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1 Propositional Logic

1 Propositional Logic
Let 𝑃 be a set of primitive propositions. Unless otherwise stated, 𝑃 = {𝑝1, 𝑝2, … }.

Definition (Language). The language or set of propositions 𝐿 = 𝐿(𝑃) is
defined inductively by

1. for every 𝑝 ∈ 𝑃, 𝑝 ∈ 𝐿,

2. ⊥ ∈ 𝐿 (reads “false”),

3. if 𝑝, 𝑞 ∈ 𝐿 then (𝑝 ⟹ 𝑞) ∈ 𝐿.

Example. (𝑝1 ⟹ ⊥), ((𝑝1 ⟹ 𝑝2) ⟹ (𝑝1 ⟹ 𝑝3)), ((𝑝1 ⟹ ⊥) ⟹ ⊥)
are elements of 𝐿.

Note.

1. Each proposition is a finite string of symbols from the alphabet (, ), ⟹
, 𝑝1, 𝑝2, ….

2. “Inductively defined” means more precisely that we set

𝐿1 = 𝑃 ∪ {⊥}
𝐿𝑛+1 = 𝐿𝑛 ∪ {(𝑝 ⟹ 𝑞) ∶ 𝑝, 𝑞 ∈ 𝐿𝑛}

and then set 𝐿 = 𝐿1 ∪ 𝐿2 ∪ …. 𝐿𝑛 can be seen as “things born by time 𝑛”.

3. Each proposition is built up uniquely from (1), (2) and (3). For example,
((𝑝1 ⟹ 𝑝2) ⟹ (𝑝1 ⟹ 𝑝3)) came from (𝑝1 ⟹ 𝑝2) and (𝑝1 ⟹ 𝑝3).

Note that we often omit outer brackets or use different brackets for clarity.
We can now define for example, ¬𝑝 (reads “not 𝑝”) as an abbreviation for

𝑝 ⟹ ⊥, 𝑝 ∨ 𝑞 (reads “𝑝 or 𝑞”) for (¬𝑝) ⟹ 𝑞, 𝑝 ∧ 𝑞 (reads “𝑝 and 𝑞”) for
¬(𝑝 ⟹ (¬𝑞)).

1.1 Semantic Entailment

Definition (Valuation). A valuation is a function 𝑣 ∶ 𝐿 → {0, 1} such that

1. 𝑣(⊥) = 0,

2. 𝑣(𝑝 ⟹ 𝑞) = {0 if 𝑣(𝑝) = 1, 𝑣(𝑞) = 0
1 otherwise

for all 𝑝, 𝑞 ∈ 𝐿.

Remark. On {0, 1}, we could define a constant ⊥ by ⊥ = 0 and an operation
⟹ by

(𝑎 ⟹ 𝑏) = {0 if 𝑎 = 1, 𝑏 = 0
1 otherwise

Then a valuation is a function 𝐿 → {0, 1} that preserves the structure (⊥ and
⟹ ), i.e. it is a homomorphism.
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1 Propositional Logic

Proposition 1.1.

1. If 𝑣 and 𝑣′ are valuations with 𝑣(𝑝) = 𝑣′(𝑝) for all 𝑝 ∈ 𝑃, then 𝑣 = 𝑣′.

2. For any 𝑤 ∶ 𝑃 → {0, 1}, there exists a valuation 𝑣 with 𝑣(𝑝) = 𝑤(𝑝)
for all 𝑝 ∈ 𝑃.

In other words, a valuation is determined by its values on 𝑃 and any values
will do.

Proof.

1. We have for all 𝑝 ∈ 𝐿1, 𝑣(𝑝) = 𝑣′(𝑝). But if 𝑣(𝑝) = 𝑣′(𝑝) and 𝑣(𝑞) = 𝑣′(𝑞)
then 𝑣(𝑝 ⟹ 𝑞) = 𝑣′(𝑝 ⟹ 𝑞) so 𝑣 = 𝑣′ on 𝐿2. Continue inductively, we
have 𝑣 = 𝑣′ on 𝐿𝑛 for all 𝑛.

2. Set 𝑣(𝑝) = 𝑤(𝑝) for all 𝑝 ∈ 𝑃 and 𝑣(⊥) = 0. This defines 𝑣 on 𝐿1. Having

defined 𝑣 on 𝐿2, use 𝑣(𝑝 ⟹ 𝑞) = {0 if 𝑣(𝑝) = 1, 𝑣(𝑞) = 0
1 otherwise

to define 𝑣

on 𝐿𝑛+1.

Example. In a valuation given by

𝑣(𝑝1) = 1
𝑣(𝑝2) = 1
𝑣(𝑝𝑛) = 0 for all 𝑛 ≥ 3

we have 𝑣((𝑝1 ⟹ 𝑝2)⏟⏟⏟⏟⏟
1

⟹ 𝑝3⏟
0

) = 0.

Definition (Tautology). 𝑝 is a tautology, written ⊨ 𝑝 if 𝑣(𝑝) = 1 for all
valuations 𝑣.

Example.

1. 𝑝 ⟹ (𝑞 ⟹ 𝑝). “A true statement is implied by anything”. To show
this we could write donw a truth table

𝑣(𝑝) 𝑣(𝑞) 𝑣(𝑞 ⟹ 𝑝) 𝑣(𝑝 ⟹ (𝑞 ⟹ 𝑝))
1 1 1 1
1 0 1 1
0 1 0 1
0 0 1 1

2. (¬¬𝑝) ⟹ 𝑝, i.e. ((𝑝 ⟹ ⊥) ⟹ ⊥) ⟹ 𝑝. “Law of excluded middle”.
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1 Propositional Logic

3. (𝑝 ⟹ (𝑞 ⟹ 𝑟)) ⟹ ((𝑝 ⟹ 𝑞) ⟹ (𝑝 ⟹ 𝑟)). This is an example
where writing down a truth table is not so desirable. Instead, this is not
a tautology only if we have 𝑣 with

𝑣(𝑝 ⟹ (𝑞 ⟹ 𝑟)) = 1
𝑣((𝑝 ⟹ 𝑞) ⟹ (𝑝 ⟹ 𝑟)) = 0

so 𝑣(𝑝 ⟹ 𝑞) = 1, 𝑣(𝑝 ⟹ 𝑟) = 0 whence 𝑣(𝑝) = 1, 𝑣(𝑟) = 0, so also
𝑣(𝑞) = 1. But then 𝑣(𝑞 ⟹ 𝑟) = 0 so 𝑣(𝑝 ⟹ (𝑞 ⟹ 𝑟)) = 0. Absurd.

Definition (Semantic entailment). For 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿, we say 𝑆 entails or
semantically implies 𝑡, written 𝑆 ⊨ 𝑡, if 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆 then 𝑣(𝑡) = 1
for each valuation 𝑣.

This says whenever all of 𝑆 is true, 𝑡 is true as well.

Example. {𝑝 ⟹ 𝑞, 𝑞 ⟹ 𝑟} ⊨ (𝑝 ⟹ 𝑟). Indeed, suppose not. So have 𝑣
with 𝑣(𝑝 ⟹ 𝑞) = 𝑣(𝑞 ⟹ 𝑟) = 1, 𝑣(𝑝 ⟹ 𝑟) = 0. Then 𝑣(𝑝) = 1, 𝑣(𝑟) = 0,
whence 𝑣(𝑞) = 0 (from 𝑣(𝑞 ⟹ 𝑟) = 1), so 𝑣(𝑝 ⟹ 𝑞) = 0. Absurd.

Definition (Model). If 𝑣(𝑡) = 1, we say 𝑡 is true in 𝑣 or that 𝑣 is a model
of 𝑡.

For 𝑆 ⊆ 𝐿, 𝑣 is a model of 𝑆 if 𝑣(𝑠) = 1 for all 𝑠 ∈ 𝑆.

Using this terminology, 𝑆 ⊨ 𝑡 says that every model of 𝑆 is a model of 𝑡.

Note. ⊨ 𝑡 is equivalent to ∅ ⊨ 𝑡.

1.2 Syntactic Implication
For a notion of “proof”, we’ll need axioms and deduction rules. As axioms, we’ll
take

1. 𝑝 ⟹ (𝑞 ⟹ 𝑝) for all 𝑝, 𝑞 ∈ 𝐿.

2. (𝑝 ⟹ (𝑞 ⟹ 𝑟)) ⟹ ((𝑝 ⟹ 𝑞) ⟹ (𝑝 ⟹ 𝑟)) for all 𝑝, 𝑞, 𝑟 ∈ 𝐿.

3. (¬¬𝑝) ⟹ 𝑝 for all 𝑝 ∈ 𝐿.

Note. We have already checked that these are all tautologies. Sometimes we
say 3 axiom schemes to mean 3 infinite sets of axioms.

As deduction rules, we’ll take just modus ponens: from 𝑝 and (𝑝 ⟹ 𝑞) we
can deduce 𝑞.

Definition (Proof). For 𝑆 ⊆ 𝐿 and 𝑡 ∈ 𝐿, a proof of 𝑡 from 𝑆 consists of
a finite sequence 𝑡1, … , 𝑡𝑛 of propositions, with 𝑡𝑛 = 𝑡 such that for every
𝑖, the proposition 𝑡𝑖 is an axiom, or a member of 𝑆, or there exists 𝑗, 𝑘 < 𝑖
with 𝑡𝑗 = (𝑡𝑘 ⟹ 𝑡𝑖).

We say 𝑆 is the hypotheses or premises and 𝑡 is the conclusion.
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1 Propositional Logic

Definition (Syntactical implication). If there is a proof of 𝑡 from 𝑆, say 𝑆
proves or syntactically implies 𝑡, written 𝑆 ⊢ 𝑡.

Definition (Theorem). 𝑡 is a theorem if ∅ ⊢ 𝑡, written ⊢ 𝑡.

Example. {𝑝 ⟹ 𝑞, 𝑞 ⟹ 𝑟} ⊢ 𝑝 ⟹ 𝑟

1. (𝑞 ⟹ 𝑟) ⟹ (𝑝 ⟹ (𝑞 ⟹ 𝑟)), A1

2. 𝑞 ⟹ 𝑟, hypothesis

3. 𝑝 ⟹ (𝑞 ⟹ 𝑟), MP

4. (𝑝 ⟹ (𝑞 ⟹ 𝑟)) ⟹ ((𝑝 ⟹ 𝑞) ⟹ (𝑝 ⟹ 𝑟)), A2

5. (𝑝 ⟹ 𝑞) ⟹ (𝑝 ⟹ 𝑟), MP

6. 𝑝 ⟹ 𝑞, hypothesis

7. 𝑝 ⟹ 𝑟, MP

Example. ⊢ 𝑝 ⟹ 𝑝

1. 𝑝 ⟹ ((𝑝 ⟹ 𝑝) ⟹ 𝑝), A1

2. (𝑝 ⟹ ((𝑝 ⟹ 𝑝) ⟹ 𝑝)) ⟹ ((𝑝 ⟹ (𝑝 ⟹ 𝑝)) ⟹ (𝑝 ⟹ 𝑝)),
A2

3. (𝑝 ⟹ (𝑝 ⟹ 𝑝)) ⟹ (𝑝 ⟹ 𝑝), MP

4. 𝑝 ⟹ (𝑝 ⟹ 𝑝), A1

5. 𝑝 ⟹ 𝑝, MP

The following theorem allows us to prove things much more easily:

Theorem 1.2 (Deduction theorem). Let 𝑆 ⊆ 𝐿 and 𝑝, 𝑞 ∈ 𝐿. Then 𝑆 ⊢
𝑝 ⟹ 𝑞 if and only if 𝑆 ∪ {𝑝} ⊢ 𝑞.

Proof.

• ⟸ : Given a proof of 𝑝 ⟹ 𝑞 from 𝑆, append the lines

1. 𝑝, hypothesis
2. 𝑞, MP

to obtain a proof of 𝑞 from 𝑆 ∪ {𝑝}.

• ⟹ : Let 𝑡1, … , 𝑡𝑛 = 𝑞 be a proof of 𝑞 from 𝑆 ∪ {𝑝}. We’ll show that
𝑆 ⊢ 𝑝 ⟹ 𝑡𝑖 for all 𝑖. Split into cases

– 𝑡𝑖 is an axiom: write down
1. 𝑡𝑖 ⟹ (𝑝 ⟹ 𝑡𝑖), A1
2. 𝑡𝑖, axiom
3. 𝑝 ⟹ 𝑡𝑖, MP
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1 Propositional Logic

– 𝑡𝑖 ∈ 𝑆: identical as above.
– 𝑡𝑖 = 𝑝: write down the proof 𝑝 ⟹ 𝑝.
– 𝑡𝑖 is obtained by MP: there exist 𝑗, 𝑘 < 𝑖 such that 𝑡𝑘 = (𝑡𝑗 ⟹ 𝑡𝑖).

By induction 𝑆 ⊢ 𝑝 ⟹ 𝑡𝑗 and 𝑆 ⊢ 𝑝 ⟹ 𝑡𝑘. Now write down
1. (𝑝 ⟹ (𝑡𝑗 ⟹ 𝑡𝑖)) ⟹ ((𝑝 ⟹ 𝑡𝑗) ⟹ (𝑡 ⟹ 𝑡𝑖)), A1
2. 𝑝 ⟹ (𝑡𝑗 ⟹ 𝑡𝑖), known
3. (𝑝 ⟹ 𝑡𝑗) ⟹ (𝑝 ⟹ 𝑡𝑖), MP
4. 𝑝 ⟹ 𝑡𝑗, known
5. 𝑝 ⟹ 𝑡𝑖, MP

and we can conclude 𝑆 ⊢ 𝑝 ⟹ 𝑡𝑖 for all 𝑖.

Example. In order to show {𝑝 ⟹ 𝑞, 𝑞 ⟹ 𝑟} ⊢ 𝑝 ⟹ 𝑟, it suffices to show
{𝑝 ⟹ 𝑞, 𝑞 ⟹ 𝑟, 𝑝} ⊢ 𝑟 by deduction theorem, which is easy by using MP
twice.

Now we have two turnstiles ⊨ and ⊢, how are they related? The aim of the
rest of the chapter is to prove

Theorem 1.3 (Completeness theorem). 𝑆 ⊨ 𝑡 if and only if 𝑆 ⊢ 𝑡.

We break this down into two directions:

• ⟹ : adequacy

• ⟸ : soundness

The easy part is

Proposition 1.4 (Soundness). If 𝑆 ⊢ 𝑡 then 𝑆 ⊨ 𝑡.

Proof. Given 𝑣 that models 𝑆 and a proof 𝑡1, … , 𝑡𝑛 = 𝑡 of 𝑆 ⊢ 𝑡, we will show
that 𝑣(𝑡𝑖) = 1 for all 𝑖.

If 𝑡𝑖 is an axiom then 𝑣(𝑡𝑖) = 1 since it is tautology. If 𝑡𝑖 is a hypothesis then
𝑣(𝑡𝑖) = 1 by assumption. Finally, if 𝑡𝑖 is obtained by MP, say from 𝑡𝑗 ⟹ 𝑡𝑖,
since 𝑣(𝑡𝑗) = 1 and 𝑣(𝑡𝑗 ⟹ 𝑡𝑖) = 1 by induction, 𝑣(𝑡𝑖) = 1.

Note that soundness holds whenever our axioms are tautologies.
To prove adequacy, which is a bit harder, we need a few lemmas.

Definition (Consistency). 𝑆 is inconsistent if 𝑆 ⊢ ⊥. Otherwise 𝑆 is con-
sistent.

Theorem 1.5 (Model existence lemma). Let 𝑆 ⊆ 𝐿 be consistent, then 𝑆
has a model.

The first idea is to define a valuation 𝑣 by 𝑣(𝑝) = 1 if and only if 𝑝 ∈ 𝑆. As
1 is preserved under ⊨ and thus ⊢, a more sensible aim is 𝑣(𝑝) = 1 if and only
if 𝑆 ⊢ 𝑝.

But maybe neither 𝑆 ⊢ 𝑝 nor 𝑆 ⊢ ¬𝑝. So we want to “grow” 𝑆 to contain
one of 𝑝 or ¬𝑝 for each 𝑝 ∈ 𝐿 (while remaining consistent).
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1 Propositional Logic

Proof. Claim that for any consistent 𝑆 ⊆ 𝐿, 𝑆 ∪{𝑝} or 𝑆 ∪{¬𝑝} is consistent: if
not, then 𝑆 ∪{𝑝} ⊢ ⊥ and 𝑆 ∪{¬𝑝} ⊢ ⊥. But then 𝑆 ⊢ (𝑝 ⟹ ⊥) by deduction
theorem, i.e. 𝑆 ⊢ ¬𝑝. Then 𝑆 ⊢ ⊥. Absurd.

Now as 𝐿 is countable, we can list 𝐿 as 𝑡1, 𝑡2, …. Put 𝑆0 = 𝑆. Set 𝑆1 = 𝑆0 ∪
{𝑡1} or 𝑆0∪{¬𝑡1} such that 𝑆1 is consistent. Then let 𝑆2 = 𝑆1∪{𝑡2} or 𝑆1∪{¬𝑡2}
such that 𝑆2 is consistent and continue inductively. Let 𝑆 = 𝑆0 ∪ 𝑆1 ∪ …. Then
𝑆 ⊇ 𝑆 and 𝑆 is consistent (as each 𝑆𝑛 is consistent and proofs are finite). For
all 𝑝 ∈ 𝐿 either we have 𝑝 ∈ 𝑆 or ¬𝑝 ∈ 𝑆. Also 𝑆 is deductively closed, meaning
that if 𝑆 ⊢ 𝑝 then 𝑝 ∈ 𝑆. Indeed if 𝑝 ∉ 𝑆 then ¬𝑝 ∈ 𝑆, so 𝑆 ⊢ 𝑝, 𝑆 ⊢ (¬𝑝),
whence 𝑆 ⊢ ⊥. Absurd.

Define a valuation

𝑣 ∶ 𝐿 → {0, 1}

𝑝 ↦ {1 𝑝 ∈ 𝑆
0 otherwise

Indeed, 𝑣(⊥) = 0 as ⊥ ∉ 𝑆. For 𝑣(𝑝 ⟹ 𝑞):

• if 𝑣(𝑝) = 1, 𝑣(𝑞) = 0, we have 𝑝 ∈ 𝑆, 𝑞 ∉ 𝑆, and we want 𝑣(𝑝 ⟹ 𝑞) = 0,
i.e. (𝑝 ⟹ 𝑞) ∉ 𝑆. But if (𝑝 ⟹ 𝑞) ∈ 𝑆 then 𝑆 ⊢ 𝑞, 𝑞 ∈ 𝑆. Absurd.

• if 𝑣(𝑞) = 1, we have 𝑞 ∈ 𝑆, and we want 𝑣(𝑝 ⟹ 𝑞) = 1, i.e. (𝑝 ⟹ 𝑞) ∈ 𝑆.
But ⊢ 𝑞 ⟹ (𝑝 ⟹ 𝑞) so 𝑆 ⊢ (𝑝 ⟹ 𝑞).

• if 𝑣(𝑝) = 0, we have 𝑝 ∉ 𝑆. Then (¬𝑝) ∈ 𝑆. We want (𝑝 ⟹ 𝑞) ∈ 𝑆.
Thus we need (𝑝 ⟹ ⊥) ⊢ (𝑝 ⟹ 𝑞), which by deduction theorem is
equivalent to {𝑝 ⟹ ⊥, 𝑝} ⊢ 𝑞. Thus suffices to show that ⊥ ⊢ 𝑞. But
we have ⊢ (¬¬𝑞) ⟹ 𝑞, and ⊢ (⊥ ⟹ (¬¬𝑞)). Thus ⊢ (⊥ ⟹ 𝑞), i.e.
⊥ ⊢ 𝑞. Done.

Remark.

1. Sometimes this is called completeness theorem as it contains the majority
of the work.

2. What would happen if 𝑃 is uncountable? In fact, the result still holds.
See chapter 3.

By remark before the above theorem, we now have

Corollary 1.6 (Adequacy). Let 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿. Then if 𝑆 ⊨ 𝑡 then 𝑆 ⊢ 𝑡.

