + 𝛽

For the other entries, note 𝑃1,2(𝑛) = 1 − 𝑃1,1(𝑛) and 𝑃2,1(𝑛) and 𝑃2,2(𝑛)
can be obtained by exchanging 𝛼 and 𝛽 due to symmetry.

2. Difference equation method:

𝑝1,1(𝑛 + 1) = ∑
𝑘=1,2

𝑝1,𝑘(𝑛)𝑝𝑘,1(1)

= 𝑝1,1(𝑛)(1 − 𝛼) + 𝑝1,2(𝑛)𝛽
= 𝑝1,1(𝑛)(1 − 𝛼) + (1 − 𝑝1,1(𝑛))𝛽

Thus 𝜋𝑛 = 𝑝1,1(𝑛) satisfies

𝜋𝑛+1 = (1 − 𝛼 − 𝛽)𝜋𝑛 + 𝛽

which can be solved.

It is convenient to think of 𝜆 as a row vector and 𝑃 as a matrix. Then
P(𝑋1 = 𝑗) = ∑ 𝜆𝑖𝑝𝑖,𝑗 becomes (P(𝑋𝑖 = 𝑗) ∶ 𝑗 ∈ 𝑆) = 𝜆𝑃, i.e. pre-multiplying 𝑃
by 𝜆.
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3 Class Structure

Definition. We say a state 𝑖 leads to a state 𝑗 if 𝑝𝑖,𝑗(𝑛) > 0 for some 𝑛 ≥ 0,
write 𝑖 → 𝑗.

If 𝑖 → 𝑗 and 𝑗 → 𝑖, we say 𝑖 and 𝑗 communicate and write 𝑖 ↔ 𝑗.

Proposition 3.1. ↔ is an equivalence relation.

Proof.

• reflexive: 𝑝𝑖,𝑖 = 1 > 0,

• symmetric: if 𝑖 ↔ 𝑗 then 𝑗 ↔ 𝑖 by definition,

• transitive: if 𝑖 ↔ 𝑗, 𝑗 ↔ 𝑘 then exist 𝑚, 𝑛 such that 𝑝𝑖,𝑗(𝑚) > 0, 𝑝𝑗,𝑘(𝑛) > 0.
Then

𝑝𝑖,𝑘(𝑚 + 𝑛) CK= ∑
𝑟

𝑝𝑖,𝑟(𝑚)𝑝𝑟,𝑘(𝑛) ≥ 𝑝𝑖,𝑗(𝑚)𝑝𝑗,𝑘(𝑛) > 0

so 𝑖 → 𝑘. Similarly 𝑘 → 𝑖.

Definition. The equivalence classes of ↔, i.e. subsets of 𝑆 of the form
𝐶𝑖 = {𝑗 ∈ 𝑆 ∶ 𝑖 ↔ 𝑗}, are called communicating classes.

Definition. If there is a unique equivalence class 𝑆, call 𝑆 (or the chain)
irreducible.

Definition. A subset 𝐶 ⊆ 𝑆 is called closed if

𝑖 ∈ 𝐶, 𝑖 → 𝑗 ⇒ 𝑗 ∈ 𝐶.

If 𝑖 ∈ 𝑆 is such that {𝑖} is closed, 𝑖 is called absorbing.

A closed set is different from communicating class as it is “one-way”.

Proposition 3.2. 𝐶 ⊆ 𝑆 is closed if and only if

𝑝𝑖,𝑗 = 0 for 𝑖 ∈ 𝐶, 𝑗 ∉ 𝐶. (∗)

Proof. Let 𝐶 ⊆ 𝑆. If (??) fails, then there exists 𝑖 ∈ 𝐶, 𝑗 ∉ 𝐶 such that 𝑝𝑖,𝑗 > 0
so 𝑖 → 𝑗 and so 𝐶 is not closed.

Suppose (??) holds and exists 𝑚 > 0 such that 𝑝𝑖,𝑗(𝑚) > 0. Then

0 < 𝑝𝑖,𝑗(𝑚) = ∑
𝑥1,…,𝑥𝑚−1∈𝑆

𝑝𝑖,𝑥1
𝑝𝑥1,𝑥2

⋯ 𝑝𝑥𝑚−1,𝑗.

Thus exists 𝑥1, … , 𝑥𝑚−1 ∈ 𝑆 such that a summand on RHS is larger than 0. By
(??) 𝑥1, … , 𝑥𝑚−1, 𝑗 ∈ 𝐶 so 𝐶 is closed.
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3 Class Structure

Example.

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2

1
2 0 0 0 0

0 0 1 0 0 0
1
3 0 0 1

3
1
3 0

0 0 0 1
2

1
2 0

0 0 0 0 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1

2

3

4

5 6

has communicating classes {1, 2, 3}, {4}, {5, 6}, only the last of which is closed.
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4 Recurrence & Transience

4 Recurrence & Transience

4.1 Definition
Introduce notation P𝑖(⋅) = P(⋅|𝑋0 = 𝑖),E𝑖(⋅) = E(⋅|𝑋0 = 𝑖).

Definition. The first-passage time of 𝑗 ∈ 𝑆 is

𝑇𝑗 = min{𝑛 ≥ 1 ∶ 𝑋𝑛 = 𝑗}.

The first-passage probability are

𝑓𝑖,𝑗(𝑛) = P𝑖(𝑇𝑗 = 𝑛).

Definition. 𝑖 ∈ 𝑆 is recurrent (or persistent) if

P𝑖(𝑇𝑖 < ∞) = 1,

and transient otherwise.

4.2 Recurrent Condition

Theorem 4.1. 𝑖 is recurrent if and only if

∑
𝑛≥0

𝑝𝑖,𝑖(𝑛) = ∞.

Before we prove the theorem, introduce two generating functions:

𝑃𝑖,𝑗(𝑠) = ∑
𝑛≥0

𝑝𝑖,𝑗(𝑛)𝑠𝑛

𝐹𝑖,𝑗(𝑠) = ∑
𝑛≥0

𝑓𝑖,𝑗(𝑛)𝑠𝑛

with the convention that

𝑝𝑖,𝑗(0) = 𝛿𝑖,𝑗 = {1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

𝑓𝑖,𝑗(0) = 0 ∀𝑖, 𝑗

Note that

𝑝𝑖,𝑗(𝑛) =
𝑛

∑
𝑚=1

P𝑖(𝑋𝑛 = 𝑗|𝑇𝑗 = 𝑚)P𝑖(𝑇𝑗 = 𝑚)

MP=
𝑛

∑
𝑚=1

𝑝𝑗,𝑗(𝑛 − 𝑚)𝑓𝑖,𝑗(𝑚)

which is the convolution of 𝑝 and 𝑓.
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4 Recurrence & Transience

It follows that for 𝑛 ≥ 1,

∑
𝑛≥1

𝑝𝑖,𝑗(𝑛)𝑠𝑛 = ∑
𝑛≥1

𝑛
∑
𝑚=1

(𝑓𝑖,𝑗(𝑚)𝑠𝑚)(𝑝𝑗,𝑗(𝑛 − 𝑚)𝑠𝑛−𝑚)

𝑃𝑖,𝑗(𝑠) − 𝛿𝑖,𝑗 =
∞

∑
𝑚=1

∞
∑
𝑛=𝑚

(𝑓𝑖,𝑗(𝑚)𝑠𝑚)(𝑝𝑗,𝑗(𝑛 − 𝑚)𝑠𝑛−𝑚)

= ∑
𝑚≥1

𝑓𝑖,𝑗(𝑚)𝑠𝑚 ∑
𝑟≥0

𝑝𝑗,𝑗(𝑟)𝑠𝑟

= 𝐹𝑖,𝑗(𝑠)𝑃𝑗,𝑗(𝑠)

be careful when dealing with double summations.

