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0 Introduction

0 Introduction

0.1 Classification of surfaces
The subject of this course is surfaces, i.e. two-dimensional manifolds. We as-
sume throughout the manifold 𝑆 is connected, smooth and oriented. More
importantly, we assume it is of finite type: 𝑆 = 𝑆 − {finite set} where 𝑆 is a
compact manifold possibly with boundary, and the finite set is contained in its
interior.

Theorem 0.1 (classification of surfaces of finite type). Every connected
orientable surface of finite type is diffeomorphic to some 𝑆𝑔,𝑛,𝑏 which is a
surface of genus 𝑔 with 𝑛 punctures and 𝑏 boundary components.

Figure 1: 𝑆𝑔,𝑛,𝑏

It has Euler characteristic 𝜒(𝑆) = 2 − 2𝑔 − (𝑛 + 𝑏).
A closed surface is a surface with 𝑛 = 𝑏 = 0. A compact surface is a surface

with 𝑛 = 0.

Example. Suppose 𝜒(𝑆) > 0 then 𝑔 = 0, 𝑛 + 1 = 0 or 1. Thus 𝑆 is either
𝑆2, or 𝑆2 with a puncture which is isomorphic to C, or 𝑆2 with one boundary
component which is isomorphic of 𝐷2, which can be thought as sitting inside C
as the unit disk.

Note that we can either think of a puncture as a deleted point, or as a
marked point on the surface. These two views are equivalent and we will use
whichever that is more convenient.

Example. Suppose 𝜒(𝑆) = 0 then either 𝑔 = 1, 𝑛 + 𝑏 = 0 or 𝑔 = 0, 𝑛 + 𝑏 = 2.
Thus it is either the torus, the punctured plane C∗, 𝑆1 × 𝐼 or the punctured
disk 𝐷2

∗ .

0.2 Mapping class groups
The natural group associated to a surface 𝑆 is the group of orientation-preserving
homeomorphism Homeo+(𝑆). However this is a huge group. It might be easier
to consider the maps up to homotopy. Suppose 𝜙0, 𝜙1 ∶ 𝑆 → 𝑆 are homeomor-
phisms. We can define an equivalence relation 𝜙0 ∼ 𝜙1 if there exists an isotopy
𝜙𝑡 ∶ 𝑆 × 𝐼 → 𝑆 from 𝜙0 to 𝜙1.

Another way to think about this: give Homeo+(𝑆) the compact-open topol-
ogy. Let Homeo0(𝑆) be the path component of 1𝑆. It is an exercise to show
that Homeo0(𝑆) is a normal subgroup of Homeo(𝑆).
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0 Introduction

Definition (mapping class group). The mapping class group of 𝑆 is

Mod(𝑆) = Homeo+(𝑆, 𝜕𝑆)/ Homeo0(𝑆, 𝜕𝑆)

where Homeo(𝑆, 𝜕𝑆) is the subgroup of Homeo(𝑆) that fixes 𝜕𝑆 pointwise.

We might ask if we can replace homeomorphism by diffeomorphism, or we
replace isotopy by homotopy. Indeed we have

Theorem 0.2 (Baer, Munkres). For any smooth surface 𝑆 of finite type,

Mod(𝑆) ≅ Diff+(𝑆, 𝜕𝑆)/ Diff0(𝑆, 𝜕𝑆) ≅ Homeo+(𝑆, 𝜕𝑆)/ ∼

where the equivalence relation is homotopy.

0.3 Context & Motivation
bundles Let 𝜙 ∈ Diff(𝑆). We can define 𝑀𝜙 = 𝑆 × [0, 1]/ ∼ where (𝑥, 1) ∼
(𝜙(𝑥), 1). This is called a surface bundle over 𝑆1. Note that 𝑀𝜙 only depends
on [𝜙] ∈ Mod(𝑆).