Theorem 1.7 (Completeness theorem). Let 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿. Then 𝑆 ⊢ 𝑡 if
and only if 𝑆 ⊨ 𝑡.

Proof. By soundness and adequacy.

Some consequences:
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1 Propositional Logic

Corollary 1.8 (Compactness theorem). Let 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿 with 𝑆 ⊨ 𝑡. Then
there exists a finite 𝑆′ ⊆ 𝑆 with 𝑆′ ⊨ 𝑡.

Proof. Trivial if we replace ⊨ with ⊢ as proofs are finite.

Specialising to 𝑡 = ⊥, this theorem says that if 𝑆 has no model then some
finite 𝑆′ ⊆ 𝑆 has no model. Equivalently,

Corollary 1.9 (Compactness theorem, equivalent form). Let 𝑆 ⊆ 𝐿. If
every finite finite subset of 𝑆 has a model then 𝑆 has a model.

Proof. This is equivalent to the previous corollary because 𝑆 ⊨ 𝑡 if and only if
𝑆 ∪ {¬𝑡} has no model and 𝑆′ ⊨ 𝑡 if and only if 𝑆′ ∪ {¬𝑡} has no model.

Corollary 1.10 (Decidability theorem). There is an algorithm to determine
(in finite time) whether or not, for a given 𝑆 ⊆ 𝐿, 𝑡 ∈ 𝐿, we have 𝑆 ⊢ 𝑡.

Remark. Highly non-obvious.

Proof. Trivial to decide if 𝑆 ⊨ 𝑡, just by drawing a truth table.
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2 Well-orderings and Ordinals

2 Well-orderings and Ordinals

2.1 Definitions

Definition (Total order). A total order or linear order on a set 𝑋 is a
relation < on 𝑋 that is

1. irreflexive: for all 𝑥, not 𝑥 < 𝑥,

2. transitive: for all 𝑥, 𝑦, 𝑧, 𝑥 < 𝑦, 𝑦 < 𝑧 implies 𝑥 < 𝑧,

3. trichotomous: for all 𝑥, 𝑦, 𝑥 < 𝑦, 𝑥 = 𝑦 or 𝑦 < 𝑥.

Note. Any two of 3 cannot hold: if 𝑥 < 𝑦, 𝑦 < 𝑥 then 𝑥 < 𝑥, absurd.

Notation. We write 𝑥 ≤ 𝑦 if 𝑥 < 𝑦 or 𝑥 = 𝑦. Write 𝑦 > 𝑥 if 𝑥 < 𝑦 etc.
In terms of ≤, a total order is

1. reflexive: for all 𝑥, 𝑥 ≤ 𝑥,

2. transitive: for all 𝑥, 𝑦, 𝑧, 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧,

3. antisymmetric: for all 𝑥, 𝑦, 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦,

4. trichotomous: for all 𝑥, 𝑦, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

Example.

1. N with usual order1.

2. Q and R with usual order.

3. N+ with divisibility is not a total order as for example, 2 and 3 are not
related.

4. Given a set 𝑆, the power set 𝒫(𝑆) with 𝑥 ≤ 𝑦 if 𝑥 ⊆ 𝑦 is not a total order
for |𝑆| > 1.

Definition (Well-ordering). A total order is a well-ordering if every non-
empty subset has a least element: for all 𝑆 ⊆ 𝑋, if 𝑋 ≠ ∅ then exists 𝑥 ∈ 𝑆
such that 𝑥 ≤ 𝑦 for all 𝑦 ∈ 𝑆.

Example.

1. N with usual order.

2. Z with usual order is not a well-ordering. Similar for Q and R.

3. {𝑥 ∈ Q ∶ 𝑥 ≥ 0} is not a well-ordering. For example, {𝑥 ∈ Q ∶ 𝑥 > 0} does
not have a least element.

4. {1 − 1/𝑛 ∶ 𝑛 = 2, 3, … } is a well-ordering. This can be thought of N
squashed into [0, 1].

1In this course 0 ∈ N. Write N+ for N \ {0}.
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2 Well-orderings and Ordinals

5. {1 − 1/𝑛 ∶ 𝑛 = 2, 3, … } ∪ {1} is a well-ordering.

6. In fact, we can take the union of 4 with any real larger than 1 and still
have a well-ordering.

7. {1 − 1/𝑛 ∶ 𝑛 = 2, 3, … } ∪ {2 − 1/𝑛 ∶ 𝑛 = 2, 3, … }, i.e. two copies of 4, is
still a well-ordering.

Remark. 𝑋 is well-ordered if and only if there is no 𝑥1 > 𝑥2 > 𝑥3 > … in 𝑋.
Indeed, if there is such a sequence then 𝑆 = {𝑥1, 𝑥2, … } has no least element.

Corollary 2.1. If 𝑆 ⊆ 𝑋 has no least element, then for each 𝑥 ∈ 𝑆 there
exists 𝑥′ ∈ 𝑆 with 𝑥′ < 𝑥. Thus we have 𝑥 > 𝑥′ > 𝑥″ > ….

Definition (Order isomorphism). Total orders 𝑋 and 𝑌 are isomorphic if
there exists a bijection 𝑓 ∶ 𝑋 → 𝑌 that is order-preserving, i.e. for all 𝑥 < 𝑥′,
𝑓(𝑥) < 𝑓(𝑥′).

Example. 1 and 4 above are isomorphic. 5 and 6 are isomorphic. 6 and 7
are not isomorphic: for example, one has a greatest element and the other one
doesn’t.

Proposition 2.2 (Proof by induction). Let 𝑋 be a well-ordering and 𝑆 ⊆ 𝑋
be such that if 𝑦 ∈ 𝑆 for all 𝑦 < 𝑥 then 𝑥 ∈ 𝑆 for each 𝑥 ∈ 𝑋, then 𝑆 = 𝑋.

Equivalently, if 𝑝(𝑥) is a property such that for all 𝑥, if 𝑝(𝑦) for all 𝑦 < 𝑥
then 𝑝(𝑥), then 𝑝(𝑥) for all 𝑥 ∈ 𝑋.

Proof. If 𝑆 ≠ 𝑋 then let 𝑥 be the least element in 𝑋 \ 𝑆. Then 𝑥 ∉ 𝑆. But
𝑦 ∈ 𝑆 for all 𝑦 < 𝑥. Absurd.

An application:

Proposition 2.3. Let 𝑋 and 𝑌 be isomorphic well-orderings. Then there
is a unique isomorphism from 𝑋 to 𝑌.

Remark. This is false for total orders in general. For example, from Z to Z we
could take identity or 𝑥 ↦ 𝑥 − 5.

Proof. Let 𝑓, 𝑔 be isomorphisms. We will show 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋 by
induction. Thus we may assume 𝑓(𝑦) = 𝑔(𝑦) for all 𝑦 < 𝑥 and want 𝑓(𝑥) = 𝑔(𝑥).

Let 𝑎 be the least element of 𝑌 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥}, which is non-empty. Then
we must have 𝑓(𝑥) = 𝑎: if 𝑓(𝑥) > 𝑎 then some 𝑥′ > 𝑥 has 𝑓(𝑥′) = 𝑎 < 𝑓(𝑥),
contradicting 𝑓 being order-preserving. Same holds for 𝑔. Thus 𝑓(𝑥) = 𝑔(𝑥).

Definition (Initial segment). In a total order 𝑋, an initial segment 𝐼 is a
subset of 𝑋 such that 𝑥 ∈ 𝐼, 𝑦 < 𝑥 implies 𝑦 ∈ 𝐼.

Example.

1. For any 𝑥 ∈ 𝑋, set 𝐼𝑥 = {𝑦 ∈ 𝑋 ∶ 𝑦 < 𝑥}.
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2 Well-orderings and Ordinals

2. Not every initial segment is of this form. For example, in R take {𝑥 ∶ 𝑥 ≤
3}, or in Q, take {𝑥 ∶ 𝑥2 < 2 or 𝑥 < 0}.

Note. In a well-ordering, every proper initial segment 𝐼 is of the form 𝐼𝑥 for
some 𝑥. Indeed, let 𝑥 be the least element of 𝑋 \ 𝐼. Then 𝑦 < 𝑥 implies 𝑦 ∈ 𝐼
(by definition of 𝑦). Also if 𝑦 ∈ 𝐼 then must have 𝑦 < 𝑥: if 𝑦 = 𝑥 or 𝑦 > 𝑥 then
𝑥 ∈ 𝐼 which is a contradiction.

The aim is to show every subset of a well-ordered 𝑋 is isomorphic to an
initial segment.

Note. This is false for total orders. For example, {1, 5, 9} ⊆ Z, or Q ⊆ R.

Given 𝑌 ⊆ 𝑋, intuitively we want to map the smallest element of 𝑌 to the
smallest element of 𝑋 and continue this way. But how do we show every element
of 𝑌 is mapped somewhere? Instead, we should work backwards: given 𝑦 ∈ 𝑌,
map 𝑦 to the smallest element in 𝑋 that is not mapped to.

Theorem 2.4 (Definition by recursion). Let 𝑋 be well-ordering, 𝑌 any
set and 𝐺 ∶ 𝒫(𝑋 × 𝑌 ) → 𝑌. Then there exists 𝑓 ∶ 𝑋 → 𝑌 such that
𝑓(𝑥) = 𝐺(𝑓|𝐼𝑥

) for all 𝑥 ∈ 𝑋. Moreover 𝑓 is unique.

Note.

1. For 𝑓 ∶ 𝐴 → 𝐵 and 𝐶 ⊆ 𝐴, the restriction of 𝑓 to 𝐶 is

𝑓|𝐶 = {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝐶}.

2. Slogan: to define 𝑓(𝑥), make use of 𝑓|𝐼𝑥
, i.e. the values of 𝑓(𝑦) for 𝑦 < 𝑥.

Proof. First we show existence. Define “ℎ is an attempt” to mean ℎ ∶ 𝐼 → 𝑌
where 𝐼 ⊆ 𝑋 is some initial segment, and for all 𝑥 ∈ 𝐼 we have ℎ(𝑥) = 𝐺(ℎ|𝐼𝑥

).
Note that if ℎ and ℎ′ are both attempts defined at 𝑥 then ℎ(𝑥) = ℎ′(𝑥): by
induction on 𝑥, if ℎ(𝑦) = ℎ′(𝑦) for all 𝑦 < 𝑥, then ℎ(𝑥) = ℎ′(𝑥).

Also for all 𝑥 ∈ 𝑋 there exists an attempt defined at 𝑥 by induction. Indeed
we want an attempt defined at 𝑥, given that for all 𝑦 < 𝑥 there exists an
attempt defined at 𝑦. So for each 𝑦 < 𝑥 we have a unique attempt ℎ𝑦 defined
on {𝑧 ∶ 𝑧 ≤ 𝑦} (unique by what we just showed). Let

ℎ = ⋃
𝑦<𝑥

ℎ(𝑦),

an attempt defined on 𝐼𝑥 (which is single-valued by uniqueness) so

ℎ′ = ℎ ∪ {(𝑥, 𝐺(ℎ))}

is an attempt defined at 𝑥. Now set 𝑓(𝑥) = 𝑦 if there exists an attempt ℎ defined
at 𝑥 with ℎ(𝑥) = 𝑦 (also single-valued).

For uniqueness, if 𝑓 and 𝑓 ′ are both suitable then 𝑓(𝑥) = 𝑓 ′(𝑥) for all 𝑥 ∈ 𝑋
by induction — if 𝑓(𝑦) = 𝑓 ′(𝑦) for all 𝑦 < 𝑥 then 𝑓(𝑥) = 𝑓 ′(𝑥).

A typical application:
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2 Well-orderings and Ordinals

Proposition 2.5 (Subset collapse). Let 𝑋 be well-ordered, 𝑌 ⊆ 𝑋. Then
𝑌 is isomorphic to an initial segment of 𝑋. Moreover, the initial segment is
unique.

Proof. To have an isomorphism 𝑓 ∶ 𝑌 → 𝐼 ⊆ 𝑋, we need precisely that for all
𝑥 ∈ 𝑌, 𝑓(𝑥) = min𝑋 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥}. So done (existence and uniqueness) by
the previous theorem. Note that 𝑋 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥} ≠ ∅, because 𝑓(𝑦) ≤ 𝑦 for
all 𝑦 by induction so 𝑥 ∉ {𝑓(𝑦) ∶ 𝑦 < 𝑥}.

A note to the pedantic: in proving the set 𝑋 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥} is non-empty,
we seem to use a circular argument by assuming 𝑓 exists. But this is just a
shorthand for the longer version: define

𝑓(𝑥) = {min𝑋 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥} if 𝑋 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥} ≠ ∅
cabbage otherwise

and then proceed to show 𝑓(𝑥) ≠ cabbage for all 𝑥 ∈ 𝑋.
In particular, a well-ordered 𝑋 cannot be isomorphic to a proper initial

segment of 𝑋, by uniqueness in subset collapse.
So far we have proved that if two well-orderings are isomorphic there is a

unique isomorphism, and that a subset of a well-ordering is isomorphic to a
(unique) initial segment. The question now is, how do different general well-
orderings relate to each other?

Definition. Say 𝑋 ≤ 𝑌 if 𝑋 is isomorphic to an initial segment of 𝑌.

Example. Let 𝑋 = N, 𝑌 = {1 − 1/𝑛 ∶ 𝑛 = 1, 2, … } ∪ {1}, then 𝑋 ≤ 𝑌.

What we would hope is that there is a total order on the set of all well-
orderings. Firstly we have

Theorem 2.6. Let 𝑋, 𝑌 be well-orderings, then 𝑋 ≤ 𝑌 or 𝑌 ≤ 𝑋.

Proof. Suppose 𝑌 ≰ 𝑋. To obtain 𝑓 ∶ 𝑋 → 𝑌 that is an isomorphism with an
initial segment of 𝑌, need for all 𝑥 ∈ 𝑋,

𝑓(𝑥) = min𝑌 \ {𝑓(𝑦) ∶ 𝑦 < 𝑥}.

We can’t have 𝑌 = {𝑓(𝑦) ∶ 𝑦 < 𝑥} as then 𝑌 is isomorphic to 𝐼𝑥. Done by the
theorem.

Proposition 2.7. Let 𝑋, 𝑌 be well-orderings with 𝑋 ≤ 𝑌 and 𝑌 ≤ 𝑋 then
𝑋 and 𝑌 are isomorphic.

Proof. Let 𝑓 be an isomorphism from 𝑋 to an initial segment of 𝑌 and 𝑔 from
𝑌 to 𝑋. Then 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑋 is an initial segment of 𝑋 (as an initial segment of
an initial segment is an initial segment). so 𝑔 ∘ 𝑓 = id by uniqueness in subset
collapse. Similarly 𝑓 ∘ 𝑔 = id𝑌 . Thus 𝑋 is isomorphic to 𝑌.
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2.2 Constructing well-orderings
So far we have very few examples of well-orderings, so we wish to build new
well-orderings from old.

Notation. Write 𝑋 < 𝑌 if 𝑋 ≤ 𝑌 but 𝑋 is not isomorphic to 𝑌. Equivalently,
𝑋 < 𝑌 if and only if 𝑋 is isomorphic to a proper initial segment of 𝑌.

Example. If 𝑋 = N, 𝑌 = {1 − 1/𝑛 ∶ 𝑛 = 1, 2, … } ∪ {1} then 𝑋 < 𝑌.

We can produce new well-orderings by

• add a bigger element: a simple yet bona fide way to make a bigger well-
ordering is, given a well-ordering 𝑋, choose 𝑥 ∉ 𝑋 and set 𝑥 > 𝑦 for all
𝑦 ∈ 𝑋. This is a well-ordering on 𝑋 ∪ {𝑥}, written 𝑋+. Clearly 𝑋 < 𝑋+.

• put some together: let (𝑋, <𝑋) and (𝑌 , <𝑌) be well-orderings. Say 𝑌
extends 𝑋 if 𝑋 ⊆ 𝑌, <𝑋, <𝑌 agree on 𝑋, and 𝑋 is an initial segment of
(𝑌 , <𝑌).

A family of well-orderings {𝑋𝑖 ∶ 𝑖 ∈ 𝐼} are nested if for all 𝑖, 𝑗 ∈ 𝐼, 𝑋𝑖 extends
𝑋𝑗 or 𝑋𝑗 extends 𝑋𝑖.

Proposition 2.8. Let {𝑋𝑖 ∶ 𝑖 ∈ 𝐼} be a nested family of well-orderings.
Then there exists well-ordering 𝑋 with 𝑋 ≥ 𝑋𝑖 for all 𝑖.

Proof. Let 𝑋 = ⋃𝑖∈𝐼 𝑋𝑖, with 𝑥 < 𝑦 if there exists 𝑖 such that 𝑥, 𝑦 ∈ 𝑋𝑖 and
𝑥 <𝑖 𝑦, where <𝑖 is the well-ordering on 𝑋𝑖. Then < is a well-defined total
order on 𝑋. Given 𝑆 ⊆ 𝑋 non-empty, choose 𝑖 with 𝑆 ∩ 𝑋𝑖 ≠ ∅. Then 𝑆 ∩ 𝑋𝑖
has a minimal element, which must also be a minimal element of 𝑆 as 𝑋𝑖 is an
initial segment of 𝑋. Also 𝑋 ≥ 𝑋𝑖 for all 𝑖.

2.3 Ordinals
We have shown that well-orderings can be compared, but are they totally or-
dered? This is a question that is not yet very meaningful, since we can have
isomorphic well-orderings that are not equal. Now we employ a technique com-
monly used in studying collection of abstract mathematical objects — we iden-
tify well-orderings that are isomorphic as the same and work with equivalence
classes of them.1

Definition (Ordinal). An ordinal is a well-ordered set, with two well-
ordered sets regarded as the same if they are isomorphic.

Definition (Order-type). If 𝑋 is a well-ordering corresponding to ordinal
𝛼, say 𝑋 has order-type 𝛼.

Example. With slight abuse of notation, for each 𝑘 ∈ N, write 𝑘 for the order-
type of the (unique) well-ordering of a set of size 𝑘, and write 𝜔 for the order-
type of N. So in R, {1, 3, 7} has order-type 3, and {1 − 1/𝑛 ∶ 𝑛 = 2, 3, … } has
order-type 𝜔.

1Technically, we are working with proper classes instead of sets, for example, by considering
the collection of all singletons. See later.
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Notation. For 𝑋 of order-type 𝛼 and 𝑌 of order-type 𝛽, write 𝛼 ≤ 𝛽 if 𝑋 ≤ 𝑌.
This is well-defined. Similarly 𝛼 < 𝛽 and so on.

Equipped with these definitions, we now know for all 𝛼, 𝛽, 𝛼 ≤ 𝛽 or 𝛽 ≤ 𝛼
and if 𝛼 ≤ 𝛽, 𝛽 ≤ 𝛼 then 𝛼 = 𝛽, i.e. ordinals are totally ordered. But are they
well-ordered?

Theorem 2.9. Let 𝛼 be an ordinal. Then the ordinals < 𝛼 form a well-
ordered set with order-type 𝛼.

For example, the ordinals < 𝜔 are 0, 1, 2, ….

Proof. Let 𝑋 have order-type 𝛼. The well-orderings < 𝑋 are precisely (up to
isomorphisms) the proper initial segments of 𝑋, i.e. the 𝐼𝑥 for 𝑥 ∈ 𝑋. But these
are isomorphic to 𝑋 itself via 𝐼𝑥 ↦ 𝑥.

Notation. We often write 𝐼𝛼 = {𝛽 ordinal ∶ 𝛽 < 𝛼} for this special well-ordered
set with order-type 𝛼.

Proposition 2.10. Let 𝑆 be a non-empty set of ordinals. Then 𝑆 has a
least element.

Proof. Choose 𝛼 ∈ 𝑆. If 𝛼 is minimal in 𝑆 then done. If not, then 𝑆 ∩ 𝐼𝛼 ≠ ∅,
so we have a minimal element of 𝑆 ∩ 𝐼𝛼, which is therefore minimal in 𝑆.

Given the proposition, it is very tempting to conclude that all well-orderings
form a well-order. But there is one thing we haven’t checked, namely well-orders
are defined on a set. Unfortunately,

Theorem 2.11 (Burali-Forti paradox). The ordinals do not form a set.

