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1 Introduction & Motivation

1 Introduction & Motivation
The objects of interest in this course are

SL𝑛 = {𝐴 ∈ Mat𝑛 ∶ det 𝐴 = 1}
SO𝑛 = {𝐴 ∈ SL𝑛 ∶ 𝐴𝐴𝑇 = 𝐼}
Sp2𝑛 = ⋯

and five more examples. First of all they are algebraic groups.
We have SU2 ⊆ SL2. Note that SU2 is homeomorphic to 𝑆3 and so is

compact. In fact it is maximal compact and every maximal compact subgroup
of SL2 is conjugate to SU2.

We will look at the tangent space of the group at the identity, which is just
a finite-dimensional vector space.

Definition. A linear algebraic group is a subgroup of Mat𝑛 which is defined
by polynomial equations in the matrix coefficients.

For example SL𝑛 and SO𝑛 are linear algebraic groups. GL𝑛 is also an ex-
ample as we have embedding

GL𝑛 → Mat𝑛+1

𝐴 → (𝐴
𝜆)

where the image is given by det 𝐴 ⋅ 𝜆 = 1.

Example. Let 𝐺 = SL2 and let

𝑔 = (1
1) + 𝜀 (𝑎 𝑏

𝑐 𝑑) + ⋯

so
det 𝑔 = 1 + 𝜀(𝑎 + 𝑑) + higher terms

so det 𝑔 = 1 if and only if 𝑎 + 𝑑 = 0 if we pretend to be physicists for a second.
Now introduce the dual numbers

𝐸 = C[𝜀]/(𝜀2) = {𝑎 + 𝑏𝜀 ∶ 𝑎, 𝑏 ∈ C}.

If 𝐺 is an algebraic group then we define

𝐺(𝐸) = {𝐴 ∈ Mat𝑛(𝐸) ∶ 𝐴 satisfies the defining equations of 𝐺}.

Then
SL2(𝐸) = {(𝛼 𝛽

𝛾 𝛿) ∶ 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝐸, 𝛼𝛿 − 𝛽𝛾 = 1}

Now the map 𝐸 → C, 𝜀 ↦ 0 defines a map 𝜋 ∶ 𝐺(𝐸) → 𝐺. We define the Lie
algebra of 𝐺 to be

𝔤 ≅ 𝜋−1(𝐼) ≅ {𝑋 ∈ Mat𝑛(C) ∶ 𝐼 + 𝜀𝑋 ∈ 𝐺(𝐸)}.

In particular,

SL2 = {(𝑎 𝑏
𝑐 𝑑) ∈ Mat2(C) ∶ 𝑎 + 𝑑 = 0}.
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1 Introduction & Motivation

Exercise. Show that 𝐺(𝐸) = 𝑇 𝐺 is the tangent bundle of 𝐺 and 𝔤 is the
tangent space at 1, 𝐼 + 𝑋𝜀 is the germ of a curve through 1 ∈ 𝐺.

Example. Let 𝐺 = GL𝑛. Then

𝐺(𝐸) = { ̃𝐴 ∈ Mat𝑛(𝐸) ∶ ̃𝐴−1 exists}
= {𝐴 + 𝐵𝜀 ∶ 𝐴, 𝐵 ∈ Mat𝑛(C), 𝐴−1 exists}

where the second equality is because

(𝐴 + 𝐵𝜀)(𝐴−1 − 𝐴−1𝐵𝐴−1𝜀) = 𝐼.

So there is no condition on 𝐵 so 𝔤𝔩𝑛 = Mat𝑛(C). Another explantion for this
result is that det does not vanish in a neighbourhood of the identity matrix so
we get all matrices in the Lie algebra.

Exercise. Let 𝐺 = SL𝑛. Show that

det(𝐼 + 𝜀𝑋) = 1 + 𝜀 tr 𝑋

and hence
𝔰𝔩𝑛 = {𝑋 ∈ Mat𝑛(C) ∶ tr 𝑋 = 0}.

Example. Let
𝐺 = O𝑛 = {𝐴 ∈ Mat𝑛 ∶ 𝐴𝐴𝑇 = 𝐼}.

Then

𝔤 = {𝑋 ∈ Mat𝑛(C) ∶ (𝐼 + 𝜀𝑋)(𝐼 + 𝜀𝑋)𝑇 = 𝐼}
= {𝑋 ∈ Mat𝑛(C) ∶ 𝑋 + 𝑋𝑇 = 0}

Note tr 𝑋𝑇 = tr 𝑋 so tr 𝑋 = tr 𝑋𝑇 = 0. Thus SO𝑛 has the same Lie algebra.
In other words, by just looking into the Lie algebras we cannot distinguish the
groups O𝑛 and SO𝑛. This is because O𝑛 has two connected component, and the
component of the identity is SO𝑛. Of course the tangent space at the identity
doesn’t tell us anything in the other component. Thus this undesirable situation
can be remedied by restricting to connected Lie groups.

What structure does 𝔤 have that it inherits from 𝐺? It is not a (multiplica-
tive) group as

(𝐼 + 𝐴𝜀)(𝐼 + 𝐵𝜀) = 𝐼 + 𝜀(𝐴 + 𝐵)
has nothing to do with multiplication. Instead, we can consider the commutator

𝐺 × 𝐺 → 𝐺
(𝑃 , 𝑄) ↦ 𝑃𝑄𝑃 −1𝑄−1

This sends (𝐼, 𝐼) ↦ 𝐼 so by differentiating at the origin we get a map 𝔤 × 𝔤 → 𝔤.
Actually, we want a bilinear map 𝔤 × 𝔤 → 𝔤, so differentiate in each variable
separately: fix 𝑃 and differentiate 𝑓𝑃 ∶ 𝑄 ↦ 𝑃𝑄𝑃 −1𝑄−1 to get 𝑑𝑓𝑃 ∶ 𝔤 → 𝔤.
Then we differentiate it as a function of 𝑃.

Explicitly, write

𝑃 = 𝐼 + 𝜀𝐴
𝑄 = 𝐼 + 𝛿𝐵
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1 Introduction & Motivation

where 𝜀2 = 𝛿2 = 0, 𝜀𝛿 = 𝛿𝜀 ≠ 0. Then

𝑃𝑄𝑃 −1𝑄−1 = 𝐼 + (𝐴𝐵 − 𝐵𝐴)𝜀𝛿

so the map constructed out of the commutators is

𝔤 × 𝔤 → 𝔤
(𝐴, 𝐵) ↦ 𝐴𝐵 − 𝐵𝐴

This is called the Lie bracket of 𝐴 and 𝐵.

Exercise.

1. Show by differentiation that

(𝑃𝑄𝑃 −1𝑄−1)−1 = 𝑄𝑃𝑄−1𝑃 −1

implies that
[𝐵, 𝐴] = −[𝐴, 𝐵]

so the Lie bracket is anti-symmetric.

2. Show associativity of multiplication implies that

[[𝑋, 𝑌 ], 𝑍] + [[𝑌 , 𝑍], 𝑋] + [[𝑍, 𝑋], 𝑌 ] = 0.

This is the Jacobi identity.
Also show this is true from the definition [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 ∈ Mat𝑛.

Definition (Lie algebra). Let 𝑘 be a field, ch 𝑘 ≠ 2. A Lie algebra 𝔤 is a
𝑘-vector space equipped with a bilinear map [⋅, ⋅] ∶ 𝔤 × 𝔤 → 𝔤 that

1. is anti-symmetric: [𝑋, 𝑌 ] = −[𝑌 , 𝑋],

2. satisfies the Jacobi identity

[[𝑋, 𝑌 ], 𝑍] + [[𝑌 , 𝑍], 𝑋] + [[𝑍, 𝑋], 𝑌 ] = 0.

Example.

1. 𝔤𝔩𝑛 = Mat𝑛 with [𝐴, 𝐵] = 𝐴𝐵−𝐵𝐴. More generally, if 𝑉 is a vector space,
write 𝔤𝔩(𝑉 ) = End(𝑉 ).

2. 𝔰𝔬𝑛 = {𝐴 ∈ 𝔤𝔩𝑛 ∶ 𝐴 + 𝐴𝑇 = 0}.

3. 𝔰𝔩𝑛 = {𝐴 ∈ 𝔤𝔩𝑛 ∶ tr 𝐴 = 0}.

4. 𝔰𝔭2𝑛 = {𝐴 ∈ 𝔤𝔩2𝑛 ∶ 𝐽𝐴𝑇𝐽−1 + 𝐴 = 0} where

𝐽 = (
1

1
⋯

−1
−1

)

5. 𝔟𝑛 = {(
∗ ⋯ ∗

⋱ ∗
0 ∗

)} of upper triangular matrices.
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1 Introduction & Motivation

6. 𝔲𝑛 of strictly upper triangular matrices.

7. If 𝑉 is any vector space, let [⋅, ⋅] ∶ 𝑉 × 𝑉 → 𝑉 be the zero map. This is a
Lie algebra, called abelian Lie algebra.

Exercise.

1. Show 𝔤𝔩𝑛 is a Lie algebra.

2. Show examples 2 - 7 are sub-Lie algebras of 𝔤𝔩𝑛.

3. Find algebraic groups whose Lie algebras are the examples above.

4. Show {( ∗ ∗
∗ 0 )} ⊆ 𝔤𝔩2 is not a Lie algebra.

Example. Any 1-dim Lie algebra is abelian by anti-symmetry.

Exercise. Classify all Lie algebras of dimension 3.

Definition (representation). A representation of a Lie algebra 𝔤 on a vector
space 𝑉 is a Lie algebra homomorphism 𝔤 → 𝔤𝔩(𝑉 ). We say 𝔤 acts on 𝑉.

We have the silly example of trivial representation: 𝔤 acts on 𝑉 = 𝑘 by
𝑥 ↦ 0.

Less trivially, for any 𝑥 ∈ 𝔤, define

ad𝑥 ∶ 𝔤 → 𝔤
𝑦 ↦ [𝑥, 𝑦]

Lemma 1.1. ad ∶ 𝔤 → End(𝔤) is a representation of 𝔤, i.e. 𝔤 acts on it self.
This is called the adjoint representation.

Proof. Must show
ad[𝑥, 𝑦] = ad𝑥ad𝑦 − ad𝑦ad𝑥.

If 𝑧 ∈ 𝔤 then

(ad[𝑥, 𝑦])(𝑧) = [[𝑥, 𝑦], 𝑧]
RHS(𝑧) = [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] = −[[𝑦, 𝑧], 𝑥] − [[𝑧, 𝑥], 𝑦]

and they are equal by Jacobi.

Definition (center). The center of 𝔤 is

{𝑥 ∈ 𝔤 ∶ [𝑥, 𝑦] = 0 for all 𝑦 ∈ 𝔤} = ker(ad ∶ 𝔤 → 𝔤𝔩(𝔤)),

which is an abelian Lie algebra.

In particular, the center of 𝔤 is 0 if and only if ad is an embedding. Question:
does every finite-dimensional Lie algebra 𝔤 have a faithful finite-dimensional
representation? In other words, does 𝔤 ↪ 𝔤𝔩(𝑉 ) for some 𝑉?

Note: every affine algebraic group has a faithful representation.
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1 Introduction & Motivation

Theorem 1.2 (Ado). Any finite-dimensional Lie algebra 𝔤 over 𝑘 has a
faithful finite-dimensional rep, i.e. 𝔤 ↪ 𝔤𝔩𝑛 for some .

Example. Let 𝔤 = 𝔰𝔩2 with basis

𝑒 = (0 1
0 0) , 𝑓 = (0 0

1 0) , ℎ = (1 0
0 −1)

so we have
[𝑒, 𝑓] = ℎ, [ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓] = −2𝑓

so a representation of 𝔰𝔩2 is a triple of matrices 𝐸, 𝐹 , 𝐻 ∈ Mat𝑛 with these
relations. How can we find such? The answer, at this moment, is to find reps
of the algebraic group SL2 and differentiating. Later we will find them just by
using linear algebra.

Definition (algebraic representation). If 𝐺 is an algebraic group. An al-
gebraic representation of 𝐺 on a vector space 𝑉 is a homomorphism 𝐺 →
GL(𝑉 ) defined by polynomial equations in the matrix coefficients.

Let 𝜌 ∶ 𝐺 → GL(𝑉 ) be an algebraic rep. We have 𝜌(𝐼) = 𝐼. Consider the
map 𝐺(𝐸) → GL(𝑉 )(𝐸). We get

𝜌(𝐼 + 𝐴𝜀) = 𝐼 + 𝜀𝑑𝜌(𝐴)

for some function 𝑑𝜌(𝐴) of 𝐴.

Exercise. 𝑑𝜌 is the derivative of 𝜌 at identity.

Exercise. 𝜌 ∶ 𝐺 → GL(𝑉 ) implies that 𝑑𝜌 ∶ 𝔤 → 𝔤𝔩(𝑉 ) is a Lie algebra homo-
morphism, so 𝑉 is a representation of 𝔤.