Theorem 4.2.

𝑃𝑖,𝑗(𝑠) = 𝛿𝑖,𝑗 + 𝐹𝑖,𝑗(𝑠)𝑃𝑗,𝑗(𝑠) for |𝑠| < 1.

The |𝑠| < 1 condition: since |𝐹𝑖,𝑗(𝑠)| < ∞ if |𝑠| < 2,

|𝑃𝑖,𝑗(𝑠)| ≤ ∑
𝑛

|𝑠|𝑛 < ∞

A lemma from analysis before we finally prove Theorem ??:

Lemma 4.3 (Abel’s Lemma). Let (𝑢𝑖)𝑖≥0 be a non-negative sequence such
that

𝒰(𝑠) =
∞

∑
𝑖=0

𝑢𝑖𝑠𝑖

converges when |𝑠| < 1, then
∞

∑
𝑖=0

𝑢𝑖 = lim
𝑠→1−

𝒰(𝑠),

whether or not this limit is finite.

Proof. Exercise.

Proof of Theorem ??. For |𝑠| < 1, then

𝑝𝑖,𝑖(𝑠) = 1 + 𝐹𝑖,𝑖𝑃𝑖,𝑖

𝑃𝑖,𝑖 = 1
1 − 𝐹𝑖,𝑗

Let 𝑠 → 1−, then by Abel’s Lemma

𝑃𝑖,𝑖(1) = ∞ ⇔ 𝐹𝑖,𝑖(1) = 1 (1)

i.e. 𝑖 is recurrent.

4.3 Properties of Recurrence
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4 Recurrence & Transience

Theorem 4.4 (Recurrence as a class property). Let 𝐶 be a communicating
class, then

1. either every state in 𝐶 is recurrent or every state is transient,

2. if 𝐶 contains some recurrent state then 𝐶 is closed.

Proof.

1. Let 𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗. There exist 𝑚, 𝑛 ≥ 1 such that

𝛼 = 𝑝𝑖,𝑗(𝑚)𝑝𝑗,𝑖(𝑛) > 0.

This is simply a restatement of the communicating property. Then

𝑝𝑖,𝑗(𝑚 + 𝑘 + 𝑛) ≥ 𝑝𝑖,𝑗(𝑚)𝑝𝑗,𝑗(𝑘)𝑝𝑗,𝑖(𝑛) = 𝛼𝑝𝑗,𝑗(𝑘)

Intuitively, the middle term is the probability of going from 𝑖 to 𝑖 by
passing 𝑗 at step 𝑚 and 𝑚 + 𝑘. Thus

∑
𝑘

𝑝𝑖,𝑖(𝑚 + 𝑘 + 𝑛) ≥ 𝛼 ∑
𝑘

𝑝𝑗,𝑗(𝑘).

Thus 𝑗 recurrent implies that 𝑖 is recurrent. Vice versa.

2. Suppose 𝑖 ∈ 𝐶 is recurrent but 𝐶 is not closed. Then there exists 𝑗 ∈
𝐶, 𝑘 ∉ 𝐶 with 𝑝𝑗,𝑘 > 0. By the previous part 𝑗 is recurrent so

1 = P𝑗(𝑇𝑗 < ∞) = 1 − P𝑗(no return to 𝑗) ≤ 1 − 𝑝𝑗,𝑘 < 1

Absurd.

Theorem 4.5. Assume |𝑆| < ∞, then

1. 𝑆 contains some recurrent state,

2. if the chain is irreducible, all states are recurrent.

Similar as before, we need a proposition before the proof:

Proposition 4.6. If 𝑗 is a transient state then

∀𝑖, 𝑝𝑖,𝑗(𝑛) → 0 as 𝑛 → ∞

Proof. Asuume 𝑗 is transient. By (??),

𝑃𝑗,𝑗(1) < ∞.

By Theorem ??,
∑

𝑛
𝑝𝑖,𝑗(𝑛) = 𝑃𝑖,𝑗(1) < ∞

so 𝑛th term 𝑝𝑖,𝑗(𝑛) tends to 0 as 𝑛 → ∞.

10



4 Recurrence & Transience

Proof.

1. ∑𝑗∈𝑆 𝑝𝑖,𝑗(𝑛) = 1 since 𝑃 is a stochastic matrix. If 𝑗 is transient then each
summand tends to 0 as 𝑛 → ∞, which is absurd since |𝑆| < ∞.

2. Obvious.

4.4 Random Walks and Pólya’s Theorem
In this section, we discuss simple symmetric random walk on 𝑑-dimensional
lattices, i.e. Z𝑑, in particular answering the question when the chain is recurrent.1
It turns out that there is a surprisingly beautiful result.

We call two points 𝑥 and 𝑦 neighbours if

∑
𝑖

|𝑥𝑖 − 𝑦𝑖| = 1,

i.e. they differ by 1 in only one coordinate. Let 𝑋 be a symmetric random walk
on Z𝑑 where 𝑑 ≥ 1, i.e. 𝑋 = (𝑋1, 𝑋2, … ) is a Markov chains with state space
𝑆 = Z𝑑 and transition probability

P(𝑋𝑛+1 = 𝑦|𝑋𝑛 = 𝑥) = {0 if 𝑥 and 𝑦 are not neighbours
1

2𝑑 if 𝑥 and 𝑦 are neighbours

Theorem 4.7 (Pólya’s). 𝑋 is recurrent if 𝑑 ≤ 2 and transient if 𝑑 ≥ 3.

Proof. First set 𝑑 = 1. Recall that 0 is recurrent if and only if ∑𝑛 𝑝0,0(𝑛) = 0.
However, it is not possible to return to the same place after an odd number of
steps so the expression simplifies to

∑
𝑛

𝑝0,0(2𝑛) (∗)

In the even case, the random walk returns to 0 if and only if there are equal
number of movement to either direction so by applying the binomial distribution,

𝑝0,0(2𝑛) = (1
2

)
2𝑛

(2𝑛
𝑛

)

To simplify this, recall Sterling’s formula

𝑛! ∼ (𝑛
𝑒

)
𝑛 √

2𝜋𝑛 as 𝑛 → ∞.

So
𝑝0,0(2𝑛) ∼ 1√

𝜋𝑛
and the sum (??) tend to infinity.

1Note that this chain is irreducible so by Theorem ?? either we can talk about recurrence
as a chain property.
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4 Recurrence & Transience

Now let 𝑑 = 2. By the same reasoning and generalising binomial to multino-
mial coefficients, we get

𝑝0,0(2𝑛) = (1
4

)
2𝑛 𝑛

∑
𝑚=0

( 2𝑛
𝑚, 𝑚, 𝑛 − 𝑚, 𝑛 − 𝑚

)

= (1
4

)
2𝑛 𝑛

∑
𝑚=0

(2𝑛)!
(𝑚!)2((𝑛 − 𝑚)!)2

= (1
4

)
2𝑛 (2𝑛)!

(𝑛!)2

𝑛
∑
𝑚=0

(𝑛
𝑚

)( 𝑛
𝑛 − 𝑚

)

Now pause and think: the summation represents the number of ways to take
𝑚 balls from a bag of 𝑛 balls and take 𝑛 − 𝑚 balls from another bag of 𝑛 balls,
for 0 ≤ 𝑚 ≤ 𝑛, but this is precisely the number of ways to take 𝑛 balls from 2𝑛
balls!

