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1 Normed spaces and linear operators

1 Normed spaces and linear operators

Unless otherwise stated, K stands for R or C and all vector spaces are K-vector
spaces.

1.1 Normed vector spaces
Definition (normed space). A normed vector space (X, |-|) is a vector space
X with a norm || : X = R,z — ||z satisfying

1. positive-definite: |z| > 0 for all x € X and |z|| = 0 if and only if
z=0,

2. positive homogeneity: |Az|| = |A||z| for all A € K and = € X,

3. triangle inequality: |z +y| < [z[ + [y for all z,y € X.

In particular, every norm induces a metric by d(z,y) = |z — y|.

Fact. Vector space operations and the norm are continuous maps, i.e. the fol-
lowing maps
KxX—X
A\ z) = Az
XxX—-X
(z,y) = x4y
X—=R
z = |z
are continuous and the metric is translation invariant: d(z,y) = d(z + 2,y + 2)
for all x,y,z € X.

Proof. We only check scalar multiplication. The others are left as exercises.
Since K and X are both metric spaces, it suffices to check that A\; — A in K and
z; =z in X then Az, — Az.
Indeed,
H)‘jmj — Az = HO\J‘ - A)%’ + A(xj —z
<y =Nzl + Az — )]
= A = Ml + [Alllz; — ]

—0

Example.

1. 2 = (R",|||) where |z|, = (Z?:l |z;]?)'/2, i.e. Euclidean norm.
2. £, = (R™||,) where [z, =327 | |a,]-

3. 457 = (R™, [ oo) where [ o = max; [,



1 Normed spaces and linear operators

It is often useful to consider the unit ball B = B(X) = {z € X : |z|| < 1}.
(Pictures)

Fact.
1. B determines the norm through |z| = inf{¢t > 0: x € tB}.
2. Bis convez: for all x,y € B,A € (0,1), \x + (1—\)y € B.

Remark. Any set B C R™ which is a closed, bounded, symmetric (z € B =
—z € B) neighbourhood of 0 defines a norm by the same formula as above and
B is the unit ball of that norm, although we will not use this fact in the course.

1.2 The space [”

Let S = {x = (2;){2, : #; € K} be the set of scalar sequences with

r+y=(z;); + () = (&, +¥;)i
Az = Az;); = (A\z;);

Definition. For 1 < p < oo, let {# = {z € §: 3 |z,[P < oo} with
norm |[zf, = (32 |z, [P)/P. Let £° = {z € S : sup, |v,| < oo} with
norm |z|. = sup_|z,|. Finally, ¢ = {z € S : z, — 0} with norm

[#]oc = sup,, [,]-

We have yet proved ||, is a norm for general p. The triangle inequality
follows from Minkowski’s inequality, discussed next.
Recall that f: RT — R is conver if

FOE+ (1= X)s) < AF(8) + (L= N f(s)

for all s,t € RT, A € (0,1). Graphically, the graph of f lies below the secant
between any two points on the graph. f is concave if —f is convex. Note that
log : Rt — R is a concave function.

Corollary 1.1. Let 1 < p,q < co with % + % = 1. Then
1 1
=z? + ~[y|? > |z| - |y]
p q
for all x,y € K.
Proof. Set t = |z|P,s = |y|1, A = %. Then

1 1
=[P + =[y|? > |z||y]
p q

M+ (1= N)s > trst™
< log(AMt+ (1 —X)s) > Alogt+ (1 —A)logs

which holds by concavity of log. O



1 Normed spaces and linear operators

Theorem 1.2 (Holder’s inequality). Let 1 < p,q < oo with % + é =1, let
x €LP yell Thenzy=(v,y,), €L and

lzyll < =l 1yl

Proof. 1t suffices to assumes that ||lz[, = 1 = |y[,. By Holder’s inequality,

N 1 N 1 N
Z |xnyn| < - Z |‘Tn|p + - Z |yn|q
n=1 b n=1 q n=1

Take N — oo,
1 1
lzyll, < ptg=1= Izl Iyl

Theorem 1.3 (Minkowski’s inequality). Let 1 < p < co and let xz,y € ¢P.
Then x +y € L7 and |z +y, < [z], + |yl,-

Proof. We call the power r. Have

>z, +yl”
n

= |z + vn" My + vl

n

<z vl e+ L, + v
n n

T

1,9 = 7 to the first term and similarly to

Apply Holder’s inequality for p =
the second term,

1 1 -1 1
<(Sheatnl) " (Stal) + (Showtnl) " (Shar)
Divide by both sides by a common factor, get

I+l <l + lyll.-

1.3 Banach spaces

Definition (Banach space). A normed vector space is a Banach space if it
is complete as a metric space, i.e. every Cauchy sequence converges.

Exercise. For 1 < p < oo, the space ¢P is complete.
Example.

1. Any finite dimensional normed space is a Banach space.



1 Normed spaces and linear operators

2. Let S be a set and let B(S) be the vector space of bounded functions on
S. Then B(S) is a Banach space with norm | f| . = sup__g[f(s)|-

3. Let K be a compact Hausdorff space (for concreteness, take [0, 1]) and let
C(K) be the space of continuous functions on K. Then C(K) C B(K)
as every continuous function on K is bounded. Moreover C'(K) C B(K)
is closed as the uniform limit of a sequence of continuous functions is
continuous. Therefore C'(K) is a Banach space with norm |-|.

4. Let U C R"™ be open bounded and let C*(U) be the space of functions
f : U — K k-times continuously differentiable on U. Then C*(U) is a
Banach space with norm

Ifler@) = llg‘g\ll?“f\loo,

where o
o f
De S —
(f(@)) ozt ... Oz
where a = (..., a,,) € Ng, |a] = 377 ;.

5. Let X be the space of continuous functions on [0,1]. Then for p € [1,c0),

i1, = / 1 @) v

is a norm on X. However, X is not complete in this norm! In IID Prob-
ability and Measure, we will show that its completion has a very nice
description, namely LP.

6. Let D = {z € C : |z| < 1} and let A(D) be the space of continuous
functions f : D — C that are analytic in D. Then A(D) is complete
with ||, because the uniform limit of a sequence of analytic functions is
analytic.

In example 3 above we used the following fact:
Fact. Let X be a normed space and Y < X a subspace. Then
1. if Yis complete then Y'is closed in X.
2. if X is complete and Y'is closed then Y is complete.
Proof.

1. Let z € Y. Then there is (y,,) C Y'such that y,, — . In particular, (y,,) is
Cauchy so converges to some y € Y by completeness. Thus by uniqueness
of limit z =y €Y.

2. Suppose (y,,) € Y. Then (y,,) is Cauchy in X. By completeness there is
x € X such that y,, — z. Since Y'is closed, in fact x € Y.

O



1 Normed spaces and linear operators

Definition (separable). A topological space is separable if it has a countable
dense subset.

Exercise.
1. For 1 < p < oo, ¢ is separable.
2. (™ is not separable.

3. ¢ is separable.

1.4 Bounded operators and the dual space

Proposition 1.4. Let X,Y be normed spaces, T : X — Y linear, then
TFAE:

1. T is continuous.

2. T is continuous at 0.

3. T is bounded, i.e. there is C' > 0 such that |Tx|| < C|z| for all z € X.

Proof.
e 1 =— 2: obvious.

e 2 = 3: since T is continuous at 0 and {y € Y : |y|| < 1} is a neigh-
bourhood of 0 = T'(0) € Y, there is 6 > 0 such that |z| < ¢ implies that
[Tz < 1. For any « € X,z # 0, by linearity,

] ( x) &l
Tx|=—|T|0—— || < —.
e = T (a7 )< 5

e 3 = l:lete>0. Set 6 = 5. Then || — y| < 0 implies that

&
Tz =Ty| = |T(x—y)| <Cle—yl| <e

so T'is (uniformly) continuous.

The infimum of such C'is called

Definition (operator norm). For T : X — Y bounded linear, the operator
norm is
Il = 1Tlop = sup [Tz
l=I<1
Notation. B(X,Y) ={T : X — Y bounded and linear}.
Fact. B(X,Y) is a normed space with norm given by the operator norm.

Proof. Let T,S € B(X,Y). Then
(T + S)z| = [Tz + Sz| < |Tx| + S| < (1] + |SDl«|

so [T+ S| < |7 + |I5]-
The other axioms are clear. O



1 Normed spaces and linear operators

Example. Let p € (1,00).
1. Define

T:0P — ¢
(X1, Zgy ) > (29, gy oo, 2,,,0,0,...)
for some fixed r > 0. Then T' € B(¢P, (P) with |T| = 1.
2. Define
T:pp s pp

(1,29, .. ) = (0,2, 29, ... ),

called the right shift operator. Then T" € B(¢?, () with |T| = 1. In fact,
[Tz = |z| for all x € ¢P. This means that T is an isometry but not
surjective.

3. Similarly define
S P — P
(xla Ta, ) = <x27 UEPIEE )
with |S| = 1. Note that S is surjective but not injective. ST =id # T'S.

4. Let p,q € [1, 00] with % + 2 =1. Fix y € £? and define

¢, P =K

ie. ¢, = (-,y). By Holder’s inequality, this is well-defined and |, || < [y],-

5. An unbounded map: let F be the space of finite real sequences with |-||;.
Define

T:F—R

n
(Tqy.y2,,0,0,..0) > E iz;
i=1

Then T'is not bounded (i.e. not continuous) as |Te, || = n — oo as n — oc.
6. Define

T:0 — 2
T
which has |T| = 1 because 3 |z,| < 1 implies >3 [z,[> < 1. But

Te¢' + (2. Since T¢' is also dense in ¢2, T¢* is not closed in £ and thus
not complete.



1 Normed spaces and linear operators

Definition (isomorphism, isometric isomorphism). Let X and Y be normed
spaces. Then

1. an isomorphism from X to Yis a map T : X — Y that is a linear
homeomorphism. Thus T' € B(X,Y) and T-! € B(X,Y), i.e. there
are C,C, > 0 such that

Cilz| < [Tz| < Coz]
for all z € X.

2. a bijective linear map T : X — Y is an isometric isomorphism if
|Tz| = |z| for all z € X.

Definition (dual space). Let X be a normed space. Its dual space is
X* = B(X,K).

A linear map X — K is called a functional.

Theorem 1.5. Let X and Y be normed spaces with Y complete. Then
B(X,Y) is also complete. In particular X* = B(X,K) is complete.

Proof. Let (T,,),, € B(X,Y) be a Cauchy sequence. Then for every x € X, the
sequence (T, ), C Yis Cauchy:

- __m>2
NE

Since Y is complete, there is y € Y such that T, — y. Set Tvr = y. Need to
check T'€ B(X,Y) and |T,, — T| — 0.

e Tis linear:
Tz + py) = lim T, (Az + py)
= nlgglo()\Tnx +uT,y)
=Nz + uTy

o Tis bounded: for |z| <1,
Tz < T,z + (T, = T)=|
<|Tull+e
< sup|T, |

which is bounded as (T,),, is Cauchy.

o T, — T in operator norm: for |z| <1,
T — Tz < (T, — T,)] + (T, — Tz
<limsup|T,, —T,,|
n—oo

—0



1 Normed spaces and linear operators

Theorem 1.6. Let p,q € (1,00) with % + % = 1. Then the map

¢ b1 — (LP)*
Yy d, = (- y)

is an isometric isomorphism, i.e. £1 = ({P)*.