Proof. Suppose not. Let 𝑋 be the set of all ordinals. Then 𝑋 is a well-ordering,
say of order-type 𝛼. So 𝑋 is isomorphic to 𝐼𝛼, a proper initial segment of 𝑋.
Absurd.

This is saying that the collection of all well-orderings is too big to be a set,
and thus to be a well-ordering. However, this does not prevent us from working
locally with a set of well-orderings.

Recall the two ways of constructing well-orderings. Given 𝛼, we have 𝛼+ > 𝛼.
Also if {𝛼𝑖 ∶ 𝑖 ∈ 𝐼} is a set of ordinals, then there exists 𝛼 with 𝛼 ≥ 𝛼𝑖 for all 𝑖,
by applying Proposition 2.8 to the nested family {𝐼𝛼𝑖

∶ 𝑖 ∈ 𝐼}.
In fact, there is a least upper bound for {𝛼𝑖 ∶ 𝑖 ∈ 𝐼} — by applying Propo-

sition 2.10 to the set

{𝛽 ≤ 𝛼 ∶ 𝛽 an upper bound of 𝛼𝑖}.

This is denoted sup𝑖∈𝐼 𝛼𝑖.

Example. sup{2, 4, … } = 𝜔.
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0 1 2 …

𝜔 𝜔 + 1 𝜔 + 2 …

𝜔2 𝜔2 + 1 𝜔2 + 2 … 𝜔3 … 𝜔4 …

𝜔2 𝜔2 + 1 … 𝜔2 + 𝜔 … 𝜔2 + 𝜔2 …

𝜔22 … 𝜔23 … 𝜔24 …

𝜔3 … 𝜔4 … 𝜔5 …

𝜔𝜔 𝜔𝜔 + 1 … 𝜔𝜔 + 𝜔 … 𝜔𝜔2 … 𝜔𝜔3

𝜔𝜔+1 … 𝜔𝜔+2 … 𝜔𝜔+3 …

𝜔𝜔2 … 𝜔𝜔3 …

𝜔𝜔𝜔 … 𝜔𝜔𝜔𝜔
…

𝜀0 𝜀0 + 1 … 𝜀0 + 𝜔 … 𝜀0 + 𝜔𝜔 …

𝜀02 … 𝜀0𝜔 𝜀0𝜔𝜔 …

𝜀2
0 … 𝜀3

0 … 𝜀4
0 …

𝜀𝜔
0 … 𝜀𝜔𝜔

0 …

𝜀𝜀0
0 … 𝜀𝜀𝜀0

0
0 …

𝜀1 …

2.4 Some ordinals
Section 2.4 shows some ordinals in increasing order. In each row from left to
right, adjacent values are successors to each other. The pattern in each row is
the “obvious” one that the reader should be able to infer. The beginning entry
of a row is the supremum of all entries in the previous row.

Some points to notice:

• we write 𝜔2 = sup{𝜔 +1, 𝜔 +2, … }. The rationale for this unconventional
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notation will soon be clear.

• everything in this table so far is countable, as they are built from opera-
tions such as union, subset, cartesian product on countable sets.

Is there an uncountable ordinal? In other words, is there an uncountable
well-ordered set?

For example, we can well-order N and Q, but what about R? Unfortunately,
no. We are always going to fail if we try to put a well-ordering on R. But

Theorem 2.12. There is an uncountable ordinal.

Proof. The idea is to take the supremum of all countable ordinals, but first we
have to check that it is a set, meaning that we can build it from existing sets
using operations such as intersection, cartesian product, images of functions etc.

Let

𝑅 = {𝐴 ∈ 𝒫(N × N) ∶ 𝐴 is a well-ordering of a subset of N}.

Let 𝑆 be the image of 𝑅 under the function “order-type”, i.e. 𝑆 is the set of
all order-types of well-orderings of N (and subsets thereof). It is the set of all
countable ordinals.

Let 𝜔1 = sup𝑆. Then 𝜔1 is uncountable: if not then 𝜔1 ∈ 𝑆 so 𝜔1 would be
the greatest member of 𝑆, which contradicts 𝜔1 < 𝜔+

1 . Note that by construction
𝜔1 is the least uncountable ordinal.

𝜔1 has some strange properties, for example

1. 𝜔1 is uncountable, but for any 𝛼 < 𝜔, we have {𝛽 ∶ 𝛽 < 𝛼} countable.1

2. If 𝛼1, 𝛼2, ⋯ < 𝜔1 is a sequence, then it is bounded in 𝜔1: sup{𝛼1, 𝛼2, … }
is countable so < 𝜔1.

Theorem 2.13 (Hartogs’ lemma). For any set 𝑋, there is an ordinal that
does not inject into 𝑋.

Proof. Same proof as above, with 𝒫(𝑋 × 𝑋) in place of 𝒫(N × N).

Notation. We often write 𝛾(𝑋) for least such ordinal. For example, 𝛾(𝜔) = 𝜔1.

2.5 Successors and Limits
Given an ordinal 𝛼, does 𝛼 has a greatest element?

If yes, say 𝛽 is greatest. Then 𝛾 < 𝛽 or 𝛾 = 𝛽 implies 𝛾 < 𝛼 and 𝛾 < 𝛼
implies 𝛾 < 𝛽 or 𝛾 = 𝛽 (as we can’t have 𝛾 > 𝛽). So 𝛼 = 𝛽+. Call 𝛼 a successor .

If no, then for every 𝛽 < 𝛼, then there exists 𝛾 < 𝛼 such that 𝛾 > 𝛽. Thus
𝛼 = sup{𝛽 ∶ 𝛽 < 𝛼} (note that this is false in general without the absence of
greatest element hypothesis, e.g. 𝜔 + 5). Call 𝛼 a limit.

Example. 5 and 𝜔 + 5 are successors. 𝜔 and 𝜔 + 𝜔 are limits. 0 is a limit by
definition.

1It would perhaps be less surprising if one considers the analogy that, given 𝛼 < 𝜔,
{𝛽 ∶ 𝛽 < 𝛼} is finite.
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2.6 Ordinal arithmetics

Definition (Ordinal addition (inductive)). Define 𝛼 + 𝛽 recursively by

• 𝛼 + 0 = 𝛼,

• 𝛼 + 𝛽+ = (𝛼 + 𝛽)+,

• 𝛼 + 𝜆 = sup{𝛼 + 𝛾 ∶ 𝛾 < 𝜆} for 𝜆 a non-zero limit.

Since the ordinals do not form a set, we cannot do recursion on ordinals.
Instead we do it “locally”: for each 𝛽 we define 𝛼+𝛾 for {𝛾 ∶ 𝛾 < 𝛽} recursively.
Then by uniqueness of recursion addition is well-defined.

Example.

𝜔 + 1 = (𝜔 + 0)+ = 𝜔+

𝜔 + 2 = (𝜔 + 1)+ = 𝜔++

1 + 𝜔 = sup{1 + 𝛾 ∶ 𝛾 < 𝜔} = sup{1, 2, 3, … } = 𝜔

We can see that addition is not commutative. The is because in the definition
of addition recursion is done on the second argument. However ordinal addition
remains associative.

Proposition 2.14. Ordinal addition is asssociative, i.e. for all 𝛼, 𝛽, 𝛾,

(𝛼 + 𝛽) + 𝛾 = 𝛼 + (𝛽 + 𝛾).

Proof. Since addition is defined by recursion, it is natural to consider an induc-
tion proof. Fix 𝛼 and 𝛽 and proceed by induction on 𝛾.

• 𝛾 = 0: 𝛼 + (𝛽 + 0) = 𝛼 + 𝛽 = (𝛼 + 𝛽) + 0.

• 𝛾 = 𝛿+ is a successor:

𝛼 + (𝛽 + 𝛿+) = 𝛼 + (𝛽 + 𝛿)+

= (𝛼 + (𝛽 + 𝛿))+

= ((𝛼 + 𝛽) + 𝛿)+

= (𝛼 + 𝛽) + 𝛿+

= (𝛼 + 𝛽) + 𝛾

• 𝛾 is a limit:

(𝛼 + 𝛽) + 𝛾 = sup{(𝛼 + 𝛽) + 𝜆 ∶ 𝜆 < 𝛾}
= sup{𝛼 + (𝛽 + 𝜆) ∶ 𝜆 < 𝛾}

On the other hand, we need to evaluate 𝛼 + (𝛽 + 𝛾). Claim 𝛽 + 𝛾 is a
limit, i.e. 𝛽 + 𝛾 = sup{𝛽 + 𝜆 ∶ 𝜆 < 𝛾}: for any 𝛽 + 𝜆, since 𝛾 is a limit,
there exists 𝜆′ such that 𝜆 < 𝜆′ < 𝛾. Thus 𝛽 + 𝜆 < 𝛽 + 𝜆′. Thus 𝛽 + 𝜆 is
not the greatest element. Therefore

𝛼 + (𝛽 + 𝛾) = sup{𝛼 + 𝜆 ∶ 𝜆 < 𝛽 + 𝛾}.
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2 Well-orderings and Ordinals

Now need to show that

sup{𝛼 + 𝜆 ∶ 𝜆 < 𝛽 + 𝛾} = sup{𝛼 + (𝛽 + 𝜆) ∶ 𝜆 < 𝛾}

Note that the two sets are not equal. For example, for 𝛽 = 3, 𝛾 = 𝜔, 𝛼 + 2
is in LHS but not RHS.

– ≥: by set inclusion ⊇.
– ≤: for 𝜆 < 𝛽 + 𝛾, we have 𝜆 < sup{𝛽 + 𝜆′ ∶ 𝜆′ < 𝛾}. Thus 𝜆 < 𝛽 + 𝜆′

for some 𝜆′ < 𝛾. Thus 𝛼 + 𝜆 < 𝛼 + (𝛽 + 𝜆).

Note that in the proof we assumed that 𝛽 < 𝛾 ⟹ 𝛼 + 𝛽 < 𝛼 + 𝛾, which
can be shown by induction on 𝛾. Note that similar to the noncommutativity
of ordinal addition, the does not hold for addition on the right: 1 < 2 but
1 + 𝜔 = 2 + 𝜔.

The above definition is an inductive one, in which we used the recursive
definition of ordinals to build addition bottom-up. Since ordinals can also be
defined as order types of sets, there is an alternative definition of addition by
constructing a set of the desired order type, and then declare it to be the sum
of the two ordinals.

Definition (Ordinal addition (synthetic)). 𝛼 + 𝛽 is the order type of 𝛼 ⊔ 𝛽,
the coproduct of the order 𝛼 and 𝛽 (i.e. product order on {0}×𝛼∪{1}×𝛽).

Example.

𝜔 + 1 = 𝜔+

1 + 𝜔 = 𝜔

With this definition, associativity is trivial by associativity of union.

Proposition 2.15. The inductive and synthetic definition of addition co-
incide.

Proof. Write + and +′ for inductive and synthetic definition respectively. We
want to show that 𝛼 + 𝛽 = 𝛼 +′ 𝛽. Induct on 𝛽.

• 𝛽 = 0: 𝛼 + 0 = 𝛼 = 𝛼 +′ 0.

• successor ordinal: 𝛼 + 𝛽+ = (𝛼 + 𝛽)+ = (𝛼 +′ 𝛽)+ = 𝛼 +′ 𝛽+.

• limit ordinal: 𝛼 + 𝛽 = sup{𝛼 + 𝜆 ∶ 𝜆 < 𝛽} = sup{𝛼 +′ 𝜆 ∶ 𝜆 < 𝛽} = 𝛼 +′ 𝛽
where the second equality is because taking sup is the same as union.

The synthetic definition is usually easier to work with since they provide an
encapsulation of information. For example, it was easy to show associativity,
and also easy to see noncommutativity. However, the inductive definition is
easier if we want to do induction.

Now we define multiplication.
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Definition (Ordinal multiplication (inductive)). Define 𝛼𝛽 recursively by

• 𝛼0 = 0,

• 𝛼(𝛽+) = 𝛼𝛽 + 𝛼,

• 𝛼𝜆 = sup{𝛼𝛾 ∶ 𝛾 < 𝜆} for 𝜆 a non-zero limit,

Example.

𝜔1 = 𝜔0 + 𝜔 = 0 + 𝜔 = 𝜔
𝜔2 = 𝜔1 + 𝜔 = 𝜔 + 𝜔
𝜔𝜔 = sup{𝜔𝛾 ∶ 𝛾 < 𝜔} = sup{0, 𝜔, 𝜔 + 𝜔, … }
2𝜔 = sup{2𝛾 ∶ 𝛾 < 𝜔} = 𝜔

In particular this shows multiplication is not commutative.

Definition (Ordinal multiplication (synthetic)). 𝛼𝛽 is the order-type of
𝛼 × 𝛽, with (𝑥, 𝑦) < (𝑧, 𝑤) if either 𝑦 < 𝑤 or 𝑦 = 𝑤 and 𝑥 < 𝑧.

We can check that the definitions agree and associativity of multiplication
etc.

Definition (Ordinal exponentiation). Define 𝛼𝛽 recursively by

• 𝛼0 = 1,

• 𝛼𝛽+ = 𝛼𝛽 ⋅ 𝛼,

• 𝛼𝜆 = sup{𝛼𝛾 ∶ 𝛾 < 𝜆} for 𝜆 a non-zero limit.

Example.

𝜔1 = 𝜔0 ⋅ 𝜔 = 1 ⋅ 𝜔 = 𝜔
𝜔2 = 𝜔1 ⋅ 𝜔 = 𝜔 ⋅ 𝜔
2𝜔 = sup{2𝛾 ∶ 𝛾 < 𝜔} = 𝜔

Note that 2𝜔 is countable.

Similarly we can define towers and other arithmetic operations inductively.
It is left as an exercise.

19
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3 Posets and Zorn’s Lemma

3.1 Partial Orders

Definition (Poset). A partially ordered set or poset is a pair (𝑋, ≤) where
𝑋 is a set and ≤ is a relation on 𝑋 that is

1. reflexive: for all 𝑥, 𝑥 ≤ 𝑥,

2. transitive: for all 𝑥, 𝑦, 𝑧, 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧,

3. antisymmetric: for all 𝑥, 𝑦, 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦.

Notation. Write 𝑥 < 𝑦 if 𝑥 ≤ 𝑦, 𝑥 ≠ 𝑦.
In terms of <, a poset is

1. irreflexive: for all 𝑥, not 𝑥 < 𝑥,

2. transitive: for all 𝑥, 𝑦, 𝑧, 𝑥 < 𝑦, 𝑦 < 𝑧 implies 𝑥 < 𝑧.

Example.

1. Any total order.

2. N+ with “divides”.

3. For any set 𝑆, 𝒫(𝑆) with 𝑥 ≤ 𝑦 if 𝑥 ⊆ 𝑦.

4. Any 𝑋 ⊆ 𝒫(𝑆) with same relation as above. This specialises to, for
example, all subspaces of a given vector space.

5. We can draw a Hasse diagram for a poset 𝑋: it consists of a drawing of
elemnents of 𝑋, with an upward line from 𝑥 to 𝑦 if 𝑦 covers 𝑥, meaning
𝑦 > 𝑥 and no 𝑧 such that 𝑦 > 𝑧 > 𝑥. For example

𝑐 𝑒

𝑏 𝑑

𝑎

Hasse diagrams can be useful to visualise a poset (e.g. N), or useless (e.g.
Q).

6. In
𝑐

𝑏 𝑐

𝑑

𝑎
𝑏 and 𝑑 are unrelated so there is no sense of “height” or “rank”.
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7.
𝑐

𝑏 𝑒

𝑎 𝑑

8. A set in which no two elements are related is a poset.

Definition (Chain). In a poset 𝑋, a chain is a set 𝑆 ⊆ 𝑋 that is totally
ordered: for all 𝑥, 𝑦 ∈ 𝑆, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥.

Example.

1. Any subset of 1 above.

2. In 2, {1, 2, 4, 8, 16}.

3. In 5, {𝑎, 𝑏, 𝑐} or {𝑎, 𝑐} but not {𝑏, 𝑑}.

4. In 8, only singletons and ∅.

Note. Chains can be uncountable, e.g. (R, ≤).

Definition (Anti-chain). Give a poset 𝑋, 𝑆 ⊆ 𝑋 is an anti-chain if no two
elements are related: for all 𝑥, 𝑦 ∈ 𝑆, 𝑥 ≠ 𝑦 implies that not 𝑥 < 𝑦.

Example.

1. In 2: the set of primes.

2. In 5, {𝑐, 𝑒} or {𝑐, 𝑑}, or {𝑏}.

3. In 8, every subset.

Definition (Upper bound). Give a poset 𝑋, 𝑆 ⊆ 𝑋, an upper bound for 𝑆
is any 𝑥 ∈ 𝑋 such that 𝑥 ≥ 𝑦 for all 𝑦 ∈ 𝑆.

Definition (Least upper bound). Say 𝑋 is a least upper bound or supremum
for 𝑆 if 𝑥 is an upper bound for 𝑆 and 𝑥 ≤ 𝑦 for every upper bound 𝑦 for 𝑆.
Write 𝑥 = sup𝑆 or 𝑥 = ⋁ 𝑆, the “join” of 𝑆.

Example.

1. In R, {𝑥 ∶ 𝑥2 < 2} has 7 as an upper bound and
√

2 as a supremum. This
shows that sup𝑆 need not be in 𝑆.

2. In R, the set Z has no upper bound.

3. In Q, {𝑥 ∶ 𝑥2 < 2} has 7 as an upper bound but no supremum.
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4. In 5, {𝑎, 𝑏} has upper bounds 𝑏 and 𝑐 and supremum 𝑏.

5. In 5, {𝑏, 𝑑} has no upper bound.

6. In 7, {𝑏, 𝑑} has upper bounds 𝑐, 𝑏, 𝑒 but no supremum.

Definition (Completeness). A poset is complete if every subset has a supre-
mum.

Example.

1. (R, ≤) is not complete as Z has no supremum. Thus completeness in
posets is different from that in analysis.

2. [0, 1] is complete.

3. (0, 1) is not complete as (0, 1) itself has no supremum.

4. 𝒫(𝑆) is always complete — {𝐴𝑖}𝑖∈𝐼 has supremum ⋃𝑖∈𝐼 𝐴𝑖.

Note that in particular in any poset there is a greatest element, namely
sup𝑋, and a least element, namely sup ∅.

Definition (Order-preserving map). A function 𝑓 ∶ 𝑋 → 𝑋 where 𝑋 is a
poset is order-preserving if 𝑓(𝑥) ≤ 𝑓(𝑦) for all 𝑥 ≤ 𝑦.

Example.

1. On N, 𝑓(𝑥) = 𝑥 + 1.

2. On [0, 1], 𝑓(𝑥) = 1+𝑥
2 , “halve the distance to 1”.

3. On 𝒫(𝑆), 𝑓(𝐴) = 𝐴 ∪ {𝑖} for some fixed 𝑖 ∈ 𝑆.

From above not every order-preserving function has a fixed point. But just
as in Contraction Mapping Theorem, we can add condition to the space to make
this happen. Unsurprisingly, this condition is completeness:

Theorem 3.1 (Knaster-Tarski fixed point theorem). Let 𝑋 be a complete
poset. Then every order-preserving function 𝑓 ∶ 𝑋 → 𝑋 has a fixed point.

Proof. Let 𝐸 = {𝑥 ∈ 𝑋 ∶ 𝑥 ≤ 𝑓(𝑥)} and 𝑠 = sup𝐸. To show 𝑓(𝑠) = 𝑠, we show
both 𝑠 ≤ 𝑓(𝑠) and 𝑠 ≥ 𝑓(𝑥).

• 𝑠 ≤ 𝑓(𝑠): suffices to show 𝑓(𝑠) is an upper bound for 𝐸 (as 𝑠 is the least
upper bound). But

𝑥 ∈ 𝐸 ⟹ 𝑥 ≤ 𝑠 ⟹ 𝑓(𝑥) ≤ 𝑓(𝑠) ⟹ 𝑥 ≤ 𝑓(𝑥) ≤ 𝑓(𝑠).