= (1
4

)
2𝑛

(2𝑛
𝑛

)(2𝑛
𝑛

)

= (𝑝𝑑=1
0,0 (2𝑛))2

thus the sum (??) also tends to infinity and 0 is recurrent.
Let 𝑑 = 3 (similar for 𝑑 ≥ 4) and we have

𝑝0,0(2𝑛) = (1
6

)
2𝑛

∑
𝑖+𝑗+𝑘=𝑛

( 2𝑛
𝑖, 𝑖, 𝑗, 𝑗, 𝑘, 𝑘

)

= (1
6

)
2𝑛

∑
𝑖+𝑗+𝑘=𝑛

(2𝑛)!
(𝑖!𝑗!𝑘!)2

= (1
6

)
2𝑛

(2𝑛
𝑛

) ∑
𝑖+𝑗+𝑘=𝑛

( 𝑛!
𝑖!𝑗!𝑘!

)
2

= (1
2

)
2𝑛

(2𝑛
𝑛

) ∑
𝑖+𝑗+𝑘=𝑛

( 𝑛!
3𝑛𝑖!𝑗!𝑘!

)
2

≤ (1
2

)
2𝑛

𝑀𝑛 ∑
𝑖+𝑗+𝑘=𝑛

1
3𝑛𝑖!𝑗!𝑘!

where 𝑀𝑛 = max{ 𝑛!
3𝑛𝑖!𝑗!𝑘! , 𝑖 + 𝑗 + 𝑘 = 𝑛}.

The reason we introduce 3𝑛 becomes apparent in this step: 𝑛!
3𝑛𝑖!𝑗!𝑘! is the proba-

bility of, upon throwing 𝑛 balls into 3 urns, finding 𝑖, 𝑗, 𝑘 in each respectively.
Thus they sum up to 1.

≤ (1
2

)
2𝑛

(2𝑛
𝑛

) 𝑛!
3𝑛 (⌊𝑛/3⌋!)3

The upper bound of 𝑀𝑛 is left as an exercise. By Sterling’s formula,

𝑝0,0(2𝑛) ≤ 𝐶
𝑛3/2

so the sum is finite and 0 is recurrent.
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4 Recurrence & Transience

We have seen that the probability 𝑝0,0(2𝑛) when 𝑑 = 2 is the square of the
probability when 𝑑 = 1, but when 𝑑 = 3 it doesn’t become cubed. It should
inspire us to suspect that the 𝑑 = 2 case is simple enough such that the random
walks in two directions are “independent”, but when 𝑛 ≥ 3 there is some hidden
structure that destroys such independence. What is so special about dimension
two?

There is an alternative way to tackle this problem that might be more lucid
and shed some light on the magical property of 𝑑 = 2. Instead of cartesian coor-
dinates 𝑋𝑛 = (𝐴𝑛, 𝐵𝑛), rotate the axes by 45∘ clockwise. The new coordinates,
scaled by a constant factor for convenience, are

𝑌𝑛 = (𝑈𝑛
𝑉𝑛

) =
√

2 (cos 45∘ − sin 45∘

sin 45∘ cos 45∘ ) 𝑋𝑛 = (𝐴𝑛 − 𝐵𝑛
𝐴𝑛 + 𝐵𝑛

)

Claim 𝑈 = (𝑈𝑛) and 𝑉 = (𝑉𝑛) are independent random walks on Z:

Proof.

P(𝑌𝑛+1 = 𝑌𝑛 + (1, 1)) = P(𝑋𝑛+1 = 𝑋𝑛 + (1, 0)) = 1
4

= P(𝑈𝑛+1 − 𝑈𝑛 = 1, 𝑉𝑛+1 − 𝑉𝑛 = 1)

since during one step 𝑋𝑛 can only change by 1 in one coordinate. Similar for
the other three cases.

So

P(𝑈𝑛+1 −𝑈𝑛 = 𝛼, 𝑉𝑛+1 −𝑉𝑛 = 𝛽) = (1
2

)
2

= P(𝑈𝑛+1 −𝑈𝑛 = 𝛼)P(𝑉𝑛+1 −𝑉𝑛 = 𝛽)

for 𝛼, 𝛽 = ±1. 𝑈𝑛 and 𝑉𝑛 are independent and each generates a random walk
on Z.

By independence

P0(𝑋𝑛 = (0, 0)) = P0(𝑌𝑛 = (0, 0)) = P0(𝑈𝑛 = 0)P0(𝑉𝑛 = 0)

so
𝑝𝑑=2

0,0 (2𝑛) = (𝑝𝑑=1
0,0 )2 .

The moral of this calculation is, two dimensional random walk is indeed the
product of two one dimensional cases, but in a not-entirely-straightforward way.
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5 Hitting Time and Probability

Definition (Hitting Time). Given a subset 𝐴 ⊆ 𝑆, the hitting time of 𝐴 is

𝐻𝐴 = inf{𝑛 ≥ 0 ∶ 𝑋𝑛 ∈ 𝐴}

Note that inf ∅ = ∞ so 𝐻𝐴 ∶ Ω → {0, 1, … } ∪ {∞}.

Definition (Hitting probability). The hitting probability is ℎ𝐴
𝑖 = P𝑖(𝐻𝐴 <

∞).

By Markov property, hitting probability satisfies the equation

ℎ𝐴
𝑖 = {

1 𝑖 ∈ 𝐴
∑𝑗∈𝑆 𝑝𝑖𝑗ℎ𝐴

𝑗 𝑖 ∉ 𝐴 (∗)

Theorem 5.1. The vector ℎ𝐴 = (ℎ𝐴
𝑖 ∶ 𝑖 ∈ 𝑆) is the minimal non-negative

solution to (??) in that for any 𝑥 = (𝑥𝑖 ∶ 𝑖 ∈ 𝑆) satisfy

𝑥𝑖 = {
1 𝑖 ∈ 𝐴
∑𝑗 𝑝𝑖𝑗𝑥𝑗 𝑖 ∉ 𝐴

and 𝑥𝑖 ≥ 0 for 𝑖 ∈ 𝑆, ℎ𝐴
𝑖 ≤ 𝑥𝑖 for 𝑖 ∈ 𝑆.

Proof. By MP, ℎ𝐴 satisfies (??). Suppose 𝑥 = (𝑥𝑖 ∶ 𝑖 ∈ 𝑆) satisfies the hypothesis
in the theorem. If 𝑖 ∈ 𝐴, 𝑥𝑖 = 1 = ℎ𝐴

𝑖 so ℎ𝐴
𝑖 ≤ 𝑥𝑖. Let 𝑖 ∉ 𝐴, then

𝑥𝑖 = ∑
𝑗

𝑝𝑖𝑗𝑥𝑗

= ∑
𝑗∈𝐴

𝑝𝑖𝑗 ⋅ 1 + ∑
𝑗∉𝐴

𝑝𝑖𝑗𝑥𝑗

≥ ∑
𝑗∈𝐴

𝑝𝑖𝑗

= P𝑖(𝐻𝐴 = 1)

Similarly

𝑥𝑖 = P𝑖(𝐻𝐴 = 1) + ∑
𝑗∉𝐴

𝑝𝑖𝑗 (∑
𝑘∈𝐴

𝑝𝑗𝑘𝑥𝑘 + ∑
𝑘∉𝐴

𝑝𝑗𝑘𝑥𝑘)

≥ P𝑖(𝐻𝐴 = 1) + P𝑖(𝐻𝐴 = 2)

so by induction

𝑥𝑖 ≥
𝑛

∑
𝑚=1

P𝑖(𝐻𝐴 = 𝑚) = P𝑖(𝐻𝐴 ≤ 𝑛) → P𝑖(𝐻𝐴 < ∞) = ℎ𝐴
𝑖

as 𝑛 → ∞.

