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Lecture 2: Covering and higher sum and product
sets
Introduce two techniques we’ll use repeatedly: covering and bounding higher
product sets. A nice way to do this is by proving the following theorem.

Theorem 0.1 (Ruzsa). Suppose 𝐴 ⊆ F𝑟
𝑝 satisfying |𝐴 + 𝐴| ≤ 𝐾|𝐴|. Then

exists 𝐻 ≤ F𝑟
𝑝 with |𝐻| ≤ 𝑝𝐾4𝐾2|𝐴| such that 𝐴 ⊆ 𝐻.

So again, like in theorem 1.1., 𝐴 is a large propotion of a finite subgroup.

Remark. It is not ideal that |𝐴|/|𝐻| depends on 𝑝. We’ll remove this dependence
in a few lectures’ time.

We’ll start by proving the following weaker version:

Proposition 0.2. Suppose 𝐴 ⊆ F𝑟
𝑝 satisfies |2𝐴 − 2𝐴| ≤ 𝐾|𝐴|. Then exists

𝐻 ⊆ F𝑟
𝑝 with |𝐻| ≤ 𝑝𝐾|𝐴 − 𝐴| (so ≤ 𝑝𝑘𝐾|𝐴|) such that 𝐴 ⊆ 𝐻.

We’ll prove this using “covering”, encapsulated by the following lemma:

Lemma 0.3 (Ruzsa’s covering lemma). Suppose 𝐴, 𝐵 ⊆ 𝐺 and |𝐴𝐵| ≤ 𝐾|𝐵|.
Then there exists 𝑋 ⊆ 𝐴 with |𝑋| ≤ 𝐾 such that 𝐴 ⊆ 𝑋𝐵𝐵−1. Indeed we
may take 𝑋 ⊆ 𝐴 maximal such that the sets 𝑥𝐵, 𝑥 ∈ 𝑋 are disjoint.

The term “covering” refers to the conclusion 𝐴 ⊆ 𝑋𝐵𝐵−1, which say that 𝐴
can be covered by a few left translates of 𝐵𝐵−1.

Proof. First disjointness of 𝑥𝐵 implies that |𝑋𝐵| = |𝑋||𝐵|. Since 𝑋 ⊆ 𝐴,

|𝑋𝐵| ≤ |𝐴𝐵| ≤ 𝐾|𝐵|

so |𝑋| ≤ 𝐾. Maximality implies that for all 𝑎 ∈ 𝐴 there exists 𝑥 ∈ 𝑋 such that
𝑎𝐵 ∩ 𝑥𝐵 ≠ ∅, and hence 𝑎 ∈ 𝑥𝐵𝐵−1. Hence 𝐴 ⊆ 𝑋𝐵𝐵−1 as required.

Lemma 0.4. Suppose 𝐴 ⊆ 𝐺 satisfies

|𝐴−1𝐴2𝐴−1| ≤ 𝐾|𝐴|.

Then exists 𝑋 ∈ 𝐴−1𝐴2, |𝑋| ≤ 𝐾 such that

𝐴−1𝐴𝑛 ⊆ 𝑋𝑛−1𝐴−1𝐴

for all 𝑛 ∈ N.

Proof. By Ruzsa’ covering lemma exists 𝑋 ⊆ 𝐴−1𝐴2, |𝑋| ≤ 𝐾| such that

𝐴−1𝐴2 ⊆ 𝑋𝐴−1𝐴.
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We then have

𝐴−1𝐴𝑛 = 𝐴−1𝐴𝑛−1𝐴
⊆ 𝑋𝑛−2𝐴−1𝐴2 by induction
⊆ 𝑋𝑛−1𝐴−1𝐴

Proof of proposition. The lemma above implies that exists 𝑋 with |𝑋| ≤ 𝐾 such
that

𝑛𝐴 − 𝐴 ⊆ (𝑛 − 1)𝑋 + 𝐴 − 𝐴

for all 𝑛 ∈ N. Since F𝑟
𝑝 is a vector space,

⟨𝐴⟩ ⊆ ⟨𝑋⟩ + 𝐴 − 𝐴

so
|⟨𝐴⟩| ≤ |⟨𝑋⟩||𝐴 − 𝐴| ≤ 𝑝𝐾|𝐴 − 𝐴|

as required.

To strengthen the proposition to the theorem, we use the second technique:
bounding higher sum/product sets. The key result, at least in the abelian case,
is the following:

Theorem 0.5 (Plünnecke-Ruzsa). Suppose 𝐴 ⊆ 𝐺 where 𝐺 is an abelian
group and |𝐴 − 𝐴| ≤ 𝐾|𝐴|. Then

|𝑚𝐴 − 𝑛𝐴| ≤ 𝐾𝑚+𝑛|𝐴|

for all 𝑚, 𝑛 ≥ 0.

This is proved in III Introduction to Discrete Analysis. We won’t redo the
whole proof, but we will reprove some parts of it.

Proof of Ruzsa’s theorem. Plünnecke-Ruzsa implies that |2𝐴−2𝐴| ≤ 𝐾4|𝐴| and
|𝐴 − 𝐴| ≤ 𝐾2|𝐴|. Then the result follows from prop 2.2.

We’ll spend the rest of the lecture discussing Plünnecke-Ruzsa and variants
of it. We’ve seen it’s useful, at least in one context. To see philosophically
why it’s useful, let’s think about what the genuine closure of subgroups under
products and inverses mean. One useful feature is that it can be iterated: given
ℎ1, ℎ2, ⋯ ∈ 𝐻 a subgroup, this means ℎ𝜀1

1 , … , ℎ𝜀𝑚𝑚 , ⋯ ∈ 𝐻 for all 𝜀𝑖 = ±1 for all
𝑚, for all ℎ𝑖 ∈ 𝐻. The theorem allows us to “iterate” the “approximate closure”
of a set of small doubling.

𝑎1 + … 𝑎𝑚 − 𝑎′
1 − ⋯ − 𝑎′

𝑛

may not belong to 𝐴 but at least it belongs to 𝑚𝐴 − 𝑛𝐴, which is “not too large”
(|𝑚𝐴 − 𝑛𝐴| ≤ 𝐾𝑚+𝑛|𝐴|), and is itself a set of small doubing (2|𝑚𝐴 − 𝑛𝐴|| ≤
𝐾2𝑚+2𝑛|𝑚𝐴 − 𝑛𝐴|). This is an important part of why the theory works so well.

It is therfore unfortunate that the theorem does not hold for non-abelian
groups.
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Example. Let 𝑥 generates an infinite cyclic group ⟨𝑥⟩, 𝐻 be a finite subgroup.
Set 𝐺 = 𝐻 ∗ ⟨𝑥⟩ (the key point is that 𝑥−1𝐻𝑥 ≠ 𝐻. Set 𝐴 = 𝐻 ∪ {𝑥}. Then

𝐴2 = 𝐻 ∪ 𝑥𝐻 ∪ 𝐻𝑥 ∪ {𝑥2}

so |𝐴2| ≤ 3|𝐴|. But 𝐴3 contains 𝐻𝑥𝐻, which has size |𝐻|2 ∼ |𝐴|2. So as
|𝐻| → ∞, the theorem cannot hold.

Nevertheless, if we strengthen small doubling slightly we can recover a form
of the theorem. One way is to replace small doubing with small tripling, i.e.
|𝐴3| ≤ 𝐾|𝐴|.

Proposition 0.6 (2.7). Suppose 𝐴 ⊆ 𝐺 and |𝐴3| ≤ 𝐾|𝐴|. Then

|𝐴𝜀1 ⋯ 𝐴𝜀𝑚 | ≤ 𝐾3(𝑚−2)|𝐴|

for all 𝜀𝑖 = ±1 for all 𝑚 ≥ 3.

The key ingredient is the following:

Lemma 0.7 (Ruzsa’s triangle inequality). Given 𝑈, 𝑉 , 𝑊 ⊆ 𝐺, all finite,
we have

|𝑈||𝑉 −1𝑊| ≤ |𝑈𝑉 ||𝑈𝑊|.

Proof. We’ll define an injection 𝜑 ∶ 𝑈 ×𝑉 −1𝑊 → 𝑈𝑉 ×𝑈𝑊. First for 𝑥 ∈ 𝑉 −1𝑊,
set 𝑣(𝑥) ∈ 𝑉, 𝑤(𝑥) ∈ 𝑊 such that 𝑥 = 𝑣(𝑥)−1𝑤(𝑥). Set

𝜑(𝑢, 𝑥) = (𝑢𝑣(𝑥), 𝑢𝑤(𝑥)).

To see injectivity, first notice that

(𝑢𝑣(𝑥))−1(𝑢𝑤(𝑥)) = 𝑥

so 𝑥 is determined by 𝜑(𝑢, 𝑥), and then (𝑢𝑣(𝑥))𝑣(𝑥)−1 = 𝑢 so 𝑢 is also determined
by 𝜑(𝑢, 𝑥).

Proof of proposition 2.7. First do the case 𝑚 = 3:

|𝐴3| = |𝐴−3| ≤ 𝐾|𝐴|.

Apply triangle inequality with 𝑈 = 𝑊 = 𝐴, 𝑉 = 𝐴2. Get

|𝐴||𝐴−2𝐴| ≤ |𝐴3||𝐴2| ≤ 𝐾2|𝐴|2

so
|𝐴−2𝐴| ≤ 𝐾2|𝐴|.

Next note that (𝐴−1𝐴)−1 = 𝐴−1𝐴2 so

|𝐴−1𝐴2| = |𝐴−2𝐴| ≤ 𝐾2|𝐴|.

Replace 𝐴 by 𝐴−1 we get

|𝐴𝐴−2| = |𝐴2𝐴−1| ≤ 𝐾2|𝐴|.
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Finally, use triangle inequality with 𝑈 = 𝑉 = 𝐴, 𝑊 = 𝐴𝐴−1 gives

|𝐴||𝐴−1𝐴𝐴−1| ≤ |𝐴2||𝐴2𝐴−1| ≤ 𝐾3|𝐴|2

so
|𝐴−1𝐴𝐴−1| ≤ 𝐾3|𝐴|.