More generally, if 𝐵 is a space and 𝜌 ∶ 𝜋1(𝐵) → Mod(𝑆) then we get a bundle
𝐵̃ × 𝑆 ... this leads to an 𝑆-bundle over 𝐵.

moduli space More handwavy motivation. Let 𝑆 = 𝑆𝑔 = 𝑆𝑔,0,0. It turns
out the moduli space ℳ𝑔 of geometric structures on 𝑆𝑔 is the same as the
moduli space of complex structures on 𝑆𝑔. Morally (but not actually true), the
universal cover ℳ̃𝑔 is 𝒯𝑔, the Teichüller space, and 𝜋1(ℳ𝑔) is Mod(𝑆), so we
have ℳ𝑔 = Mod(𝑆𝑔) \ 𝒯𝑔.

analogy There is an analogy between the torus and a surface 𝑆.

𝑆 𝑇
𝜋1(𝑆) Z𝑛

Mod(𝑆) SL𝑛(Z)
closed curves (up to isotopy) vectors

Table 1: Comparison of 𝑆 with 𝑇 𝑛

3



1 Curves, Surfaces & Hyperbolic geometry

1 Curves, Surfaces & Hyperbolic geometry

1.1 The hyperblic plane
There are two models of hyperbolic geometry.

The upper half-plane model It is the half-plane H2 = {𝑥+𝑖𝑦 ∶ 𝑦 > 0} with
metric

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2

𝑦2 .

The geodesics are either vertical lines or semicircles on the 𝑥-axis. Then both
meet the 𝑥-axis at right angle. The orientation preserving isometries are

Isom+(H2) = 𝑃𝑆𝐿2(R)

where an element in 𝑃𝑆𝐿2(R) acts by Möbius transformation:

(𝑎 𝑏
𝑐 𝑑) 𝑧 = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R and 𝑎𝑑 − 𝑏𝑐 > 0 (by rescaling). As the entries are real, it
preserves the 𝑥-axis and the point at infinity.

The Poincaré disc model Conjugating the isometry group by 𝑧 ↦ 𝑧−𝑖
𝑧+𝑖 , we

can map H2 to the interior unit disc. The metric is

𝑑𝑠2 = 4𝑑𝑥2 + 𝑑𝑦2

(1 − 𝑟2)2 .

Note that it is radically symmetric. As Möbius transformations are conformal,
the geodesics are diameters and arcs meeting the boundary of the disc at right
angle.

The (Gromov) boundary (at infinity) 𝜕H2 is the unit circle bounding the
disc. We write H2 = H2 ∪ 𝜕H2.

Note. Each isometry 𝑓 of H2 extend uniquely to Möbius transformation 𝑓 of
𝜕H2.

Let 𝑓 ∈ Isom+ H2 = PSL2(R) and let 𝑛 be the number of fixed points of
𝑓. Brouwer fixed point theorem says 𝑛 ≥ 1. On the other hand, 𝑛 ≤ 2 unless
𝑓 = id.

𝑛 = 2 Let be {𝜉+, 𝜉−} = Fix(𝑓) ⊆ H2. If one of them is in the interior then
there is a geodesic between them lying in H2. But then 𝑓 fixes every point on
the geodesic, absurd. Thus 𝜉+, 𝜉− ∈ 𝜕H2 and there is a unique geodesic between
them.

There exists 𝑔 ∈ PSL2(R) such that 𝑔(𝜉−) = 0, 𝑔(𝜉+) = ∞ in the upper
half-plane model, and Fix(𝑔𝑓𝑔−1) = 𝑔 Fix(𝑓). Thus after conjugation, wlog
𝜉− = 0, 𝜉+ = ∞ so

𝑓(𝑧) = 𝜆𝑧 = 𝑒𝜏(𝑓)𝑧
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1 Curves, Surfaces & Hyperbolic geometry

where 𝜆 > 0. So 𝑓 now acts as translation on the 𝑦-axis by 𝜏(𝑓).
In general, 𝑓 preserves a geodesic line called Axis(𝑓), acting by translation.