14



5 Hitting Time and Probability

Definition (Mean hitting time). The mean hitting time is

𝑘𝐴
𝑖 = E𝑖(𝐻𝐴).

Note. 𝑘𝐴
𝑖 = ∞ if ℎ𝐴

𝑖 < 1.

Theorem 5.2. The vector 𝑘𝐴 = (𝑘𝐴
𝑖 ∶ 𝑖 ∈ 𝑆) is the minimal non-negative

solution to the equation

𝑦𝑖 = {
0 𝑖 ∈ 𝐴
1 + ∑𝑗 𝑝𝑖𝑗𝑦𝑗 𝑖 ∉ 𝐴 (†)

Proof. By MP, 𝑘𝐴 satisfies (??). Let 𝑦 = (𝑦𝑖 ∶ 𝑖 ∈ 𝑆) be a non-negative solution
to (??). Let 𝑖 ∈ 𝐴 then 𝑦𝑖 = 0 = 𝑘1. Let 𝑖 ∉ 𝐴.

𝑦𝑖 = 1 + ∑
𝑗∈𝑆

𝑝𝑖𝑗𝑦𝑗

= 1 + ∑
𝑗∉𝐴

𝑝𝑖𝑗𝑦𝑗

= 1 + ∑
𝑗∉𝐴

𝑝𝑖𝑗 (1 + ∑
𝑘∉𝐴

𝑝𝑗𝑘𝑦𝑘)

≥ P𝑖(𝐻𝐴 ≥ 1) + P𝑖(𝐻𝐴 ≥ 2)

By induction

𝑦𝑖 ≥
𝑛

∑
𝑚=1

P𝑖(𝐻𝐴 ≥ 𝑚) →
∞

∑
𝑚=1

P𝑖(𝐻𝐴 ≥ 𝑚) = E𝑖(𝐻𝐴)

as 𝑛 → ∞.

Example (Gambler’s ruin). Let 𝑆 = {0, 1, 2, … } and 0 < 𝑝 < 1. Take a random
walk on 𝑆 which moves one step right with probability 𝑝 and left with probability
𝑞 = 1 − 𝑝. 0 is an absorbing barrier as as soon as the random walk hits 0 it ends.

Question. What is the probability of absorption at 0 starting at 𝑖?

Answer. Let ℎ𝑖 = ℎ{0}
𝑖 , then

ℎ0 = 1
ℎ𝑖 = 𝑝ℎ𝑖+1 + 𝑞ℎ𝑖−1

which can be regarded as a second order difference equation with initial condi-
tions.

First suppose 𝑝 ≠ 𝑞. The general solution is

ℎ𝑖 = 𝐴 + 𝐵 ( 𝑞
𝑝

)
𝑖
for 𝑖 ≥ 0.
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5 Hitting Time and Probability

Suppose 𝑝 < 𝑞. Since ℎ𝑖 ≤ 1, 𝐵 = 0 or otherwise for large 𝑖, ℎ𝑖 will blow up.
Thus ℎ𝑖 = ℎ0 = 1 for 𝑖 ≥ 0. Now suppose 𝑝 > 𝑞. Eliminate 𝐵 to get

ℎ𝑖 = ( 𝑞
𝑝

)
𝑖

+ 𝐴 (1 − ( 𝑞
𝑝

)
𝑖
)

The minimality of ℎ𝑖 requires that 𝐴 = 0 so

ℎ𝑖 = ( 𝑞
𝑝

)
𝑖

Finally, consider the case 𝑝 = 𝑞 = 1
2 . As above 𝐵 = 0, 𝐴 = 1 so ℎ𝑖 = 1 for

𝑖 ≥ 0.

Example (Birth-death chain). This is similar to gambler’s ruin but with in-
homogeneuous transition probabilites: 𝑝𝑖 + 𝑞𝑖 = 1, 𝑝𝑖 ∈ (0, 1). The governing
equations are

ℎ0 = 1
ℎ𝑖 = 𝑝𝑖ℎ𝑖+1 + 𝑞𝑖ℎ𝑖−1

At first glance, it seems nothing like a second order differential equation. However,
rearrange to get

𝑝𝑖(ℎ𝑖 − ℎ𝑖+1) = 𝑞𝑖(ℎ𝑖−1 − ℎ𝑖)

Define 𝑢𝑖 = ℎ𝑖−1 − ℎ𝑖 then
𝑝𝑖𝑢𝑖+1 = 𝑞𝑖𝑢𝑖

so

𝑢𝑖 = 𝑞𝑖𝑞𝑖−1 … 𝑞1
𝑝𝑖𝑝𝑖−1 … 𝑝1

𝑢1

= 𝛾𝑖𝑢1

where

𝛾𝑖 =
∏𝑖

𝑗=1 𝑞𝑗

∏𝑖
𝑗=1 𝑝𝑗

.

As

ℎ𝑖 = 1 − (𝑢1 + 𝑢2 + ⋯ + 𝑢𝑖)
= 1 − 𝑢1(𝛾0 + ⋯ + 𝛾𝑖−1) for 𝑖 ≥ 1

where 𝛾0 = 1. Let 𝑆 = ∑∞
𝑖=0 𝛾𝑖. If 𝑆 = ∞ then 𝑢1 = 0 and ℎ𝑖 = 1. If 𝑆 < ∞,

1 − 𝑢1𝑆 = 0 so

ℎ𝑖 = 1 −
∑𝑖−1

𝑗=0 𝛾𝑗

∑∞
𝑗=0 𝛾𝑗
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6 Stopping Times & Strong Markov Property

Definition (Stopping time). Let 𝑋 be a Markov chain. A stopping time (or
Markov time) is a random variable 𝑇 ∶ Ω → {0, 1, … } ∪ {∞} such that for
𝑛 ≥ 0, the event {𝑇 = 𝑛} is given in terms of 𝑋0, … , 𝑋𝑛.

Note. The definition can be equivalently formulated using languages of meausure
theory. Recall that in a probability space Ω, ℱ,P, a random variable 𝑋 ∶ Ω → R
is measurable if

𝑋−1((−∞, 𝑛]) ∈ ℱ ∀𝑛 ∈ R.

Define the 𝜎-field generated by 𝑋 to be

𝜎(𝑋) = 𝜎({𝑋−1((−∞, 𝑛]) ∶ 𝑛 ∈ R}) ⊆ ℱ

and the definition basically says {𝑇 = 𝑛} ∈ 𝜎({𝑋0, … 𝑋𝑛}).

Theorem 6.1 (Strong Markov property). Let 𝑋 be a Markov chain with
transition matrix 𝑃 and let 𝑇 be a stopping time. Given 𝑇 < ∞ and 𝑋𝑇 = 𝑖,

𝑌 ∶= (𝑋𝑇, 𝑋𝑇 +1, 𝑋𝑇 +2, … ),

the future process of 𝑋, is a Markov chain with transition matrix 𝑃 and 𝑌 is
independent of 𝑋0, … , 𝑋𝑇 −1.

Example.

1. Hitting time 𝐻𝐴 is a stopping time:

{𝐻𝐴 = 𝑛} = {𝑋𝑛 ∈ 𝐴} ∩ (
𝑛−1
⋂

𝑚=0
{𝑋𝑚 ∉ 𝐴})

2. 𝐻𝐴 + 1 is a stopping time.