Proof. Clearly ¢ is linear. We have already seen that |¢,[| < [y[,. Claim that
¢yl > llyl,: note that LHS is a supremum so suffices to find |«| < 1 such that
¢y (x)] = |yl Take

o Ny, g, #0
"o Yn =0
Then
lel = "l P = [y, 7 = [ylg < oo
n n

so x € /P. We have
¢y (1) = (2,9) 2 D [y |77 = |yl = ylg = Iyl lyli.
n n

Note that "

2(g-1) p(1-=
=zl °

lylg = Nl = [l

SO
|0y (@)] = lylllll,-

Thus ¢ is an isometry. It remains to check that ¢ is surjective. Let T € (¢7)*.
Set y,, = Te,,. Claim that y € {7 and |y[, < |T'|: define

y,|9?7y  n < Nandy, #0
X, = n
" 0 otherwise

We want to proceed as before but we don’t know if y € £¢ this time so we only
take the first NV terms. Then |z|b = ZnNzl |y,,|7 so x € P and

N N N
Tz = anTen = anyn = Z |9 |7
n=1 n=1 n=1

Rewrite the equation backward,

N N 1/p
D 1yalt =T < |Tz], = |7 (Z yn|q>
n=1 n=1

N 1-1/p
(Z Iynl") < ||
n=1

SO

50 [lylly < IT-



1 Normed spaces and linear operators

Finally, claim that T' = ¢,: for all n, by construction we know
Ten = (by(en) = yn

Since T'and ¢, are both continuous and linear, T' = ¢, on the span of {e, : n >

1} which is just ¢7. O

Remark. Similarly, (¢!)* = ¢* and ¢} = ¢! by the same argument. But the
argument does not show (£>°)* = ¢! since {e, } is not dense in £>°, i.e. it is not
separable.

| Corollary 1.7. For 1 <p < oo, £P is complete.

1.5 Finite-dimensional vector spaces

Fact. Any finite-dimensional vector space can be identified with K™ by choosing
a basis. Here n is the dimension.

Definition (equivalent norm). Two norms || and || on a vector space X
are equivalent if there exists C' > 0 such that

CHal” < = < Cl=],
ie.id : (X, |I-]) — (X, ]|-I') is an isomorphism.

Theorem 1.8. Let X be a finite-dimensional vector space. Then all norms
on X are equivalent.

Proof. 1t suffcies to show that any norm |-| on K™ is equivalent to ||-|,. Claim
that ||z| < C|z|, for all 2 € K™

n
E Tie1
i=1

n
<3 laylles] < nmaxfe,| ma x|

|z =
=1 _
c <l
Also claim that ||z|, < C’|z| for all z: let
S=A{z:|zl, =1}
and define f = |-|||g : S — R. Then f is continuous (with respect to |-||5):

[f (@) = F@)l = [zl = Iyl < llz =yl < Cle =yl

Note also that S is compact (with respect to |-|) as it is closed and bounded.
Therefore f assumes its minimum on S, i.e. there exists 6 > 0 such that f(x) > o
for all x € S. Then for all z € K™, have

X X
”l"” ey = F(E) -zl = bl
el || Vel = () Il = Ol

10



1 Normed spaces and linear operators

Corollary 1.9. Let X and Y be normed spaces with dim X < oco. Then
every linear map T : X — Y is continuous.

Proof. Define a new norm on X by
l=|" = l=| + T
Since all norms on X are equivalent, there is C' > 0 such that
|=]" < Cll=l),

ie. |Tz| < (C —1)|«| for all . Thus T is bounded and thus continuous. O

Corollary 1.10. Let X and Y be finite-dimensional vector spaces and T :
X — Y is a linear bijection. Then T is an isomorphism.

In particular for any X and Y if dim X = dimY < oo then X and Y are
isomorphic.

Corollary 1.11.

1. Every finite-dimensional normed space is complete (as it is true in

Ill2)-

2. Every finite-dimensional subspace of a normed space is closed.

Corollary 1.12. Let X be a finite-dimensional normed space. Then B(X),
the closed unit ball, is compact.

Proof. Closed and bounded in |||, (because this holds in |-|). Thus B(X) is
compact in ||, so compact in |-]. O

The converse is also true:

Theorem 1.13. Let X be a normed space such that B(X) is compact. Then
X is finite-dimensional.

Proof. Since B;(0) = B(X) is compact, there are x1, ..., z,, € X such that
B,(0) € U Bl/Q(Ii)'
i=1
Let Y be the span of z;,’s. Then dimY < n. Also

B(0) CY + By 5(0)

SO
1
Bi(0) CY 4 5(Y + Byj(0) = Y + By 4(0) € - C Y + By (0)

for all m € N. Therefore B;(0) C Y = Y. Since Y is linear, X C Y. Thus
dim X <n. O

11



1 Normed spaces and linear operators

1.6 Completion, products, quotients

1.6.1 Completion

Proposition 1.14. Let X be a metric space. The completion of X is a
complete metric space X containing a dense subset that is isometric to X.

Proof. The construction is as follow. For two Cauchy sequences z = (x,,),y =
(y,) € X, define x ~ y if and only if d(z,,,y,) — 0. This is an equivalence
relation. Denote the equivalence class of a Cauchy sequence x by Z. Define

X = {#: 2 Cauchy in X}

and define a metric

d(#,5) = lim d(z,,y,).

n—00

The limit exists and is independent of the representatives. Then d is a metric:
if ci(f,ﬂ) = 0 then d(z,,,y,) — 0so x ~ y so & = §. Symmetry and triangle
inequality follow from those for d.

Now we show X < X. For z € X, define j(z) € X to be the equivalence

class of (z,z,...). Then 3
d(j(x), j(y)) = d(z,y)

S0 j is an isometry. The image of j is dense in X since if (z,,) is Cauchy in X
then (j(x,)) in X is Cauchy and j(z, ) — 7.

Finally, to show X is complete, let (#¥) C X be Cauchy. Let (zF) C X be
a representative for 7¥. Choose n; such that d(z, 2k ) < 27% for n,m > n,.

Define z;, = xkk € X. Claim that z = (z;) C X is Cauchy and #* — 7 in X. It

n
is left as an exercise. O

Definition (completion). X is called the completion of X and we regard
XcCX

In the case of normed spaces, the metric completion has more structure:

Theorem 1.15. Let X be a normed space. Then there is a Banach space
X containing X as a dense subspace.

Proof. Let X be the metric space completion of X. _For z,9 € )2, choose
(,,), (y,) € X such that z,, — 7 and y,, — ¥ (in X). For any A\, u € K,
Az, + py, is Cauchy. Set AZ + pjj = lim, ,_(A\z, + py,). This makes X a
vector space. Moreover,

7] = lim [, | = tim d(0,,) = d(0,7)

is a norm on X and since d is complete, this makes X a Banach space. O

Proposition 1.16. Let X and Y be normed spaces and let T € B(X,Y).

12



1 Normed spaces and linear operators

Then there is a unique T € B(X,Y) such that

Tx =T,T] =[]

Proof. For # € X, choose (z,) C X such that z, — #. Then (z,,) is Cauchy,
and since T is bounded, (T'z,,) C Vis Cauchy as well. By completeness of }7,
there is § € ¥ such that Tz, = 4. Set T# = . Note that T is well-defined,
linear and Ty = T. Also

T3] = tim [T, | < 7] Yimm |, | = [T,

nl

so |T| < |T| so equality. Uniqueness follows from continuity and density of X
in X. O

Remark. The completion Xis unique in the sense that if X’ is another comple-
tion of X then there is an isometric isomorphism X — X’ restricting to identity
on X.

1.6.2 Product

Definition (product). Let X and Y be normed spaces. Then X x Y can be
made into a normed space with one of the following equivalent norms:

[ )l = (2P + lylP)' /7, p € [1, 00)

or

| (, y) || = max{]z], |y}

They are equivalent for precisely the same reason that norms on finite-
dimensional spaces are equivalent. Thus henceforth we will just use “norm
on X X Y” to mean any of the equivalent norms.

As expected for a product construction, the projections 7y : X x Y — X
and 7y : X x Y — Y are continuous.

Fact. If X and Yare complete then X x Yis complete and X = X x {0} C X xY
and Y = {0} x Y C X x Yare closed subspaces.
1.6.3 Quotient

Definition (quotient). Let X be a normed space and let Y C X be a closed
subspace. Then x ~ z’ if x — 2’ € Y defines an equivalence relation with
equivalence classes [z] = z + Y. Let X /Y be the collection of all equivalence
classes and define

I[z)l = inflle + y]l
ye

Proposition 1.17.
1. || 4s a norm on X/Y.

2.m: X - X/Y,x = x+Yis continuous.

13



1 Normed spaces and linear operators

| 3. If X is complete then X /Y is complete.
Proof.

1. Suffices to show positive definiteness as the other axioms are trivial. As-
sume that

In(@)| = infle + vl =0,
ye

then there exists (z,,) C X such that z, — 0 and n(z,) = 7(z), ie.
r—z, €Y Thusz € Y=Y

Im(@)] = nfla +y] < ||
ye
so || < 1.

3. Let (z,,) € X besuch that n(z,,) C X/Yis Cauchy. Claim that there exists
a subsequence (n;,) C Nand (y,,) C Ysuch that (z,, +y;),, is Cauchy in X:
by passing to a subsequence (n;,) we can assume that |r(z,, )—m(z,, )| <
2751 Now choose (z;,) C Y such that

Iz, — @n, + 2l <275

M+1
Define y; =0 and y,, = 2y + -+ 2,_; €Y, then
[@nyy + Uki1) = @+ wdl = N, — 2, + 2] <278

so (%, +Yx) is Cauchy.

Claim that (7(x,,)) C X/Y converges: since X is complete, there is z € X
such that z,, +y, — z in X. Then

I7(@n,) = m(@)] = nfle — (@, +yl <z — (2, +y)] =0

which implies convergence of (7(z,,)) along a subsequence, ergo the origi-
nal sequence.

O

14



2  Completeness of the Baire category

2 Completeness of the Baire category

2.1 Baire category

Recall that if X is a metric space, then Y C X is dense if Y = X, i.e. YNB,(z) #
0 forall z € X,r > 0.

Theorem 2.1 (Baire category theorem). Let X be a complete metric space.
For any sequence of open dense subsets U; C X, j € N, the intersection
(>, U, is dense in X.

J=1"J

Proof. Let U = ﬂ;’il U;. Given any x € X,r > 0, we need to show that
B,.(z)NU # 0. Since U, is dense, there is z; € X,r € (0,1) such that
Erl (z1) C Bzrl(%) C U, NB,(z).

Likewise choose z, € X, r, € (0, %) such that

ETQ (z2) CUN Br1 (z1)
and in general z,, € X,r € (0, %) such that

ET'n (xn) g Un N Br"fl (xn—l)'

Then r,, — 0 and a nested chain of open balls

Brl(‘rl) :—) Br2(x2) :—)
sod(x,,x,,) <r,if m>n,ie. (z,)is a Cauchy sequence. Since X is complete,

there is y € X such that z, — y. Note that y € Erh (x),) N U, for all k. Thus

J=1
and y € PTI (x1) € B,.(x) soy € UN B,.(z). O

The following corollary is equivalent to Baire category theorem is often used
in practice:

Corollary 2.2. Let X be a complete metric space. Let A; C X be a sequence
of closed subsets such that | . A; has nonempty interior, i.e. it contains some

ball, then at least one of the A;’s has nonempty interior.

Proof. Let U; = X \ A;. Since Uj A; has nonempty interior,
x\UJ4,=MNy,
J J

is not dense. Since the U,’s are open, by Theorem 2.1 at least one of the Uj’s
cannot be dense, say U,. Thus A, = X \ U, has nonempty interior. O
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2  Completeness of the Baire category

Definition (nowhere dense, meagre, residual, set of first/second category).
Let X be a metric space.

1. A subset Y C X is nowhere dense if Int(Y) = (), i.e. if Yis not dense
in any ball.

2. A subset Z C X is meagre or of the first category if there are countably
many sets Y] C X which are nowhere dense and Z = Uj U e

3. A subset U C X is nonmeagre or of the second category if it is not
meagre.

4. A subset R C X is residual if its complement is meagre.

Remark. TFAE:

e Y C X is nowhere dense.
o Yis nowhere dense.

o X \Yis dense.
Example.

1. Q= UIE@{x} C R is meagre in R.

2. Any countable union of meagre sets is meagre.

Remark. There is a similarity of the concepts of meagre, nonmeagre, residual,
with those of null sets, sets of positive measure, sets of full measure in measure
theory. For metric spaces that are also measure spaces, such as R with Lebesgue
measue, one could ask if there is a closer correspondence. The answer is negative,
in general. There exists a meagre set A and a Lebesgue null set B such that
R=AUB.

Yet another formulation of Baire category theorem is
Corollary 2.3. Let X be a complete metric space. Then X is of the second
category.

