University of<br>CAMBRIDGE<br>\section*{Mathematics Tripos}<br>\section*{Part IB}<br>\title{ Groups, Rings and Modules }<br>Lent, 2017<br>Lectures by<br>O. Randal-Williams<br>Notes by<br>Qiangru Kuang

## Contents

1 Groups ..... 2
1.1 Definitions ..... 2
1.2 Normal subgroups, Quotients and Homomorphisms ..... 3
1.3 Actions \& Permutations ..... 7
1.4 Conjugacy class, Centraliser \& Normaliser ..... 10
1.5 Finite $p$-groups ..... 12
1.6 Finite abelian groups ..... 12
1.7 Sylow's Theorem ..... 13
2 Rings ..... 17
2.1 Definitions ..... 17
2.2 Homomorphism, Ideals and Isomorphisms ..... 19
2.3 Integral domain, Field of fractions, Maximal and Prime ideals ..... 24
2.4 Factorisation in integral domains ..... 27
2.5 Factoriation in polynomial rings ..... 31
2.6 Gaussian integers ..... 35
2.7 Algebraic integers ..... 36
2.8 Hilbert Basis Theorem ..... 38
3 Modules ..... 40
3.1 Definitions ..... 40
3.2 Direct Sums and Free Modules ..... 43
3.3 Matrices over Euclidean Domains ..... 46
$3.4 \mathbb{F}[X]$-modules and Normal Form ..... 53
3.5 Conjugacy* ..... 56
Index ..... 60

## 1 Groups

### 1.1 Definitions

Definition (Group). A group is a triple $(G, \cdot, e)$ of a set $G$, a function $-\cdot-: G \times G \rightarrow G$ and $e \in G$ such that

- associativity: for all $a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$,
- identity: for all $a \in G, a \cdot e=a=e \cdot a$,
- inverse: for all $a \in G$, there exists $\alpha^{-1} \in G$ such that $a \cdot a^{-1}=e=$ $a^{-1} \cdot a$.

Definition (Subgroup). If $(G, \cdot, e)$ is a group, $H \subseteq G$ is a subgroup if

- $e \in H$,
- for all $a, b \in H, a \cdot b \in H$.

This makes $(H, \cdot, e)$ into a group. Write $H \leq G$.

Lemma 1.1. If $H \subseteq G$ is non-empty and for all $a, b \in H, a \cdot b^{-1} \in H$ then $H \leq G$.

## Example.

1. Additive groups: $(\mathbb{N},+, 0),(\mathbb{R},+, 0),(\mathbb{C},+, 0)$.
2. Groups of symmetries: $S_{n}, D_{2 n}, \mathrm{GL}_{n}(\mathbb{R})$. They have subgroups $A_{n} \leq S_{n}$, $C_{n} \leq D_{2 n}, \mathrm{SL}_{n}(\mathbb{R}) \leq \mathrm{GL}_{n}(\mathbb{R})$.
3. An group $G$ is abelian is a group such that $a \cdot b=b \cdot a$ for all $a, b \in G$.

If $H \leq G, g \in G$, we define the left $H$-coset of $G$ to be

$$
g H=\{g h: h \in H\} .
$$

As we have seen in IA Groups, the $H$-cosets form a partition of $G$ and are in bijection with each other via

$$
\begin{aligned}
H & \leftrightarrow g H \\
h & \mapsto g h \\
g^{-1} h & \leftrightarrow h
\end{aligned}
$$

We write $G / H$ for the set of left cosets.
Theorem 1.2 (Lagrange). If $G$ is a finite group and $H \leq G$ then

$$
|G|=|H| \cdot|G / H| .
$$

We call $|G / H|$ the index of $H$ in $G$.

Definition (Order). Given $g \in G$, the order of $g$ is the smallest $n$ such that $g^{n}=e$. We write $n=o(g)=|g|$. If no such $n$ exists then $g$ has infinite order.

Recall that if $g^{m}=e$ then $|g| \mid m$.
Lemma 1.3. If $G$ is finite and $g \in G$ then $|g|||G|$.
Proof. The set

$$
\langle g\rangle=\left\{e, g, \ldots, g^{|g|-1}\right\}
$$

is a subgroup of $G$. The result follows from Lagrange.

### 1.2 Normal subgroups, Quotients and Homomorphisms

Recall that $g H=g^{\prime} H$ if and only if $g^{-1} g^{\prime} \in H$. In particular, if $h \in H$ then $g h H=g H$.

Given a subgroup $H \leq G$, we want to define a group structure on its cosets. Argurably the most natural candidate for the group operation would be

$$
\begin{aligned}
-\cdot-: G / H \times G / H & \rightarrow G / H \\
\left(g H, g^{\prime} H\right) & \mapsto g g^{\prime} H
\end{aligned}
$$

But is this well-defined? Suppose $g^{\prime} H=g^{\prime} h H$, then

$$
(g H) \cdot\left(g^{\prime} h H\right)=g g^{\prime} h H=g g^{\prime} H
$$

so it is well-defined in the second coordinate. Suppose $g H=g h H$, then

$$
(g h H) \cdot\left(g^{\prime} H\right)=g h g^{\prime} H \stackrel{?}{=} g g^{\prime} H
$$

where the last step holds if and only if $\left(g^{\prime}\right)^{-1} h g^{\prime} \in H$ for all $h \in H, g^{\prime} \in G$. Thus we need this true to define a group structure on the cosets. This motivates us to define

Definition (Normal subgroup). A subgroup $H \leq G$ is normal if for all $h \in H, g \in G, g^{-1} h g \in H$. Write $H \unlhd G$.

Definition (Quotient group). If $H \unlhd G$, then $G / H$ equipped with the product

$$
\begin{aligned}
G / H \times G / H & \rightarrow G / H \\
\left(g H, g^{\prime} H\right) & \mapsto g g^{\prime} H
\end{aligned}
$$

and identity $e H$ is a group. This is the quotient group of $G$ by $H$.
Now we have defined and seen quite a few groups. We are interested not in the internal structure of groups but how they relate to each other. This motivates to define morphisms between groups:

Definition (Homomorphism). If $\left(G, \cdot, e_{G}\right)$ and $\left(H, *, e_{H}\right)$ are groups, a function $\varphi: G \rightarrow H$ is a homomorphism if for all $g, h \in G$,

$$
\varphi\left(g \cdot g^{\prime}\right)=\varphi(g) * \varphi\left(g^{\prime}\right)
$$

This implies that $\varphi\left(e_{G}\right)=e_{H}$ and $\varphi\left(g^{-1}\right)=\varphi(g)^{-1}$. We define

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{g \in G: \varphi(g)=e_{H}\right\} \\
\operatorname{Im} \varphi & =\{\varphi(g): g \in G\}
\end{aligned}
$$

## Lemma 1.4.

- $\operatorname{ker} \varphi \unlhd G$,
- $\operatorname{Im} \varphi \leq H$.

Proof. Easy.

Definition (Isomorphism). A homomorphism $\varphi$ is an isomorphism if it is a bijection. Say $G$ and $H$ are isomorphic if there exists some isomorphism $\varphi: G \rightarrow H$. Write $G \cong H$.

Exercise. If $\varphi$ is an isomorphism then the inverse $\varphi^{-1}: H \rightarrow G$ is also an isomorphism.

Theorem 1.5 (1st Isomorphism Theorem). Let $\varphi: G \rightarrow H$ be a homomorphism. Then $\operatorname{ker} \unlhd \leq G, \operatorname{Im} \varphi \leq G$ and
$G / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi$.
Proof. We have done the first part. For the second part, define


Check this is well-defined: if $g \operatorname{ker} \varphi=g^{\prime} \operatorname{ker} \varphi \operatorname{then} g^{-1} g^{\prime} \in \operatorname{ker} \varphi$ so $e_{H}=$ $\varphi\left(g^{-1} g^{\prime}\right)=\varphi(g)^{-1} \varphi\left(g^{\prime}\right), \varphi(g)=\varphi\left(g^{\prime}\right)$ and $\theta(g \operatorname{ker} \varphi)=\theta\left(g^{\prime} \operatorname{ker} \varphi\right)$.
$\theta$ is a homomorphism:
$\theta\left(g \operatorname{ker} \varphi \cdot g^{\prime} \operatorname{ker} \varphi\right)=\theta\left(g g^{\prime} \operatorname{ker} \varphi\right)=\varphi\left(g g^{\prime}\right)=\varphi(g) \varphi\left(g^{\prime}\right)=\theta(g \operatorname{ker} \varphi) \theta(g \operatorname{ker} \varphi)$.
$\theta$ is surjective and finally to show it is injective, suppose $\theta(g \operatorname{ker} \varphi)=e_{H}$. Then $g \in \operatorname{ker} \varphi$ so $g \operatorname{ker} \varphi=e \operatorname{ker} \varphi$.

Example. Consider

$$
\begin{aligned}
\varphi: \mathbb{C} & \rightarrow \mathbb{C} \backslash\{0\} \\
z & \mapsto e^{z}
\end{aligned}
$$

$e^{z+w}=e^{z} \cdot e^{w}$ so $\varphi:(\mathbb{C},+, 0) \rightarrow(\mathbb{C} \backslash\{0\}, \times, 1)$ is a homomorphism. $\varphi$ is surjective (as log is a left inverse).

$$
\operatorname{ker} \varphi=\left\{z \in \mathbb{C}: e^{z}=1\right\}=\{2 \pi i k: k \in \mathbb{Z}\}=2 \pi i \mathbb{Z}
$$

so by 1st Isomorphism Theorem

$$
\mathbb{C} / 2 \pi i \mathbb{Z} \cong \mathbb{C} \backslash\{0\} .
$$

Theorem 1.6 (2nd Isomorphism Theorem). Let $H \leq G$ and $K \unlhd G$. Then

$$
\begin{gathered}
H K \leq G \\
H \cap K \unlhd H \\
H K / K \cong H /(H \cap K)
\end{gathered}
$$

Proof. Let $h, h^{\prime} \in H, k, k^{\prime} \in K$. Then

$$
\left(h^{\prime} k^{\prime}\right)(h k)^{-1}=h^{\prime} k^{\prime} k^{-1} h^{-1}=\left(h^{\prime} h^{-1}\right)\left(h k^{\prime} k^{-1} h^{-1}\right) \in H K .
$$

Consider

$$
\begin{aligned}
\varphi: H & \rightarrow G / K \\
h & \mapsto h K
\end{aligned}
$$

This is the composition $H \stackrel{\iota}{\hookrightarrow} G \stackrel{\pi}{\rightarrow} G / K$ so a homomorphism. Since

$$
\begin{aligned}
\operatorname{ker} \varphi & =\{h K: h K=e K\}=H \cap K \unlhd H \\
\operatorname{Im} \varphi & =\{g K: g K=h K \text { for some } h \in H\}=H K / K
\end{aligned}
$$

so by 1st Isomorphism Theorem

$$
H /(H \cap K) \cong H K / K
$$

As a corollary we have
Theorem 1.7 (Subgroup correspondence). Let $K \unlhd G$. There is a bijection between

$$
\begin{aligned}
\{\text { subgroups of } G / K\} & \leftrightarrow\{\text { subgroups of } G \text { containing } K\} \\
H & \mapsto\{g \in G: g K \in H\} \\
L / K & \leftrightarrow K \unlhd L \leq G
\end{aligned}
$$

Moreover, the same map gives a bijection between
\{normal subgroups of $G / K\} \leftrightarrow\{$ normal subgroups of $G$ containing $K\}$.