• 𝑠 ≥ 𝑓(𝑠): suffices to show 𝑓(𝑠) ∈ 𝐸 (as 𝑠 is an upper bound). We know
𝑠 ≤ 𝑓(𝑠), so 𝑓(𝑠) ≤ 𝑓(𝑓(𝑠)) since 𝑓 is order preserving.

Note. In any complete poset 𝑋, we have a greatest element, namely sup𝑋. We
also have a least element, namely sup ∅.

A typical application of Knaster-Tarski is
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Theorem 3.2 (Schröder-Berstein theorem). Let 𝐴, 𝐵 be sets such that there
is an injection 𝑓 ∶ 𝐴 → 𝐵 and injection 𝑔 ∶ 𝐵 → 𝐴, then there exists a
bijection from 𝐴 to 𝐵.

Proof. Seek partitions 𝐴 = 𝑃 ∪ 𝑄, 𝐵 = 𝑅 ∪ 𝑆 such that 𝑓(𝑃 ) = 𝑅, 𝑔(𝑆) = 𝑄.

Then done by seting ℎ = {𝑓 on 𝑃
𝑔−1 on 𝑄

.

Note that we are done once we fix 𝑃: 𝑅 = 𝑓(𝑃), 𝑆 = 𝐵 \ 𝑓(𝑃), 𝑄 = 𝑔(𝐵 \
𝑓(𝑃)). i.e. we seek 𝑃 ⊆ 𝐴 such that

𝐴 \ (𝑔(𝐵 \ 𝑓(𝑃))) = 𝑃 .

Define

𝜃 ∶ 𝒫(𝐴) → 𝒫(𝐴)
𝑃 ↦ 𝐴 \ (𝑔(𝐵 \ 𝑓(𝑃)))

Then since 𝒫(𝐴) is complete, 𝜃 is order-preserving (since it takes complement
twice), there exists a fixed point by Knaster-Tarski.

3.2 Zorn’s Lemma

Definition. An element 𝑥 in a poset 𝑋 is maximal if there exists no 𝑦 ∈ 𝑋
such that 𝑦 > 𝑥.

Example. In example 5 before, 𝑐, 𝑒 are both maximal.

Posets need not have a maximal element, for example N,Q,R with the ususal
order. We notice something in common: in each of thoses cases, there exists a
chain without an upper bound.

Theorem 3.3 (Zorn’s lemma). Let 𝑋 be a (non-empty) poset in which every
chain has an upper bound, then 𝑋 has a maximal element.

Proof. Suppose not, then for each 𝑥 ∈ 𝑋 there exists 𝑥′ ∈ 𝑋 with 𝑥′ > 𝑥. Also
for any chain 𝐶 we have an upper bound 𝑢(𝐶). Pick 𝑥 ∈ 𝑋. Define 𝑥𝛼 ∈ 𝑋 for
each 𝛼 < 𝛾(𝑋) recursively by

𝑥0 = 𝑥
𝑥𝛼+1 = 𝑥′

𝛼

𝑥𝜆 = 𝑢({𝑥𝛼 ∶ 𝛼 < 𝜆}) for 𝜆 a nonzero limit

Then 𝛼 ↦ 𝑥𝛼 is an injection 𝛾(𝑋) → 𝑋. Absurd.

A typical application of Zorn’s lemma: does every vector space 𝑉 have a
basis? Recall that a basis is a linearly independent (no non-trival finite relation)
spanning (every element is a finite linear combination thereof) set.

Example.

1. Let 𝑉 = R[𝑋] be the space of all real polynomials. Then {𝑋𝑖}𝑖∈N is a
basis.
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2. Let 𝑉 be the set of all real sequences with pointwise addition. We might
guess

ℓ1 = (1, 0, 0, … )
ℓ2 = (0, 1, 0, … )

⋮

is a basis. Unfortunately they are linearly independent but not spanning,
e.g. (1, 1, 1, … ) is not in the span. It is actually easy to check that there
is no countable basis. It also turns out that there is no explicit basis.

3. R as a Q-vector space has a basis called a Hamel basis.

Theorem 3.4. Every vector space has a basis.

Proof. We seek a maximal linearly independent set. Let 𝑉 be a vector space
and

𝑋 = {𝐴 ⊆ 𝑉 ∶ 𝐴 linearly independent}

ordered by ⊆. If we can find a maximal element of 𝑋, then done: if 𝑀 is
not spanning then choose 𝑥 ∉ ⟨𝑀⟩ and then 𝑀 ∪ {𝑥} is linearly independent.
Absurd.

We have 𝑋 ≠ ∅ as ∅ ∈ 𝑋. Given a chain {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} in 𝑋, put 𝐴 = ⋃𝑖∈𝐼 𝐴𝑖.
Then 𝐴 ⊇ 𝐴𝑖 for all 𝑖, so just need to check 𝐴 ∈ 𝑋, i.e. 𝐴 is linearly independent.
Suppose not, so

𝑛
∑
𝑖=1

𝜆𝑖𝑥𝑖 = 0

for some 𝑥𝑖 ∈ 𝐴, 𝜆𝑖 not all 0. We have 𝑥1 ∈ 𝐴𝑖1
, … , 𝑥𝑛 ∈ 𝐴𝑖𝑛

for some
𝑖1, … , 𝑖𝑛 ∈ 𝐼. But 𝐴𝑖1

, … , 𝐴𝑖𝑛
⊆ 𝐴𝑖𝑘

for some 𝑘 (as 𝐴𝑖1
, … , 𝐴𝑖𝑛

are nested),
contradicting 𝐴𝑖𝑘

linearly independent.

Note. The only “actual math” (i.e. linear algebra) in the proof was the “then
done” part.

Another application of Zorn’s lemma: completeness theorem when the prim-
itive language is uncountable.

Theorem 3.5 (Completeness theorem). Let 𝑆 ⊆ 𝐿(𝑃) where 𝑃 is any set.
Then 𝑆 is consistent implies that 𝑆 has a model.

Proof. We seek a maximal consistent 𝑆 ⊇ 𝑆. Then done: for each 𝑡 ∈ 𝐿(𝑃)
have 𝑆 ∪ {𝑡} or 𝑆 ∪ {¬𝑡} consistent, whence 𝑡 ∈ 𝑆 or ¬𝑡 ∈ 𝑆. By maximality of
𝑆, and now define

𝑣(𝑡) = {1 if 𝑡 ∈ 𝑆
0 if 𝑡 ∉ 𝑆

Let
𝑋 = {𝑇 ⊆ 𝐿(𝑃) ∶ 𝑇 consistent, 𝑇 ⊇ 𝑆}
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3 Posets and Zorn’s Lemma

ordered by ⊆. Then 𝑋 ≠ ∅ as 𝑆 ∈ 𝑋. Given a non-empty chain {𝑇𝑖 ∶ 𝑖 ∈ 𝐼}
in 𝑋, take 𝑇 = ⋃𝑖∈𝐼 𝑇𝑖, then 𝑇 ⊇ 𝑇𝑖 for all 𝑖 so just need 𝑇 ∈ 𝑋. We have
𝑆 ⊆ 𝑇 (as 𝐼 ≠ ∅) and 𝑇 is consistent: suppose 𝑇 ⊢ ⊥. Then {𝑡1, … , 𝑡𝑛} ⊢ ⊥ for
some 𝑡1, … , 𝑡𝑛 ∈ 𝑇 (as proofs are finite). Since 𝑡1 ∈ 𝑇𝑖1

, … , 𝑡𝑛 ∈ 𝑇𝑖𝑛
for some

𝑖1, … , 𝑖𝑛 ∈ 𝐼, but 𝑇𝑖1
, … , 𝑇𝑖𝑛

⊆ 𝑇𝑖𝑘
for some 𝑘 (as they are nested), 𝑇𝑖𝑘

⊢ ⊥.
Absurd.

One final application:

Theorem 3.6 (Well-ordering principle). Every set can be well-ordered.

Remark. This is very surprising for, for example, R, until you remember Har-
togs’ lemma.

Proof. Let 𝑆 be the set. Let

𝑋 = {(𝐴, 𝑅) ∶ 𝐴 ⊆ 𝑆, 𝑅 a well-ordering of 𝐴}

ordered by
(𝐴, 𝑅) ≤ (𝐴′, 𝑅′) if (𝐴′, 𝑅′) extends (𝐴, 𝑅).

𝑋 ≠ ∅ as (∅, ∅) ∈ 𝑋. Given a chain {(𝐴𝑖, 𝑅𝑖) ∶ 𝑖 ∈ 𝐼}, we have

(⋃
𝑖∈𝐼

𝐴𝑖, ⋃
𝑖∈𝐼

𝑅𝑖) ∈ 𝑋

extending each (𝐴𝑖, 𝑅𝑖) (from chapter 2). Thus by Zorn’s lemma, 𝑋 has a
maximal element (𝐴, 𝑅). Must have 𝐴 = 𝑆: if not, choose 𝑥 ∈ 𝑆 \ 𝐴 and “take
successor”: well-order 𝐴 ∪ {𝑥} by setting 𝑥 > 𝑎 for all 𝑎 ∈ 𝐴, contradicting the
maximality of (𝐴, 𝑅).

Remark. Proof of Zorn’s lemma was easy because we knew ordinals, recursion
and Hartogs’ lemma.

3.3 Zorn’s Lemma and Axiom of Choice
In the proof of Zorn’s lemma, we chose for each 𝑥 ∈ 𝑋 an 𝑥′ > 𝑥 — i.e. we
made infinitely many arbitrary choices (note that this has nothing to do with
Hartogs’ lemma. We made infinitely many choices even by the time we get to
𝑥𝜔). We did the same in IA Numbers and Sets, in proving that the countable
union of countable sets is countable: we chose for each set in the family an
ordering whereof.

In terms of “rules for building sets”, this is appealing to axiom of choice,
which says that we may choose an element of each set in a family of non-empty
sets. More precisely,

Axiom 3.7 (Axiom of choice). If {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} is a family of non-empty
sets then it has a choice function, i.e. a function 𝑓 ∶ 𝐼 → ⋃𝑖∈𝐼 𝐴𝑖 such that
𝑓(𝑖) ∈ 𝐴𝑖 for all 𝑖.

This is of different character to the other set-building rules, such as union,
power set etc in that the object whose existence is asserted is not uniquely
specified by its properties, unlike, for example, union of sets. Thus often one
points out when one has used Axiom of choice.
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3 Posets and Zorn’s Lemma

Remark. Axiom of choice is trivial if |𝐼| = 1 (𝐴 ≠ ∅ means by definition
that there exists 𝑥 ∈ 𝐴). By induction, it is true for 𝐼 finite. However, it
turns out that, for general 𝐼, axiom of choice cannot be deduced from the other
set-theoretic rules.

In Zorn’s lemma, we used axiom of choice. Is there a proof of Zorn’s lemma
without axiom of choice? No, because we can deduce axiom of choice from
Zorn’s lemma.

Proof of axiom of choice from Zorn’s lemma. Given a family {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} of
non-empty sets, a partial choice function is an 𝑓 ∶ 𝐽 → ⋃𝑖∈𝐼 𝐴𝑖 where 𝐽 ⊆ 𝐼
such that 𝑓(𝑗) ∈ 𝐴𝑗 for all 𝑗 ∈ 𝐽. Let

(𝐽, 𝑓) ≤ (𝐽 ′, 𝑓 ′) if 𝐽 ⊆ 𝐽 ′ and 𝑓 ′|𝐽 = 𝑓.

This poset is non-empty as (∅, ∅) is an element. Given a chain {(𝐽𝑞, 𝑓𝑞)}𝑞∈𝑄,
we have (⋃𝑞∈𝑄 𝐽𝑞, ⋃𝑞∈𝑄 𝑓𝑞) as an upper bound. Thus by Zorn’s lemma there
exists a maximal element (𝐽, 𝑓). We must have 𝐽 = 𝐼, as if not we choose
𝑖 ∈ 𝐼 \ 𝐽, 𝑥 ∈ 𝐴𝑖, and put 𝐽 ′ = 𝐽 ∪ {𝑖}, 𝑓 ′ = 𝑓 ∪ {(𝑖, 𝑥)}. Absurd.

In conclusion, Zorn’s lemma ⟺ axiom of choice (in the presence of the
set-building rules).

Actually, there is a three-way equivalence: we have shown Zorn’s lemma im-
plies well-ordering principle, and well-ordering principle implies axiom of choice
trivially (⋃𝑖∈𝐼 𝐴𝑖 is well-ordered and let 𝑓(𝑖) be least element of 𝐴𝑖). Therefore

Zorn’s lemma ⟺ axiom of choice ⟺ well-ordering principle.

Exercise. Show that axiom of choice implies well-ordering principle directly.

Note. Zorn’s lemma is hard to prove from first principles because we need
theory of ordinals, recursions and Hartogs’ lemma, not because of its equivalence
with axiom of choice.

3.4 Bourbaki-Witt Theorem*
On one hand we have Zorn’s lemma, which is a local (conditions on chains) to
global (maximal element) principle, and on the other hand we have Knaster-
Tarski fixed point theorem, a global fixed point theorem based on assumptions of
the ambient space (completeness). The Bourbaki-Witt theorem is a “midpoint”
between the two.

Definition (Chain-complete). A poset 𝑋 is chain-complete if 𝑋 ≠ ∅ and
every non-empty chain has a supremum.

Example.

1. Any complete poset.

2. Any finite poset.

3. Given a vector space 𝑉, {𝐴 ⊆ 𝑉 ∶ 𝐴 is linearly independent}.
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3 Posets and Zorn’s Lemma

Definition (Inflationary). A function 𝑓 ∶ 𝑋 → 𝑋 is inflationary if 𝑓(𝑥) ≥ 𝑥
for all 𝑥.

Theorem 3.8 (Bourbaki-Witt). Suppose 𝑋 is chain-complete and 𝑓 ∶ 𝑋 →
𝑋 inflationary. Then 𝑓 has a fixed point.

Bourbaki-Witt follows immediately from Zorn’s lemma: take maximal 𝑥 and
since 𝑓(𝑥) ≥ 𝑥, we must have equality.

However, intriguingly, we can prove Bourbaki-Witt without axiom of choice:
injecting 𝛾(𝑋) into 𝑋 by explicitly set 𝑥𝛼+1 = 𝑓(𝑥𝛼) and 𝑥𝛼 = sup{𝑥𝛽 ∶ 𝛽 < 𝛼}
for a non-zero limit 𝛼 and derive a contradiction. We circumvent the issue of
choice by exhibit an explicit upper bound.

Note. In chapter 2, we never used axiom of choice except in remark that well-
ordering is equivalent to the absence of decreasing sequence, and that 𝜔1 does
not have a countable supremum.

In fact, it is easy to deduce Zorn’s lemma from Bourbaki-Witt (with axiom
of choice) so we can view it as the “choice-free version of Zorn’s lemma”.
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4 Predicate Logic

4 Predicate Logic
We studied propositional logic in chapter 1 but it is not powerful enough to ex-
press objects outside of primitive propositions. In this chapter we will introduce
predicate logic, which is more intricate but more powerful. Before that we will
have an overview of the theory we will develop.

A mathematical structure is a set with functions and relations defined on
it. A function has an arity associated to it, which is the number of arguments
it takes. For example, recall that a group is a set 𝐴 equipped with functions
𝑚 ∶ 𝐴2 → 𝐴 (arity 2), and 𝑖 ∶ 𝐴 → 𝐴 (arity 1), and a constant 𝑒 ∈ 𝐴, which
could be seen as a function of arity 0, such that

(∀𝑥, 𝑦, 𝑧 ∈ 𝐴)(𝑚(𝑥, 𝑚(𝑦, 𝑧)) = 𝑚(𝑚(𝑥, 𝑦), 𝑧))
(∀𝑥 ∈ 𝐴)(𝑚(𝑥, 𝑒) = 𝑥 ∧ 𝑚(𝑒, 𝑥) = 𝑥)
(∀𝑥 ∈ 𝐴)(𝑚(𝑥, 𝑖(𝑥)) = 𝑒 ∧ 𝑚(𝑖(𝑥), 𝑥) = 𝑒)

As another example, a poset is a structure with relation: it is a set 𝐴
equipped with a predicate (i.e. relation) (≤) ⊆ 𝐴2 such that

(∀𝑥 ∈ 𝐴)(𝑥 ≤ 𝑥)
(∀𝑥, 𝑦, 𝑧 ∈ 𝐴)((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ⟹ (𝑥 ≤ 𝑧))
(∀𝑥, 𝑦 ∈ 𝐴)((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) ⟹ (𝑥 = 𝑦))

Propostional logic Predicate logic Example in groups
language language group axioms
valuation structure 𝑚, 𝑖, 𝑒
model of 𝑆 same structure in which each 𝑠 ∈ 𝑆 holds

𝑆 ⊨ 𝑡 same group axioms ⊨ 𝑚(𝑒, 𝑒) = 𝑒
𝑆 ⊢ 𝑡 same*

Table 1: Comparison of concepts in propositional and predicate logic

The axioms and deduction rules in predicate logic is going to be more com-
plicated. For example, it includes an axiom that says “if 𝑝(𝑥) holds for all 𝑥
then we can substitute 𝑡 for 𝑥”.

4.1 Definitions
Let Ω, Π be disjoint sets and set 𝛼 ∶ Ω ∪ Π → N.

Definition (Language). Let Ω, Π be disjoint and 𝛼 ∶ Ω∪Π → N. A language
𝐿(Ω, Π, 𝛼) is the set of formulæ, defined by

• variables: 𝑥1, 𝑥2, …. We sometimes use 𝑥, 𝑦, …,

• terms: defined inductively by

1. each variable is an a term,
2. if 𝑓 ∈ Ω, 𝛼(𝑓) = 𝑛 and 𝑡1, … , 𝑡𝑛 are terms then 𝑓𝑡1, … , 𝑡𝑛 is a

term. We usually write 𝑓(𝑡1, … , 𝑡𝑛).
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Example. In the language of groups, we have Ω = (𝑚, 𝑖, 𝑒), with
arities 2, 1, 0 respectively. Π = ∅.
Some terms: 𝑥1, 𝑚(𝑥1, 𝑥1), 𝑒, 𝑚(𝑒, 𝑒), 𝑚(𝑥1, 𝑖(𝑥1)).

• atomic formulæ: consists of

1. ⊥,
2. (𝑠 = 𝑡) for any terms 𝑠, 𝑡,
3. 𝜙(𝑡1, … , 𝑡𝑛) for any 𝜙 ∈ Π, 𝛼(𝜙) = 𝑛 and any terms 𝑡1, … , 𝑡𝑛.

• formulæ: defined inductively by

1. each atomic formula is a formula,
2. if 𝑝, 𝑞 are formulæ then so is (𝑝 ⟹ 𝑞),
3. if 𝑝 is a formula, 𝑥 is a variable, then (∀𝑥)𝑝 is a formula,

Example.
(a) group:

(∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒),
(∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒) ⟹ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥).

(b) poset: (∀𝑥)(𝑥 ≤ 𝑥).

Note.

1. A formula is a string of symbols.

2. Just as in chapter 1 we defined symbols such as ¬, ∧ and ∨ in terms of ⊥,
we write (∃𝑥)𝑝 for ¬(∀𝑥)(¬𝑝).

Definition (Closed). A term is closed if it contains no variables.

Example. 𝑒, 𝑚(𝑒, 𝑒), 𝑚(𝑒, 𝑚(𝑒, 𝑒)) are closed terms, but 𝑚(𝑥, 𝑖(𝑥)) isn’t.

Definition (Bound/free variable). An occurrence of variable 𝑥 in formula
𝑝 is bound if it is inside the brackets of a “∀𝑥” quantifier. Otherwise it is
free.

Example. In 𝑚(𝑥, 𝑥) = 𝑒 ⟹ (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑒), 𝑥 is free and 𝑦 is bound.

Note. We say an “occurrence” and not a “variable” is bound or free because
officially, it is possible to have a variable that is both free and bound in a
formula. For example,

(𝑚(𝑥, 𝑥) = 𝑒) ⟹ (∀𝑥)(∀𝑦)(𝑚(𝑥, 𝑦) = 𝑚(𝑦, 𝑥)).

But promise to never use it!
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Definition (Sentence). A sentence is a formula without free variables.

Example. (∀𝑥)(𝑚(𝑥, 𝑒) = 𝑥).