For the last case swap 𝐴 and 𝐴−1.
For general 𝑚, triangle inequality implies that

|𝐴||𝐴𝜀1 ⋯ 𝐴𝜀𝑚 | ≤ |𝐴𝐴−𝜀2𝐴−𝜀1 ||𝐴𝐴𝜀3 ⋯ 𝐴𝜀𝑚 | ≤ 𝐾3|𝐴||𝐾3(𝑚−2)|𝐴|

by induction.
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Lecture 3: Approximate groups
Last time we saw that assuming all small tripling instead of small doubling
allowed us to control higher product sets of the form 𝐴𝜀1 ⋯ 𝐴𝜀𝑚 . In this lecture
we’ll see another possible strengening of small doubling. We also saw, in the
proof of theorem 2.1 and proposition 2.2, an advantage of having a “covering”
condition in place of a size bound. This motivates in part the following definition.

Definition (approximate group). A set 𝐴 ⊆ 𝐺 is called a 𝐾-approximate
group or 𝐾-approximate subgroup if 1 ∈ 𝐴, 𝐴−1 = 𝐴 and exists 𝑋 ⊆ 𝐺 with
|𝑋| ≤ 𝐾 such that 𝐴2 ⊆ 𝑋𝐴.

Remark. Note that 𝐴 need not to be finite, although in this course it almost
always will be. Also if 𝐴 is finite that |𝐴2| ≤ 𝐾|𝐴|.

The conditions 1 ∈ 𝐴 and 𝐴−1 = 𝐴 are convenient notationally: for example
we can write 𝐴𝑚 instead of 𝐴𝜀1 ⋯ 𝐴𝜀𝑚 , and 1 ∈ 𝐴 implies that 𝐴 ⊆ 𝐴2 ⊆ 𝐴3 ⊆ …,
which is also convenient at times. It is the condition 𝐴2 ⊆ 𝑋𝐴 that is more
important.

For approximate groups, bounding higher product is easy:

Lemma 0.8 (lemma 3.1). If 𝐴 is a finite 𝐾-approximate group then

𝐴𝑚| ≤ 𝐾𝑚−1|𝐴|.

Proof. Let 𝑋 be as in the definition of approximate group. In fact we have
𝐴𝑚 ⊆ 𝑋𝑚−1𝐴:

𝐴𝑚 = 𝐴𝑚−1𝐴 ⊆ 𝑋𝑚−2𝐴2 ⊆ 𝑋𝑚−1𝐴

by induction.

Another advantage is that if 𝜋 ∶ 𝐺 → 𝐻 is a homomorphism and 𝐴 is a 𝐾-
approximate group then 𝜋(𝐴) is also trivially a 𝐾-approximate group (although
we’ll see that there exists a version of this for small tripling).

It turns out that sets of small tripling and approximate groups are essentially
equivalent, in the followin sense:

Proposition 0.9 (proposition 3.2). Let 𝐴 ⊆ 𝐺 be finite. If 𝐴 is a 𝐾-
approximate group then |𝐴3| ≤ 𝐾2|𝐴|. Conversely if |𝐴3| ≤ 𝐾|𝐴| then exists
𝑂(𝐾12)-approximate group 𝐵 with 𝐴 ⊆ 𝐵 and |𝐵| ≤ 7𝐾3|𝐴|. In fact, we
may take 𝐵 = (𝐴 ∪ {1} ∪ 𝐴−1)2.

The interesting direction of the proposition says that 𝐴 is a large proportion
of an approximate group.

Proof. The first part is just lemma 3.1. For the converse, set

̂𝐴 = 𝐴 ∪ {1} ∪ 𝐴−1

and note that

𝐵 = ̂𝐴2 = {1} ∪ 𝐴 ∪ 𝐴−1 ∪ 𝐴2 ∪ 𝐴−1𝐴 ∪ 𝐴𝐴−1 ∪ 𝐴−2.
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Each set in this union has size ≤ 𝐾3|𝐴| by proposition 2.7 so |𝐵| ≤ 7𝐾3|𝐴| as
claimed. Similarly

̂𝐴4 = ⋃
𝜀𝑖=±1,0≤𝑚≤4

𝐴𝜀1 ⋯ 𝐴𝜀𝑚

and all the sets in this union have size ≤ 𝐾6|𝐴|. It follows that | ̂𝐴4| ≤ 𝑂(𝐾6)| ̂𝐴|.
Lemma 2.4 implies that there exists 𝑋 ⊆ 𝐺, |𝑋| ≤ 𝑂(𝐾6) such that ̂𝐴𝑛 ⊆

𝑋𝑛−1 ̂𝐴2 for every 𝑛 ≥ 2. In particular |𝑋2| ≤ 𝑂(𝐾12) and ̂𝐴4 ⊆ 𝑋2 ̂𝐴2, so ̂𝐴2

is an 𝑂(𝐾12-approximate group as claimed.

This is all well and good, but what if we are faced with a set like that from
example 2.6, which only has small doubling? In that specific example, a large
proportion of 𝐴 was a set of small tripling, namely 𝐻. Rather helpfully, that
turns out to be a general phenomenon.

Theorem 0.10 (theorem 3.3). If 𝐴 ⊆ 𝐺 satisfies |𝐴2| ≤ 𝐾|𝐴| then exists
𝑈 ⊆ 𝐴 with |𝑈| ≥ 1

𝐾 |𝐴| such that

|𝑈𝑚| ≤ 𝐾𝑚−1|𝑈|

for all 𝑚 ∈ N.

Thus small doubling reduces to small tripling, which reduces to approximate
groups. In example sheet 1, we’ll see a direct reduction from small doubling to
approximate groups.

Tao proved a version of theorem 3.3 when he introduced the definition of
apparoximate groups. We’ll use instead a lemma of Petridis, which he proved
when proving the Plüneccke-Ruzsa inequalities.

Lemma 0.11 (lemma 3.4). [Petridis] Suppose 𝐴, 𝐵 ⊆ 𝐺 are finite. Let
𝑈 ⊆ 𝐴 be non-empty, chosen to minimise the ratio |𝑈𝐵|/|𝑈| and write
𝑅 = |𝑈𝐵|/|𝑈|. Then for all finite 𝐶 ⊆ 𝐺 we have

|𝐶𝑈𝐵| ≤ 𝑅|𝐶𝑈|.

Proof. Trivial if 𝐶 = ∅ so we may assume there exists 𝑥 ∈ 𝐶. Define 𝐶′ = 𝐶\{𝑥},
we may also assume by induction that |𝐶′𝑈𝐵| ≤ 𝑅|𝐶′𝑈|. We are going to write
𝐶𝑈 = 𝐶′𝑈 ∪ 𝑥𝑈 and deal with the overlap. Set

𝑊 = {𝑢 ∈ 𝑈 ∶ 𝑥𝑢 ∈ 𝐶′𝑈}.

Then
𝐶𝑈 = 𝐶′𝑈 ∪ 𝑥𝑈(\𝑥𝑊)

is a disjoint union so in particular

|𝐶𝑈| = |𝐶′𝑈| + |𝑈| − |𝑊|.

We also have 𝑥𝑊𝐵 ⊆ 𝐶′𝑈𝐵 by definition of 𝑊 so

𝐶𝑈𝐵 ⊆ 𝐶′𝑈𝐵 ∪ (𝑥𝑈𝐵 \ 𝑥𝑊𝐵)

and hence
|𝐶𝑈𝐵| ≤ |𝐶′𝑈𝐵| + |𝑈𝐵| − |𝑊𝐵|.
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We have |𝐶′𝑈𝐵| ≤ 𝑅|𝐶′𝑈| by induction hypothesis. We have |𝑈𝐵| = 𝑅|𝑈| by
defintion of 𝑅, and |𝑊𝐵| ≥ 𝑅|𝑊| by minimality in the definition of 𝑈. So

|𝐶𝑈𝐵| ≤ 𝑅(|𝐶′𝑈| + |𝑈| − |𝑊|) = 𝑅|𝐶𝑈|.

Proof of theorem 3.3. Set 𝑈 ⊆ 𝐴 to be non-empty minimising |𝑈𝐴|/|𝑈| and
write 𝑅 = |𝑈𝐴|/|𝐴|. Noting that 𝑅 ⊆ 𝐾 by minimality. Also 𝑈 is non-empty so
|𝑈𝐴| ≥ |𝐴|, so |𝑈| ≥ |𝐴|/𝐾 as required. Lemma 2.4 also implies that

|𝑈𝑚𝐴| ≤ 𝐾|𝑈𝑚|

for all 𝑚 (taking 𝐶 = 𝑈𝑚−1) and since 𝑈 ⊆ 𝐴, this gives

|𝑈𝑚+1| ≤ 𝐾|𝑈𝑚|

for all 𝑚, so |𝑈𝑚| ≤ 𝐾𝑚−1|𝑈|.

A bit of non-examinable information:
The reason 𝐴 in example 2.6 failed to have small tripling was the existence

of 𝑥 ∈ 𝐴 with 𝐴𝑥𝐴 large. It turns out that this is the only obstruction to small
doubling having small tripling.

Theorem 0.12 (theorem 3.5). [Tao, Petridis] If |𝐴2| ≤ 𝐾|𝐴| and |𝐴𝑥𝐴| ≤
𝐾|𝐴| for all 𝑥 ∈ 𝐴 then |𝐴𝑚| ≤ 𝐾𝑂(𝑚)|𝐴| for all 𝑚 ≥ 3.
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Lecture 4: Stability of approximate closure under
basic operations
Two familiar properties of genuine subgroups are that they behave well under
quotients and intersections: if 𝐻 ≤ 𝐺 and 𝜋 ∶ 𝐺 → Γ is a homomorphism then
𝜋(𝐻) ≤ Γ, and if 𝐻1, 𝐻2 ≤ 𝐺 then 𝐻1 ∩ 𝐻2 ≤ 𝐺. In this lecture we’ll see
versions of these properties for approximate groups and set of small tripling.

It’s trivial that if 𝐴 ⊆ 𝐺 is a 𝐾-approximate group then 𝜋(𝐴) is also a
𝐾-approximate group. The following is the corresponding result for sets of small
tripling.