Theorem 1.8 (3rd Isomorphism Theorem). Let $K \leq L \leq G$ be normal subgroups. Then

$$
\frac{G / K}{L / K} \cong G / L
$$

Proof. Consider

$$
\begin{aligned}
& \varphi: G / K \rightarrow G / L \\
& g K \mapsto g L
\end{aligned}
$$

Check it is well-defined: if $g K=g^{\prime} K, g^{-1} g^{\prime} \in K \subseteq L$ so $g L=g^{\prime} L . \varphi$ is clearly surjective and has kernel

$$
\operatorname{ker} \varphi=\{g K \in G / K: g L=e L\}=L / K
$$

so by 1st Isomorphism Theorem

$$
\frac{G / K}{L / K} \cong G / L
$$

Definition (Simple group). A group $G$ is simple if its only normal subgroups are $\{e\}$ and $G$.

Lemma 1.9. An abelian group is simple if and only if it is isomorphic to $C_{p}$ for some prime $p$.

Proof. In an abelian group every subgroup is normal. Let $g \in G$ be non-trivial. Then

$$
\langle g\rangle=\left\{\ldots, g^{-2}, g^{-1}, e, g, g^{2}, \ldots\right\} \unlhd G .
$$

If $G$ is simple, this must be the whole group so $G$ is cyclic. If $G$ is infinite, it is isomorphic to $\mathbb{Z}$ which is not simple as $2 \mathbb{Z} \unlhd G$. Therefore $G \cong C_{n}$ for some $n$. If $n=a b, a, b \in \mathbb{N}, a, b \neq 1$ then $\left\langle g^{a}\right\rangle \unlhd G$. Absurd. Thus $n$ is a prime.

For the other directions, note that $C_{p}$ is simple for prime $p$ by Lagrange.

Theorem 1.10. Let $G$ be a finite group. Then there is a chain of subgroups

$$
G=H_{0} \geq H_{1} \geq H_{2} \geq \cdots \geq H_{s}=\{e\}
$$

such that $H_{n+1} \unlhd H_{n}$ and $H_{n} / H_{n+1}$ is simple for all $n$.
Proof. Let $H_{1}$ be a normal subgroup of $H_{0}=G$ of maximal order. If $H_{0} / H_{1}$ is not simple, there would be a proper normal subgroup $X \unlhd H_{1} / H_{2}$. This corresponds to a normal subgroup of $H_{0}, Y$, which strictly contains $H_{1}$. Absurd. Thus $H_{0} / H_{1}$ is simple.

Choose $H_{2}$ to be the maximal normal subgroup of $H_{1}$ and continue. As $H_{n+1}$ is a proper subgroup of $H_{n},\left|H_{n+1}\right|<\left|H_{n}\right|$ so this process terminates after finitely many steps.

### 1.3 Actions \& Permutations

Part of the reason we study groups is that they have interesting internal structures. However, more importantly, groups are interesting because many transformations of an object can be described by a group. This is formalised by the concept of group action in this section.

The symmetric group $S_{n}$ is the set of permutations of $\{1, \ldots, n\}$. Every permutation is a product of transpositions. A permutation is even if it is a product of evenly-many transpositions and odd otherwise.

The sign of a permutation is a homomorphism

$$
\begin{aligned}
& \operatorname{sgn}: S_{n} \rightarrow\{ \pm 1\} \\
& \sigma \mapsto \begin{cases}1 & \sigma \text { is even } \\
-1 & \sigma \text { is odd }\end{cases}
\end{aligned}
$$

The kernel of sgn is the alternating group $A_{n} \unlhd S_{n}$ of index 2 for $n \geq 2$.
For any set $X$, we let $\operatorname{Sym}(X)$ denote the set of all permutations of $X$, with composition as the group operation.

Here is a definition that is included in the syllabus but seems to be never used anywhere:

Definition. A group $G$ is a permutation group of degree $n$ if

$$
G \leq \operatorname{Sym}(X)
$$

with $|X|=n$.

## Example.

1. $S_{n}$ is a permutation group of order $n$, so is $A_{n}$.
2. $D_{2 n}$ acts on the $n$ vertices of a regular $n$-gon, so

$$
D_{2 n} \leq S(\{n \text { vertices }\})
$$

Definition (Group action). An action of a group $(G, \cdot, e)$ on a set $X$ is a function $-*-: G \times X \rightarrow X$ such that

1. For all $g, h \in G, x \in X$,

$$
g *(h * x)=(g h) * x
$$

2. For all $x \in X$,

$$
e * x=x .
$$

Lemma 1.11. Giving an action of $G$ on $X$ is the same as giving a homomorphism $\varphi: G \rightarrow \operatorname{Sym}(X)$.

Proof.

- $\Rightarrow$ : Let $-*-$ be an action. For all $g \in G$, let

$$
\begin{aligned}
\varphi: X & \rightarrow X \\
x & \mapsto g * x
\end{aligned}
$$

This satisfies

$$
\varphi(g h)(x)=(g h) * x=g *(h * x)=\varphi(g)(\varphi(h)(x))=(\varphi(g) \circ \varphi(h))(x)
$$

so $\varphi(g h)=\varphi(g) \circ \varphi(h)$.
In addition $\varphi(e)(x)=e * x=x=\operatorname{id}_{X}(x)$ so $\varphi(e)=\operatorname{id} X$. Now we note that

$$
\operatorname{id}_{X}=\varphi(e)=\varphi\left(g g^{-1}\right)=\varphi(g) \circ \varphi\left(g^{-1}\right)
$$

so $\varphi\left(g^{-1}\right)$ is inverse to $\varphi(g)$. In particular $\varphi(g)$ is a bijection.

- $\Leftarrow$ : Let $\varphi: G \rightarrow \operatorname{Sym}(X)$ be a homomorphism. Define

$$
\begin{aligned}
-*-: G \times X & \rightarrow X \\
(g, x) & \mapsto \varphi(g)(x)
\end{aligned}
$$

Verify that

$$
\begin{aligned}
g *(h * x) & =\varphi(g)(\varphi(h)(x))=(\varphi(g) \circ \varphi(h))(x)=\varphi(g h)(x)=(g h) * x \\
e * x & =\varphi(e)(x)=\operatorname{id}_{X}(x)=x
\end{aligned}
$$

Given a homomorphism $\varphi: G \rightarrow \operatorname{Sym}(X)$ induced by an action, define $G^{X}=$ $\operatorname{Im} \varphi, G_{X}=\operatorname{ker} \varphi$. Then by 1 st Isomorphism Theorem $G_{X} \unlhd G, G / G_{X} \cong G^{X}$.

If $G_{X}=\{e\}$, i.e. $\varphi$ is injective then we say $\varphi$ is a permutation representation of $G$. It follows that $G \cong G^{X} \leq \operatorname{Sym}(X)$.

## Example.

1. Let $G$ be the symmetries of a cube. Then $G$ acts on the set $X$ of diagonals. $|X|=4$ and $\varphi: G \rightarrow \operatorname{Sym}(X)$ is surjective so $G^{X}=\operatorname{Sym}(X) \cong S_{4}$. $G_{X}=\{\mathrm{id}$, antipodal map $\}$ so by Lagrange

$$
|G|=\left|G_{X}\right| \cdot\left|G^{X}\right|=48
$$

2. For any group $G$, left multiplication is a homomorphism:

$$
\begin{aligned}
\varphi: G & \rightarrow \operatorname{Sym} G \\
g & \mapsto g \cdot-
\end{aligned}
$$

$G_{X}=\{g \in G: g h=h$ for all $G\}=\{e\}$ so $\varphi$ is a permutation representation. This is

Theorem 1.12 (Cayley). Every group is isomorphic to a subgroup of a symmetric group.
3. If $G$ is a group and $H \leq G$, we have

$$
\begin{aligned}
\varphi: G & \rightarrow \operatorname{Sym}(G / H) \\
g & \mapsto g \cdot-
\end{aligned}
$$

$G_{X}=\{g \in G: g a H=a H$ for all $a H\}=\bigcap_{a \in G} a H a^{-1}$. This is the largest subgroup of $H$ which is normal in $G$.

Theorem 1.13. Let $G$ be a finite group and $H \leq G$ with index $n$. Then there is a $K \unlhd G, K \leq H$ such that $G / K$ is isomorphic to a subgroup of $S_{n}$. In particular

$$
\begin{aligned}
& |G / K| \mid n! \\
& \quad n||G / K|
\end{aligned}
$$

Proof. Let $K=G_{X}$ for the action of $G$ on $X=G / H$. Then

$$
G / G_{X} \cong G^{X} \leq \operatorname{Sym}(X) \cong S_{n}
$$

Theorem 1.14. Let $G$ be a non-abelian simple group and $H \leq G$ is a subgroup of index $n>1$. Then $G$ is isomorphic to a subgroup of $A_{n}$ for some $n \geq 5$.

Proof. Let $G$ act on $G / H$, giving $\varphi: G \rightarrow \operatorname{Sym}(G / H)$. Then $\operatorname{ker} \varphi \unlhd G$. As $G$ is simple, $\operatorname{ker} \varphi=\{e\}$ or $G$. But $\operatorname{ker} \varphi=\bigcap_{g \in G} g^{-1} H g \leq H$, a proper subgroup of $G$ so $\operatorname{ker} \varphi=\{e\}$. By 1st Isomorphism Theorem

$$
G=G /\{e\} \cong \operatorname{Im} \varphi=G^{X} \leq \operatorname{Sym}(G / H) \cong S_{n}
$$

Applying 2nd Isomorphism Theorem to $A_{n} \unlhd S_{n}, G^{X} \leq S_{n}$, we get

$$
G^{X} \cap A_{n} \unlhd G^{X}, G^{X} /\left(G^{X} \cap A_{n}\right) \cong G^{X} A_{n} / A_{n}
$$

As $G^{X} \cong G$ is simple, $G^{X} \cap A_{n}$ is either trivial or $G^{X}$, i.e. $G^{X} \leq A_{n}$. But if $G^{X} \cap A_{n}=\{e\}$,

$$
G^{X} \cong G^{X} A_{n} / A_{n} \leq S_{n} / A_{n} \cong C_{2}
$$

which contradicts $G^{X} \cong G$ being non-abelian. Hence $G \cong G^{X} \leq A_{n}$.

$$
1 \longrightarrow G \xrightarrow{\varphi} \operatorname{Sym}(G / H) \xrightarrow{\mathrm{sgn}} C_{2}
$$

To see that we must have $n \geq 5$, observe that $A_{2}, A_{3}$ and $A_{4}$ have no non-abelian simple subgroup.

Corollary 1.15. If $G$ is non-abelian simple, $H \leq G$ of index $n$, then

$$
|G| \left\lvert\, \frac{n!}{2}\right.
$$

Some futher definitions we have already met in IA Groups:

Definition (Orbit \& Stabiliser). If $G$ acts on $X$, the orbit of $x \in X$ is

$$
G \cdot x=\{g * x: g \in G\} .
$$

and the stabiliser of $x$ is

$$
G_{x}=\{g \in G: g * x=x \forall x \in X\} .
$$

Theorem 1.16 (Orbit-stabiliser). If $G$ acts on $X$, for all $x \in X$ there is a bijection

$$
\begin{aligned}
& G \cdot x \leftrightarrow G / G_{x} \\
& g * x \leftrightarrow g G_{x}
\end{aligned}
$$

### 1.4 Conjugacy class, Centraliser \& Normaliser

In the previous section we use a group action of a group on itself, namely left multiplication, to study the structure of a group. In this section we study conjugation, another group action that gives much richer results.

There is an action of $G$ on $X=G$ via $g * x=g x g^{-1}$, giving $\varphi: G \rightarrow \operatorname{Sym}(G)$.

## Remark.

$$
\varphi(g)(x y)=g x y g^{-1}=\left(g x g^{-1}\right)\left(g y g^{-1}\right)=\varphi(g)(x) \varphi(g)(y)
$$

so $\varphi(g)$ is a group homomorphism. In fact this is an automorphism and $\varphi(g) \in$ $\operatorname{Inn}(G)$, which is the group of all automorphisms arising from conjugation.