Let 𝐺 = SL2 and let 𝐿(𝑛) be homogeneous polynomials in 𝑥, 𝑦 of degree
𝑛, with basis 𝑥𝑛, 𝑥𝑛−1𝑦, ⋯ , 𝑦𝑛, so has dimension 𝑛 + 1. GL2 acts on 𝐿(𝑛) by

change of coordinates: if 𝑔 = (𝑎 𝑏
𝑐 𝑑), 𝑓 ∈ 𝐿(𝑛) then

(𝜌𝑛(𝑔)𝑓)(𝑥, 𝑦) = 𝑓(𝑎𝑥 + 𝑐𝑦, 𝑏𝑥 + 𝑑𝑦).

Check that

1. 𝜌0 is the trivial rep.

2. 𝜌1 is the usual 2-dim rep.

3.

𝜌2 (𝑎 𝑏
𝑐 𝑑) = ⎛⎜

⎝

𝑎2 𝑎𝑏 𝑏2

2𝑎𝑐 𝑎𝑑 + 𝑏𝑐 2𝑏𝑑
𝑐2 𝑐𝑑 𝑑2

⎞⎟
⎠

Differentiate and we get an action of 𝔰𝔩2 on 𝐿(𝑛). Explicitly,

𝜌(𝐼 + 𝜀𝑒)𝑥𝑖𝑦𝑗 = 𝑥𝑖(𝑦 + 𝜀𝑥)𝑗 = 𝑥𝑖𝑦𝑗 + 𝜀𝑗𝑥𝑖+1𝑦𝑗−1

and hence
𝑑𝜌(𝑒)𝑥𝑖𝑦𝑗 = 𝑗𝑥𝑖+1𝑦𝑗−1.
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Exercise.

1. The Lie algebra acts by

𝑒 ⋅ (𝑥𝑖𝑦𝑗) = 𝑗𝑥𝑖+1𝑦𝑗−1

𝑓 ⋅ (𝑥𝑖𝑦𝑗) = 𝑖𝑥𝑖−1𝑦𝑗+1

ℎ ⋅ (𝑥𝑖𝑦𝑗) = (𝑖 − 𝑗)𝑥𝑖𝑦𝑗

2. Check directly this gives a rep of 𝔰𝔩2.

3. Show 𝐿(2) is isomorphic to the adjoint rep.

4. Show that
𝑒 = 𝑥 𝜕

𝜕𝑦
, 𝑓 = 𝑦 𝜕

𝜕𝑥
, ℎ = 𝑥 𝜕

𝜕𝑥
− 𝑦 𝜕

𝜕𝑦
defines an (infinite-dimensional) rep of 𝔰𝔩2 on 𝑘[𝑥, 𝑦]. Some implication:
this can be defined for all characteristics, and the differential operator
is suggesting that reps of Lie groups might have something to do with
calculus.

5. Show if ch 𝑘 = 0 then 𝐿(𝑛) is irreducible as an 𝔰𝔩2, hence SL2-module.

The map 𝜌 ↦ 𝑑𝜌 defines a functor from the category of a linear algebraic
group 𝐺 to the category of Lie algebra reps of 𝔤. However, this is not as nice a
map as you might hope.

Example. Let 𝐺 = C× so 𝔤 = C is the abelian Lie algebra. A rep of 𝔤 on a
vector space 𝑉 is the same as an element 𝐴 ∈ End(𝑉 ). A submodule 𝑊 ⊆ 𝑉 is
a subspace 𝑊 such that 𝑔𝑊 ⊆ 𝑊, i.e. 𝐴⋅𝑊 ⊆ 𝑊, so the same as an 𝐴-subspace
of 𝑉. Check that 𝐴 and 𝐴′ in End(𝑉 ) determine isomorphic reps of 𝔤 if and
only if 𝐴, 𝐴′ are conjugate. Hence isomorphism classes of reps of 𝔤 = C is
in bijection with conjugacy classes of matrices, and hence is determined by its
Jordan normal form.

In addition, any 𝐴 ∈ End(𝑉 ) has an eigenvector as 𝑉 is a vector space over
C. Thus the only irreducible rep of 𝔤 are the 1-dim ones.

A rep is isomorphic to a direct sum of irred reps if and only if 𝐴 is diag-

onalisable. For example if 𝐴 = (
0 1

0 1
⋱

1
0

) then the associated rep is inde-

composable, i.e. it does not split into a direct sum, as the only 𝐴-subspaces are
⟨𝑒1, ⟩, ⟨𝑒1, 𝑒2⟩, ⋯ , ⟨𝑒1, … , 𝑒𝑛⟩.

Now in constrast consider reps of 𝐺 = C×. It is a theorem that the irred
algebraic reps of C× are the 1-dim reps where 𝑧 ∈ C× acts on C by 𝑧 ⋅ 𝑣 = 𝑧𝑛𝑣
for 𝑛 ∈ Z. In other words they are given by 𝐺 → GL1, 𝑧 ↦ 𝑧𝑛. Moreover, any
finite-dimensional rep of 𝐺 is a direct sum of irreducible (this is similar to the
proof that the only irred reps of the compact group 𝑆1 are given by 𝑧 ↦ 𝑧𝑛,
once we set up the theory of algebraic groups).

Exercise. Show 𝜌 ↦ 𝑑𝜌 sends 𝑧 ↦ 𝑧𝑛 to the algebraic rep 𝑛 ∈ C.

The rep of Lie algebra C is continuous while that of the algebraic group C×

is discrete. This has something to do with 𝑆1 and its topology. Later we’ll see
that the functor 𝑑 gives an equivalence of category when restricted to simply
connected Lie groups.
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Note. Notice 𝔤 is also the Lie algebra of the additive group (C, +), whose
algebraic reps resemble the reps of 𝔤.

Less distressingly, if 𝑍 ⊆ 𝐺 is a finite central subgroup then 𝑇1(𝐺/𝑍) = 𝑇1𝐺
so the Lie algebras of 𝐺 and 𝐺/𝑍 agree.

Exercise. Let 𝐺𝑛 = C∗ ⋉ C where C∗ acts on C by 𝑡 ⋅ 𝜆 = 𝑡𝑛𝜆 so

(𝑡, 𝜆)(𝑡′, 𝜆′) = (𝑡𝑡′, 𝑡′𝑛𝜆 + 𝜆′).

Show that 𝐺𝑛 ≅ 𝐺𝑚 if and only if 𝑛 = ±𝑚, but

Lie 𝐺𝑛 = Lie 𝐺𝑚 = C𝑥 + C𝑦

where [𝑥, 𝑦] = 𝑦, so the functor is not faithful.

As a side note, the functor is not surjective either.

8
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2 Representations of 𝔰𝔩2
Recall that 𝔰𝔩2 has basis

𝑒 = (0 1
0 0) , 𝑓 = (0 0

1 0) , ℎ = (1 0
0 −1)

so we have
[𝑒, 𝑓] = ℎ, [ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓] = −2𝑓

We would like to prove

Theorem 2.1.

1. For each 𝑛 ≥ 0 there is a unique irreducible rep of 𝔰𝔩2 of dimension
𝑛 + 1.

2. Every finite-dimensional rep of 𝔰𝔩2 is a direct sum of irred reps.

Definition (weight space). Let 𝑉 be a rep of 𝔰𝔩2. If 𝜆 ∈ C, the 𝜆-weight
space of 𝑉 is

𝑉𝜆 = {𝑣 ∈ 𝑉 ∶ ℎ𝑣 = 𝜆𝑣},

the eigenspace of ℎ.

Example. 𝐿(𝑛)𝜆 = C𝑥𝑖𝑦𝑗 if 𝑖 − 𝑗 = 𝜆.
Let 𝑣 ∈ 𝑉𝜆 and we have

ℎ ⋅ 𝑒𝑣 = (ℎ𝑒 − 𝑒ℎ + 𝑒ℎ)𝑣 = ([ℎ, 𝑒] + 𝑒ℎ)𝑣 = 2𝑒𝑣 + 𝑒𝜆𝑣 = (𝜆 + 2)𝑒𝑣

so if 𝑣 ∈ 𝑉𝜆 then 𝑒𝑣 ∈ 𝑉𝜆+2, if and only if 𝑒𝑣 ≠ 0. Similarly 𝑓𝑣 ∈ 𝑉𝜆−2. Thus 𝑓
and 𝑒 shifts between a string of spaces 𝑉𝜆+2, 𝑉𝜆, 𝑉𝜆−2, …

⋯ 𝑉𝜆−2 𝑉𝜆 𝑉𝜆+2 ⋯
𝑒

𝑓

𝑒

𝑓

If 𝑣 ∈ 𝑉𝜆 ∩ ker 𝑒, that is 𝑒𝑣 = 0, ℎ𝑣 = 𝜆𝑣 we say 𝑣 is a highest weight vector
with highest weight 𝜆.

Lemma 2.2. Let 𝑉 be a rep of 𝔰𝔩2, 𝑣 ∈ 𝑉𝜆 a highest weight vector of weight
𝜆 then 𝑊 = ⟨𝑣, 𝑓𝑣, 𝑓2𝑣, ⋯⟩ is an 𝔰𝔩2-invariant subspace, that is a subrep of
𝑉 .

Proof. We must show the image of 𝑊 under 𝑓, ℎ, 𝑒 are contained in 𝑊. 𝑓𝑊 ⊆ 𝑊
by construction. As 𝑣 ∈ 𝑉𝜆, we see that 𝑓𝑘𝑣 ∈ 𝑉𝜆−2𝑘 and so ℎ𝑊 ⊆ 𝑊. Finally
𝑒𝑣 = 0 ∈ 𝑊 and

𝑒 ⋅ 𝑓𝑣 = (𝑒𝑓 − 𝑓𝑒 + 𝑓𝑒)𝑣 = ℎ𝑣 = 𝜆𝑣 ∈ 𝑊
𝑒 ⋅ 𝑓2𝑣 = ([𝑒, 𝑓] + 𝑓𝑒)𝑓𝑣 = (𝜆 − 2)𝑓𝑣 + 𝑓 ⋅ 𝜆𝑣 = (2𝜆 − 2)𝑓𝑣 ∈ 𝑊
𝑒 ⋅ 𝑓3𝑣 = ([𝑒, 𝑓] + 𝑓𝑒)𝑓2 = (𝜆 − 4)𝑓2𝑣 + 𝑓(2𝜆 − 2)𝑓𝑣 = (3𝜆 − 6)𝑓2𝑣 ∈ 𝑊

and so on. It is an exercise to show by induction

𝑒 ⋅ 𝑓𝑛𝑣 = 𝑛(𝜆 − 𝑛 + 1)𝑓𝑛−1𝑣.

We have a surprising result:

9



2 Representations of 𝔰𝔩2

Lemma 2.3. Let 𝑉 be a finite-dimensional C-space and a rep of 𝔰𝔩2 and
𝑣 ∈ 𝑉 a highest weight vector with highest weight 𝜆 then 𝜆 ∈ {0, 1, … } = Z≥0.

Proof. Note that all 𝑓𝑘𝑣 lie in different eigenspaces for ℎ so if non-zero they
are linearly independent. But 𝑉 is finite dimensional so exists 𝑘 such that
𝑓𝑘𝑣 ≠ 0, 𝑓𝑘+1𝑣 = 0. The exercise shows

0 = 𝑒𝑓𝑘+1𝑣 = (𝑘 + 1)(𝜆 − 𝑘)𝑓𝑘𝑣

so 𝑘 + 1 ≠ 0 so 𝜆 = 𝑘.

Lemma 2.4. If 𝑉 is a finite-dimensional rep of 𝔰𝔩2 then it has a highest
weight vector.

Proof. As 𝑉 is a C-space ℎ has an eigenvector. Apply 𝑒 to it get 𝑣, 𝑒𝑣, 𝑒2𝑣, …
which are eigenvectors with different eigenvectors so if nonzero are linearly inde-
pendent so exists 𝑘 such that 𝑒𝑘𝑣 = 0, so 𝑒𝑘𝑣 is a highest weight eigenvector.

Corollary 2.5. Let 𝑘 = C. If 𝑉 is an irreducible finite dimensional repre-
sentation of 𝔰𝔩2 then dim 𝑉 = 𝑛 + 1 and 𝑉 has basis 𝑣0, 𝑣1, … , 𝑣𝑛 with

ℎ𝑣𝑖 = (𝑛 − 2𝑖)𝑣𝑖

𝑓𝑣𝑖 = 𝑣𝑖+1

𝑒𝑣𝑖 = 𝑖(𝑛 − 𝑖 + 1)𝑣𝑖−1

In particular there is a unique irreducible representation of dimension 𝑛+1,
which is isomorphic to 𝐿(𝑛).

(Picture of string)

Exercise.

1. Find the explicit relation between this basis and the 𝑥𝑎𝑦𝑏 basis earlier,
where 𝑎 + 𝑏 = 𝑛.

2. Recall C[𝑥, 𝑦] = ⨁𝑛≥0 𝐿(𝑛) as a representation of 𝔰𝔩2 where 𝑒, ℎ, 𝑓 acts as
differential operators. Show that the same operators give a rep of 𝔰𝔩2 on
𝑥𝜆𝑦𝜇C[𝑥/𝑦, 𝑦/𝑥] for all 𝜆, 𝜇 ∈ C. Determine the submodules of this rep.