Proposition 0.13 (prop 4.1). [stability of small tripling under homomor-
phisms] Let 𝐴 ⊆ 𝐺 be finite, symmetric, containing the idenity. Suppose
𝜋 ∶ 𝐺 → Γ is a homomorphism. Then

|𝜋(𝐴)𝑚|
|𝜋(𝐴)|

≤ |𝐴𝑚+2|
|𝐴|

for all 𝑚 ∈ N.
In particular if |𝐴3| ≤ 𝐾|𝐴| then

|𝜋(𝐴)3| ≤ 𝐾9|𝜋(𝐴)|

by prop 2.7.

Prove this using an argument of Helfgolt. We’s start with a simple observation
that we’ll use repeatedly in this course.

Lemma 0.14 (lemma 4.2). Let 𝐻 ≤ 𝐺. Let 𝐴 ⊆ 𝐺 be finite and let 𝑥 ∈ 𝐺.
Then

|𝐴−1𝐴 ∩ 𝐻| ≥ |𝐴 ∩ 𝑥𝐻|.

Proof. We have
(𝐴 ∩ 𝑥𝐻)−1(𝐴 ∩ 𝑥𝐻) ⊆ 𝐴−1𝐴 ∩ 𝐻.

Remark. Most of the lemmas and propositions in this lecture will have famil-
iar/trivial analogues for genuine subgroups. It is a useful exercise to think about
what they are.

Lemma 0.15 (lemma 4.3). Let 𝐻 ≤ 𝐺. Write 𝜋 ∶ 𝑔 → 𝐺/𝐻 for the quotient
map. Let 𝐴 ⊆ 𝐺 be finite. Then

|𝐴−1𝐴 ∩ 𝐻| ≥ |𝐴|
|𝜋(𝐴)|

.

Note that 𝐻 is not assumed to be normal, so 𝐺/𝐻 is just the space of left
cosets 𝑥𝐻, not necessarily a group.
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Proof. By pigeonhole principle, there exists 𝑥 ∈ 𝐺 such that

|𝐴 ⊆ 𝑥𝐻| ≥ |𝐴|
|𝜋(𝐴)|

.

Then apply lemma 4.2.

Lemma 0.16 (lemma 4.4). Let 𝐻 ≤ 𝐺. Write 𝜋 ∶ 𝐺 → 𝐺/𝐻 for the
quotient map and let 𝐴 ⊆ 𝐺 be finite. Then

|𝜋(𝐴𝑚)||𝐴𝑛 ∩ 𝐻| ≤ |𝐴𝑚+𝑛|

for all 𝑚, 𝑛 ≥ 0.

Proof. Define 𝜑 ∶ 𝜋(𝐴𝑚) → 𝐴𝑚 by picking arbitrarily for each 𝑥 ∈ 𝜋(𝐴𝑚) some
𝜑(𝑥) such that 𝜋(𝜑(𝑥)) = 𝑥. Then the cosets 𝜑(𝑥)𝐻 for 𝑥 ∈ 𝜋(𝐴𝑚) are all
distinct by definition, so

|𝜑(𝜋(𝐴𝑚))(𝐴𝑛 ∩ 𝐻)| = |𝜋(𝐴𝑚)||𝐴𝑛 ∩ 𝐻|.

But also,
𝜑(𝜋(𝐴𝑚))(𝐴𝑛 ∩ 𝐻) ⊆ 𝐴𝑚+𝑛.

Proof of prop 4.1. Write 𝐻 = ker𝜋. By lemma 4.4,

|𝜋(𝐴𝑚)| ≤ |𝐴𝑚+2|
|𝐴2 ∩ 𝐻|

.

The by lemma 4.3

|𝐴2 ∩ 𝐻| ≥ |𝐴|
|𝜋(𝐴)|

.

The proposition then follows.

Now we’ll look at intersections.

Proposition 0.17 (prop 4.5). [stability of small tripling uder intersections
with subgroups] Let 𝐴 ⊆ 𝐺 be finite, symmetric and containing identity. Let
𝐻 ≤ 𝐺. Then

|𝐴𝑚 ∩ 𝐻|
|𝐴2 ∩ 𝐻|

≤ |𝐴𝑚+1|
|𝐴|

.

In particular by prop 2.7 if |𝐴3| ≤ 𝐾|𝐴| then

|(𝐴𝑚 ∩ 𝐻)3| ≤ 𝐾9𝑚|𝐴𝑚 ∩ 𝐻|

for all 𝑚 ≥ 2.

Remark. We’ll see in example sheet 1 that even if 𝐴 has small tripling, 𝐴 ∩ 𝐻
need not. So 𝑚 ≥ 2 really is important for this last condition.

11
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Proof. By lemma 4.4

|𝐴𝑚 ∩ 𝐻| ≤ |𝐴𝑚+1|
|𝜋(𝐴)|

where 𝜋 ∶ 𝐺 → 𝐺/𝐻 is the quotient map as before. By lemma 4.3,

|𝐴2 ∩ 𝐻| ≥ |𝐴|
|𝜋(𝐴)

.

Just combine these two inequalities.

Proposition 0.18 (prop 4.6). [stability of approximate groups under inter-
sections with subgroups] Let 𝐻 ≤ 𝐺. Let 𝐴 ⊆ 𝐺 be a 𝐾-approximate group.
Then 𝐴𝑚 ∩ 𝐻 is covered by ≤ 𝐾𝑚−1 left translates of 𝐴2 ∩ 𝐻. In particlar
𝐴𝑚 ∩ 𝐻 is a 𝐾2𝑚−1-approximate subgroup (since 𝐴2 ∩ 𝐻 ≤ 𝐴𝑚 ∩ 𝐻 and
(𝐴𝑚 ∩ 𝐻)2 ≤ 𝐴2𝑚 ∩ 𝐻).

Proof. By definition, there exists 𝑋 ∈ 𝐺 with |𝑋| = 𝐾𝑚−1 such that 𝐴𝑚 ⊆ 𝑋𝐴.
In particular

𝐴𝑚 ∩ 𝐻 ⊆ ⋃
𝑥∈𝑋

(𝑥𝐴 ∩ 𝐻).

For each 𝑥𝐴 ∩ 𝐻 that is not empty, exists ℎ = 𝑥𝑎 ∈ 𝐻 for some 𝑎 ∈ 𝐴. This
means that

𝑥𝐴 ∩ 𝐻 ⊆ ℎ(𝑎−1𝐴 ∩ 𝐻) ⊆ ℎ(𝐴2 ∩ 𝐻).

Hence each set 𝑥𝐴 ∩ 𝐻 in this union is contained in a single left translate of
𝐴2 ∩ 𝐻.

In III Introduction to Discrete Analysis, you saw that when studying small
doubling/tripling, there is a more general notion of homomorphism that comes
into play: the Freiman homomorphisms. To motivate this, consider two sets

𝐴 = {−𝑛, … , 𝑛} ⊆ Z/𝑝Z
𝐵 = {−𝑛, … , 𝑛} ⊆ Z/𝑞Z

for 𝑝, 𝑞 two large primes, ≥ 10𝑛 say. These two sets are intuitively “isomorphic”
from the perspective of 𝐴 + 𝐴 and 𝐵 + 𝐵, but there is no way of encoding this
with a group homomorphism Z/𝑝Z → Z/𝑞Z.

Definition (Freiman homomorphism). Let 𝑚 ∈ N. Let 𝐴, 𝐵 be subsets of
groups. Then a map 𝜑 ∶ 𝐴 → 𝐵 is a Freiman 𝑚-homomorphism if for all
𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑚 ∈ 𝐴 with 𝑥1 ⋯ 𝑥𝑚 = 𝑦1 ⋯ 𝑦𝑚 we have

𝜑(𝑥1) ⋯ 𝜑(𝑥𝑚) = 𝜑(𝑦1) ⋯ 𝜑(𝑦𝑚).

If 1 ∈ 𝐴 and 𝜑(1) = 1 then we say that 𝜑 is centred. If 𝜑 is injective
and its inverse 𝜑(𝐴) → 𝐴 is also a Freiman 𝑚-homomorphism we say 𝜑 is a
Freiman 𝑚-isomorphism.

Remark.

1. Every map is trivially a 1-homomorphism so we only care about the case
𝑚 ≥ 2.

12
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2. This definition gets stronger as 𝑚 increases: assume 𝐴 ≠ ∅. Picking 𝑎 ∈ 𝐴.
If 𝑥1 ⋯ 𝑥𝑘 = 𝑦1 ⋯ 𝑦𝑘 for 𝑘 ≤ 𝑚 then 𝑥1 ⋯ 𝑥𝑘𝑎 ⋯ 𝑎 = 𝑦1 ⋯ 𝑦𝑘𝑎 ⋯ 𝑎.

3. If 𝜑 is centred and 𝑎, 𝑎−1 ∈ 𝐴 then exercise to check that 𝜑(𝑎−1) = 𝜑(𝑎)−1

(for 𝑚 ≥ 2).

From now on when we say 𝜑 is a Freiman homomorphism we mean it is a
2-homomorphism.

Lemma 0.19 (lemma 4.7). Suppose 𝜑 ∶ 𝐴 → Γ is a Freiman 𝑚-homomorphism.
Then

|𝜑(𝐴)𝑚| ≤ |𝐴𝑚|.

In particular if 𝜑 is injective then

|𝜑(𝐴)𝑚|
|𝜑(𝐴)|

≤ |𝐴𝑚|
|𝐴|

,

and if 𝜑 is a Freiman 𝑚-isomorphism then this is an equality.

Proof. Exercise.

Lemma 0.20 (lemma 4.8). Let 𝐴 ⊆ 𝐺 be a 𝐾-approximate group. Suppose
𝜑 ∶ 𝐴3 → Γ is a centred Freiman 2-homomorphism. Then 𝜑(𝐴) is also a
𝐾-homomorphism.

Proof. By definition there exists 𝑋 ⊆ 𝐺, |𝑋| ≤ 𝐾 such that 𝐴2 ⊆ 𝑋𝐴. So given
𝑎1, 𝑎2 ∈ 𝐴, there exists 𝑥 ∈ 𝑋, 𝑎3 ∈ 𝐴 such that 𝑎1𝑎2 = 𝑥𝑎3. In particular,
𝑥 ∈ 𝐴3 so 𝜑(𝑥) is defined and

𝜑(𝑎1)𝜑(𝑎2) = 𝜑(𝑥)𝜑(𝑎3).