3. 𝐻𝐴 − 1 is not a stopping time: {𝐻𝐴 − 1 = 𝑛} obviously depends on 𝑋𝑛+1.

Example (Gambler’s ruin). Let 𝐻 = 𝐻{0}. We have proved that

P𝑖(𝐻 < ∞) = {= 1 𝑞 ≥ 𝑝
< 1 𝑞 < 𝑝

if 𝑖 ≥ 1. However, we want to find the probability mass function of 𝐻 given
𝑋0 = 1. Use probability generating function:

𝐺(𝑠) = E1(𝑠𝐻)

where |𝑠| < 1 so that 𝑠∞ can be interpreted as 0

=
∞

∑
𝑛=1

𝑠𝑛P1(𝐻 = 𝑛)
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6 Stopping Times & Strong Markov Property

where the limit 𝑠 → 1− is studied via Abel’s Lemma.

𝐺(𝑠) = E1(𝑠𝐻|𝑋1 = 0)𝑞 + E1(𝑠𝐻|𝑋1 = 2)𝑝
= 𝑞𝑠 + 𝑝E1(𝑠1+𝐻′+𝐻″)

where 𝐻′ is the hitting time of 1 starting at 2 and 𝐻″ is the subsequent time
needed to reach 0. By strong Markov property, 𝐻′ and 𝐻″ are independent and
distributed as 𝐻 so

= 𝑞𝑠 + 𝑝𝑠𝐺(𝑠)2

Hence

𝐺(𝑠) = 1 ± √1 − 4𝑝𝑞𝑠2

2𝑝𝑠
Note that 𝐺 is continuous on (−1, 1) since it is the a power series. Since
√1 − 4𝑝𝑞𝑠2 ≠ 0 for |𝑠| < 1, we must choose a sign and stick with it on (−1, 1).
Since 𝐺 convergens (−1, 1), + is impossible as otherwise 𝐺 does not converge at
𝑠 = 0. Thus

𝐺(𝑠) = 1 − √1 − 4𝑝𝑞𝑠2

2𝑝𝑠
=

∞
∑
𝑛=1

𝑠𝑛P1(𝐻 = 𝑛)

hence P1(𝐻 = 𝑛) can be found by expanding 𝐺.
In addition

lim
𝑠→1−

𝐺(𝑠) =
∞

∑
𝑛=1

P1(𝐻 = 𝑛)

= P1(𝐻 < ∞)

= 1 −
√

1 − 4𝑝𝑞
2𝑝

= 1 − |𝑝 − 1|
2𝑝

= {
1 𝑞 ≥ 𝑝
𝑞
𝑝 𝑞 < 𝑝

To find E1(𝐻) when 𝑞 ≥ 𝑝, differentiate to get

𝐺′ = 𝑞 + 𝑝𝐺2 + 2𝑝𝑠𝐺𝐺′

so
𝐺′(𝑠) = 𝑞 + 𝑝𝐺2

1 − 2𝑝𝑠𝐺
By ?? Abel’s theorem

𝐸1(𝐻) = lim
𝑠→1−

𝐺′(𝑠) = 𝑞 + 𝑝
1 − 2𝑝

= 1
𝑞 − 𝑝

.
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7 Classification of States
Depending on ht mean time to return to the recurrent state: finite or infinite

Theorem 7.1. Let 𝑋0 = 𝑖 and 𝑉𝑖 = |{𝑛 ≥ 1 ∶ 𝑋𝑛 = 𝑖}|. Then 𝑉𝑖 has a
geometric distribution

P𝑖(𝑉𝑖 = 𝑟) = 𝑓𝑟(1 − 𝑓), 𝑟 ≥ 1

where 𝑓 = 𝑓𝑖,𝑖 ∈ [0, 1].

Proof.

P𝑖(𝑉𝑖 ≥ 𝑟) = P𝑖(𝑇 𝑟 < ∞)
= P𝑖(𝑇 4 < ∞|𝑇 𝑟−1 < ∞)P𝑖(𝑇 𝑟−1 < ∞)
= 𝑓 ⋅ P𝑖(𝑉𝑖 ≥ 𝑟 − 1)𝑆𝑀𝑃
= 𝑓𝑟

where

𝑇 𝑟 = {𝑡𝑖𝑚𝑒𝑜𝑓𝑟𝑡ℎ𝑟𝑒𝑡𝑢𝑟𝑛
∞ if 𝑉𝑖 < 𝑟

Then
P𝑖(𝑉𝑖 = 𝑟) = P𝑖(𝑉𝑖 ≥ 𝑟) − P𝑖(𝑉𝑖 ≥ 𝑟 + 1) = 𝑓𝑟(1 − 𝑟)

Note. If 𝑓 < 1, P𝑖(𝑉𝑖 < ∞) = 1 and if 𝑓 = 1, P𝑖(𝑉𝑖 = ∞) = 1.

Definition (Mean recurrence time). The mean recurrence time of 𝑖 ∈ 𝑆 is

𝜇𝑖 = E𝑖(𝑇𝑖) = {
∞ if 𝑖 is transient
∑∞

𝑛=1 𝑛𝑓𝑖,𝑖(𝑛)

Let 𝑖 be recurrnet. Then 𝑖 is null if 𝜇𝑖 = ∞ and positive if 𝜇𝑖 < ∞.
The period of 𝑖 ∈ 𝑆 is

𝑑𝑖 = gcd{𝑛 ∶ 𝑝𝑖,𝑖(𝑛) > 0}.

𝑖 is aperiodic if 𝑑𝑖 = 1.
𝑖 is ergodic if it is recurrent, positive and aperiodic.

Theorem 7.2. Let 𝑖 ↔ 𝑗. Then

1. 𝑑𝑖 = 𝑑𝑗, i.e. period is a class property.

2. 𝑖 is recurrent if and only if 𝑗 is recurrent.

3. 𝑖 is positive recurrent if and only if 𝑗 is positive recurrent.

4. 𝑖 is ergodic if and only if 𝑗 is ergodic.

19



7 Classification of States

Proof. 2 has already been proved and 4 follows from 1, 2 and 3. 3 will be proved
later. To prove 1:

Let 𝑖 ↔ 𝑗 and 𝑖 ≠ 𝑗.

𝐷𝑘 = {𝑛 ≥ 1 ∶ 𝑝𝑘,𝑘(𝑛) > 0}
𝑑 − 𝑘 = gcd{𝐷𝑘}

Since 𝑖 → 𝑗, there exists 𝑚, 𝑛 ≥ 1 such that 𝛼 = 𝑝𝑖,𝑗(𝑚)𝑝𝑖,𝑗(𝑛) > 0. By CK,

𝑝𝑖,𝑖(𝑚 + 𝑟 + 𝑛) ≥ 𝛼𝑝𝑗,𝑗(𝑟).

Thus if 𝑟 ∈ 𝐷𝑗 ∪ {0}, 𝑝𝑖,𝑖(𝑚 + 𝑟 + 𝑛) > 0 and hence 𝑑𝑖 ∣ 𝑚 + 𝑟 + 𝑛 and hence
𝑑𝑖 ∣ 𝑟 since if 𝑟 = 0, 𝑑𝑖 ∣ 𝑚 + 𝑛.

Thus 𝑑𝑖 ∣ 𝑑𝑗. Similarly 𝑑𝑗 ∣ 𝑑𝑖 and hence 𝑑𝑖 = 𝑑𝑗.

Proposition 7.3. If a chain is irreducible and let 𝑗 ∈ 𝑆 be recurrent. Then

P(𝑇𝑗 < ∞) = P(𝑋𝑛 = 𝑗 for some 𝑛 ≥ 1) = 1.

