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1 Vector Space

1 Vector Space
Convention. Throughout this course, F denotes a general field. If you wish,
think of it as R or C.

1.1 Definitions

Definition (Vector space). An F-vector space (or a vector space over F) is an
abelian group (V,+) equipped with a function, called scalar multiplication:

F× V → V

(λ, v) 7→ λ · v

satisfying the axioms

• distributive over vectors: λ(v1 + v2) = λ(v1 + v2),

• distributive over scalars: (λ1 + λ2)v = λ1v + λ2v,

• λ(µv) = λµv,

• 1 · v = v.

The additive unit of V is denoted by 0.

Example.

1. For all n ∈ N,Fn is the space of column vectors of length n with entries
in F. It is an vector space by entry-wise addition and entry-wise scalar
multiplication.

2. Mm,n(F), the set of m× n matrices with entries in F, with the operation
defined as entry-wise addition.

3. For any set X, RX = {f : X → R}, the set of R-valued functions on X,
with addition and scalar multiplication defined pointwise. For instance,
(f1 + f2)(x) = f1(x) + f2(x).

Exercise.

1. Check the above examples satisfy the axioms.

2. 0 · v = 0 and (−1) · v = −v for all v ∈ V .

1.2 Vector Subspace

Definition (Vector subspace). Let V be an F-vector space. A subset U ⊆ V
is a subspace, denoted U ≤ V , if

• 0 ∈ U ,

• U is closed under addition: ∀u1, u2 ∈ U, u1 + u2 ∈ U ,

• U is closed under scalar multiplication: ∀u ∈ U,∀λ ∈ F, λu ∈ U .
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1 Vector Space

Exercise. If U is a subspace of V , then U is also an F-vector space.

Example.

1. V = RR, the set all functions from R to itself, has a (proper) subspace
C(R), the space of continuous functions on R as continuous functions are
closed under addition and scalar multiplication. C(R) in turn has a proper
subspace P (R), the set of all polynomials in R.

2. {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = t} where t is some fixed constant is a
subspace of R3 if and only if t = 0.

Proposition 1.1. Let V be an F-vector space, U,W ≤ V . Then U∩W ≤ V .

Proof.

• 0 ∈ U,0 ∈ V so 0 ∈ U ∩W .

• Suppose u,w ∈ U ∩ W . Fix λ, µ ∈ F. As U ≤ V , λu + µw ∈ U . As
W ≤ V , λu + µw ∈ W so λu + µw ∈ U ∩W . Take λ = µ = 1 for vector
addition and µ = 0 for scalar multiplication.

Example. V = R3, U = {(x, y, z) : x = 0},W = {(x, y, z) : y = 0}, then
U ∩W = {(x, y, z) : x = y = 0}.

Note. The union of a family of subspaces is almost never a subspace. For
example, V = R2, U, V be x- and y-axis.

Definition (Sum of vector spaces). Let V be an F-vector space, U,W ≤ V ,
the sum of U and W is the set

U +W = {u+ w : u ∈ U,w ∈W}

Example. Use the definition from the previous example, U +W = V .

Proposition 1.2. U +W ≤ V .

Proof.

• 0 = 0+ 0 ∈ U +W ,

• u1, u1 ∈ U,w1, w2 ∈W , (u1 + w2) + (u2 + w2) = (u1 + u2) + (w1 + w2) ∈
U +W ,

• similar for scalar multiplication. Left as an exercise.

Note. U + W is the smallest subspace containing both U and W . This is
because all elements of the form u + w are in such a space by closure under
addition.
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1 Vector Space

Definition (Quotient vector space). Let V be an F-vector space, U ≤ V .
The quotient space V/U is the abelian gropup V/U equipped with scalar
multiplication

F× V/U → V/U

(λ, v + U) 7→ λv + U

Proposition 1.3. This is well-defined and V/U is an F-vector space.

Proof. First check it is well-defined. Suppose v1 + U = v2 + U ∈ V/U . Then
v1 − v2 ∈ U . Now use closure under scalar multiplication and distributivity,
λv1 − λv2 = λ(v1 − v2) ∈ U so λv1 + U = λv2 + U ∈ V/U . Now check vector
space axioms of V/U , which will follow from the axioms for V :

• λ(µ(v + U)) = λ(µv + U) = λ(µv) + U = (λµ)v + U = λµ(v + U),

• other axioms are left as an exercise.

1.3 Span, Linear Independence & Basis

Definition (Span). Let V be a F-vector space, S ⊆ V be a subset. The
span of S

〈S〉 =
{∑
s∈S

λss : λs ∈ F
}

is the set of all the finite linear combinations of elements (i.e. all but finitely
many of the λ are zero) of S.

Remark. 〈S〉 is the smallest subspace of V containing all elements of S.

Convention. 〈∅〉 = {0}

Example.

1. V = R3, S = {(1, 0, 0), (0, 1, 2), (3,−2,−4)}, 〈S〉 = {(a, b, 2b) : a, b ∈ R}

2. For any set X, RX is a vector space. For x ∈ X, define δx : X →
R, δx(x) = 1, δx(y) = 0 ∀y 6= x, then

〈δx : x ∈ X〉 = {f ∈ RX : f has finite support}

Definition (Span). S spans V if 〈S〉 = V .

Definition (Finite-dimensional). V is finite-dimensional over F if it is
spanned by a finite set.
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1 Vector Space

Definition (Linear independence). The vectors v1, . . . , vn are linearly in-
dependent over F if

n∑
i=1

λi = 0 ⇒ λi = 0 ∀i

A subset S ⊆ V is linearly independent if every finite subset of S is
linearly independent.

A subset is linearly dependent if it is not linearly independent.

Example. In the first example above, the three vectors are not linearly inde-
pendent.

Exercise. The set {δx : x ∈ X} is linearly independent.

Definition (Basis). S is a basis of V if it is linearly independent and spans
V .

Example.

1. Fn has standard basis {e1, e2, . . . , en} where ei is the column vector with
1 in the ith entry and 0 elsewhere.

2. V = C over C has natural basis {1}, but over R it has natural basis {1, i}.

3. V = P (R), the space of real polynomials, has natural basis

{1, x, x2, . . . }.

It is an exercise to check this carefully.

Lemma 1.4. Let V be a F-vector space. The vectors v1, . . . , vn form a basis
of V if and only if each vector v ∈ V has a unique expression

v =

n∑
i=1

λivi, λi ∈ F.

Proof.

• ⇒: Fix v ∈ V . The vi span V , so exists λi ∈ F such that v =
∑
λivi.

Suppose also v =
∑
µivi for some µi ∈ F. Then the difference∑

(µi − λi)vi = 0.

Since the vi are linearly independent, µi − λi = 0 for all i.

• ⇐: The vi span V by assumption. Suppose
∑n
i=1 λivi = 0. Note that

0 =
∑n
i=0 0 · vi. By appying uniqueness to 0, λi = 0 for all i.
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1 Vector Space

Lemma 1.5. If v1, . . . , vn spans V over F, then some subset of v1, . . . , vn
is a basis of V over F.

Proof. If v1, . . . , vn is linearly independent then done. Otherwise for some `,
there exist α1, . . . , α`−1 ∈ F such that

v` =

`−1∑
i=1

αivi.

(If
∑
λivi = 0, not all λi is zero. Take ` maximal with λ` 6= 0, then αi = −λi

λ`
.)

Now v1, . . . , v`−1, v`+1, . . . , vn still span V . Continue iteratively until we
have linear independence.

Theorem 1.6 (Steinitz Exchange Lemma). Let V be a finite-dimensional
vector space over F. Take v1, . . . , vm to be linearly independent, w1, . . . , wn
to span V . Then

• m ≤ n, and

• reordering the wi if needed, v1, . . . , vm, wm+1, . . . , wn spans V .

Proof. Proceed by induction. Suppose that we have replaced ` ≥ 0 of the wi.
Reordering wi if needed, v1, . . . , v`, w`+1, . . . , wn spans V .

• If ` = m, done.

• If ` < m, then v`+1 =
∑`
i=1 αivi +

∑
i>` βiwi. As the vi are linearly

independent, βi 6= 0 for some i. After reordering, β`+1 6= 0,

w`+1 =
1

β`+1
(v`+1 −

∑
i≤`

αivi −
∑
i>`+1

βiwi).

Thus v1, . . . , v`, v`+1, w`+2, . . . , wn also spans V . After m steps, we will
replace m of the wi by vi. Thus m ≤ n.

1.4 Dimension

Theorem 1.7. If V is a finite-dimensional vector space over F, then any
two bases for V have the same cardinality, which is called the dimension of
V , donoted dimF V .

Proof. If v1, . . . , vn and w1, . . . , wm are both bases, then {vi} is linearly inde-
pendent and {wi} spans V so n ≤ m. Similarly m ≤ n.

Example. dimC C = 1, but dimR C = 2.

Lemma 1.8. Let V be a finite-dimensional F-vector space. If w1, . . . , w` is a
linearly independent set of vectors, we can extend it to a basis w1, . . . , w`, w`+1, . . . , wn.
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1 Vector Space

Proof. Apply Steinitz exchange lemma to w1, . . . , w` and any basis v1, . . . , vn.
Or more direcly, if V = 〈w1, . . . , w`〉, done. Otherwise take v`+1 ∈ V \

〈w1, . . . , w`〉. Now w1, . . . , w`, w`+1 is linearly independent. Iterate.

Corollary 1.9. Let V be a finite-dimensional vector space of dimension n.
Then

1. Any linearly independent set of vectors has at most n elements, with
equality if and only if the set is a basis.

2. Any spanning set of vectors has at least n elements, with equaility if
and only if the set is a basis.

Slogan. Choose the best basis for the job.

Theorem 1.10. Let U,W be subspaces of V . If V and W are finite-
dimensional, so is U +W and

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof. Pick basis v1, . . . , v` of U ∩W . Extend it to basis v1, . . . , v`, u1, . . . , um
of U and v1, . . . , v`, w1, . . . , wn of W . Claim v1, . . . , v`, u1, . . . , um, w1, . . . , wn is
a basis for U +W :

• spanning: if u ∈ U , then u =
∑
αivi +

∑
βiui and if w ∈ W , w =∑

γivi +
∑
δiwi, so u+ w =

∑
(αi + γi)vi +

∑
βiui +

∑
δiui.

• linear independence: assume
∑
αivi +

∑
βiui +

∑
γiwi = 0. Rearrange,∑

αivi+
∑
βiui = −

∑
γiwi ∈ U∩W so it equals to

∑
δivi for some δi ∈ F

because vi is a basis for U ∩W . As vi and wi are linearly independent,
γi = δi = 0 for all i. Thus

∑
αivi +

∑
βivi = 0, so αi = βi = 0 since vi

and ui form a basis for U .

Theorem 1.11. Let V be a finite-dimensional vector space over F and
U ≤ V , then U and V/U are also finite-dimensional and

dimV = dimU + dimV/U.

Proof. Left as an exercise. Outline: first show U is finite-dimensional, then let
u1, . . . , u` be a basis for U . Extend it to a basis for V , say u1, . . . , u`, w`+1, . . . , wn
of V . Check w`+1 + U, . . . , wn + U form a basis for V/U .

Corollary 1.12. If U is a proper subspace of V , which is finite-dimensional,
then dimU < dimV .

Proof. V/U 6= 0 so dimV/U > 0.

1.5 Direct Sum
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1 Vector Space

Definition (Direct sum). Let V be a vector space over F, U,W ≤ V . Then

V = U ⊕W

if every element of V can be written as v = u + w for some unique u ∈
U,w ∈W . This is called the internal direct sum. W is a direct complement
of U in V .

Lemma 1.13. Suppose U,W ≤ V , TFAE:

1. V = U ⊕W ,

2. V = U +W and U ∩W = 0,

3. Given B1 any basis of U , B2 any basis of V , B1∩B2 = ∅ and B = B1∪B2

is a basis of V .

Proof.

• 2 ⇒ 1: any v ∈ V is u + w for some u ∈ U,w ∈ W . Suppose u1 + w1 =
u2 + w2, then u1 − u2 = w2 − w1 ∈ U ∩W = 0. Thus u1 = u2, w1 = w2.

• 1 ⇒ 3: B spans as any v ∈ V is u + w. Write u in terms of B1 and w in
terms of B2. Then u+w is a linear combination of elements of B. To show
B is linearly independent, suppose

∑
v∈B λvv = 0 = 0V +0W . Write LHS

as
∑
v∈B1

λvv+
∑
v∈B2

λvv. By uniqueness of expression,
∑
v∈B1

λvv = 0V
and

∑
w∈B2

λww = 0w. As B1,B2 are bases, all of the λv, λw are zero.

• 3 ⇒ 2: if v ∈ V, v =
∑
x∈V λxx =

∑
u∈B1

λuu+
∑
w∈B1

λww so v ∈ U+W .
Conversely, if v ∈ U ∩W, v =

∑
u∈B1

λuu =
∑
w∈B2

λww so all λu, λv are
zero since B1 ∪ B2 is linearly independent.

Lemma 1.14. Let V be a finite-dimensional vector space over F and U ≤ V .
Then there exists a direct complement to U in V .

Proof. Let u1, . . . , u` be a basis for U . Extend this to a basis u1, . . . , u`, w`+1, . . . , wn
for V . Then 〈w`+1, . . . , wn〉 is a direct complement of U .

Caution. Direct complements are not unique.

Definition (Direct sum). Suppose V1, . . . , V` ≤ V , then the sum∑
i

Vi = V1 + · · ·+ V` = {v1 + · · ·+ v` : vi ∈ Vi}.

is direct if

v1 + · · ·+ v` = v′1 + · · ·+ v′` ⇒ vi = v′i for all i.
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1 Vector Space

In which case it is denoted

V =
⊕̀
i=1

Vi.

Exercise. V1, . . . , V` ≤ V , TFAE:

1. The sum
∑
i Vi is direct,

2. Vi ∩
∑
j 6=i Vj = 0 for all i,

3. For any basis Bi of Vi, the union B =
⋃`
i=1Bi is a basis for

∑
i Vi.

Definition (Direct sum). Let U,W be vector spaces over F. The external
direct sum is

U ⊕W = {(u,w) : u ∈ U,w ∈W}

with pointwise addition and scalar multiplication.

10



2 Linear Map

2 Linear Map

2.1 Definitions

Definition (Linear map). V,W two F-vector space, a map α : V → W is
linear if

• α(v1 + v2) = α(v1) + α(v2),

• α(λv) = λα(v).

This is equivalent to

α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2).

Example.