Hence 𝜑(𝐴)2 ⊆ 𝜑(𝑋 ∩ 𝐴3)𝜑(𝐴). Also as 𝜑 is centred, 𝜑(𝐴) is symmetric and
contains 1.

13
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Lecture 5: Coset progressions, Bohr sets and the
Freiman-Green-Ruzsa theorem
We’ll introduce some non-trivial examples of sets of small doubling in abelian
groups.

Definition (coset progression). Let 𝐺 be an abelian group, 𝑥1, … , 𝑥𝑟 ∈
𝐺, 𝐿1, … , 𝐿𝑟 ∈ N. Then the set

𝑃(𝑥; 𝐿) = 𝑃(𝑥1, … , 𝑥𝑟; 𝐿1, … , 𝐿𝑟) = {ℓ1𝑥1 + ⋯ + ℓ𝑟𝑥𝑟 ∶ |ℓ1| ≤ 𝐿𝑖 for all𝑖}

is called a progression of rank 𝑟. If in addition 𝐻 ≤ 𝐺 is finite then 𝐻+𝑃(𝑥; 𝐿)
is called a coset progression of rank 𝑟.

It is useful to think of 𝑃(𝑥; 𝐿) as a homomorphic image of a box in Z𝑟. For
example if 𝐺 = Z and 𝑟 = 2 (picture)

It’s easy to see that such a box 𝐵 in Z𝑟 is a 2𝑟-approximate group. For
example in 𝑟 = 2 (picture)

Hence 𝑃(𝑥; 𝐿) is also a 2𝑟-approximate group, as is 𝐻 + 𝑃(𝑟; 𝐿).
Remarkably, these are essentially the only examples:

Theorem 0.21 (Freiman (𝐺 = Z), Green-Ruzsa (arbitrary abelian 𝐺)).
Suppose 𝐴 ⊆ 𝐺 abelian satisfies |𝐴 + 𝐴| ≤ 𝐾|𝐴|. Then there exists a coset
progression 𝐻 + 𝑃 of rank ≤ 𝑂(𝐾𝑂(1)) such that

𝐴 ⊆ 𝐻 + 𝑃 ⊆ 𝑂(𝐾𝑂(1))(𝐴 ∪ {0} ∪ (−𝐴).

In particular theorem 2.5 (Plünnecke-Ruzsa inequality) implies that

|𝐻 + 𝑃 | ≤ exp(𝑂(𝐾𝑂(1)))|𝐴|

so 𝐴 is a large proportion of 𝐻 + 𝑃.

A substantial part of this result was proved in III Introduction to Discrete
Analysis, but with a slightly less explicity version of coset progression.

Definition (Bohr set). Let 𝐺 be a finite abelian group. Let

Γ = {𝛾1, … , 𝛾𝑟} ⊆ ̂𝐺 = Hom(𝐺,R/Z)

and let 𝜌 ∈ [0, 1
2 ]. Then the set

𝐵(Γ, 𝜌) = {𝑔 ∈ 𝐺 ∶ ‖𝛾𝑖(𝑔)‖R/Z ≤ 𝜌 for all 𝑖}

is called a Bohr set of rank 𝑟. Here, given 𝑥 ∈ R/Z with representative
̂𝑥 ∈ (− 1

2 , 1
2 ], we write

‖𝑥‖R/Z = | ̂𝑥|.

We’ll see in example sheet 1 that 𝐵(Γ, 𝜌) is a 4𝑟-approximate group. Whereas
progression were homomorphic images of boxes, 𝐵(Γ, 𝜌) is the pullback of [−𝜌, 𝜌]𝑟
under (𝛾1, … , 𝛾𝑟) ∈ ̂𝐺𝑟.

14
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It turns out that the notions of coset progression and Bohr set are essentially
equivalent. In example sheet 2 we’ll see that every coset progression is a Freiman
image of a Bohr set of the same rank. Moreover, every Freiman image of a Bohr
set is a large proportion of some coset progression. We’ll see a special case of
that shortly.

Proposition 0.22 (from III Introduction to Discrete Analysis). Suppose
𝐴 ⊆ 𝐺 abelian with |𝐴 + 𝐴| ≤ 𝐾|𝐴|. Then there exists 𝑏 ⊆ 2𝐴 − 2𝐴, a
finite abelian group 𝑍 with |𝑍| ≥ |𝐴|, a set Γ ⊆ ̂𝑍 with |Γ| ≤ 𝑂(𝐾𝑂(1)), some
𝜌 ≥ 1

𝑂(𝐾𝑂(1)) and a centred Freiman 2-isomorphism 𝜑 ∶ 𝐵(Γ, 𝜌) → 𝐵.

This is saying if 𝐴 has small doubling then 2𝐴 − 2𝐴 contains a large set
isomorphic to a Bohr set of bounded rank.

In III Introduction to Discrete Analysis we see this in the special case where
𝐺 is torsion-free. The general case is harder, but nonetheless conceptually very
similar so we’ll assume this result from now on.

To pass from prop 5.2 to theorem 5.1, we use the following results:

Proposition 0.23 (prop 5.3). Suppose 𝑋 is a finite abelian group, Γ ⊆ ̂𝑍
is of size 𝑟, 𝜌 < 1

10 . Then there exists a coset progression 𝐻 + 𝑃 ⊆ 𝐵(Γ, 𝜌)
with rank 𝑟 and |𝐻 + 𝑃 | ≥ (𝜌/𝑟)𝑟|𝑍|.

Lemma 0.24 (lemma 5.4). Suppose 𝐻 + 𝑃 is a coset progression of rank 𝑟
and 𝜑 ∶ 𝐻 +𝑃 → 𝐺, where 𝐺 abelian, is a centred Freiman 2-homomorphism.
Then 𝜑(𝐻 + 𝑃) is also a coset progression of rank 𝑟.

We’ll prove proposition 5.3 in the next couple of lectures.

Proof of lemma 5.4. Exercise: if 𝐻 is a group and 𝜑 ∶ 𝐻 → 𝐺 is a centred
Freiman 2-homomorphism then 𝜑 is also a group homomorphism.

In particular in this lemma 𝜑(𝐻) is a finite subgropu. Therefore suffices to
show that

𝜑(𝐻 + 𝑃(𝑥; 𝐿)) = 𝜑(𝐻) + 𝑃(𝜑(𝑥1), … , 𝜑(𝑥𝑟); 𝐿1, … , 𝐿𝑟).

In fact, we’ll show that for all ℎ ∈ 𝐻, |ℓ𝑖| ≤ 𝐿𝑖 we have

𝜑(ℎ + ℓ1𝑥1 + ⋯ + ℓ𝑟𝑥𝑟) = 𝜑(ℎ) + ℓ𝜑(𝑥1) + ⋯ + ℓ𝑟𝜑(𝑥𝑟). (5.1)

Since 𝜑 is centred, 𝜑(−𝑥𝑖) = −𝜑(𝑥𝑖) so we may assume that ℓ𝑖 ≥ 0 for all 𝑖.
Also 5.1 is trivial if ℓ𝑖 = 0 for all 𝑖. So we may assume there there exists ℓ𝑗 > 0.
Then

𝜑(ℎ + ℓ1𝑥1 + ⋯ + ℓ𝑟𝑥𝑟) = 𝜑(ℎ + ℓ1𝑥1 + ⋯ + ℓ𝑟𝑥𝑟) + 𝜑(0)
= 𝜑(ℎ + ℓ1𝑥1 + ⋯ + (ℓ𝑗 − 1)𝑥𝑗 + ⋯ + ℓ𝑟𝑥𝑟) + 𝜑(𝑥𝑗)

so lemma follows by induction on ∑𝑖 ℓ𝑖.
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Proof of theorem 5.1. By proposition 5.2 and 5.3 and lemma 5.4, there exists
𝐻 + 𝑃 coset progression of rank ≤ 𝑂(𝐾𝑂(1)) such that

𝐻 + 𝑃 ⊆ 2𝐴 − 2𝐴
|𝐻 + 𝑃| ≥ exp(−𝑂(𝐾𝑂(1)))|𝐴|

We’ll now apply a version of Ruzsa’s covering lemma due to Chang. Define
recursively sets 𝑆1, 𝑆2, ⋯ ⊆ 𝐴 such that 𝑆𝑖 the a maximal subset of size ≤ 2𝐾
such that the translates 𝑥 + 𝑆𝑖−1 + ⋯ + 𝑆1 + 𝐻 + 𝑃 are all disjoint. If ever
|𝑆𝑖| < 2𝐾 we stop. Now suppose we get as far as 𝑆1, … , 𝑆𝑡. Then

𝑆𝑡 + ⋯ + 𝑆1 + 𝐻 + 𝑃 ⊆ 2𝐴 − 2𝐴 + 𝑡𝐴

so by proposition 2.5

|𝑆𝑘 + ⋯ + 𝑆1 + 𝐻 + 𝑃| ≤ 𝐾4+𝑡|𝐴|.

On the other hand, disjointness of the translates in the definition of 𝑆𝑖 means
that

|𝑆𝑘 + ⋯ + 𝑆1 + 𝐻 + 𝑃| ≥ (2𝐾)𝑡−1 exp(−𝑂(𝐾𝑂(1)))|𝐴|.

Putting these together, we have

2𝑡−1 ≤ 𝐾5 exp(𝑂(𝐾𝑂(1))),

hence 𝑡 ≤ 𝑂(𝐾𝑂(1)). In particular this process terminates, at 𝑆𝑡, say.
But also, since 𝑆𝑡 is therefore maximal among all subsets of 𝐴 such that

𝑥 + 𝑆𝑡−1 + ⋯ + 𝑆1 + 𝐻 + 𝑃 are disjoint for 𝑥 ∈ 𝑆𝑡, Ruzsa’s covering lemma from
lecture 2 implies that

𝐴 ⊆ 𝐻 + 2𝑃 + 𝑆1 − 𝑆1 + ⋯ + 𝑆𝑡−1 − 𝑆𝑡−1 + 𝑆𝑡.