Compare to the definition of recurrence, P𝑗

Proof. 𝑓𝑖,𝑗 = P𝑖(𝑇𝑗 < ∞). Let 𝑖 ≠ 𝑗. Claim that 𝑝𝑗,𝑖(𝑚)(1−𝑓𝑖,𝑗) ≤ 1−𝑓𝑗,𝑗 where
𝑚 = inf{𝑟 ∶ 𝑝𝑗,𝑖(𝑟) > 0}. Then 𝑝𝑗,𝑖(𝑚) = P𝑗(𝑋𝑚 = 𝑖, 𝑋𝑟 ≠ 𝑗 for 1 ≤ 𝑟 < 𝑚).
We have 𝑓𝑗,𝑗 = 1 and hence 𝑓𝑖,𝑗 = 1.

Thus P𝑖(𝑇𝑗 < ∞) = 1. Let 𝜆𝑖 = P(𝑋0 = 𝑖),

P(𝑇𝑗 < ∞) = ∑
𝑖∈𝑆

P𝑖(𝑇𝑗 < ∞)𝜆𝑖 = 1.
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8 Invariant Distributions

8 Invariant Distributions
What happens to 𝑋𝑛 as 𝑛 → ∞? Random variables are functions so we are
talking about convergence of a sequence of functions. There are lots of modes
of convergence on function space. When studying Markov chains, it turns out
there is a unique convergence that we need: does P(𝑋𝑛 = 𝑖) converge as 𝑛 → ∞.

P(𝑋𝑛+1 = 𝑗) = ∑
𝑖

P(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 0)P(𝑋𝑛 = 𝑖)

𝜋𝑗 = ∑
𝑖

𝑝𝑖,𝑗𝜋𝑖

𝜋 = 𝜋𝑃, eigenvalue problem.

Definition (Invariant distribution). 𝑋 is aMarkov chain with transition
matrix 𝑃. The vector 𝜋 = (𝜋𝑖 ∶ 𝑖 ∈ 𝑆) is an invariant distribution if

1. 𝜋𝑖 ≥ 0, ∑𝑖 𝜋𝑖 = 1,

2. 𝜋 = 𝜋𝑃
If 𝑋0 has distribution 𝜋, 𝑋𝑛 has distribution

𝜋𝑃 𝑛 = (𝜋𝑃)𝑃 𝑛−1 = 𝜋𝑃 𝑛−1 = ⋯ 𝜋

Theorem 8.1. Let 𝑋 be an irreducible Markov chain. Then

1. There exists an invariant distribution if and only if some state of the
chain is positive recurrent.

2. If there exists an invariant distribution 𝜋 then every state is positive
recurrent and

𝜋𝑖 = 1
𝜇𝑖

for 𝑖 ∈ 𝑆 where 𝜇𝑖 is the mean recurrence time. In particular 𝜋 is
unique.

Fix 𝑘 ∈ 𝑆, start at 𝑘. Let 𝑊𝑖 be the number of visits to 𝑖 up to the first
return time to 𝑘, i.e.

𝑊𝑖 =
∞

∑
𝑚=1

𝟏(𝑋𝑚 = 𝑖, 𝑇𝑘 ≥ 𝑚) =
𝑇𝑘

∑
𝑚=1

𝟏(𝑋𝑚 = 𝑖)

where 𝟏(⋅) is the indicator function.
Let 𝜌(𝑖) = E𝑘(𝑊𝑖).

Proposition 8.2. Suppose the chain is irreducible and recurrent, 𝑘 ∈ 𝑆.
𝜌 = (𝜌𝑖 ∶ 𝑖 ∈ 𝑆) satisfies

1. 𝜌𝑘 = 1.

2. ∑𝑖 𝜌(𝑖) = 𝜇𝑘 whether or not 𝜇𝑘 < ∞.

3. 𝜌 = 𝜌𝑃.
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8 Invariant Distributions

4. 0 < 𝜌𝑖 < ∞ for 𝑖 ∈ 𝑆.
Proof.

1. Immediate from the definition.

2.
E𝑘 ∑

𝑖∈𝑆
𝑊𝑖 = 𝐸𝑘𝑇𝑘

Assuming we can interchange summations (since E is the limit of a series),
since all summands are non-negative,

∑
𝑖∈𝑆

𝐸𝑘(𝑊𝑖) = 𝜇𝑘

but the summand on LHS is precisely 𝜌𝑖.

3.

𝜌𝑗 = E𝑘(𝑊𝑗)

= ∑
𝑚≥1

P𝑘(𝑋𝑚 = 𝑗, 𝑇𝑘 ≥ 𝑚) again we interchange the summations

= ∑
𝑚≥1

∑
𝑖∈𝑆

P𝑘(𝑋𝑚 = 𝑗, 𝑋𝑚−1 = 𝑖, 𝑇𝑘 ≥ 𝑚)

= ∑
𝑚≥1

∑
𝑖∈𝑆

P𝑘(𝑋𝑚 = 𝑗|𝑋𝑚−1 = 𝑖, 𝑇𝑘 ≥ 𝑚)P𝑘(𝑋𝑚−1 = 𝑖, 𝑇𝑘 ≥ 𝑚)

= ∑
𝑚≥1

∑
𝑖∈𝑆

P𝑘(𝑋𝑚 = 𝑗|𝑋𝑚−1 = 𝑖, 𝑇𝑘 ≥ 𝑚)P𝑘(𝑋𝑚−1 = 𝑖) Markov property

= ∑
𝑚≥1

∑
𝑖∈𝑆

𝑝𝑖,𝑗P𝑘(𝑋𝑚−1 = 𝑖, 𝑇𝑘 ≥ 𝑚)

= ∑
𝑖∈𝑆

𝑝𝑖,𝑗 ∑
𝑚≥1

P𝑘(𝑋𝑚−1 = 𝑖, 𝑇𝑘 ≥ 𝑚)

= ∑
𝑖∈𝑆

𝑝𝑖,𝑗 ∑
𝑟≥1

P𝑘(𝑋𝑟 = 𝑖, 𝑇𝑘 ≥ 𝑟 + 1)

consider two cases: if 𝑖 ≠ 𝑘, the term when 𝑟 = 0 is 0 and 𝑇𝑘 ≥ 𝑟 + 1 if
and only if 𝑇𝑘 ≥ 𝑟. If 𝑖 = 𝑘, the term when 𝑟 = 0 is 1 and all the other
terms are zero. Thus

= ∑
𝑖∈𝑆

𝑝𝑖,𝑗𝜌𝑖

4. Pivot off the fact that 𝜌𝑘 = 1. Since 𝜌 = 𝜌𝑃, we have 𝜌 = 𝜌𝑃 𝑟 for 𝑟 ≥ 1.
Thus

𝜌𝑖 ≥ 𝜌𝑘𝑝𝑘,𝑖(𝑚), 𝜌𝑘 ≥ 𝜌𝑖𝑝𝑖,𝑘(𝑛)

By irreducibility, there exists 𝑚, 𝑛 ≥ 1 with 𝑝𝑘,𝑖(𝑚), 𝑝𝑖,𝑘(𝑚) > 0 so

0 < 𝑝𝑘,𝑖(𝑚) ≤ 𝜌𝑖 ≤ 1
𝑝𝑖,𝑘(𝑛)

< ∞
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8 Invariant Distributions

Proof.