1. Given an n×m matrix A with coefficients in F, the map α : Fm → Fn, v →
Av.

2. Differentiation D : P (R) → P (R), f 7→ df
dx .

3. Integration I : C[0, 1] → C[0, 1], f 7→ I(f) where I(f)(x) =
∫ x
0
f(t)dt.

4. Fix x ∈ [0, 1], the map C[0, 1] → R, f 7→ f(x).

Note (Categoricity of VectF). Suppose U, V,W are F-vector spaces, then

1. id : V → V is linear.

2. Given U
α→ V

β→W , if α, β are linear then so is β ◦ α.

Lemma 2.1 (Free functor Set → VectF). Suppose V,W are F-vector spaces
and B is a basis for V . If α0 : B → W is any map, then there is a unique
linear map α : V →W extending αo.

Proof. Let v ∈ V . Write v =
∑
λivi in a unique way. By linearity α(v) =

α(
∑
λivi) =

∑
λiα(vi) =

∑
λiα0(vi). Uniqueness follows.

Note.

• This is true for infinite-dimensional vector spaces as well.

• Very often, to define a linear map, define it on a basis and extend it linearly
to the vector space.

• Two linear maps α1, α2 : V → W are equal if and only if they agree on a
basis.

2.2 Isomorphism of Vector Spaces

Definition (Isomorphism). Given V,W two F-vector spaces, the map α :
V →W is an isomorphism if it is linear and bijective, denoted V ∼=W .

11



2 Linear Map

Lemma 2.2. ∼= is an equivalence relation on the class of all F-vector spaces.

Proof.

• symmetric: obvious.

• reflexive: blah blah in lecture. Left as an exercise to reader.

• transitive: obvious.

Theorem 2.3. If V is an F-vector space, then V ∼= Fn for some n.

Proof. Choose a basis for V , say v1, . . . , vn. Define a map

V → Fn∑
i

λivi 7→ (λ1, . . . , λn)

which is an isomorphism.

Remark. Choosing an isomorphism V ∼= Fn is equivalent to choosing a basis
for V , i.e. there is a bijection

{α ∈ Hom(V,Fn), α bijective} ↔ {bases of V }.

Theorem 2.4. Given two finite-dimensional F-vector spaces V,W , they are
isomorphic if and only if they have the same dimension.

Proof.

• ⇐: V ∼= FdimV = FdimW ∼=W .

• ⇒: let a : V →W be an isomorphism and B be a basis for V . Claim α(B)
is a basis for W : α(B) spans W due to surjectivity and α(B) is linearly
independent due to injectivity.

Definition (Kernel & Image). Given α : V →W ,

• N(α) = kerα = {v ∈ V : α(v) = 0} ≤ V ,

• imα = {w ∈W : ∃v ∈ V, α(v) = w} ≤W .

Proposition 2.5.

• α is injective if and only if N(α) = 0,

• α is surjective if and only if imα =W .

12
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Proof. Easy.

Example. Let α : C∞(R) → C∞(R), α(f)(t) = f ′′(t) + 2f ′(t) + 5f(t). kerα =
{f : f ′′ + 2f ′ + 5f = 0} and g ∈ imα if and only if there exists an f such that
f ′′ + 2f ′ + 5f = g.

Theorem 2.6 (First Isomorphism Theorem). Let α : V → W be a linear
map. It induces an isomprhism

ᾱ : V/ kerα→ imα

v + kerα 7→ α(v)

Proof. Check the following:

• ᾱ is well-defined,

• ᾱ is linear: immediate from linearity of α,

• ᾱ is surjective.

Definition (Rank & Nullity).

• r(α) = rk(α) = dim(imα) is the rank of α,

• n(α) = dimN(α) is the nullity of α.

Theorem 2.7 (Rank-nullity). Let U, V be F-vector spaces, dimU <∞. Let
α : U → V be a linear map. Then

dimU = r(α) + n(α).

Proof. U/ kerα ∼= imα so dimU − dim(kerα) = dim(imα). Rearrange.

Lemma 2.8. Let V,W be F-vector spaces with equal, finite dimension. Let
α : V →W be linear, then TFAE:

1. α is injective,

2. α is surjective,

3. α is an isomorphism.

Proof. Rank-nullity theorem.

2.3 Linear Maps as Vector Space
Suppose V and W are F-vector spaces. Let L(V,W ) = {α : V →W,α linear}.

13



2 Linear Map

Proposition 2.9. L(V,W ) is an F-vector space, under operations

(α1 + α2)(v) = α1(v) + α2(v)

(λα)(v) = λ(α(v))

Proof. α1 + α2, λα as above are well-defined linear maps. The vector space
axioms can be easily checked.

Proposition 2.10. If both V and W are finite-dimensional over F then so
is L(V,W ) and L(V,W ) = dimV · dimW .

Proof. See Lemma 2.15.

2.3.1 Matrices, an Interlude

Definition (Matrix). An m×n matrix over F is an array with m rows and
n columns with entries in F. We write

A = (aij), aij ∈ F, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition. Mm,n(F) is the set of all such m× n matrices.

Proposition 2.11. Mm,n(F) is an F-vector space and dimMm,n(F) =
m · n.

Proof. See the example on page 3 for the proof of vector space axioms. For the
dimensional claim, a standard basis for Mm,n(F ) is

Eij =



0 . . . 0
...

. . .
...

0 1 0
...

. . .
...

0 . . . 0


with 1 in the (i, j)th entry so aij =

∑
i,j aijEij , from which span and linear

independence follow. The basis has cardinality m · n.

2.3.2 Representation of Linear Maps by Matrices

Let V and W be finite-dimensional F-vector space, α : V → W linear. Let
B = {v1, . . . , vn} be a basis for V , C = {w1, . . . , wm} be a basis for W . If
v =

∑
i λivi ∈ V , write

[v]B =

λ1...
λn

 ∈ Fn

which is called the coordinate vector of v with respect to B. Similarly [w]C ∈ Fm.

14
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Definition (Matrix representation). [α]B,C is the matrix representation of
α with respect to B and C with

[α]B,C =
(
[α(v1)]C

∣∣∣ [α(v2)]C ∣∣∣ · · · ∣∣∣ [α(vn)]C)
= (aij)

The matrix says
α(vj) =

∑
i

aijwi.

Lemma 2.12. For any v ∈ V ,

[α(v)]C = [α]B,C · [v]B

where · is matrix multiplication.

Proof. Fix v =
∑n
j=1 λjvj ∈ V , so

[v]B =

λ1...
λn



α(v) = α

∑
j

λjvj


=
∑
j

λjα(vj)

=
∑
j

λj

(∑
i

αijwi

)

=
∑
i

∑
j

aijλj

wi

so the ith entry of α(v) is the ith entry of [α]B,C · [v]B.

Lemma 2.13. Suppose U β→ V
α→W with α, β linear, with α ◦β : U →W .

Let A,B, C be bases for U, V,W respectively. Then

[α ◦ β]A,C = [α]B,C · [β]A,B.

15
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Proof.

(α ◦ β)(u`) = α(β(u`)), u` ∈ A

= α
(∑

j

bjlvj

)
, vj ∈ B

=
∑
j

bjlα(vj)

=
∑
j

bjl
∑
i

aijwi, wi ∈W

=
∑
i

∑
j

aijbjl

wi

Proposition 2.14. Let V and W be F-vector spaces with dimV = n,dimW =
m, then

L(V,W ) ∼= Mm,n(F).

Proof. Fix bases B = {v1 . . . , vn}, C = {w1, . . . , wm} for V and W respectively.
Claim

θ : L(V,W ) → Mm,n(F)
α 7→ [α]B,C

is an isomorphism:

• linearity: [λ1α1 + λ2α2]B,C = λ1[α1]B,C + λ2[α2]B,C .

• surjectivity: given A = (aij), let α : vj 7→
∑m
i=1 aijwi and extend linearly.

It follows that α ∈ L(V,W ) and θ(α) = A.

• injectivity: [α]B,C = 0 implies that α is the zero map.

Corollary 2.15.
dimL(V,W ) = dimV · dimW.

Example. Suppose α : V → W , Y ≤ V, Z ≤ W with α(Y ) ≤ Z. Let B′ =
{v1, . . . , vk} be a basis of Y and extend to B = {v1, . . . , vk, vk+1, . . . , vn} a basis
for V . Similarly C′ = {w1, . . . , wl} and C for Z and W .

• [α]B,C =

(
A B
0 C

)
for some A,B,C because for 1 ≤ j ≤ k, α(vj) is a

linear combination of wi where 1 ≤ i ≤ l.

• [α|Y ]B′,C′ = A.

16
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• α induces a map

ᾱ : V/Y →W/Z

v + Y 7→ α(v) + Z

This is well-defined. Linearity follows from that of α. A basis for V/Y is
B′′ = {vk+1 + Y, . . . , vn + Y } and similarly for W/Z. It is an exercise to
show [ᾱ]B′′,C′′ = C.

2.3.3 Change of Bases

Throughout this section, let V and W be F-vector spaces and suppose they have
the following bases:

Vector space V W
Basis 1 B = {v1, . . . , vn} C = {w1, . . . , wm}
Basis 2 B′ = {v′1, . . . , v′n} C′ = {w′

1, . . . , w
′
m}

Definition (Change-of-basis matrix). The change-of-basis matrix from B′

to B is P = (pij) given by

v′j =
∑
i

pijvi

P =
(
[v′1]B

∣∣∣ [v′2]B ∣∣∣ . . . ∣∣∣ [v′n]B) = [id]B′,B

Lemma 2.16.
[v]B = P [v]B′ .

Proof.
P [v]B′ = [id]B′,B[v]B′ = [v]B.

Lemma 2.17. P is an invertible n×n matrix and P−1 is the change-of-basis
matrix from B to B′.

Proof.

[id]B,B′ [id]B′,B = [id]B′,B′ = In

[id]B′,B[id]B,B′ = [id]B,B = In

Let Q be the change-of-basis matrix from C′ to C. Then Q is an invertible
m×m matrix.

Proposition 2.18. Let α : V → W be a linear map, A = [α]B,C, A′ =
[α]B′,C′ , then

A′ = Q−1AP.

17
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Proof.
[id]C,C′︸ ︷︷ ︸
Q−1

[α]B,C [id]B′,B︸ ︷︷ ︸
P

= [id ◦α ◦ id]B′,C′︸ ︷︷ ︸
A′

Definition (Equivalence of matrices). A,A′ ∈ Mm,n(F) are equivalent if

A′ = Q−1AP

for some invertible P ∈ Mn,n(F) and Q ∈ Mm,m(F).

Note. This defines an equivalence relation on Mm,n(F).

Proposition 2.19. Let V,W be F-vector spaces of dimension n and m
respectively. Let α : V → W be a linear map. Then there exist bases B of
V , C of W , and some r ≤ m,n such that

[α]B,C =

(
Ir 0
0 0

)
where Ir the is r × r the identity matrix.

Note. r = rk(α) = r(α).

Proof. Fix r such that dimN(α) = n−r. Fix a basis for N(α), say vr+1, . . . , vn.
Extend this to a basis B for V , say v1, . . . , vr, vr+1, . . . , vn. Now α(v1), . . . , α(vr)
is a basis for im(α):

• span: α(v1), . . . , α(vn) certainly span im(α). Since vr+1, . . . , vn ∈ kerα,
α(vr+1), . . . , α(vn) = 0 so we can remove them from the spanning set.

• linear independence: assume
∑n
i=1 λiα(vi) = 0. Then α

(∑n
i=1 λivi

)
= 0.

This implies that
n∑
i=1

λivi =

n∑
j=r+1

µjvj .

As v1, . . . vn are linearly independent, λi = µj = 0 for all i, j.

Extend α(v1), . . . , α(vr) to a basis for W , say C. By construction,

[α]B,C =

(
Ir 0
0 0

)

Remark. In the proof above we didn’t need to assume that r = r(α). This
gives us another way prove Rank-nullity Theorem.
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Corollary 2.20. Any m× n matrix is equivalent to(
Ir 0
0 0

)
for some r.

Definition (Row and column rank). Let A ∈ Mm,n(F).

• The column rank of A, r(A) is the dimension of the subspace of Fm
spanned by the columns of A.

• The row rank of A is the column rank of AT .

Note. If α is a linear map represented by A with respect to any choice of bases,
then r(α) = r(A).

Proposition 2.21. Two m× n matrices A,A′ are equivalent if and only if

r(A) = r(A′).

Proof.

• ⇐: Both A and A′ are equivalent to
(
Ir 0
0 0

)
and matrix equivalence is

transitive.

• ⇒: Let α : Fn → Fm be the linear map represented by A with respect to,
say, the standard basis. Since A′ = Q−1AP for some invertible P and Q,
A′ represents the same α with respect to another bases. r(α) is defined in
a basis-invariant way so r(A) = r(α) = r(A′).

Theorem 2.22.
r(A) = r(AT ).

Proof. Q−1AP =

(
Ir 0
0 0

)
m,n

where P and Q are invertible. Take transpose of

the whole equation:(
Ir 0
0 0

)
n,m

= (Q−1AP )T = PTAT (QT )−1

so AT is equivalent to (
Ir 0
0 0

)

Note a special case for change of basis: V = W , C = B and C′ = B′. P , the
change-of-basis matrix from B′ to B, is given the map α ∈ L(V, V )

[α]B′,B′ = P−1[α]B,BP.
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Definition (Similar matrices). Given A,A′ ∈ Mn,n(F), A and A′ are sim-
ilar, or conjugate if

A′ = P−1AP

for some invertible P .

2.3.4 Elementary Matrices and Operations

Definition (Elementary column operation). Elementary column operation
on a m× n matrix A is one of the following operations:

1. swap column i and j (wlog i 6= j),

2. scale column i by λ (λ 6= 0),

3. add λ times column i to column j (i 6= j, λ 6= 0).

Definition (Elementary row operation). Defined analoguously, replacing
“column” by “row”.

Note. All of these operations are invertible.

Definition (Elementary matrix). The elementary column (row, respec-
tively) operations have corresponding elementary matrices, which are the
results of performing these column (row, respectively) operations on In (Im,
respectively):

1. 

1 0 · · · 0
...

. . .
...

0 1 0

0 · · · 0
. . . 0 0

1 0 0
...

. . .
0 · · · · · · 0


2. 

1 0 · · · 0
. . .

... λ
...