Enumerating ⋃𝑖 𝑆𝑖 as 𝑠1, … , 𝑠𝑑, we have 𝑑 ≤ 𝑂(𝐾𝑂(1)) and

𝐴 ⊆ 𝐻 + 2𝑃 + 𝑃(𝑠1, … , 𝑠𝑑; 1, … , 1) ⊆ 𝑂(𝐾𝑂(1))(𝐴 ∪ {0} ∪ (−𝐴))

as claimed.

Exercise. See what bounds you can get if you apply Ruzsa’s covering lemma
directly, instead of Chang’s argument.
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Lecture 6: Geometry of numbers

Proposition 0.25 (prop 5.3). Let 𝐺 be a finite abelian group. Suppose
Γ ⊆ ̂𝐺 with |Γ| = 𝑟 and let 𝜌 < 1

2 . Then there exists coset progression
𝐻 + 𝑃 ⊆ 𝐵(Γ, 𝜌) of rank 𝑟 with

|𝐻 + 𝑃 | ≥ (𝜌/𝑟)𝑟|𝐺|.

To prove this, we’ll use a field called the geometry of numbers, which is
concerned with lattices in R𝑑. For us, a lattice Λ ⊆ R𝑑 will simply be the
additive subgroup (not the subspace) generated by some basis 𝑥1, … , 𝑥𝑑 for R𝑑,
so

Λ = {∑ ℓ𝑖𝑥𝑖 ∶ ℓ𝑖 ∈ Z}.

If Γ ⊆ Λ is another lattice then we say it is a sublattice, write Γ ≤ Λ. It is an
exercise (example sheet 2) to check that if Γ ≤ Λ with basis 𝑦1, … , 𝑦𝑑, say, then

det(𝑦1, … , 𝑦𝑑)
det(𝑥1, … , 𝑥𝑑)

= [Λ ∶ Γ].

In particular if 𝑥1, … , 𝑥𝑑 and 𝑥′
1, … , 𝑥′

𝑑 are bases for the same lattice Λ then

det(𝑥1, … , 𝑥𝑑) = det(𝑥′
1, … , 𝑥′

𝑑).

We define this to be det(Λ).
The relevance of lattices to prop 5.3 is the following:

Lemma 0.26 (lemma 6.1). Let 𝐺, Γ be as in prop 5.3 and set 𝛾 ∶ 𝐺 → R𝑑/Z𝑑

via by enumerating Γ as {𝛾1, … , 𝛾𝑑} and set 𝛾 = (𝛾1, … , 𝛾𝑑). Then

Λ = 𝛾(𝐺) + Z𝑑

is a lattice with determinant | ker 𝛾|/|𝐺|.

Proof. Λ is finitely generated as 𝐺 is finite, and torsion-free as in R𝑑, so isomor-
phic to Z𝑘 for some 𝑘. Also Λ has Z𝑑 as a finite-index subgroup. So 𝑘 = 𝑑 and
spanR(Λ) = R𝑑. So we may take a generating set for Λ of size 𝑑, which is then a
basis for R𝑑. Determinant follows from 6.1 because detZ𝑑 = 1.

We’ll investigate the interaction of [−𝜌, 𝜌]𝑑 with Λ. To do this we introduce
another definition.

Definition (convexity). A set 𝐴 ⊆ R𝑑 is convex if for all 𝑥 ∈ R𝑑 \ ̊𝐴, there
exists a hyperplane ℎ𝑥 with 𝑥 ∈ ℎ𝑥 and ℎ𝑥 ∩ ̊𝐴 = ∅.

Definition (convex body). A set 𝐵 ⊆ R𝑑 is a convex body if it is bounded
and convex and �̊� ≠ ∅ and ̊𝐴 is contained in one of the two half spaces into
which ℎ𝑥 divides R𝑑. It is symmetric if for all 𝑥 ∈ 𝐵, −𝑥 ∈ 𝐵.
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Given a symmetric convex body 𝐵 and a lattice Λ, define the successive
minima 𝜆1 ≤ … 𝜆𝑑 of 𝐵 with respect to Λ via

𝜆𝑖 = inf{𝜆 > 0 ∶ dim spanR(𝜆 ⋅ 𝐵 ∩ Λ) ≥ 𝑖}.

We may then inductively define linear independent vectors 𝑣1, … , 𝑣𝑑 ∈ Λ such
that 𝑣1, … , 𝑣𝑖 ∈ 𝜆𝑖𝐵. Will call such a set a directional basis for Λ with respect
to 𝐵. Note that it is not unique, and not necessarily a basis for Λ in the earlier
sense. See example sheet 2.

Theorem 0.27 (theorem 6.2). [Minkowski’s second thereom] Suppose 𝐵 is
a symmetric convex body, Λ a lattice in R𝑑 and 𝜆𝑑 are successive minima.
Then

𝜆1 ⋯ 𝜆𝑑 vol(𝐵) ≤ 2𝑑 det(Λ).

Lemma 0.28 (lemma 6.3). [Blichfeldt] Suppose 𝐴 ⊆ R𝑑 is a measurable set,
Λ a lattice and for all 𝑎, 𝑏 ∈ 𝐴 distinct we have 𝑎 − 𝑏 ∉ Λ. Then

vol(𝐴) ≤ detΛ.

Proof. Fix a basis 𝑥1, … , 𝑥𝑑 for Λ and define the fundamental parallelopiped 𝑃
with respect to 𝑥1, … , 𝑥𝑑 as

𝑃 = {∑ ℓ𝑖𝑥𝑖 ∶ ℓ𝑖 ∈ [0, 1)}.

Since 𝑥1, … , 𝑥𝑑 is a basis for R𝑑, for all 𝑣 ∈ R𝑑 there exists unique 𝑥𝑣 ∈ Λ, 𝑝𝑣 ∈ 𝑃
such that 𝑣 = 𝑥𝑣 + 𝑝𝑣. Define a map

𝜑 ∶ R𝑑 → 𝑃
𝑣 ↦ 𝑝𝑣

This cuts 𝐴 into countably many measurable pieces and translates these pieces
to 𝑃. It is injective by hypothesis, hence volume preserving, and so

vol(𝐴) = vol(𝜑(𝐴)) ≤ vol(𝑃 ) = detΛ.

Proof of theorem 6.2. Let 𝑣1, … , 𝑣𝑑 be a directional basis for Λ with respect to
𝐵. Set 𝑉𝑖 = span(𝑣1, … , 𝑣𝑖) (with 𝑉0 = 0) and set

Λ𝑖 = Λ ∩ (𝑉𝑖 \ 𝑉𝑖−𝑖).

Then Λ = ⋃𝑑
𝑖=0 Λ𝑖 as a disjoint union.

Claim 1: we have
𝜆𝑑�̊� ∩ (𝜆𝑑�̊� + 𝛼𝑥) = ∅

whenever 𝑥 ∈ Λ𝑗 and 𝛼 ≥ 2𝜆𝑑
𝜆𝑗

.
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Proof. Given 𝑥 ∈ Λ𝑗, by definition 𝑥 ≠ 𝜆𝑗�̊�, so by convexity there exists
hyperplane ℎ𝑥 such that 𝑥 ∈ ℎ𝑥 and ℎ𝑥 ∩ 𝜆𝑗�̊� = ∅. By symmetry, we may take
ℎ−𝑥 = −ℎ𝑥. Note, however, that

−ℎ𝑥 = ℎ𝑥 − 2𝑥.

That means that 𝜆𝑗�̊� is contained in the slice of space 𝑆𝑥 between the two
parallel hyperplanes ℎ𝑥 and ℎ𝑥 − 2𝑥. Clearly

𝑆𝑥 ∩ (𝑆𝑥 + 𝛼𝑥) = ∅

for all 𝛼 ≥ 2, so in particular

𝜆𝑗�̊� ∩ (𝜆𝑗�̊� + 𝛼𝑥) = ∅

for all such 𝛼 as well. Scaling by 𝜆𝑑/𝜆, we see that

𝜆𝑑�̊� ∩ (𝜆𝑑�̊� + 𝛼𝑥) = ∅

whenever 𝛼 ≥ 2𝜆𝑑
𝜆𝑗

.

Claim 2: there exists sets

𝐵1 ⊆ 𝐵2 ⊆ ⋯ ⊆ 𝐵𝑑 = 𝜆𝑑�̊�

such that

1. vol(𝐵𝑖) = ( 𝜆𝑖
𝜆𝑖+1

)
𝑖
vol(𝐵𝑖+1) for all 𝑖.

2. We have 𝐵𝑖 ∩ (𝐵𝑖 + 𝛼𝑥) = ∅ whenever 𝑥 ∈ Λ𝑗 and 𝛼 ≥ 2max{ 𝜆𝑖
𝜆𝑗

, 1}.

Proof. Define operations 𝜎1, … 𝜎𝑑−1 on suitable subsets of R𝑑 as follows. Given
𝐿 bounded and open, define 𝜎𝑖 separately for each affine subspace 𝑧 + 𝑉𝑖 with
𝑧 ∈ 𝐿1. For each such affine subspace, fix a particular 𝑧 ∈ 𝐿 and define

𝜑(𝑧 + 𝑣) = 𝑧 + 𝜆𝑖
𝜆𝑖+1

𝑣

for all 𝑣 ∈ 𝑉𝑖. (on each slice, 𝜎𝑖 scales 𝐿 b a factor of 𝜆𝑖
𝜆𝑖+1

cetred at 𝑧 parallel to
𝑉𝑖) Note the following properties:

1. vol(𝜎𝑖(𝐿)) = (𝜆𝑖/𝜆𝑖+1)𝑖 vol(𝐿) (by Fubini)

2. If 𝐿 ∩ (𝑧 + 𝑉𝑖) is open and convex for all 𝑧 then 𝜎𝑖(𝐿) ⊆ 𝐿 because 𝑧 ∈ 𝐿.

3. If 𝐿 ∩ (𝑧 + 𝑉𝑖) is open and convex then so is 𝜎𝑖(𝐿) ∩ (𝑧 + 𝑉𝑖), and indeed
so is

𝜎𝑖(𝐿) ∩ (𝑧 + 𝑉𝑗, 𝑗 < 𝑖).
1Correction by lecturer: assume 𝑧 is the centre of mass of 𝐿 ∩ (𝑧 + 𝑉𝑖), so that 𝜎’s depend

continuously on 𝑧. Also to be on safe side, in statement of Minkowski, assume that 𝐵 is a
polytope.
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Set 𝐵𝑑 = 𝜆𝑑�̊� and 𝐵𝑖𝜎𝑖(𝐵𝑖+1). Conclusion 1 is immediate from property 1.
Conclusion 2 follows from claim 1 when 𝑛 = 𝑑. For 𝑖 < 𝑑, it follows by induction
and repreated application of 2 and 3. Indeed, 2 for 𝑖 follows from 2 for 𝑖 + 1
because 𝜎𝑖 scales by

𝜆𝑖
𝜆𝑖+1

in direction 𝑥. For 𝑖 < 𝑗, follows from 𝐵𝑖 ⊆ 𝐵𝑖+1.