Denote

$$
\operatorname{Aut}(G)=\{\theta: G \rightarrow G: \theta \text { is an isomorphism }\} \leq \operatorname{Sym}(G)
$$

We have shown $\varphi: G \rightarrow \operatorname{Sym}(G)$ has image in $\operatorname{Aut}(G) \leq \operatorname{Sym}(G)$, i.e. $\operatorname{Inn}(G) \leq$ Aut $(G)$.

Definition (Conjugacy class). The conjugacy clss of $x \in G$ is

$$
G \cdot x=\mathrm{Cl}_{G}(x)=\left\{g x g^{-1}: g \in G\right\} .
$$

Definition (Centraliser). The centraliser of $x \in G$ is

$$
C_{G}(x)=\{g \in G: g x=x g\} .
$$

Definition (Centre). The centre of $G$ is

$$
Z(G)=\operatorname{ker} \varphi=\left\{g \in G: g x g^{-1}=x \forall x \in G\right\}
$$

Definition (Normaliser). The normaliser of $H \leq G$ is

$$
N_{G}(H)=\left\{g \in G: g H g^{-1}=H\right\} .
$$

By Orbit-stabiliser, there is a bijection between

$$
\mathrm{Cl}_{G}(x) \leftrightarrow G / C_{G}(x)
$$

so if $G$ is finite, $\left|\mathrm{Cl}_{G}(x)\right|=\left|G / C_{G}(x)\right|$ divides $|G|$.
Recall from IA Groups that in the permutation group $S_{n}$

1. every element can be written as a product of disjoint cycles,
2. permutations are conjugations if and only if they have the same cycle type.

We will use these knowledge to make our first (and the only one in this course) step towards classification of finite simple groups:

Theorem 1.17. $A_{n}$ is simple for $n \geq 5$.
Proof. First claim $A_{n}$ is generated by 3 -cycles. Need to show that double transpositions are generated by 3 -cycles. There are two cases:

- $(a b)(b c)=(a b c)$,
- $(a b)(c d)=(a c b)(a c d)$.

Let $H \unlhd A_{n}$. Suppose $H$ contains a 3 -cycle, say ( $a b c$ ). There exists $\sigma \in S_{n}$ such that

$$
(a b c)=\sigma^{-1}(123) \sigma .
$$

If $\sigma \in A_{n}$ then (123) $\in H$. If $\sigma \notin A_{n}$, let $\sigma^{\prime}=(45) \sigma \in A_{n}$. Here we use the fact that $n \geq 5$. Then

$$
(a b c)=\sigma^{\prime-1}(45)(123)(45) \sigma^{\prime}=\sigma^{\prime-1}(123) \sigma^{\prime}
$$

Hence $H$ contains all 3-cycles and $H=A_{n}$. It then suffices to show any non-trivial $H \unlhd A_{n}$ contains a 3 -cycle. Split into different cases:

- Case I: $H$ contains $\sigma=(12 \cdots r) \tau$, written in disjoint cycle notation, for some $r \geq 4$. Let $\pi=(123)$ and consider the commutator

$$
[\sigma, \pi]=\sigma^{-1} \pi^{-1} \sigma \pi=\tau^{-1}(r \cdots 21)(132)(12 \cdots r) \tau(123)=(23 r)
$$

which is a 3-cycle in $H$.

- Case II: $H$ contains $\sigma=(123)(456) \tau$. Let $\pi=(124)$ and consider

$$
[\sigma, \pi]=\tau^{-1}(132)(465)(142)(123)(456) \tau(124)=(12436)
$$

which is a 5 -cycle in $H$. This reduces to Cases I.

- Case III: $H$ contains $\sigma=(123) \tau$ and $\tau$ is a product of 2 -cycles. Then $\sigma^{2}=(132) \in H$.
- Case IV: $H$ contains $\sigma=(12)(34) \tau$ where $\tau$ is a product of 2 -cycles. Let $\pi=(123)$ and

$$
u=[\sigma, \pi]=(12)(34)(132)(12)(34)(123)=(14)(23) .
$$

Not let $v=(125)$ where we used the fact $n \geq 5$ again. Then

$$
[u, v]=(14)(23)(152)(14)(23)(125)=(12345) \in H
$$

which is a 5 -cycle.

### 1.5 Finite $p$-groups

A finite group $G$ is a $p$-group if $|G|=p^{n}$ for some prime $p$.
| Theorem 1.18. If $G$ is a finite $p$-group then $Z(G) \neq\{e\}$.
Proof. The conjugacy classes partition $G$ and $|\mathrm{Cl}(x)|=|G / C(x)|$ which divides $|G|$. Thus $|\mathrm{Cl}(x)|$ is a power of $p$. Class equation reads

$$
|G|=|Z(G)|+\sum_{\text {other ccl's }}|\mathrm{Cl}(x)|
$$

Reduce $\bmod p$, we get $|Z(G)|=0 \bmod p$. But $|Z(G)| \geq 1$ so $|Z(G)| \geq p$.
| Corollary 1.19. A group of order $p^{n}, n>1$ is never simple.

Lemma 1.20. For any group $G$, if $G / Z(G)$ is cyclic, $G$ is abelian.
Proof. Let $G / Z(G)=\langle g Z(G)\rangle$. Then every coset is of the form $g^{r} Z(G), r \in \mathbb{Z}$. Thus every element of $G$ is of the form $g^{r} z$ where $z \in Z(G)$. Then

$$
g^{r} z g^{r^{\prime}} z^{\prime}=g^{r} g^{r^{\prime}} z z^{\prime}=g^{r+r^{\prime}} z^{\prime} z=g^{r^{\prime}} z^{\prime} g^{r} z
$$

and hence $G$ is abelian.
| Corollary 1.21. If $|G|=p^{2}, G$ is abelian.
Proof. $Z(G) \neq\{e\}$ so $|Z(G)|=p$ or $p^{2}$. Suppose $|Z(G)|=p,|G / Z(G)|=p$ so $G / Z(G) \cong C_{p}$ so by the lemma $G$ is abelian. Absurd. Thus $Z(G)=G$ and thus $G$ is abelian.

Theorem 1.22. If $|G|=p^{a}, G$ has a subgroup of order $p^{b}$ for all $0 \leq b \leq a$.
Proof. Induction on $a$. If $a=1$ then done. Suppose $a>1$. Then $Z(G) \neq\{e\}$. Let $x \in Z(G)$ be non-identity. Then $x$ has order a power of $p$, say $p^{i}$. Then $z=x^{p^{i-1}}$ has order precisely $p$. Let $C=\langle z\rangle \unlhd G$. Then $G / C$ has order $p^{a-1}$. By induction hypothesis we can find a subgroup $H \leq G / C$ of order $p^{b-1}$. Then $H$ must be of the form $L / C$ for some $L \leq G$ and $|L|=p^{b}$.

### 1.6 Finite abelian groups

Theorem 1.23. If $G$ is a finite abelian group then

$$
G \cong C_{d_{1}} \times C_{d_{2}} \times \cdots \times C_{d_{k}}
$$

with $d_{i+1} \mid d_{i}$ for all $i$.
Proof. This will be a corollary of the main result on modules by considering abelian groups as $\mathbb{Z}$-modules.

Example. If $|G|=8$ and $G$ is abelian, $G$ is isomorphic to one of $C_{8}, C_{4} \times C_{2}$ and $C_{2} \times C_{2} \times C_{2}$.

Lemma 1.24 (Chinese Remainder Theorem). If $n$ and $m$ are coprime, then

$$
C_{n m} \cong C_{n} \times C_{m} .
$$

Proof. Let $g \in C_{n}$ has order $n, h \in C_{m}$ has order $m$. Consider

$$
x=(g, h) \in C_{n} \times C_{m} .
$$

If $e=x^{r}=\left(g^{r}, h^{r}\right)$, then $n|r, m| r$ so $n m \mid r$. Thus $|x|=n m$. The group is cyclic.

Corollary 1.25. If $G$ is a finite abelian group then

$$
G \cong C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{\ell}}
$$

with each $n_{i}$ a power of prime.
Proof. If $d=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$, a factorisation of distinct primes, the above lemma shows

$$
C_{d} \cong C_{p_{1}^{a_{1}}} \times C_{p_{2}^{a_{2}}} \times \cdots \times C_{p_{r}^{a_{r}}} .
$$

Apply this to the theorem above.

### 1.7 Sylow's Theorem

Theorem 1.26 (Sylow's Theorem). Let $|G|=p^{a} \cdot m$ with $(p, m)=1$ where $p$ is a prime. Then

1. the set

$$
\operatorname{Syl}_{p}(G)=\left\{P \leq G:|P|=p^{a}\right\}
$$

of Sylow $p$-subgroups is not empty,
2. all elements of $\operatorname{Syl}_{p}(G)$ are conjugates in $G$,
3. the number

$$
n_{p}=\left|\operatorname{Syl}_{p}(G)\right|
$$

satisfies

$$
n_{p}=1 \quad \bmod p, n_{p}| | G \mid .
$$

Lemma 1.27. If $n_{p}=1$ then the unqiue Sylow $p$-subgroup is normal in $G$.
Proof. Let $P \leq G$ be the Sylow $p$-subgroup and $g \in G$. As $g P g^{-1} \in \operatorname{Syl}_{p}(G)$, $g P g^{-1}=P$ so $P \unlhd G$.

Example. Let $G$ be group of order $96=2^{5} \cdot 3$. Then

- $n_{2}=1 \bmod 2$ and $n_{2} \mid 3$ so $n_{2}=1$ or 3 .
- $n_{3}=1 \bmod 3$ and $n_{3} \mid 32$ so $n_{3}=1,4$ or 16 .
$G$ acts on the set $\operatorname{Syl}_{p}(G)$ by conjugation. The second part of Sylow's Theorem says that this action has precisely one orbit. The stabiliser of $P \in \operatorname{Syl}_{p}(G)$ is the normaliser $N_{G}(P) \leq G$ of index $n_{p}=\left|\operatorname{Syl}_{p}(G)\right|$.

Corollary 1.28. If $G$ is non-abelian simple, then $|G| \left\lvert\, \frac{\left(n_{p}\right)!}{2}\right.$ and $n_{p} \geq 5$.
Proof. $N_{G}(P)$ has index $n_{p}$ so Theorem 1.14 to get the result. Alternatively, consider the conjugation action of $G$ on $\operatorname{Syl}_{p}(G)$.

Example (Continued). $|G| \nmid \frac{3!}{2}$ so $G$ cannot be simple.
Example. Suppose $G$ is a simple group of order $132=2^{2} \cdot 3 \cdot 11$. We have $n_{11}=1 \bmod 11$ and $n_{11} \mid 12$. As $G$ is simple we can't have $n_{11}=1$ so $n_{11}=12$. Each Sylow 11-subgroup has order 11 so isomorphic to $C_{11}$, and thus contains 10 elements of order 11. Such subgroups can only intersect in the identity so we have $12 \times 10=120$ elements of order 11 .

In addition we know $n_{3}=1 \bmod 3$ and $n_{3} \mid 44$, so $n_{3}=4$ or 22 . If $n_{3}=4$, we must have $|G| \left\lvert\, \frac{4!}{2}\right.$ by the previous corollary. Absurd. Thus $n_{3}=22$. As above, we get $22 \cdot(3-1)=44$ elements of order 3. This gives $164>132$ elements. Absurd.

Thus there is no simple group of order 132.
Proof of Sylow's Theorem. Let $|G|=p^{n} \cdot m$.