Now we show that all reps can be written as direct sum of the irreducible
ones. This is one of the more difficult theorem but will lead us towards the
general result later. We will show strings of different lengths don’t interact,
then strings of the same lengths do not interact.

Definition. Let 𝑉 be a rep of 𝔰𝔩2. Define Ω ∈ End(𝑉 ) by

Ω = 𝑒𝑓 + 𝑓𝑒 + 1
2

ℎ2,

the Casimir of 𝔰𝔩2.
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2 Representations of 𝔰𝔩2

Lemma 2.6. Ω is central, that is 𝑒Ω = Ω𝑒, 𝑓Ω = Ω𝑓, ℎΩ = Ωℎ.

Proof. We will later show a slick proof. For now this is left as an exercise. For
example

𝑒Ω = 𝑒(𝑒𝑓 + 𝑓𝑒 + 1
2

ℎ2)

= 𝑒(𝑒𝑓 − 𝑓𝑒) + 2𝑒𝑓𝑒

+ 1
2

(𝑒ℎ − ℎ𝑒)ℎ + 1
2

ℎ𝑒ℎ

= 2𝑒𝑓𝑒 + 1
2

ℎ𝑒ℎ

= ⋯
= Ω𝑒

Corollary 2.7. If 𝑉 is an irreducible rep of 𝔰𝔩2, then Ω acts on 𝑉 by a
scalar.

Proof. Similar to Schur’s lemma.

Lemma 2.8. Ω acts on 𝐿(𝑛) as multiplication by 1
2 𝑛2 + 𝑛.

Proof. We can choose any nonzero element and use the above corollary. Alter-
natively we can do it by hand. Let 𝑣 be the highest weight vector of 𝐿(𝑛) so
𝑒𝑣 = 0, ℎ𝑣 = 𝑛𝑣. Then

Ω = (𝑒𝑓 − 𝑓𝑒) + 2𝑓𝑒 + 1
2

ℎ2 = (1
2

ℎ2 + ℎ) + 2𝑓𝑒

so

Ω𝑣 = (1
2

𝑛2 + 𝑛)𝑣

Ω(𝑓𝑘𝑣) = 𝑓𝑘Ω𝑣 = (1
2

𝑛2 + 𝑛)𝑓𝑘𝑣

This immediately implies “strings of different lengths don’t interact”, which
we shall make sense of now.

Let 𝑉 be a finite dimensional rep of 𝔰𝔩2. Let

𝑉 𝜆 = {𝑣 ∈ 𝑉 ∶ (Ω − 𝜆)dim 𝑉𝑣 = 0}

be the generalised eigenspace for Ω with eigenvalue 𝜆. By linear algebra, 𝑉 =
⨁𝜆 𝑉 𝜆. Claim that each 𝑉 𝜆 is a subrep, i.e. preserved by 𝔰𝔩2, so this is a direct
sum decomposition of 𝑉 as reps of 𝔰𝔩2.

11



2 Representations of 𝔰𝔩2

Proof. Let 𝑥 ∈ 𝔰𝔩2, 𝑣 ∈ 𝑉 𝜆. Then

(Ω − 𝜆)dim 𝑉𝑥𝑣 = 𝑥(Ω − 𝜆)dim 𝑉𝑣 = 0

as Ω is central so 𝑥𝑣 ∈ 𝑉 𝜆.

Claim that if 𝑉 𝜆 ≠ 0 then 𝜆 = 1
2 𝑛2 + 𝑛 for a unique 𝑛 ∈ Z≥0, and “𝑉 𝜆 is

glued together from copies of 𝐿(𝑛)”. Formally, “gluing” refers to the following:

Definition (composition series). Let 𝑊 be a finite dimensional representa-
tion of 𝔤. A composition series for 𝑊 is a sequence of submodules

0 = 𝑊0 ⊆ 𝑊1 ⊆ 𝑊2 ⊆ ⋯ ⊆ 𝑊𝑟 = 𝑊

such that each 𝑊𝑖/𝑊𝑖−1 is a non-zero irreducible module.

Example.

1. Let 𝔤 = C, 𝑊 = C𝑟 where 1 ∈ 𝔤 acts as (
0 1

0 1
⋱

1
0

). Then there is a

unique composition series for 𝑊, namely

0 ⊆ ⟨𝑒1⟩ ⊆ ⟨𝑒1, 𝑒2⟩ ⊆ ⋯ ⊆ ⟨𝑒1, … , 𝑒𝑟⟩.

2. Let 𝔤 = C, 𝑊 = C𝑟 and 1 ∈ 𝔤 acts as 0. Then any chain of subspaces

𝑊0 ⊆ 𝑊1 ⊆ ⋯ ⊆ 𝑊𝑟

with dim 𝑊𝑖 = 𝑖 is a composition series.

The intuition is that by choosing a suitable basis, we can put each element
of 𝔤 into block triangular form, with the diagonal blocks 𝐴𝑖 the action on the
subquotient 𝑊𝑖/𝑊𝑖−1, which we require to be irreducible.

⎛⎜⎜⎜
⎝

𝐴1 ∗
𝐴2

⋱
0 𝐴𝑟

⎞⎟⎟⎟
⎠

Lemma 2.9. Composition series always exist.

Proof. Induct on dim 𝑊. Take an irreducible subrep of 𝑊 (why does it always
exist?), call it 𝑊1. Then 𝑊/𝑊1 has smaller dimension than 𝑊 so has a com-
position series. Take the preimage of this in 𝑊 and stick 𝑊1 in the front.

Remark. The subquotients 𝑊𝑖/𝑊𝑖−1 are unique (up to reordering). This re-
quires proof in general, but will follow for Lie algebras from what we show in a
bit.

Now we can rephrase the claim as follow: if 𝑉 𝜆 ≠ 0 then 𝜆 = 1
2 𝑛2 + 𝑛 for a

unique 𝑛 ∈ Z≥0, and 𝑉 𝜆 has a composition series where all of the subquotients
𝑊𝑖/𝑊𝑖−1 are isomorphic to 𝐿(𝑛). This proves the slogan “strings of different
lengths don’t interact”.
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2 Representations of 𝔰𝔩2

Proof. First observe that if 𝑛 ≠ 𝑚 then Ω acts on 𝐿(𝑛) and 𝐿(𝑚) by different
numbers, as 𝑛 ↦ 1

2 𝑛2 + 𝑛 is an increasing function for 𝑛 ≥ −1. Thus if 𝑉 𝜆 ≠ 0,
let 𝐿(𝑛) be an irreducible submodule of 𝑉 𝜆. As Ω acts on 𝐿(𝑛) by 1

2 𝑛2 + 𝑛,
we have 𝜆 = 1

2 𝑛2 + 𝑛, and then Ω acts on 𝑉 𝜆/𝐿(𝑛) with generalised eigenvalue
𝜆 = 1

2 𝑛2 + 𝑛, and for the same reason all composition factors of 𝑉 𝜆 must be
𝐿(𝑛) for this 𝑛.

Now we have 𝑉 = ⨁𝑛≥0 𝑉 1
2 𝑛2+𝑛 where each 𝑉 1

2 𝑛2+𝑛 has all composition
factors 𝐿(𝑛). We now show strings of the same lengths don’t interact.

Lemma 2.10.

1. ℎ𝑓𝑘 = 𝑓𝑘(ℎ − 2𝑘) for all 𝑘 ≥ 0.

2. 𝑒𝑓𝑘+1 = 𝑓𝑘+1𝑒 + (𝑘 + 1)𝑓𝑘(ℎ − 𝑘) for all 𝑘 ≥ 0.

Proof. Exercise.

If 𝑊 ′ ⊆ 𝑊 and ℎ preserves 𝑊 ′ then the set of generalised eigenvalues of ℎ on
𝑊 is the union on that of ℎ on 𝑊 ′ and 𝑊/𝑊 ′. As a result, ℎ acts on 𝑉 𝜆 with
generalised eigenvalues in {−𝑛, −𝑛 + 2, … , 𝑛 − 2, 𝑛}. Also the only generalised
eigenvalue of ℎ on ker(𝑒 ∶ 𝑉 𝜆 → 𝑉 𝜆) is 𝑛, that is (ℎ − 𝑛)dim 𝑉 𝜆 ⋅ 𝑥 = 0 for all
𝑥 ∈ 𝑉 𝜆 ∩ ker 𝑒.

Proposition 2.11. ℎ acts diagonally on ker(𝑒 ∶ 𝑉 𝜆 → 𝑉 𝜆), that is it acts
by multiplication by 𝑛. Thus

ker(𝑒 ∶ 𝑉 𝜆 → 𝑉 𝜆) = (𝑉 𝜆)𝑛 = {𝑥 ∈ 𝑉 𝜆 ∶ ℎ𝑥 = 𝑛𝑥}.

Proof. If ℎ𝑥 = 𝑛𝑥 then 𝑒𝑥 ∈ (𝑉 𝜆)𝑛+2 = 0 so 𝑥 ∈ ker 𝑒. Conversely let 𝑥 ∈ ker 𝑒.
We know (ℎ − 𝑛)dim 𝑉 𝜆𝑥 = 0. By exercises

(ℎ − 𝑛 + 2𝑘)dim 𝑉 𝜆𝑓𝑘𝑥 = 𝑓𝑘(ℎ − 𝑛)dim 𝑉 𝜆𝑥 = 0

so 𝑓𝑛𝑥 is in the generalised eigenspace of ℎ with eigenvalue 𝑛 − 2𝑘. Claim that
on the other hand, for any 0 ≠ 𝑦 ∈ ker 𝑒, 𝑓𝑛𝑦 ≠ 0.

Proof. Let 0 = 𝑊0 ⊆ 𝑊1 ⊆ ⋯ ⊆ 𝑊𝑟 = 𝑉 𝜆 be a composition series of 𝑉 𝜆 such
that 𝑊𝑖/𝑊𝑖−1 ≅ 𝐿(𝑛) for all 𝑖. Then exists 𝑖 such that 𝑦 ∈ 𝑊𝑖, 𝑦 ≠ 𝑊𝑖−1. Then
𝑦 = 𝑦 + 𝑊𝑖−1 ∈ 𝑊𝑖/𝑊𝑖−1 ≅ 𝐿(𝑛). Then 𝑦 is a highest weight vector of 𝐿(𝑛), so
𝑓𝑛(𝑦) ≠ 0 ∈ 𝑊𝑖/𝑊𝑖−1 so 𝑓𝑛𝑦 ≠ 0 ∈ 𝑊𝑖 ⊆ 𝑉 𝜆.

Now 𝑓𝑛+1𝑥 belongs to the generalised eigenspace of ℎ with eigenvalue −𝑛−2,
which must be 0 by the observation above. Thus 0 = 𝑒𝑓𝑛+1𝑥. By exercise this
equals to

0 = 𝑒𝑓𝑛+1𝑥 = (𝑛 + 1)𝑓𝑛(ℎ − 𝑛)𝑥 + 𝑓𝑛+1𝑒𝑥⏟
=0

so (𝑛 + 1)𝑓𝑛(ℎ − 𝑛)𝑥 = 0. As 𝑒(ℎ − 𝑛)𝑥 = (ℎ − 𝑛 − 2)𝑒𝑥 = 0, we have
(ℎ − 𝑛)𝑥 ∈ ker 𝑒 so if (ℎ − 𝑛)𝑥 ≠ 0 then 𝑓𝑛(ℎ − 𝑛)𝑥 ≠ 0. As we are over C,
𝑛 + 1 ≠ 0 and we just showed 𝑦 ≠ 𝑜, 𝑦 ∈ ker 𝑒 but 𝑓𝑛𝑦 ≠ 0, impossible. Thus
(ℎ − 𝑥)𝑥 = 0 so ℎ𝑥 = 𝑛𝑥.
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2 Representations of 𝔰𝔩2

To show complete reducibility, do the following exercise:

Exercise. Take a basis 𝑤1, … , 𝑤𝑘 of ker 𝑒 and consider the string generated by
each 𝑤𝑖, that is 𝑤𝑖, 𝑓𝑤𝑖, … , 𝑓𝑛𝑤𝑖. Show that these give a basis of 𝑉 𝜆, each such
string is a subrep isomorphic to 𝐿(𝑛) and this gives a direct sum decomposition.
In particular ℎ acts diagonally on all of 𝑉 for 𝑉 a finite-dimensional rep.

Exercise. Show all of this is false in characteristic 𝑝. More precisely, show the
irreducible reps of 𝔰𝔩2 over 𝐹𝑝 are not parameterised by 𝑛 ∈ Z≥0. Find a rep of
𝔰𝔩2(𝐹𝑝) which does not decompose as a direct sum.

2.1 Consequences

Definition (tensor product). Let 𝑉 and 𝑊 be 𝔤-reps. Then the tensor
product of 𝑉 and 𝑊 is a rep via the map

𝔤 → End(𝑉 ⊗ 𝑊) = End(𝑉 ) ⊗ End(𝑊)
𝑥 ↦ 𝑥 ⊗ 1 + 1 ⊗ 𝑥

Exercise.