To prove the theorem, note that

vol(𝐵1) = 𝜆1 ⋯ 𝜆𝑑 vol(𝐵)

and by 2, 𝑎 − 𝑏 ∉ 2 ⋅ Λ for all 𝑎, 𝑏 ∈ 𝐵1 so by Blichfeldt,

vol(𝐵1) ≤ 2𝑑 detΛ.

Proof of prop 5.3. Write 𝛾 = (𝛾1, … , 𝛾𝑟) ∈ ̂𝐺𝑟. Define 𝛾(𝐻) + Z𝑟, which is a
lattice of determinant | ker 𝛾|/|𝐺| by lemma 6.1. Let 𝜆1, … , 𝜆𝑟 be the successive
minima of [−1, 1]𝑟 with respect to Λ, and 𝑣1, … , 𝑣𝑟 a directional basis. Set
𝐿𝑖 = ⌊ 𝜌

𝑟𝜆𝑖
⌋ for each 𝑖. Then

𝑃(𝑣1, … , 𝑣𝑟; 𝐿1, … , 𝐿𝑟) ⊆ [−𝜌, 𝜌]𝑟.

For each 𝑖, pick 𝑥𝑖 ∈ 𝐺 such that 𝛾(𝑥𝑖) = 𝑣𝑖 and set 𝐻 = ker 𝛾. Write
𝑃 = 𝑃(𝑥1, … , 𝑥𝑟; 𝐿1, … , 𝐿𝑟). Then 𝐻 + 𝑃 ⊆ 𝐵(Γ, 𝜌).

Claim that if ℓ1, … , ℓ𝑟 and ℓ′
1, … , ℓ′

𝑟 satisfy |ℓ𝑖|, |ℓ′
𝑖| ≤ 𝐿𝑖, and

𝜌1𝑥1 + ⋯ + ℓ𝑟𝑥𝑟 ∈ ℓ′
1𝑥1 + ⋯ + ℓ′

𝑟𝑥𝑟 + 𝐻

then in fact ℓ𝑖 = ℓ′
𝑖 for all 𝑖. Indeed, the equation implies that

(ℓ1 − ℓ′
1)𝑣1 + ⋯ + (ℓ𝑟 − ℓ′

𝑟)𝑣ℓ ∈ Z𝑟 ∩ [−2𝜌, 2𝜌]𝑟

but since 𝜌 < 1
2 this last intersection is just {0}.

Then

|𝐻 + 𝑃 | ≥ |𝐻|(𝐿1 + 1) ⋯ (𝐿𝑟 + 1)

≥ |𝐻| (𝜌
𝑟

)
𝑟 1

𝜆1 ⋯ 𝜆𝑟

≥ |𝐺| (𝜌
𝑟

)
𝑟

by Minkowski’s 2nd theorem.
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Progressions in the Heisenberg group
Define Heisenberg group

𝐻(Z) = ⎛⎜
⎝

1 Z Z
0 1 Z
0 0 1

⎞⎟
⎠

=
⎧{
⎨{⎩

⎛⎜
⎝

1 𝑛2 𝑛3
0 1 𝑛1
0 0 1

⎞⎟
⎠

, 𝑛𝑖 ∈ Z
⎫}
⎬}⎭

Set

𝑢1 = ⎛⎜
⎝

1 0 0
0 1 1
0 0 1

⎞⎟
⎠

, 𝑢2 = ⎛⎜
⎝

1 1 0
0 1 0
0 0 1

⎞⎟
⎠

, 𝑢3 = ⎛⎜
⎝

1 0 1
0 1 0
0 0 1

⎞⎟
⎠

and note that any element of 𝐻(Z) can be expressed in the form

⎛⎜
⎝

1 𝑛2 𝑛3
0 1 𝑛1
0 0 1

⎞⎟
⎠

= 𝑢𝑛1
1 𝑢𝑛2

2 𝑢𝑛3
3 ,

and we have the following formula for multiplying elements in this form:

(𝑢𝑛1
1 𝑢𝑛2

2 𝑢𝑛3
3 )(𝑢𝑛′

1
1 𝑢𝑛′

2
2 𝑢𝑛′

3
3 ) = 𝑢𝑛1+𝑛′

2
1 𝑢𝑛2+𝑛′

2
2 𝑢𝑛3+𝑛′

3+𝑛′
1𝑛2

3 . (7.1)

This is easy to verify by multiplying matrices, but there is a more abstract reason
for it. To see this, given 𝑥, 𝑦 ∈ 𝐺, define the commutator [𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦. In
light of the identity 𝑥𝑦 = 𝑦𝑥[𝑥, 𝑦], we can view the commutator as being the
“error” or “cost” incurred when interchaning two elements. For example the fact
that commutators are trivial in abelian groups can be viewed as capturing the
notion that elements can be interchanged freely. The 𝑛′

1𝑛2 term arises because
we swap the order of 𝑛′

1𝑛2 pairs of elements 𝑢1 and 𝑢2.
Now let’s see one possible generalisation of progression to non-abelian groups.

Definition (ordered progression). Given 𝑥1, … , 𝑥𝑟 ∈ 𝐺, 𝐿1, … , 𝐿𝑟 ≥ 0. We
define the ordered progression of rank 𝑟

𝑃ord(𝑥; 𝐿) = 𝑃ord(𝑥1, … , 𝑥𝑟; 𝐿1, … , 𝐿𝑟) = {𝑥ℓ1
1 ⋯ 𝑥ℓ𝑟𝑟 ∶ |ℓ𝑖| ≤ 𝐿1}

Now consider 𝑃 = 𝑃ord(𝑢1, 𝑢2; 𝐿1, 𝐿2) for 𝑢1, 𝑢2 ∈ 𝐻(Z) as before and
𝐿1, 𝐿2 ≥ 0. We have

(𝑢ℓ1
1 𝑢ℓ2

2 )(𝑢ℓ′
1

1 𝑢ℓ′
2

2 ) = 𝑢ℓ1+ℓ′
1

1 𝑢ℓ2+ℓ′
2

2 𝑢ℓ′
1ℓ2

3

and it is then easy to check that |𝑃 2|/|𝑃 | → ∞ as 𝐿1, 𝐿2 → ∞, essentially
because by varying ℓ1, ℓ′

1, ℓ2, ℓ′
2 within their ranges one can change ℓ′

1ℓ2 without
changing ℓ1 + ℓ′

1 or ℓ2 + ℓ′
2. This can be thought of as an extra freedom in 𝑃 2

compared to 𝑃.
Coming back to commutators and recalling that 𝑢3 = [𝑢2, 𝑢1], we see that

this corresponds to the freedom to interchange the order of some of the 𝑢1, 𝑢2 in
𝑃 2, as seen in the LHS of

(𝑢ℓ1
1 𝑢ℓ2

2 )(𝑢ℓ′
1

1 𝑢ℓ′
2

2 ) = 𝑢ℓ1+ℓ′
1

1 𝑢ℓ2+ℓ′
2

2 𝑢ℓ′
1ℓ2

3

This is a freedom that the definition of ordered progression explicitly denies us.
It turns out that if we introduce this freedom 𝑃 as above then this does force

𝑃 to have small tripling.
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Definition (nonabelian progression). Given 𝑥1, … , 𝑥𝑟 ∈ 𝐺, 𝐿1, … , 𝐿𝑟 ≥ 0,
the nonabelian progression 𝑃(𝑥; 𝐿) of order 𝑟 is defined to consist of those
elements of 𝐺 expressible as products of 𝑥±1

1 , … , 𝑥±1
𝑟 wih each 𝑥1, 𝑥−1

𝑖 appear
at most 𝐿𝑖 times between them.

Note that for abelian groups all three notions coincide.
It turns out that 𝑃(𝑢1, 𝑢′

2; 𝐿1, 𝐿2) does have small tripling (see example sheet
2). A note of caution: nonabelian progression don’t always have small tripling.
Consider 𝑃(𝑥1, 𝑥2; 𝐿1, 𝐿2) for 𝑥1, 𝑥2 generators of a nonabelian free gropu. In
the case of 𝐻(Z), the formula 7.1 is simplified by the fact that 𝑢3 = [𝑢2, 𝑢1] is
central in 𝐻(Z). If this were not the case, we’d end up with elements of the
form [[𝑢2, 𝑢1], 𝑢1], for example. This is in fact a specific example of a property
called nilpotence.

To define nilpotence, first define a normal series for a group 𝐺 to be a
sequence

𝐺 = 𝐺1 > 𝐺2 > ⋯

of normal subgroups 𝐺𝑖 ⊴ 𝐺, and a central series to be such a normal series in
which each 𝐺1/𝐺𝑖+1 is central in 𝐺/𝐺𝑖+1.

Definition (nilpotent group). A group 𝐺 is nilpotent if there exists a finite
central series

𝐺 = 𝐺1 > … 𝐺𝑠+1 = {1}.

The smallest 𝑠 for which such a series exists is called the step or nilpotency
class of 𝐺

Exercise. 𝐻(Z) is 2-step nilpotent.
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Lecture 8: Nilpotent groups
Last time, we said 𝐺 is nilpotent if there exists a finite central series

𝐺 = 𝐻1 > 𝐻2 > … 𝐻𝑠+1 = {1}.

and defined the smallest 𝑠 for which such a series existed the step of 𝐺. Today
we’ll look in more details at nilpotent groups.