Proof. Let Y] C X be nowhere dense. It suffices to show that X # UJ?J But
U;=X \ ?j is open dense so by Theorem 2.1

Nu;=x\JY;

is dense, in particular not empty. O

Corollary 2.4. Let X be a complete metric space. Then residual sets are
nonmeagre and dense.

Proof. Let Z C X be meagre and suppose that R = X \ Z was meagre. Then
X = Z U R would be meagre as a union of two meagre sets. But since X is
complete, it is not. So R is nonmeagre.

To show that R is dense, we can suppose Z = UJ, Y; with Y; nowhere dense.

Then U; = X \ Yis open dense. So R D U]« U; is dense by Theorem 2.1. O
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2  Completeness of the Baire category

Corollary 2.5. Let X be a complete metric space and U C X open. Then
U =0 or U is of the second category.

Proof. Assume that U is open and meagre. Then X \ U is closed and residual
so dense. So X \U = X, i.e. U = 0. O

2.2 Principle of uniform boundedness

Theorem 2.6 (principle of uniform boundedness). Let X be a complete
metric space. Let (fy)sep be a family of continuous functions fy : X — R.
If (fx)xen s pointwise bounded, i.e. for allx € X, sup, _, |fx(z)| < 0o, then
there is a ball B,(xzy) C X on which fy is uniformly bounded, i.e.

sup sup [fy(z)] < oco.
AeA zeB, (zg)

Proof. Let

Ay ={z e X:|fi(x)| <kforall xe A} = (({x € X:|fi(x) <k}
AeA

Since fy’s are continuous, A, is closed. Since (f,) is pointwise bounded,
)4, =X
keN

By Baire category theorem, at least one of the A;’s must contain a ball B,.(x).
Thus (fy) is uniformly bounded on that ball. O

Theorem 2.7 (Banach-Steinhaus). Let X be a Banach space and let Y be
a normed space. Let (Ty)yepa € B(X,Y) be pointwise bounded, i.e. for all
z € X, sup,_, [T\z| < oco. Then (Ty) is uniformly bounded, i.e.

sup| T, || < oo.
AeA

Proof. Set fy : X = R,x  |T)«||. Then f, is continuous and (f,) is pointwise
bounded. By the principle of uniform boundedness, there is B,(z,) € X on
which

sup sup |Thz| < oo.
AEA |z—xp<r

But since the Ty’s are linear, for any « € X with |z| < 1,

1 1 1
IT\z|| = =|T\(re + x) — T\(xzo)| < —sup sup |[Thz|+ = sup|Tyz].
r T XeA |z—wzq|<r T XeA

The second term is bounded since T is pointwise bounded. Thus

sup| Ty || < oo.
AEA

17



2  Completeness of the Baire category

The point of the Baire category theorem is not so much of finding a uni-
form bound on the functionals, as the proof requires axiom of choice and is
nonconstructive. Rather it shows that pointwise boundedness implies uniform
boundedness so we don’t risk losing anything by trying to prove uniform bound-
edness from onset. As we’ll see, in most cases pointwise bound gives uniform
bound straightaway.

2.3 Open mapping theorem

Definition (open map). A map between topological spaces is open if it
maps open sets to open sets.

Example.
1. f:R = R,z 22 is continuous but not open.

2. f:R? = R, (z,y) = o +sgn(y) is open but not continuous.
Theorem 2.8 (open mapping theorem). Let X,Y be Banach spaces and
T e B(X,Y). Then

1. if T is surjective then it is open.

2. if T is bijective then T™1 € B(Y, X).

Lemma 2.9. Let X,Y be normed spaces. Then T : X — Y linear is open if

T(B,(0)) 2 B,(0)

for some r > 0.

Proof. Let U C X be open and « € U. As U is open, choose é > 0 such that
x + Bs(0) C U. Then

T(U) 2 T(z + B;(0)) = Tz + 6T(B,(0)) 2 Tz + 165, (0).

Thus T(U) contains an open ball around any element T'(z), therefore open. [

Lemma 2.10. Let X be a Banach space, Y a normed space andT € B(X,Y).

if
T(B,(0)) 2 B, (0).

then
T(B,(0)) 2 B, (0).

Proof. Let y, € B;(0) CY. We need to find 2 € B;(0) such that Tz = y,. We
construct x as the limit of a Cauchy sequence. Let z; € By/,(0) C X such that

1
7oy — 3ol < 5.

18



2  Completeness of the Baire category

This is possible since there exists g, € By/o(0) N Bys(y) and we can find
xy € By5(0) such that [Tz — g | is arbitrarily small by density of T'(B; 5(0))
in By 5(0).
Set y; = yo — T'zy € By5(0). By induction, if yy,...,y, and x4, ...,z are
such that
|zl < 27", y; = y;1 — Tz, € Byi(0) C Y,

can choose x;,; € By x1(0) C X such that

Yprr =Yp — T2 € Bowr(0) CY

oo
Dzl <1
k=1

and z = >_.>° x, € B;(0) exists since X is complete and

SO

k=1
n n
yo— T = lim (yo - ;Tﬂik> = lim <y1 - ;Txk> == lim y, =0
s0 Yy € T(B;(0)) for any y, € B;(0). Thus T(B;(0)) 2 B,(0). O

Proof of open mapping theorem.

1. By the previous two lemmas, it suffices to show that

T(B,(0)) 2 B,(0)
for some r > 0. We use Baire category theorem to do this. Since T is

surjective, Y = (J,_ T'(B;(0)). Since Y'is complete, the Baire category

theorem implies that there is ky € N such that T'(By, (0)) has nonempty
interior, i.e. there is o > 0,y, = Tz, such that

B, (y) € T(By, (0)).
By linearity,
B,,(0) = B, (yo) — Txg € T(By, (0)) — Tz,
= T(By, (=20)) € T(By,1¢,(0)) = (ko + £,)T(B1(0))

where ¢, > |lz,|. Now take r = kor-feo'

2. If T'is bijective, then T is open means that 7' is continuous.

O

Remark. The completeness of X and Y are both necessary. See example sheet.
We can however do a quick counterexample here. Let

F ={(x,) : z,, = 0 except for finitely many n}
Define

T:F—F

(x,) = (2,/n)

Then T < 1 so T is continuous and bijective. But (T 'z), = (nx,) is un-
bounded. In particular F'is not complete.

with |z, = max, |z,
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2  Completeness of the Baire category

Remark. The basic problem in linear PDE is the following one: given f €Y,
for example Y = L?(Q) for some nice  C R?, and a linear partial differential
operator L : X — Y, say X = HZ(Q2) and L = A, is there a unique solution
u € X to Lu = f? The typical procedure is to show that for f “nice”, say
f € C*(Q), spanning a dense subspace of Y, there is a unique solution such
that

Jull < CII.

Such an a priori estimate allows us to solve Lu = f for general f € Y by
approximation. This implies that L is surjective. The open mapping theorem
guarantees that this strategy works if L is surjective.

2.4 Closed graph theorem

Theorem 2.11 (closed graph theorem). Let X,Y be Banach spaces and
T : X = Ylinear. Then T is bounded if and only if the graph

F={(z,Tz):z€ X} CX XY
18 closed.

Proof. Let T'be bounded and (x,,y,) C I" be a sequence such that z;, — z,y, =
Tx;, — y. Since T is continuous,

Tx =y,

o (z,y) € T. So T is closed.
Conversely, suppose that I' is closed. We want to show that T is continuous.
Since X x Y'is a Banach space with norm

I, ) = =] + vl

and since T' is closed, it is also a Banach space with the induced norm. The
projections

' —= X
(z,Tx) >z
Ty * I' =Y
(z,Tx) = Tx
are continuous and 7y is also a bijection. By the open mapping theorem,

' € B(X,T'). Thus
T =myomy' € B(X,Y).

O

Remark. As a consequence, to prove that T : X — Y'is bounded, if X and Y
are Banach spaces, it suffices to check if x;, — x, Tz, — y then Tx = y, instead
of the stronger requirement that if x;, — « then T'z;, — y and y = T'x.
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8 Continuous functions on a compact space

3 Continuous functions on a compact space

3.1 Normal topological spaces

Recall that a topological space X is Hausdorff if for any x,y € X,z # y, there
exist open neighbourhoods U of z and V of y such that U NV # (.

Proposition 3.1. Let X be a Hausdorff space and K, K, C X are compact
sets with K, N Ky = 0. Then there exist open U; D K,,Uy D Ky such that
U1 n U2 = @.

Proof. This is a mundane exercise in general topology. For any x € K,y €
K,, let U,, and V,, be open neighbourhoods such that z € U,,,y € V,,, and

: ( zy? (
Upy N Vyy = 0. Then K, C{J,_,. U,,. Since K, is compact, there are finitely
“ 1
many pointi Zq,...,2, € K, such that K; C U?Zl Uy, Set U, = U?:l Usy
and Y, = ﬂi:l V.y- Then U, NV, =0 and K; C U,y € V, forally € Y. Then
K, C UUGK V,- Again by compactness there exist y;,...y,, € K, such that
& 2
Ky U™, V,, . Set
m

m
V:UVyi,U: U,.
=1 =1

The sets U and Vare open, UNV = and U D K,,V D K, by construction. [

Definition (normal). A topological space X is normal if for any closed sets
A, Ay C X such that A; N A, = 0, there exist open sets U;, U, C X such
that A CU,;, Ay CUy and U, NU, = 0.

| Corollary 3.2. Any compact Hausdorff space is normal.

Proof. Closed subsets of a compact space are compact. O

Fact. Let X be normal. Then for every closed A C X and open U D A, then
there exists an open set V and closed set B such that

ACVCBCU.

Proof. Set A” = X\ U. Then A" and A are closed and disjoint so there exist
open sets Vand V' such that V 2 A, V' D A" and VNV’ = (). Take B= X\V",
then ACV C BCU. O

Proposition 3.3 (Urysohn’s lemma). Let X be normal. For every closed
set A C X and open set U D A, there is a continuous function f: X — [0,1]

such that
1 z€A
f(z) =
0 z¢U
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8 Continuous functions on a compact space

Proof. Let Ay = A and Uy = U. Since A; C U, there exists an open set Uy
and a closed set A, ), such that

A CUyjp C Ay CU.

Applying this procedure again, there are open U, /4> Us s and closed A, /3> As)y
such that

Ay CUzpy CAzyg CU g C Ay CUyy C Ay C U

Iterating this procedure, there exist open sets U, and closed sets A, for dyadic
g€ {m2™" :m,n € N;0 < m < 2"} such that for all ¢ < ¢,

Uy CA, CU,CA,
Define
flz)=sup{q:z €U} =inf{g:x ¢ A}

(where inf() = 1,supf) = 0). Clearly 0 < f < 1. If x ¢ U = U, then f(z) = 0.
If v € A= A, then x € U, for all ¢ so f(x) = 1. To show continuity, note that
for any t € R,

{z: flx) >t} = U,

q>t
{w: flx) <t} =X\ 4,
q<t
both of which are open. Thus f is continuous. O

Corollary 3.4. Let X be normal and Ay, Ay C X closed and disjoint. Then
there exists f : X — [0,1] continuous such that f|,, =0 and f[, = 1.

Proof. Take A= A; and U = X \ 4; in Urysohn’s lemma. O

Corollary 3.5. Let K be a compact Hausdorff space. Then C(K) separates
points, i.e. for allx,y € K, x # y, there is f € C(K) such that f(z) # f(y).

Theorem 3.6 (Tietze-Urysohn extension theorem). Let X be normal, A C
X closed, g : A — K continuous. Then there exists a continuous extension
[+ X = K such that f|4 =g and | f]e < ]9l

Proof. We first assume that ¢ takes values in [0,1]. Let g, = ¢g. Let A, =
g ([0,1]), By = g~ '([2, 1]) which are disjoint and closed. Thus by Corollary 3.4

there is a continuous hy : X — [0, 3] such that hgl, = 0,hg|g = 3. Let
0 0
91 = 9o — hola. Then g, (z) € [0, 2] for all z € A. By induction assume that

g;: A— 10, (%)z} is given and set

e - )]
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8 Continuous functions on a compact space

and h; : X — [0,% (%)l] a continuous function with h;[, = 0,h;|p = %(%)l
Set g;,1 = g; — h;| 4. We find that

(o)
9=90=91thola=09a+hyla+holg="= Zhi‘A'
i=0

Set f = ZZ 0 h;. The convergence is uniform by Weierstrass M-test so f is
continuous.
If g takes values in R, we can apply the above to the function %—!— % arctan og

which takes values in [1, 2] C [0,1] to obtain an extension f. If g takes values

in C, we can apply this to the real and imaginary parts to obtain an extension

I
Finally define

) f@) |f(2)] < 9l
f@) =1 Garg fiw) F
e lgloe  [f(@)] = llglloo
Then f is still a continuous extension. O

3.2 Arzela-Ascoli theorem

The key object studied in functional analysis is function space. In this section
we prove a theorem that answers the important question when a subset of C'(K)
is compact.