1. Show the above map is a homomorphism of Lie algebras.

2. Suppose 𝐺 acts on 𝑉 and 𝑊. Show it acts on 𝑉 ⊗ 𝑊 by 𝑔 ↦ 𝑔 ⊗ 𝑔 and the
above action is obtained by differentiating this action.

Take 𝔤 = 𝔰𝔩2. Then by complete reducibility we know 𝐿(𝑛) ⊗ 𝐿(𝑚) ≅
⨁𝑎≥0 𝑚𝑎𝐿(𝑎) for some 𝑚𝑎’s.

Exercise. Find the highest weight vectors in 𝐿(1) ⊗ 𝐿(𝑛) and 𝐿(2) ⊗ 𝐿(𝑛) and
hence decompose these.

To start, let 𝑣𝑎 be a highest weight vector in 𝐿(𝑎). Claim that 𝑣𝑛 ⊗ 𝑣𝑚 is a
highest weight vector in 𝐿(𝑛) ⊗ 𝐿(𝑚):

ℎ(𝑣𝑛 ⊗ 𝑣𝑚 = (ℎ𝑣𝑛) ⊗ 𝑣𝑚 + 𝑣𝑛 ⊗ (ℎ𝑣𝑚) = (𝑛 + 𝑚)(𝑣𝑛 ⊗ 𝑣𝑚)
𝑒(𝑣𝑛 ⊗ 𝑣𝑚) = (𝑒𝑣𝑛) ⊗ 𝑣𝑚 + 𝑣𝑛 ⊗ (𝑒𝑣𝑚) = 0

so 𝐿(𝑛) ⊗ 𝐿(𝑚) = 𝐿(𝑛 + 𝑚) ⊕ other stuff.

Definition (character). Let 𝑉 be a finite-dimensional rep of 𝔰𝔩2. Define the
character of 𝑉 to be

ch 𝑉 = ∑
𝑛∈Z

dim 𝑉𝑛 ⋅ 𝑧𝑛 ∈ N[𝑧, 𝑧−1].

It has the following properties:

1. ch 𝑉 |𝑧=1 = dim 𝑉. This is a consequence of the fact that ℎ is diagonalisable
with integer eigenvalues.

2. ch 𝐿(𝑛) = 𝑧𝑛 + 𝑧𝑛−2 + ⋯ + 𝑧2−𝑛 + 𝑧−𝑛 = 𝑧𝑛+1−𝑧−𝑛+1

𝑧−𝑧−1 .
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2 Representations of 𝔰𝔩2

3. ch 𝑉 = ch 𝑊 if and only if 𝑉 ≅ 𝑊 as 𝔰𝔩2 reps.

Proof. Notice that

ch 𝐿(0) = 1
ch 𝐿(1) = 𝑧 + 𝑧−1

ch 𝐿(2) = 𝑧2 + 1 + 𝑧−1

⋯

form a basis of Z[𝑧, 𝑧−1]𝑆2 , the space of symmetric Laurent polynomials
with integer coefficients. Now by complete reducibility if 𝑉 ≅ ⨁𝑎≥0 𝑛𝑎𝐿(𝑎), 𝑊 ≅
⨁𝑎≥0 𝑚𝑎𝐿(𝑎) then 𝑉 ≅ 𝑊 if and only if 𝑛𝑎 = 𝑚𝑎 for all 𝑎 ≥ 0. As
{ch 𝐿(𝑛) ∶ 𝑛 ≥ 0} is a basis of Z[𝑧, 𝑧−1]𝑆2 , ch 𝑉 = ∑ 𝑚𝑎 ch 𝐿(𝑛) deter-
mines 𝑉.

4. ch(𝑉 ⊗ 𝑊) = ch 𝑉 ⋅ ch 𝑊. This follows from the exercise: show that
𝑉𝑛 ⊗ 𝑊𝑚 ⊆ (𝑉 ⊗ 𝑊)𝑛+𝑚 and hence (𝑉 ⊗ 𝑊)𝑝 = ⨁𝑛+𝑚=𝑝 𝑉𝑛 ⊗ 𝑊𝑚. This
is exactly how we multiply polynomials.

Example.

ch(𝐿(1) ⊗ 𝐿(3)) = ch 𝐿(1) ⋅ ch 𝐿(3)
= (𝑧 + 𝑧−1)(𝑧3 + 𝑧 + 𝑧−1 + 𝑧−3)
= (𝑧4 + 𝑧2 + 1 + 𝑧−2 + 𝑧−4) + (𝑧2 + 1 + 𝑧−2)

so complete reducibility and the fact that ch 𝐿(𝑛) form a basis immediately tell
us that 𝐿(3) ⊗ 𝐿(1) = 𝐿(4) ⊗ 𝐿(2), which is a lot easier than finding highest
weight vectors in the tensor product!

Corollary 2.12 (Clebsch-Gordon).

𝐿(𝑛) ⊗ 𝐿(𝑚) =
𝑛+𝑚
⨁

𝑘=|𝑛−𝑚|
𝑘=𝑛−𝑚 (mod 2)

𝐿(𝑘).

Proof. Induction. Also pictorially,

Purpose of this course: 𝔰𝔩𝑛, 𝔰𝔬𝑛, 𝔰𝔭2𝑛 etc are simple Lie algebras and the
category of their C-representations are semisimple, and are parameterised by
positive cones in the lattice Zℓ

≥0. Also we can write down their characters
parameterised by the lattice. Finally, we are going to draw more pictures like
above.
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3 Structure and Classification of simple Lie algebras

3 Structure and Classification of simple Lie al-
gebras

Let’s do some warm up exercises in linear algebras. Let 𝑘 be a field.

Definition (simple Lie algebra). Let 𝔤 be a Lie algebra over 𝑘. 𝔤 is simple
if dim 𝔤 > 1 and the only ideals of 𝔤 are 0 and 𝔤.

1 dimensional Lie algebras are excluded because they are abelian and as we
have seen, their representations do not form a discrete family so they tend to
break results we are going to state for nonabelian simple algebras.

In order to describe simple Lie algebras, we will need some Lie algebras
which are very far from simple.

Definition (derived subalgebra). The derived subalgebra of 𝔤, denoted [𝔤, 𝔤],
is the linear span of [𝑥, 𝑦] for 𝑥, 𝑦 ∈ 𝔤.

Exercise.

1. Show [𝔤, 𝔤] is an ideal.

2. Show 𝔤/[𝔤, 𝔤] is abelian.

Definition (central/derived series). The central series for 𝔤 is the sequence
of subalgebras

𝔤 ⊇ [𝔤, 𝔤] ⊇ [[𝔤, 𝔤], 𝔤] ⊇ ⋯

or more formally,

𝔤0 = 𝔤, 𝔤𝑛 = [𝔤𝑛−1, 𝔤] for 𝑛 ≥ 1.

The derived series for 𝔤 is the sequence

𝔤 ⊇ [𝔤, 𝔤] ⊇ [[𝔤, 𝔤], [𝔤, 𝔤]] ⊇ ⋯

or more formally

𝔤(0) = 𝔤, 𝔤(𝑛) = [𝔤(𝑛−1), 𝔤(𝑛−1)] for 𝑛 ≥ 1.

Note that 𝔤(𝑛) ⊆ 𝔤𝑛.

Definition (nilpotent/solvable Lie algebra). 𝔤 is nilpotent if 𝔤𝑛 = 0 for
some 𝑛 > 0, that is if the central series terminates.

𝔤 is solvable if 𝔤(𝑛) = 0 for some 𝑛 > 0, that is if the derived series
terminates.

Note that 𝔤 nilpotent implies 𝔤 solvable.

Exercise.

1. 𝔲 of strictly upper triangular matrices is nilpotent.
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3 Structure and Classification of simple Lie algebras

2. 𝔟 of upper triangular matrices is solvable.

3. The two dimensional Lie algebra with basis 𝑥, 𝑦 and [𝑥, 𝑦] = 𝑦 is solvable
but not nilpotent.

Exercise. Compute the central and derived series for 𝔲, 𝔟 and show they are
nilpotent and solvable repsectively.

Compute the centre of these Lie algebras.

Example. Let 𝑊 be a symplectic vector space, that is 𝑊 is a 𝑘-vector space
with a non-degenerated alternating form ⟨⋅, ⋅⟩ ∶ 𝑊 × 𝑊 → 𝑘. For example 𝐿 be
a finite dimensional vector space and let 𝑊 = 𝐿 ⊕ 𝐿∗ with symplectic form

⟨𝐿, 𝐿⟩ = ⟨𝐿∗, 𝐿∗⟩ = 0, ⟨𝑣∗, 𝑤⟩ = −⟨𝑤, 𝑣∗⟩ = 𝑣∗(𝑤).

𝐿 is a maximal Lagrangian space and by basic linear algebra all examples are
of this form.

Define the Heisenberg Lie algebra 𝐻𝑊 = 𝑊 ⊕ 𝑘.𝑐 with Lie brackets

[𝑤, 𝑤′] = ⟨𝑤, 𝑤′⟩.𝑐
[𝑐, 𝑤] = 0

Exercise.

1. Show 𝐻𝑊 is a Lie algebra.

2. Show 𝐻𝑊 is nilpotent. Do we have to do any extra work?

Differentiating the Heisenberg group
This is the most important nilpotent Lie algebra that arises in nature For

example take 𝑘 = C, 𝐿 = C. 𝐻𝑊 has basis 𝑝, 𝑞, 𝑐 with [𝑝, 𝑞] = 𝑐, [𝑐, ∗] = 0.

Exercise. Show C[𝑥] is a rep of 𝐻𝑊 where 𝑞 acts by multiplication by 𝑥, 𝑝 = 𝜕
𝜕𝑥

and 𝑐 is identity.

For a general vector space 𝐿 with basis 𝑣1, … , 𝑣𝑛 and 𝐿∗ with dual basis
𝑣∗

1, … , 𝑣∗
𝑛. Then 𝐻𝑊 acts C[𝑥1, … , 𝑥𝑛] with 𝑣∗

𝑖 ↦ 𝜕
𝜕𝑥𝑖

, 𝑣𝑖 ↦ 𝑥𝑖, 𝑐 ↦ 1.

Exercise.

1. Subalgebras and quotient Lie algebras of a solvable Lie algebra are solv-
able.

2. Subalgebras and quotient Lie algebras of a nilpotent Lie algebra are nilpo-
tent.

3. Let 𝔤 be a Lie algebra and 𝔥 ⊆ 𝔤 an ideal. Then 𝔤 is solvable if and only
if 𝔥 and 𝔤/𝔥 are solvable. In particular solvable Lie algebras are built out
of one-dimensional abelian Lie algebras, i.e. there is a refinement of the
derived series such that all subquotients are one-dimensional (and hence
abelian).
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3 Structure and Classification of simple Lie algebras

4. 𝔤 is nilpotent if and only if centre of 𝔤 is non-zero and the quotient of 𝔤
by its centre is nilpotent.
For only if, indeed if 𝔤 is nilpotent we have central series

𝔤 ⊋ 𝔤1 ⊋ ⋯ ⊋ 𝔤𝑛 = 0

and since 𝔤𝑛 = [𝔤𝑛−1, 𝔤] = 0 so must have 𝔤𝑛−1 contained in the centre of
𝔤.

5. 𝔤 is nilpotent if and only if ad(𝔤) ⊆ 𝔤𝔩(𝔤) is a nilpotent Lie algebra. This
is immediate from 4 as we have a short exact sequence of Lie algebras

0 centre of 𝔤 𝔤 ad(𝔤) 0

We will use but not prove

Theorem 3.1 (Lie). Let 𝑘 = 𝑘 and ch 𝑘 = 0. Let 𝔤 be a solvable Lie algebra
over 𝑘 and 𝔤 ⊆ 𝔤𝔩(𝑉 ) for some 𝑉. Then there exists a basis 𝑣1, … , 𝑣𝑛 of 𝑉
with respect to which all element of 𝔤 are upper triangular, i.e. 𝔤 ⊆ 𝔟.

Note that 𝔤 ⊆ 𝔤𝔩(𝑉 ) is automatic by Ado.
Equivalently, there exists a linear function 𝜆 ∶ 𝔤 → 𝑘 and an element 𝑣 ∈ 𝑉

such that 𝑥𝑣 = 𝜆(𝑥)𝑣 for all 𝑥 ∈ 𝔤, that is 𝔤 has a one dimensional subrep. In
particular the only irreducible finite dimensional reps of 𝔤 are one dimensional.

Exercise. Show these two formulations are equivalent.

Exercise.

1. Show the theorem is false if 𝑘 ≠ 𝑘.

2. Show the theorem is false if ch 𝑘 = 𝑝 > 0. Hint: consider the 3 dimensional
Heisenberg Lie algebra 𝐻 and show that 𝑘[𝑥]/(𝑥𝑝) is an irreducible rep of
𝐻 of dimension larger than 1.