1. Let

$$
\Omega=\left\{X \subseteq G:|X|=p^{n}\right\}
$$

and $G$ act on $\Omega$ via

$$
g *\left\{g_{1}, g_{2}, \ldots, g_{p^{n}}\right\}=\left\{g g_{1}, g g_{2}, \ldots, g g_{p^{n}}\right\}
$$

Let $\Sigma \subseteq \Omega$ be an orbit of the action. If $\left\{g_{1}, \ldots, g_{p^{n}}\right\} \in \Sigma$, then

$$
\left(g g_{1}^{-1}\right) *\left\{g_{1}, \ldots, g_{p^{n}}\right\} \in \Sigma
$$

so for all $g \in G$ there is an element of $\Sigma$ containing $g$. Thus $|\Sigma| \geq \frac{|G|}{p^{n}}=m$. If there is some orbit $\Sigma$ with $|\Sigma|=m$, its stabiliser $G_{\Sigma}$ has order $p^{n}$ so we have a Sylow $p$-subgroup.

To show this happens, we must show it is not possible for every orbit to have size strictly bigger than $m$. By Orbit-stabiliser, for any $\Sigma,|\Sigma| \mid p^{n} \cdot m$ so if $|\Sigma|>m$ then $p||\Sigma|$. If all orbits have size $>m, p$ divides all of them so $p||\Omega|$.
Let us calculate $|\Omega|$. We have

$$
|\Omega|=\binom{p^{n} \cdot m}{p^{n}}=\prod_{j=0}^{p^{n}-1} \frac{p^{n} \cdot m-j}{p^{n}-j}
$$

The largest power of $p$ dividing $p^{n} \cdot m-j$ is the same as the largest power of $p$ dividing $j$, which is the same as the largest power of $p$ dividing $p^{n}-j$. Thus $|\Omega|$ is not divisible by $p$.
2. Let us show something stronger: if $P \in \operatorname{Syl}_{p}(G)$ and $Q$ is a $p$-subgroup then there is a $g \in G$ such that $g^{-1} Q g \leq P$.
Let $Q$ act on $G / P$ by

$$
q * g P=q g P
$$

By Orbit-stabiliser, the size of an orbit divides $|Q|=p^{b}$ so it is either 1 or divisible by $p$.
On the other hand $|G / P|=\frac{|G|}{|P|}=m$ which is not divisible by $p$. Thus there must be an orbit of size 1 , say $\{g P\}$, i.e. for all $q \in Q, q g P=g P$ so $g^{-1} q g \in P . g^{-1} Q g \leq P$.
3. By $2 G$ acts on $\operatorname{Syl}_{p}(G)$ by conjugation with one orbit. By Orbit-stabiliser $n_{p}=\left|\operatorname{Syl}_{p}(G)\right|$ divides $|G|$, which is the second part of the statement.
Now we show $n_{p}=1 \bmod p$. Let $P \in \operatorname{Syl}_{p}(G)$ and let $P$ act on $\operatorname{Syl}_{p}(G)$ by conjugation. By Orbit-stabiliser, the size of an orbit divides $|P|=p^{n}$ so each orbit either has size 1 or dividible by $p$. But $\{P\}$ is a singleton orbit. To show $n_{p}=1 \bmod p$ it suffices to show every other orbit has size $>1$.
Suppose that $\{Q\}$ is another singleton orbit. Then for all $p \in P, p^{-1} Q p=Q$ so $P \leq N_{G}(Q)$. But we also have $Q \unlhd N_{G}(Q)$ (since the normaliser is the largest subgroup of $G$ in which $Q$ is normal). Now $P$ and $Q$ are Sylow $p$-subgroups of $N_{G}(Q)$ so are conjugates in $N_{G}(Q)$. Thus there exists $g \in N_{G}(Q)$ such that $P=g^{-1} Q g=Q$. Thus $P=Q$ which contradicts $Q$ being different from $P$.

Example. Let $G=\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. It has order

$$
|G|=\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)=\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)=p^{\frac{n(n-1)}{2}} \prod_{i=0}^{n-1}\left(p^{n-i}-1\right)
$$

Let $U$ be the set of upper triangular matrices with diagonal entries 1 , which forms a subgroup of $G$. $|U|=p^{\frac{n(n-1)}{2}}$ so $U$ is a Sylow $p$-subgroup.

Consider $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. It has order $\left(p^{2}-1\right)\left(p^{2}-p\right)=p(p+1)(p-1)^{2}$. Let $\ell$ be an odd prime dividing $p-1$. Then $\ell \nmid p, \ell \nmid p+1$ so $\ell^{2}$ is the largest power of $\ell$ dividing $\left|\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)\right|$.

Define the unit group

$$
(\mathbb{Z} / p \mathbb{Z})^{\times}=\{x \in \mathbb{Z} / p \mathbb{Z}: \exists y \in \mathbb{Z} / p \mathbb{Z}, x y=1\}=\{x \in \mathbb{Z} / p \mathbb{Z}: x \neq 0\}
$$

which is isomorphic to $C_{p-1}$. Thus it has a subgroup $C_{\ell} \leq C_{p-1}$, i.e. we can find $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$such that $x^{\ell}=1$.

Let

$$
H=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in(\mathbb{Z} / p \mathbb{Z})^{\times}, a^{\ell}=b^{\ell}=1\right\} \cong C_{\ell} \times C_{\ell} \leq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) .
$$

Then $H$ is a Sylow $\ell$-subgroup.
Example. Let

$$
\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)=\operatorname{ker}\left(\operatorname{det}: \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}\right) .
$$

det is surjective as $\operatorname{det}\left(\begin{array}{cc}\lambda & 0 \\ 0 & 1\end{array}\right)=\lambda$ so $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right) \unlhd \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ has index $p-1$. Thus

$$
\left|\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)\right|=(p-1) p(p+1)
$$

Further define

$$
\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)=\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right) /\left\{\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right\} .
$$

If $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, then $\lambda^{2}=1$. As long as $p>2$, there are two such $\lambda$ 's, $\pm 1$ so

$$
\left|\operatorname{PSL}_{2}\left(\mathbb{F}_{p}\right)\right|=\frac{(p-1) p(p+1)}{2}
$$

Let $(\mathbb{Z} / p \mathbb{Z})_{\infty}=\mathbb{Z} / p \mathbb{Z} \cup\{\infty\}$. Then $\mathrm{PSL}_{2}\left(\mathbb{F}_{p}\right)$ acts on $(\mathbb{Z} / p \mathbb{Z})_{\infty}$ by the Möbius map

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] * z=\frac{a z+b}{c z+d} .
$$

Take $p=5$ for example, this actions gives a homomorphism

$$
\varphi: \mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right) \rightarrow S_{6}
$$

$\left|\mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right)\right|=60$. Claim $\varphi$ is injective.
Proof. Suppose $\frac{a z+b}{c z+d}=z$ for all $z$. Set $z=0, b=0 . z=\infty, c=0 . z=1, a=d$. Thus

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \in \operatorname{PSL}_{2}\left(\mathbb{F}_{5}\right) .
$$

Further claim $\operatorname{Im} \varphi \leq A_{6}$.
Proof. Consider

$$
1 \longrightarrow \mathrm{PSL}_{2}\left(\mathbb{F}_{5}\right) \xrightarrow{\varphi} S_{6} \xrightarrow{\mathrm{sgn}} C_{2} .
$$

Need to show $\psi=\operatorname{sgn} \circ \varphi$ is trivial. We already know elements of odd order in $\operatorname{PSL}_{2}\left(\mathbb{F}_{5}\right)$ has be be sent to 1 .

Note that $H=\left\{\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right],\left[\begin{array}{cc}0 & \lambda \\ -\lambda^{-1} & 0\end{array}\right]\right\}$ has order 4 , so it is a Sylow 2-subgroup of $\operatorname{PSL}_{2}\left(\mathbb{F}_{5}\right)$. Any elemnt of order 2 or 4 is conjugate to an element in the group. We will show $\psi(H)=\{e\}$.
$H$ is generated by $\left[\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] .\left[\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right]$ acts on $(\mathbb{Z} / 5 \mathbb{Z})_{\infty}$ via $z \mapsto-z$. It is thus an even permutation. $\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right]$ acts via $z \mapsto-\frac{1}{z}$, which is also an even permutation.

## 2 Rings

### 2.1 Definitions

Definition (Ring). A ring is a quintuple $\left(R,+, \cdot, 0_{R}, 1_{R}\right)$ such that

- $\left(R,+, 0_{R}\right)$ is an abelian group,
- the operation $-\cdot-R \times R \rightarrow R$ is associative and satisfies

$$
1_{R} \cdot r=r=r \cdot 1_{R}
$$

- $r \cdot\left(r_{1}+r_{2}\right)=r \cdot r_{1}+r \cdot r_{2}$ and $\left(r_{1}+r_{2}\right) \cdot r=r_{1} \cdot r+r_{2} \cdot r$.

A ring is commutative if for all $a, b \in R, a \cdot b=b \cdot a$. We will only consider commutative rings in this course.

Definition (Subring). If $\left(R,+, \cdot, 0_{R}, 1_{R}\right)$ is a ring and $S \subseteq R$, then it is a subring if $0_{R}, 1_{R} \in S$ and,+ make $S$ into a ring. Write $S \leq R$.

## Example.

1. $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ with usual $0,1,+$ and $\cdot$
2. $\mathbb{Z}[i]=\{a+i b: a, b \in \mathbb{Z}\}$ is the subring of Gaussian integers.
3. $\mathbb{Q}[\sqrt{2}]=\{a+\sqrt{2} b: a, b \in \mathbb{Q}\} \leq \mathbb{R}$.

Definition (Unit). An element $r \in R$ is a unit if there exists $s \in R$ such that $s \cdot r=1_{R}$.

Note that being a unit depends on the ambient ring: $2 \in \mathbb{Z}$ is not a unit but $2 \in \mathbb{Q}$ is.

If every $r \in R, r \neq 0_{R}$ is a unit, then $R$ is a field.
Notation. If $x \in R$, write $-x \in R$ for the inverse of $x$ in $\left(R,+, 0_{R}\right)$. Write $y-x=y+(-x)$.

Example. $0_{R}+0_{R}=0_{R}$ so

$$
r \cdot 0_{R}=r \cdot\left(0_{R}+0_{R}\right)=r \cdot 0_{R}+r \cdot 0_{R}
$$

so $r \cdot 0_{R}=0_{R}$. Thus if $R \neq\{0\}, 0_{R} \neq 1_{R}$ since choosing $r \neq 0_{R}$, we would get $r=r \cdot 1_{R}=r \cdot 0_{R}=0_{R}$. Absurd.

However, $(\{0\},+, \cdot, 0,0)$ is indeed a ring.
Example. If $R$ and $S$ are rings, then $R \times S$ is a ring via

$$
\begin{aligned}
\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right) & =\left(r_{1}+r_{2}, s_{1}+s_{2}\right) \\
\left(r_{1}, s_{1}\right) \cdot\left(r_{2}, s_{2}\right) & =\left(r_{1} \cdot r_{2}, s_{1} \cdot s_{2}\right) \\
1_{R \times S} & =\left(1_{R}, 1_{S}\right) \\
0_{R \times S} & =\left(0_{R}, 0_{S}\right)
\end{aligned}
$$

Let $e_{1}=\left(1_{R}, 0\right), e_{2}=\left(0,1_{S}\right)$, then ${ }^{1}$

$$
\begin{aligned}
e_{1}^{2} & =e_{1} \\
e_{2}^{2} & =e_{2} \\
e_{1}+e_{2} & =1_{R \times S}
\end{aligned}
$$

Example (Polynomial). Let $R$ be a ring. A polynomial $f$ over $R$ is an expression

$$
f=a_{0}+a_{1} X+\cdots a_{n} X^{n}
$$

with $a_{i} \in R$ for all $i$. Note that $X$ is just a symbol and the sum is formal. We will consider $f$ and

$$
a_{0}+a_{1} X+\cdots a_{n} X^{n}+0_{R} \cdot X^{n+1}
$$

as equal.
The degree of $f$ is the largest $n$ such that $a_{n} \neq 0$. If in addition $a_{n}=1_{R}$, we say $f$ is monic.