Definition (Substitution). For a formula 𝑝, a variable 𝑥 and a term 𝑡, the
substitution 𝑝[𝑡/𝑥] is obtained by replacing each free occurrence of 𝑥 with 𝑡.

Do not worry too much about the word “free” in the above definition, it
is there to prevent us from doing stupid things in stupid formula such as the
bad example above where a variable is both free and bound. Just follow your
common sense!
Example. If 𝑝 is the statement (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥) then 𝑝[𝑡/𝑥] is

(∃𝑦)(𝑚(𝑦, 𝑦) = 𝑡).

4.2 Semantic Entailment

Definition (Structure). Let 𝐿 = 𝐿(Ω, Π, 𝛼). An 𝐿-structure is a non-empty
set 𝐴 equipped with

1. for each 𝑓 ∈ Ω with 𝛼(𝑓) = 𝑛, a function 𝑓𝐴 ∶ 𝐴𝑛 → 𝐴,

2. for each 𝜙 ∈ Π with 𝛼(𝜙) = 𝑛, a relation 𝜙𝐴 ⊆ 𝐴𝑛.

See note on page 33 for why “non-empty”.
Example.

1. Suppose 𝐿 is the language of groups, then an 𝐿-structure is a set 𝐴 with
functions 𝑚𝐴 ∶ 𝐴2 → 𝐴, 𝑖𝐴 ∶ 𝐴 → 𝐴, 𝑒𝐴 ∈ 𝐴. Note that 𝐴 need not be a
group.

2. Suppose 𝐿 is the language of posets, then an 𝐿-structure is a set 𝐴 with
a relation (≤𝐴) ⊆ 𝐴2.

We want to define the interpretation 𝑝𝐴 ∈ {0, 1} of a sentence 𝑝 in an 𝐿-
structure 𝐴 as “𝑝 holds in 𝐴”. For example, (∀𝑥)(𝑚(𝑥, 𝑥) = 𝑒) should be “true
in 𝐴” if ∀𝑎 ∈ 𝐴, 𝑚𝐴(𝑎, 𝑎) = 𝑒𝐴. Informally this can be done by inserting “∈ 𝐴”
and subscripting 𝐴, and saying it aloud. This recipe captures the essence of the
definition of interpretation and is perfectly valid, except that it precludes, for
example, the entire French community from studying predicate logic. Thus we
rephrase it in the language common to all mathematicians:

Definition (Interpretation). For an 𝐿-structure 𝐴, define interpretation
𝑝𝐴 ∈ {0, 1} of a sentence 𝑝 recursively by

1. closed term: define 𝑡𝐴 recursively by (𝑓𝑡1, … , 𝑡𝑛)𝐴 = 𝑓𝐴((𝑡1)𝐴, … , (𝑡𝑛)𝐴)
for any 𝑓 ∈ Ω, 𝛼(𝑓) = 𝑛 and closed terms 𝑡1, … , 𝑡𝑛.

Example. 𝑚(𝑒, 𝑖(𝑒))𝐴 = 𝑚𝐴(𝑒𝐴, 𝑖𝐴(𝑒𝐴)). Note that 𝑒𝐴 is already
defined.

2. atomic formulæ: define 𝑝𝐴 ∈ {0, 1} for 𝑝 atomic by
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(a) ⊥𝐴 = 0,

(b) (𝑠 = 𝑡)𝐴 = {1 if 𝑠𝐴 = 𝑡𝐴
0 otherwise

for closed terms 𝑠, 𝑡.

(c) (𝜙𝑡1, … , 𝑡𝑛)𝐴 = {1 if ((𝑡1)𝐴, … , (𝑡𝑛)𝐴) ∈ 𝜙𝐴
0 otherwise

for each 𝜙 ∈ Π, 𝛼(𝜙) =

𝑛 and closed terms 𝑡1, … , 𝑡𝑛.

3. sentence: 𝑝𝐴 defined inductively by

(a) (𝑝 ⟹ 𝑞)𝐴 = {0 if 𝑝𝐴 = 1, 𝑞𝐴 = 0
1 otherwise

(b) ((∀𝑥)𝑝)𝐴 = {1 if 𝑝[𝑎/𝑥]𝐴 = 1 for all 𝑎 ∈ 𝐴
0 otherwise

where, for each 𝑎 ∈

𝐴, add constant symbol 𝑎 to 𝐿 obtaining 𝐿′, and made an 𝐿′-
structure 𝐴 by setting 𝑎𝐴 = 𝑎.

If 𝑝 has free vairables, we can define 𝑝𝐴 ⊆ 𝐴#free variables of 𝑝. For example,
if 𝑝 is the formula (∃𝑦)(𝑚(𝑦, 𝑦) = 𝑥), then

𝑝𝐴 = {𝑎 ∈ 𝐴 ∶ ∃𝑏 ∈ 𝐴 with 𝑚𝐴(𝑏, 𝑏) = 𝑎}.

Definition (Model). If 𝑝𝐴 = 1, say 𝑝 is true is 𝐴, or 𝑝 holds in 𝐴, or 𝐴 is
a model of 𝑝.

Definition (Semantic entailment). For 𝑇 a theory (set of sentences), say 𝑇
semantically entails 𝑝, written 𝑇 ⊨ 𝑝, if every model of 𝑇 is a model of 𝑝.

Definition. 𝑝 is a tautology if ∅ ⊨ 𝑝 (or written ⊨ 𝑝), i.e. 𝑝 holds in every
𝐿-structure.

Example. ⊨ (∀𝑥)(𝑥 = 𝑥).

Example.

1. Theory of groups: Ω = {𝑚, 𝑖, 𝑒}, Π = ∅. Let 𝑇 be the usual group axioms,
i.e.

{(∀𝑥, 𝑦 ∈ 𝐴)(𝑚(𝑥, 𝑚(𝑦, 𝑧)) = 𝑚(𝑚(𝑥, 𝑦), 𝑧))
(∀𝑥 ∈ 𝐴)(𝑚(𝑥, 𝑒) = 𝑥 ∧ 𝑚(𝑒, 𝑥) = 𝑥)
(∀𝑥 ∈ 𝐴)(𝑚(𝑥, 𝑖(𝑥)) = 𝑒 ∧ 𝑚(𝑖(𝑥), 𝑥) = 𝑒)}

Then an 𝐿-structure is a model of 𝑇 if and only if 𝑇 is a group. Note that
there are two implications here (compare with, for example, a group is a
model of the sentence representing associativity). We say 𝑇 axiomatises
the class of groups or axiomatises the theory of groups. Sometimes call the
elements of 𝑇 the axioms of 𝑇.
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2. Theory of fields: Ω = {+, ×, −, 0, 1}, Π = ∅. Note that multiplicative
inverse is not among them. 𝑇 is

{abelian group under (+, −, 0)
× is commutative, associative, and distributive over +
(∀𝑥)(1𝑥 = 𝑥)
¬(1 = 0)
(∀𝑥)(¬(𝑥 = 0)) ⟹ (∃𝑦)(𝑥𝑦 = 1)}

Then 𝑇 axiomatises the class of fields.
𝑇 entails “inverses are unique”, i.e.

𝑇 ⊨ (∀𝑥)(¬(𝑥 = 0)) ⟹ ((∀𝑦)(∀𝑧)((𝑦𝑥 = 1) ∧ (𝑧𝑥 = 1) ⟹ (𝑦 = 𝑧))).

𝑇 does not entail “characteristic equals 2”, i.e. 𝑇 ⊭ 1 + 1 = 0.

3. Theory of posets: Ω = ∅, Π = {≤}. 𝑇 is

{(∀𝑥)(𝑥 ≤ 𝑥)
(∀𝑥)(∀𝑦)(∀𝑧)((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧)
(∀𝑥)(∀𝑦)((𝑥 ≤ 𝑦) ∧ (𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦)}

4. Theory of graphs: Ω = ∅, Π = {𝑎} where 𝑎 means “is adjacent to”. 𝑇 is

{(∀𝑥)(¬𝑎(𝑥, 𝑥))
(∀𝑥)(∀𝑦)(𝑎(𝑥, 𝑦) ⟹ 𝑎(𝑦, 𝑥))}

4.3 Syntactic Implication
As before, we need some logical axioms. There are 7 of them: 3 from proposi-
tional logic, 2 for =, 2 for ∀.

1. 𝑝 ⟹ (𝑞 ⟹ 𝑝) for any formulæ 𝑝, 𝑞.

2. (𝑝 ⟹ (𝑞 ⟹ 𝑟)) ⟹ ((𝑝 ⟹ 𝑞) ⟹ (𝑝 ⟹ 𝑟)) for any formulæ
𝑝, 𝑞, 𝑟.

3. (¬¬𝑝) ⟹ 𝑝 for any formula 𝑝.

4. (∀𝑥)(𝑥 = 𝑥) for any variable 𝑥.

5. (∀𝑥)(∀𝑦)((𝑥 = 𝑦) ⟹ (𝑝 ⟹ 𝑝[𝑦/𝑥])) for any variables 𝑥, 𝑦 and formula
𝑝 in which 𝑦 does not occur bound.

6. (∀𝑥)(𝑝) ⟹ 𝑝[𝑡/𝑥] for any variable 𝑥, term 𝑡 and formula 𝑝 with no
variable in 𝑡 occurring bound in 𝑝.

7. ((∀𝑥)(𝑝 ⟹ 𝑞)) ⟹ (𝑝 ⟹ (∀𝑥)𝑞) for any variable 𝑥 and formulæ 𝑝, 𝑞
with 𝑥 not occurring free in 𝑝.

As deduction rules we have
1. modus ponens: from 𝑝, 𝑝 ⟹ 𝑞 can deduce 𝑞.

2. generalisation: from 𝑝 can deduce (∀𝑥)𝑝, if 𝑥 does not occur free in any
premise used to prove 𝑝.

32



4 Predicate Logic

Definition (Proof). For 𝑆 ⊆ 𝐿, 𝑝 ∈ 𝐿, a proof of 𝑝 from 𝑆 is a finite
sentence of formulæ, ending with 𝑝, such that each line is one of

• a logical axiom,

• a sentence of 𝑆,

• following from earlier lines by modus ponens or generalisation.

Write 𝑆 ⊢ 𝑝 if there exists a proof of 𝑝 from 𝑆.

Note.

1. Each logical axiom is a tautology.

2. If we allow the empty structure 𝐴 (for a language with no constants), then
(∀𝑥)⊥ holds in 𝐴, and ⊥ deos not hold in 𝐴, so

((∀𝑥)⊥) ⟹ ⊥

does not hold in 𝐴, which is an instance of axiom 6. To resolve the issue,
we can either obfuscate our axioms by adding more technical restrictions
(of the form, for example, “with 𝑥 occurring bound”), or simply ban empty
structure.

Example. {𝑥 = 𝑦, 𝑥 = 𝑧} ⊢ 𝑦 = 𝑧. The idea is to use axiom 5, with 𝑝 being
𝑥 = 𝑥. But there are two quantifiers so we use axiom 6 to kill them.

1. (∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⟹ (𝑥 = 𝑧 ⟹ 𝑦 = 𝑧)), A5

2. (∀𝑥)(∀𝑦)(𝑥 = 𝑦 ⟹ (𝑥 = 𝑧 ⟹ 𝑦 = 𝑧)) ⟹ (∀𝑦)(𝑥 = 𝑦 ⟹ (𝑥 =
𝑧 ⟹ 𝑦 = 𝑧)), A6

3. (∀𝑦)(𝑥 = 𝑦 ⟹ (𝑥 = 𝑧 ⟹ 𝑦 = 𝑧)), MP

4. (∀𝑦)(𝑥 = 𝑦 ⟹ (𝑥 = 𝑧 ⟹ 𝑦 = 𝑧)) ⟹ (𝑥 = 𝑦 ⟹ (𝑥 = 𝑧 ⟹ 𝑦 =
𝑧)), A6

5. 𝑥 = 𝑦 ⟹ (𝑥 = 𝑧 ⟹ 𝑦 = 𝑧), MP

6. 𝑥 = 𝑦, hypothesis

7. 𝑥 = 𝑧 ⟹ 𝑦 = 𝑧, MP

8. 𝑥 = 𝑧, hypothesis

9. 𝑦 = 𝑧, MP

Proposition 4.1 (Deduction theorem). Let 𝑆 ⊆ 𝐿, 𝑝, 𝑞 ∈ 𝐿. Then 𝑆 ⊢
(𝑝 ⟹ 𝑞) if and only if 𝑆 ∪ {𝑝} ⊢ 𝑞.

Proof.

• ⟹ : write down 𝑝 and apply MP to obtain 𝑆 ∪ {𝑝} ⊢ 𝑞.
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• ⟸ : as before, show 𝑆 ⊢ 𝑝 ⟹ 𝑡𝑖 for each 𝑡𝑖 in the proof of 𝑆 ∪ {𝑝} ⊢ 𝑞.
The only new case is generalisation. So in proof of 𝑞 from 𝑆 ∪ {𝑝} we have
line

1. 𝑟
2. (∀𝑥)𝑟

and have a proof of (𝑝 ⟹ 𝑟) from 𝑆, and we want 𝑆 ⊢ (𝑝 ⟹ (∀𝑥)𝑟).
But in proof of 𝑟 from 𝑆 ∪ {𝑝}, no premise had 𝑥 free. Thus in proof of
(𝑝 ⟹ 𝑟) from 𝑆, no proof had 𝑥 free either. Hence 𝑆 ⊢ (∀𝑥)(𝑝 ⟹ 𝑟)
by generalisation. Now

– if 𝑥 does not occur free in 𝑝, have 𝑆 ⊢ (𝑝 ⟹ (∀𝑥)𝑟) by A7 and MP,
– if 𝑥 does occur free in 𝑝, proof of 𝑟 from 𝑆 ∪ {𝑝} cannot have used 𝑝.

So in fact 𝑆 ⊢ (∀𝑥)𝑟, whence 𝑆 ⊢ (𝑝 ⟹ (∀𝑥)𝑟) by A1 and MP.

4.4 Gödel Completeness Theorem*

Proposition 4.2 (Soundness). Let 𝑆 ⊆ 𝐿, 𝑝 ∈ 𝐿. Then if 𝑆 ⊢ 𝑝 then 𝑆 ⊨ 𝑝.

Proof. Have proof of 𝑝 from 𝑆 and a model 𝐴 of 𝑆, want 𝑝𝐴 = 1. This is an
easy induction down the lines of the proof.

For adequacy, want if 𝑆 ⊨ 𝑝 then 𝑆 ⊢ 𝑝, i.e. if 𝑆∪{¬𝑝} ⊨ ⊥ then 𝑆∪(¬𝑝) ⊢ ⊥.

Theorem 4.3 (Model existence lemma). Let 𝑆 ⊆ 𝐿 be a set of sentences.
Then if 𝑆 is consistent then it has a model.

Note that some people call it the completeness theorem since it contains the
majority of the work.

Unlike most other proofs we have met in tripos, this proof has not one, not
two, but five key ideas:

1. To build a model out of a language, we first need a candidate structure.
If you think about it carefully, we have no choice but to let 𝐴 be a set
of closed terms of 𝐿, with “obvious” operations like (1 + 1) +𝐴 (1 + 1) =
(1 + 1) + (1 + 1) in the example of fields.

2. Say 𝑆 is the theory of fields, taking our above definition, (1 + 1) + 1 ≠
1 + (1 + 1), but 𝑆 ⊢ ((1 + 1) + 1 = 1 + (1 + 1)). The solution is to quotient
by

𝑠 ∼ 𝑡 if 𝑆 ⊢ (𝑠 = 𝑡).

3. Suppose 𝑆 is the theory of fields of characteristic 2 or 3, i.e. usual field
axioms and (1 + 1 = 0) ∨ (1 + 1 + 1 = 0). Then 𝑆 ⊬ (1 + 1 = 0), so
[1 + 1] ≠ [0]. Also 𝑆 ⊬ (1 + 1 + 1 = 0), so [1 + 1 + 1] ≠ [0]. Thus our
structure does not satisfy (1 + 1 = 0) ∨ (1 + 1 + 1 = 0). Actually this is
similar to the failure in attempting to define a valuation of a set 𝑆 when
we are proving model existence lemma for propositional logic: there are
propositions implied by 𝑆 but not in 𝑆. Thus we need to extend 𝑆 to be
maximal consistent.
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4. Suppose 𝑆 is the theory of fields with a square root of 2, i.e. usual field
axioms and (∃𝑥)(𝑥𝑥 = 1 + 1). In our constrution, maybe no closed term
has [𝑡𝑡] = [1 + 1]. Thus 𝑆 lacks “witnesses”. Solution? For each (∃𝑥)𝑝 in
𝑆 add new constant 𝑐 to language and add 𝑝[𝑐/𝑥] to 𝑆.

5. Now our set may be no longer consistent, so loop back to step 3. But are
we certain that the process will terminate?

Proof. Suppose we have 𝑆 consistent contained in 𝐿0 = 𝐿(Ω, Π). Extend to
maximal consistent 𝑆1 by Zorn’s lemma. So for each sentence 𝑝 ∈ 𝐿, we have
either 𝑝 ∈ 𝑆1 or (¬𝑝) ∈ 𝑆1. Thus 𝑆1 is complete (for every 𝑝, either 𝑆1 ⊢ 𝑝 or
𝑆1 ⊢ (¬𝑝)).

Now add witnesses: for each (∃𝑥)𝑝 ∈ 𝑆, add new constant 𝑐 and axiom
𝑝[𝑐/𝑥]. We obtain 𝑇1, in language 𝐿1 = 𝐿(Ω ∪ 𝐶1, Π), where 𝐶1 is the set of all
the 𝑐’s, that “has witnesses” for 𝑆1 (if (∃𝑥)𝑝 ∈ 𝑆, then some closed term 𝑡 has
𝑝[𝑡/𝑥] ∈ 𝑇1). Easy to check 𝑇1 is consistent.

Now extend 𝑇1 to maximally consistent 𝑆2 in 𝐿1. Add witnesses, obtaining
𝑇2 in language 𝐿2 = 𝐿(Ω ∪ 𝐶1 ∪ 𝐶2, Π). Continue inductively.

𝐿0 𝐿1 𝐿2 ⋯

𝑆

𝑆1 𝑇1

𝑆2 𝑇2

𝑆3 ⋯

Put 𝑆 = 𝑆1 ∪ 𝑆2 ∪ ⋯ in language 𝐿 = 𝐿(Ω, Π) where Ω = Ω ∪ 𝐶1 ∪ ⋯. Check

• 𝑆 is consistent: if 𝑆 ⊢ ⊥ then some 𝑆𝑛 ⊢ ⊥ as proofs are finite. Absurd.

• 𝑆 is complete: given sentence 𝑝 ∈ 𝐿, have 𝑝 ∈ 𝐿𝑛 for some 𝑛 as 𝑝 contains
only finitely many constants. So 𝑆𝑛+1 ⊢ 𝑝 or 𝑆𝑛+1 ⊢ (¬𝑝).

• 𝑆 has witnesses (for itself): given (∃𝑥)𝑝 ∈ 𝑆, have (∃𝑥)𝑝 ∈ 𝑆𝑛 for some 𝑛.
So 𝑝[𝑡/𝑥] ∈ 𝑇𝑛 for some closed term 𝑡 whence 𝑝[𝑡/𝑥] ∈ 𝑆.

On set of closed terms of 𝐿, define 𝑠 ∼ 𝑡 if 𝑆 ⊢ (𝑠 = 𝑡), clearly an equivalence
relation. Let the set of equivalence classes be 𝐴. Make 𝐴 into an 𝐿-structure
by setting

• 𝑓𝐴([𝑡1], … , [𝑡𝑛]) = [𝑓𝑡1, … , 𝑡𝑛] for each 𝑓 ∈ Ω, 𝛼(𝑓) = 𝑛, closed terms
𝑡1, … , 𝑡𝑛,

• 𝜙𝐴 = {([𝑡1], … , [𝑡𝑛]) ∶ 𝑆 ⊢ 𝜙(𝑡1, … , 𝑡𝑛)} for each 𝜙 ∈ Π, 𝛼(𝜙) = 𝑛, closed
terms 𝑡1, … , 𝑡𝑛.
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Claim that 𝑝𝐴 = 1 if and only if 𝑆 ⊢ 𝑝 for each sentence 𝑝 ∈ 𝐿 (then done since
if 𝐴 is a model of 𝑆 then it a model of 𝑆).