Since we are studying normed spaces and subspaces thereof, which are in par-
ticular metric spaces, here are several notions of compactness in metric spaces.
Note that in general they are not equivalent.

Definition. A metric space X is compact if any of the following conditions
hold:

1. X has the Heine-Borel property: any open cover of X has a finite
subcover.

2. X is sequentially compact, i.e. any sequence in X has a convergent
subsequence.

3. X is complete and totally bounded, i.e. for any € > 0 there exists a
finite e-net. This is a finite set M C X such that for any x € X, there
exists m € M such that d(z,m) < e.

Proof. For 1 < 2 see IB Metric and Topological Spaces. 2 = 3 easily. We
present here only the proof of 3 = 2. Let (z,,) C X be a sequence. We want
to find a convergent subsequence. Let M,, be a finite 2-net for X. Let m;, € M,
be such that B;(m4) contains infinitely many of the z,’s. Let n; be the first n
such that =, € By(my). Given my € My, ... and m; € M, n,...,n;, such that
By ;(m;) contains infinitely many points from (z,,) N By ;(m;) for all i < j, and
z,, € ﬂle By ;(m;) for £ < k, let my, be such that By q)(my,,) contains

infinitely many points from (z,) N ﬂj:l By ;(m;) and ny ., be the first n > n,
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8 Continuous functions on a compact space

k+1
such that z,, € ﬂj; By ;(m;). Tt follows that for £ > F,

d(z, ,z, ) <d(z

NE?Ne/ — ny?

—0

EIEN

my,) +d(my, z,,) <

SO (:Enk) is Cauchy and thus has a convergent subsequence by completeness of
X. / O

Corollary 3.7. Let X be a complete metric space. Then'Y C X is relatively
compact, i.e. has compact closure, if and only if Y is totally bounded.

Proof. Y is totally bounded if and only if Y is totally bounded. O

Throughout this chapter, unless otherwise stated, we assume K is compact
Hausdorff and equip C(K) with |||, norm, thus making C'(K) into a Banach
space, which is in particular a complete metric space.

Theorem 3.8 (Arzela-Ascoli). Let K be compact Hausdorff and F C C(K).
Then TFAE:

1. F is relatively compact;

2. F is bounded and equicontinuous, i.e. Supr?HfHoo < oo and for all
e > 0,z € K there exists a neighbourhood U of x such that for all
fedF, |f(x)—fly)| <e foralyel.

The generalises the fact that a subset of a finite-dimensional space is rela-
tive compact if and only if it is bounded, with the additional requirement of
equicontinuity.

Proof.

1. 1 = 2: let F be relatively compact, i.e. totally bounded. Thus for any
€ > 0 there exists fi,..., f,, € & such that for all f € F,

min|f — fi| <e

so in particular ||f]| < e + max;] f;|| for all f € F so F is bounded.

Let € > 0, f,..., f, as above and = € K. Since the f;’s are continuous,
there exist neighbourhoods U; of x such that

[fi(x) = fily)| <e

for y € U;. Now let U = ﬂ?zl U,, which is again a neighbourhood of x.
For all y € U,

|f(z) = f)] < [f(2x) = file)| + [file) = fiy)| + | fily) — Fy)] < 3e

where 7 is such that for all f € F, |f— f;| < e. Thus & is equicontinuous.
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2. 2 = 1: Let F be bounded and equicontinuous. For & > 0, we construct a
finite 3e-net for . Let e > 0. For x € K, let U, be an open neighbourhood
of = such that |f(z) — f(y)| < € whenever f € F,y € U,. Since K is

compact, there are z, ..., z,, such that
n
K=]Ju,,.
i=1

Since F is (uniformly) bounded, the vector (f(zy),..., f(z,)) € K" is
bounded in any norm on K", say |-|.,. Thus

F={(f(z1),... f(z,)): fe F}CK"
is relatively compact in K”. Thus there are fi,..., f,, € F such that
Fr=A{(filx), oo, file,)) : 1 < i <m} CK”

is a finite e-net of F. Claim that moreover fi,..., f,, is a finite 3e-net for
F. Indeed, for = € ij,

[f(2) = fi(@)| < [f(@) = flap)| + | f () = filap)| + [filzy) — fi(@)] < 3e

for some 1 < i < m such since F” is a finite e-net of F. Thus 7 is totally
bounded and thus relatively compact.

O

3.3 Aside: compact operator

Definition (compact operator). Let X, Y be normed spaces and 7' : X — Y
linear. Then T is compact if T'(B;(0)) is compact.

Equivalently, every bounded (z,) C X has a subsequence such that (Tx,,)
converges along that sequence.

Example.

1. If T € B(X,Y) of finite rank, i.e. T(X) is finite-dimensional, then T is
compact as T(B;(0)) is a bounded closed set in the finite-dimensional
space T'(X). In fact, compact operators are generalisation of matrices in
the sense that every compact operator is the uniform limit of finite rank
operators.

2. If dim X = oo then id : X — X is not compact as B;(0) = B;(0) is not
compact.

3. Let K = [0,1]. Consider C1([0,1]) with |flc: = [fle + I/ [l and
C9([0,1]) with |fllco = ||fllc- Then the embedding ¢ : C'([0,1]) —
C°([0,1]) is compact. Indeed, let

F={f€CH0,1]) : |floe + I loc <1} = B,(0) € C*([0,1])
then ¢(F) is bounded in C°(]0,1]) and for any f € F,
[f(@) = FW < loclz —yl <Mz —yl <e

whenever |z —y| < e. Thus «(F) is equicontinuous. So by Arzela-Ascoli,
L(F) is relatively compact. ¢ is compact.
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In general, if Y is a Banach space then T : X — Y'is compact if and only if
T(B,(0)) is totally bounded.

Theorem 3.9. Let X be a normed space and Y a Banach space. Then the
compact operators form a closed subspace of the space B(X,Y) of bounded
operators.

Proof. There are two claims in the theorem:
1. if S and T are compact operators then so is S + T,
2. if T, — T where T,,’s are compact and 7'is bounded then 7T'is compact.

Let (z,) C X be bounded. Then there is a subsequence A C N such that
Sx,, — y for some y as n € A,n — co. Moreover, there is a further subsequence
A’ C A such that Tz, = zasn € A’',n — co. Then

(S+T)x, =Sz, +Tx, >y+z

asn €A ,n— oco. S+ Tis compact.
For the second claim, we need to show that T'(B;(0)) is totally bounded.
Let € > 0 and n € N be such that |T'—T,|| < e. Then

k

for some 1, ..., x;, € B;(0) since T,, is compact. Thus

k k
T(B,(0)) € U By (T,;) C U B (Tz;)

i=1

which is a finite 3e-net for T'(B;(0)). T'(B(0)) is totally bounded so T is com-
pact. O

In particular this shows that limits of finite rank operators are compact:

| Corollary 3.10. Any limit in B(X,Y) of finite rank operators is compact.

3.4 Application: Peano existence theorem
Recall in IB Analysis IT

Theorem 3.11 (Picard-Lindelof). Let f: R — R be locally Lipschitz con-
tinuous. Then for any x, € R there exists a maximal interval (T, Ty), with
T, = —o0 and/or Ty, = oo allowed, such that

2’ (t) = f(z(t))
{ 2(0) =, )

has a unique Ct solution x : (T}, Ty) — R that is maximal, i.e. that is not
the restriction of such a solution on a larger interval. Moreover if T, # oo,
for any bounded K C R there is t < Ty such that z([t,T5)) N K = () and
stmilarly if Ty # —oo.
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Theorem 3.12 (Peano existence theorem). Let f : R — R be continuous.
Then for any x, € R, there is € > 0 and a solution x : (—e,€) — R to (x).

Remark. The solution is not necessarily unique. For example take f(x) =

Vizl.

Lemma 3.13 (a priori bound). Assume that b > 0, M > 0 are such that

[f(@)] < M for |z — x| < b (t)
Then if T < £ and x is any C' solution to (x) for all |t| < T, it follows
that |z(t) — xy| < b, |z’ (t)| < M.

Proof. Assume that x(t) is a C! solution for |[t| < T” < T'such that |z (t) —z,| <
b. Then
2" ()] = [f(x(t)] < M

SO

|z(t) — 20| = <Mt<b

/ ' fla(s))ds

for |t| < T'. This allows us to extend the solution beyond T by continuous
induction. Let

I={T"€0,T]:|z(t) — x4 <bfor|t| <T"}.

Note I # ) and that I is closed. Claim that sup I = T* otherwise |z(t) — x| <
b for |t| < supI but by continuity, a neighbourhood of sup I also has to be
contained in I, contradiction. Thus I = [0,T]]. O

Proof of Peano existence theorem. Let
B={f+5:9€C%|jlo < oo}

and choose M, b > 0 such that (1) holds for all g € B. For any h € BNC" there
is a local solution by Picard-Lindeléf. The lemma implies that these solutions
are defined on all of [T, T| with T as in the lemma. Define the solution operator

S:BNC' — CH-T,T]
f—x

where x is the solution to (x). By the lemma, S(BNC") is bounded in C'[—T,T]
with norm |z|,, + [2/]lw. By Arzela-Ascoli, the embedding C'[-T,T] —
C[-T,T) is compact, i.e. S(BNC?) is relatively compact in C°([-T,T]). Let
fi € BN C* such that f; — fin C (this is not obvious but it will follow from
Weierstrass approximation theorem in the next section), i.e. |f — fillo — O.

By relative compactness there is a subsequence z; = Sf; converges to some
x € CO[—T,T] with ||-| , norm. Claim that z € C'([-T,T]) and () holds.

Proof. Since f; — f,x; — x in C° (along the subsequence, we also have f;ox, —
foxz. Thus z; = f,ox; — fox uniformly in |[t| < T. Thus z € C! and
2 = fouw. O

O
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3.5 Stone-Weierstrass theorem

Theorem 3.14 (Weierstrass approximation theorem). The set of polyno-
mials with real coefficients is dense in C([a,b],R) in the uniform topology.

The theorem follows more or less directly from the approxmation of a single
function: the absolute value function, as any continuous function on [0, 1] can
be approximated uniformly by a piecewise linear function.

Lemma 3.15. There is a sequence of polynomials P, : [—1,1] — [0,1] such
that P, — | - | uniformly on [—1,1] as n — oo.

Proof. We use the Babylonian method to construct square root map, which
when composed with square maps gives absolute value. The idea is that if
q:[0,1] — [0, 1] is a function with
1 2
alt) = 3t +a(0)?)

Then
(1—q(t)* =1-2q(t) +q(t)> =1—1

SO

1—q(t)y=v1—-t

which is square root up to translation and have
[t =1—q(1—1%).
To approximate g, define polynomials

Q, : [07 1] - [07 1]
Qo(t) =0

Q@ (1)

(t+Q,1(1)%)

1
2

~—

If Q,, converges to some ¢ then ¢(t) € [0,1] and satisfies q(t) = (¢t + q(t)?).
To show the sequence converges, note that for any ¢t € [0,1], @,,,(t) >
Indeed

(Qn() + Q1 (1) (Qn() — Q1 (1)) -

>0 >0 by induction

Qn+1<t) - Qn(t) =

|~

Since @,, is an increasing function by induction from definition, the last equality
implies that @,,.,(t) — @, (¢) is an increasing function. Thus

SO

for all m > n,t € [0,1]. Let m — oo, get

0<1—VI—t—Q,() <1—Q,(1)
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8 Continuous functions on a compact space

by defining properties of ¢g. Thus
1—Q,{t) —Vv1i—t|,<1-@Q,(1) =0

as n — oo.
Now set P, (t) =1—Q,,(1—1t?). Then |P, — ||| — 0 as n — oo. O
Proof of Weierstrass approximation theorem. Exercise. O

We now state and prove a more abstract and general version of the approx-
imation theorem.