Corollary 3.2. If ch 𝑘 = 0 and 𝔤 is solvable then [𝔤, 𝔤] is nilpotent.

Proof. It is an exercise to show that 𝔟 solvable over 𝑘 if and only if 𝔟 ⊗𝑘 𝑘
is solvable over 𝑘, and similarly for nilpotents (?), so we may assume 𝑘 = 𝑘.
Now apply Lie’s theorem to the adjoint rep 𝔤 → End 𝔤 so there exists a basis
where ad𝔤 are upper triangular. Then [ad𝔤, ad𝔤] is strictly upper triangular. As
ad ∶ 𝔤 → 𝔤𝔩(𝔤) is a rep, [ad𝔤, ad𝔤] = ad[𝔤, 𝔤] so ad[𝔤, 𝔤] is nilpotent, hence [𝔤, 𝔤]
is nilpotent since a Lie algebra 𝔥 is nilpotent if and only if ad𝔥 is nilpotent.
(?)

Exercise. Show this is false in characteristic 𝑝.

Theorem 3.3 (Engel). 𝔤 is nilpotent if and only if for all 𝑥 ∈ 𝔤, ad(𝑥) is
nilpotent. Equivalently, if 𝑉 is a finite dimensional rep of a Lie algebra 𝔤
and for all 𝑥 ∈ 𝔤, 𝑥 acts on 𝑉 as a nilpotent operator, then there exists 𝑣 ∈ 𝑉
such that 𝑥𝑣 = 0 for all 𝑥 ∈ 𝔤. In otherwords, 𝑉 has a 1 dimensional subrep
which is the trivial rep. Equivalently, there exists a basis of 𝑉 if 𝔤 ⊆ 𝔤𝔩(𝑉 )
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3 Structure and Classification of simple Lie algebras

with respect to which all matrices in 𝔤 are strictly upper triangular.

Exercise. Show these are all equivalent.

Engel says 𝑉 is built out of trivial reps. That is 𝑉 has a composition series
whose subquotients are trivial reps.

Warning: Engel says is 𝔤 consists of nilpotent matrices then 𝔤 is a nilpo-
tent Lie algebra. The converse is false, for example the abelian Lie algebra of
scalar matrices. The correct converse is: 𝔤 is nilpotent then 𝔤/center (which is
isomorphic to ad𝔤) consists of nilpotent matrices.

Definition (invariant symmetric bilinear form). A symmetric bilinear form
(⋅, ⋅) ∶ 𝔤 × 𝔤 → 𝑘 is invariant if ([𝑥, 𝑦], 𝑧) = (𝑥, [𝑦, 𝑧]) for all 𝑥, 𝑦, 𝑧 ∈ 𝔤.

Exercise. Show if 𝐺 is an algebraic group actions on a vector space 𝑉 and
(𝑔𝑥, 𝑔𝑦) = (𝑥, 𝑦) for all 𝑔 ∈ 𝐺, 𝑥, 𝑦 ∈ 𝑉 then this defines an invariant form on 𝑉.

Exercise. If 𝔞 ⊆ 𝔤 is an ideal and (⋅, ⋅) is an invariant symmetric bilinear form
then 𝔞⟂ is an ideal.

Definition (trace form). If 𝜌 ∶ 𝔤 → 𝔤𝔩(𝑉 ) is a rep, define the trace form of
𝑉 to be

(𝑥, 𝑦)𝑉 = tr(𝜌(𝑥)𝜌(𝑦)).

Exercise. Show (⋅, ⋅)𝑉 is an invariant symmetric bilinear form.

Definition (Killing form). The Killing form of a Lie algebra 𝔤 is the trace
form of the adjoint rep, i.e.

(𝑥, 𝑦)ad = tr(ad𝑥ad𝑦).

The third theorem that we are not going to prove:

Theorem 3.4 (Cartan’s criteria). Suppose ch 𝑘 = 0 and 𝔤 ⊆ 𝔤𝔩(𝑉 ). Then
𝔤 is solvable if and only if for all 𝑥 ∈ 𝔤, 𝑦 ∈ [𝔤, 𝔤], the trace form (𝑥, 𝑦)𝑉 = 0.
That is [𝔤, 𝔤] ⊆ 𝔤⟂.

Exercise. Show only if is immediate from Lie’s theorem. Idea: if 𝔤 is solvable
then we have a basis with 𝑥 upper triangular and 𝑦 strictly upper triangular, so
𝑥𝑦 has 0 entries on the diagonals and so has trace 0.

Corollary 3.5. If ch 𝑘 = 0 then 𝔤 is solvable if and only if (𝔤, [𝔤, 𝔤])ad = 0.

Proof. If 𝔤 is solvable then Lie’s theorem says that (𝔤, [𝔤, 𝔤])ad = 0. Conversely
Cartan says ad𝔤 = 𝔤/centre is solvable so 𝔤 is solvable.

Exercise. Show now every invariant symmetric bilinear form on 𝔤 is a trace
form. More precisely, let 𝔤 = �̃� where �̃� has basis 𝑐, 𝑝, 𝑞, 𝑑 with

[𝑐, �̃�] = 0, [𝑝, 𝑞] = 𝑐, [𝑑, 𝑝] = 𝑝, [𝑑, 𝑞] = −𝑞.
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3 Structure and Classification of simple Lie algebras

1. Show �̃� is solvable.

2. Construct a non-degenerate invariant form on �̃�.

3. Why couldn’t we just write use 𝐻?

4. Extend the rep of 𝐻 on 𝑘[𝑥] to a rep of �̃�.

Now we can use the theorems.

Definition (semisimplicity). 𝔤 is semisimple if is a sum of simple (non-
abelian) Lie algebras.

Definition (radical). The radical of 𝔤, 𝑅(𝔤), is the maximal solvable ideal
in 𝔤.

Exercise.

1. Show the sum of solvable ideals in 𝔤 is solvable and hence 𝑅(𝔤) is just the
sum of all solvable ideals in 𝔤.

2. Show 𝑅(𝔤/𝑅(𝔤)) = 0.

Theorem 3.6. Suppose ch 𝑘 = 0. Then TFAE:

1. 𝔤 is semisimple.

2. 𝑅(𝔤) = 0.

3. Killing criterion: the Killing form is non-degenerate.

Moreover if 𝔤 is semisimple then every derivation 𝐷 ∶ 𝔤 → 𝔤 is inner.

The converse of the last statement is false.

Definition (derivation). A derivation is a linear map 𝐷 ∶ 𝔤 → 𝔤 such that

𝐷[𝑥, 𝑦] = [𝐷𝑥, 𝑦] + [𝑥, 𝐷𝑦].

Example. If 𝑥 ∈ 𝔤 then ad𝑥 is a derivation. Derivations of this form are called
inner .

More generally if 𝑉 is a rep of 𝔤 then 𝐷 ∶ 𝔤 → 𝑉 is a derivation if

𝐷[𝑥, 𝑦] = 𝑥𝐷𝑦 − 𝑦𝐷𝑥

and if 𝑣 ∈ 𝑉, 𝑥 ↦ 𝑥𝑣 is a derivation. Such a derivation is called inner. We
define 𝐻1(𝔤, 𝑉 ) to be the quotient Der(𝔤, 𝑉 ) by the inner derivations. Thus the
theorem says that 𝔤 is semisimple implies that 𝐻1(𝔤, 𝔤) = 0, but the converse
is false. This is the subject of Lie algebra cohomology.
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3 Structure and Classification of simple Lie algebras

Remark. If 𝔤 is a Lie algebra over 𝑘 where ch 𝑘 = 0 then consider the SES

0 𝑅(𝔤) 𝔤 𝔤/𝑅(𝔤) 0

The theorem says that 𝔤/𝑅(𝔤) is semisimple as its radical is 0. We are going
to classify all the semisimple Lie algebras. As 𝑅(𝔤) is solvable, this makes the
theory particularly nice.

It’s helpful to mention that

Theorem 3.7 (Levi). The above exact sequence splits, that is there exists
a subalgebra 𝔥 ⊆ 𝔤 with 𝔥 → 𝔤/𝑅(𝔤). This subalgebra is not canonical, i.e.
not an ideal, but his does say semidirect product.

Exercise. Show Levi’s theorem fails in characteristic 𝑝. Let 𝔤 = 𝔰𝔩𝑝(𝐹𝑝). Show
𝑅(𝔤) = 𝐹𝑝 ⋅ 𝐼 but there is no complement to 𝑅(𝔤) which is a subalgebra.

Proof of Theorem 3.6. Claim R(𝐿𝑖𝑒𝑔) = 0 if and only if 𝔤 has non-zero abelian
ideals.

Proof. Only if is easy as an abelian ideal is solvable. For if, the derived series
of 𝑅(𝔤) is (defines?) a sequence of ideals of 𝔤 and the last term is abelian.

3 ⟹ 2: we show that if 𝔞 ⊆ 𝔤 is an abelian ideal then 𝔞 ⊆ 𝔤⟂ where the
perp is with respect to the Killing form.

Proof. Take a vector space complement 𝔥 to 𝔞 in 𝔤 so 𝔤 = 𝔞 ⊕ 𝔥. If 𝑥 ∈ 𝔤 then
ad𝑥 is block upper triangular and if 𝑎 ∈ 𝔞 then as [𝔞, 𝔞] = 0 so ad𝑎 ia block
strictly upper triangular so (𝑎, 𝑥)ad = tr ad𝑎ad𝑥 = 0.

2 ⟹ 3: let 𝔯 ⊆ 𝔤⟂ be an ideal of 𝔤 (for example 𝔯 = 𝔤⟂ and suppose 𝔯 ≠ 0.
Then 𝑅(𝔤) = 0 implies that centre of 𝔤 is zero (?) so 𝔯 ⊆ 𝔤𝔩(𝔤) as ad ∶ 𝔤 → 𝔤𝔩(𝔤)
is injection and as 𝐿𝑖𝑒𝑟 ⊆ 𝔤⟂, (𝑥, 𝑦)ad = 0 for all 𝑥, 𝑦 ∈ 𝔤. In particular for
all 𝑦 ∈ [𝔯, 𝔯], so Carton’s criteria implies that 𝔯 is solvable, contradiction. Thus
𝑅(𝔤) = 0.

Exercise. Show 𝑅(𝔤) ⊇ 𝔤⟂ ⊇ [𝑅(𝔤), 𝑅(𝔤)] in general for ch 𝑘 = 0.

2, 3 ⟹ 1: Assume the Killing form is nondegenerate and let 𝔰 ⊆ 𝔤 be a
minimal non-zero ideal. Observe that (⋅, ⋅)ad|𝔰 is either non-degenerate or 0: the
kernel is {𝑥 ∈ 𝔰 ∶ (𝑥, 𝑠)ad = 0} = 𝔰 ∩ 𝔰⟂ which is an intersection of ideals, and
we assumed 𝔰 ≠ 0 is minimal. But if it is zero then by Cartan 𝔰 is solvable so
𝑅(𝔤) ≠ 0, contradiction. Thus (⋅, ⋅)ad|𝔰 is non-degenerate and hence we get a
direct sum decomposition 𝔤 = 𝔰 ⊕ 𝔰⟂. Note 𝔰 is not abelian as 𝑅(𝔤) = 0 and 𝔰
is minimal implies 𝔰 is simple. Moreover 𝑅(𝔤) = 0 implies 𝑅(𝔰⟂) = 0 (exercise)
and we can conclude by induction on dim 𝔤 as 𝔰⟂ is a Lie algebra of smaller
dimension with 𝑅(𝔰⟂) = 0.

1 ⟹ 2: exercise: show that if 𝔤 is semisimple then 𝔤 is a direct sum of
minimal ideals in a unique way. In particular show if 𝔤 = ⨁𝑟

𝑖=1 𝔰𝑖 where 𝔰𝑖’s
are minimal ideals of 𝔤 and if 𝔟 is a minimal ideal of 𝔤, show 𝔟 = 𝔰𝑖 for some 𝑖
(hint: consider 𝔟 ∩ 𝔰𝑖 for all 𝑖). Derive as a corollary 1 ⟹ 2.
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Finally let 𝐷 ∶ 𝔤 → 𝔤 be a derivation with 𝔤 semisimple. Consider the linear
map

ℓ ∶ 𝔤 → 𝑘
𝑥 ↦ tr(𝑑ad𝑥 ∶ 𝔤 → 𝔤)

As (⋅, ⋅)ad is non-degenerate, exists 𝑦 ∈ 𝔤 such that ℓ(𝑥) = (𝑦, 𝑥)ad for all 𝑥 ∈ 𝔤.
Would like to show 𝐸 = 𝐷 − ad𝑦 = 0: enough to show (𝐸𝑥, 𝑧)ad = 0 for all
𝑥, 𝑧 ∈ 𝔤. But

ad(𝐸𝑥) = 𝐸ad𝑥 − ad𝑥𝐸 = [𝐸, ad𝑥]

as
ad(𝐸𝑥)(𝑧) = [𝐸𝑥, 𝑧] = 𝐸[𝑥, 𝑧] − [𝑥, 𝐸𝑧]

since 𝐸 is a derivation. Hence

(𝐸𝑥, 𝑧)ad = tr(ad(𝐸𝑥)ad(𝑧))
= tr([𝐸, ad𝑥], ad𝑧)
= tr(𝐸, [ad𝑥, ad𝑧])
= tr(𝐸, ad[𝑥, 𝑧])
= (𝐸, [𝑥, 𝑧])ad

But by the definition of 𝐸, (𝐸, 𝑎)ad = 0 for all 𝑎 ∈ 𝔤, proving the result.