Proof. An easy induction:

1. atomic sentences:

(a) ⊥: ⊥𝐴 = 0 and 𝑆 ⊬ ⊥.
(b) 𝑠 = 𝑡: 𝑆 ⊢ (𝑠 = 𝑡) if and only if [𝑠] = [𝑡] by definition of ∼, if and only

if 𝑠𝐴 = 𝑡𝐴 by definition of operation on 𝐴, if and only if (𝑠 = 𝑡)𝐴 = 1.
(c) 𝜙(𝑡1, … , 𝑡𝑛): exactly the same.

2. induction step:

(a) 𝑝 ⟹ 𝑞: 𝑆 ⊢ (𝑝 ⟹ 𝑞) if and only if 𝑆 ⊢ (¬𝑝) or 𝑆 ⊢ 𝑞 (only if: if
not then 𝑆 ⊢ 𝑝, 𝑆 ⊢ (¬𝑞) (as 𝑆 is complete), whence 𝑆 ⊢ ¬(𝑝 ⟹ 𝑞)),
if and only if 𝑝𝐴 = 0 or 𝑞𝐴 = 1 by induction, if and only if (𝑝 ⟹
𝑞)𝐴 = 1.

(b) (∃𝑥)𝑝: 𝑆 ⊢ (∃𝑥)𝑝 if and only if 𝑆 ⊢ 𝑝[𝑡/𝑥] for some closed term 𝑡
(only if: 𝑆 has witnesses), if and only if 𝑝[𝑡/𝑥]𝐴 = 1 for some closed
term 𝑡 by induction, if and only if ((∃𝑥)𝑝)𝐴 = 1 (if: 𝐴 is the set of
equivalence classes of closed terms).

By remark before, have

Corollary 4.4 (Adequacy). Let 𝑆 ⊆ 𝐿, 𝑝 ∈ 𝐿. Then if 𝑆 ⊨ 𝑝 then 𝑆 ⊢ 𝑝.

Theorem 4.5 (Gödel completeness theorem for first-order logic). Let 𝑆 be
a set of sentences and 𝑝 a sentence in language 𝐿, then 𝑆 ⊨ 𝑝 if and only if
𝑆 ⊢ 𝑝.

Proof.

• ⟸ : soundness.

• ⟹ : adequacy.

Remark.

1. If 𝐿 is countable (i.e. Ω and Π are countable) then Zorn’s lemma is not
needed in the first step.

2. “First-order” means that variables range over elements of our structure,
not, for example, subsets thereof.
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Theorem 4.6 (Compactness). Let 𝑆 ⊆ 𝐿 be a set of sentences. Then if
every finite subset of 𝑆 has a model then 𝑆 has a model.

Proof. Trivial if we replace ⊨ with ⊢ as proof are finite.

Note. Unlike in propositional logic, there is no decidability theorem, since we
don’t know how to check if 𝑆 ⊨ 𝑡.

Some consequences of compactness/completeness: let’s think about axioma-
tisability of theories. We axiomatised the theory for groups, fields and graphs
easily. Can we axiomatise the class of finite groups? In other words, we want
some sentences 𝑆 (in language of groups) such that a structure is a model for 𝑆
if and only it is a finite group.

We may attempt to find some theorem that holds only for finite groups. For
example, from IA Groups we may say that finiteness of conjugacy classes is a
property of finite groups, but it also holds for the infinite group Z. We may go
to IB Groups, Rings and Modules and even IID Representation Theory to find
some more theorems, but they also holds for some infinite groups. This gives
us the inkling that maybe we should look in the other direction. In fact,

Corollary 4.7. The class of finite groups cannot be axiomatised (in language
of groups).

Remark. It is amazing that we can actually prove this, as opposed to “believing
it might be true”.

Proof. Suppose 𝑆 axiomatises finite groups. Add to 𝑆 the sentences

(∃𝑥1)(∃𝑥1)(¬(𝑥1 = 𝑥2)) (“order at least 2”)
(∃𝑥1)(∃𝑥2)(∃𝑥3)(¬(𝑥1 = 𝑥2) ∧ ¬(𝑥2 = 𝑥3) ∧ ¬(𝑥3 = 𝑥1)) (“order at least 3”)

⋮

Then every finite subset has a model (e.g. Z/𝑛Z for 𝑛 sufficiently large), but
the set itself has no model, contradicting compactness.

Similarly,

Corollary 4.8. Let 𝑆 be a theory in a language 𝐿. Then if 𝑆 has arbitrarily
large finite models, then it has an infinite model.

Proof. Add sentences as in the previous proof and apply compactness.

The takeaway is: finiteness is not a first-order property.

Corollary 4.9 (Upward Löwenheim-Skolem). If a theory 𝑆 has an infinite
model then it has an uncountable model.

Proof. Add uncountably many constants {𝑐𝑖}𝑖∈𝐼 to the language and add to 𝑆
the set of sentences “¬(𝑐𝑖 = 𝑐𝑗)” for each distinct 𝑖, 𝑗 ∈ 𝐼. Then any finite
subset has a model (e.g. any infinite model of 𝑆), so the whole set has a model
by compactness.
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Remark. Similarly for any set 𝑋, can find a model that doesn’t inject into 𝑋.
For example add 𝛾(𝑋) of 𝒫(𝑋) constants.

For example, we could find a model into which 𝒫(𝒫(R)) injects, by letting
it be the indexing set. Thus we cannot axiomatise R.

Example. We know there is an infinite field Q, thus there exists a field of the
same size as 𝒫(𝒫(R)).

Corollary 4.10 (Downward Löwenheim-Skolem). Let 𝑆 be a theory in a
countable language 𝐿. Then if 𝑆 has a model then it has a countable model.

Proof. The model constructed in Model existence lemma of 𝑆 is countable.

Note that this theorem and its proof are examinable.

4.5 Peano Arithmetic
We try to make the usual axioms of N into a first-order theory.

Definition (Peano arithmetic). Peano arithmetic (PA) or formal number
theory has language 𝐿 consisting of Ω = {0, 𝑠, +, ×} where 𝛼(0) = 0, 𝛼(𝑠) =
1 is the successor, 𝛼(+) = 𝛼(×) = 2. Π = ∅. The axioms are

1. (∀𝑥)¬(𝑠(𝑥) = 0).

2. (∀𝑥)(∀𝑦)(𝑠(𝑥) = 𝑠(𝑦) ⟹ 𝑥 = 𝑦).

3. (∀𝑦1) ⋯ (∀𝑦𝑛)((𝑝[0/𝑥] ∧ (∀𝑥)(𝑝 ⟹ 𝑝[𝑠(𝑥)/𝑥])) ⟹ (∀𝑥)𝑝) where
the quantifiers in front are parameters, for each formula 𝑝 and free
variables 𝑥, 𝑦1, … , 𝑦𝑛.

4. (∀𝑥)(𝑥 + 0 = 𝑥).

5. (∀𝑥)(∀𝑦)(𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦)).

6. (∀𝑥)(𝑥 × 0 = 0).

7. (∀𝑥)(∀𝑦)(𝑥 × 𝑠(𝑦) = 𝑠 × 𝑦 + 𝑥).

Note. The 3rd axiom is the induction axiom. Our first guess would have been

(𝑝[0/𝑥] ∧ (∀𝑥)(𝑝 ⟹ 𝑝[𝑠(𝑥)/𝑥])) ⟹ (∀𝑥)𝑝,

but then we miss properties like 𝑥 ≥ 𝑦 where 𝑦 is chosen earlier.

PA has an infinite model N so by upward Löwenheim-Skolem, it has an
uncountable model, which is not isomorphic to N. Doesn’t this contradict the
fact that the usual axioms characterise N uniquely?

The answer is no: axiom 3 is only “first-order” induction. Even in N itself,
it refers to only countably many subsets, as opposed to true induction, which
talks about the uncountably many subsets of N.

Note that in PA the only constant is 0. We write 1 = 𝑠(0), 2 = 1 + 1 = 𝑠(1)
etc.
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Definition (Definable). A subset 𝑆 ⊆ N is called definable if there exists a
formula 𝑝 ∈ 𝐿 and free variable 𝑥 such that for all 𝑚 ∈ N we have 𝑚 ∈ 𝑆 if
and only if 𝑝[𝑚/𝑥] holds in N.

Example.

1. The set of square numbers. 𝑝(𝑥) is (∃𝑦)(𝑦 × 𝑦 = 𝑥).

2. The set of primes. 𝑝(𝑥) is ¬(𝑥 = 0) ∧ ¬(𝑥 = 1) ∧ (∀𝑦)(𝑦 ∣ 𝑥 ⟹ 𝑦 =
1 ∨ 𝑦 = 𝑥) where 𝑦 ∣ 𝑥 means (∃𝑧)(𝑦 × 𝑧 = 𝑥).

3. Powers of 2. 𝑝(𝑥) is (∀𝑥)((𝑦 ∣ 𝑥 ∧ 𝑦 prime) ⟹ 𝑦 = 2).

Note that only countably many subsets are definable.

Exercise. Write down the defining formula for the following sets:

1. powers of 4.

2. powers of 6.

The key question we are concerned with is: is PA a complete theory? In
other words, for each sentence 𝑝, is it true that PA ⊢ 𝑝 or PA ⊢ ¬𝑝?

Theorem 4.11 (Gödel incompleteness theorem). PA is not complete.

Take 𝑝 with PA ⊬ 𝑝 and PA ⊬ ¬𝑝. Then we have 𝑝 or ¬𝑝 holds in N, although
we cannot prove it. Thus there the conclusion is there exists a sentence 𝑝 such
that 𝑝 is true in N but PA ⊬ 𝑝.

Note that this doesn’t contradict Gödel completeness theorem for first-order
logic which says that if 𝑝 is true in all models of PA then PA ⊢ 𝑝.
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5 Set Theory
The aim of this chapter is to answer the question, what does “the universe of
set” look like? The key starting point is to view set theory as just another
first order theory. There are many formulations of set theory and we will take
Zermelo-Fraenkel set theory.

5.1 Zermelo-Fraenkel Set Theory

Definition (Zermelo-Fraenkel set theory). Zermelo-Fraenkel set theory (ZF)
has language 𝐿 consisting of Ω = ∅, Π = {∈}, 𝛼(∈) = 2 with the ZF axioms
(to be stated below).

A universe of sets will be a model (𝑉 , ∈) of the ZF axioms, so a worked
example from chapter 4, except that every model (𝑉 , ∈) should be incredibly
complicated (contains the entire world of maths, or a copy of it).

There are 9 ZF axioms in total: 2 to get started, 4 to build things and the
last 3 might not be the things we would have thought of at first.

Axiom (Axiom of extension).

(∀𝑥)(∀𝑦)((∀𝑧)(𝑧 ∈ 𝑥 ⟺ 𝑧 ∈ 𝑦) ⟹ 𝑥 = 𝑦).

“If two sets have the same member, then they are equal.”

Note. The converse is also true, which is an instance of a logical axiom.

Axiom (Axiom of separation).

(∀𝑡1) ⋯ (∀𝑡𝑛)(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⟺ (𝑧 ∈ 𝑥 ∧ 𝑝))

for each formula 𝑝 with free variables 𝑧, 𝑡1, … , 𝑡𝑛.

“We can form a subset of a set.” More precisely, given a set 𝑥 and a property
𝑝, we can form {𝑧 ∈ 𝑥 ∶ 𝑝(𝑧)}.

Note. We do want parameters, e.g. to have {𝑧 ∈ 𝑥 ∶ 𝑡 ∈ 𝑧} where 𝑡 is chosen
earlier.

Axiom (Axiom of empty set).

(∃𝑥)(∀𝑦)(¬𝑦 ∈ 𝑥).

“There is a set with no member.”
We write ∅ for the unique (by axiom of extension) such set 𝑥. This is just

an abbreviation: 𝑝(∅) means (∃𝑥)((∀𝑦)(¬𝑦 ∈ 𝑥) ∧ 𝑝(𝑥)).
Similarly, we write {𝑧 ∈ 𝑥 ∶ 𝑝(𝑧)} for sets formed by axiom of separation.
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Axiom (Axiom of pair set).

(∀𝑥)(∀𝑦)(∃𝑧)(∀𝑡)(𝑡 ∈ 𝑧 ⟺ 𝑡 = 𝑥 ∨ 𝑡 = 𝑦).

“We can form {𝑥, 𝑦}.”
We write {𝑥, 𝑦} for this set, and singleton {𝑥} for {𝑥, 𝑥}. Now we can defined

an ordered pair:

Definition (Ordered pair). An ordered pair (𝑥, 𝑦) is {{𝑥}, {𝑥, 𝑦}}.
𝑥 is an ordered pair if (∃𝑦)(∃𝑧)(𝑥 = (𝑦, 𝑧)).

It is easy to check that (𝑥, 𝑦) = (𝑡, 𝑢) ⟺ (𝑥 = 𝑡 ∧ 𝑦 = 𝑢) using axioms we
have so far.

Definition (Function). 𝑓 is a function if

(∀𝑥)(𝑥 ∈ 𝑓 ⟹ 𝑥 an ordered pair)
∧(∀𝑥)(∀𝑦)(∀𝑧)((𝑥, 𝑦) ∈ 𝑓 ∧ (𝑥, 𝑧) ∈ 𝑓 ⟹ 𝑦 = 𝑧).

The domain of a function 𝑓, written 𝑥 = dom 𝑓, is such that

(𝑓 a function) ∧ (∀𝑧)(𝑧 ∈ 𝑥 ⟺ (∃𝑡)((𝑧, 𝑡) ∈ 𝑓)).

Write 𝑓 ∶ 𝑥 → 𝑦 for

(𝑓 a function) ∧ (𝑥 = dom 𝑓) ∧ (∀𝑡)[(∃𝑧)((𝑧, 𝑡) ∈ 𝑓) ⟹ 𝑡 ∈ 𝑦].

Axiom (Axiom of union).

(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⟺ (∃𝑡)(𝑧 ∈ 𝑡 ∧ 𝑡 ∈ 𝑥)).

“We can form unions.”

Axiom (Axiom of power set).

(∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⟺ 𝑧 ⊆ 𝑥).

where 𝑧 ⊆ 𝑥 means (∀𝑡)(𝑡 ∈ 𝑧 ⟹ 𝑡 ∈ 𝑥).

“We can form power sets.”

Note.

1. We write ⋃ 𝑥 and 𝒫(𝑥) for the two sets. We also write 𝑥 ∪ 𝑦 for ⋃{𝑥, 𝑦}
etc.

2. No extra axiom is needed for intersections: we can form ⋂ 𝑥 (with 𝑥 ≠ ∅)
as a subset of 𝑦 for any 𝑦 ∈ 𝑥, which can be done by axiom of separation.

3. We can now form Cartesian product of sets 𝑥 × 𝑦 as a suitable subset of
𝒫(𝒫(𝑥 ∪ 𝑦)): since if 𝑡 ∈ 𝑥, 𝑢 ∈ 𝑦 then (𝑡, 𝑢) = {{𝑡}, {𝑡, 𝑢}} ∈ 𝒫(𝒫(𝑥 ∪ 𝑦)).
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4. Similarly we can form the set of all functions from 𝑥 to 𝑦, as a subset of
𝒫(𝑥 × 𝑦).

The axioms so far should be quite intuitive. The next three are more subtle.
Note that so far a model 𝑉 of ZF must be infinite. For example, write 𝑥+ =
𝑥 ∪ {𝑥}, then it is easy to check ∅, ∅+, ∅++, … are all distinct. We often write 0
for ∅, 1 for ∅+, 2 for ∅++ etc, so

1 = {0}
2 = {0, 1}
3 = {0, 1, 2}
⋮

But this shows that 𝑉 is infinite, which is not the question we are interested in.
We want to know whether 𝑉 has an infinite set, e.g. an 𝑥 such that ∅ ∈ 𝑥, ∅+ ∈ 𝑥
etc.

In the real world of maths, yes, we do have 𝑉 (which is defined to be a set in
the first place). However, in 𝑉 we cannot take 𝑉 because of Russell’s paradox.

Definition (Successor set). 𝑥 is a successor set if

(∅ ∈ 𝑥) ∧ (∀𝑦)(𝑦 ∈ 𝑥 ⟹ 𝑦+ ∈ 𝑥).

Axiom (Axiom of infinity).

(∃𝑥)(𝑥 a successor set).

“There is an infinite set.”
Note that any intersection of successor sets is a successor set, so there exists

a least one. Call it 𝜔. This will be our version in 𝑉 of N. Therefore

(∀𝑥)(𝑥 ∈ 𝜔) ⟺ (∀𝑦)(𝑦 a successor set ⟹ 𝑥 ∈ 𝑦).

Note that if 𝑥 ⊆ 𝜔 is a successor set then 𝑥 = 𝜔 by definition, i.e.

(∀𝑥)(𝑥 ⊆ 𝜔 ∧ ∅ ∈ 𝑥 ∧ (∀𝑦)(𝑦 ∈ 𝑥 ⟹ 𝑦+ ∈ 𝑥)) ⟹ 𝑥 = 𝜔.

This is 𝜔-induction. Note this is genuine induction in 𝑉 over all subsets 𝑥 ⊆ 𝜔,
as opposed to first order induction in PA.

It is also easy to check that

(∀𝑥)(𝑥 ∈ 𝜔) ⟹ ¬(𝑥+ = ∅)
(∀𝑥)(∀𝑦)(𝑥 ∈ 𝜔 ∧ 𝑦 ∈ 𝜔 ∧ 𝑥+ = 𝑦+) ⟹ 𝑥 = 𝑦

Thus 𝜔 satisfies (in 𝑉) all the usual axioms for the natural numbers.
Subsequently, we say 𝑥 is finite if (∃𝑦)(𝑦 ∈ 𝜔 ∧ 𝑥 bijects with 𝑦). Then 𝑥 is

countable if 𝑥 is finite or 𝑥 bijects with 𝜔. 𝑥 is infinite if it is not finite.

Axiom (Axiom of foundation).

(∀𝑥)(𝑥 ≠ ∅ ⟹ (∃𝑦)(𝑦 ∈ 𝑥 ∧ (∀𝑧)(𝑧 ∈ 𝑥 ⟹ ¬(𝑧 ∈ 𝑦)))).

42



5 Set Theory

“Sets are built up from simpler sets”, or every (non-empty) set has an ∈-minimal
member.

The intuition behind is like this: we want to disallow 𝑥 ∈ 𝑥 to avoid possible
contradiction, 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 to agree with our intuition that “sets have a
hierarchy”, and also infinite chains ⋯ ∈ 𝑥3 ∈ 𝑥2 ∈ 𝑥1 ∈ 𝑥0. What is common
to all of them is that they do not have a ∈-minimal element: {𝑥}, {𝑥, 𝑦} and
{𝑥0, 𝑥1, … } respectively do not have such an element in the above examples.

For our next axiom, we want if for each 𝑖 ∈ 𝐼 we have 𝐴𝑖, then we can take
{𝐴𝑖 ∶ 𝑖 ∈ 𝐼}. But how do we know that {𝐴𝑖 ∶ 𝑖 ∈ 𝐼} is a set? One may say that
“𝑖 ↦ 𝐴𝑖” looks like a function, so the image is a set. But recall that functions
are also sets. Is this rule a set?

This one is different from previous axioms we have. So far every axiom
allows us to build a new set “near” the one in the universe we starting with, e.g.
power set, union set. However, this one goes far out to 𝑉 from 𝐼.

Thus what we really want to say is “the image of a set, under something
that looks like a function, is a set.” See Appendix A for a discussion on how to
formalise this idea using classes.

Axiom (Axiom of replacement).

(∀𝑡1) ⋯ (∀𝑡𝑛) ((∀𝑥)(∀𝑦)(∀𝑧)((𝑝 ∧ 𝑝[𝑧/𝑦]) ⟹ 𝑦 = 𝑧))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑝 a function-class

⟹ ((∀𝑥)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ⟺ (∃𝑡)(𝑡 ∈ 𝑥 ∧ 𝑝[𝑡/𝑥, 𝑧/𝑦])))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
image of 𝑥 under 𝑝 is a set

for each formula 𝑝, free variables 𝑥, 𝑦, 𝑡1, … , 𝑡𝑛.