Definition (algebra). A real/complex algebra is a real/complex vector space
A with a bilinear map

AxA— A
(a,b) — ab

called product that is associative, i.e. (ab)c = a(bc) for all a,b,c € A.

If ab = ba for all a,b € A then A is commutative.

If there exists 1 € A\ {0} such that 1a = a = al for all a € A then A is
unital.

Definition (normed/Banach algebra). If an algebra A is a normed vector

space such that
lab]| < [all]]

for all a,b € A then A is called a normed algebra. If A is a Banach space
then A is called a Banach algebra.

Example.

1. C(K,R) is a commutative unital Banach algebra with product being point-
wise multiplication and unit being the constant function 1.

2. B(X, X), where X is a normed vector space, is a normed unital algebra
with product being composition and unit being idy. If X is Banach then
so is B(X, X). It is noncommutative.

Theorem 3.16 (Stone-Weierstrass). Let A C C(K,R) be a subalgebra that

1. separates points: for all x,y € K,x # y, there is f € A such that

f@) # f(y),
2. vanishes nowhere: for all x € K there is f € A such that f(x) # 0.

then A is dense in C(K,R).

Example. Let U C R” be open bounded. Let A be the set of polynomials in
Zq,...,Z,. Then A is an algebra, separates points and contains the constant
polynomial which vanishes nowhere. Thus Stone-Weierstrass theorem implies

that A = C(U). In particular, C*°(U) is dense in C(U).
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8 Continuous functions on a compact space

We set up some terminologies and intermediate results before we prove the
theorem. These definitions will also be useful later in this course and in other
areas of maths.

Definition (poset, lattice).

1. A partially ordered set or poset is a set Pwith a binary relation < such
that for all u,v € P, either u < v or u £ v and is
(a) reflective: u < wu,
(b) transitive: if u < v, v < w then u < w,
(¢) antisymmetric: if u < v,v < wu then u = v.
2. A lattice is a poset L with the property that for any u,v € L, there is
a least upper bound or join u V v and a greatest lower bound or meet
u AN wv,ie.
u,v <uVoand if u,v < b then u Vv <b,
uAv<wu,vand if b <wu,bthen v <uAw.

Example. C(K,R) is a lattice (f < g if and only if f(z) < g(x) for all x € K)
and

(f Vg)(x) = max{f(z),g(x)}
(f A g)(x) = min{f(z), g(x)}

Lemma 3.17. Let A C C(K,R) be a closed subalgebra. Then A is a lattice
in C(K,R).

Proof. We need to show that if f,g € A then f A gand fV g are also in A.

(F Vo)) = (@) + 9(a) + | () — gl))

1
(fAg)(@) = 5(f(z) +9(z) = |f(z) — g(x)])
so suffices to show that if f € A then |f| € A. Let f € A, f # 0, > 0. Replacing
f by f/1fle we may assume that f takes values in [—1,1]. By Lemma 3.15
there is a polynomial P : [—-1,1] — [0,1] such that |[P — ||| < &. Then
|[Pof—|fllec <e. Since Pof e Aand A is closed, have |f| € A. O

Lemma 3.18. Let L C C(K,R) be a lattice. If g € C(K,R) is such that
foralle >0, for all x,y € K, exists f € L such that

{ |f(x) —g(z)| <e (%)
If(y) —gy)| <e

then g € L. In particular, if this condition holds for all g € C(K,R) then
L=C(K,R).
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8 Continuous functions on a compact space

Proof. Let g € C(K,R) be as in the assumption and € > 0. We construct f € L
such that |f — g| <e. For z,y € K, let f,, be fin (x). By continuity, the sets
Upy = {2 € K + £, () < g(2) + )

Vey={2€ K: f,(2) > g(2) —¢}

are open and {z,y} C U,, NV, . For any z, {U,,}, is a cover of K so by
compactness there are y, ...,y, such that U?:l Umyi = K. Define

i=1
fo= /\ fzy,i €L
i=1
then
Jo(y) <gly) teforalye K
fo(y) > gly) —e forally € V,
Now {V,}, is an open cover of K. Choose finitely many x4, ..., z,, such that
K= U;n:1 V,, by compactness. Set
f=\f., el
j=1
o
fly) <gly) +eforally e K
fly) >gly)—eforally e K
so |f(y) —g(y)| <eforallye K. O

Proof of Stone-Weierstrass. By continuity of addition and multiplication, the
closure A is a closed subalgebra of C'(K,R) so is a lattice. Let g € C(K,R),z,y €
K. We will find f € A such that f(z) = g(x) and f(y) = ¢g(y). In particular,
(*) in Lemma 3.18 holds.

By assumption A vanishes nowhere and separates points, i.e.

Ve € K,3f, € A such that f,(x) #0
Va,y € K,3f,, € Asuch that f, (z) # f,,(y)

Claim that for all z # y, there are a, 3,7 € R such that h = af, + 8f, + 7.,
satisfies

h(x) # 0, h(y) # 0, h(z) # h(y).

Indeed if f,,(z) # 0 and f,,(y) # 0 then we can take h = f, . Otherwise wlog
fzy(y) = 0 and by rescaling we can assume

fwy(x) = Lfgcy(y) = O,fy(l‘> =C, fy(y) =1

so take
0(:0,5:17’}/:2—0
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8 Continuous functions on a compact space

This gives the claim since
hr)y=C+2—-C =2
hy) =1

We find that (h(z),h(y)), (h(z)?, h(y)?) € R? are linearly independent. Then
there are s,t € R such that

(9(x), 9(y)) = t(h(z), h(y)) + s(h(x)*, h(y)*) = (f(@), f(y))

with f = th + sh? € A. () holds for any g € C(K,R), thus completing the
proof. O

Example. Let K C R™ be compact. Then C(K) is separable, i.e. there is a
countable dense set, given by polynomial with rational coefficients as by Stone-
Weierstrass theorem we can approximate continuous functions on K by this
set.

In example sheet 3, we will show that given K compact Hausdorff, C'(K) is
separable if and only if K is metrisable.

Example. Let K and L be compact. Then A C C(K x L) consisting of functions
of the form

KxL—=R
(@y) > 3 fil@)aw)
=1

where (f;) C C(K),(g;) C C(L), is an algebra that separates points and van-

ishes nowhere. Thus A = C(K x L). In particular if (f;) C C(K), (g;) € C(L)
are dense sequences then functions of the form (z,y) = X" f;(2)g;(y) are
dense in C(K x L).

Corollary 3.19. For every f € C([0,1]?), have

/01 /01 f(x,y)dzdy/Ol/olf(;z;’wdydx.

3.6 Complex Stone-Weierstrass theorem

Theorem 3.20 (complex Stone-Weierstrass). Let A C C(K,C) be a subal-
gebra such that

1. A separates points,
2. A wvanishes nowhere,

3. A is closed under complex conjugation, i.e. f€ Aif f€ A

then A = C(K,C).

This is important in spectral theory, which we’ll get back to in the last
chapter of the course.
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8 Continuous functions on a compact space

Definition (C*-algebra). A C*-algebra is a complex unital Banach algebra
A with an antilinear involution a — a* satisfying

(ab)* = b*a*
1" =1
(Aa)* = Aa*
la*[| = lla

Example.
1. O(K,C) is a commutative C*-algebra with f* = f.

2. B(H, H) with H a Hilbert space is a C*-algebra. We will introduce Hilbert
space formally in the next chapter.

Corollary 3.21. If A C C(K,C) is a C*-subalgebra that separates points
then A= C(K,C).

Proof. The main observation is that if f € A then
1 _
Ref=(f+Hea
1 —
Imf=—(f— A
mf=(f-f) e

Let Ag be the subalgebra of C'(K,R) generated by Re f,Im f for f € A. Then
Apg vanishes nowhere and separates points since A does, so the real version
Stone-Weierstrass theorem implies that Ay = C(K,R). Let f = u + v €
C(K,C) where u,v € C(K,R). There are (u;) C Ag,(v;) C Ag such that
u; — u,v; — v. Since ujJrivjeA,Z:C’(K,(C). O

Example (Hardy space). One may wonder if closure under complex conjugation
is necessary. Consider K = {z € C : |z| < 1}, the closed unit disk. Then

A={feC(K,C): fanalytic on K}

is a subalgebra. It separates points and vanishes nowhere. But A # C(K,C)
since z = Z is not in A.

Example. Let T = R/27Z be the circle, i.e. the interval [—m, 7] with end points
identified. Let A be the subspace in C(T, C) spanned by {e™*}, ;. Its elements
are called trigonometric polynomials. A is a C*-subalgebra, separates points
and contains the constants so vanishes nowhere. It is also closed under complex
conjugation since ein® = =% s0 A = C(T,C) by complex Stone-Weierstrass
theorem.

Example. On example sheet 3 we’ll show that there exists f € C(T) such that
S, f(0) + f(0) where S,, f is the partial Fourier sum given by the Dirichlet sum

Snf: Z fkeikr

k=—n
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8 Continuous functions on a compact space

where

2

fimge | fre e

This does not contradict the previous observation. The moral is that the trigono-
metric polynomials that provide a uniform approximation to a given f € C(T)
cannot always be taken to be the partial Fourier sum!

However, we can deduce that the partial Fourier sum of f converges to f in
L2,

Proposition 3.22. For every f € C(T),
lim / |f — S, fl?dx = 0.
n—oo x

Proof. By complex Stone-Weierstrass theorem, for any € > 0 there is a trigono-
metric polynomial P such that [P — f| < e. Note that S, P = Pif n > deg P,
where deg P is the largest n such that P contains e¥"*®. Then

if deg P <n so
|f = S fPP <2f = PP +2[S,f - S,P]?

since (a + b)? < 2a% + 2b2. Thus

/ |f—Snf|2dx§4/ |f — P|*dx < 87e?

—T

where we used Bessel’s inequality, which we will prove in the next section, that

for g € C(T),
/ |S,,9/?dx < / lg|*d.

™ —T
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4 FEuclidean vector spaces and Hilbert spaces

4 FEuclidean vector spaces and Hilbert spaces
4.1 Definitions and examples

Definition (inner product). Let X be a vector space (real or complex).
Then an inner product is a map (-,-) : X x X — K such that

1. (skew-)symmetric: (z,y) = (y,z) for all z,y € X,

2. linear in first argument: (A;z; + A%, y) = A (21, Y) + Ag(xq,y) for
all z,,y € X, \; € K,

3. positive definite: (z,z) > 0 with (x,2) = 0 if and only if x = 0.

A vector space X together with an inner product (-, -) is called an inner
product space.

Remark.
1. In the real case (-,-) is bilinear.
2. In the complex case (-,-) is antilinear in the second argument.

3. There is an opposite convention, for example among physicists, where the
role of the first and second argument is interchanged.

Proposition 4.1 (Cauchy-Schwarz). Let X be an inner product space. Then
(2, )] < (2,2)2(y, )"
for all x,y € X with equality if and only if x = Ay for some A € K.
Proof. We may assume that (z,2) =1 = (y,y) and (z,y) > 0. Then for ¢ > 0,
0< (z—ty,x—ty) = (v,2) — 2t(x,y) + 2(y,y) = 1 + 2 — 2t(x, y).

Thus
t2

(x,y) < inf =1

t>0 2t

Corollary 4.2. Let X be an inner product space. Then ||z = (z,z)"/?
defines a norm on X.

Proof. Positive definiteness is immediate from the definition. Positive homo-
geneity follows from

Azl = (Az, Ax) /2 = (WX (@, 2) 7 = [A[]z].
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4 FEuclidean vector spaces and Hilbert spaces

For the triangle inequality, note

lz+yl> = (z+y,z+y)

= (z,7) + (y,y) + (2,y) + (y,7)
—2Re(z,y)<2|(z,y)|

<l + lyl* + 2]z [yl
< (el + lyl)?