Write $R[X]$ for the set of all polynomials over $R$. If

$$
g=b_{0}+b_{1} X+\cdots+b_{m} X^{m}
$$

we define

$$
\begin{aligned}
f+g & =\sum_{i=0}^{\max (f, g)}\left(a_{i}+b_{i}\right) X^{i} \\
f \cdot g & =\sum_{i} \sum_{j=0}^{i} a_{j} b_{i-j} X^{i}
\end{aligned}
$$

which make $R[X]$ a ring.
We consider $R$ as a subring of $R[X]$, given by the polynomials of degree 0 . In particular, $1_{R} \in R$ gives $1_{R[X]}$.
Example. Conisder $\mathbb{Z} / 2 \mathbb{Z}[X], f=X+X^{2} \neq 0$. We have

$$
\begin{aligned}
& f(0)=0+0=0 \\
& f(1)=1+1=0
\end{aligned}
$$

This shows that a polynomial vanishing everywhere on a finite ring is not necessarily zero (but necessarily so for an infinite ring).
Example. Write $R[[X]]$ for the ring of formal power series with elements

$$
f=a_{0}+a_{1} X+a_{2} X^{2}+\ldots
$$

with the same addition and multiplication as above.
Example. The Laurent polynomials $R\left[X, X^{-1}\right]$ is the set of expressions

$$
f=\sum_{i \in \mathbb{Z}} a_{i} X^{i}
$$

such that only finitely many $a_{i}$ 's are non-zero.

[^0]Example. The ring of Laurent series are elements of the form

$$
f=\sum_{i \in \mathbb{Z}} a_{i} X^{i}
$$

with only finitely many $i<0$ such that $a_{i} \neq 0$.
Example. If $R$ is a ring and $X$ is a set, the set $R^{X}$ of all functions $f: X \rightarrow R$ is a ring via

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f \cdot g)(x) & =f(x) \cdot g(x) \\
\left(1_{R^{x}}\right)(x) & =1_{R} \\
\left(0_{R^{x}}\right)(x) & =0_{R}
\end{aligned}
$$

For example, we have the following chain

$$
\mathbb{R}[X]=\{f: \mathbb{R} \rightarrow \mathbb{R} \text { polynomial }\}<\{f: \mathbb{R} \rightarrow \mathbb{R} \text { continuous }\}<\mathbb{R}^{\mathbb{R}}
$$

### 2.2 Homomorphism, Ideals and Isomorphisms

Definition (Homomorphism). A function $\varphi: R \rightarrow S$ between rings is a homomorphism if

- $\varphi\left(r_{1}+r_{2}\right)=\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)$, i.e. $\varphi:\left(R,+, 0_{R}\right) \rightarrow\left(S,+, 0_{S}\right)$ is a group homomorphism,
- $\varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)$,
- $\varphi\left(1_{R}\right)=1_{S}$.

If in addition $\varphi$ is a bijection, it is an isomorphism.
The kernel of $\varphi: R \rightarrow S$ is

$$
\operatorname{ker} \varphi=\left\{r \in R: \varphi(r)=0_{S}\right\}
$$

Lemma 2.1. $\varphi: R \rightarrow S$ is injective if and only if $\operatorname{ker} \varphi=\left\{0_{R}\right\}$.
Proof. $\varphi:\left(R,+, 0_{R}\right) \rightarrow\left(S,+, 0_{S}\right)$ is a group homomorphism and its kernel as group homomorphism is also $\operatorname{ker} \varphi$.

Definition (Ideal). A subset $I \subseteq R$ is an ideal if

- $I$ is a subgroup of $\left(R,+, 0_{R}\right)$,
- strong (multiplicative) closure: for all $x \in I, r \in R, x \cdot r \in I$.

Write $I \unlhd R$.
We say $I \unlhd R$ is proper if $I \neq R$.
| Lemma 2.2. If $\varphi: R \rightarrow S$ is a homomorphism then $\operatorname{ker} \varphi \unlhd R$.
Proof. The first axiom holds since $\varphi$ is a group homomorphism. Let $x \in \operatorname{ker} \varphi, r \in$ $R$, then

$$
\varphi(r \cdot x)=\varphi(r) \cdot \varphi(x)=\varphi(r) \cdot 0_{S}=0_{S}
$$

so $r \cdot x \in \operatorname{ker} \varphi$.

## Example.

1. If $I \unlhd R$ and $1_{R} \in I$, then for all $r \in R, r=r \cdot 1_{R} \in I$ so $I=R$.

Equivalently, if $I$ is a proper ideal then $1_{R} \notin I$. Consequenctly, proper ideals are never subrings.
2. This can be generalaised to units: if $u$ is a unit in $R$ with inverse $v \in R$, then if $u \in I$, so is $1_{R}=u \cdot v \in R$ so $I=R$.
Equivalently, if $I$ is a proper ideal then it contains no unit.
Example. If $R$ is a field then $\{0\}$ and $R$ are the only ideals.
Example. In the ring $\mathbb{Z}$, all ideals are of the form

$$
n \mathbb{Z}=\{\ldots,-2 n,-n, 0, n, 2 n, \ldots\}
$$

Proof. $n \mathbb{Z}$ is certainly an ideal.
Let $I \unlhd \mathbb{Z}$ be an ideal. Let $n \in I$ be the smallest positive element. Then $n \mathbb{Z} \subseteq I$. If this is not an equality, choose $m \in I \backslash n \mathbb{Z}$. By Euclidean algorithm, $m=n q+r$ with $0 \leq r<n$. So $r=m-n q \in I$. But $n$ is the smallest positive element in $I$, so $r=0$. Thus $m \in n \mathbb{Z}$.

Definition (Generated ideal). For an element $a \in R$, write

$$
(a)=\{a \cdot r: r \in R\} \unlhd R,
$$

the ideal generated by a.
More generally, for a set of elements $\left\{a_{1}, \ldots, a_{s}\right\}$, write

$$
\left(a_{1}, \ldots, a_{s}\right)=\left\{a_{1} r_{1}+\cdots+a_{s} r_{s}: r_{1}, \ldots, r_{s} \in R\right\} \unlhd R .
$$

Definition (Principal ideal). If $I \unlhd R$ if of the form (a), we say it is a principal ideal.

## Example.

1. $n \mathbb{Z}=(n) \unlhd \mathbb{Z}$ is ideal. In fact we have shown that all ideals of $\mathbb{Z}$ are principal.
2. $(X)=\{$ polynomials with constant coefficient 0$\} \unlhd \mathbb{C}[X]$.

Proposition 2.3 (Quotient ring). Let $I \unlhd R$ be an ideal. The quotient ring is the set of cosets $r+I$ (i.e. $(R,+, 0) / I)$. Addition and multiplication are given by

$$
\begin{aligned}
\left(r_{1}+I\right)+\left(r_{2}+I\right) & =r_{1}+r_{2}+I \\
\left(r_{1}+I\right) \cdot\left(r_{2}+I\right) & =r_{1} r_{2}+I
\end{aligned}
$$

with $0_{R / I}=0_{R}+I, 1_{R / I}=1_{R}+I$. This is a ring, and the quotient map

$$
\begin{aligned}
R & \rightarrow R / I \\
r & \mapsto r+I
\end{aligned}
$$

is a ring homomorphism.
Proof. We already knew $\left(R / I,+, 0_{R / I}\right)$ is an abelian group and addition as described above is well-defined. Suppose

$$
\begin{aligned}
& r_{1}+I=r_{1}^{\prime}+I \\
& r_{2}+I=r_{2}^{\prime}+I
\end{aligned}
$$

then $r_{1}^{\prime}-r_{1}=a_{1} \in I, r_{2}^{\prime}-r_{2}=a_{2} \in I$. So

$$
r_{1}^{\prime} r_{2}^{\prime}=\left(r_{1}+a_{1}\right)\left(r_{2}+a_{2}\right)=r_{1} r_{2}+\underbrace{r_{1} a_{2}+r_{2} a_{1}+a_{1} a_{2}}_{\in I} .
$$

Thus $r_{1}^{\prime} r_{2}^{\prime}+I=r_{1} r_{2}+I$. This shows multiplication is well-defined. The ring axioms for $R / I$ then follow from those of $R$.

## Example.

1. $n \mathbb{Z} \unlhd \mathbb{Z}$ so $\mathbb{Z} / n \mathbb{Z}$ is a ring. It has elements

$$
0+n \mathbb{Z}, 1+n \mathbb{Z}, \ldots,(n-1)+n \mathbb{Z}
$$

and addition and multiplication are modular arithmetic $\bmod n$.
2. $(X) \unlhd \mathbb{C}[X]$ so $\mathbb{C}[X] /(X)$ is a ring. We have

$$
a_{0}+\underbrace{a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}}_{\in(X)}+(X)=a_{0}+X
$$

If $a_{0}+(X)=b_{0}+(X)$ then $a_{0}-b_{0} \in(X)$ so $a_{0}-b_{0}$ is divisible by $X$, $a_{0}-b_{0}=0$. Consider

$$
\begin{aligned}
\varphi: \mathbb{C} & \rightarrow \mathbb{C}[X] /(X) \\
a & \mapsto a+(X)
\end{aligned}
$$

which is a bijection. Observe that $\varphi$ is a bijection and its inverse is given by the map $f+(X) \mapsto f(0)$.

Proposition 2.4 (Euclidean algorithm for polynomials). Let $F$ be $a$ field and $f, g \in F[X]$. Then we may write

$$
f=g \cdot q+r
$$

with $\operatorname{deg} r<\operatorname{deg} g$.
Proof. Let $\operatorname{deg} f=n, \operatorname{deg} g=m$ so

$$
\begin{aligned}
& f=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \\
& g=b_{0}+b_{1} X+\cdots+b_{m} X^{m}
\end{aligned}
$$

with $a_{n}, b_{m} \neq 0$.
If $n<m$, let $q=0, r=f$ so done. Suppose $n \geq m$ and proceed by induction on $n$. Let

$$
f_{1}=f-g X^{n-m} a_{n} b_{m}^{-1}
$$

where $b_{m}^{-1}$ exists since $b_{m} \in F$ and $b_{m} \neq 0$. This has degree $<n$. If $n=m$ then

$$
f=g\left(X^{n-m} a_{n} b_{m}^{-1}\right)+f_{1}
$$

with $\operatorname{deg} f_{1}<n=m=\operatorname{deg} g$. If $n>m$, by induction we have $f_{1}=g q_{1}+r$ with $\operatorname{deg} r<\operatorname{deg} g$ so

$$
f=g\left(X^{n-m} a_{n} b_{m}^{-1}\right)+g q_{1}+r=g\left(X^{n-m} a_{n} b_{m}^{-1}+q_{1}\right)+r
$$

as required.
Example. Consider $\left(X^{2}+1\right) \unlhd \mathbb{R}[X]$ and let $R=\mathbb{R}[X] /\left(X^{2}+1\right)$. It has elements of the form $f+\left(X^{2}+1\right)$. By Euclidean algorithm for polynomials $f=\left(X^{2}+1\right) g+r$ with $\operatorname{deg} r \leq 1$ so $f+\left(X^{2}+1\right)=r+\left(X^{2}+1\right)$. Any element can be represented by a polynomial of degree $\leq 1$, say $a+b X+\left(X^{2}+1\right)$. If $a_{1}+b_{1} X+\left(X^{2}+1\right)=a_{2}+b_{2} X+\left(X^{2}+1\right)$ then $\left(a_{1}+b_{1} X\right)-\left(a_{2}+b_{2} X\right)$ is divisible by $X^{2}+1$. But degrees add in multiplication so $a_{1}+b_{1} X=a_{2}+b_{2} X$. Consider the bijection

$$
\begin{aligned}
\varphi: R & \rightarrow \mathbb{C} \\
a+b X+\left(X^{2}+1\right) & \mapsto a+b i
\end{aligned}
$$

It obviously send addition to addition. For multiplication,

$$
\begin{aligned}
& \varphi\left(\left(a+b X+\left(X^{2}+1\right)\right) \cdot\left(c+d X+\left(X^{2}+1\right)\right)\right) \\
= & \varphi\left(a c+(b c+a d) X+b d X^{2}+\left(X^{2}+1\right)\right) \\
= & \varphi\left(a c+(b c+a d) X+b d\left(X^{2}+1\right)-b d+\left(X^{2}+1\right)\right. \\
= & (a c-b d)+(b c+a d) i \\
= & (a+b i) \cdot(c+d i) \\
= & \varphi\left(a+b X+\left(X^{2}+1\right)\right) \cdot \varphi\left(c+d X+\left(X^{2}+1\right)\right)
\end{aligned}
$$

Thus we have shown that $\mathbb{C} \cong \mathbb{R}[X] /\left(X^{2}+1\right)$.
Remark. The key idea in the proof is to force $X^{2}+1$ to vanish by quotient the polynomial ring by the generated ideal so that " $X= \pm i$ ". Similarly $\mathbb{Q}[X] /\left(X^{2}-\right.$ $2) \cong \mathbb{Q}[\sqrt{2}] \leq \mathbb{R}$.