Such an 𝑓 is called hyperbolic or loxodromic.
fact: If 𝑥 ∉ Axis(𝑓) then 𝑑(𝑥, 𝑓(𝑥)) > 𝜏(𝑓).

𝑛 = 1 Let Fix(𝑓) = {𝜉}. If 𝜉 ∈ H2 wlog 𝜉 = 0 in the disc model. Then
must have 𝑓(𝑧) = 𝑒𝑖𝜃𝑧. Such an 𝑓 is called elliptic. If 𝜉 ∈ 𝜕H2 wlog 𝜉 = ∞ in
the upper half-plane model. It follows that 𝑓(𝑧) = 𝑧 ± 1. Such an 𝑓 is called
parabolic.

Remark. This classification is invariant under conjugacy.

1.2 Hyperbolic structures
A hyperbolic structure on 𝑆 is a complete, finite-area Riemannian metric of
constant curvature 𝜅 = +1, 0 or − 1, in which every boundary components are
geodesic.

What kind of hyperbolic structure can we put on a surface? Recall Gauss-
Bonnet which says that if 𝑆 has finite area then

∫
𝑆

𝜅𝑑𝐴 = 2𝜋𝜒(𝑆)

so the sign of 𝜅 is the same as the sign of 𝜒(𝑆). In particular

1. if 𝜒(𝑆) > 0 then 𝜅 = 1 so 𝑆 is locally 𝑆2.

2. if 𝜒(𝑆) = 0 then 𝜅 = 0 so 𝑆 is locally R2.

3. if 𝜒(𝑆) < 0 then 𝜅 = −1 so 𝑆 is locally H2.

Example. Recall that 𝜒(𝑆) > 0 implies 𝑆 is 𝑆2, 𝐷2 or C. 𝑆2 will just have
the geometric structure of the sphere. For C, there is no complete finite-area
metric. For 𝐷2, recall that we require the boundary component to be a geodesic
so the geometric structure on 𝐷2 will just be the semisphere.

If 𝜒(𝑆) = 0 then 𝑆 is 𝑇 2, 𝐴 = 𝑆1 × [0, 1],C∗ or 𝐷2
∗ . Again C∗ and 𝐷2

∗ do not
admit finite-area complete metric. 𝑇 will then be the flat torus, i.e. Z2 \ R2. 𝐴
has the geometric structure of a cylinder.

Theorem 1.1. If 𝑆 is connected, oriented and of finite type and 𝜒(𝑆) < 0
then there is a convex subspace ̃𝑆 ⊆ H2 with geodesic boundary and an action
𝜋1𝑆 on ̃𝑆 by isometry such that

𝑆 ≅ 𝜋1𝑆 \ ̃𝑆

has finite area. In particular, 𝑆 has curvature −1 everywhere.

Sketch proof when 𝑆 = 𝑆𝑔,0,0. Cut along 2𝑔 loops to get a 4𝑔-gon with sides
identified appropriately. Then it suffices to find a 4𝑔-gon in the hyperbolic disk
whose internal angles sum up to 2𝜋. A regular 4𝑔-gon with vertices on 𝜕H has
total interior angle 0, while as we shrink the polygon it resembles more and
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1 Curves, Surfaces & Hyperbolic geometry

more like a Euclidean polygon so the total interior angle approachs (4𝑔 − 2)𝜋.
As 𝑔 > 1, by intermediate value theorem we can find a regular 4𝑔-gon whose
total interior angle is 2𝜋.

The metric on 𝑆 then has constant curvature 𝜅 = −1. Then by Jacobi
theorem ̃𝑆 ≅ H2 (homeo?). The statement about fundamental group follows
from algebraic topology (note that 𝜋1 does act by isometry since the upstairs
metric is lifted from the downstairs’).

Such a surface 𝑆 is called hyperbolic.