O
Fact (polarisation identities). Let X be an inner product space, z,y € X. Then

1. real version: .
(z,y) = 7 (= + yl? ==z —yl?).

2. complex version:
1 . . ) .
(@,9) = (= +yl* = o = yI* +ile + iy|* — iz —iy|?).

Proof. Trivial. O

| Corollary 4.3. The norm determines the inner product.

Fact (parallelogram law). Let X be an inner product space, x,y € X. Then
o+ gl + o — y1? = 2a]? + 2lyl?.

Proof. Ditto. O

Exercise. If X is a normed vector space satisfying the parallelogram law for
any x,y € X, then the polarisation identity defines an inner product on X, so
X is also an inner product space.

Definition (Euclidean). A normed space is Fuclidean if its norm is the
norm associated to some inner product.

By polarisation identities, such inner product is unique if exists. The exercise
shows that an equivalent characterisation is parallelogram law holds.

| Definition (Hilbert space). An inner product space is called a Hilbert space
if it is complete as a metric space.

Example.

L2 ={(z,) CK: 3> |z,|* <oo} is a Hilbert space with inner product

o0
(z,y) =Y 7,
n=1

We will later show that this is the only separable Hilbert space up to
isometric isomorphism.
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2. C([0,1]) is an inner product space with

(z,y) :/ f(x)@da:
0

But it is not complete, so not a Hilbert space. This leads us to completion
of inner product spaces.

Proposition 4.4. Let X be an inner product space. Then the completion
of X is also an inner product space, thus a Hilbert space.

Proof. Let X be the completion of X. For z,y € X, choose (z,,), (y,) € X such
that z,, — z,y,, — y. Set

(xvy) = (xn’yn)

im
n—oo
Easy to check that this definition is well-defined, that (-,-) is an inner product,
and that this iner product induces the completed norm. O

Example. The completion of C([0,1]) is a Hilbert space, denoted L?([0,1]),
which can be identified with the space of equivalence classes of Lebesgue mea-
surable functions with f ~ g if and only if f = g Lebesgue almost everywhere.

4.2 Orthogonal complements and projections

Definition (orthogonal, orthogonal complement). Let X be an inner prod-
uct space.

e x,y € X are orthogonal if (x,y) = 0, also written as x L y.

e The orthogonal complement of a set S C X is

St={reX:(x,y)=0forall yec S}
Fact (Pythagoras). If z,y are orthogonal then ||z + y||> = |z|? + |y|?.

Fact. S* is a closed subspace of X and span Sl =S+

J_ _ 71 _ . . J_ .
Proof. S+ = ﬂyES fy 7(0) where f,(z) = (x,y) is continuous. Thus S~ is the
intersection of closed sets so closed. Clearly

S+ D (spanS)*t D spanSL.

For the other direction, let x € S* and y € span S, i.e. y = lim, , . ¥, with
Y, € spanS. Then
(z,y) = lim (z,y,) =0
n—oo

—
so x € span S . O

Notation. For Y C X a subspace, Y- NY = 0. Thus the sum Y + Y is direct
and write Y + Y- =Y @Yt
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Example. From linear algebra we know if X is finite-dimensional then X =
Y @ Y'. However this is generally false for infinite diemsnional inner product
space. Let X = C[0,1] with (f,g) = j(;l fgdr and Y = C[0,1] C C[0,1]. Then

Y+ =0 since fol fgdx =0 for all g € C* implies f =0 (as f € C[0,1]).

Theorem 4.5. Let Y C X be a complete subspace. Then
X=YopY"

Moreover, given x € X, its unique decomposition r = T +x; where T €
Y,xz, €Y' is characterised by

o, =l — 2| = nfle —yl.

In particular this holds if X is a Hilbert space and Y C X is a closed subspace.

Proof. Let x € X and D = inf y|Jz — y||. Choose any sequence (y,) C Y such
that |y, — z| — D. Claim that (y;) is Cauchy: by the parallelogram identity
applied to  —y;, . — yy,

ly; = vil? + 122 — y; — yil® = 22 — 01 + 2z — g, >
Rearrange,

1
ly; — il = 2@ — 1> +2 |2 — gl —4 ]z — 5 Wi+ u)l?
—————— N — —

—D2 —D?
< 4(D2 +e)— 4D?
=4e

>D?

for all € > 0 for all j, k sufficiently large. By completeness of Y, the claim implies
that y; — x| for some 2| € Y. By continuity of norm |z —z|| = D.

Now let 2| =2 — z. Have to show that z, € Y*. Suppose not, then there
must be § € Ysuch that (§,z,) > 0. Thus

|z —tg1? = oo )? — 2t(zy, §) + 2 [7)°
= D? —t(2(z,,§) — t]7*)
>0 for ¢t > 0 small

< D?

But
|z, —tg]* = |o — () +t7)|* > D?,
NI
ey

contradiction. Thus x, € Y.

Finally to show that the decomposition is uniquely characterised by the
expression, suppose * = &, + & for some &, € Yi,iﬂ €Y. Then &) =z +y
wherey =z, =%, €Y. Buty =7 —z  €Ysoye Y NY+ =0. O
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Theorem 4.6 (Riesz representation theorem for Hilbert space). Let H be
a Hilbert space. Then for any £ € H* there is a unique x, € H such that

ty) = (y, z,)
for ally € H and |€|| = |x,].

This can be seen as a generalisation of £2 =~ (¢2)*, as ¢? is an inner product
space and thus a Hilbert space.

Proof. Let £ € H*, £ # 0. Then ker/ is closed and and by Theorem 4.5 we have
H =ker{ @ (ker £)*. Since £ # 0, (ker£)* # 0. Claim that there exists z, € H
such that (ker £)* = span{z,} and |z,| = 1: let 7, € (ker£)*, |x,| = 1. Then
for any y € H,

{(y) {(y)
y=(y— zg) + T
W )™t Ty ™
cker ¢ espan{z,}C(ker )+

Define z, = ¢(zy)z,. Claim that {(z) = (z,z,) for all z € H: if z € ker{ then
¢(x) =0 and
(Z‘,xg) = E(xo)(%xo) =0.

If x € (ker¢)4, i.e. x = Az, where \ € K, z, as above, then
(z,2¢) = M(20) (T, 79) = M(2o) = £(Az() = L(2).

Since £ and (-, x,) are in H* and agree on ker £ and (ker £)*, they also agree on
.
For uniqueness, if (z,x,) = (z,Z,) for all € H then

(z,20— %)) =0

for all x, in particular
(xg—Zpxp— %) =0

SO T, = Z,.
Finally for isometry,

[ = sup [€(x)] = sup |(z,2)] = ||
|zl<1 o<1

where the last equality is by taking z = ”i—" for lower bound and Cauchy-

e

Schwarz for upper bound. O

Corollary 4.7. The map

H— O*

T = (7m)

is antilinear, bijective and isometric.
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Definition (projection, orthogonal projection). Let X be an inner product
space.

o A linear operator P : X — X is a projection if P2 = P.

o A projection P is an orthogonal projection if P2 = P and P is self-
adjoint, i.e.
(Pz,y) = (z, Py)

for all z,y € X.
Fact. Let P be an orthogonal projection. Then |P| =1 or |P| = 0.
Proof. Suppose P #+ 0. For any x € X such that Pz # 0,

| Px|? (Pz, Px) (z, P%x) (z, Px) <[]
= = = < |z
1P| [Pz 1P| 1P|

| Pz] =

so |P| <1.
On the other hand, since P # 0 there is x such that Px # 0. Let y = Pz # 0
and then
Pyl = [1Pz] = |yl

so |P|| > 1. O

Corollary 4.8. Let Y C X be a complete subspace. Then there is an
orthogonal projection P : X — X with

imP=Y

ker P=Y+

Proof. Given z € X, let x = x| + z, with zy € YVand z, € Y+ be its or-
thogonal decomposition. Set Pz = x. Then P is linear since given orthogonal
decompositions of z,y € X, have

Az + py = Aoy + pyy + Aoy +py,)
—/—/ —/—/
2% €Y+

SO
P(Ar + py) = APz + uPy

by uniqueness of orthogonal decomposition.
Clearly P? = P. Also have

(Pz,y) = (z,y, +y.)
), Y))
T +a,y))

= (
= (
= (
= (z, Py)

so P is orthogonal. O
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Example. Let X = C(T,C) with inner product

1 T
=5 | fais.
T n

S, X=X

fe Z fkeikw

k=—n

Then

where fk = % ff(ac)e’“”dx? is the orthogonal projection with image ¥ =
Span{ei’”}‘ kj<n (Which is finite-dimensional so complete).

Proof. Let e,(x) = ¢**. Then f,, = (f,e;) and
Snf: Z ek(fvek)'
k=—n

If feYiie f=3 age, then

Spf= Z ek(Z agey, ey) = Z epay = f

k=—n l=—n k=—n

as {e;} is an orthonormal basis. If f € Y* then (f,e;) = 0 for all |k| < n so
S, f=0. Thus S,, is a projection.

S,, is also orthogonal since
(S, f.9) Z Fulerg Z w(g.er) Z Fid, = (£,5,9)
k=—n k=—n k=—n
so S,, is orthogonal. O

Corollary 4.9. Let H be a Hilbert space and S C H. Then

span S = (span f)l =

Proof. First equality follows from uniqueness of orthogonal decomposition and
second equality follows from fact on a previous remark. O

4.3 Orthonormal systems

Definition (orthonormal system). Let X be an inner product space. A set
{ea}a € X of unit vectors is an orthonormal system if (e,,ez) = 0 for all
a # . 1t is called mazimal if it cannot be extended to a larger orthonormal
system.
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Definition (orthonormal basis). Let H be a Hilbert space. Then a maximal
orthonormal system is called complete orthonormal system, an orthonormal
Hilbert basis or simply an orthonormal basis.

Note that an orthonormal basis is not a basis in the linear algebra sense.

Fact. Let H be a Hilbert space and S an orthonormal system. Then S is an
orthonormal Hilbert basis if and only if spanS = H.

Proof. Let Y = span S. Then Y is complete so H =Y @ Y. Suppose Y+ = 0.

Then there is z € Y+ = S+, |z| = 1, i.e. SU {z} is an orthonormal system.
The converse also holds. O
Example.

1. In £% let e, = (0,...,0,1,0,...) be the vector with 1 at nth coordinate.
Then {e, },, is an orthonormal basis.

2. In C(T,C) with the usual inner product, let e, (z) = €. Then {e, },cz
is a maximal orthonormal basis. They are orthonormal and their span is
dense by the complex Stone-Weierstrass theorem.

Fact (Gram-Schmidt). Let X be an inner product space and {z,}¥; C X

be linearly independent, with N = oo allowed. Then there is an orthonormal

system {e;} with span{z,}*_, = span{xz,;}¥_, for all kK < N.

Sketch of proof. Let e; = ";cﬁ and given ey, ..., e, set

k
Tpy1 — Zizl €i(Tpi1,€;)

k
’xk+1 - Zi:l €i(Tpy1,€:)

Crt1 = |

‘ .
O

Example. Let X = C([-1,1],R) with (f,g) = f_ll fgdz. Then 1,t,t2,... is a
sequence with dense linear span by Stone-Weierstrass. Applying Gram-Schmidt,

we obtain
1 3 /5
— /=t /= (32 =1),...
N3 \[2 \/;( )

These are an example of orthogonal polynomials and called the normalised Leg-
endre polynomials. In fact, the nth one is a multiple of
dn
— (2 —1)"
¢ )

Corollary 4.10. Let H be a separable Hilbert space. Then there is a count-
able orthonormal Hilbert basis.

Thus from now on, we will always assume orthonormal basis to be countable
if H is separable.
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4 FEuclidean vector spaces and Hilbert spaces

Proposition 4.11 (Bessel’s inequality). Let X be an inner product space
and {e;}| an orthonormal system, with N = oo allowed. Then

N
Do lze)? < Ja?
i=1

forallx € X.
In particular if N = oo then (x;) € {2 where z; = (x,¢;).