. . .
0 · · · 0 1


3. In+λEij where Eij is the matrix with 1 on ijth entry and 0 elsewhere.

An elementary column (row, respectively) operation on A ∈ Mm,n(F) can
be performed by multiplying A by these corresponding elementary matrices on
the right (left respectively).
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Example. (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
Given the elementary matrices, we can give a constructive proof that any

m× n matrix is equivalent to
(
Ir 0
0 0

)
for some r:

Constructive proof of Theorem 2.22. Start with A. If all entries of A are zero
then done. If not then some aij = λ 6= 0. Perform the following:

1. swap row 1 and i, swap column 1 and j so λ is in position (1, 1),

2. multiply column 1 by 1/λ to get 1 in position (1, 1),

3. add (−a12) times column 1 to column 2. Do so for the other entries in
row 1. Also use row operations to clear out all other entries in column 1.
Now the matrix is in the form (

1 0
0 A′

)
4. iterate for A′. Stop when the new A′ = 0.

The result of these operations is(
Ir 0
0 0

)
= E′

`E
′
`−1 . . . E

′
1︸ ︷︷ ︸

Q−1

AE1E2 . . . E`−1E`︸ ︷︷ ︸
P

.

As elementary operations are invertible, the elementary matrices are invertible
so

Q−1AP =

(
Ir 0
0 0

)

If you only use elementary row operations, we can get the row echelon form
of a matrix: 

a b . . . c
0 d . . . e
...

. . .
...

0 0 . . . f



Lemma 2.23. If A is an n× n invertible matrix then we can obtain In by
using only elementary row/column operations.

Proof. We prove the column operation case. Use induction on n, the number

of rows. Suppose we have got
(
Ik 0
? ∗

)
for some k ≥ 0. There exists j > k

such that ak+1,j 6= 0, (i.e. in the ∗ block) as otherwise (0, . . . , 1, . . . , 0) with 1 in
(k+1)th position would not be in the span of the column vectors, contradicting
the invertiblity. Next we carry out the following operations:
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1. swap column k + 1 and j,

2. divide column k + 1 by ak+1,k+1 so have 1 in (k + 1, k + 1) position,

3. use column operation to clear other entries of (k + 1)th row.

Proceed inductively.

Note that the equality

AE1E2 . . . Ec = In

gives
A−1 = E1E2 . . . Ec,

which is one way to compute inverses.

Proposition 2.24. Any invertible matrix can be written as a product of
elementary ones.
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3 Dual Space & Dual Map

3 Dual Space & Dual Map

3.1 Definitions

Definition (Dual space). Let V be an F-vector space. The dual space of V
is defined to be

V ∗ = L(V,F) = {α : V → F, α linear}.

V ∗ is itself an F-vector space. Its elements are sometimes called linear func-
tionals.

Example.

1. R3 → R, (a, b, c) 7→ a− c is an element of V ∗.

2. tr : Mn,n(F) → F, A 7→
∑
iAii is an element of Mn,n(F)∗.

Lemma 3.1 (Dual basis). Let V be a finite-dimensional F-vector space with
basis B = {e1, . . . , en}. Then there is a basis for V ∗, given by

B∗ = {ε1, . . . , εn}

where

εj

( n∑
i=1

aiei

)
= aj

for 1 ≤ j ≤ m.
B∗ is called the dual basis to B.

Proof.

• linear independence: suppose
n∑
j=1

λjεj = 0.

Apply the relation to basis vectors,

0 =
( n∑
j=1

λjεj

)
ei =

n∑
j=1

λjεj(ei)

The last expression is

εj(ei) =

{
0 if i 6= j

1 if i = j

so λi = 0 for all 1 ≤ i ≤ n.

• span: if α ∈ V ∗, then

α =

n∑
i=1

α(ei)εi

since linear maps are uniquely determined by the action on basis.
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3 Dual Space & Dual Map

Corollary 3.2. If V is a finite-dimensional F-vector space then

dimV = dimV ∗.

Remark. Sometimes it is useful to think about (Fn)∗ as the space of row vectors
of length n over F.

3.2 Dual Map
It turns out dual spaces have maps between them. Before studying them in
detail, we introduce this concept to add richness to the theory of dual map:

Definition (Annihilator). If U ⊆ V , the annihilator of U is

U◦ = {α ∈ V ∗ : ∀u ∈ U, α(u) = 0}.

Lemma 3.3.

1. U◦ ≤ V ∗,

2. If U ≤ V and dimV = n <∞ then

dimV = dimU + dimU◦.

Proof.
1. 0 ∈ U◦. If α and α′ are in U◦ then

(α+ α′)(u) = α(u) + α′(u) = 0 + 0 = 0

for all u ∈ U . Similarly λα ∈ U◦ for any λ ∈ F.

2. Let B = {e1, . . . , ek} be a basis for U and extend it to a basis for V , say
e1, . . . , ek, ek+1, . . . , en. Let B∗ = {ε1, . . . , εn} be its dual basis. Claim
εk+1, . . . , εn is a basis for U◦:

• If i > k, j ≤ k then εi(ej) = 0 so εi ∈ U◦.
• Linear independence comes from the fact that B∗ is a basis.
• If α ∈ U◦, α =

∑n
i=1 aiεi for some αi ∈ F. Then for any j ≤ k,( n∑

i=1

aiεi

)
(ej) = 0

so aj = 0. It follows that α ∈ 〈εk+1, . . . , εn〉.

Lemma 3.4 (Dual space as a contravariant functor). Let V and W be
F-vector spaces. Let α ∈ L(V,W ). Then the map

α∗ :W ∗ → V ∗

ε 7→ ε ◦ α
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is linear. α∗ is called the dual of α.

Proof.

• ε ◦ α ∈ V ∗ since composition preserves linearity.

• Fix θ1, θ2 ∈W ∗,

α∗(θ1 + θ2) = (θ1 + θ2) ◦ α
= θ1 ◦ α+ θ2 ◦ α
= α∗θ1 + α∗θ2

• Similarly α∗(λθ) = λα∗(θ).

Proposition 3.5. Let V and W be F-vector spaces with bases B and C
respectively. Let B∗ and C∗ be the dual bases. Consider α ∈ L(V,W ) with
dual α∗, then

[α∗]C∗,B∗ = [α]TB,C .

Proof. Say B = {b1, . . . , bn}, B∗ = {β1, . . . , βn}, C = {c1, . . . , cm} and C∗ =
{γ1, . . . , γn}. Further let [α]B,C = (aij), an m× n matrix.

α∗(γr)(bs) = γr ◦ α(bs)
= γr(α(bs))

= γr

(∑
t

atsct

)
=
∑
t

atsγr(ct)

= ars

=
(∑

i

ariβi

)
(bs)

Thus
α∗(γr) =

∑
i

ariβi

so
[α∗]C∗,B∗ = [α]TB,C .

It follows that

Lemma 3.6. Let V be a finite-dimensional F-vector space with bases E and
F . They have correponding dual bases E∗ and F∗. If the change-of-basis
matrix from F to E is P then the change-of-basis matrix from F∗ to E∗ is

(P−1)T .
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Proof.
[id]F∗,E∗ = [id]TE,F = ([id]−1

F,E)
T .

Caution. V ∼= V ∗ only if V is finite-dimensional. Let V = P , the space of all
real polynomials. It has basis {pj}j∈N where p(j) = tj . In example sheet 2 we
will see

P ∗ ∼= RN

ε 7→ (ε(p0), ε(p1), . . . )

and on example sheet 1 we prove

P � RN

as the latter does not have a countable basis.

Now we move on to more discussion about annhilator.

Lemma 3.7. Let V and W be F-vector spaces. Fix α ∈ L(V,W ) and let
α∗ ∈ L(W ∗, V ∗) be its dual. Then

• N(α∗) = (imα)◦, so α∗ is injectve if and only if α is surjective.

• imα∗ ≤ N(α)◦, with equality if V and W are both finite-dimensional,
in which case α∗ is surjective if and only if α is injective.

Proof.

• Let ε ∈W ∗, then

ε ∈ N(α∗)

⇔α∗(ε) = 0

⇔ε ◦ α = 0

⇔ε(u) = 0 ∀u ∈ imα

⇔ε ∈ (imα)◦

• Let ε ∈ imα∗, Then ε = α∗(φ) for some φ ∈W ∗. For any u ∈ N(a),

ε(u) = (α∗(φ))(u) = (φ ◦ α)(u) = φ(α(u)) = φ(0) = 0

so ε ∈ N(α)◦.
Now use the fact that V and W are finite-dimensional:

dim im(α∗) = r(α∗) = r(α)

as r(A) = r(AT ). On the other hand,

r(α) = dimV − dimN(α) = dim(N(α))◦

Thus they are equal.
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3.3 Double Dual
Let V be an F-vector space. Then V ∗ = L(V,F) is its dual space. The natural
(oops) next step is

Definition (Double dual). The double dual of V is

V ∗∗ = V ∗ = L(V ∗,F).

Theorem 3.8 (Naturallity of double dual). If V is an F-vector space, then
the map

·̂ : V → V ∗∗

v 7→ v̂

where v̂(ε) = ε(v), is a natural homomorphism. In particular when V is
finite-dimensional this is a natural isomorphism.

Proof.
• For v ∈ V , the map v̂ : V ∗ → F is linear so ·̂ does give a map from V to
V ∗∗.

• Linearity: for v1, v2 ∈ V , λ1, λ2 ∈ F, ε ∈ V ∗, then

λ1v1 + λ2v2
∧

(ε) = ε(λ1v1 + λ2v2) = λ1ε(v1) + λ2ε(v2) = λ1v̂1(ε) + λ2v̂2(ε)

• Injectivity: let e ∈ V \ {0}. Extend it to a basis of V , say e, e2, . . . , en.
Let ε, ε2, . . . , εn be its corresponding dual basis. Now

ê(ε) = ε(e) = 1

so ê is non-zero. ·̂ is injective.

• Finally, if V is finite-dimensional, dimV = dimV ∗ = dimV ∗∗ so ·̂ is an
isomorphism.

Lemma 3.9. Let V be an F-vector space and U ≤ V . Then

Û ≤ U◦◦.

If V is finite-dimensional then Û = U◦◦ so U ∼= U◦◦.

Proof.
• First show Û ≤ U◦◦: given u ∈ U , for all ε ∈ U◦, ε(u) = 0 so û(ε) = 0.

Thus û ∈ (U◦)◦ = U◦◦.

• If V is finite-dimensional then

dimU◦◦ = dimV ∗ − dimU◦ = dimV − dimU◦ = dimU

so Û = U◦◦.
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Lemma 3.10. Let V be a finite-dimensional F-vector space and U1, U2 ≤ V .
Then

• (U1 + U2)
◦ = U◦

1 ∩ U◦
2 ,

• (U1 ∩ U2)
◦ = U◦

1 + U◦
2 .

Proof.

• Let θ ∈ V ∗, θ ∈ (U1 + U2)
◦ if and only if θ(u1 + u2) = 0 for all u1 ∈

U1, u2 ∈ U2, if and only if θ(u) = 0 for all u ∈ U1 ∪ U2, so θ ∈ U◦
1 ∩ U◦

2 .

• Apply ◦ to the first result and use the previous lemma.
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4 Bilinear Form I

Definition (Bilinear form). Let U and V be F-vector spaces. A map ϕ :
U × V → F is bilinear if it is linear in both arguments, i.e.

∀u ∈ U, ϕ(u,−) ∈ V ∗,

∀v ∈ V, ϕ(−, v) ∈ U∗.

Example.

1. V × V ∗ → F, (v, θ) 7→ θ(v).

2. U = V = Rn, ϕ(x, y) =
∑n
i=1 xiyi.

3. A ∈ Mm,n(F), ϕ : Fm × Fn → F, (u, v) 7→ uTAv.

4. U = V = C([0, 1],R), (f, g) 7→
∫ 1

0
f(t)g(t)dt

Definition (Matrix of bilinear form). Let B = {e1, . . . , em} be a basis for U
and C = {f1, . . . , fn} be a basis for V . Given a bilinear map ϕ : U ×V → F,
the matrix of ϕ with respect to B and C is

[ϕ]B,C = (ϕ(ei, fj))m×n .

Lemma 4.1.
ϕ(u, v) = [u]TB [ϕ]B,C [v]C .

Proof. Let u =
∑
i λiei, v =

∑
j µjfj , then

ϕ(u, v) = ϕ

∑
i

λiei,
∑
j

µjfj


=
∑
i

λiϕ

ei,∑
j

µjfj


=
∑
i,j

λiϕ(ei, fj)µj

Note.

1. [ϕ]B,C is the unique matrix with this property.

2. A bilinear form ϕ : U × V → F induces linear maps

ϕL : U → V ∗

u 7→ ϕ(u,−)

ϕR : V → U∗

v 7→ ϕ(−, v)
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Lemma 4.2. Let B = {e1, . . . , em} be a basis for U , B∗ = {ε1, . . . , εm} a
basis for U∗, C = {f1, . . . , fn}, C∗ = {η1, . . . , ηn} for V and V ∗. If [ϕ]B,C = A
then

[ϕL]B,C∗ = AT ,

[ϕR]C,B∗ = A.

Proof.

ϕL(ei)(fj) = Aij =⇒ ϕL(ei) =
∑
j

Aijηj

ϕR(fj)(ei) = Aij =⇒ ϕR(fj) =
∑
i

Aijεi

Definition (Left and right kernel). The left (right, respectively) kernel of
ϕ is kerϕL (kerϕR, respectively).

Definition (Degeneracy). ϕ is non-degenerate if kerϕL = 0 and kerϕR = 0.
Otherwise, ϕ is degenerate.

Lemma 4.3. Let U, V have bases as before, and ϕ,A as before. Then ϕ is
non-degenerate if and only if A is invertible.

Proof.

ϕ is non-degenerate
⇔ kerϕL = 0 and kerϕR = 0

⇔n(AT ) = n(A) = 0

⇔r(AT ) = dimV, r(A) = dimU

⇔A is invertible

Corollary 4.4. If ϕ is non-degenerate and U and V are finite-dimensional
then dimU = dimV .

Corollary 4.5. When U and V are finite-dimensional, choosing a non-
degenerate bilinear form ϕ : U × V → F is equivalent to picking an homo-
morphism ϕL : U → V ∗.
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Definition. For T ⊆ U, S ⊆ V ,

T⊥ = {v ∈ V : ϕ(t, v) = 0 ∀t ∈ T} ≤ V
⊥S = {u ∈ U : ϕ(u, s) = 0 ∀s ∈ S} ≤ U

They are generalisation of annihilators.

Proposition 4.6. Suppose U have bases B,B′ and V have bases C, C′, P =
[id]B′,B, Q = [id]C′,C. Let ϕ : U × V → F be a bilinear form. Then

[ϕ]B′,C′ = PT [ϕ]B,CQ.

Proof.

ϕ(u, v) = [u]TB [ϕ]B,C [v]C

= (P [u]B′)T [ϕ]B,C(Q[v]C′)

= [u]TB′PT [ϕ]B,CQ[v]C′

Definition (Rank of bilinear form). The rank of ϕ, r(ϕ), is the rank of its
matrix representation (which is well-defined by the previous proposition).