This is a nice result. However, the proof is too cumbersome to be generalised as we have to check well-definedness for each case. Instead, we have the following theorems stating the general results for abstract rings and ideals. The proofs are similar to those for groups and are omitted.

Theorem 2.5 (1st Isomorphism Theorem). Let $\varphi: R \rightarrow S$ be a ring isomorphism. Then $\operatorname{ker} \varphi \unlhd R, \operatorname{Im} \varphi \leq S$ and

$$
\begin{aligned}
R / \operatorname{ker} \varphi & \rightarrow \operatorname{Im} \varphi \\
r+\operatorname{ker} \varphi & \mapsto \varphi(r)
\end{aligned}
$$

is a ring isomorphism.

Theorem 2.6 (2nd Isomorphism Theorem). Let $R \leq S$ and $J \unlhd S$. Then $R \cap J \unlhd R$ and

$$
\frac{R+J}{J} \cong \frac{R}{R \cap J}
$$

as rings.

Theorem 2.7 (Subring and ideal correspondence). Let $I \unlhd R$. Then there is a bijection between
$\{$ subrings of $R / I\} \leftrightarrow\{$ subrings of $R$ containing $I\}$

$$
L \leq R / I \mapsto\{r \in R: r+I \in L\}
$$

$$
S / I \leq R / I \leftrightarrow I \unlhd S \leq R
$$

and
$\{$ ideals of $R / I\} \leftrightarrow\{$ ideals of $R$ containing $I\}$

$$
L \unlhd R / I \mapsto\{r \in R: r+I \in L\}
$$

$$
J / I \unlhd R / I \leftrightarrow I \unlhd J \unlhd R
$$

Theorem 2.8 (3rd Isomorphism Theorem). Let $I, J \unlhd R, I \subseteq J$. Then $J / I \unlhd R / I$ and

$$
\frac{R / I}{J / I} \cong R / J
$$

Example. Consider the homomorphism

$$
\begin{aligned}
\varphi: \mathbb{R}[X] & \rightarrow \mathbb{C} \\
\sum a_{n} X^{n} & \mapsto \sum a_{n} i^{n}
\end{aligned}
$$

i.e. evaluation at $i$. It is surjective and

$$
\operatorname{ker} \varphi=\{f \in \mathbb{R}[X]: f(i)=0\}=\left(X^{2}+1\right)
$$

because real polynomials with $i$ as a root also have $-i$ as aroot, so are divisible by $(X-i)(X+i)=X^{2}+1$. By 1st Isomorphism Theorem

$$
\mathbb{R}[X] /\left(X^{2}+1\right) \cong \mathbb{C}
$$

Example (Characteristic of a ring). For any ring $R$ there is a unique homomorphism

$$
\begin{aligned}
\iota: \mathbb{Z} & \rightarrow R \\
\qquad & n \mapsto \begin{cases}\frac{1_{R}+1_{R}+\cdots+1_{R}}{n \text { times }} & n>0 \\
-\underbrace{\left(1_{R}+1_{R}+\cdots+1_{R}\right)}_{n \text { times }} & n<0\end{cases}
\end{aligned}
$$

$\operatorname{ker} \iota \unlhd \mathbb{Z}$ so $\operatorname{ker} \iota=n \mathbb{Z}$ for some $n \geq 0$. This number $n$ is called the characteristic of $R$, denoted ch $R$.

For example, $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ all have characteristic $0 . \mathbb{Z} / n \mathbb{Z}$ have characteristic $n$.

### 2.3 Integral domain, Field of fractions, Maximal and Prime ideals

Definition (Integral domain). A non-zero ring $R$ is an integral domain if for all $a, b \in R, a \cdot b=0$ implies that $a=0$ or $b=0$.

Definition (Zero divisor). $x$ is a zero divisor in $R$ if $x \neq 0$ and there exists $y \neq 0$ such that $x \cdot y=0$.

## Example.

1. All fields are integral domains: if $x y=0$ with $y \neq 0$, then $y^{-1}$ exists and

$$
0=0 \cdot y^{-1}=(x y) \cdot y^{-1}=x .
$$

2. A subring of an integral domain is an integral domain. Thus $\mathbb{Z} \leq \mathbb{Q}, \mathbb{Z}[i] \leq$ $\mathbb{C}$ are integral domains.

Definition (Principal ideal domain). A ring $R$ is a principal ideal domain (PID) if it is an integral domain and every ideal is principal, i.e. for all $I \unlhd R$, there exists $a \in R$ such that $I=(a)$.

Example. $\mathbb{Z}$ is a PID.
| Lemma 2.9. A finite integral domain is a field.
Proof. Let $a \neq 0 \in R$ and consider

$$
\begin{aligned}
a \cdot-: R & \rightarrow R \\
b & \mapsto a b
\end{aligned}
$$

This is a group homomorphism and its kernel is

$$
\operatorname{ker}(a \cdot-)=\{b \in R: a b=0\}=\{0\} .
$$

Thus $a \cdot-$ is injective. As $|R|<\infty, a \cdot-$ must also be surjective. Thus there exists $b \in R$ such that $a b=1 . b=a^{-1}$.

Lemma 2.10. Let $R$ be an integral domain. Then $R[X]$ is an integral domain.

Proof. Let

$$
\begin{aligned}
& f=\sum_{i=0}^{n} a_{i} X^{i} \\
& g=\sum_{j=0}^{m} b_{j} X^{j}
\end{aligned}
$$

with $a_{n}, b_{m} \neq 0$ be non-zero polynomials. Then the largest power of $X$ in $f g$ is $X^{m+n}$ and its coefficient is $a_{n} b_{m} \in R$. This is a product of non-zero elements on an integral domain so non-zero. Thus $f g \neq 0$.

This gives us a way to produce a new integral domain from old ones. Moreover, iterating this, $R\left[X_{1}, \ldots, X_{n}\right]=\left(\left(R\left[X_{1}\right]\right)\left[X_{2}\right] \ldots\left[X_{n}\right]\right)$ is an integral domain.

Theorem 2.11 (Field of fractions). Let $R$ be an integral domain. There is $a$ field of fractions $F$ of $R$ with the following properties:

1. Fis a field,
2. $R \leq F$,
3. every element of $F$ is of the form $a \cdot b^{-1}$ where $a, b \in R \leq F$.

Proof. Consider $S=\left\{(a, b) \in R^{2}: b \neq 0\right\}$ with an equivalence relation

$$
(a, b) \sim(c, d) \Leftrightarrow a d=b d \in R .
$$

This is reflexive and symmetric. To show it is transitive, suppose $(a, b) \sim$ $(c, d),(c, d) \sim(e, f)$. Then

$$
(a d) f=(b c) f=b(c f)=b(e d)
$$

so $d(a f-b e)=0$. As $d \neq 0$ and $R$ is an integral domain, $a f-b e=0$, i.e. $(a, b) \sim(e, f)$.

Let $F=S / \sim$ and write $[(a, b)]=\frac{a}{b}$. Define

$$
\begin{aligned}
\frac{a}{b}+\frac{c}{d} & =\frac{a d+b c}{b d} \\
\frac{a}{b} \cdot \frac{c}{d} & =\frac{a c}{b d} \\
0_{F} & =\frac{0}{1} \\
1_{F} & =\frac{1}{1}
\end{aligned}
$$

These are well-defined. If $\frac{a}{b} \neq 0_{F}=\frac{0}{1}$ then $a \cdot 1 \neq 0 \cdot b=0$. Then $\frac{b}{a} \in F$ and $\frac{a}{b} \cdot \frac{b}{a}=\frac{1}{1}=1_{F}$ so $\frac{a}{b} \in F$ has an inverse. $F$ is a field.
$R$ is a subring of $F$ via

$$
\begin{aligned}
R & \hookrightarrow F \\
r & \mapsto \frac{r}{1}
\end{aligned}
$$

which is injective as $R$ is an integral domain.

## Example.

1. The field of fractions of $\mathbb{Z}$ is $\mathbb{Q}$.
2. The field of fractions of $\mathbb{C}[X]$ is

$$
\mathbb{C}(X)=\left\{\frac{p(X)}{q(X)}: p(X), q(X) \in \mathbb{C}[X], q(X) \neq 0\right\}
$$

the field of rational functions.
As we have mentioned before, $\{0\}$ is a bona fide ring although it is a (trivial) counterexample to many results. However, it is not a field as we require $0 \neq 1$. To emphasise this, we declare

Fiat. The ring $\{0\}$ is not a field.

Lemma 2.12. A non-zero ring $R$ is a field if and only if its only ideals are $\{0\}$ and $R$.

## Proof.

- $\Rightarrow$ : Suppose $I \unlhd R$ is a non-zero ideal, then it contains $a \neq 0$. But an ideal containing a unit must be the whole ring.
- $\Leftarrow$ : Let $x \neq 0 \in R$. Then $(x)=R$ as it is not the zero ideal. Thus there exists $y \in R$ such that $x y=1_{R}$ so $x$ is a unit.

Definition (Maximal ideal). An ideal $I \unlhd R$ is maximal if there is no proper ideal which properly contains $I$.

Lemma 2.13. An ideal $I \unlhd R$ is maximal if and only if $R / I$ is a field.
Proof. $R / I$ is a field if and only if $I / I$ and $R / I$ are the only ideals in $R / I$, if and only if $I, R \unlhd R$ are the only ideals containing $I$.

Definition (Prime ideal). An ideal $I \unlhd R$ is prime if $I$ is proper and if $a, b \in R$ such that $a b \in I$ then $a \in I$ or $b \in I$.

Example. The ideal $n \mathbb{Z}$ is prime if and only if $n$ is 0 or a prime number: if $p$ is prime and $a, b \in p \mathbb{Z}$ then $p \mid a b$ so $p \mid a$ or $p \mid b$, i.e. $a \in p \mathbb{Z}$ or $b \in p \mathbb{Z}$. Conversely, if $n=u v$ is composite, $u<n$ then $u v \in n \mathbb{Z}$ but $u \notin n \mathbb{Z}$.

Lemma 2.14. $I \unlhd R$ is prime if and only if $R / I$ is an integral domain.
Proof.