1. Let 𝑘 be positive recurrent, hence 𝜇𝑘 < ∞. Then 𝜋𝑖 ∶= 𝜌𝑖/𝜇𝑖𝑘 is an
invariant distribution.

2. Let 𝜋 be an invariant distribution. Claim 𝜋𝑖 > 0 for all 𝑖 ∈ 𝑆:

Proof. Since 𝜋 = 𝜋𝑝, we have 𝜋 = 𝜋𝑝𝑛 for 𝑛 ≥ 0 and hence

𝜋𝑖 = ∑
𝑗

𝜋𝑗𝑝𝑗,𝑖(𝑛) ≥ 𝜋𝑘𝑝𝑘,𝑖(𝑛)

for 𝑘 ∈ 𝑆. Since ∑𝑖 𝜋𝑖 = 1 we may pick 𝑘 ∈ 𝑆 with 𝜋𝑘 > 0. By irreducibility
there exists 𝑛 ≥ 0 such tat 𝑝𝑘,𝑖(𝑛) > 0. Hence 𝜋𝑖 > 0.
Suppose every state is transient, since 𝜋 = 𝜋𝑝𝑛,

𝜋𝑗 = ∑
𝑖

𝜋𝑖𝑝𝑖,𝑗(𝑛)

taking limit as 𝑛 → ∞,
∑

𝑖
𝜋𝑖0 = 0

absurd.

Proof of the limiting process.

0 ≤ ∑
𝑖

𝜋𝑖𝑝𝑖,𝑗(𝑛) = ∑
𝑖∈𝐹

⋯ + ∑
𝑖

∉ 𝐹 ⋯ where 𝐹 ⊆ 𝑆, |𝐹 | < ∞

≤ ∑
𝑖∈𝐹

𝑝𝑖,𝑗(𝑛) + ∑
𝑖∉𝐹

𝜋𝑖 by boundedness

→ 0 + ∑
𝑖∉𝐹

𝜋𝑖 as 𝑛 → ∞

→ 0 as 𝐹 → 𝑆−

Thus every state is recurrent.

𝜋𝑖𝜇𝑖 =
∞

∑
𝑛=1

P𝑖(𝑇𝑖 ≥ 𝑛)P(𝑋0 = 𝑖)

=
∞

∑
𝑛=1

P(𝑋0 = 𝑖, 𝑇𝑖 ≥ 𝑛)

Using stationarity,

𝜋𝑖𝜇𝑖 = 𝜋𝑖 +
∞

∑
𝑛=2

(𝑎𝑛−2 − 𝑎𝑛−1) where 𝑎𝑟 = P(𝑋0 ≠ 𝑖, … , 𝑋𝑟 ≠ 𝑖)

= 𝜋𝑖 + 𝑎0 − lim
𝑚→∞

𝑎𝑚

= 𝜋𝑖 + (1 − 𝜋𝑖) − P(𝑇𝑖 = ∞)⏟⏟⏟⏟⏟
=0 by recurrence

= 1
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8 Invariant Distributions

Since 𝜋𝑖𝜇𝑖 = 1,
𝜇𝑖 = 1

𝜋𝑖
< ∞

since 𝜋𝑖 > 0. Thus 𝑖 is positive recurrent.
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9 Convergence to Equilibrium

9 Convergence to Equilibrium

Theorem 9.1. Consider an irreducible aperiodic, positive recurrent Markov
chain. For 𝑖, 𝑗 ∈ 𝑆, 𝑝𝑖,𝑗(𝑛) → 𝜋𝑗 as 𝑛 → ∞ where 𝜋 is the unique invariant
distribution.

Ergodic theorem

Proof. “coupling” is the main idea.
Let 𝑋 = (𝑋𝑛), 𝑌 = (𝑌𝑛) be independent Markov chains with the appropriate

common invariant distribution. Let 𝑍 = (𝑍𝑛 = (𝑋𝑛, 𝑌𝑛))𝑛≥0. Then 𝑍 is a
Markov chain with state space 𝑆 × 𝑆 and transition matrix

𝑝𝑖𝑗,𝑘𝑙 = 𝑝𝑖,𝑘𝑝𝑗,𝑙

Fix 𝑠 ∈ 𝑆, let
𝑇 = inf{𝑛 ≥ 1 ∶ 𝑍𝑛 = (𝑠, 𝑠)}.

Since 𝑋 and 𝑌 have invariant distribution 𝜋, 𝑍 has invariant distribution 𝑣𝑖𝑗 =
𝜋𝑖𝜋𝑗 since

∑
𝑖,𝑗

𝑣𝑖𝑗𝑝𝑖𝑗,𝑘𝑙 = ∑
𝑖

𝜋𝑖𝑝𝑖,𝑘 ∑
𝑗

𝜋𝑗𝑝𝑗,𝑙 = 𝜋𝑘𝜋𝑙 = 𝑣𝑘𝑙

Hence 𝑍 is positive recurrent and P(𝑇 < ∞) = 1.
We are still lacking one thing: 𝑍 is irreducible. This has something to do

with aperiodicity.
A digression about number theory: if 𝐷 is a finite subset of non-negative

integers with gcd(𝐷) = 1, there exists 𝑁 such that for 𝑛 > 𝑁 and expression

𝑛 = ∑
𝑑∈𝐷

𝛼𝑑𝑑

with 𝛼𝑑 ∈ {0, 1, 2, … }.
Since 𝑋 is aperiodic, we deduce that 𝑝𝑖,𝑖(𝑛) > 0 for all large 𝑛. Thus

𝑝𝑖𝑗,𝑖𝑗(𝑛) = 𝑝𝑖,𝑖(𝑛)𝑝𝑗,𝑗(𝑛) > 0

for all large 𝑛. Therefore 𝑍 is aperiodic.
Similarly 𝑍 is irreducible (oops, check the book!)

𝑝𝑖,𝑘(𝑛) = P𝑖(𝑋𝑛 = 𝑘)
= P𝑖𝑗(𝑋𝑛 = 𝑘)

=
∞

∑
𝑡=1

P𝑖𝑗(𝑋𝑛 = 𝑘|𝑇 = 𝑡)P𝑖𝑗(𝑇 = 𝑡)

= ∑
𝑡≤𝑛

P𝑖𝑗(𝑋𝑛 = 𝑘|𝑇 = 𝑡)P𝑖𝑗(𝑇 = 𝑘) + ∑
𝑡>𝑛

P𝑖𝑗(𝑇 = 𝑡)

= ∑
𝑡≤𝑛

P𝑖𝑗(𝑌𝑛 = 𝑘, 𝑇 = 𝑘) + P𝑖𝑗(𝑇 > 𝑛)

≤ 𝑝𝑗,𝑘(𝑛) + P𝑖𝑗(𝑇 > 𝑛)
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9 Convergence to Equilibrium

so
|𝑝𝑖,𝑘(𝑛) − 𝑝𝑗,𝑘(𝑛)| ≤ P𝑖𝑗(𝑇 > 𝑛) → 0

as 𝑛 → ∞. This says that if it converges they converge the the same value. Now
we are just one line from the final result:

𝜋𝑘 − 𝑝𝑖𝑗(𝑛) = ∑
𝑖

𝜋(𝑝𝑖,𝑘(𝑛) − 𝑝𝑗,𝑘(𝑛)) → 0

by bounded convergence theorem.
This is an extremely elegant proof and it took a long time before this proof

was found.
We are left with one final bit

Theorem 9.2. Let 𝑉𝑖(𝑛) = ∑𝑛
𝑘=1 𝟏(𝑥𝑘 = 𝑖) be the total number of visits to

𝑖 up to time 𝑛. If the chain is irreducible and positive recurrent then

𝑉𝑖(𝑛)
𝑛

⇒ 1
𝜇𝑖

as 𝑛 → ∞, where ⇒ means weak convergence, i.e.