Note.
r(ϕ) = r(ϕL) = r(ϕR).
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5 Determinant & Trace

5.1 Trace

Definition (Trace). For A ∈ Mn(F) = Mn,n(F), the trace of A is

tr(A) =

n∑
i=1

Aii.

Lemma 5.1. For A,B ∈ Mn(F),

tr(AB) = tr(BA).

Proof.
tr(AB) =

∑
i

∑
j

aijbji =
∑
j

∑
i

bjiaij = tr(BA).

Lemma 5.2. Similar (or conjugate) matrices have the same trace.

Proof. Suppose A and B are conjugates, then there exists P such that B =
P−1AP so

tr(B) = tr(P−1AP ) = tr(APP−1) = tr(A).

Definition (Trace). Let α : V → V be a linear map. The trace of α is

trα = tr[α]B = tr[α]B,B

with repsect to a basis B. This is well-defined by the previous lemma.

Lemma 5.3. Let α : V → V be linear and α∗ : V ∗ → V ∗ be its dual. Then

trα = trα∗.

Proof.
trα = tr[α]B = tr[α]TB = tr[α∗]B∗ = trα∗.

5.2 Determinant
Recall some results from IA Groups: let Sn be the permutation group of the set
{1, 2, . . . , n} and ε : Sn → {1,−1} be the signature of a permutation, i.e.

ε(σ) =

{
1 if σ is a product of even number of transpotitions
0 otherwise
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5 Determinant & Trace

Definition (Determinant). Suppose A ∈ Mn(F), A = (aij), the determi-
nant of A is

detA =
∑
σ∈Sn

ε(σ)aσ(1),1aσ(2),2 · · · aσ(n),n.

There are n! terms in this summation and each is the signed product of n
elements (one from each row and each column).
Example. For n = 2,

det

(
a11 a12
a21 a22

)
= a11a22 − a21a12

Lemma 5.4. If A = (aij) is an upper-triangular matrix (i.e. aij = 0 for all
i > j) then

detA = a11a22 . . . ann.

Similar for lower-trianglular matrices.

Proof. In the summation

detA =
∑
σ∈Sn

ε(σ)aσ(1),1 . . . aσ(n),n,

for a summand to be non-zero, we need σ(j) ≤ j for all j. Thus σ = id.

Lemma 5.5.
detA = detAT

Proof.

detA =
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i

=
∑
σ∈Sn

ε(σ)

n∏
i=1

ai,σ−1(i)

=
∑
σ∈Sn

ε(σ−1)

n∏
i=1

ai,σ−1(i)

=
∑
τ∈Sn

ε(τ)

n∏
i=1

ai,τ(i) where τ = σ−1

= detAT

Definition (Volume form). A volume form on Fn is a function

d : Fn × Fn × · · · × Fn︸ ︷︷ ︸
n copies

→ F

which is:
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5 Determinant & Trace

• multilinear: for any i and v1, . . . , vi−1, vi, vi+1, . . . , vn ∈ Fn,

d(v1, . . . , vi−1,−, vi+1, . . . , vn) ∈ (Fn)∗.

• alternating: if vi = vj for i 6= j, d(v1, . . . , vn) = 0.

Notation. Given A = (aij), write A in column form(
A(1)| · · · |A(n)

)
.

For example, if {ei} is a standard basis for Fn then

I = (e1| · · · |en) .

Lemma 5.6.

det : Fn × · · · × Fn → F

(A(1), . . . , A(n)) 7→ detA

is a volume form.

Proof.

• Multilinear: for any fixed σ ∈ Sn,
∏n
i=1 aσ(i),i contains exactly one term

from each column so it is multilinear. Multilinearity is preserved under
addition.

• Alternating: suppose A(k) = A(l) for some l 6= k. Let τ = (kl). Then
aij = aiτ(j) for all i, j. Also Sn can be expressed as a union of two disjoint
cosets An and τAn so

detA =
∑
σ∈An

ε(σ)

n∏
i=1

ai,σ(i) −
∑
σ∈An

ε(σ)

n∏
i=1

ai,τσ(i)

since ε is a homomorphism

=
∑
σ∈An

ε(σ)

n∏
i=1

ai,σ(i) −
∑
σ∈An

ε(σ)

n∏
i=1

ai,σ(i)

= 0

In the rest of the section we are going to prove that the converse is also true,
i.e. all volume forms are determinant up to a scaling constant.

Lemma 5.7. Let d be a volume form. Then swapping two entries changes
the sign:

d(v1, . . . , vi, . . . , vj , . . . , vn) = −d(v1, . . . , vj , . . . , vi, . . . , vn).
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5 Determinant & Trace

Proof.

0 = d(v1, . . . , vi−1, vi + vj , vi+1, . . . , vj−1, vi + vj , vj+1, . . . , vn)

= d(v1, . . . , vi, . . . , vi, . . . , vn)︸ ︷︷ ︸
=0

+d(v1, . . . , vj , . . . , vi, . . . , vn)

+ d(v1, . . . , vi, . . . , vj , . . . , vn) + d(v1, . . . , vj , . . . , vj , . . . , vn)︸ ︷︷ ︸
=0

Rearrange.

Corollary 5.8. If σ ∈ Sn,

d(vσ(1), . . . , vσ(n)) = ε(σ)d(v1, . . . , vn).

Theorem 5.9. Let d be a volume form on Fn, A = (A(1)| . . . |A(n)), then

d(A(1), . . . , A(n)) = detA · d(e1, . . . , en).

Proof.

d(A(1), . . . , A(n)) = d

(
n∑
i=1

ai1ei, A
(2), . . . , A(n)

)

=

n∑
i=1

ai1d(ei, A
(2), . . . , A(n))

=
∑
i

∑
j

ai1aj2d(ei, ej , . . . , A
(n))

=
∑

i1,i2,...,in

n∏
k=1

aik,kd(ei1 , . . . ein)

The last term is 0 unless all of ik are distinct, i.e. exists σ ∈ Sn such that
ik = σ(k). Thus

d(A(1), . . . , A(n)) =
∑
σ∈Sn

n∏
k=1

aσ(k),k d(eσ(1), . . . , eσ(n))︸ ︷︷ ︸
=ε(σ)d(e1,...,en)

Corollary 5.10. det is the unique volume form d such that d(e1, . . . , en) =
1.

Proposition 5.11. Suppose A,B ∈ Mn(F), then

detAB = detAdetB.
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Proof. Define

dA : Fn × · · · × Fn → F
(v1, . . . , vn) 7→ det(Av1| · · · |Avn)

which is a volume form:

• multilinear: vi 7→ Avi is linear and det is multilinear.

• alternating: vi = vj implies Avi = Avj and det is alternating.

It follows that

dA(Be1, . . . , Ben) = detB · dA(e1, . . . , en) = detB detA

= det(ABe1| · · · |ABen) = detAB

Definition (Singular). A ∈ Mn(F) is singular if detA = 0. Otherwise it is
non-singular.

Lemma 5.12. If A is invertible then it is non-singular and

detA−1 =
1

detA
.

Proof.
1 = det In = det(AA−1) = detAdetA−1

Theorem 5.13. Suppose A ∈ Mn(F) then TFAE:

1. A is invertible,

2. A is non-singular,

3. r(A) = n.

Proof.

• 1 ⇒ 2: done.

• 2 ⇒ 3: suppose that r(A) < n. By rank-nullity n(A) > 0 so ∃λ ∈ Fn \ {0}
such that Aλ = 0. Say λ = (λi) and λk 6= 0. Have

∑n
i=1A

(i)λi = 0. Let

B = (e1|e2| · · · |ek−1|λ|ek+1| · · · |en)

It follows that AB has kth column zero so

0 = detAB = detA detB = λk detA.

So detA = 0.

• 3 ⇒ 1: by rank-nullity.
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5.3 Determinant of Linear Maps

Lemma 5.14. Conjugate matrices have the same determinant.

Proof. Let B = P−1AP . Then

detB = det(P−1AP ) = detP−1 detAdetP = det(P−1P ) detA = detA.

Definition (Determinant). Let α : V → V where V is a finite-dimensional
vector space. The determinant of α is

detα = det[α]B,B

where B is any basis for V .

This is well-defined by the previous lemma.

Theorem 5.15. det : L(V, V ) → F satisfies

1. det id = 1,

2. detα ◦ β = detα detβ,

3. detα 6= 0 if and only if α is invertible, in which case det(α−1) = 1
detα .

Proof. Restatement of previous results.

5.4 Determinant of Block-triangular Matrices

Lemma 5.16. Suppose A ∈ Mk(F), B ∈ M`(F) and C ∈ Mk,`(F), then

det

(
A C
0 B

)
= detAdetB.

Proof. Let n = k + ` and call the block matrix X = (xij), which is an element
of Mn(F). Then

detX =
∑
σ∈Sn

ε(σ)

n∏
i=1

xσ(i),i

Note that xσ(i),i = 0 if i ≤ k and σ(i) > k. Thus we are only concerned about
σ under which these are in different orbits, i.e. σ = σ1σ2 where σ1 ∈ Sym{1,...,k}
and σ2 ∈ Sym{k+1,...,n}.

=
∑

σ1∈Sym{1,...,k}

ε(σ1)

k∏
j=1

aσ1(j),j

×
∑

σ2∈Sym{k+1,...,n}

ε(σ2)

n∏
j=k+1

aσ2(j),j

= detAdetB
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5 Determinant & Trace

Corollary 5.17. For a sequence of matrices A1, . . . , Ak,

det


A1

A2 ∗
A3

0
. . .

Ak

 =

k∏
i=1

detAi

Proof. Apply the previous lemma inductively.

Caution. In general,

det

(
A B
C D

)
6= detAdetD − detB detC.

5.5 Volume Interpretation of Determinant
In R2, the determinant of a matrix

det

(
a11 a12
a21 a22

)
can be intepreted as the signed area of the parallelogram spanned by the column
vectors

(
a11
a21

)
and

(
a12
a22

)
of the matrix.

Similarly in R3 the determinant of a matrix is the signed volume of the
parallelepiped spanned by the column vectors of the matrix.

For higher dimensions, although difficult to visualise, the same interpretation
still works: consier a hypercube H = [0, 1]n ⊆ Rn. Then a map A ∈ Mn(F)
sends

H → A(H)
n∑
i=1

tiei 7→
n∑
i=1

tiA
(i)

and the generalised signed volume of RHS is detA.

5.6 Determinant of Elementary Operation
Consider the determinants of elementary column operation matrices:

• E1 swaps two columns so detE1 = −1,

• E2 multiplies a column by λ 6= 0 so detE2 = λ,

• E3 adds λ times of a column to another column so detE3 = 1.

One could prove properties of det by decomposing any matrix into elemen-
tary matrices.

38



5 Determinant & Trace

5.7 Column Expansion & Adjugate Matrices

Lemma 5.18. Suppose A ∈ Mn(F), A = (aij). Define Aîj ∈ Mn−1(F) by
deleting row i and column j from A. Then detA can be calculated by

1. expansion in column j: for a fixed j,

detA =

n∑
i=1

(−1)i+jaij detAîj .

2. expansion in row i: for a fixed i,

detA =

n∑
j=1

(−1)i+jaij detAîj .

Remark. It is possible to use one of the expressions above to define determinant
inductively, with base case det a = a for n = 1.

Example. ∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣
Proof. We prove 1:

detA = det

(
A(1)| · · · |

n∑
i=1

aijei| · · · |A(n)

)

=

n∑
i=1

aij det(A
(1)| · · · |ei| · · · |A(n))

use row and column operations to move the entry to top left corner,

=

n∑
i=1

aij(−1)(i−1)+(j−1) det

(
1 0
0 Aîj

)

=

n∑
i=1

aij(−1)i+j detAîj

Definition (Adjugate). Let A ∈ Mn(F). The adjugate matrix of A, adjA,
is the n× n matrix

(adjA)ij = (−1)i+j detAĵi.

Notice the transposition of indices.

Theorem 5.19.

1. (adjA)A = detA · I,
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2. If A is invertible then
A−1 =

adjA

detA
.

Proof.

1. For a fixed j, detA =
∑
i(adjA)jiaij = (adjA · A)jj . For j 6= k, replace

the jth column with the kth:

0 = det(A(1)| · · · |A(k)| · · · |A(k)| · · · |A(n))

=
∑
i

(adjA)jiaik

= (adjA ·A)jk

2. If A is invertible then detA 6= 0 so

I =
adjA

detA
A.

5.8 Application: System of Linear Equations
A system of linear equations can be written as

Ax = b

where A ∈ Mm,n(F) and b ∈ Mm,1(F) are known and x ∈ Mn,1(F) is unknown.
The system has a solution if and only if r(A) = r(A|b) where the matrix on

RHS is the augmented matrix by adding b as a column to A since this happens
if and only if b is a linear combination of columns of A.

The solution is unique if and only if r(A) = n.
In particular, if m = n, if A is non-singular then there is a unique solution

x = A−1b.

Although in theory we could invert the matrix to solve the system of equa-
tions, it is terribly inefficient. Instead, we use

Proposition 5.20 (Cramer’s rule). If A ∈ Mn(F) is invertible then the
system

Ax = b

has unique solution x = (xi) where

xi =
det(Aîb)

detA

where Aîb is obtained from A by deleting ith column and replacing it with
b.
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Proof. Assume x is a solution of the system.

det(Aîb) = det(A(1)| · · · |b| · · · |A(n))

= det(A(1)| · · · |Ax| · · · |A(n))

=

n∑
j=1

xj det(A
(1)| · · · |A(j)| · · · |A(n))

A(j) is one of the other columns unless j = i so

= xi detA

Corollary 5.21. If A ∈ Mn(Z) with detA = ±1, then

1. A−1 ∈ Mn(Z).

2. Given b ∈ Zn, Ax = b has an integer solution.
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6 Endomorphism

6.1 Definitions
Let V be an F-vector space with dimV = n < ∞. Let B = {v1, . . . , vn} be a
basis and α ∈ L(V ) = L(V, V ). The general problem studied in this chapter is
to choose a basis B such that [α]B has “nice forms”, for example, to be amenable
to det and tr.

Suppose there is another basis B′ with change-of-basis matrix P . Recall that

[α]B = P−1[α]B′P.

The above problem is thus euqivalent to the following: given A ∈ Mn(F), find
A′ conjugate to A and in a “nice form”.

What are the nice forms that we desire? The best we can have is

Definition (Diagonalisable). α ∈ L(V ) is diagonalisable if there exists B
such that [α]B is diagonal.