The reasons we focus on this setting are two fold: there is a clean generalisation
of Freimann-Green-Ruzsa to nilopotnent groups, and a deep theorem of Breuillard,
Green and Tao essentially reduces the general case to the nilpotent case.

Given 𝑥1, … , 𝑥𝑘 ∈ 𝐺, define the simple commutator [𝑥1, … , 𝑥𝑘] = [𝑥1, … , 𝑥𝑘]𝑘
recursively as follows:

[𝑥1] = 𝑥1

[𝑥1, … , 𝑥𝑘] = [[𝑥1, … , 𝑥𝑘], 𝑥𝑘]

(Recall that [𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦) Given subgroups 𝐻, 𝑁 ≤ 𝐺, define

[𝐻, 𝑁] = ⟨[ℎ, 𝑛] ∶ ℎ ∈ 𝐻, 𝑛 ∈ 𝑁⟩

and then given 𝐻1, … , 𝐻𝑘 ≤ 𝐺, set

[𝐻1] = 𝐻1

[𝐻1, … , 𝐻𝑘] = [[𝐻1, … , 𝐻𝑘−1], 𝐻𝑘]

Note that
[𝐻, 𝑁] = [𝑁, 𝐻] (8.1)

since [ℎ, 𝑛] = [𝑛, ℎ]−1.

Lemma 0.29 (lemma 8.1). Let 𝐻1, … , 𝐻𝑘, 𝑁 ⊴ 𝐺. Let 𝑆𝑖 be a generating
set for 𝐻𝑖 for each 𝑖. Suppose [𝑠1, … , 𝑠𝑘] ∈ 𝑁 whevever 𝑠𝑖 ∈ 𝑆𝑖 for all 𝑖.
Then

[𝐻1, … , 𝐻𝑘] ≤ 𝑁.

Proof. Induction on 𝑘. 𝑘 = 1 is trivial so assume 𝑘 > 1. If [𝑠1, … , 𝑠𝑘] ∈ 𝑁 for all
𝑠𝑖 ∈ 𝑆𝑖 then we have [[𝑠1, … , 𝑠𝑘−1], 𝑠𝑘] ∈ 𝑁 for all 𝑠𝑖 ∈ 𝑆𝑖, hence

[𝑠1, … , 𝑠𝑘−1] ∈ 𝐶𝐺/𝑁(𝐻𝑘) = {𝑔 ∈ 𝐺 ∶ [𝑔, ℎ] ∈ 𝑁 for all ℎ ∈ 𝐻𝑘}

The centraliser of a normal subgroup is itself normal, so by induction we have
[𝐻1, … , 𝐻𝑘−1] ≤ 𝐶𝐺/𝑁(𝐻𝑘), and hence [𝐻1, … , 𝐻𝑘] ≤ 𝑁 as claimed.

Definition (lower central series). Given a group 𝐺, we define the lower
central series

𝐺 = 𝐺1 > 𝐺2 > ⋯

of 𝐺 via
𝐺𝑘 = ⟨[𝑔1, … , 𝑔𝑘] ∶ 𝑔𝑖 ∈ 𝐺⟩.
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note that 𝐺𝑘 ≥ 𝐺𝑘+1 as

[𝑔1, … , 𝑔𝑘+1] = [[𝑔1, 𝑔2], 𝑔3, … , 𝑔𝑘+1].

Also since
[𝑔1, … , 𝑔𝑘]ℎ = [𝑔ℎ

1 , … , 𝑔ℎ
𝑘 ]

each 𝐺𝑘 is normal in 𝐺, where 𝑥𝑦 = 𝑦−1𝑥𝑦 for all 𝑥, 𝑦 ∈ 𝐺. The fact that this is
a central series (i.e. 𝐺𝑘/𝐺𝑘+1 is central in 𝐺/𝐺𝑘+1 for all 𝑘) follows from the
result.

Proposition 0.30 (prop 8.2). We have 𝐺𝑘+1 = [𝐺𝑘, 𝐺] for all 𝑘. In
particular

𝐺𝑘 = [𝐺, … , 𝐺]𝑘.

Proof. First, 𝐺𝑘+1 ≤ [𝐺𝑘, 𝐺] by definition. The fact that [𝐺𝑘, 𝐺] ≤ 𝐺𝑘+1 follows
from lemma 8.1 since [𝑔1, … , 𝑔𝑘−1] generator 𝐺𝑘 and 𝐺, 𝐺𝑘, 𝐺𝑘+1 are normal.

Proposition 0.31 (prop 8.3). Let 𝐺 be a group generated by 𝑆. Then

𝐺𝑘 = ⟨[𝑠1, … , 𝑠𝑘]𝐺𝑘+1 ∶ 𝑠𝑖 ∈ 𝑆𝑖 for all 𝑖⟩.

“𝐺𝑘 is generated mod 𝐺𝑘+1, by simple commutators of generators”

Proof. Note that [𝑠1, … , 𝑠𝑘]𝑔 ∈ [𝑠1, … , 𝑠𝑘]𝐺𝑘+1 by definition of 𝐺𝑘+1, so ⟨[𝑠1, … , 𝑠𝑘]𝐺𝑘+1 ∶
𝑠𝑖 ∈ 𝑆⟩ is normal in 𝐺. Moreover [𝑠1, … , 𝑠𝑘] ∈ ⟨[𝑡1, … , 𝑡𝑘]𝐺𝑘+1 ∶ 𝑡𝑖 ∈ 𝑆⟩ whenever
𝑠𝑖 ∈ 𝐺 for all 𝑖, so lemma 8.1 implies that

[𝐺, … , 𝐺]𝑘 ⊆ ⟨[𝑠1, … , 𝑠𝑘]𝐺𝑘+1𝑠𝑖 ∈ 𝑆⟩.

Proposition 8.2 implies that [𝐺, … , 𝐺]𝑘 = 𝐺𝑘, so we have

𝐺𝑘 ⊆ ⟨[𝑠1, … , 𝑠𝑘]𝐺𝑘+1 ∶ 𝑠𝑖 ∈ 𝑆⟩.

The reverse inclusion is immediate.

Proposition 0.32 (prop 8.4). We have

[𝐺𝑖, 𝐺𝑗] ⊆ 𝐺𝑖+𝑗

for all 𝑖, 𝑗.

For this we’ll use the following commutator identity, which you can check
directly:

[𝑥, 𝑦−1, 𝑧]𝑦[𝑦, 𝑧−1, 𝑥]𝑧[𝑧, 𝑥−1, 𝑦]𝑥 = 1. (8.2)

Proof. Case 𝑗 = 1 follows from proposition 8.2, so we assume 𝑗 > 1 and, by
induction, that for all 𝑘

[𝐺𝑘, 𝐺𝑗=1] ⊆ 𝐺𝑘+𝑗−1 (8.3)

Now note that

[𝐺𝑖, 𝐺𝑗] = [𝐺𝑖, [𝐺𝑗−1, 𝐺]] = [[𝐺, 𝐺𝑗−1], 𝐺𝑖] (8.4)
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by proposition 8.2 and (8.1). We also have

[[𝐺𝑗−1, 𝐺𝑖], 𝐺] = [[𝐺𝑖, 𝐺𝑗−1], 𝐺] ⊆ [𝐺𝑖+𝑗−1, 𝐺] = 𝐺𝑖+𝑗. (8.5)

by (8.1), (8.3) and proposition 8.2, and

[[𝐺𝑖, 𝐺𝑖], 𝐺𝑗−1] = [𝐺𝑖+1, 𝐺𝑗−1] = 𝐺𝑖+𝑗

by prop 8.2 and (8.3). Given 𝑥 ∈ 𝐺, 𝑦 ∈ 𝐺𝑗 and 𝑧 ∈ 𝐺𝑖, we therefore have

[𝑥, 𝑦, 𝑧] = (([𝑦−1, 𝑧−1, 𝑥]𝑧[𝑧, 𝑥−1, 𝑦−1]𝑥)−1)𝑦

by (8.2), which is contained in 𝐺𝑖+𝑗 by (8.5) and (8.6).
The proposition follows from (8.4) and lemma 8.1.

Definition. Given a group 𝐺, the upper central series

1 = 𝑍0(𝐺) ≤ 𝑍1(𝐺) ≤ 𝑍2(𝐺) ≤ ⋯

is defined recursively setting 𝑍𝑖+1(𝐺) so that 𝑍𝑖+1(𝐺)/𝑍𝑖(𝐺) is the centre of
𝐺/𝑍𝑖(𝐺). Note that each 𝑍𝑖𝐺() is normal by induction, since the centre of
any group is normal.

Proposition 0.33 (prop 8.5). Let 𝐺 = 𝐻1 > 𝐻2 > ⋯ > 𝐻𝑟+1 = {1} be a
finite central series for 𝐺 (so 𝐺 is nilpotent). Then we have 𝐻𝑖 ⊇ 𝐺𝑖 for all
𝑖 = 1, … , 𝑟 + 1, and 𝐻𝑟+1−𝑖 ⊆ 𝑍𝑖(𝐺) for all 𝑖 = 0, … , 𝑟.

This justifies the name upper and lower central series:

Corollary 0.34. If 𝐺 is 𝑠-step nilpotnent then both the upper and lower
central series have length 𝑠 − 1.

Proof of prop 8.5. 𝐻1 ⊇ 𝐺1 by definition, so we may assume 𝑖 > 1, and then we
have

𝐻𝑖 ⊇ [𝐻𝑖−1, 𝐺] central series
⊇ [𝐺𝑖−1, 𝐺] by induction
= 𝐺𝑖 by prop 8.2

We also have 𝑍0(𝐺) > 𝐻𝑟+1 by definition so we may assume 𝑖 > 0 and, by
induction, that 𝐻𝑟+2−𝑖 ⊆ 𝑍𝑖−1(𝐺). But then

𝐺/𝑍𝑖−1(𝐺) =
𝐺/𝐻𝑟+2−𝑖

𝑍𝑖−1(𝐺)/𝐻𝑟+2−𝑖
.