Exercise.

1. If 𝔫 is a nilpotent Lie algebra then there exists a non-inner derivation
𝐷 ∶ 𝔫 → 𝔫.

2. Let 𝔤 = ⟨𝑥, 𝑦⟩, [𝑥, 𝑦] = 𝑦. Show this has only inner derivations (so this
doesn’t characterise semisimple Lie algebras).
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4 Structure theory of semisimple Lie algebras

4 Structure theory of semisimple Lie algebras
Exercise.

1. Let 𝔤 be a simple Lie algebra with two nondegenerate symmetric bilinear
forms (⋅, ⋅)1, (⋅, ⋅)2. SHow exists 𝜆 ∈ 𝑘∗ such that (⋅, ⋅)1 = 𝜆(⋅, ⋅)2 (ch 𝑘 =
0, 𝑘 = 𝑘).

2. Let 𝔤 = 𝔰𝔩𝑛(C). Then there are two such forms: the Killing form and
(𝐴, 𝐵) ↦ tr 𝐴𝐵. Find 𝜆.

Definition (torus). Let 𝔤 be a Lie algebra. A torus 𝔱 ⊆ 𝔤 is an abelian
subalgebra such that for all 𝑡 ∈ 𝔱, ad𝑡 ∶ 𝔤 → 𝔤 is a diagonalisable linear map.
A maximal torus is a torus not contained in any strictly bigger torus.

Example. Let 𝐺 be an algebraic group, 𝑇 = (C∗)𝑟 ⊆ 𝐺 a subgroup. Then
Lie(𝑇 ) is a torus in Lie(𝐺).

Exercise.

1. If 𝔤 = 𝔤𝔩𝑛 then 𝔱 of diagonal matrices in 𝔤 is a maximal torus. Show the
same for 𝔰𝔩𝑛.

2. Show ( 0 ∗
0 0 ) ⊆ 𝔰𝔩2 is not a torus.

If 𝑉 is a vector space, 𝑡1, … , 𝑡𝑟 ∶ 𝑉 → 𝑉 are pairwise commuting linear maps,
𝜆1, … , 𝜆𝑟 ∈ C𝑟. Define

𝑉(𝜆1,…,𝜆𝑟) = {𝑣 ∈ 𝑉 ∶ 𝑡𝑖𝑣 = 𝜆𝑖𝑣 for all 𝑖},

the simultaneous eigenspace.

Lemma 4.1. If each 𝑡𝑖 is diagonalisable then 𝑉 = ⨁𝜆∈C𝑟 𝑉𝜆.

Proof. Induction on 𝑅. If 𝑟 = 1 this is the assumption 𝑡1 is diagonalisable. For
𝑟 > 1, induction gives

𝑉 = ⨁
(𝜆1,…,𝜆𝑟−1)∈C𝑟−1

𝑉(𝜆1,…,𝜆𝑟−1)

and now 𝑡𝑟 commutes with each of 𝑡1, … , 𝑡𝑟−1 so preserves this eigenspace de-
composition, so decomposes each 𝑉(𝜆1,…,𝜆𝑟−1) into eigenspaces for 𝑡𝑟.

Recap: let 𝔱 be an abelian Lie algebra with basis 𝑡1, … , 𝑡𝑛, 𝑘 = 𝑘. Then

1. a rep 𝑉 of 𝔱 is irreducible if and only if dim 𝑉 = 1, exists 𝜆 ∈ 𝔱∗ =
Hom(𝔱, 𝑘), 𝑡𝑣 = 𝜆(𝑡)𝑣. 𝜆𝑖 = 𝜆(𝑡𝑖) is the eigenvalue of 𝑡𝑖.

2. 𝑉 is a direct sum of irreducible reps if and only if each 𝑡𝑖 is diagonalisable.

Define 𝔱 ⊆ 𝔤 to be the maximal torus. If 𝑉 is a rep of 𝔱∗. Write 𝑉𝜆 for the
𝜆-weight space of 𝑉.
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Corollary 4.2. 𝔤 = 𝔤 + ⨁𝜆∈𝔱∗ 𝔤𝜆

Definition. We define the roots of 𝔤 to be 𝑅 = {𝜆 ∈ 𝔱∗ ∶ 𝔤𝜆 ≠ 0}.

Example. Let 𝔤 = 𝔰𝔩𝑛, 𝔱 the diagonal matrices, i.e. the trace 0 diagonal matri-
ces. Let 𝑡 be the diagonal matrix with diagonal entries 𝑡1, … , 𝑡𝑛, 𝐸𝑖𝑗 with 1 at
𝑖𝑗th entry and 0 elsewhere (matrix units). Then [𝑡, 𝐸𝑖𝑗] = (𝑡𝑖 − 𝑡𝑗)𝐸𝑖𝑗. Define
linear maps 𝜀𝑖 ∶ 𝔱 → 𝑘, ... ↦ 𝑡𝑖. Then 𝜀𝑖 span 𝔱∗. Also as 𝔱 ⊆ 𝑘𝑛, we have
(𝑘𝑛)∗ ↠ 𝔱∗. (𝑘𝑛)∗ has basis 𝜀𝑖, so this is quotient by 𝜀1 + ⋯ + 𝜀𝑛 = 0.

Also 𝔤0 = 𝔱, 𝔤𝜀𝑖−𝜀𝑗
= 𝑘 ⋅ 𝐸𝑖𝑗 and so 𝔰𝔩𝑛 has root space decomposition

𝔰𝔩𝑛 = 𝔱 ⊕ ⨁
𝑖≠𝑗

𝔤𝜀𝑖−𝜀𝑗
.

Exercise. Essential exercise. Suppose 𝑘 = 𝑘, ch 𝑘 ≠ 2 (can take 𝑘 = C).
Compute the root space decomposition for 𝔤 = 𝔰𝔩𝑛, 𝔰𝔬2𝑛+1, 𝔰𝔬2𝑛, 𝔰𝔭2𝑛 with 𝔱
the diagonal matrices in 𝔤. Note we use the bilinear form defining 𝔰𝔬𝑛 to be
𝔰𝔬𝑛 = {𝐴 ∶ 𝐽𝐴 + 𝐴𝑇𝐽 = 0} where 𝐽 is the antidiagonal matrix with entries 1.
Check that 𝔱 is indeed a maximal torus.

Subexercise: show this 𝔰𝔬𝑛 is the same as {𝐴 + 𝐴𝑇 = 0} by showing all
nondegenerate orthogonal forms are equivalent.

Proposition 4.3. 𝔰𝔩𝑛C is a simple Lie algebra.

Proof. Suppose 𝔯 ⊆ 𝔰𝔩𝑛C = 𝔱 ⊕ ⨁𝛼∈𝑅 𝔤𝛼 is a nonzero ideal. We must show
𝔯 = 𝔤. Choose 𝑟 ≠ 0, 𝑟 ∈ 𝔯 such that 𝔯 = 𝔱 + ∑𝛼 𝑒𝛼 with 𝑒𝛼 ∈ 𝔤𝛼 with the
minimal number of non-zero terms. First suppose 𝔱 ≠ 0. Choose 𝛼 ∈ 𝔱 such
that 𝛼(𝑡0)𝑛𝑒𝑞0 for all 𝛼 ∈ 𝑅, that is choosing a diagonal matrix with disinct
eigenvalues. Consider [𝑡0, 𝑟] ∈ 𝔯, [𝑡0, 𝑟] = ∑ 𝛼(𝑡0)𝑒𝛼. If nonzero this has fewer
terms than 𝑟, absurd. Thus 𝑒𝛼 = 0 for all 𝛼 ∈ 𝑅, i.e. 𝑟 = 𝑡 ∈ 𝔱. But 𝑡 ≠ 0 so
exists 𝛼 ∈ 𝑅 with 𝛼(𝑡) ≠ 0. (as 𝛼(𝑡) = 0 for all 𝛼 = 𝜀𝑖 − 𝜀𝑗 is saying 𝑡 is 𝜆𝐼, but
tr 𝜆𝐼 = 𝑛𝜆 ≠ 0. Phrase in another way: 𝑅 spans 𝔱∗)

Thus [𝑡, 𝑒𝛼] = 𝛼(𝑡)𝑒𝛼 ≠ 0 ∈ 𝔯 so 𝑒𝛼 ∈ 𝔯. But 𝛼 = 𝜀𝑖 − 𝜀𝑗 for some 𝑖 ≠ 𝑗, so
this says 𝐸𝑖𝑗 ∈ 𝔯. But [𝐸𝑖𝑗, 𝐸𝑗𝑘] = 𝐸𝑖𝑘 if 𝑘 ≠ 𝑖 and [𝐸𝑠𝑖, 𝐸𝑖𝑗] = 𝐸𝑠𝑗 if 𝑠 ≠ 𝑗.
Hence 𝐸𝑎𝑏 ∈ 𝔯 for all 𝑎 ≠ 𝑏. Finally

[𝐸𝑖,𝑖+1, 𝐸𝑖+1,𝑖] = 𝐸𝑖𝑖 − 𝐸𝑖+1,𝑖+1 ∈ 𝔯

so we’ve just seen a basis for 𝔰𝔩𝑛 is in 𝔯.
Finally if 𝑟 = 𝑡 + ∑ 𝑒𝛼 and 𝑡 = 0. If there is one term in this expression, i.e.

𝑟 = 𝑐𝐸𝑖𝑗 for some 𝑐 ≠ 0, we are done as above. Otherwise

𝑟 = 𝑒𝛼 + 𝑒𝛽 + ∑
𝛾∈𝑅\{𝛼,𝛽}

𝑒𝛼

for some 𝛼 ≠ 𝛽. Choose 𝑡0 ∈ 𝔱 such that 𝛼(𝑡0) ≠ 𝛽(𝑡0). Then some linear
combination of [𝑡0, 𝑟] and 𝑟 is nonzero with fewer terms, absurd.

Key ingedient: [𝐸𝑖𝑗, 𝐸𝑗𝑘] = … Combinatorial.
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4 Structure theory of semisimple Lie algebras

Proposition 4.4. Let 𝔤 be a semisimple Lie algebra over C. Then

1. non-zero maximal tori 𝔱 exist.

2. 𝔱 = 𝔤0 = {𝑥 ∈ 𝔤 ∶ [𝑡, 𝑥] = 0 for all 𝑡 ∈ 𝔱}, that is, such 𝔱 are maximal
abelian.

3. Will state more precisely later: any two such 𝔱 are conjugate by an
element of algebraic group 𝐺 of automorphisms of 𝔤.

Proof. Omitted, for lack of time.

Hence 𝔤 = 𝔤⊕⨁𝛼∈𝑅 𝔤𝛼, as we have seen by hand for the classical Lie algebras
𝔰𝔩𝑛, 𝔰𝔬𝑛, 𝔰𝔬2𝑛.

Theorem 4.5 (structure theorem for semisimple Lie algebras, part 1). Let
𝔤 be a semisimple Lie algebra over C, 𝔤 = 𝔱 ⊕ ⨁𝛼∈𝑅 𝔤𝛼. Then

1. the roots span 𝔱∗.

2. dim 𝔤𝛼 = 1 for all 𝛼 ∈ 𝑅.

3. If 𝛼, 𝛽 ∈ 𝑅 and 𝛼, 𝛽 ∈ 𝑅 then [𝔤𝛼, 𝔤𝛽] = 𝔤𝛼+𝛽. If 𝛼 + 𝛽 ∉ 𝑅 and
𝛼 ≠ −𝛽 then [𝔤𝛼, 𝔤𝛽] = 0.

4. [𝔤𝛼, 𝔤−𝛼] ⊆ 𝔱 is one-dimensional and 𝔤𝛼 + [𝔤𝛼, 𝔤−𝛼] + 𝔤−𝛼 is a Lie
subalgebra of 𝔤, isomorphic to 𝔰𝔩2. In particular if 𝛼 ∈ 𝑅 then −𝛼 ∈ 𝑅.

Exercise. Check this for classical Lie algebras.

Proof. Suppose not. Then there exists 𝑡 ∈ 𝔱∗ such that 𝛼(𝑡) = 0 for all 𝛼 ∈ 𝑅.
But then if 𝑥 ∈ 𝔤𝛼, [𝑡, 𝑥] = 𝛼(𝑡)𝑥 = 0 so [𝑡, 𝔤] = 0, i.e. 𝑡 is in the centre of 𝔤.
But 𝔤 is semisimple so has no nontrivial abelian ideals.

We now prove a sequence of results which implies most of them. If 𝜆, 𝜇 ∈ 𝔱∗

then [𝔤𝜆, 𝔤𝜇] ⊆ 𝔤𝜆+𝜇.