A slightly weaker, albeit still “nice” enough form is

Definition (Triangulable). α ∈ L(V ) is triangulable if there exists B such
that [α]B is upper triangular.

Equivalent, rephrasing using languages of matrices, A ∈ Mn(F) is diagonal-
isable (triangulable, respectively) if it is conjugate to a diagonal (upper triangle,
respectively) matrix.

Definition (Eigenvalue, eigenvector, eigenspace).

1. λ ∈ F is an eigenvalue of α if there exists some v ∈ V \ {0} such that
α(v) = λv.

2. v ∈ V is an eigenvector of α if α(v) = λv for some eigenvalue λ.

3. Vλ = {v ∈ V : α(v) = λv} is the λ-eigenspace of α.

Remark. It is easy to check that Vλ ≤ V .

Remark.

1. Vλ = ker(α− λι) and

λ is an eigenvalue
⇔α− λι is singular
⇔det(α− λι) = 0

2. If α(vj) = λvj then the jth column of [α]B is (0, . . . , λ, . . . , 0)T .

3. [α]B is diagonal if and only if B consists of eigenvectors. [α]B is upper
triangular if and only if α(vj) ∈ 〈v1, . . . , vj〉 for all j. In particular, v1 is
an eigenvector.
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6.2 Polynomial Ring, an Aside
Before discussing polynomials associated with a linear map, we need some back-
ground knowledge about the ambient polynomial space that we will be working
with. The following results should be self-evident and proofs are omitted. Most
of them will be studied in detail in IB Groups, Rings and Modules and a proof
the Fundamental Theorem of Algebra can be found in IB Complex Analysis.

Let
F[t] = {polynomials with coefficients in F}

and deg f be the degree of f in F[t]. In addition for the convenience of stating
the following properties we let deg 0 = −∞. We have the following properties:

1. deg(f + g) ≤ max(deg f, deg g),deg(fg) = deg f + deg g.

2. If λ ∈ F is a root of some f ∈ F[t], i.e. f(λ) = 0 then (t− λ) | f . In other
words, f(t) = (t− λ)g(t) for some g(t) ∈ F[t] and deg g = deg f − 1.

3. We say λ is a root of f ∈ F[t] with multiplicity e ∈ N if (t − λ)e | f but
(t− λ)e+1 - f .

4. A polynomial of degree n has at most n roots, counted with multiplicity.

5. Fundamental Theorem of Algebra: any f ∈ C[t] of positive degree has a
root (hence deg f roots).

6.3 Characteristic Polynomial of Endormorphism

Definition (Characteristic polynomial). The characteristic polynomial of
α ∈ L(V ) is

χα(t) = det(α− tι).

The characteristic polynomial of A ∈ Mn(F) is

χA(t) = det(A− tI).

Conjugate matrices have the same characteristic polynomial.

Theorem 6.1. A linear map α is triangulable if and only if χα(t) can be
written as a product of linear factors over F.

Proof.

• ⇒: suppose α is triangulable and is represented bya1 · · · ∗
. . .

...
0 an


with respect to some basis. Then

χα(t) = det

a1 − t · · · ∗
. . .

...
0 an − t

 =

n∏
i=1

(ai − t)
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• ⇐: induction of n = dimV : if n = 1 then done. Suppose n > 1 and the
theorem holds for all endomorphisms of spaces of smaller dimensions. By
hypothesis χα(t) has a root in F, say λ. Let U = Vλ 6= 0, then α(U) ≤ U
so α induces α : V/U → V/U . Pick basis v1, . . . , vk for U and extend it to
a basis B = {v1, . . . , vn} for V . With respect to B, α has representation(

λIk ∗
0 C

)
so

χα(t) = det(α− tι) = (λ− t)kχα(t).

Thus χα(t) is also a product of linear factors. Since χα(t) acts on a
linear space of strictly smaller dimension, by induction hypothesis there
is a basis wk+1 + U, . . . , wn + U for V/U with respect to which α has an
upper-triangular matrix representation, say T. Then with respect to basis
v1, . . . , vk, wk+1, . . . , wn, α has matrix representation(

λIk ∗
0 T

)

Example. Let F = R, V = R2 and α be a rotation. Then with respect to the
standard basis α has representation(

cos θ sin θ
− sin θ cos θ

)
and thus χα(t) = t2 − 2 cos θt+1, which is irreducible in general. Thus α is not
triangulable over R.

Lemma 6.2. Let V be an n-dimensional F-vector space and α ∈ L(V ) with
χα(t) = (−1)ntn + cn−1t

n−1 + . . . c0. Then

• c0 = detα,

• cn−1 = (−1)n−1 trα for F = R or C.

Proof.

• c0 = χα(0) = det(α− 0) = detα.

• If F = R then there is an extension of scalars Mn(R) ⊗ C ↪→ Mn(C)
induced by R ↪→ C (i.e. complexification). For F = C, use Fundamental
Theorem of Algebra to write

χα(t) = det

a0 − t · · · ∗
. . .

...
0 an − t

 =

n∏
i=1

(ai − t)

where
∑n
i=1 ai = trα.
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Notation. Let p(t) be a polynomial over F,

p(t) = ant
n + · · ·+ a0 ∈ F[t].

For A ∈ Mn(F), define

p(A) = anA
n + · · ·+ a0I ∈ Mn(F).

For α ∈ L(V ), define

p(α) = anα
n + · · ·+ a0ι ∈ L(V ).

Theorem 6.3. Let V be a finite-dimensional F-vector space. Let α ∈ L(V ).
Then α is diagonalisable if and only if p(α) = 0 for some p ∈ F[t] which is
the product of distinct linear factors.

Proof.

1. ⇒: Suppose α is diagonalisable with distinct eigenvalues λ1, . . . , λk. Let

p(t) = (t− λ1) · · · (t− λk).

Let B be a basis of eigenvectors. For v ∈ B, α(v) = λiv for some i. Thus

0 = (α− λiι)v ⇒ p(α)(v) = 0.

As this holds for all v ∈ B, p(α) = 0.

2. ⇐: Suppose p(α) = 0 for this p, which is monic wlog. Claim that

V =

k⊕
i=1

Vλi

Proof. For j = 1, . . . , k, let

qj(t) =

k∏
i=1,i6=j

t− λi
λj − λi

and q(t) =
∑k
j=1 qj(t). q(t) has degree at most k− 1 and q(λi) = 1 for all

i = 1, . . . , k so q(t) = 1.
Let πj = qj(α) : V → V . By construction

k∑
j=1

πj = q(α) = ι ∈ L(V )

so given v ∈ V ,

v = q(α)(v) =

k∑
j=1

πj(v).
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Also

(α− λjι)(πj(v)) = (α− λjι)(qj(α)(v)) =
1∏

i6=j(λj − λi)
p(α)︸︷︷︸
=0

(v) = 0.

We have thus shown that

imπj ≤ ker(α− λjι) = Vλj
.

Thus V =
∑k
j=1 Vλj

.

To prove the sum is direct, suppose v ∈ Vλj
∩ (
∑k
i 6=j Vλi

) and apply πj to
v:

v ∈ Vλj
⇒ πj(v) =

k∏
i=1,i6=j

λj − λi
λj − λi

v = v

v ∈
k∑
i6=j

Vλi ⇒ πj(v) = 0

so v = 0 and the sum is direct.
Now take the union of bases for Vλi

as a basis for V .

Remark.

1. πj is the projection from V to Vλj
.

2. The proof shows that for k distinct eigenvalues λ1, . . . λk of α, the sum∑
j Vλj

is direct. The only way for diagonalisation to fail is if
∑
j Vλj

� V .

Corollary 6.4. Suppose A ∈ Mn(C) has finite order then A is diagonalis-
able.

Proof. p(A) = 0 for p(t) = tm − 1 where m is the order of A. This factorises as∏m−1
i=0 (t− ξi) where ξ is a primitive mth root of unity.

Theorem 6.5 (Simultaneous diagonalisation). Let α, β ∈ L(V ) be diag-
onalisable. Then α and β are simultaneous diagonalisable (there exists a
basis with respect to which they are both diagonal) if and only if α and β
commute.

Proof.

• ⇒: Suppose there is a basis B such that A = [α]B and B = [β]B are
diagonal. Any two diagonal matrices commute so AB = BA, αβ = βα.
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• ⇐: Suppose α and β commute and both are diagonalisable. We have

V = V1 ⊕ · · · ⊕ Vk

where Vi = ker(α− λiι). Claim that β(Vj) ≤ Vj : suppose v ∈ Vj ,

αβ(v) = βα(v) = β(λjv) = λjβ(v).

As β is diagonalisable, there is a polynomial p with distinct linear factors
such that p(β) = 0. Now

p(β|Vi
) = p(β)|Vi

= 0

so β|Vi
∈ L(Vi) is diagonal. Pick a basis Bi of Vi combining its eigenvectors

for β. By construction these are also eigenvectors for α. With respect to
B =

⋃
i Bi both α and β are diagonal.

Lemma 6.6 (F[t] as a Euclidean domain). Given a, b ∈ F[t] with b 6= 0,
there eixst q, r ∈ F[t] with deg r < deg b and a = qb+ r.

Proof. IB Groups, Rings and Modules.

Definition (Minimal polynomial). Suppose α ∈ L(V ) and V is finite-
dimensional. The minimal polynomial of α, mα, is the monic non-zero
polynomial of smallest degree such that

mα(α) = 0.

Remark. Let dimV = n <∞, dimL(V ) = n2 so

ι, α, α2, . . . , αn
2

∈ L(V )

must be linearly dependent so there is a non-trivial relation. Thus minimal
polynomial exists.

Lemma 6.7. Let α ∈ L(V ), p ∈ F[t]. Then p(α) = 0 if and only if
mα(t) | p(t).

Proof. By Euclidean algorithm there exist q, r ∈ F[t] such that

p(t) = mα(t)q(t) + r(t)

where deg r < degmα. Then

0 = p(α) = mα(α)q(α) + r(α)

so r(α) = 0. By the minimality of the degree of mα, r = 0.
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Corollary 6.8. mα is uniquely defined.

Proof. Suppose m1 and m2 are both minimal polynomials of α. Then by the
previous lemma m1 | m2 and vice versa. By assumption both of them are monic
so m1 = m2.

Theorem 6.9 (Cayley-Hamilton Theorem). Let V be a finite-dimensional
F-vector space. Let α ∈ L(V ). Then

χα(α) = 0.

First we give a proof for F = C:

Proof. For some basis B = {v1, . . . , vn}, α has matrix representation

[α]B =

a1 · · · ∗
. . .

...
0 an


Let Uj = 〈v1, . . . , vj〉. Then (α− ajι)Uj ≤ Uj−1 so

(α− a1ι)(α− a2ι) · · · (α− an−1ι) (α− anι)V︸ ︷︷ ︸
≤Un−1︸ ︷︷ ︸

≤Un−2︸ ︷︷ ︸
≤(α−a1ι)U1=0

= 0

so
χα(α) = 0.

However, this proof is unsatisfactory in that it relies on the fact of C being
algebraically closed, which is partially, to say the least, an analytical and not
an algebraic property1. In actuality, Cayley-Hamilton is a general result that
applies to all fields. Thus we give an alternative algebraic proof:

Proof. (Non-examinable) Let A ∈ Mn(F), then

χA(t) · (−1)n = tn + an−1t
n−1 + · · ·+ a0 = det(tI −A).

For any matrix B, we have

B adjB = detB · I.

Let B = tI − A. Then adjB is a matrix whose entries are polynomials in t of
degree smaller than n, i.e. polynomials in t with coefficients in Mn(F).

Thus

(tI −A) (Bn−1t
n−1 + · · ·+B1t+B0)︸ ︷︷ ︸

adjB

= (tn + an−1t
n−1 + · · ·+ a0)︸ ︷︷ ︸
detB

I

1While being closed is an algebraic property, the construction of C via R from Q is not.
The point here is that Caylay-Hamilton holds for all fields, not just closed ones.
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Equating the coefficients of each power of t,

I = Bn−1

an−1I = Bn−2 −ABn−1

...
a0I = −AB0

multiply by An−i+1 for the ith row

An = AnBn−1

an−1A
n−1 = An−1Bn−2 −AnBn−1

...
a0I = −AB0

and add them up,

An + an−1A
n−1 + . . . a1A+A0I = 0.

Definition (Algebraic multiplicity). Let λ be an eigenvalue of α ∈ L(V )
where V is a finite-dimensional F-vector space. Write

χα(t) = (t− λ)aλq(t)

for some q(t) ∈ F[t] and (t − λ) - q(t). aλ is the algebraic multiplicity of λ
as an eigenvalue of α.

Definition (Geometric multiplicity). gλ = n(α− λι) is the geometric mul-
tiplicity of α.

Lemma 6.10. If λ is an eigenvalue then

1 ≤ gλ ≤ aλ.

Proof. 1 ≤ gλ since α− λι is singular.
Let B = {v1, . . . vn} be a basis of V with {v1, . . . , vg} a basis of ker(α− λι).

Let g = gλ. Then

[α]B =

(
λIg ∗
0 A1

)
where A1 ∈ Mn−g(F). Thus

χα(t) = (t− λ)gαA1
(t)

and gλ ≤ aλ.
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Lemma 6.11. Let λ be an eigenvalue. Let cλ be the multiplicity of λ as a
root of mα. Then

1 ≤ cλ ≤ aλ.

Proof. As mα | χα, cλ ≤ aλ.
As λ is an eigenvalue, α(v) = λv for some v 6= 0. Now given p ∈ F[t],

p(α)(v) = p(λ)(v). Apply this to mα,

0 = mα(α)(v) = mα(λ)(v)

so mα(λ) = 0.

Example.

1. Let

A =

1 0 −2
0 1 1
0 0 2


then

χA(t) = det(A− tI) = (2− t)(1− t)2.

There are two candidates for the minimal polynomial:

• (t− 2)(t− 1)2,
• (t− 2)(t− 1).

We can check that (A− I)(A− 2I) = 0 so the second one is the minimal
polynomial. It follows that A is diagonalisable.

2. Let

A =


λ 1

λ 1
. . . 1

λ


which has gλ = 1, aλ = n, cλ = n.

Lemma 6.12. Let α ∈ L(V ), then TFAE:

1. α is diagonalisable,

2. aλ = gλ for all eigenvalues λ,

3. if F = C, cλ = 1 for all eigenvalues λ.

Proof.

• 1 ⇔ 2: Let λ1, . . . , λk be eigenvalues of α. Then α is diagonalisable if and
only if V =

⊕
i Vλi

. Take dimension of both sides,

dimV = n = degχα = a1 + · · ·+ ak

dim
⊕
i

Vλi = g1 + · · ·+ gk

But gi ≤ ai for all i so α is diagonalisable if and only if gi = αi for all i.
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• 2 ⇔ 3: By the Fundamental Theorem of Algebra, mα is a product of
linear factors. α is diagonalisable if and only if these are all distinct, i.e.
cλ = 1 for all eigenvalues λ.