P(𝑉𝑖(𝑛)
𝑛

≤ 𝑎 1
𝜇𝑖

) → {0 𝑎 < 1
1 𝑎 > 1

We are not going prove this. Renewal theorem.

Remark. Let 𝑢𝑖 be a typical interval length between successive visits to 𝑖.
𝑉𝑖(𝑛) ≥ 𝑥 if and only if ∑𝑥

𝑚=1 𝑢𝑖(𝑚) ≤ 𝑛 where the 𝑢𝑖(𝑚) are iid copies of 𝑢𝑖.
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10 Time Reversal

10 Time Reversal
some ruminations bout physics: in real life time reversal is possible but extremely
unlikely. The typical explanation is entropy.

Let 𝑋 = (𝑋𝑛 ∶ 𝑛 = 0, 1, ⋯ , 𝑁) be an irreducible and positive recurrent
Markov chain with transition matrix 𝑃 and invariant distribution 𝜋. Let 𝑌𝑛 =
𝑋𝑁−𝑛, so 𝑌 = (𝑌0, ⋯ , 𝑌𝑁) = (𝑋𝑛, ⋯ , 𝑋0), the reverse of 𝑋.

We have to make some assumptions for our reversed chain to make sense:
assume that 𝑋0 has distribution 𝜋.

Theorem 10.1. 𝑌 is an irreducible Markov chain with transition matrix

̂𝑝𝑖,𝑗 =
𝜋𝑗

𝜋𝑖
𝑝𝑗,𝑖

and invariant distribution 𝜋.

Proof. First check that ̂𝑃 = ( ̂𝑝𝑖,𝑗) is a stochastic matrix: the entries are non-
negative and

∑
𝑗

̂𝑝𝑖,𝑗 = ∑
𝑗

𝜋𝑗

𝜋𝑖
𝑝𝑗,𝑖 = 1

𝜋𝑖
∑

𝑗
𝜋𝑗𝑝𝑗,𝑖 = 1.

Claim 𝜋 = 𝜋 ̂𝑃:

∑
𝑖

𝜋𝑖 ̂𝑝𝑖,𝑗 = ∑
𝑖

𝜋𝑗𝑝𝑗,𝑖 = 𝜋𝑗

Now to prove it is a Markov chain,

P(𝑌0 = 𝑖0, … , 𝑌𝑛 = 𝑖𝑛) = P(𝑋𝑁−𝑛 = 𝑖𝑛, … , 𝑋𝑁 = 𝑖0)
= 𝜋𝑖𝑛

𝑝𝑖𝑛,𝑖𝑛−1
⋯ 𝑝𝑖1,𝑖0

= 𝜋𝑖𝑛−1
̂𝑝𝑖𝑛+1,𝑖𝑛

𝑝𝑖𝑛−1,𝑖𝑛−1
⋯ , 𝑝𝑖1,𝑖𝑛

= 𝜋𝑖0
̂𝑝𝑖0,𝑖1

⋯ ̂𝑝𝑖𝑛−1,𝑖𝑛

Hence 𝑌 has the stated properties.

We call mY the time-reversal of 𝑋 and we say 𝑋 is reversible if 𝑌 and 𝑋
have the same transition probabilities. By (*) (the equation is the statement of
the theorem), 𝑋 is recursive if and only if

𝜋𝑖𝑝𝑖,𝑗 = 𝜋𝑗𝑝𝑗,𝑖

for all 𝑖, 𝑗 ∈ 𝑆. This is the detailed balance equation.
More generally, we say a transition matrix 𝑃 and a distribution 𝜆 are in

detailed balance if
𝜆𝑖𝑝𝑖,𝑗 = 𝜆𝑗𝑝𝑗,𝑖

for all 𝑖, 𝑗 ∈ 𝑆. An irreducible chain 𝑋 with invariant distribution 𝜋 is called
reversible in equilibrium if its 𝑃 is in detailed balance with 𝜋.

Equation such as 𝜋 = 𝜋𝑃 can be difficult and may depend on some special
structure on 𝑃. On the other hand the detailed balance equation is almost trivial.
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10 Time Reversal

Proposition 10.2. If 𝜋 is a distribution satisfying

𝜋𝑖𝑝𝑖,𝑗 = 𝜋𝑗𝑝𝑗,𝑖

for all 𝑖, 𝑗 ∈ 𝑆 and 𝑆 is irreducible, then 𝜋 is the only invariant distribution
of the chain and the chain is reversible in equilibrium

Proof. Let 𝜋 be a distribution satisfying the hypothesis. Then

∑
𝑖

𝜋𝑗𝑝𝑗,𝑖 = ∑
𝑗

𝜋𝑖𝑝𝑖,𝑗 = 𝜋𝑖

as (𝜋𝑃)𝑖 = 𝜋𝑖. Therefore 𝜋 = 𝜋𝑃.

Example (Birth-death with retaining barrier). Try the detailed balance equation

𝜋𝑖−1𝑝𝑖−1 = 𝜋𝑖𝑞𝑖

so
𝜋𝑖 = 𝑝𝑖−1

𝑞𝑖

𝑝𝑖−2
𝑞𝑖−1

⋯ 𝑝0
𝑞1

𝜋0 = 𝜌𝑖𝜋0 (2)

∑
𝑖

𝜋𝑖 = 𝜋0 ∑
𝑖

𝜌𝑖

If 𝑆 = ∑𝑖 𝜌𝑖 satisfies 𝑆 < ∞ then 𝜋𝑖 = 𝜌𝑖/𝑆 is an invariant distribution and if
𝑆 = ∞ there is no invariant distribution.
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11 Random Walk on a Graph

11 Random Walk on a Graph
A finite graph consists of vertices and edges and is denoted 𝐺 = (𝑉 , 𝐸). We
discuss graphs are simple (in which there are no parallel edges and loops) and
connected. If (𝑢, 𝑣) ∈ 𝐸 then 𝑣 is called an neighbour of 𝑢. The degree of 𝑢, 𝑑(𝑢),
is the number of its neighbours.

A random walk on 𝐺 is a Markov chain with state space 𝑉 and transition
probability

𝑝𝑢,𝑛 = {
0 if 𝑣 is not a neighbour of 𝑢

1
𝑑(𝑢) if 𝑣 is a neighbour of 𝑢

This is irreducible if and only if 𝐺 is connected, which we assume henceforth.
As always, the natural question to ask is if there is an invariant distribution.

Try to solve
⋅𝑝𝑢,𝑣 = ⋅𝑝𝑣,𝑢

for (𝑢, 𝑣) ∈ 𝐸. We try to find “things” to multiply for the above relation to hold.
The obvious choice is 𝜋𝑢 = 𝑑(𝑢). But we have to normalise it since

∑
𝑢

𝑑(𝑢) = 2|𝐸|

Then 𝜋𝑢 = 𝑑(𝑢)
2|𝐸| satsifies the above detailed balance equation, and hence is the

unique invariant distribution.

Example (Erratic Knight). A knight performs independent legal knight moves
about a 8 × 8 chessboard. This is a Markov chain on the state space 𝑆, the
smallest square on hte board. (Exercise: show this is irreducible). The question
is: what is its invariant distribution?

The answer is simple:

𝜋𝑖 = No. of legal moves from square
336

Exercise (Erratic Bishop). There are two types of bishops, depending on the
colour of the intial checkerboard. Consequently there are two commutative
classes.
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