“The image of a set under a function-class is a set.”
Intuitively we think this axiom exactly as what the slogan says, but since

classes are not part of the structure, formally we have to substitute the function-
class with the (first order) rule.

Note that this holds also for partial functions.

Example. For any set 𝑥, can form {{𝑡} ∶ 𝑡 ∈ 𝑥}, with function-class 𝑡 ↦ {𝑡}.
This is a “bad” example as we don’t actually need axiom of replacement to know
this is a set (it is a subset of the power set of 𝑥). See later for “good” examples.

Those are all the ZF axioms.

Note.

1. Sometimes axiom of separation is called “axiom of comprehension” and
axiom of foundation is called “axiom of regularity”.

2. ZF axioms do not include axiom of choice. ZF + AC is called ZFC where

Axiom (Axiom of choice).

(∀𝑓)(𝑓 a function ∧ (∀𝑥)(𝑥 ∈ dom 𝑓 ⟹ ¬(𝑓(𝑥) = ∅))
⟹ (∃𝑔)(𝑔 a function ∧ dom 𝑔 = dom 𝑓 ∧ (∀𝑥)(𝑥 ∈ dom 𝑓 ⟹ 𝑔(𝑥) ∈ 𝑓(𝑥)))).
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“Every family of (non-empty) sets has a choice function.”

Remark. We have not proven ZF is consistent, i.e. there exists a model of ZF.
Sadly, by one of Gödel incomplete theorem ZF ⊬ “ZF has a model”, so no proof
in ordinary maths (including ZF, ZFC etc).

In this course, every theorem we prove about ZF will be preceeded with the
premise that, either explicitly or implicitly, it holds in a model of ZF. Thus
incompleteness does not pose a problem to our theory, although to make some
practical sense out of the theory, we better have some faith in the existence of
such a model!

5.2 Properties of ZF

Definition (Transitive). 𝑥 is transitive if every member of a member of 𝑥
is itself a member of 𝑥:

(∀𝑦)((∃𝑧)(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ⟹ 𝑦 ∈ 𝑥),

i.e. ⋃ 𝑥 ⊆ 𝑥.

Example.

1. Every member of 𝜔, e.g. 2 = {∅, {∅}}, is transitive.

2. 𝜔 is transitive as 𝑛 = {0, 1, … , 𝑛 − 1} for all 𝑛 ∈ 𝜔.

Lemma 5.1. Every set 𝑥 is contained in a transitive set.

Remark.

1. It officially says: let (𝑉 , ∈) be a model of ZF, then in 𝑉 this statement
holds, or equivalently, ZF ⊢ the statement (by completeness).

2. Any intersection of transitive sets is transitive, so we will know that there
exists a least transitive set containing 𝑥, called the transitive closure of 𝑥,
written 𝑇 𝐶(𝑥).

Proof. Consider 𝑥∪(⋃ 𝑥)∪(⋃ ⋃ 𝑥)∪…, which is the obvious step to take. This
is a set by axiom of union applied to

{𝑥, ⋃ 𝑥, ⋃ ⋃ 𝑥, … },

which is a set by axiom of replacement applied to the function-class

0 ↦ 𝑥
1 ↦ ⋃ 𝑥

2 ↦ ⋃ ⋃ 𝑥
⋮

But why is this a function-class? We can’t use recursion since that would be
circular logic. Again we use the clever idea of attempts.
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Define “𝑓 is an attempt” to mean

(𝑓 a function) ∧ (dom 𝑓 ∈ 𝜔) ∧ (dom 𝑓 ≠ ∅)
∧(𝑓(0) = 𝑥) ∧ (∀𝑛)(𝑛 ∈ dom 𝑓 ∧ 𝑛 ≠ 0 ⟹ 𝑓(𝑛) = ⋃ 𝑓(𝑛 − 1)).

Then attempts exist, i.e.

(∀𝑛)(∃𝑓)(𝑓 attempt ∧ 𝑛 ∈ dom 𝑓)

and are unqiue wherever they are defined, i.e.

(∀𝑛)(∀𝑓)(∀𝑓 ′)((𝑓, 𝑓 ′ attempts ∧ 𝑛 ∈ dom 𝑓 ∧ 𝑛 ∈ dom 𝑓 ′)
⟹ 𝑓(𝑛) = 𝑓 ′(𝑛))

by 𝜔-induction. So take function-class 𝑝(𝑦, 𝑧) to be

(∃𝑓)(𝑓 an attempt ∧ 𝑦 ∈ dom 𝑓 ∧ 𝑓(𝑦) = 𝑧).

Remark. This is a “good” use of axiom of replacement.

Now let’s take a look at axiom of foundation. The slogan says “sets are built
out of simpler set”, but does it achieve what it claims to do, or are we just
banning things randomly for no reason? Actually there exists a good test: if
the slogan is true, then suppose 𝑝(𝑦)∀𝑦 ∈ 𝑥 implies 𝑝(𝑥), we have 𝑝(𝑥)∀𝑥,

Theorem 5.2 (Principle of ∈-induction). Let 𝑝 be a formula, free variables
𝑥, 𝑡1, … , 𝑡𝑛. Then

(∀𝑡1) ⋯ (∀𝑡𝑛)((∀𝑥)((∀𝑦)(𝑦 ∈ 𝑥 ⟹ 𝑝(𝑦)) ⟹ 𝑝(𝑥))) ⟹ (∀𝑥)𝑝(𝑥)

where 𝑝(𝑦) means 𝑝[𝑦/𝑥], 𝑝(𝑥) means 𝑝.

Proof. Given 𝑡1, … , 𝑡𝑛, have 𝑝(𝑦)∀𝑦 ∈ 𝑥 ⟹ 𝑝(𝑥), and suppose (∀𝑥)𝑝(𝑥) is not
true, so (∃𝑥)(¬𝑝(𝑥)). We want to say: “choose ∈-minimal 𝑦 of {𝑥 ∶ ¬𝑝(𝑥)}”,
then ¬𝑝(𝑡), but 𝑝(𝑠)∀𝑠 ∈ 𝑡, contradiction. But this might not be a set, e.g. if
𝑝(𝑥) is 𝑥 ≠ 𝑥. This is where transitive closure comes in.

Let 𝑡 = 𝑇 𝐶({𝑥}) so 𝑥 ∈ 𝑡 and ¬𝑝(𝑥). Let 𝑢 = {𝑦 ∈ 𝑡 ∶ ¬𝑝(𝑦)}. Obviously
𝑢 ≠ ∅ so let 𝑦 be an ∈-minimal element of 𝑢. Then ¬𝑝(𝑦). But (∀𝑧 ∈ 𝑦)𝑝(𝑧) (as
𝑧 ∈ 𝑦 ⟹ 𝑧 ∈ 𝑡 and 𝑦 is ∈-minimal in 𝑛), so 𝑝(𝑦). Contradiction.

Remark.

1. We used existence of transitive closure in the proof, i.e. the lemma above.

2. In fact, ∈-induction is equivalent to the axiom of foundation, as we can
deduce axiom of foundation from ∈-induction (in the presence of the other
axioms): say “𝑥 is regular” if

(∀𝑦)(𝑥 ∈ 𝑦 ⟹ 𝑦 has an ∈-minimal element).

Then axiom of foundation says every set is regular. To prove this by ∈-
induction, given 𝑦 regular for all 𝑦 ∈ 𝑥, want 𝑥 to be regular. For 𝑥 ∈ 𝑧,
if 𝑥 is minimal then done. If not, some 𝑦 ∈ 𝑥 has 𝑦 ∈ 𝑧. But 𝑦 is regular
so 𝑧 has a minimal element.
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Now we have induction, what about recursion? We want “𝑓(𝑥) defined in
terms of the 𝑓(𝑦) where 𝑦 ∈ 𝑥”.

Theorem 5.3 (∈-recursion). Let 𝐺 be a function-class everywhere defined.
Then there is a function class 𝐹 (i.e. (𝑥, 𝑦) ∈ 𝐹 ⟺ 𝑞(𝑥, 𝑦) for some
formula 𝑞) such that

(∀𝑥)(𝐹(𝑥) = 𝐺(𝐹 |𝑥)).

Moreover, 𝐹 is unique.

Note. 𝐹|𝑥 = {(𝑧, 𝐹(𝑧)) ∶ 𝑧 ∈ 𝑥} is a set by axiom of replacement.

Proof. Say “𝑓 is an attempt” if

(𝑓 a function) ∧ (dom 𝑓 transitive) ∧ (∀𝑥)(𝑥 ∈ dom 𝑓 ⟹ 𝑓(𝑥) = 𝐺(𝑓|𝑥)).

Note that 𝑓|𝑥 is defined as dom 𝑓 is transitive. Then

(∀𝑥)(𝑓, 𝑓 ′ attempts defined at 𝑥 ⟹ 𝑓(𝑥) = 𝑓 ′(𝑥))

by ∈-induction since if 𝑓 and 𝑓 ′ agree at all 𝑦 ∈ 𝑥 then they agree at 𝑥. Also

(∀𝑥)(∃ an attempt 𝑓 defined at 𝑥)

by ∈-induction. Indeed suppose (∀𝑦 ∈ 𝑥)(∃ an attempt defined at 𝑥). So ∀𝑦 ∈
𝑥 there exists a unique attempt 𝑓𝑦 defined on 𝑇 𝐶({𝑦}). Put 𝑓 = ⋃𝑦∈𝑥 𝑓𝑦 and
now set

𝑓 ′ = 𝑓 ∪ {(𝑥, 𝐺(𝑓|𝑥))}.

So done by taking 𝑞(𝑥, 𝑦) to be

(∃𝑓)(𝑓 an attempt ∧ 𝑥 ∈ dom 𝑓 ∧ 𝑓(𝑥) = 𝑦).

Uniqueness follows from ∈-induction.

Note. ∈-induction and ∈-recursion proofs look very similar to induction and
recursion from chapter 2.

What properties of the “relation-class” ∈ (i.e. the formula 𝑝(𝑥, 𝑦) = 𝑥 ∈ 𝑦)
have we used?

1. 𝑝 is well-founded: every non-empty set has a 𝑝-minimal element. We used
it to make everything work.

2. 𝑝 is local: {𝑦 ∶ 𝑝(𝑦, 𝑥)} is a set for each 𝑥. We used this to build 𝑝-closure,
i.e. transitive closure. By contrast ∋ and “superset of” is not local.

So in fact we have 𝑝-induction and 𝑝-recursion for any 𝑝(𝑥, 𝑦) that is well-
founded and local. In particular, for a relation 𝑟 on a set 𝑎, trivially 𝑟 is local
(as 𝑎 is a set), so to have 𝑟-induction and 𝑟-recursion, just need 𝑟 to be well-
founded. Thus with this view in mind, induction and recursion from chapter 2
are special cases of this.

Recall that in chapter 2, we spend effort on induction so as to prove subset
collapse. Here something similar happens: can we “model” a relation by ∈?
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For example, let 𝑎 = {𝑎1, 𝑎2, 𝑎3} and 𝑟 = {(𝑎1, 𝑎2), (𝑎2, 𝑎3)}. Can we build
a set 𝑏 with the same relations but using ∈? i.e. can we find 𝑏 = {𝑏1, 𝑏2, 𝑏3}
and relation 𝑠 defined by 𝑏𝑖𝑠𝑏𝑗 ⟺ 𝑏𝑖 ∈ 𝑏𝑗, and (𝑎, 𝑟) is isomorphic to (𝑏, 𝑠)?
Certainly. We put 𝑏1 = ∅, 𝑏2 = {∅}, 𝑏3 = {{∅}}. Then 𝑎𝑖𝑟𝑎𝑗 ⟺ 𝑏𝑖𝑠𝑏𝑗 for all
𝑖, 𝑗. Moreover 𝑏 is transitive.

Can we do this for all relations? Well not for all, since for example, axiom
of foundation forbids the relation 𝑥𝑟𝑥.

Definition (Extensionality). A relation 𝑟 on a set 𝑎 is extensional if

(∀𝑥, 𝑦 ∈ 𝑎)((∀𝑧 ∈ 𝑎)(𝑧𝑟𝑥 ⟺ 𝑧𝑟𝑦) ⟹ 𝑥 = 𝑦).

Example. 𝑎 in the example above the definition, the relation ∈ on any transi-
tive set.

The analogue of subset collapse is

Theorem 5.4 (Mostowski’s collapsing theorem). Let 𝑟 be a relation on a
set 𝑎 that is well-founded and extensional. Then there exists a transitive set
𝑏 and bijection 𝑓 ∶ 𝑎 → 𝑏 such that

(∀𝑥, 𝑦 ∈ 𝑎)(𝑥𝑟𝑦 ⟺ 𝑓(𝑥) ∈ 𝑓(𝑦)).

Moreover 𝑏 and 𝑓 are unique.

Proof. This is basically 𝑟-recursion: once the images of all elements relate to 𝑎𝑛
are fixed, we have no choice for 𝑓(𝑎𝑛) but let it be the set of images of all those
things.

Define 𝑓(𝑥) = {𝑓(𝑦) ∶ 𝑦𝑟𝑥}, which is a definition by 𝑟-recursion on the set
𝑎, which should be the only sensible thing to try. Note that 𝑓 is a function, not
just a function-class, as it is an image of the set 𝑎.

Let 𝑏 = {𝑓(𝑥) ∶ 𝑥 ∈ 𝑎}, which is a set by axiom of replacement. Then 𝑏 is
transitive by definition of 𝑓, and 𝑓 is surjective by definition of 𝑏. If we can show
𝑓 injective, then we also have 𝑥𝑟𝑦 ⟺ 𝑓(𝑥) ∈ 𝑓(𝑦). We will show that

(∀𝑥 ∈ 𝑎)(∀𝑦)(𝑓(𝑦) = 𝑓(𝑥) ⟹ 𝑦 = 𝑥)

by 𝑟-induction on 𝑥. So given 𝑦 with 𝑓(𝑦) = 𝑓(𝑥), want 𝑦 = 𝑥, with the
assumption that

(∀𝑡)(∀𝑢)((𝑡, 𝑢 ∈ 𝑎 ∧ 𝑡𝑟𝑥 ∧ 𝑓(𝑢) = 𝑓(𝑡)) ⟹ 𝑢 = 𝑡).

From 𝑓(𝑦) = 𝑓(𝑥), we have

{𝑓(𝑢) ∶ 𝑢𝑟𝑦} = {𝑓(𝑡) ∶ 𝑡𝑟𝑥}

whence {𝑢 ∶ 𝑢𝑟𝑦} = {𝑡 ∶ 𝑡𝑟𝑥} by induction assumption. Thus 𝑥 = 𝑦 as 𝑟 is
extensional.

For uniqueness, if 𝑓 and 𝑓 ′ are both suitable then (∀𝑥 ∈ 𝑎)(𝑓(𝑥) = 𝑓 ′(𝑥))
by 𝑟-induction.

Now we can do something that is owed from chapter 2. We defined ordinals
to be equivalent classes of well-orderings, with two well-orderings regarded the
same if there is an order-isomorphisms between them. But a hiccup is that the
set of all well-orderings do not form a set so “equivalence class” does not make
sense. Now we can instead define it formally in the language of ZF.
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Definition (von Neumann ordinal). An ordinal or von Neumann ordinal is
a transitive set that is well-ordered by ∈.

Note that by by axiom of foundation, we can say instead “totally ordered
by ∈”.

Example. ∅, {∅}, any 𝑛 ∈ 𝜔, 𝜔 itself.

Mostowski’s collapsing theorem tells us that any well-ordered 𝑋 is order-
isomorphic to a unique ordinal 𝛼. Say 𝑋 has order-type 𝛼.

Remark (Irrelevant remark). We know that for every ordinal 𝛼, have {𝛽 ∶
𝛽 < 𝛼} is a well-order of order-type 𝛼. Hence by definition of 𝑓 in Mostowski’s
collapsing theorem,

𝛼 < 𝛽 ⟺ 𝛼 ∈ 𝛽

so 𝛼 = {𝛽 ∶ 𝛽 < 𝛼}, For example, 𝜔 = {0, 1, 2, … }.
Thus the successor for ordinal is the same as the successor for set. For

example,

𝛼+ = 𝛼 ∪ {𝛼}
sup{𝛼𝑖 ∶ 𝑖 ∈ 𝐼} = ⋃{𝛼𝑖 ∶ 𝑖 ∈ 𝐼}

although this might not be the most useful way to view things.

5.3 Picture of the Universe
In this section we build the universe of sets, where everything in mathematics
takes place12, starting with ∅ and taking power set many times.

Definition (von Neumann hierarchy). For each ordinal 𝛼, define set 𝑉𝛼 by
recursion:

𝑉0 = ∅
𝑉𝛼+1 = 𝒫(𝑉𝛼)

𝑉𝜆 = ⋃
𝛼<𝜆

𝑉𝛼 for 𝜆 a non-zero limit

How do we know this is the whole universe? We want to show every set 𝑥
belongs to some 𝑉𝛼.

Lemma 5.5. Each 𝑉𝛼 is transitive.

Proof. Induction on 𝛼:

• 0: done.
1One might be tempted to think of this as a model of ZFC, or at least modulo some set

vs class technicality, but there are many reasons not to do so, one of them being the violation
of axiom of foundation. Curiously, “universe” may also in other context refer to the opposite,
namely a model of ZFC (of course assuming consistency whereof).

2If you don’t understand the previous footnote then don’t worry and move on, since it’s
probably not intended for you!
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• successor: Power set of a transitive set is transitive. More specifically,
given 𝑥 ∈ 𝑦 ∈ 𝑉𝛼+1, have 𝑦 ∈ 𝒫(𝑉𝛼) so 𝑥 ∈ 𝑉𝛼 so 𝑥 ⊆ 𝑉𝛼, i.e. 𝑥 ∈
𝒫(𝑉𝛼) = 𝑉𝛼+1.

• limit: any union of transitive sets is transitive.

Lemma 5.6. 𝑉𝛼 ⊆ 𝑉𝛽 whenever 𝛼 ≤ 𝛽.

Proof. Induction on 𝛽 with 𝛼 fixed:

• 𝛽 = 𝛼: done.

• successors: given 𝑉𝛼 ⊆ 𝑉𝛽, want 𝑉𝛼 ⊆ 𝒫(𝑉𝛽). But 𝑉𝛽 ⊆ 𝒫(𝑉𝛽): 𝑥 ∈ 𝑉𝛽
implies 𝑥 ⊆ 𝑉𝛽 by transitivity of 𝑉𝛽.

• limits: obvious.

Theorem 5.7.
(∀𝑥)(∃𝛼)(𝑥 ∈ 𝑉𝛼).

The slogan is “the universe is the union of sets”, or the suggestive identity
𝑉 = ⋃𝛼∈𝑂𝑁 𝑉𝛼 where 𝑂𝑁 is the class of ordinals. Note the subtlety hidden in
the notation: you cannot take union of a family indexed by a proper class! (or
more pedantically, nothing prevents you except that the result is not a set)

Note.

• 𝑥 ⊆ 𝑉𝛼 ⟺ 𝑥 ∈ 𝑉𝛼+1.

• If 𝑥 ⊆ 𝑉𝛼, then there exists least such 𝛼, which we call the rank of 𝑥.

Example.

rank(∅) = 0
rank({∅}) = 1
rank(𝜔) = 𝜔

and rank(𝛼) = 𝛼 for all ordinal 𝛼 by induction.

Proof. We will show that (∀𝑥)(∃𝛼)(𝑥 ⊆ 𝑉𝛼) by ∈-induction. Given 𝑥, for each
𝑦 ∈ 𝑥, we have 𝑦 ⊆ 𝑉𝛼 for some 𝛼, so 𝑦 ⊆ 𝑉rank(𝑦), i.e. 𝑦 ∈ 𝑉rank(𝑦)+ . Let
𝛼 = sup{rank(𝑦)+ ∶ 𝑦 ∈ 𝑥}, then 𝑥 ⊆ 𝑉𝛼.

Remark.