Remark. Over C,

χα(t) = (λ1 − t)a1 · · · (λk − t)ak

mα(t) = (t− λ1)
c1 · · · (t− λk)

ck

with 1 ≤ ci ≤ ai.

Definition (Jordan normal form). A ∈ Mn(F) is in Jordan normal form if
it is a block diagonal matrix

A =


Jn1

(λ1)
Jn2

(λ2)
. . .

Jnk
(λk)


where k ≥ 1, n1, . . . , nk ∈ N with

∑
i ni = n, λi ∈ F not necessarily distinct

and

Jm(λ) =


λ 1

λ 1
. . . 1

λ

 ∈Mm(F)

is a Jordan block.

Theorem 6.13. Every A ∈ Mn(C) is similar to a matrix in Jordan normal
form, unique up to reordering the Jordan blocks.

Proof. (Non-examinable) It is a consequence of a main theorem on modules in
IB Groups, Rings and Modules.

In the rest of this section assume F = C unless stated otherwise.
Example.

1. Classification of Jordan normal forms for M2(C):(
λ1

λ2

) (
λ
λ

) (
λ 1
λ

)
(t− λ1)(t− λ2) t− λ (t− λ)2

2. Classification of Jordan normal forms for M3(C):(
λ1

λ2

λ3

) (
λ1

λ2

λ2

) (
λ
λ
λ

)
(t− λ1)(t− λ2)(t− λ3) (t− λ1)(t− λ2) t− λ(

λ1

λ2 1
λ2

) (
λ
λ 1
λ

) (
λ 1
λ 1
λ

)
(t− λ1)(t− λ2)

2 (t− λ)2 (t− λ)3
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Theorem 6.14 (Generalised Eigenspace Decomposition). Let V be a finite-
dimensional C-vector space and α ∈ L(V ). Suppose that

mα(t) = (t− λ1)
c1 · · · (t− λk)

ck

where λi’s are distinct. Then

V =
⊕
j

Vj

where
Vj = N(α− λjι)

cj

is the generalised eigenspace.

Sketch of proof. Let
pj(t) =

∏
i6=j

(t− λi)
ci .

The pj have no common factor so by Euclidean algorithm we can find q1, . . . , qk ∈
C[t] such that ∑

j

pj(t)qj(t) = 1.

Let πj = qj(α)pj(α) ∈ L(V ). Note
∑k
j=1 πj = ι.

1. As mα(α) = 0, (α− λjι)
cjπj = 0 so imπj ≤ Vj .

2. Suppose v ∈ V , v = ι(v) =
∑
πj(v) so V =

∑
j Vj .

3. To show the sum is direct, πiπj = 0 for i 6= j so

πi = πi

 k∑
j=1

πj

 = π2
i

i.e. πi is a projection. Then

πi|Vj
=

{
id i = j

0 i 6= j

Directness follows.

Remark.

1. We can use Generalised Eigenspace Decomposition to reduce the proof of
Theorem 6.13 to a single eigenvalue.

2. Considering α− λι can reduce to the case of eigenvalue 0.
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Lemma 6.15. Let α ∈ L(V ) with Jordan normal form A ∈ Mn(C). Then
the number of Jordan blocks J`(λ) of A with ` ≥ 1 is

n((α− λι)`)− n((α− λι)`−1).

Proof. Work blockwise, for each s× s block,
λ 1

. . . . . .
. . . 1

λ

 ( 0 1

. . .
1
0

) ( 0 0 1

. . . 1
0
0

)
Js(λ) Js(λ)− λI (Js(λ)− λI)2

so

n((Js(λ)− λI)k) =

{
k k ≤ s

s k ≥ s

Example. Let

A =

(
0 −1
1 2

)
we want to find a basis B = {v1, v2} with respect to which A is in Jordan normal
form.

1.
χA(t) =

∣∣∣∣−t −1
1 2− t

∣∣∣∣ = t2 − 2t+ 1 = (t− 1)2

There are two possibilities:

(a) mA(t) = t− 1. Then the Jordan normal form is(
1 0
0 1

)
(b) mA = (t− 1)2. Then the Jordan normal form is(

1 1
0 1

)
A trick here is to note that if A is conjugate to I then A = I. Thus (b)
holds.

2. The eigenspace is spanned by v1 =
(

1
−1

)
.

3. v2 satisfies (A− I)v2 = v1 so(
−1 −1
1 1

)
v2 =

(
1
−1

)
so v2 =

(−1
0

)
. Note that v2 is not unique.
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4. Finally,

A =

(
1 −1
−1 0

)(
1 1
0 1

)(
1 −1
−1 0

)−1

We can use the diagonalisation to calculate powers of matrices:

An = (P−1JP )n = P−1JnP = P−1

(
1 n
0 1

)
P

Remark. In Jordan normal form,

• aλ is the total number of times that λ appears in the diagonal.

• gλ is the number of λ-Jordan blocks.

• cλ is the size the largest λ-Jordan block.
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7 Bilinear Form II

7.1 Symmetric Bilinear Forms
In this chapter we are going to studying a special bilinear form (and variants
whereof) in detail. Let ϕ : V × V → F be a bilinear form on V and assume we
take the same basis for both factors of V , say B. Therefore if dimV < ∞, ϕ
has matrix representation

[ϕ]B = [ϕ]B,B.

Recall that

Lemma 7.1. Let ε : V × V → F,dimV < ∞ and B and B′ are two bases
for V . Let P = [id]B′,B. Then

[ϕ]B′ = PT [ϕ]BP.

Proof. Special case of Proposition 4.6.

This motivates us to define a relation on Mn(F)

Definition (Congruency). A,B ∈ Mn(F) are congruent if

A = PTBP

for some invertible P .

Note. This is an equivalence relation.

Naturally, we want to find nice forms to which a general bilinear form is
congruent. Certainly the nicest form we can have is diagonal matrix. It turns
out the property we require a bilinear form to be “diagonalisable” is

Definition (Symmetric). A bilinear form ϕ on V is symmetric if

ϕ(u, v) = ϕ(v, u)

for all u, v ∈ V .

Note.

• A ∈ Mn(F) is symmetric if A = AT . Then ϕ is symmetric if and only if
[ϕ]B is symmetric for any basis B, if and only if [ϕ]B is symmetric for one
B.

• To be able to be represented by a diagonal matrix, ϕ needs to be symmet-
ric:

[ϕ]B = PTAP = D ⇒ DT = D = PTATP ⇒ A = AT

Definition (Quadratic form). A map Q : V → F is a quadratic form if
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there is a bilinear form ϕ on V such that

Q(v) = ϕ(v, v)

for all v ∈ V .
Example. Let V = R2. A general quadratic form is(

x
y

)
7→
(
x y

)(a b
c d

)(
x
y

)
= ax2 + (b+ c)xy + dy2

Remark. A quadratic form does not change under A 7→ 1
2 (A + AT ) where A

is a representation of the inducing bilinear form.

Proposition 7.2. Assume charF 6= 2. If Q : V → F is a quadratic form
then there exists a unique symmetric bilinear form ϕ on V such that

Q(v) = ϕ(v, v)

for all v ∈ V .

Proof. First we prove the existence. Let ψ be a bilinear form on V such that
Q(v) = ψ(v, v) for all v ∈ V . We construct a symmetric bilinear form by adding
ψ and its transpose. Let

ϕ(u, v) =
1

2
(ψ(u, v) + ψ(v, u))

(this is where we require charF 6= 2) then it is bilinear and symmetric and

ϕ(v, v) = ψ(v, v) = Q(u).

To show the uniqueness, suppose ϕ is such a symmetric bilinear form. Con-
sider

Q(u+ v) = ϕ(u+ v, u+ v)

= ϕ(u, u) + ϕ(u, v) + ϕ(v, u) + ϕ(v, v)

= Q(u) + 2ϕ(u, v) +Q(v)

Rearrange,
ϕ(u, v) =

1

2
(Q(u+ v)−Q(u)−Q(v))

which is uniquely determined.

Remark. The last identity

ϕ(u, v) =
1

2
(Q(u+ v)−Q(u)−Q(v))

is called the polarisation identity and will appear later.

The note after the definition of symmetric bilinear form shows that being
symmetric is a necessary condition for a bilinear form to be “diagonalisable”.
The following theorem says that it is also sufficient:
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Theorem 7.3. Let ϕ be a symmetric bilinear form on V , an F-vector space
and assume charF 6= 2 and dimV <∞. Then there is a basis B of V such
that [ϕ]B is diagonal.

Proof. Induction on n = dimV . If n = 0 or 1 then obviously true.
Suppose the theorem holds for all spaces of dimension smaller than n. There

are two cases to consider:

1. if ϕ(u, u) = 0 for all u then by the polarisation identity ϕ = 0 so diagonal.

2. otherwise choose e1 ∈ V such that ϕ(e1, e1) 6= 0. Let

U = 〈e1〉⊥ = {u ∈ V : ϕ(e1, u) = 0} = ker(ϕ(e1,−) : V → F)

which has dimension n− 1 by rank-nullity. Moreover, V = 〈e1〉 ⊕U since
〈e1〉 ∩ U = 0 and dim(〈e1〉 ⊕ U) = n. Consider ϕ|U : U × U → F which is
also symmetric bilinear. By induction hypothesis there is a basis e2, . . . en
of U with respect to which ϕ|U is diagonal. Now ϕ is diagonal with respect
to e1, . . . , en.

Notation. In V = Rn with standard basis e1, . . . , en, write

Q(x1, x2, . . . , xn) = Q

(
n∑
i=1

xiei

)
.

Example. Let V = R3 with standard basis e1, e2, e3 and

Q(x1, x2, x3) = x21 + x22 + 2x23 + 2x1x2 + 2x1x3 − 2x2x3.

We want a basis f1, f2, f3 of R3 such that

Q(af1 + bf2 + cf3) = λa2 + µb2 + νc2

for some λ, µ, ν ∈ R, which are the diagonal entries.
The martix representation of Q with repect to e1, e2, e3 is

A =

1 1 1
1 1 −1
1 −1 2


We could use the algorithm as outlined in the induction proof above but

choose to do it differently by completing the square:

Q(x1, x2, x3) = (x1 + x2 + x3)
2︸ ︷︷ ︸

used all terms in x1

+x23 − 2x2x3 − 2x2x3

= (x1 + x2 + x3)
2 + (x3 − 2x2)

2︸ ︷︷ ︸
used all terms in x3

−(2x2)
2

From here we can read off the diagonal matrix and the basis: for some P ,

PTAP =

1 0 0
0 1 0
0 0 −1
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To find P , note that x′1x′2
x′3

 =

1 1 1
0 −2 1
0 2 0


︸ ︷︷ ︸

P−1

x1x2
x3



Corollary 7.4. Let ϕ be a symmetric bilinear form on V , a finite-dimensional
C-vector space. Then there is a basis B = {v1, . . . vn} of V such that

[ϕ]B =

(
Ir 0
0 0

)
where r = r(ϕ).

Proof. Pick basis E = {e1, . . . en} such that

[ϕ]E =

a1 . . .
an


Reorder the ei’s such that {

ai 6= 0 1 ≤ i ≤ r

ai = 0 i > r

For i ≤ r, pick a complex square root of ai, say √
ai. Now let

vi =

{
ei√
ai

1 ≤ i ≤ r

ei i > r

Corollary 7.5. Every symmetric matrix A ∈ Mn(C) is congruent to a
unique matrix of the form

(
Ir 0
0 0

)
.

Equivalently,

Q

(
n∑
i=1

λivi

)
=

r∑
i=1

λ2i .

We have derived a corollary for our favourite field C, and there is another
one corresponding to our second favourite field, R:

Corollary 7.6. Let ϕ be a symmetric bilinear form on V , a finite-dimensional
R-vector space. There is a basis B = {v1, . . . , vn} such that

[ϕ]B =

Ip −Iq
0
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where p, q ≥ 0 and p+ q = r(ϕ).
Proof. The proof is the same as for C up to the point of exhibiting a basis with
respect to which ϕ is diagonal. Note that we cannot choose a square root for
all the entries. Instead, reorder the indices such that

ai > 0 1 ≤ i ≤ p

ai < 0 p+ 1 ≤ i ≤ p+ q

ai = 0 i > p+ q

and let

vi =


ei√
ai

1 ≤ i ≤ p
ei√
−ai

p+ 1 ≤ i ≤ p+ q

ei i > p+ 1

Equivalently,

Q

(
n∑
i=1

λivi

)
=

p∑
i=1

λ2i −
q+p∑
i=p+1

λ2i .

Definition (Positive/Negative (semi-)definiteness). A symmetric bilinear
form ϕ on a real vector space V is

• positive definite if ϕ(u, u) > 0 for all u ∈ V \ {0}.

• positive semi-definite if ϕ(u, u) ≥ 0 for all u ∈ V \ {0}.

• negative definite if ϕ(u, u) < 0 for all u ∈ V \ {0}.

• negative semi-definite if ϕ(u, u) ≤ 0 for all u ∈ V \ {0}.

• indefinite if none of the above.

The same terminologies apply to quadratic forms.
Example. A bilinear form on Rn represented by

(
Ip 0
0 0

)
∈ Mn(R) is positive

definite if p = n and positive semi-definite if p < n.

Definition (Signature). The signature of a real symmetric bilinear form ϕ
is

s(ϕ) = p− q.

Again, this applies to quadratic forms as well.
However, we have not even checked whether this is well-defined. Thus we

need

Theorem 7.7 (Sylvester’s Law of Inertia). If a real symmetric bilinear
bilinear form ϕ has with respect to basis B and B′

[ϕ]B =

Ip −Iq
0

 [ϕ]B′ =

I ′p −I ′q
0
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then

p = p′,

q = q′.

It is then immediate that

Corollary 7.8. Signature is well-defined.

Proof. For uniqueness of p, show that p is the largest dimension of a subspace
on which ϕ is positive definite. This suffices as it is a basis invariant character-
isation.

Let B = {v1, . . . , vn}. LetX = 〈v1, . . . , vp〉 and Y = 〈vp+1, . . . , vn〉. dimX =
p and ϕ is positive definite on X:

Q(v) = Q

(
p∑
i=1

λivi

)
=

p∑
i=1

λ2i > 0

for all v 6= 0. Similarly ϕ is negative semi-definite on Y .
Suppose is ϕ is positive definite on some other subspace X ′. Then X ′∩Y = 0

since Q is positive definite on X ′ and negative semi-definite on Y . Therefore

dim(Y +X ′) = dimY ⊕X ′ = dimY + dimX ′ ≤ n

but since dimY = n− p we have dimX ′ ≤ p.
For q, we can either run the same argument with negative definite spaces,

or use the fact that q = r(ϕ)− q is invariant.