Because (𝐻𝑗) is a central series, 𝐻𝑟+1−𝑖/𝐻𝑟+2−𝑖 is central in 𝐺/𝐻𝑟+2−𝑖, so its
image in 𝐺/𝑍𝑖−1(𝐺) in the above quotient is central. But the centre of 𝐺/𝑍𝑖−1(𝐺)
is 𝑍𝑖(𝐺)/𝑍𝑖−1(𝐺), so 𝐻𝑟+1−𝑖 ⊆ 𝑍𝑖(𝐺) as required.

These results say
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1. 𝐺 is nilpotent of step ≤ 𝑠 if and only if 𝐺𝑠+1 = {1} if and only if 𝑍𝑠(𝐺) = 𝐺.

2. If 𝐺 = ⟨𝑠⟩, we can verify just by checking that [𝑡, … , 𝑡𝑠+1] = 1 for all 𝑡𝑖 ∈ 𝑆.

3. If 𝑆 is nilpotent of step ≤ 5, then any commutator like

[[[𝑞1, 𝑞2], 𝑞3], [𝑞4, 𝑞5]]

with more than 5 entries is trivial.
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Lecture 9: Torsion-free nilpotent approximate groups
– an overview
Recall from lecture 7 that if 𝑥1, … , 𝑥𝑛 ∈ 𝐺 and 𝐿1, … , 𝐿𝑟 ≥ 0 then the nonabelian
progression 𝑃(𝑥; 𝐿) consists of those elements of 𝐺 expressible as products of
𝑥±1

1 , … , 𝑥±1
𝑟 in which each 𝑥𝑖 and 𝑥−1

𝑖 appear at most ℓ𝑖 times between them.

Definition (nilprogression). If ⟨𝑥1, … , 𝑥𝑟⟩ is 𝑠-step nilpotnent then 𝑃(𝑥; 𝐿)
is called a nilprogression of rank 𝑟 and step 𝑠. In this case we’ll write
𝑃nil(𝑥; 𝐿) instead of 𝑃(𝑥; 𝐿).

Proposition 0.35 (prop 9.1*). Given 𝑟, 𝑠 ∈ N, there exists 𝜆 = 𝜆𝑟,𝑠 such
that if 𝑥1, … , 𝑥𝑟 generate an 𝑠-step nilpotnent group and 𝐿2, … , 𝐿𝑟 ≥ 𝜆𝑟,𝑠
then 𝑃nil(𝑥; 𝐿) is an 𝑂𝑟,𝑠(1)-approximate group.

We won’t have time to prove this, but we’ll do a special case on example
sheet 2, where we’ll also see that it’s necessary to have 𝐿𝑖 ≥ 𝜆𝑟,𝑠.

As in the abelian setting, it turns out that these are essentially the only
examples of finite nilpotent approximate groups, apart from genunine subgroups.

Theorem 0.36 (theorem 9.2). Let 𝐺 be 𝑠-step nilpotnent, 𝐴 ⊆ 𝐺 a finite
𝐾-approximate group. Then there exists 𝐻 ⊴ ⟨𝐴⟩ and a nilprogression 𝑃nil
of rank ≤ 𝐾𝑂𝑠(1) such that

𝐴 ⊆ 𝐻𝑃nil ⊆ 𝐴𝐾𝑂𝑠(1) .

In particular
|𝐻𝑃nil| ≤ exp(𝐾𝑂𝑠(1))|𝐴|.

Remark. If 𝐾 < 2 then the theorem is trivial. For 𝐾 ≥ 2 we have 𝑂(𝐾𝑂(1)) =
𝐾𝑂(1), i.e. multiplicative constants can be absorbed into exponents. So we’re
not cheating when I write 𝐾𝑂(1) instead of 𝐾𝑂(1).

Unfortunately we won’t have time to prove this in full, but in the next few
lectures we’ll prove some special cases that contain most of the main ideas. We’ll
start with the case where 𝐺 is torsion-free, where theorem 9.2 is originally due
to Breuillard and Green (although we’ll give a different proof).

We shall start with the following weakened version:

Theorem 0.37 (theorem 9.3). Let 𝐺 be torsion-free 𝑠-step nilpotent, 𝐴 ⊆ 𝐺
a finite 𝐾-approximate group. Then there exists an ordered progression 𝑃ord
of rank ≤ 𝐾𝑂𝑠(1) such that

𝐴 ⊆ 𝑃ord ⊆ 𝐴𝐾𝑂𝑠(1) .

The basic idea is to write 𝐴 as a product of approximate groups of step < 𝑠
and then apply induction to reduce to the step-1 case, aka. the abelian case, and
apply the Frieman-Green-Ruzsa theorem (FGR).

The result we use to do this is as follows:

27



Contents

Proposition 0.38 (prop 9.4). Let 𝐺 be torsion-free 𝑠-step nilpotent, 𝐴 ⊆ 𝐺
a finite 𝐾-approximate group. Then there exists 𝑘 ≤ 𝐾𝑂(1) and 𝐾𝑂(1)-
approximate subgroups 𝐴1, … , 𝐴𝑘 ⊆ 𝐴𝑂(1) such that

𝐴 ⊆ 𝐴1 ⋯ 𝐴𝑘 ⊆ 𝐴𝐾𝑂(1) ,

and ⟨𝐴𝑖⟩ is of step < 𝑠 for all 𝑖.

Proof of thm 9.3. An easy induction gievs 𝐾𝑂𝑠(1)-approximate groups 𝐵1, … , 𝐵𝑚 ⊆
𝐴𝑂𝑠(1) with 𝑚 ≤ 𝐾𝑂𝑠(1). FGR then gives abelian progressions — in particular
ordered progression — 𝑃1, … , 𝑃𝑚, each of rank ≤ 𝐾𝑂𝑠(1), such that

𝐵𝑖 ⊆ 𝑃𝑖 ⊆ 𝐵𝐾𝑂𝑠(1)

𝑖

and hence
𝐴 ⊆ 𝑃1 ⋯ 𝑃𝑚 ⊆ 𝐴𝐾𝑂𝑠(1) .

𝑃1 ⋯ 𝑃𝑚 is an order progression of rank ≤ 𝑚𝐾𝑂𝑠(1) ≤ 𝐾𝑂𝑠(1), so we are done.

Recall that in proving FGR, we wanted “𝐴 ⊆ small progression”, but we
first proved “𝐴𝑐 ⊇ large progression”. We then used Chang’s covering argument
to get what we wanted. We’ll use a similar approach here, starting with the
following:

Proposition 0.39 (prop 9.5). Suppose 𝐺 is torsion-free nilpotnent and
𝐴 ⊆ 𝐺 is a finite 𝐾-approximate group. Then exists 𝑟 ≤ 𝐾𝑂(1) and 𝐾𝑂(1)

approximate groups 𝐴0𝐴1 ⋯ 𝐴𝑟 ⊆ 𝐴𝑂(1), each generating a group of step < 𝑠,
such that

|𝐴0𝐴1 ⋯ 𝐴𝑟| ≥ exp(−𝐾𝑂(1))|𝐴|.

Next time we’ll see that passing from proposition 9.5 to proposition 9.4 is
very similar to Chang covering part of the proof of FGR.

In proving prop 9.5, we actually use the preliminary version of FGR in which
𝐴𝑐 contains a large progression. As we noted in that proof, combining prop 5.2
and 5.3 and lemma 5.4 gives the folllowing result:

Theorem 0.40 (theorem 9.6). [Green-Ruzsa] Let 𝐺 be abelian and 𝐴 ⊆ 𝐺
be a finite 𝐾-approximate group. Then exists 𝐻 < 𝐺 and 𝑥1, … , 𝑥𝑟 ∈ 𝐺 with
𝑟 ≤ 𝐾𝑂(1), and 𝐿1, … , 𝐿𝑟 ∈ N such that 𝐻𝑃(𝑥; 𝐿) ⊆ 𝐴4 and

|𝐻𝑃(𝑥; 𝐿)| ≥ exp(−𝐾𝑂(1))|𝐴|.

We’ll apply this to prop 9.3 via the following result:

Proposition 0.41 (proposition 9.7). Let 𝐺 be 𝑠-step nilpotnent and 𝐴 ⊆ 𝐺
a finite 𝐾-approximate gropu. Write 𝜋 ∶ 𝐺 → 𝐺/[𝐺, 𝐺] for the quotient
homomorphism. Noting that 𝐺/[𝐺, 𝐺] is abelian and that 𝜋(𝐴) is a 𝐾-
approximate group. Let 𝐻 ≤ 𝐺/[𝐺, 𝐺] and 𝑥1, … , 𝑥𝑟 ∈ 𝐺/[𝐺, 𝐺] be as
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coming from applying theorem 9.6 to 𝜋(𝐴). Then

∣(𝐴24 ∩ 𝜋−1(𝐻))
𝑟

∏
𝑖=1

(𝐴24 ∩ 𝜋−1(⟨𝑥𝑖⟩)∣ ≥ exp(−𝐾𝑂(1))|𝐴|.

We’ll prove prop 9.7 next time. For now, let’s see how this implies prop 9.5.
Proposition 4.6 immediately tells us that 𝐴24 ∩ 𝜋−1(𝐻) and 𝐴24 ∩ 𝜋−1(⟨𝑥1⟩) are
𝐾𝑂(1)-approximate groups. It turns out they also generate subgropus of step
< 𝑠, at least when 𝐺 is torsion-free.

Lemma 0.42 (lemma 9.8). Let 𝐺 be 𝑠-step nilpotnent, and write 𝜋 ∶ 𝐺 →
𝐺/[𝐺, 𝐺] as before. Then

1. for all 𝑥 ∈ 𝐺/[𝐺, 𝐺], 𝜋−1(⟨𝑥⟩) is of step < 𝑠.

2. if 𝐻 ≤ 𝐺/[𝐺, 𝐺] is a finite subgroup and 𝐺 is torsion-free then 𝜋−1(𝐻)
is of step < 𝑠.

Lemma 0.43 (lemma 9.9). Let 𝐺 be an arbitrary group. Then the simple
commutator map

[⋅, ⋯ , ⋅]𝑘 ∶ 𝐺𝑘 → 𝐺𝑘

(𝑥1, … , 𝑥𝑘) ↦ [𝑥1, … , 𝑥𝑘]

is a homomorphism in each variable mod 𝐺𝑘+1. Moreover [𝐺, 𝐺] is contained
in the kernel of each of these homomorphisms.
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