Proof. By taking a limit suffice to prove the case N < co. Define

N
Px = Z(xi7ei)ei.
i=1
Then P? = P and
N N
(Pz,y) = Z(xaei)(eivy) = Z(xaei)(yvei) = (z, Py).
i=1 i=1

Thus P is an orthogonal projection. Thus

N
Yl e)? = 1P| <[]
i=1

for all z € X. ]

Proposition 4.12 (Riesz-Fisher). Let H be a separable infinite-dimensional
Hilbert space with orthonormal basis {e;}5°,. Then

1. for any x € X, set x; = (z,¢;) € K. Then (z;) € £* and

8

I
[

3

o

Il
—

K2

2. conversely, if (z;) € €% then there is x € H such that (z,e;) = x; for
all i.

3. Parseval identity: for any x,y € H,
o0
(.’17, y) = Z xzyz
i=1

In particular the map

¢ H— ?
z = (7€)

is an isometric isomorphism.

In fact, the concrete space £? is the one studied by Hilbert and indeed this
theorem shows that it is a prototype for a large class of Hilbert spaces. The
term “Hilbert space” was coined by von Neumann, in his attempt to formulate
quantum mechanics.
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4 FEuclidean vector spaces and Hilbert spaces

Proof.

1. Let s, = Zj: x;e;. Then (s,,) is Cauchy: for m > n,

1
m m o0
Z Tie| = Z |z < Z |;]* — 0

i=n+1 i=n+1 i=n+1

2
Hsm — Sn ” =

as n — oo since (z;) € £ by Bessel’s inequality. By completeneess of H,
there is s € H such that s,, — s. Claim that s = x: for any ¢,

(s —x,e;) :JLIgo(sn—x,ei) =x,—z; =0

so
S—
s —x € (span{e,;})* =span{e;} = H+ =0.

2. If (z;) € 2, the sum z = Zzl x,e; converges by the same argument.

Then
(2,€;) = Llim (Zl xjej’ei> =T;.
=

3. Similarly,

n m n
= i (S S| = i e,
1= Jj= =

since the infinite sum converges absolutely since (z;), (y;) € 2.
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5 Spectral theory

5 Spectral theory

Roughly speaking spetral theory studies eigenvalues of operators. From now on
Banach and Hilbert spaces are complex.

5.1 Spectrum and resolvent

Definition (spectrum, resolvent). Let X be a (complex) Banach space and
T € B(X) = B(X, X).

e The resolvent set of T is
p(T)={2€C:T—2=T - zid is bijective and (T — 2)~! € B(X)}.
e The spectrum of T'is
o(T) = C\ p(T).
e The resolvent of T is the map

Rp:p(T) = B(X)
2 (T —2)71

Remark. If T — 2z is bounded (as in our setting) and bijective the condition
(T — 2)~! € B(X) is automatic by open mapping theorem. For unbounded
operators, which we do not discuss, it does not follow automatically and has to
be included in the definition.

Proposition 5.1. Let z, € p(T'). Then p(T') contains the disk

D ={z€C:|z—z]|Rp(z)] <1}

In particular p(T) is open, o(T) is closed. Moreover the resolvent map Ry
is analytic (can be represented by an absolutely convergent power series in
any small enough disk).

Lemma 5.2. Let T' € B(X) with |T| < 1. Then the series 32> T,
converges in B(X) and

> T

n=0

1
[A=1)"Y < :
17|

1-1)""

with

Proof. Basically geometric series. Form the partial sums S,, = ZZ:O T*. Then
(S,,) is a Cauchy sequence in B(X) as for m > n,

[Sm =Sl < D ITHI< D ITIF =0

k=n+1 k=n+1
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5 Spectral theory

as n — oo since |T|| < 1. Since B(X) is complete the limit S = lim, , S,
exists and by a similar argumet
B T —
2=
Moreover,
SA=T)=>"TF->"TF=id.
k=0 k=1
O
Proof of Proposition 5.1. For z € D,
T—2=(T—2)—(2—2)=(T—2)(1— Rplz)(z—2) )
FI<IRr(z0)ll2—20 <1
so by the lemma
oo
(1= Rp(29)(z —29)) " = Z(z — 29)" Ry(zy)" € B(X).
n=0
Thus oo
(T =2 = (2= 2)"Rp(20)"*! € B(X)
n=0
so z € p(T). Thus D C p(T) and Ry is analytic on p(T). O

Corollary 5.3. o(T) #+ 0 and
o(T) C{zeC: [z < [T}

Proof. For any |z| > |T|,

1 1 RSN

Thus z € p(T) and the second claim follows.

Also |Rp(z)] — 0 as z — oo. Suppose for contradiction o(7) = . Then
Ry : C — B(X) would be entire so by Liouville’s theorem (which holds when
the codomain is a Banach space), it would have to be constant, thus 0. But this
is absurd since, for example, —zRp(z) — id as |z| — oo. O

5.2 Classification of spectrum

We would like to understand why 7' — z fails to be bijective. One reason, as in
finite-dimensional case, is that ker(T'— z) # 0. But even if the kernel is trivial
it may fail to be bijective.

Proposition 5.4. Let X be a Banach space, Y a normed space and T &€

B(X,Y). Then its inverse T~ € B(Y, X) if and only if im T is dense in'Y
and T is bounded below, i.e. exists e > 0 such that for allz € X, |Tx| > ¢||z|.
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5 Spectral theory

Proof. The only if direction is immediate. Thus assume that T' € B(X,Y) is
such that im T is dense and T is bounded below. Since T is bounded below T
is injective so bijective onto its image. Let S : imT — X be its inverse. Since
T'is bounded below, S is bounded. Since im7'is dense in Y and X is complete,
S extends uniquely to a map S : Y — X. Moreover S € B(Y, X) and for any
sequence y;, — Y, (y,) C im T,

Tgy = lim TSy, = lim y, =y
k—o0 k—o00
soS=T"1 O

Definition (point spectrum, continuous spectrum, residual spectrum). Let
X be a Banach space and T' € B(X).

e The point spectrum or set of eigenvalues is
0,(T) ={A€o(T): T — X is not injective}.

e The continuous spectrum is

0. (T)={X € c(T) : T — X injective and im(7T — A) is dense}.

e The residual spectrum is

0. (T)={A€o(T): T — X is injective and im(7T — X) is not dense}.

Remark. By previous proposition, if A € ¢.(T) then T — X is not bounded
below. Thus there exists a sequence (z;,) C X with ||z;| = 1 such that Tz, —
Ax, — 0as k — oco. Ais called an approxzimate eigenvalue.

The set

04p(T) ={A € o(T) : X is an approximate eigenvalue}
is the approrimate point spectrum.

Example. Let X be a finite-dimensional inner product space. Then T — X is
injective if and only if it is surjective. Thus o(T) = 0,(T). Moreover

o,(T) ={A € C:det(T — \) =0}

contains at most n = dim X points. In particular p(T') = C\ o(T) is dense in
C.

5.3 Adjoints

Definition (dual/adjoint). Let X,Y be normed spaces and T' € B(X,Y).
The dual or adjoint T* € B(Y*, X*) is defined by

(T f)(x) = f(Tx)
for feY* x e X.
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5 Spectral theory

Fact. T"f € X* and |T*| = |T].

Proof.
(T fla| = [f(Tx)] < [ fly-IT]- =] x

SO
1T fllx < 117

so |T*| < |T|. In general |T%|| > |T| follows from the Hahn-Banach theorem
but for some spaces, such as P and Hilbert spaces we may write down an explicit
element saturating the bound. O

Definition. Let H be a Hilbert space and T € B(H). Let § : H — H*
be the isomorphism from Riesz representation theorem. Then we define
T* € B(H) by

Tz =0"'T*0z

for x € H.
Fact. 7" is characterised by
(T.y) = (2, T"y)
for all z,y € H.
Proof. For all z,y € H,
(@, T*y) = (x,071T*0y) = T*0y(z) = Oy(Tx) = (T, y).
O

From now on, we write 7™ instead of T* for a Hilbert space H, which is the
only case that we will consider from now on.

Example.
1. id* =id. More generally (\id)* = \id.

2. Let H = (2. If T is the left shift operator then T* is the right shift
operator.

Fact. Let H be a Hilbert space and S,T € B(H). Then
L. (AS + uT)* = \S* +uT* for all A\, € K.
2. (ST)* = T*S*.
3. (T =T
1. |7 = |7
Note. In general |T|? # || T?|, for example T # 0 such that T? = 0.

5.4 Normal linear operators
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5 Spectral theory

Definition (normal, self-adjoint, unitary). 7' € B(H) is
o normal if TT* =T*T.
o self-adjoint if T =T*.

o ungtary if T71 = T*.
In particular self-adjoint and unitary operators are normal.
Exercise. Let T € B(H) be normal. Then |Tz| = |[T*z| for all z and
kerT =ker T* = (imT)* = (im T%)*.
See example sheet 4. It follows that
imT= (im7T)")* = (ker T)* = (ker T*)* =im T*.

Corollary 5.5. For T normal, o,.(T) = 0.

Corollary 5.6. For T normal, if Tx = Az then T*z = Az. In particular

0,(T7) = 0,,(T)

where the bar denotes conjugation.
Similarly if Tx; — Ax; — 0 then T"z; — Az; — 0 so

Tap(T") = 04 (T).
Proof. If T'is normal then so is T'— A and (T'— \)* = T* — X. Thus
(T = Naz| = (T — Nz = [(T* = N)z|
so Tx = Az if and only if 7"z = Az. More generally (T — Nz; — 0, where
|z, = 1, if and only if (T* — X)z; — 0 s0 0,,(T*) = 0,,(T). O

| Corollary 5.7. Let T be self-adjoint. Then o(T) C R.
Exercise. Let T be unitary. Then o(T) C S' = {z € C: |z| = 1}.

Example. Let T € B(H) be self-adjoint. Then for any t € R,
ar _ N (@tT)"
=D

n=0

converges in B(H) and U(t) = T is characterised by the ODE

N, .
iz U(t) = TU(1),U(0) = id.

For any t € R, U(t) = €7 is unitary if T is self-adjoint.
In quantum mechanics, any solution to the Schrodinger equation

.0
_Z&T(t) = T1/J(t)» "/}(0> = "/}O

is given by ¥(t) = ¥ U(t). T is called the Hamiltonian and v is the wave
function.
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Lemma 5.8. Let T € B(H) be self-adjoint. Then

|7 = sup sup [(Tz,y)| = sup [(Tz,z)|.

lzI<1 [yl<1 lzl<1

Proof. Assume T # 0. By defintion |T|| = supHm”q(Tx,Tx)l/z. Let (z;) C H,
|z;| = 1 be such that (T'z;, Tx;) — ||T|?. Thus

pry = L
7]
! lim (Tz;, Tx;)
RS
L im (2, T2,
1m (x; X,
= I

1
= lim (z;,T?x;)
i=oo [T,

= lim (z;, Ty;)
i—00

where y, = Taking sup,

HTr B

1T <

sup sup (z, Ty).
<1 [yl<1

On the other hand, |(Tz,y)| < |T|| for |z|, |y] <1 so

|7 = sup sup |(Tz,y)]
lz<1 yl<1

so the first equality.
For the second equality,

sup |(Ta,a)| < sup sup (T, y)|
[z]<1 =<1 |y[<1

is clear. For the other direction

1
|(x, Ty)| = ZI(T(I+y),x+y) —(T(x—y),z—y)|
<1 T 2 —y|?
< = sup [(T'z, 2)|(|lz + y[* + = — ylI*)
4 |z1<1
1
< 7 sup (T2, 2)| (2|=]* + 2]y[?)
lzl<t —
< sup |(Tz,z2)|
Jzl<t

Lemma 5.9. Let T be self-adjoint. Then at least one of |T|| and —||T| must
be an approzimate eigenvalue.
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Proof. Replacing T by —T if necessary, assume

|T|| = sup |(z,Tx)| = sup (z,Tx).

lzl<1 lzl<1

Then there is (z;) C H, |z;| = 1 such that (z;,Tz;) — |T|| = A. Then

il

| T, — Az | = | T2 —2X (;, Tx;) +2* = 0
1= il ek Rl

<A\2 —A

O

5.5 Spectral theorem for compact self-adjoint operators
Recall that given normed spaces X and Y, T' € B(X,Y) is compact if T'(B) is
relatively compact in Y for any bounded set B C X.