The zero diagonal block is not very interesting but it does get a speical name:

Definition (Kernel of symmetric bilinear form). The kernel of a symmetric
bilinear form is

K = {v ∈ V : ϕ(u, v) = 0 for all u ∈ V }.

Note.
dimK = n− r(ϕ).

In our previous notation, the kernel is simply

K = 〈vp+q+1, . . . , vn〉.

Caution. There is a subspace T of dimension n− (p+ q) +min(p, q) such that
ϕ|T = 0: say p ≥ q,

T = 〈v1 + vp+1, . . . , vq + vp+q, vp+q+1, . . . , vn〉.

Exercise. Check that T above is the largest possible such space.
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7.2 Sesquilinear Form
Let F = C throughout this section.

The dot product on a real vector space comes naturally as a bilinear form.
However, its generalisation to complex vector space, the standard inner product
defined by

〈x, y〉 =
n∑
i=1

xiyi

is not bilinear: the second coordinate transforms by “conjugate-linearity” in-
stead of linearity. Among many other examples of the same spirit, this serves
as a motivation to modify the definition of bilinear forms for C-vector spaces:

Definition (Sesquilinear form). Let V and W be C-vector spaces. A
sesquilinear form is a function ϕ : V ×W → C such that

ϕ(λ1v1 + λ2v2, w) = λ1ϕ(v1, w) + λ2ϕ(v2, w)

ϕ(v, µ1w1 + µ2w2) = µ1ϕ(v, w1) + µ2ϕ(v, w2)

for all λ1, µ1 ∈ C and v, v1, v2 ∈ V , w,w1, w2 ∈W .

Naturally we would expect a sesquilinear form, just like a bilinear form, to
have a matrix representation which behaves and transforms accordingly under
change-of-basis:

Definition (Matrix of sesquilinear form). Same notation as above. Let
B = {v1, . . . , vm} be a basis for V and C = {w1, . . . , vn} be a basis for W .
Then the matrix of ϕ with respect to B and C is

[ϕ]B,C = (ϕ(vi, wj))i,j

Lemma 7.9.
ϕ(u, v) = [u]TB [ϕ]B,C [v]C .

Proof. Easy.

Lemma 7.10. Let B,B′ be bases for V , P = [id]B′,B and C, C′ be bases for
W , Q = [id]C′,C. Then

[ϕ]B′,C′ = PT [ϕ]B,CQ.

Proof. Ditto.

7.3 Hermitian Form
We have special bilinear forms that are symmetric. The analogue for sesquilinear
form is
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Definition (Hermitian form). A sesquilinear form ϕ : V × V → C is Her-
mitian if

ϕ(u, v) = ϕ(v, u).

Note.

1. For ϕ Hermitian, ϕ(u, u) ∈ R and ϕ(λu, λu) = |λ|2ϕ(u, u) so we can still
talk about positive/negative (semi-)definite Hermitian forms.

2. For a Hermitian form ϕ : V × V → C, let B be a basis for V . Then we
write

[ϕ]B = [ϕ]B,B.

Lemma 7.11. A sesquilinear form ϕ : V ×V → C is Hermitian if and only
if for any basis B,

[ϕ]B = [ϕ]
T

B .

As before, if and only if this holds for one basis.

Proof. Let B = {v1, . . . , vn} and A = [ϕ]B = (aij).

• ⇒:

aij = ϕ(vi, vj)

= ϕ(vj , vi)

= aji

• ⇐:

ϕ
(∑

λivi,
∑

µjvj

)
= λTAµ

= λTA
T
µ

= µTAλ taking transpose of a scalar

= µTAλ

= ϕ
(∑

µjvj ,
∑

λivi

)

Similarly we have polarisation identity for sesquilinear form: a Hermitian
form ϕ on a C-vector space V is determined by

Q : V → R
v 7→ ϕ(v, v)

via the formula

ϕ(u, v) =
1

4
(Q(u+ v)−Q(u− v) + iQ(u+ iv)− iQ(u− iv)) .

Proof. Exercise.

Lastly,
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Theorem 7.12 (Diagonalisation of Hermitian Form and Sylvester’s Law).
Let V be a finite-dimensional C-vector space and ϕ : V × V → C be a
Hermitian form. There is a basis B = {v1, . . . , vn} of V with respect to
which

[ϕ]B =

Ip −Iq
0


where p and q are invariants of ϕ.

Proof. This is nearly as identical to the symmetric case so we only give a sketch
here.

For existence, if ϕ(u, u) = 0 for all u then by polarisation identity ϕ(u, v) = 0
so done. Assume not. There exists e1 such that ϕ(e1, e1) 6= 0. Rescale to have

v1 =
e1√

|ϕ(e1, e1)|

so ϕ(v1, v1) = ±1. Note that we used the fact that ϕ(e1, e1) ∈ R.
Consider the complementary space

W = 〈v1〉⊥ = {w ∈ V : ϕ(v1, w) = 0}

Check that V = 〈v1〉 ⊕W . Now proceed by induction on W .
For uniqueness part (Sylvester’s law), note p is the maximal dimension of a

subspace of V on which ϕ is positive definite.

7.4 Alternating Form

Definition (Alternating form). A bilinear form ϕ : V ×V → F is alternating
or skew-symmetric if

ϕ(u, v) = −ϕ(v, u)

for all u, v ∈ V .

As a consequence ϕ(u, u) = 0 for all u ∈ V and for any basis B, [ϕ]B = −[ϕ]TB .

Remark. Alternating form is useful since for any A ∈ Mn(F) with charF 6= 2,

A =
1

2
(A+AT )︸ ︷︷ ︸
symmetric

+
1

2
(A−AT )︸ ︷︷ ︸

skew-symmetric

.

Theorem 7.13. If ϕ is skew-symmetric, there exists a basis

B = {v1, w1, v2, w2, . . . , vm, wm, v2m+1, . . . , vn}
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such that

[ϕ]B =



0 1
−1 0

0 1
−1 0

. . .
0 1
−1 0

0
. . .

0


where there are m blocks of

(
0 1
−1 0

)
.

Remark. By reordering the basis, with respect to

{v1, . . . , vm, w1, . . . , wm, v2m+1, . . . vn}

it has matrix representation  0 Im
−Im 0

0


Remark. Skew-symmetric matrices have even rank.

Sketch of proof. Induction on dimV : If ϕ = 0 then done. Assume not. Then
there exists v1, w1 such that ϕ(v1, w1) 6= 0. In particular v1 and w1 are linearly
independent. Scale v1 to get ϕ(v1, w1) = 1 = −ϕ(w1, v1) and let

U = 〈v1, w1〉
W = ⊥U = {v ∈ V : ϕ(v, v1) = ϕ(v, w1) = 0}

Check V = U⊕W by dimension argument. Now apply the induction hypothesis
to ϕ|W .
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8 Inner Product Space

8.1 Definitions
Let F = R or C in this chapter.

Definition (Inner product). Let V be a vector space over R (C, repsec-
tively). An inner product on V is a positive definite symmetric bilinear
form (Hermitian form, respectively) ϕ on V .

V is called a real (complex, respectively) inner product space, or a Eu-
clidean (unitary, repsectively) space.

Notation. Write 〈u, v〉 for ϕ(u, v). Note that it is the same as our notation for
span so we will spell out span whenever we use it in this chapter.

Example.

• Dot product on Rn or Cn.

• V = C([0, 1],C), 〈f, g〉 =
∫ 1

0
f(t)g(t)dt.

• This can be generalised. Given w : [0, 1] → R>0 continuous, think of it as
a weight function, we can define an inner product

〈f, g〉 =
∫ 1

0

w(t)f(t)g(t)dt.

Remark. An inner product induces a distance function, i.e. a norm on V by

‖v‖ =
√
〈v, v〉

whose axioms will be checked later.
Conversely, ‖·‖ determines the inner product because of the polarisation

identity.

Lemma 8.1 (Cauchy-Schwarz Inequality).

|〈u, v〉| ≤ ‖u‖ · ‖v‖

for all u, v ∈ V .

Proof. Wlog u 6= 0. For all t ∈ F,

0 ≤ ‖tu− v‖2

= 〈tu− v, tu− v〉

= ‖tu‖2 − t〈u, v〉 − t〈u, v〉+ ‖v‖2

by setting t = 〈u, v〉/‖u‖2,

≤ −|〈u, v〉|2

‖u‖2
+ ‖v‖2

Rearrange.
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Note. We only used polarisation identity and did not assume any of the norm
properties of ‖·‖, which we will prove now.

Corollary 8.2 (Triangle Inequaility).

‖u+ v‖ ≤ ‖u‖+ ‖v‖

for all u, v ∈ V .

Proof.

‖u+ v‖2 = ‖u‖2 + 〈u, v〉+ 〈u, v〉+ ‖v‖2

≤ ‖u‖2 + 2‖u‖ · ‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2

Corollary 8.3. ‖·‖ is a norm.

Remark. For F = R, the angle θ between two non-zero vectors u and v satisfies
(or defined by, actually)

cos θ =
〈u, v〉

‖u‖ · ‖v‖
.

8.2 Orthonomal Basis

Definition (Orthogonality). A set {e1, . . . , ek} of vectors in V is orthogonal
if

〈ei, ej〉 = 0

for i 6= j.

Definition (Orthonormality). A set {e1, . . . , ek} of vectors in V is orthonor-
mal if

〈ei, ej〉 = δij

for all i, j.

Lemma 8.4. If {e1, . . . , ek} is orthogonal and non-zero then they are lin-
early independent.

Moreover if v =
∑k
j=1 λjej,

λj =
〈v, ej〉
〈ej , ej〉

.

Proof.

〈v, ej〉 =

〈
k∑
i=1

λiei, ej

〉
= λj〈ej , ej〉

and the results follow.
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Lemma 8.5 (Parseval’s Identity). Let V be a finite-dimensional inner prod-
uct space with an orthonormal basis e1, . . . , en. Then

〈u, v〉 =
n∑
i=1

〈u, ei〉〈v, ei〉.

Proof. Follows immediately from the orthonormal basis expansion formula in
the previous lemma:

〈u, v〉 =

〈
n∑
i=1

〈u, ei〉ei,
n∑
j=1

〈v, ej〉ej

〉
.

Theorem 8.6 (Gram-Schmidt Orthonormalisation Process). Let V be an
inner product space and {v1, v2, . . . } be a countable set of linearly indpendent
vectors in V . Then there exists a sequence e1, e2, . . . orthonormal such that

span{v1, . . . , vk} = span{e1, . . . , ek}

for all k.

Proof. We see the word “countable” and instinctly use induction on k. If k = 1
then done. Suppose we have found e1, . . . , ek. Inspired by the orthonormal basis
expansion formula, let

e′k+1 = vk+1 −
k∑
i=1

〈vk+1, ei〉ei︸ ︷︷ ︸
linear combination of v1,...,vk

which is non-zero by linear independence of {v1, . . . , vk+1}. Also 〈e′k+1, ei〉 = 0
for 1 ≤ i ≤ k by construction. Finally,

span{v1, . . . , vk, vk+1} = span{e1, . . . , ek, e′k+1}.

Finally normalise it by

ek+1 =
e′k+1

‖e′k+1‖
.

Corollary 8.7. Let V be a finite-dimensional inner product space. Any
orthonormal set of vectors can be extended to an orthonormal basis.

Proof. Say {e1, . . . , ek} are orthonormal. They are linearly independent so we
can extend to a basis {e1, . . . , ek, vk+1, . . . , vn} of V .

Now apply Gram-Schmidt to this set. As the first k vectors are already
orthonormal it has no effect on them.

Note. A ∈ Mm,n(R) has orthonormal columns if ATA = I and A ∈ Mm,n(C)
has orthonormal columns if ATA = I.

We give special names to them:
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Definition (Orthogonal matrix). A ∈ Mn(R) is orthogonal if ATA = I.

Equivalently A−1 = AT .

Definition (Unitary matrix). A ∈ Mn(R) is unitary if ATA = I.

Equivalently A−1 = A
T .

Given these terminologies, Gram-Schmidt may be equivalently formulated
as follow:

Proposition 8.8. A ∈ Mn(R) (Mn(C), respectively) non-singular can be
written as A = RT where

• T is upper triangular,

• R is orthogonal (unitary, respectively).

Proof. Apply Gram-Schmidt to columns of A. The details are left as an exercise.

8.3 Orthogonal Complements & Projections

Definition (Orthogonal direct sum). Let V be an inner product space and
V1, V2 ≤ V . V is the orthogonal direct sum of V1 and V2 if

1. V = V1 ⊕ V2,

2. 〈v1, v2〉 = 0 for all v1 ∈ V1, v2 ∈ V2.

Write V = V1 ⊥ V2.

Note. The first condition is actually redundant: V1∩V2 = 0 because of positive
definiteness of inner product.

Definition (Orthogonal complement). Let W ≤ V . The orthogonal com-
plement of W in V is

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all v ∈W}.

Lemma 8.9. Let V be a finite-dimensional inner product space and W ≤ V .
Then

V =W ⊥W⊥.

Proof. If w ∈ W,u ∈ W⊥ then 〈w, u〉 = 0 so it remains to show that V =
W +W⊥.

Let {e1, . . . , ek} be an orthonormal basis for W . By a previous lemma we can
extend it to an orthonormal basis {e1, . . . , en} of V . Note that ek+1, . . . , en ∈
W⊥.

Note. Complementary space is, in general, not unique but orthogonal comple-
ment is.

A concept closely related to orthogonal complement is
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Definition (Projection). Suppose V = U ⊕W , a projection from V to W
is a map

π : V →W

u+ w 7→ w

where u ∈ U,w ∈W . This a well-defined linear map and is idempotent, i.e.
π2 = π.

If the direct sum is orthogonal, however, there is a unique projection:

Definition (Orthogonal projection). If U =W⊥ above then π is the orthg-
onal projection from V to W .

Note. π′ = ι− π is the orthogonal projection from V to W⊥.

So far we have discussed orthogonal complement only at an abstract level and
we don’t know yet how to find one, although you should have a good intuition
of how. The following lemma tells us how it works:

Lemma 8.10. Let V be an inner product space, W ≤ V with orthonormal
basis e1, . . . , ek and π is the orthogonal projection onto W . Then

1. For all v ∈ V ,

π(v) =

k∑
i=1

〈v, ei〉ei

2. ‖v − π(v)‖ ≤ ‖v − w‖ for all v ∈ V , w ∈ W with equality if and only
if π(v) = w. Equivalently, π(v) is the closest point in W to v.