Proof. If 𝑥 ∈ 𝔤𝜆, 𝑦 ∈ 𝔤𝜇, 𝑡 ∈ 𝔱 then

[𝑡, [𝑥, 𝑦]] = [[𝑡, 𝑥], 𝑦] + [𝑥, [𝑡, 𝑦]]
= 𝜆(𝑡)[𝑥, 𝑦] + 𝜇(𝑡)[𝑥, 𝑦]
= (𝜆 + 𝜇)(𝑡)[𝑥, 𝑦]

Hence if 𝛼, 𝛽 ∈ 𝑅 but 𝛼 + 𝛽 ≠ 0 and 𝛼 + 𝛽 ∉ 𝑅 (so 𝔤𝛼+𝛽 = 0) then [𝔤𝛼, 𝔤𝛽] = 0
and if 𝛼 + 𝛽 ∈ 𝑅 then [𝔤𝛼, 𝔤𝛽] ⊆ 𝔤𝛼+𝛽. If 𝛼 + 𝛽 = 0 then [𝔤𝛼, 𝔤𝛽] ⊆ 𝔱. Note we
will not show [𝔤𝛼, 𝔤𝛽] = 𝔤𝛼+𝛽 for a while.

Secondly claim (𝑔𝜆, 𝑔𝜇)ad = 0 if 𝜆+𝜇 ≠ 0 and (⋅, ⋅)ad|𝑔𝜆+𝑔−𝜆
is nondegenerate.

Proof. Let 𝑥 ∈ 𝑔𝜆, 𝑦 ∈ 𝑔𝜇. To show this is 0, it is enough to show ad𝑥ad𝑦 is
nilpotent (?). But

(ad𝑥ad𝑦)𝑁𝑔𝛼 ⊆ 𝑔𝛼+𝑁(𝜆+𝜇)
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4 Structure theory of semisimple Lie algebras

by the previous part. So if 𝜆+𝜇 ≠ 0 then as 𝑔 is finite dimensional, 𝑔𝛼+𝑁(𝜆+𝜇) =
0 for 𝑁 >> 0, showing (𝑥, 𝑦)ad = 0.

On the other hand, the Killing form is nondegenerate and 𝑔 = ⨁𝜆(𝑔𝜆 +𝑔−𝜆)
is an orthogonal decomposition by what we just showed, so (⋅, ⋅)ad|𝑔𝜆+𝑔−𝜆

is
nondegenerate.

In particular take 𝜆 = 0. Get (⋅, ⋅)ad|𝔱 is non-degenerate. Hence we get an
isomorphism 𝑣 ∶ 𝔱 → 𝔱∗ by 𝑣(𝑡)(𝑡′) = (𝑡, 𝑡′)ad. Moreover this defines a symmetric
bilinear form on 𝔱∗ by (𝑣(𝑡), 𝑣(𝑡′)) = (𝑡, 𝑡′)ad (make 𝑣 an isometry).

Claim if 𝛼 ∈ 𝑅 then −𝛼 ∈ 𝑅: (𝑔𝛼, 𝑔𝛼)ad = 0 as 𝛼 ≠ 0 implies 2𝛼 ≠
0. But (⋅, ⋅)ad|𝑔𝛼+𝑔−𝛼

is non-degenerate (in particular so Killing form gives an
isomorphism 𝑔𝛼 ≅ 𝑔∗

−𝛼).
Let 𝑥 ∈ 𝑔𝛼, 𝑦 ∈ 𝑔−𝛼. Claim [𝑥, 𝑦] = (𝑥, 𝑦)ad𝑣−1(𝛼).

Proof.

(𝑡, [𝑥, 𝑦])ad = ([𝑡, 𝑥], 𝑦)ad

= 𝛼(𝑡)(𝑥, 𝑦)ad

Pick 𝑒𝛼 ∈ 𝑔𝛼, 𝑒𝛼 ≠ 0 and 𝑒−𝛼 ∈ 𝑔−𝛼 such that (𝑒𝛼, 𝑒𝛼)ad ≠ 0. and consider
𝑀∶𝑎 = ⟨𝑒𝛼, 𝑒−𝛼, 𝑣−1(𝛼)⟩. This is a 3 dimensional Lie algebra as

[𝑣−1(𝛼), 𝑒𝛼] = 𝛼(𝑣−1(𝛼))𝑒𝛼 = (𝛼, 𝛼)𝑒𝛼

and similarly [𝑣−1(𝛼), 𝑒−𝛼] = −(𝛼, 𝛼)𝑒𝛼. So if (𝛼, 𝛼) ≠ 0 then define ℎ𝛼 =
2

(𝛼,𝛼) 𝑣
−1(𝛼) and rescale 𝑒−𝛼 so that (𝑒𝛼, 𝑒−𝛼)ad = 2

(𝛼,𝛼) . It is an exercise to
show that 𝑀𝛼 → 𝔰𝔩2, 𝑒𝛼, ℎ, 𝑒−𝛼 ↦ 𝑒, ℎ, 𝑓.

Now we show if 𝛼 ∈ 𝑅 then (𝛼, 𝛼) ≠ 0. Suppose otherwise, then [𝑀𝛼, 𝑀𝛼] =
C𝑣−1(𝛼) (or did we merely prove containment?), i.e. 𝑀𝛼 is a solvable Lie alge-
bra. Hence by Lie’s theorem, ad[𝑀𝛼, 𝑀𝛼] acts as nilpotent operators on 𝔤, i.e.
ad𝑣−1(𝛼) is nilpotent. But 𝑣−1(𝛼) ∈ 𝔱 and hence diagonalisable. Together this
implies 𝜈−1(𝛼) = 0. But 𝛼 ∈ 𝑅 means 𝛼 ≠ 0, contradiction.

Claim dim 𝔤−𝛼 = 1 for all 𝛼 ∈ 𝑅.

Proof. Fix 𝛼. Pick 𝔪𝛼 ⊆ 𝔤 so 𝔪𝛼 ≅ 𝔰𝔩2. If dim 𝔤−𝛼 > 1 then the map 𝑔−𝛼 →
C𝜈−1(𝛼), 𝑥 ↦ ad𝑒𝛼 ⋅ 𝑥 has a non-zero kernel. So exists 𝑣 ∈ 𝑔−𝛼 such that

ad(𝑒𝛼)𝑣 = 0
ad(ℎ𝛼)𝑣 = −𝛼(ℎ𝛼).𝑣 = −2𝑣

Claim 𝑣 is a highest weight vector for 𝔰𝔩2 with negative highest weight. Hence
the 𝔰𝔩2-submodule of 𝔤 generated by 𝑣 is infinite dimensional, conradiction.

Guaranteed question on exam: explain everything about each classical Lie
algebra.

Theorem 4.6 (structure theorem, part II).

1. 2(𝛼,𝛽)
(𝛼,𝛼) ∈ Z for all 𝛼, 𝛽 ∈ 𝑅.
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4 Structure theory of semisimple Lie algebras

2. If 𝛼 ∈ 𝑅 and 𝑘𝛼 ∈ 𝑅 then 𝑘 = ±1.

3. ⨁𝑘∈Z 𝔤𝛽+𝑘𝛼. This is an irreducible module for (𝔰𝔩2)𝛼 = 𝔪𝛼. In par-
ticular

{𝑘𝛼 + 𝛽 ∶ 𝑘 ∈ Z, 𝑘𝛼 + 𝛽 ∈ R ∪ {0}}

is of the form 𝛽 − 𝑝𝛼, 𝛽 − (𝑝 − 1)𝛼, … , 𝛽 + (𝑝 − 1)𝛼, 𝛽 + 𝑞𝛼 where
𝑝 − 𝑞 = 2(𝛼,𝛽)

(𝛼,𝛼) . This is called the 𝛼 string through 𝛽.

Proof.

1. Let 𝑞 = max{𝑘 ∈ Z ∶ 𝑝 + 𝑘𝛼 ∈ 𝑅} and let 𝑣 ∈ 𝔤𝛽+𝑞𝛼 \ {0}. Then
ad𝑒𝛼𝑣 ∈ 𝔤𝛽+(𝑞+1)𝛼 = 0 and

adℎ𝛼.𝑣 = (𝛽 + 𝑞𝛼)(ℎ𝛼).𝑣 = (2(𝛽, 𝛼)
(𝛼, 𝛼)

+ 2𝑞) ⋅ 𝑣

Hence is a highest weight vector for 𝔰𝔩2 with weight ... and this is a
non-negative integer as 𝔤 is finite dimensional.

2.

3. Structure of 𝔰𝔩2-modules implies that (ad𝑒𝛼)𝑟𝑣 ≠ 0 for 0 ≤ 𝑟 ≤ 𝑁 where
𝑁 = 2(𝛽,𝛼)

(𝛼,𝛼) + 2𝑞 and (ad𝑒−𝛼)𝑁+1𝑣 = 0. Hence

{𝛽 + (𝑞 − 𝑘)𝛼 ∶ 0 ≤ 𝑘 ≤ 𝑁}

are all in 𝑅 ∪ {0} (in particular, non-zero eigenspaces). We need to show
no other roots of the form 𝛽 +𝑘𝛼. Repeat same construction from bottom
up: 𝑝 = max{𝑘 ∶ 𝛽 − 𝑘𝛼 ∈ 𝑅 ∪ {0}}, 𝑤 ∈ 𝔤𝛽−𝑝𝛼 \ {0} implies ad𝑒−𝛼𝑤 = 0.
... diagram and the strings coincide.

For 2, apply 1 to {𝛼, 𝛽} = {𝛼, 𝑘𝛼} to get

2(𝛼, 𝑘𝛼)
𝑘𝛼, 𝑘𝛼

= 2
𝑘

∈ Z, 2(𝑘𝛼, 𝛼)
𝛼, 𝛼)

= 2𝑘 ∈ Z.

Take 𝛼 = 𝛽 in 2 (?) as (𝑠𝑙2)𝛼 = 𝑔𝛼 + [𝑔𝛼, 𝑔𝛼] + 𝑔−𝛼 is an irreducible (𝑠𝑙2)𝛼-
module, 2 says it is a string though 𝛼 so 𝑔2𝛼 = 0 = 𝑔−2𝛼.

Finally if 𝛼, 𝛽, 𝛼 + 𝛽 ∈ 𝑅, we need to show [𝑔𝛼, 𝑔𝛽] = 𝑔𝛼+𝛽. But ⨁𝑘∈Z 𝑔𝛽+𝑘𝛼
is an irreducible 𝑠𝑙2-module, so 𝑎𝑑𝑒𝑘 ∶ 𝑔𝛽+𝑘𝛼 → 𝑔𝛽+(𝑘+1)𝛼 is an iso if 𝑘 < 𝑞. But
𝑞 ≥ 1 so in particular ad𝑒𝛼 ∶ 𝑔𝛽 → 𝑔𝛽+𝛼 is an iso.

The statement of 3 is messsy. Here is a much cleaner consequence.
Given 𝛼 ∈ 𝑡∗, define “reflection”

𝑠𝛼 ∶ 𝑡∗ → 𝑡∗

𝑣 ↦ 𝑣 − 2(𝛼, 𝑣)
(𝛼, 𝛼)

𝛼

Claim that 3 implies 𝑠𝛼𝛽 ∈ 𝑅 if 𝛼, 𝛽 ∈ 𝑅.

Proof. Let 𝑟 = 2(𝛼,𝛽)
(𝛼,𝛼) . If 𝑟 ≥ 0 then 𝑝 = 𝑞 + 𝑟 ≥ 𝑟. If 𝑟 ≤ 0 then 𝑞 = 𝑝 − 𝑟 ≥ −𝑟.

In either case 𝛽 − 𝑟𝛼 is the 𝛼-string through 𝛽. Exercise: show drawing is
accurate (reflection sends 𝛽 to 𝑠𝛼𝛽.
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4 Structure theory of semisimple Lie algebras

Proposition 4.7.

1. If 𝛼, 𝛽 ∈ 𝑅 then (𝛼, 𝛽) ∈ Q.

2. If we pick a basis 𝛽1, … 𝛽𝑟 of 𝑡∗ with each 𝛽𝑖 ∈ 𝑅 then any 𝛽 ∈ 𝑅 is of
the form ∑ 𝑞𝑖𝛽𝑖 with 𝑞𝑖 ∈ Q, that is the Q-span of 𝑅 has dimension
equal to dimC 𝑡.

3. (⋅, ⋅) is positive definite on Q𝑅.

Proof.