Lemma 5.10. Let T be compact. Then any nonzero approximate eigenvalue
is an eigenvalue.

Proof. Assume that Tz, — Ax; — 0 with |z,| = 1, A # 0. By compactness of T'
there is a subsequence such that T'x; — y along that subsequence. Then along
that subsequence

Ty =Tlim Tx, = lim T(Az;) = A lim Tz, = Ay

71— 00 71— 00 71— 00

so Ty = Ay. Moreover if A # 0 then y # 0. O

Corollary 5.11. Let H be a Hilbert space. Let T € B(H) be self-adjoint
and compact. Then |T| or —||T| is an eigenvalue.

Notation. F, = ker(T — \) is the eigenspace corresponding to eigenvalue A.
The strategy is to diagonalise T, construct a sequence of eigenvalues and

eigenspaces by applying the corollary to Eil where \; = ||T| or —|T| and

repeat this with H replaced by Ej .

Lemma 5.12. Let T € B(H) be self-adjoint. Then

1. for any eigenvalues p # A the spaces E, and E\ are orthogonal.

2. for any nonzero eigenvalues {\;};cr,

T((D Ex)Y) S (D E*

i€l el

Proof.
1. Assume Tx = px and Ty = Ay and wlog A # 0. Then

(0.9) = 1 (Tz,9) = 30, Ty) = K w,9)

sopu=Aor (z,y) =0.
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5 Spectral theory

2. Let y € (B, E,,)*. Then for any x € Ey where \; # 0, have

(@ Ty)

(3

0=(,9) = - (To,0) =

3

so (z,Ty)=0forallz e @, Ey , ie Tyc (P,  E )T

Lemma 5.13. Let T € B(H) be self-adjoint and compact. Then for every

>0, @,\ea y By s finite-dimensional.
|)\\>a

Proof. Assume otherwise. Then there are infinitely many eigenvectors (z;) such
that |z;| =1 and (z;,2;) = 0 for i # j from Gram-Schmidt and

il
|Ta; — Txj|? = | T2 |* + [T > 2¢2,
contradicting compactness of T'as (T'z,; ) does not have a convergent subsequence.

O

Theorem 5.14 (Hilbert-Schmidt). Let T € B(H) be self-adjoint and com-
pact. Then there are at most countably many distinct eigenvalues (\;) which
can accumulate at 0. The eigenspaces Ey and E)\j are orthogonal for i # j.

E,, is finite-dimensional for A; # 0, and

o0
T= ZAJP,\j

H= (kerT) & QBEA

where P/\j is the orthogonal projection onto E/\j.

Proof. By the previous two lemmas there is an eigenvalue A; such that A, = |T
or —||T||. Given |A| > |Ay| > -+ > |A;| such that T has no other eigenvalues
> | Al let

Then H,, C H is closed so is itself a Hilbert space. Also T'is H-stable and
I, | < |Agl- Thus there is an eigenvalue A, different from the A;’s for
i < k, with [Ag 4] = [T]g, | < [Ax] and there is no other eigenvalue p with
[Aps1]l < |ul < |Agl. This defines a sequence (A;) with |A; ;| < |\ for all .
Since @l - E,, is finite-dimensional, the sequence can only accummulate at
0. In particular (A) is finite or countable with A, — 0.

Since T| gt =T | (@B, cannot have a nonzero eigenvalue, must

A£0 A

have ”T|(® i|| = 0. Thus

H=(kerT)® (D E,)
A#0
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and

|72 =Y NP, z| =Tz —TP,z| where P, => P,
i=1

=1
n
=|T(1—P,)z|| wherel— P, is projection onto (@ E, )t =H,
i=1
< T(g, M|
< [Anlll
so [T =327 NPy | <IA,| = 0asn — oo Thus
= Z AiPAi,
=1
as claimed. O

Corollary 5.15. Let T be self-adjoint and compact. Then
o(T)u{0} = 0,(T) U {0}.

Proof. Let T, = 3"  \;Py . Let ¢ 0,(T) U{0}. Then

1

n n

T,—p=Y (N—mwP, —p(l=) P)
i=1 i=1
1-P,
o) N
(Tn - Iu)_l = Z()‘z - lu’)_lpki - IU/_l(l - Pn)
i=1
exists and

(T, — )M < max{[u~h [\ —pl ™1} < C
as A; # p and p # 0. Thus

<C —0

<1 eventually
so (T'—p)~' € B(H), thus u ¢ o(T). O
Corollary 5.16. Let H be a separable and T € B(H) self-adjoint and
compact. Then there is an orthonormal basis for H of T eigenfunctions.

Proof. Apply Gram-Schmidt to eigenspaces. O
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5.6 Application: boundary value problem

Let T be the 1-dimensional Schrédinger operator acting on C?[a, b] by
Tu(z) = —u”(z) + V(z)u(z),u € C?[a,b]

with boundary condition

and where V' € Cla, b].

We want to apply the spectral theorem but there are two imminent problems:
C?[a, b] is not a Hilbert space, and T is not even a operator on C?[a, b].

Theorem 5.17. There exists a continuous function (Green function) k :
[a,b] — R such that the unique solution u € C?[a,b] to the boundary value
problem

Tu(z) = f(z) [ continuous

u(a) =u(b) =0
is given by
b
u(e) = [ e.v) )y
k(z,y) = k(y, =)
Proof. Result in analysis. Omitted. O

Lemma 5.18. Let k : [a,b]> — R be continuous. Then the integral operator
K+ (Cla, b, |-l2) = (Cla, b, [ )

b
Kf(r) = / Kz, 9) (y)dy

is bounded and compact.

Proof. By Cauchy-Schwarz,

b
I e < sup [ k()L W)y

< s ([ par) ” ([isorar)”

<C

< C|fl
so K is bounded. Also B={Kf: f € Cla,b],|flls <1} is equicontinuous:

1/2
Kfw) = K| < ([ Ihie.2) — by, 2)Rdz) 17l =0

—0 as |z—y|—0 by continuity

uniform in f € B. Thus compactness follows from Arzela-Ascoli. O
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| Corollary 5.19. K : (Cla,b)], ||l2) = (Cla,bl,||2) is compact.

Proof.
1/2
1, = ([ s@Par) " < Via= oISl
so the embedding of (Cl[a,b],||l«) = (Cla,b], |-|5) is continous. O

Let H = L?[a,b] be the completion of (Cla,b],||5). In particular Cla, b] is
dense in L?[a,b].

Fact. Let X, Ybe Banach spaces and D C X a dense subspace. Then a bounded
(compact, respectively) operator T' : D — Y extends uniquely to a bounded
(compact, respectively) operator T : X — Y with the same operator norm.

Corollary 5.20. K extends uniquely to a compact self-adjoint operator
K : H— H. Moreover K f € Cla,b] for any f € H.

Proof. That K is compact follows from the above fact. That K is self-adjoint
follows from the symmetry of k:
[ @)K @ y)aidady

(f,Kg)

~ [ f@)K (5. 0igdsdy
=(g,Kf)
— (Kf.9)

That Kf € Cla,b] for any f € H follows from the fact that K is also bounded
from (Cla,b],|]ls) = (Cla,b],|l|lo) and thus by the previous fact from H —
(Cla,b], |loo)- Finally embed (Cla,b],||s) to H. All of these constructions
are unique. O

Putting everything together, by the spectral theorem, there exists an or-
thonormal basis (f,,) C H with eigenvalues (u,,) C R, yt,, — 0 such that

n=1

in H. By the last corollary, if p,, # 0 then

fo=LKf, € Clab]
1

and in fact then f, € C?[a,b] since K f € C?[a,b] if f € Cla,b].
Assuming ker k = 0, there is thus an orthonormal basis of C? eigenfunctions
of K. Write A\, = %, have

so these eigenfunctions f,, are also eigenfunctions of 7,, and A,, — oo.
In quantum mechanics, the vectors f € H describe the state of a system and
|f(z)]? the probability density of finding a particle at = € [a, b].
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6 Hahn-Banach theorem*

6 Hahn-Banach theorem#*

When can one extend a bounded linear map defined on some Y < X onto X7
Naturally we require the extension of a bounded map to be bounded. In fact
we do things slightly more generally.

Definition (sublinear map). Let X be a real vector space. A map p: X —
R is sublinear if

1. plaz) = ap(z) for all z € X, o > 0.
2. p(x+y) < p(z)+ py) for all z,y € X.

Example. Any norm is sublinear.

Theorem 6.1 (Hahn-Banach). Let X be a real vector space and Y a subspace
of X. Let p: X — R be sublinear, g : Y — R linear such that g(x) < p(z)
for all xz,y € Y. Then there exists f : X — R linear such that f|y = g and
fx) < p(z) for allx € X.

Proof if Y has codimension 1 in X. Suppose Y has codimension 1, i.e. there ex-
ists ; € X \ Y such that

X =span X U{z,} =Y @ Ru;.
We'll find a € R such that
fo i X—=R
x4tz = g(x) + ta
where x € Y] is the required extension. We take
a = sup(g(z) — p(x —z1)).
zeY

and show f = f, works. Claim first that o < oco: by linearity of g and sublin-
earity of p, for all z,y € Y,

9(@) +9(y) =gz +y) < pla+y) <plz—z,) +ply + ;).
Rearrange,
9(x) —plx — 1) < —g(y) + ply +21)
which in particular implies that o < co.

Note that f(x—z,) < p(x — ;) for all z € Y by choice of a. Also claim that
fly+z) <ply+z) forallycy:

fly+z) =gy) +a<a—(g@)—plz—z)) +py + 1)

inf=—a

so take infimum over x and the result follows.
With this we can extend the boundedness to all scalars: f(x +tx;) < p(z +
tzy) for all t € R,z € Y: by linearity of positive homogeneity of p, for all ¢ > 0

f@stay) = tf(5 £a) tp(5 1) = pla+ tay).
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6 Hahn-Banach theorem*

Essentially we’re done here as we can keep extending g to a larger space..
However when the codimension is not finite, there is a slight (or enormous, de-
pending on how seriously you treat axiom of choice) issue with tethe termination
of this process.

Definition (total order, maximal element). Let P be a poset.

e A subset T' C P is totally ordered if for all x,y € T, either x < y or
y<

e An element m € Pis maxzimal if for all x € P, m < x implies x = m.
Proposition 6.2 (Zorn’s lemma). Let P # () be a poset such that whenever

T is a totally ordered subset then there exists a least upper bound for T. Then
there exists a mazimal element of P.

Note that this easily follows from axiom of choice. For more discussion see
IID Logic and Set Theory.

Proof of Hahn-Banach. Let
P={(N,h): N< X, h:N — R linear, h|y = g, h(z) < p(x) for all x € N}.

Equip P with partial order < where (N,h) < (N’,h) if and only if N C N’
and h'|y = h. As (Y, g) € P, Pis nonempty.

To apply Zorn’s lemma we need to check that every totally ordered subset has
an upper bound. Let {(N;, h;)},c; € Pbe totally ordered. Thenlet N = Uie[ N;
and h(x) = h;(z) if z € N;. h is well-defined. Clearly N is a subspace of X and
h(v) < p(v) for all Nand hy = gso (IN,h) € P. It is also an upper bound. Thus
by Zorn’s lemma, P has a maximal element (M, f). We must have M = X as
otherwise (M, f) would not be maximal by codimension 1 argument. O

Corollary 6.3. Let V be a normed vector space and W < V. Let g € W*.
Then there exists f € V* such that fly, = g and ||f] < |gll-

Proof. If V is real then apply Hahn-Banach with p being norm on V. The
complex case is similar. O

Corollary 6.4. Let V be a normed vector space and v € V. Then there
exists f,, € V* such that || f,| =1, f,(v) = |Jv||.
Such an f, is called a support functional for f.

In particular this implies that the dual of any nontrivial normed space is
nontrivial.

Proof. Let W be the span of v and define
g:W—=R
tv =t

Then |g| = 1, g(v) = ||v||. Extend g to f, by Hahn-Banach gives desired element
of V*. O
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Corollary 6.5. Let V be a normed vector space and v € V. If f(v) =0 for
all f € V* then v=0.
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