Remark. When 𝑆 has no boundary components ̃𝑆 = H2.

1.3 Curves on hyperbolic surface
A closed curve on 𝑆 is a smooth map 𝛼 ∶ 𝑆1 → 𝑆. It gives a conjugacy class
[𝜎] ∈ 𝜋1𝑆. This leads to an isometry of H2 (up to isometry) when 𝑆 is hyperbolic.
Thus we could talk about conjugacy-invariant properties of 𝛼.

Definition. We say 𝛼 is inessential if 𝛼 is homotopic to a point or a punc-
ture. Otherwise 𝛼 is essential.

Picture of an (embedded) hyperbolic surface. Note that a puncture is a cusp
because of finite-area and completeness.

Lemma 1.2.

1. If 𝛼 is elliptic then it is homotopic to a point.

2. If 𝛼 is parabolic then it is homotopic to a puncture.

3. If 𝛼 is hyperbolic then it is essential.

Proof.

1. 𝛼 is elliptic implies that 𝛼 fixes a point of H2. But the action of 𝜋1 is free
so 𝛼 = id as isometry. so 𝛼 is homotopic to a point.

2. If 𝛼 is parabolic then wlog 𝛼 ∶ 𝑧 ↦ 𝑧 + 1. Take 𝛼(0) = 𝑥0 ∈ 𝑆 to be a
basepoint and choose ̃𝑥0 a lift in H2. Let ̃𝛼 be the lift of 𝛼 at ̃𝑥0. Let

̃𝛼𝑠(𝑡) = ̃𝛼(𝑡) + 𝑖𝑠 for 𝑠 ∈ [0, ∞). For all 𝑠,

̃𝛼𝑠(1) = ̃𝛼𝑠(0) + 1

so ̃𝛼𝑠 descends to a loop 𝛼𝑠 in 𝑆 and 𝛼𝑠 tends to a puncture of 𝑠 by
compactness of H2.

3. It’s enough to prove that 𝛼 homotopic to a puncture then it is parabolic.
By shrinking 𝛼 we get a sequence of annuli. Since the hyperbolic structure
is complete and of finite area, there exists 𝛼𝑛 ∼ 𝛼 such that ℓ(𝛼𝑛) → 0 as
𝑛 → ∞. Lift 𝛼 to a path ̃𝛼 ∶ [0, 1] → H2 and moreover we get well-defined
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1 Curves, Surfaces & Hyperbolic geometry

lifts ̃𝛼𝑛 of 𝛼𝑛. Let ̃𝑥𝑛 = ̃𝛼𝑛(0). Note ̃𝛼𝑛(1) = 𝛼 ⋅ ̃𝑥𝑛. Then the translation
distance is

𝜏(𝛼) ≤ 𝑑( ̃𝑥𝑛, 𝛼 ⋅ ̃𝑥𝑛)
= 𝑑( ̃𝛼𝑛(0), ̃𝛼𝑛(1))
≤ ℓ( ̃𝛼𝑛)
= ℓ(𝛼𝑛)
→ 0

as 𝑛 → ∞ so 𝛼 is not hyperbolic.

Lemma 1.3. Let 𝑆 be a hyperbolic surface and 𝛼 an essential closed curve
on 𝑆. Then there is a unique geodesic representative in the homotopy class
of 𝛼.

Note that for Euclidean space, such as a torus, such a representative exists
but is not unique.