1. What the proof says essentially is

rank(𝑥) = sup{rank(𝑦)+ ∶ 𝑦 ∈ 𝑥},

which is the right way to think about rank. For example, rank({6}) is 7
as rank(6) = 6 since it is an ordinal.

2. Most of maths takes place in 𝑉𝜔+10, except in this course when we dis-
cussed order-types!
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6 Cardinals
We will discuss “sizes” of sets in this chapter. We will work predomiantly under
ZFC, insofar we do not refrain ourselves from comparing and contrasting results
under ZF.

6.1 Definitions
We want to define card𝑥 so that card𝑥 = card 𝑦 if and only if 𝑥 ↔ 𝑥. We
cannot define it naïvely by

card𝑥 = {𝑦 ∶ 𝑦 ↔ 𝑥}

as this may not be a set. But we do know 𝑥 ↔ 𝛼 for some ordinal 𝛼 so we can
define card𝑥 to be the least such 𝛼. It follows that card𝑥 = card 𝑦 if and only
if 𝑥 ↔ 𝑦.

If we choose to work without axiom of choice, among all 𝑦 that bijects with
𝑥, we need to pick one. This seems impossible without choice, but we have
the clever Scott trick: define the essential rank of 𝑥 essrank(𝑥) to be the least
rank such that there exists 𝑦 of this rank that bijects with 𝑥, and then define
card𝑥 = {𝑦 ⊆ 𝑉essrank(𝑥) ∶ 𝑦 ↔ 𝑥}.

Definition (Cardinal). 𝑚 is a cardinal or a cardinality if 𝑚 = card𝑥 for
some 𝑥.

For 𝑥 ∈ 𝜔, we write “𝑥” for card𝑥. For example card 3 = 3.
For cardinals 𝑚 and 𝑛, say 𝑚 ≤ 𝑛 if 𝑀 injects into 𝑁 for some 𝑀 and 𝑁 with

card𝑀 = 𝑚, card𝑁 = 𝑛 (which does not depend on the choice of 𝑀 and 𝑁).
Similarly, write 𝑚 < 𝑛 if 𝑚 ≤ 𝑛 and 𝑚 ≠ 𝑛. For example, card𝜔 < card𝒫(𝜔).

Note that if 𝑚 ≤ 𝑛, 𝑛 ≤ 𝑚 then 𝑚 = 𝑛 by Schröder-Berstein. So ≤ is a
partial order, and even a total order (by well-ordering). Note that in ZF ≤ need
not be a total order.

What do the cardinals look like? Of course there are the finite (i.e. boring)
ones. Note that not all ordinals are cardinals as for example 𝜔 ↔ 𝜔 + 1.

Definition (Initial ordinal). An ordinal 𝛼 is initial if for all 𝛽 < 𝛼, 𝛽 does
not biject with 𝛼.

Example. 0, 1, 2, … , 𝜔, 𝜔1, 𝛾(𝑋) for any set 𝑋. However 𝜔2 is not initial as
𝜔2 ↔ 𝜔.

How do we get all the initial ordinals then? Obviously we have 𝜔 = 𝜔0, 𝜔1 =
𝛾(𝜔0), 𝜔2 = 𝛾(𝜔1), …. Think for a little longer and we find their supremum
𝜔𝜔 = sup{𝜔𝑛 ∶ 𝑛 = 0, 1, … } is also initial as otherwise some smaller cardinal 𝛼
would bijects with some 𝛽 < 𝛼.

Define 𝜔𝛼, for each ordinal 𝛼, recursively by

𝜔0 = 𝜔
𝜔𝛼+1 = 𝛾(𝜔𝛼)

𝜔𝜆 = sup{𝜔𝛼 ∶ 𝛼 < 𝜆} for 𝜆 a non-zero limit
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Then every 𝜔𝛼 is initial by induction.
Also every infinite initial ordinal 𝛿 is an 𝜔𝛼. Indeed, the 𝜔𝛼’s are unbounded

in the ordinals (e.g. 𝜔𝛼 ≥ 𝛼 by induction) so there exists least 𝛼 with 𝜔𝛼 ≥ 𝛿,
so 𝜔𝛼 = 𝛿 by definition of 𝜔𝛼.

Definition (Aleph number). Define the aleph number for each ordinal 𝛼

ℵ𝛼 = card(𝜔𝛼).

Thus ℵ𝛼’s are the cardinalities of all infinite sets (in ZF: of all infinite well-
orderable sets).

Example. card(𝜔) = ℵ0, card(𝜔1) = ℵ1.

6.2 Cardinal Arithmetics

Definition (Cardinal arithmetic). For cardinals 𝑚 and 𝑛, let 𝑚 = card𝑀, 𝑛 =
card𝑁 for some 𝑀 and 𝑁. Define

𝑚 + 𝑛 = card(𝑀 ⊔ 𝑁)
𝑚𝑛 = card(𝑀 × 𝑁)
𝑚𝑛 = card(𝑀𝑁)

where 𝑀 ⊔ 𝑁 is the disjoint union and

𝑀𝑁 = {𝑓 ∶ 𝑓 a function from 𝑁 to 𝑀}.

Note. They are independent of choice of 𝑀 and 𝑁 and thus well-defined.

We can also define the sum over an indexed family

∑
𝑖∈𝐼

𝑚𝑖 = card(⨆
𝑖∈𝐼

𝑀𝑖).

Note that axiom of choice is needed for this to be well-defined.

Example.

1. R ↔ 𝒫(𝜔) ↔ {0, 1}𝜔 so card(R) = 2ℵ0 .

2. How many real sequences are there? In IA Numbers and Sets we have to
fiddle around but this course provides a slick proof:

card(R𝜔) = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 .

We are using obvious facts like:

(a) 𝑚 + 𝑛 = 𝑛 + 𝑚 as 𝑀 ⊔ 𝑁 ↔ 𝑁 ⊔ 𝑀.
(b) 𝑚𝑛 = 𝑛𝑚 as 𝑀 × 𝑁 ↔ 𝑁 × 𝑀.
(c) (𝑚𝑛)𝑝 = 𝑚𝑛𝑝 as (𝑀𝑁)𝑃 ↔ 𝑀𝑁×𝑃.
(d) ℵ0ℵ0 = ℵ0 as 𝜔 × 𝜔 ↔ 𝜔.

We know ℵ0ℵ0 = ℵ0 but what about ℵ1ℵ1? It turns out addition and
multiplication of cardinals are trivially easy, thanks to
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Theorem 6.1. For all 𝛼,
ℵ𝛼ℵ𝛼 = ℵ𝛼.

Proof. We will show that 𝜔𝛼 × 𝜔𝛼 ↔ 𝜔𝛼 by induction. Since 𝜔𝛼 is an ordinal
we naturally want to equip 𝜔𝛼 ×𝜔𝛼 with a well-ordering. Product order doesn’t
work since it doesn’t embed into 𝜔𝛼. Recall that proof of N × N ↔ N in IA
Numbers and Sets: we traverse the half-lattice by following successive anti-
diagonals. We use the same idea here, with anti-diagonals replaced by squares
for easier of presentation.

Define a well-ordering on 𝜔𝛼×𝜔𝛼 by “going up in squares”: put (𝑥, 𝑦) < (𝑧, 𝑡)
if

• either max{𝑥, 𝑦} < max{𝑧, 𝑡} (bigger square beats smaller square),

• or max{𝑥, 𝑦} = max{𝑧, 𝑡} = 𝛽 (within a square) and one of

– 𝑦 = 𝑡 = 𝛽, 𝑥 < 𝑧,
– or 𝑥 = 𝑧 = 𝛽, 𝑦 < 𝑡,
– or 𝑡 = 𝛽, 𝑦 < 𝛽.

This is obviously a well-ordering.
Given 𝑟 ∈ 𝜔𝛼 × 𝜔𝛼, we have 𝑟 ∈ 𝛽 × 𝛽 for some 𝛽 < 𝜔𝛼 (since 𝜔𝛼 is a

limit), so 𝐼𝑟 ⊆ 𝛽 × 𝛽 by definition of <. But 𝛽 × 𝛽 ↔ 𝛽 (or 𝛽 is finite) by
induction hypothesis. Thus 𝐼𝑟 has order-type < 𝜔𝛼. Thus every proper initial
segment of (𝜔, <) has order-type < 𝜔𝛼. Thus (𝜔, <) has order-type ≤ 𝜔𝛼. Take
cardinality, ℵ𝛼ℵ𝛼 ≤ ℵ𝛼. The other direction is trivial by, for example, the
diagonal embedding.

Corollary 6.2. Let 𝛼 ≤ 𝛽. Then

ℵ𝛼 + ℵ𝛽 = ℵ𝛼ℵ𝛽 = ℵ𝛽.

So simply “take the bigger one”. Cardinal addition and multiplication are bor-
ing!

Proof.
ℵ𝛽 ≤ ℵ𝛽 + ℵ𝛼 ≤ ℵ𝛽 + ℵ𝛽 = 2ℵ𝛽 ≤ ℵ𝛼ℵ𝛽 ≤ ℵ𝛽ℵ𝛽 = ℵ𝛽.

Example. For any infinite set 𝑋 we have 𝑋 ↔ 𝑋 ⊔ 𝑋 (in ZFC).

However, cardinal exponentiation is much harder. Just a warning: exponen-
tiation is different for cardinals and ordinals.

Example. For ordinals, 𝜔𝜔 is countable as by definition,

𝜔𝜔 = sup{𝜔, 𝜔2, … }

On the other hand, for cardinals, by Cantor’s diagonal argument

ℵℵ0
0 ≥ 2ℵ0 > ℵ0.
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To get an idea of how hard cardinal exponentiation is, 2ℵ0 might not even be
an aleph in ZF. In ZFC, we can still ask the question if 2ℵ0 = ℵ1. Equivalently,
if every 𝑆 ⊆ R is either countable or bijects with R.

This is the continuum hypothesis, and has proven to be independent of ZFC.
Depending on your philosophical view, this is not so intuitively obvious as the
other axioms in ZF or ZFC.

Even today, not all implications about values of 2ℵ𝛼 are known. For example,
if we are given that 2ℵ𝛼 = ℵ𝛼+1 for 𝛼 = 0, 1, 2, …, the best we can say, based on
the results so far, is that 2ℵ𝜔 ≤ ℵ𝜔4

.
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7 Gödel Incompleteness Theorem*
The aim of this non-examinable section is to show PA is incomplete, i.e. there
exists 𝑝 such that PA ⊬ 𝑝 and PA ⊬ ¬𝑝. It suffices to show that there exists 𝑝,
true in N, such that PA ⊬ 𝑝. We are going to abbreviate “true in N” as “true”
and “PA ⊬ 𝑝” as “not provable”.

We try to find a 𝑝 saying “I am not provable”, i.e. 𝑝 such that 𝑝 is true if
and only if 𝑝 is not provable. Then done: if 𝑝 is false then PA ⊢ 𝑝, so 𝑝 holds in
every model of PA, in particular in N, absurd. Thus 𝑝 is true so not provable.

The idea is to “code up” formulæ, proofs etc in PA, i.e. as natural numbers.
At first glance it seems that we are doomed to fail since however we do it, “𝑝 is
not provable” must be longer/more complicated than “𝑝”.

Recall that a subset 𝑆 ⊆ N is definable if there exists formula 𝑝(𝑥) (which
means a formula 𝑝 with free variable 𝑥) such that 𝑚 ∈ 𝑆 if and only if 𝑝(𝑚) is
true. Similarly, 𝑓 ∶ N → N is definable if there exists a formula 𝑝(𝑥, 𝑦) such that
𝑓(𝑚) = 𝑛 if and only if 𝑝(𝑚, 𝑛).

Example. 𝑓(𝑛) = 2𝑛 is definable: take 𝑝(𝑥, 𝑦) to be “𝑦 = 𝑥 + 𝑥”.

We should take as fact

Proposition 7.1. Any function given by an algorithm is definable.

Example. 𝑓(𝑛) = 2𝑛 is definable.

Proof. A reference can be found in P. T. Johnstone Chapter 4 and 9.

The language of PA has symbols 𝑠, 0, +, ×, =, ⊥, ⟹ , ∀, the two parenthe-
ses, as well as countably many variables {𝑥1, 𝑥2, … }. It is possbile to reduce
them just two symbols 𝑥 and ⋅′, so 𝑥1 is 𝑥, 𝑥2 is 𝑥′, 𝑥3 is 𝑥″ etc. There is a
total of 12 of symbols.

We can now code a formula by raising successive primes to the power of the
successive symbols in 𝑝. For example, if 𝑝 is

(∀𝑥)(𝑥 = 0)

then its code is

𝑐(𝑝) = 29 ⋅ 38 ⋅ 511 ⋅ 710 ⋅ 119 ⋅ 1311 ⋅ 175 ⋅ 192 ⋅ 2310.

Note that not every number codes a formula, for example 27 ⋅35 is non sense.
“𝑚 codes a formula” is definable as there exists an algorithm.

Notation. Write 𝑆𝑚 for the formula coded by 𝑚, and 𝑆𝑚 = ⊥ if 𝑚 does not
code a formula.

Note that “𝑚 codes an axiom” (logical or PA axiom) is definable. Also
“ℓ, 𝑚, 𝑛 code formula, with 𝑆𝑛 following from 𝑆ℓ and 𝑆𝑚 by modus ponens” is
definable, same for generalisation.

Now move on to proofs. We code a sequence of statements by

𝑆(𝑝1, … , 𝑝𝑛) = 2𝑐(𝑝1) ⋅ 3𝑐(𝑝2) ⋯ (𝑛th prime)𝑐(𝑝𝑛).
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Thus 𝜃(𝑚, 𝑛) = “𝑚 codes a proof of 𝑆𝑛” is definable. Then 𝜙(𝑛) = “𝑛 codes a
provable statement” is definable since 𝜙(𝑛) ⟺ (∃𝑚)𝜃(𝑚, 𝑛). Note that this is
not by algorithm, but because we can find a formula!

Here comes in the clever part. Consider 𝜒(𝑛) = “𝑛 codes formula 𝑆𝑛 with
one free variable, and 𝑆𝑛(𝑛) is not provable”. This is clearly definable, say by
formula 𝑝(𝑥) (𝑝(𝑛) is true if and only if 𝜒(𝑛) where 𝑝 is a formula of PA).

Let 𝑁 = 𝑐(𝑝). Then 𝜒(𝑁) asserts that: 𝑁 codes a formula with one free
variable (so far this is true, since 𝑁 codes 𝑝(𝑥)), and this formula, with variable
set to 𝑁 (namely 𝑝[𝑁/𝑥]) is not provable. So 𝑝(𝑁) is true if and only if 𝑝(𝑁)
is not provable. Done!

We have thus shown

Theorem 7.2 (Gödel incompleteness theorem). PA is not complete.

But maybe PA is too weak. Could we add some clever sentences 𝑝 to PA
to make it complete? Maybe, for example, the 𝑝 used in the proof above. The
answer is no: just run the same proof with PA replaced by PA ∪{𝑝}.

However, we can certainly extend PA to a complete theory, in an almost
trivial way by adding to the axioms

𝑇 = {𝑝 ∶ 𝑝 true in N}.

Why does proof of the theorem fails?
We have to rewind all the way to the beginning — it can only be the case

that 𝑇 is not definable, i.e.

Theorem 7.3.
{𝑚 ∶ 𝑚 codes all true statements}

is not definable.

The slogan is “truth is not definable”.
Another objection is why doesn’t our proof of the incompleteness theorem

(in particular, that 𝑝 is true) formalise into a proof in PA that 𝑝 is true? The
answer is that we assumed the existence of a model of PA (namely N), i.e. PA
is consistent, which by completeness is con(PA) = “⊥ is not provable”. Thus
PA ∪ con(PA) ⊢ 𝑝. So by deduction theorem, Gödel incompleteness theorem
can be reformulated as

Theorem 7.4.
PA ⊬ con(PA).

How about ZF? Certainly ZF ⊢ con(PA) (note that con(PA) means slightly
different things than before: it now means that for all 𝑛 ∈ 𝜔, 𝑛 does not code a
proof of ⊥). This is because ZF ⊢ “PA has a model” (namely 𝜔).

But copying proof of incompleteness theorem gives

Theorem 7.5. ZF is not complete.

And by the same reasoning above,
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7 Gödel Incompleteness Theorem*

Theorem 7.6.
𝑍𝐹 ⊬ 𝑐𝑜𝑛(𝑍𝐹).
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A Classes

A Classes
𝑥 ↦ {𝑥} for all 𝑥 looks like a function, but isn’t because the “domain” is too
big: every function 𝑓 has a domain dom 𝑓 (defined as a suitable subset of 𝑉 ∪ 𝑓)
and this “function” would have domain 𝑉, absurd as there is no universal set,
i.e. ¬(∃𝑥)(∀𝑦)(𝑦 ∈ 𝑥) (Russell’s paradox).

Definition (Class). For an 𝐿-structure (𝑉 , ∈), a collection 𝐶 of points of
𝑉 is called a class if there is a formula 𝑝, free variables 𝑥 (parameterised),
such that 𝑥 belongs to 𝐶 if and only if 𝑝(𝑥) holds in 𝑉.

Here “collection” is simply a set, in the true maths world. But to avoid
confusion with subset in the sense of ZF we give it an alias. Same for “points”
and “belongs to”.

Example.

1. 𝑉 is a class. Take 𝑝(𝑥) to be 𝑥 = 𝑥.

2. For any 𝑡, {𝑥 ∶ 𝑡 ∈ 𝑥} is a class. Take 𝑝(𝑥) to be 𝑡 ∈ 𝑥. This shows that
we need parameter 𝑡.

3. Every set 𝑦 is a class. Take 𝑝(𝑥) to be 𝑥 ∈ 𝑦.

Definition (Proper class). If 𝐶 is not a set (in 𝑉), i.e. ¬(∃𝑦)(∀𝑥)(𝑥 ∈ 𝑦 ⟺
𝑝(𝑥)), say 𝐶 is a proper class.

Example. 𝑉 is a proper class, as is {𝑥 ∶ 𝑥 infinite}.

Definition (Function-class). A function-class is a collection 𝐹 of ordered
pairs from 𝑉 such that there is a formula 𝑝, free vaiables 𝑥, 𝑦 (parameterised),
such that

1. (𝑥, 𝑦) ∈ 𝐹 if and only if 𝑝(𝑥, 𝑦),

2. if (𝑥, 𝑦) ∈ 𝐹 , (𝑥, 𝑧) ∈ 𝐹 then 𝑦 = 𝑧.

Example. 𝑥 ↦ {𝑥} is a function-class. Take 𝑝(𝑥, 𝑦) to be 𝑦 = {𝑥}.
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cardinal, 50
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chain complete, 26
class, 57

proper, 57
closed, 29
compactness theorem, 8, 37
completeness, 22, 36
completeness theorem, 7, 24
conclusion, 4
consistency, 6
continuum hypothesis, 53

decidability theorem, 8
deduction theorem, 5, 33
definable, 39
definition by recursion, see also

definition by recursion, 11

extensionality, 47

formula, 29
function, 41
function-class, 57

generalisation, 32
Gödel completeness theorem for

first-order logic, 36
Gödel incompleteness theorem, 39,
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Hartogs’ lemma, 16
hypothesis, 4

inflationary, 27

initial ordinal, 50
initial segment, 10
interpretation, 30

Knaster-Tarski fixed point
theorem, 22

language, 2, 28
least upper bound, 21
limit ordinal, 16
Löwenheim-Skolem theorem

downward, 38
upward, 37

model, 4, 31
model existence lemma, 6, 34
modus ponens, 4, 32
Mostowski’s collapsing theorem, 47

order isomorphism, 10
order-preserving map, 22
order-type, 13
ordered pair, 41
ordinal, 13

von Neumann, 48

Peano arithmetic, 38
poset, 20
premise, 4
proof, 4, 33
proof by induction, 10

rank, 49

Schröder-Berstein theorem, 23
semantic entailment, 4, 31
sentence, 30
soundness, 6, 34
structure, 30
subset collapse, 12
substitution, 30
successor ordinal, 16
successor set, 42
supremum, 21
syntactical implication, 5

tautology, 3
theorem, 5
total order, 9
transitive closure, 44
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