1. As 2(𝛼,𝛽)
(𝛼,𝛼) ∈ Z it is enough to show (𝛽, 𝛽) ∈ Q for all 𝛽 ∈ 𝑅. Let 𝑡, 𝑡′ ∈ 𝑡,

then
(𝑡, 𝑡′)ad = tr(ad𝑡ad𝑡′ ∶ 𝑔 → 𝑔) = ∑

𝛼∈𝑅
𝛼(𝑡)𝛼(𝑡′)

by weight space decomposition. So if 𝜆, 𝛽 ∈ 𝑡∗ then

(𝜆, 𝜇) = (𝜈−1(𝜆), 𝜈−1(𝜇))

= ∑
𝛼∈𝑅

𝛼(𝜈−1(𝜆))𝛼(𝜈−1(𝜇))

= ∑
𝛼∈𝑅

(𝜆, 𝛼)(𝜇, 𝛼)

In particular (𝛽, 𝛽) = ∑𝛼∈𝑅(𝛽, 𝛼)2. Multiply by 4
(𝛽,𝛽)2 , get

4
(𝛽, 𝛽)

= ∑
𝛼∈𝑅

(2(𝛼, 𝛽)
(𝛽, 𝛽)

)
2

∈ Z.

2. Let 𝐵 be the grand matrix of (⋅, ⋅) on 𝑡∗ with respect to basis 𝛽𝑖, meaning
𝐵 = [(𝛽𝑖, 𝛽𝑗)]𝑖𝑗. It is an exercise to check (⋅, ⋅) is nondegenerate implies
det 𝐵 ≠ 0. Let 𝛽 = ∑ 𝑐𝑖𝛽𝑖 ∈ 𝑅 so (𝛽, 𝛽𝑖) = ∑𝑗 𝑐𝑗(𝛽𝑗, 𝛽𝑖), that is

⎛⎜
⎝

(𝛽, 𝛽1)
⋮

(𝛽, 𝛽𝑟)
⎞⎟
⎠

= 𝐵 ⎛⎜
⎝

𝑐1
⋮

𝑐𝑟

⎞⎟
⎠

and as det 𝐵 ≠ 0 we can invert this. Then 𝑐𝑖 ∈ Q.

3. Let 𝜆 = ∑ 𝑐𝑖𝛽𝑖 with 𝑐𝑖 ∈ Q, so (𝜆, 𝛼) ∈ Q for all 𝛼 ∈ 𝑅. But (𝜆, 𝜆) =
∑𝛼∈𝑅(𝜆, 𝛼)2 ≥ 0 and (𝜆, 𝜆) = 0 implies (𝜆, 𝛼) = 0 for all 𝛼 ∈ 𝑅. But 𝑅
spans 𝑡∗ and (⋅, ⋅) is nondegenerate so 𝜆 = 0.
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5 Root systems
Let 𝑉 be a vector space over R, let (⋅, ⋅) ∶ 𝑉 × 𝑉 → R be an inner product, i.e.
a positive definite symmetric bilinear form. If 𝛼 ∈ 𝑉 , 𝛼 ≠ 0 let 𝛼∨ = 2𝛼

(𝛼,𝛼) so
(𝛼, 𝛼∨) = 2. Define

𝑠𝛼 ∶ 𝑉 → 𝑉
𝑣 ↦ 𝑣 − (𝑣, 𝛼∨)𝛼

Lemma 5.1. 𝑠𝛼 is the reflection in the hyperplane orthogonal to 𝛼. In
particular 𝑠𝛼𝛼 = −𝛼 and all other eigenvectors of 𝑠𝛼 have eigenvalue 1.
Moreover

𝑠2
𝛼 = 1, (𝑠𝛼 + 1)(𝑠𝛼 − 1) = 0

and 𝑠𝛼 ∈ 𝑂(𝑉 , (⋅, ⋅)), the orthogonal group of 𝑉 with respect to (⋅, ⋅), which
is in particular an algebraic group.

Proof. 𝑉 = R𝛼 ⊕ 𝛼⟂ and if 𝑣 ∈ 𝛼⟂ then 𝑠𝛼𝑣 = 𝑣.

Definition (root system). A root system 𝑅 in 𝑉 is a finite set 𝑅 ⊆ 𝑉 such
that

1. 0 ∉ 𝑅,R𝑅 = 𝑉,

2. for all 𝛼, 𝛽 ∈ 𝑅, (𝛼, 𝛽∨) ∈ Z,

3. for all 𝛼 ∈ 𝑅, 𝑠𝛼𝑅 ⊆ 𝑅. In particular 𝑠𝛼𝛼 = −𝛼 ∈ 𝑅.

Moreover 𝑅 is reduced if in addition 𝛼, 𝑘𝛼 ∈ 𝑅 implies 𝑘 = ±1.

Example. Let 𝑔 be a semisimple Lie algebra over C. Then it has weight space
decomposition 𝑔 = 𝑡 ⊕ ⨁𝛼∈𝑅 𝑔𝛼. Then 𝑅 is a root system.

Definition (Weyl group). Let 𝑊 be the group generated by the reflection
𝑠𝛼 for 𝛼 ∈ 𝑅. This is the Weyl group of 𝑅.

Claim that 𝑊 is finite.

Proof. 𝑊 acts on 𝑅 by permutations and as R𝑅 = 𝑉, this action is faithful (?),
so 𝑊 ⊆ Sym(𝑅) so finite.

Definition. The rank of 𝑅 is the dimension of 𝑉.

Definition. An isomorphism of root systems between (𝑉 , 𝑅) and (𝑉 ′, 𝑅′)
is a linear bijection 𝜙 ∶ 𝑉 → 𝑉 ′ such that 𝜙(𝑅) = 𝑅′.

Note that we do not require this to be an isometry.

Exercise. If (𝑅, 𝑉 ), (𝑅′, 𝑉 ′) are two root systems then so is (𝑅 ⨿ 𝑅′, 𝑉 ⊕ 𝑉 ′).
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5 Root systems

A root system not isomorphic to a direct sum is called irreducible.

Example.

1. Rank 1: take 𝑉 = R, (𝑥, 𝑦) = 𝑥𝑦, 𝑅 = {𝛼, −𝛼} with 𝛼 ∈ 𝑅, 𝛼 ≠ 0.
𝑊 = Z/2. Exercise: this is the only rank 1 root system.

2. rank 2

(a) 𝑉 = R2 with usual inner product is a root system. This is called
𝐴1 × 𝐴1 and is not irreducible. 𝑊 = Z/2 × Z/2.

(b) (𝛼, 𝛽) = −1, 𝛼 = 𝛼∨, 𝛽 = 𝛽∨ . 𝑊 = 𝑆3. This is the root system for
𝑠𝑙3. This is 𝐴2.

(c) 𝐵2. 𝑊 = 𝐷8.
(d) 𝛼 = 𝑒1, 𝛽 = 𝑒2 − 𝑒1, (𝛼, 𝛼) = 1, (𝛽, 𝛽) = 1. This is 𝐺2.

Exercise.

1. Show these are root systems.

2. Show they are all the rank 2 root systems.

3. Show 𝐴2, 𝐵2, 𝐺2 are irreducible.

Exercise. If (𝑅, 𝑉 ) is a root system then so is (𝑅∨, 𝑉 ) where 𝑅∨ = {𝛼∨ ∶ 𝛼 ∈
𝑅}.

Definition (simply laced). 𝑅 is simply laced if all the roots have the samle
length.

Exercise. If 𝑅 is a simply laced root system then 𝑅 is isomorphic to a root
system with (𝛼, 𝛼) = 2 for all 𝛼 ∈ 𝑅.

Definition (lattice). A lattice 𝐿 is a finitely generated free abelian group
(i.e. isomoprhic to Zℓ for some ℓ) equipped with a form (⋅, ⋅) ∶ 𝐿⊗𝐿 → Z such
that the induced form (⋅, ⋅) ∶ 𝐿R × 𝐿R → R is a positive definite symmetric
bilinear form, where 𝐿R = 𝐿 ⊗Z R ≅ Rℓ.

A root of 𝐿 is a vector 𝛼 ∈ 𝐿 with (𝛼, 𝛼) = 2. We denote the set of roots
of 𝐿 by 𝑅𝐿.

Exercise. If 𝛼 ∈ 𝑅𝐿 then 𝑠𝛼(𝐿) ⊆ 𝐿.

Lemma 5.2. 𝑅𝐿 is a simply laced root system in R𝑅𝐿.

Proof. Obvious except finiteness of 𝑅𝐿. But 𝑅𝐿 is the intersection of a compact
set (the sphere {𝛼 ∈ R𝐿 ∶ (𝛼, 𝛼) = 2}) and a discrete set (𝐿), so finite.
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Definition. 𝐿 is generated by roots if Z𝑅𝐿 = 𝐿.

Note if so, 𝐿 is an “even lattice”, i.e. (ℓ, ℓ) ∈ 2Z for all ℓ ∈ 𝐿.

Example. 𝐿 = Z𝛼 with (𝛼, 𝛼) = 2. If 𝜆 = 2 then 𝑅𝐿 = {±𝛼} and 𝐿 = Z𝑅𝐿.
If 𝑘2𝜆

2 ≠ 1 for all 𝑘 ∈ Z then 𝑅𝐿 = ∅.

We will now meet all simply laced lattices generated by roots.

1. 𝐴𝑛 Consider Z𝑛+1 = ⨁𝑛+1
𝑖=1 Z𝑒𝑖, (𝑒𝑖, 𝑒𝑗) = 𝛿𝑖𝑗. This is the square lattice.

Define

𝐿 = {ℓ ∈ Z𝑛+1 ∶ (ℓ, 𝑒1 + ⋯ + 𝑒𝑛+1) = 0} = {∑ 𝑎𝑖𝑒𝑖 ∶ ∑ 𝑎𝑖 = 0} ≅ Z𝑛

then 𝑅𝐿 = {𝑒𝑖 − 𝑒𝑗 ∶ 𝑖 ≠ 𝑗, #𝑅𝐿 = 𝑛(𝑛 + 1),Z𝑅𝐿 = 𝐿. If 𝛼 = 𝑒𝑖 − 𝑒𝑗 then
𝑠𝛼 waps 𝑖th and 𝑗th coordinate, i.e.

𝑠𝛼(𝑥1𝑒1 + ⋯ + 𝑥𝑛+1𝑒𝑛+1) = 𝑥1𝑒1 + ⋯ + 𝑥𝑗𝑒𝑖 + ⋯ + 𝑥𝑖𝑒𝑗 + ⋯ + 𝑥𝑛+1𝑒𝑛+1

so 𝑊 = ⟨𝑠𝑒𝑖−𝑒𝑗
∶ 𝑖 ≠ 𝑗⟩ ≅ 𝑆𝑛+1.

(𝑅𝐿, 𝐿) is the root system of 𝔰𝔩𝑛+1.

Exercise.

(a) Check all these statement, especially the one about root of 𝔰𝔩𝑛+1.
(b) Draw 𝐿 and 𝑅𝐿 for 𝑛 = 1, 2. Check 𝐴2, 𝐴2 are as produced earlier.

2. 𝐷𝑛. Consider the square lattice Z𝑛 and define

𝑅𝐿 = {±𝑒𝑖 ± 𝑒𝑗 ∶ 𝑖 ≠ 𝑗}

𝐿 = Z𝑅𝐿 = {∑ 𝑎𝑖𝑒𝑖 ∶ ∑ 𝑎𝑖 even}

and 𝑠𝑒𝑖−𝑒𝑗
as before, and 𝑠𝑒𝑖+𝑒𝑗

flips signs of 𝑖th and 𝑗th coordinate.
#𝑅𝐿 = 2𝑛(𝑛 + 1). Then 𝑊 = (Z/2)𝑛−1 ⋊ 𝑆𝑛.

Exercise.

(a) Check all the claims.
(b) Show 𝐷𝑛 is irreducible if 𝑛 ≥ 3.
(c) 𝐷3 ≅ 𝐴3, 𝐷2 ≅ 𝐴1 × 𝐴1.
(d) Roots of 𝔰𝔬2𝑛 are of type 𝐷𝑛.

3. 𝐸8. Let

Γ𝑛 = {(𝑘1, … , 𝑘𝑛) ∶ ∑ 𝑘𝑖 ∈ 2Z and either 𝑘𝑖 ∈ Z or 𝑘𝑖 ∈ Z + 1
1

for all 𝑖}

with the usual inner product of R𝑛. Consider 𝛼 = ( 1
2 , … , 1

2 ). Note (𝛼, 𝛼) =
𝑛
4 so if 𝛼 ∈ Γ𝑛 and Γ𝑛 is an even lattice then 8 ∣ 𝑛.

Exercise.
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5 Root systems

(a) Show Γ8𝑛 is an even lattice.
(b) If 𝑛 > 1, roots of Γ8𝑛 are a root system of type 𝐷𝑛.
(c) Show the roots of Γ8 are {±𝑒𝑖 ± 𝑒𝑗 ∶ 𝑖 ≠ 𝑗} ∪ { 1

2 (±𝑒𝑖 ± ⋯ ± 𝑒8) ∶
even number of minus signs}. Roots of Γ8 are called root system of

type 𝐸8. #𝑅𝐸8
= (8

2)⋅4+128 = 240, so by classification of semisimple
Lie algebras the associated Lie algebra has dimension 248.

(d) Can you compute #𝑊𝐸8
? The answer is 214 ⋅ 35 ⋅ 52 ⋅ 7.

Exercise. If 𝑅 is a root system, 𝛼 ∈ 𝑅 then 𝛼⟂ ∩ 𝑅 is a root system.
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