- $\Rightarrow$ : Supose $I \unlhd R$ is prime. Let $a+I, b+I \in R / I$ be such that $(a+I)(b+$ $I)=0_{R / I}$. Since $a b+I=0_{R / I}, a b \in I$. As $I$ is prime, $a \in I$ or $b \in I$, i.e. $a+I=0_{R / I}$ or $b+I=0_{R / I}$. Thus $R / I$ is an integral domain.
- $\Leftarrow$ : Suppose $R / I$ is an integral domain. Let $a, b \in R$ such that $a b+I=0_{R / I}$. $(a+I)(b+I)=0_{R / I}$. As $R / I$ is an integral domain, $a+I=0_{R / I}$ or $b+I=0_{R / I}$, i.e. $a \in I$ or $b \in I$.

Corollary 2.15. Maximal ideals are prime.
Proof. Fields are integral domains.

Lemma 2.16. If $R$ is an integral domain then its characteristic is 0 or a prime number.

Proof. Consider $\operatorname{ker}(\iota: \mathbb{Z} \rightarrow R)=n \mathbb{Z}$. By 1st Isomorphism Theorem

$$
\mathbb{Z} / n \mathbb{Z} \cong \operatorname{Im} \iota \leq R
$$

As a subring of an integral domain is an integral domain, $\mathbb{Z} / n \mathbb{Z}$ is an integral domain so $n \mathbb{Z} \unlhd \mathbb{Z}$ is prime. Thus $n=0$ or a prime number.

### 2.4 Factorisation in integral domains

Let $R$ be an integral domain in this section.
We begin with several definitions. Note that for every statement about an element of the ring there is an equivalent one in terms of ideals.

Definition (Unit, divisibility, associates, irreducible, prime).

- An element $a \in R$ is a unit if there is $b \in R$ such that $a b=1_{R}$. Equivalently, $(a)=R$.
- $a \in R$ divides $b \in R$ if there is a $c \in R$ such that $b=a c$. Equivalently, $(b) \subseteq(a)$. Write $a \mid b$.
- $a, b \in R$ are associates if $a \mid b$ and $b \mid a$. Equivalently, $(a)=(b)$.
- $r \in R$ is irreducible if it is not zero, not a unit and if $r=a b$ then $a$ or $b$ is a unit.
- $r \in R$ is prime if it is not zero, not a unit and if $r \mid a b$ then $r \mid a$ or $r \mid b$. Equivalently, $a b \in(r) \Rightarrow a \in(r)$ or $b \in(r)$.

Remark. Being a unit/irreducible/prime depends not only on the element but also on the ambient ring: $2 X \in \mathbb{Z}[X]$ is not irreducible but $2 X \in \mathbb{Q}[X]$ is.

Lemma 2.17. $(r) \unlhd R$ is prime if and only if $r$ is zero or prime.

## Proof.

- $\Rightarrow$ : Let $(r) \unlhd R$ be a prime ideal and $r \mid a b$. Then $a b \in(r)$ so $a \in(r)$ or $b \in(r)$ as $(r)$ is prime. So $r \mid a$ or $r \mid b . r$ is 0 or a prime.
- $\Leftarrow$ : If $r=0$ then $(0) \unlhd R$ is a prime ideal since $R \cong R /(0)$ is an integral domain. Let $r \neq 0$ be a prime and $a b \in(r)$. Then $r \mid a b$ so $r \mid a$ or $r \mid b$. $a \in(r)$ or $b \in(r)$ as required.

Lemma 2.18. If $r \in R$ is prime then it is irreducible.
Proof. Let $r=a b$. Then $r \mid a b$ so $r \mid a$ or $r \mid b$. Suppose $r \mid a$ wlog. Then $a=r c$. $r=(r c) b, r(b c-1)=0$. As $r \neq 0$ and $R$ is an integral domain, $b c-1=0$ so $b$ is a unit.

Example. Let $R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \leq \mathbb{C}$. This is a subring of a field so an integral domain. Define

$$
\begin{aligned}
N: R & \rightarrow \mathbb{Z}_{\geq 0} \\
a+b \sqrt{-5} & \mapsto a^{2}+5 b^{2}
\end{aligned}
$$

so $N(z)=z \bar{z}$. Note $N\left(r_{1} r_{2}\right)=N\left(r_{1}\right) N\left(r_{2}\right)$. If $r$ is a unit then there exists $s \in R$ such that $r s=1$, then $N(r) N(s)=N(1)=1$, so $N(r)=1$. So $r=a+b \sqrt{-5}$ such that $a^{2}+5 b^{2}=1$. The only possibility is $r= \pm 1$. Claim that $2 \in R$ is irreducible:

Proof. Let $2=a b$ so $N(a) N(b)=4 . \quad N(a)=1,2$ or 4 . But $N(a) \neq 2$ so $N(a)=1$ or $4, N(b)=4$ or 1 so $a$ or $b$ is a unit.

Similarly we can show that 3 and $1 \pm \sqrt{-5}$ are irreducible.
Note that

$$
(1+\sqrt{-5})(1-\sqrt{-5})=1+5=6=2 \cdot 3
$$

so $2 \mid(1+\sqrt{-5})(1-\sqrt{-5})$ but $N(1 \pm \sqrt{-5})=6$ is not divisible by $N(2)=4$ so $2 \nmid 1 \pm \sqrt{-5}$. Thus $2 \in R$ is not prime.

We also find that $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ has two different factorisations into irreducibles.

Definition (Euclidean domain). An integral domain $R$ is a Euclidean domain (ED) if there is a function $\varphi: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$, a Euclidean function such that

1. $\forall a, b \in R \backslash\{0\}, \varphi(a b) \geq \varphi(a)$,
2. $\forall a, b \in R, b \neq 0$, we have $a=b q+r$ with $r=0$ or $\varphi(r)<\varphi(b)$.

## Example.

1. $\mathbb{Z}$ is a Euclidean domain with $\varphi(n)=|n|$.
2. For a field $\mathbb{F}, \mathbb{F}[X]$ is a Euclidean domain with $\varphi(f)=\operatorname{deg} f$.
3. $\mathbb{Z}[i]$ is a Euclidean domain with $\varphi(a+i b)=a^{2}+b^{2}=(a+i b)(a-i b)$.

Proof. Let $z_{1}, z_{2} \in \mathbb{Z}[i], z_{2} \neq 0$. Consider $\frac{z_{1}}{z_{2}} \in \mathbb{C}$. By considering the lattice of Gaussian integers on the complex plane, we can find $q \in \mathbb{Z}[i]$ such that $\left|\frac{z_{1}}{z_{2}}-q\right|<1$. Consider $r=z_{1}-q z_{2} \in \mathbb{Z}[i]$,

$$
\left|\frac{r}{z_{2}}\right|=\left|\frac{z_{1}}{z_{2}}-q\right|<1
$$

so $|r|<\left|z_{2}\right|$ so $\varphi(r)=|r|^{2}<\left|z_{2}\right|^{2}=\varphi\left(z_{2}\right)$.
4. Similarly we can show $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
| Proposition 2.19. If $R$ is a $E D$ then it is a PID.
This proof is a generalisation of the proof that $\mathbb{Z}$ is a PID.
Proof. Let $I \unlhd R$ and choose $0 \neq b \in I$ such that $\varphi(b)$ is minimal. If $a \in I$ then Euclidean property gives $a=q b+r$ with $\varphi(r)<\varphi(b)$ or $r=0$. Then $r=a-q b \in I$ but if $r \neq 0$ then minimality of $\varphi(b)$ is contradicted. Thus $r=0$ and $a \in(b) . I=(b)$.

Example. $\mathbb{Z}, \mathbb{F}[X]$ and $\mathbb{Z}[i]$ are PIDs.
Example. $\mathbb{Z}[X]$ is not a PID. Consider $(2, X) \unlhd \mathbb{Z}[X]$. Suppose $(2, X)=(f)$ for some $f \in \mathbb{Z}[X]$, then $f \mid 2$. Degrees of polynomials on an integral domain add under multiplication so if $f$ divides a constant polynomial it must be constant. Thus $f= \pm 1, \pm 2$. If $f= \pm 2, \pm 2 \nmid X$. Absurd. Thus $f= \pm 1,(f)=\mathbb{Z}[X]$. But $1 \neq(2, X)$. Absurd.

Example. Let $\mathbb{F}$ be a field and $A \in \mathcal{M}_{n}(\mathbb{F})$. Consider

$$
I=\{f \in \mathbb{F}[X]: f(A)=0\}
$$

If $f, g \in I,(f+g)(A)=f(A)+g(A)=0$. If $h \in \mathbb{F}[X],(f h)(A)=f(A) h(A)=0$ so $I \unlhd \mathbb{F}[X]$. As $\mathbb{F}[X]$ is a PID, $I=\left(m_{A}\right)$ for some $m_{A} \in \mathbb{F}[X]$. This $m_{A}$ is the minimal polynomial of $A$ and it follows that it is unique up to a unit.

Definition (Unique factorisation domain). An integral domain is a unique factoriation domain (UFD) if

- every non-zero, non-unit is a product of irreducibles,
- if $p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$ are factorisations into irreducibles, then $n=m$ and $p_{i}$ is an associate of $q_{i}$ up to reordering.

We will show that PIDs are UFDs.

Lemma 2.20. If $R$ is a PID then irreducibles are primes.
Proof. Let $p \in R$ be irreducible and suppose $s \mid a b$. Need to show that $p \mid a$ or $p \mid b$. Suppose $p \nmid a$. Consider $(p, a) \unlhd R$. As $R$ is a PID, there exists $d \in R$ such that $(d)=(p, a)$, so $p=q_{1} d, a=q_{2} d$. As $p$ is irreducible, either $q_{1}$ or $d$ is a unit. If $q_{1}$ is a unit then $a=q_{2} d=q_{2}\left(q_{1}^{-1} p\right)$ so $p \mid a$. Thus $d$ must be a unit and $(p, a)=(d)=R$. Thus $1_{R}=r p+s a$ for some $r$ and $s . b=b r p+a b s$ so $p \mid b$.

Lemma 2.21. Let $R$ be a PID and $I_{1} \subseteq I_{2} \subseteq I_{2} \subseteq \cdots$ be an increasing sequence of ideal. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N, I_{n}=I_{n+1}$.

Definition (Noetherian). The above condition is the ascending chain condition. A chain satisfying the above condition is Noetherian.

Proof. Let $I=\bigcup_{n=1}^{\infty} I_{n}$ which is again an ideal so $I=(a)$ for some $a \in R$. Then $a \in I$ so there exists $N \in \mathbb{N}$ such that $a \in I_{N}$. Then

$$
(a) \subseteq I_{N} \subseteq I_{N+1} \cdots \subseteq(a)
$$

so equality throughout.
\| Theorem 2.22. PID is $U F D$.
Proof. Let $R$ be a PID. The proof consists of two parts: first show the existence of factorisation in $R$ (the proof thereof generalises to all Noetherian rings), and then show its uniqueness.

1. Suppose for contradiction there exists $a \in R$ which cannot be written as a product of irreducibles. then $a$ is not irreducible so $a=a_{1} b_{1}$ with $a_{1}, b_{1}$ not units and one of then cannot be written as a product of irreducibles (otherwise $a$ would be), say it is $a_{1}$. Hence $a_{1}=a_{2} b_{2}$ where $a_{2}, b_{2}$ are not units and wlog $a_{2}$ could not be written as a product of irreducibles. Continue this way. Now

$$
(a) \subseteq\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq \cdots
$$

is an ascending chain so by ACC we must have $\left(a_{N}\right)=\left(a_{N+1}\right)$ for some $N$, i.e. $a_{N}=a_{N+1} b_{N+1}$ with $b_{N+1}$ a unit.
2. Let $p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$ be factorisations into irreducibles. Thus $p_{1} \mid q_{1} \cdots q_{n}$. In a PID irreducibles are primes so $p_{1} \mid q_{i}$ for some $i$. After reordering $p_{1} \mid q_{1}$ so $q_{1}=p_{1} \cdot a$. As $q_{1}$ is irreducible, $a$ is a unit so $p_{1}$ and $q_{1}$ are associates. Now $p_{1}\left(p_{2} \cdots p_{n}-a q_{2} \cdots q_{m}\right)=0$. As $R$ is an integral domain $p_{2} \cdots p_{n}=\left(a q_{2}\right) \cdots q_{m}$. Continue this way, we get $n \leq m$ and $1=$ (unit) $\cdot q_{n+1} \cdots q_{m}$. Thus $q_{n+1}, \ldots q_{m}$ are units. Absrud. Thus $n=m$ and $p_{i}$ 's and $q_{i}$ 's are associates up to reordering.