Proof. The universal cover of 𝑆1 is R and the universal cover of ̃𝑆 ⊆ H2 of
𝑆. Then each 𝛼 ∶ 𝑆1 → 𝑆 lifts to ̃𝛼 ∶ R → ̃𝑆. Note that ̃𝛼 is Z-equivariant
by considering the action of 𝜋1𝑆1. From the lemma above we know 𝛼 has an
axis Axis(𝛼). Let 𝜋 ∶ H2 → Axis(𝛼) be the orthogonal projection (equivalently,
it projects a point 𝑥 to 𝜋(𝑥) on Axis(𝛼) such that the length of the geodesic
between 𝑥 and 𝜋(𝑥) is the shortest so. See example sheet 1). Let ̃𝛾𝑡 ∶ [0, 1] → H2

be the unique constant speed geodesic from ̃𝛼(𝑡) to 𝜋 ∘ ̃𝛼(𝑡). Since ⟨𝛼⟩ acts on
both ̃𝛼 and Axis(𝛼) and the ̃𝛾𝑡 are determined canonically, taking the quotient
by Z = ⟨𝛼⟩ defines a homotopy from 𝛼 to some closed curve 𝛽 on 𝑆 in the image
of Axis(𝛼). The image of 𝛽 is a local geodesic and after reparameterisation, 𝛽
is a constant-speed geodesic.

Unqiueness: suppose 𝛼 ≃ 𝛽 are both geodesics on 𝑆. Lift 𝛼, 𝛽 to ̃𝛼, ̃∶R →
H2 geodesics in H2 that are contained in a bounded neighbourhood of each
other (since sup𝑡∈𝑆1 𝑑(𝛼(𝑡), 𝛽(𝑡)) < ∞ by compactness). It follows that ̃𝛼, ̃𝛽
are geodesics in H2 with the same endpoints on 𝜕H2. It follws that ̃𝛼 = ̃𝛽 so
𝛼 = 𝛽.
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2 Simple closed curves & Intersection number
A closed curve 𝛼 ∶ 𝑆1 → 𝑆 is simple if it is injective. The idea is that simple
closed curves are like basis of a vector space and we can understand mapping
class groups by understanding its action on simplex closed curves.

Definition ((ambient) isotopy of simple closed curves). A homotopy 𝛼•
between simple closed curves 𝛼0 to 𝛼1 is an isotopy if each 𝛼𝑡 is simple.

If 𝜙|𝑏𝑢𝑙𝑙𝑒𝑡 ∶ 𝑆 → 𝑆 is an isotopy such that 𝜙0 = id𝑆 and 𝜙1 ∘ 𝛼0 = 𝛼1
then we say 𝛼0, 𝛼1 are ambient isotopic.

Lemma 2.1. Two essential simple closed curves on an orientable surface
𝑆 are homotopic relative to 𝜕𝑆 if and only if they are ambient isotopic.

We’ll prove this later.

Definition. An element ℎ ∈ 𝜋1(𝑆) is primitive if ℎ ≠ 𝑔𝑛 for some 𝑛 > 1.

Lemma 2.2. Let 𝑇 2 be the torus. The homotopy class of essential simple
closed curves on 𝑇 2 correspond to primitive elements of 𝜋1𝑇 2 = Z2.

Proof. Example sheet 1, question 8.

Lemma 2.3. If 𝛼 is an essential simple closed curve on a hyperbolic surface
𝑆 then 𝛼 ∈ 𝜋1𝑆 is primitive. In fact the it has centraliser 𝐶(𝛼) = ⟨𝛼⟩.

Proof. wlog 𝛼 is a geodesic and we may consider Axis(𝛼) ⊆ H2. Let 𝑔 ∈
𝐶(𝛼), 𝑥 ∈ Axis(𝛼). Then

𝑑(𝑔𝑥, 𝛼𝑔𝑥) = 𝑑(𝑔𝑥, 𝑔𝛼𝑥) = 𝑑(𝑥, 𝛼𝑥) = 𝜏(𝑥)

as 𝑥 is on the axis. Therefore 𝑔 preserves Axis(𝛼) so 𝐶(𝛼 acts on Axis(𝛼). We
have ⟨𝛼⟩ ⊆ 𝐶(𝛼). 𝛼 is injective then deg 𝑝 = 1 = |𝐶(𝛼) ∶ ⟨𝑎⟩| so the result
follows.
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