Proof.

1. We need

v −
k∑
i=1

〈v, e1〉ei ∈W⊥.

But 〈
v −

k∑
i=1

〈v, ei〉ei, ej

〉
= 〈v, ej〉 − 〈v, ej〉 = 0.

2.

‖v − w‖2 = ‖v − π(v)︸ ︷︷ ︸
∈W⊥

+π(v)− w︸ ︷︷ ︸
∈W

‖2

= ‖v − π(v)‖2 + ‖π(v)− w‖2

≤ ‖v − π(v)‖2

with equality if and only if π(v) = w.
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Remark. We met internal and external direct sum before. There is an analo-
gous distinction for orthogonal direct sum.

Given V1, V2 two inner product spaces over F, we can define the external
orthogonal direct sum V1 ⊥ V2 by equipping V1 ⊕ V2 the inner product

〈(u1, u2), (v1, v2)〉 = 〈u1, v1〉+ 〈u2, v2〉.

In practice we often suppress the distinction between internal and external (or-
thogonal) direct sums.

8.4 Adjoints

Proposition 8.11. Let V and W be finite-dimensional inner product spaces
and α ∈ L(V,W ). Then there exists a unique linear map α∗ :W → V such
that for all v ∈ V,w ∈W ,

〈αv,w〉 = 〈v, α∗w〉.

If B is an orthonormal basis for V and C is an orthonormal basis for W ,

[α∗]C,B = [α]
T

B,C .

Definition (Adjoint). α∗ as above is the adjoint of α.

Proof. Let B = {v1, . . . , vn}, C = {w1, . . . , wm} and as usual, let

A = [α]B,C = (aij)

A
T
= C = (cij)

where cij = aij .
Since the formula for the adjoint map is given, we might as well just verify

it. Consider the linear map β such that [β]C,B = C. Then〈
α

(∑
i

λivi

)
,
∑
j

µjwj

〉
=

〈∑
i,k

λiakiwk,
∑
j

µjwj

〉
=
∑
i,j

λiajiµj

while on the other hand〈∑
i

λivi, β

∑
j

µjwj

〉 =

〈∑
i

λivi,
∑
j,k

µjckjvk

〉
=
∑
i,j

λicijµj

and we see that they are equal since cij = aij . Thus we have proved the existence
of adjoint.

By specialising the above calculation to basis elements uniqueness follows.

Notation. Denote the Hermitian conjugate by

A† = A
T
.
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Caution. We use the same notation α∗ for the adjoint and the dual of α.
Hopefully the context should be clear which one is in use.

Remark. This usage of notation is not entirely coincidental. In fact, let V and
W be finite-dimensional real inner product spaces and α ∈ L(V,W ). In finite
dimension there is an isomorphism

ψR,V : V → V ∗

v 7→ 〈−, v〉

and similarly ψR,W :W →W ∗ such that the following diagram commutes:

W V

W ∗ V ∗

adjoint of α

ψR,W ψR,V

dual of α

In the fancy language of category theory, this essentially says that adjoint and
dual are naturally isomorphic as contravariant functors, with components ψR,−.

8.5 Self-adjoint Maps & Isomoetries
Let V =W throughout this section.

Definition (Self-adjoint). Let V be an inner product space and α ∈ L(V ).
Let α∗ be the adjoint of α. α is self-adjoint if it satisfies one of the equivalent
properties below:

• For all u, v ∈ V , 〈αu, v〉 = 〈u, αv〉,

• α = α∗.

α is said to be symmetric (Hermitian, respectively) if the vector space is
real (complex, respectively).

Definition (Isometry). Let V be an inner product space and α ∈ L(V ). Let
α∗ be the adjoint of α. α is an isometry if it satisfies one of the equivalent
properties below:

• For all u, v ∈ V , 〈αu, αv〉 = 〈u, v〉,

• α−1 = α∗.

α is said to be orthogonal (unitary, respectively) if the vector space is
real (complex, respectively).

The equivalences should be quite obvious and in case you don’t find it so,

Proof of 2nd equivalence.

• ⇒: ‖αv‖2 = ‖v‖2 so α is injective and α−1 exists. For all u, v ∈ V ,

〈u, α∗v〉 = 〈αu, v〉 = 〈u, α−1v〉

so α−1 = α∗.
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• ⇐:
〈αu, αv〉 = 〈u, α∗αv〉 = 〈u, v〉

for all u, v ∈ V .

Remark. By the polarisation identity there is yet another equivalent definition
of isometry: α is an isometry if

‖αv‖ = ‖v‖

for all v ∈ V , which might be closer to the intuition of an “isometry”.

Lemma 8.12. Let V be a finite-dimensional real (complex, respectively)
inner product space and α ∈ L(V ). Then

• α is self-adjoint if and only if for all orthonormal basis B, [α]B is
symmetric (Hermitian, repsectively).

• α is an isometry if and only if for all orthonormal basis B, [α]B is
orthogonal (unitary, respectively).

Proof. There is very little to do actually. For any orthonormal basis B,

[α∗]B = [α]
T

B

and the two cases follow.

It turns out all the isometries on an inner product space form a group:

Definition (Orthogonal/Unitary group).

• If F = R, the orthogonal group of V is

O(V ) = {α ∈ L(V ) : α isometry}.

• If F = C, the unitary group of V is

U(V ) = {α ∈ L(V ) : α isometry}.

Lemma 8.13. Let V be an inner product space with orthonormal basis
e1, . . . , en. Then

• if F = R, there is a correspondence

O(V ) ↔ {orthonormal basis of V }
α↔ (α(e1), . . . , α(en))
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• if F = C, there is a correspondence

U(V ) ↔ {orthonormal basis of V }
α↔ (α(e1), . . . , α(en))

8.5.1 Spectral Theory for Self-adjoint Maps

Spectral theory is the study of eigenvalues and eigenvectors of linear opera-
tors, particularly those on infinite dimensional spaces. They have enormous
importance in many areas of mathematics and physics, including for example
functional analysis, harmonic analysis and quantum mechanics. In this course,
spectral simply refers the the collection of all eigenvalues of an endomorphism
on a finite-dimensional vector space.

Lemma 8.14. Let V be an inner product space. If α ∈ L(V ) is self-adjoint
then

1. α has real eigenvalues.

2. eigenvectors of α for different eigenvalues are orthogonal.

Note that this true for any inner product space, regardless of dimension.

Proof.

1. Suppose αv = λv for some non-zero v ∈ V and λ ∈ C. Then

λ〈v, v〉 = 〈λv, v〉 = 〈αv, v〉 = 〈v, αv〉 = 〈v, λv〉 = λ〈v, v〉

so λ = λ ∈ R.

2. Suppose αv = λv, αw = µw where λ 6= µ ∈ R. Use the similar idea,

λ〈v, w〉 = 〈λv,w〉 = 〈αv,w〉 = 〈v, αw〉 = µ〈v, w〉

so 〈v, w〉 = 0.

For infinite dimensional space, we may not have any eigenvalues (although
in which case the above is vacuously true). However, in finite-dimesional case
we have

Theorem 8.15. Let V be a finite-dimensional inner product space and
α ∈ L(V ) is self-adjoint. Then V has an orthonormal basis of eigenvectors,
whose eigenvalues are real by the previous lemma.

Proof. Let F = R or C. Induction on n = dimV . If n = 0 this is vacuously
true. If n = 1 then also true by the previous lemma. Suppose n > 1. Say

[α]B = A

where B is the standard basis. Passing to C in the same way we did in the proof
of Lemma 6.2. By Fundamental Theorem of Algebra, χA(t) ∈ C[t] has a root
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so A ∈ Mn(C) has an eigenvalue. Note that the argument so far applies to all
maps, not just self-adjoint operators.

Now using self-adjointness, this eigenvalue is real. So χA(t) has a (real)
root. Thus for both fields α has a real eigenvalue, say λ. Pick v1 ∈ V \ {0} such
that αv1 = λv1. Now use the old trick of passing to a space of strictly smaller
dimension, in this case the orthogonal complement

U = 〈v1〉⊥ ≤ V

where 〈v1〉 is the subspace spanned by v1. Check conditions for induction: if
u ∈ V ,

〈αu, v1〉 = 〈u, αv1〉 = 〈u, λv1〉 = λ〈u, v1〉 = 0

so α is U -stable. α|U ∈ L(U) is obviously self-adjoint so by induction hypothesis
there is an orthonormal basis v2, . . . , vn of U which are eigenvectors for α|U .
Adjoining v1

‖v1‖ gives an orthonormal basis of eigenvectors of α.

Corollary 8.16. Let V be a finite-dimensional inner product space. If
α ∈ L(V ) is self-adjoint, V is the orthogonal direct sum of all the eigenspaces
of α.

Proof. Immediate.

One reason self-adjoint operators are important is that many physical sys-
tems can be described by self-adjoint operators. By the theorem we can de-
compose such a space into orthogonal direct sum of eigenspaces, and when in
orthonormal basis, the action of a self-adjoint operator is simply “scaling”.

8.5.2 Spectral Theory for Unitary Maps

The other important map is isometry. Let F = C throughout this subsection.

Lemma 8.17. Let V be a complex inner product space and α ∈ L(V )
unitary. Then

1. all eigenvalues lie on the unit circle.

2. eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. This involves similar ideas as the lemma in the last subsection.

1. Suppose αv = λv for non-zero v ∈ V . In addition λ 6= 0 as α is invertible.
Then

λ〈v, v〉 = 〈λv, v〉 = 〈αv, v〉 = 〈v, α−1v〉 = 〈v, λ−1v〉 = λ
−1〈v, v〉

so λ = λ
−1, |λ|2 = 1.

2. Suppose αv = λv, αw = µw where λ 6= µ. Then

λ〈v, w〉 = 〈αv,w〉 = 〈v, α−1w〉 = µ−1〈v, w〉 = µ〈v, w〉

so 〈v, w〉 = 0.
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Theorem 8.18. Let V be a finite-dimensional complex inner product space
and α ∈ L(V ). Then V has an orthonormal basis of eigenvectors.

Proof. By Fundamental Theorem of Algebra, α has an eigenvalue, say λ ∈ C.
Fix non-zero v1 ∈ V such that αv1 = λv1 and further assume ‖v1‖ = 1. Let

U = 〈v1〉⊥ ≤ V.

For all u ∈ U ,
〈αu, v1〉 = 〈u, α−1v1〉 = λ

−1〈u, v1〉 = 0

so α is U -stable. By induction on dimension, U has an orthonormal basis of
eigenvectors of α|U , say v2, . . . , vn. Thus v1, . . . , vn is an orthonormal basis of
eigenvectors of α.

Remark.

1. Self-adjoint operators and isometries have different physical properties.
However spectral theory says that they have similar properties and the
proofs of which are essentially identical. This is because they are both
examples of a more general type of operators called normal maps, which
are defined to be those satisfying

αα∗ = α∗α.

Other examples of normal maps include skew-Hermitian maps. We will
meet more in example sheet.

2. Note that unlike the previous subsection, we only discuss unitary operators
(i.e. complex isometries). An orthogonal matrix A ∈ Mn(R) cannot, in
general, be diagonalised over R. For example, rotation of R2. See example
on page 44.
However, we can still get orthonormal basis with respect to which it is
block-diagonal with each blocks of size 1 or 2. See also example sheet. In
a sense, this is the “worst” can happen to an isometry.

8.5.3 Application to Bilinear Forms

Recall spectral theorem for self-adjoint maps and isometries.

Corollary 8.19. Let A ∈ Mn(R) (Mn(C) respectively) be a symmetric
(Hermitian respectively) matrix. Then there is an orthogonal (unitary re-
spectively) matrix P such that P †AP is diagonal with real entries.

Proof. Let F = R or C and equip Fn with the standard inner product. Then A ∈
L(Fn) is self-adjoint. Thus there is an orthonormal basis of Fn of eigenvectors
of A (with real eigenvalues), say v1, . . . , vn. Let

P = (v1 | · · · | vn)

then P−1AP is diagonal with real entries. Now use P−1 = P †.
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Note. For an orthogonal change-of-basis matrix P ,

P−1AP = P †AP

where LHS is change-of-basis of A as a linear map while RHS is change-of-basis
of A as a bilinear (sesquilinear respectively) form. This interpretation can be
exploited to tell us more about the structure of it.

Corollary 8.20. Let V be a finite-dimensional real (complex respectively)
inner product space and ϕ : V × V → F be a symmetric bilinear (Hermitian
respectively) form. Then there is an orthonormal basis of V with respect to
which ϕ is represented by a diagonal matrix with real entries.

Recall that previously we have shown that in general a symmetric bilinear
(Hermitian respectively) form is diagonalisable using perpendicular space. How-
ever, if we equip the same space with an inner product, this corollary not only
tells us that the bilinear form is diagonalisable, but also gives us an orthonormal
basis with respect to which this holds.

Proof. Let B = {v1, . . . , vn} be any orthonormal basis and A = [ϕ]B. A = A†

and there is an orthogonal (unitary respectively) matrix P such that D = P †AP
is diagonal. Let wi be the ith column of P , then B′ = {w1, . . . , wn} is an
orthonormal basis of V and [ϕ]B′ = D.

Remark. The diagonal entries of P †AP are the eigenvalues of A and thus the
signature could be equivalently defined as

s(ϕ) = #positive eigenvalues of A−#negative eigenvalues of A.

Corollary 8.21 (Simultaneous diagonalisation of bilinear forms). Let V
be a finite-dimensional real (complex respectively) vector space. Let ϕ,ψ
be symmetric (Hermitian respectively) bilinear forms on V . Assume ϕ is
positive definite. There is a basis B = {v1, . . . , vn} of V such that [ϕ]B and
[ψ]B are both diagonal.

Proof. First note that V equipped with ϕ is an inner product space. Thus there
exists an orthonormal (with respect to this inner product) basis with respect to
which ψ is represented by a diagonal matrix. By definition ϕ is represented by
the identity matrix, which is unchanged under any change of basis. The result
follows.

Caution. The positive definite assumption is necessary. See example sheet for
counterexamples when this assumption is not satisfied.

And we have a version correpsonding to matrices:

Corollary 8.22. Let A,B ∈ Mn(R) (Mn(C) respectively) be symmetric
(Hermitian respectively). Suppose xTAx > 0 for all non-zero x. Then there
exists Q ∈ Mn(R) (Mn(C) respectively) invertible such that QTAQ and
QTBQ (QTAQ and QTBQ respectively) are both diagonal.

Proof. Easy.
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