## Definition (gcd, lcm).

- $d$ is a greatest common divisor $(\operatorname{gcd})$ of $a_{1}, \ldots, a_{n}$, written $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$, if $d \mid a_{i}$ for all $i$ and if $d^{\prime} \mid a_{i}$ for all $i$ then $d^{\prime} \mid d$.
- $d$ is a lowest common multiple (lcm) of $a_{1}, \ldots, a_{n}$, written $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$, if $a_{i} \mid m$ for all $i$ and if $a_{i} \mid d^{\prime}$ for all $i$ then $d \mid d^{\prime}$.

It is easy to see that if gcd or lcm exists then it is unique up to associates.
| Proposition 2.23. If $R$ is a UFD then gcd's and lcm's exist.
Proof. Write each $a_{i}$ as a product

$$
a_{i}=u_{i} \cdot \prod_{j} p_{j}^{n_{i} j}
$$

where $u_{i}$ is a unit and $p_{j}$ 's are (the same) irreducibles which are not associates of each other. Set

$$
d=\prod_{j} p_{j}^{m_{j}}
$$

where $m_{j}=\min _{i} n_{i j}$. Certainly $d \mid a_{i}$ for all $i$. If $d^{\prime} \mid a_{i}$ for all $i$ then write

$$
d^{\prime}=u \cdot \prod_{j} p_{j}^{t_{j}}
$$

for some $t_{j}$. As $d^{\prime} \mid a$ we must have $t_{j} \leq n_{i j}$ for all $i$ so $t_{j} \leq \min _{i} n_{i j}=m_{j}$ for all $j$. Thus $d^{\prime} \mid d$.

The argument for lcm is similar.

### 2.5 Factoriation in polynomial rings

For a field $\mathbb{F}$ we know $\mathbb{F}[X]$ is a ED, so also a PID and UFD so

1. any $I \unlhd \mathbb{F}[X]$ is principal, i.e. $I=(f)$ for some $f$;
2. $f \in \mathbb{F}[X]$ is irreducible if and only if $f$ is prime;
3. let $f \in \mathbb{F}[X]$ be irreducible and $(f) \subseteq J \unlhd \mathbb{F}[X]$ be a larger ideal. Then $J=(g)$ for some $g \in \mathbb{F}[X]$ so $(f) \subseteq(g)$, i.e. $g \mid f$. But $f$ is irreducible so either $g$ is a unit, then $(g)=\mathbb{F}[X]$, or $g$ is an associate of $f$, so $(g)=(f)$. Thus ( $f$ ) is maximal;
4. 

$$
(f) \text { prime } \Longrightarrow f \text { prime } \Longrightarrow f \text { irreducible } \Longrightarrow(f) \text { maximal }
$$ so prime ideals of $\mathbb{F}[X]$ are precisely the maximal ideals;

5. $f \in \mathbb{F}[X]$ is irreducible if and only if $(f)$ is maximal, if and only if $\mathbb{F}[X] /(f)$ is a field.

Definition (Content). Let $R$ be a UFD and

$$
f=a_{0}+a_{1} X+\ldots a_{n} X^{n} \in R[X]
$$

with $a_{n} \neq 0$. The content is

$$
c(f)=\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right) .
$$

Definition (Primitive). $f$ above is primitive if $c(f)$ is a unit, i.e. $a_{i}$ 's are coprime.

Theorem 2.24 (Gauss' Lemma). Let $R$ be a UFD and $F$ be its field of fractions. Let $f \in R[X]$ be primitive. Then $f$ is irreducible in $R[X]$ if and only if $f$ is irreducible in $F[X]$.

Example. Let $f=1+X+X^{3} \in \mathbb{Z}[X] . c(f)=1$ so $f$ is primitive. Suppose $f=g h$, a product of irreducibles in $\mathbb{Z}[X]$. As $f$ is primitive, neither $g$ nor $h$ can be a constant polynomial so they have degree 1 and 2 respectively. Wlog suppose $g=b_{0}+b_{1} X, h=c_{0}+c_{1} X+c_{2} X^{2} \in \mathbb{Z}[X]$. Expanding out and equating the coefficients, $b_{0} c_{0}=1, b_{1} c_{2}=1$ so $b_{0} b_{1}= \pm 1$. Thus $g$ has one of $\pm 1$ as a root and so does $f$. But it doesn't so such factorisation does not exist. Thus $\mathbb{Q}[X] /\left(1+X+X^{3}\right)$ is a field.

Lemma 2.25. Let $R$ be a UFD. If $f, g \in F[X]$ are primitives then so is $f g$.
Proof. Let

$$
\begin{aligned}
& f=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \\
& g=b_{0}+b_{1} X+\cdots+b_{m} X^{m}
\end{aligned}
$$

with $a_{n}, b_{m} \neq 0$. If $f g$ is not primitive, then $c(f g)$ is not a unit so there is an irreducible $p \mid c(f g)$. As $c(f)$ and $c(g)$ are units, we have

$$
\begin{aligned}
& p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{k-1}, p \nmid a_{k} \\
& p\left|b_{0}, p\right| b_{1}, \ldots, p \mid b_{\ell-1}, p \nmid b_{\ell}
\end{aligned}
$$

The coefficients of $X^{k+\ell}$ in $f g$ is

$$
\sum_{i+j=k+\ell} a_{i} b_{j}=\cdots+a_{k+1} b_{\ell-1}+a_{k} b_{\ell}+a_{k-1} b_{\ell+1}+\cdots
$$

where LHS is divisible by $p$ so $p \mid a_{k} b_{\ell}$ but $p$ is prime so $p \mid a_{k}$ or $p \mid b_{\ell}$. Absurd. Thus $c(f g)$ is a unit and $f g$ is a primitive.

Corollary 2.26. Let $R$ be a UFD. Then $c(f g)$ is an associate of $c(f) c(g)$.
Proof. Let $f=c(f) \cdot f_{1}, g=c(f) \cdot g_{1}$ with $f_{1}, g_{1}$ primitive. Then

$$
f g=c(f) c(g) \cdot\left(f_{1} g_{1}\right)
$$

where $f_{1} g_{1}$ is primitive by the lemma above. Thus $c(f) c(g)$ is a gcd of the coefficients of $f g$.

Proof of Gauss' Lemma. Let $f \in R[X]$ be primitive. If $f=g h$ is reducible in $R[X]$ then $g, h$ cannot be constants as otherwise $f$ would not be primitive. Thus $g, h \in F[X]$ are not units so $f \in F[X]$ is reducible.

Suppose instead $f$ is reducible in $F[X]$, say $f=g h$. We can "clear the denominators": find $a, b \in R$ such that $a g, b h \in R[X]$, then

$$
a b f=(a g) \cdot(b h) \in R[X] .
$$

Take contents, $a g=c(a g) \cdot g_{1}, b h=c(b h) \cdot h_{1}$ with $g_{1}, h_{1}$ primitive. Then

$$
a b \cdot f=c(a g) c(b f) \underbrace{g_{1} h_{1}}_{\text {primitive }}
$$

so $a b$ is an associate of $c(a g) c(b h)$ so $c(a g) c(b h)=u a b$ where $u$ is a unit. Thus $a b f=u a b g_{1} h_{1}$ and cancel to get $f=\left(u g_{1}\right) h_{1}$ is reducible in $R[X]$.

Proposition 2.27. Let $R$ be a $U F D$ and $g \in R[X]$ primitive. Let $I=(g) \unlhd$ $F[X]$ where $F$ is the field of fraction of $R$ and $J=(g) \unlhd R[X]$. Then

$$
J=I \cap R[X] .
$$

Equivalently, if $f \in R[X]$ is divisible by a primitive $g \in F[X]$ then it is divisible by $g$ in $R[X]$.

Proof. The $\subseteq$ inclusion is clear. To show the other direction, let $f=g h \in F[X]$. Clear denominators by find $b \in R$ such that $b h \in R[X]$ so $b f=(b h) \cdot g \in R[X]$. Thus $b f=c(b h) h_{1} g$ with $h_{1}$ primitive. Now it follows that $b \mid c(b h)$, as $b c(f)=c(b h)$, so we get $f=c(f) \cdot h_{1} g \in R[X] . g$ divides $f$ in $R[X]$.
| Theorem 2.28. If $R$ is a UFD then so is $R[X]$.
Proof. To show existence, let $f \in R[X]$ and write $f=c(f) \cdot f_{1}$ with $f_{1}$ primitive. As $R$ is a UFD we can write $c(f)=p_{1} \cdots p_{n} \in R$ with $p_{i}$ irreducible in $R$, so also irreducible in $R[X]$. If $f_{1}$ is not irreducible, write $f_{1}=f_{2} \cdot f_{3}$ with $f_{2}$, $f_{3}$ not units and are primitive. Thus $f_{2}, f_{3}$ are not constants so have degree smaller than that of $f_{1}$. If $f_{2}$ or $f_{3}$ is irreducible, factor again. The degree continues to strictly decrease and this stops eventually. So

$$
f=p_{1} \cdots p_{n} q_{1} \cdots q_{m},
$$

a product of irreducibles.
Now for the uniqueness part, note $p_{1} \cdots p_{n}=c(f) \in R$, a UFD so the $p_{i}$ 's are unique up to reordering and associates. Thus it suffices to show if $q_{1} \cdots q_{m}=r_{1} \cdots r_{\ell}$ as products of primitive polynomials then $m=\ell$ and the $q_{i}$ 's and $r_{i}$ 's are the same up to reordering and associates. Since $F[X]$ is a PID and thus UFD, $q_{1} \cdots q_{m}=r_{1} \cdots r_{\ell} \in R[X] \subseteq F[X]$ implise that $m=\ell$ and $q_{i}$ 's equal to $r_{i}$ 's in $F[X]$. If $q_{1}$ is an associate of $r_{1}$ in $F[X]$ then $q_{1}=u r_{1}$ for some unit $u \in F[X]$. Then $u \in F$ is a unit, write $u=\frac{a}{b}$. Get $b q_{1}=a r_{1} \in R[X]$. Taking contents, it follows that $b$ is an associate of $a$ in $R$. Cancel to get $q_{1}=a r_{1} \in R[X]$. Repeat for $q_{i}$ 's and $r_{i}$ 's.

## Example.

1. $\mathbb{Z}[X]$ is a UFD.
2. If $R$ is a UFD then so is $R\left[X_{1}, \ldots, X_{n}\right]$.

Proposition 2.29 (Eisenstein's criterion). Let $R$ be a UFD and $f=a_{0}+$ $a_{1} X+\cdots+a_{n} X^{n} \in R[X]$ with $a_{n} \neq 0$ be primitive. Suppose $p \in R$ is an irreducible such that

- $p \nmid a_{n}$,
- $p \mid a_{i}$ for $i=0,1, \ldots, n-1$,
- $p^{2} \nmid a_{0}$
then $f$ is irreducible in $R[X]$, so also in $F[X]$.
Proof. Let $f=g h$ with

$$
\begin{aligned}
g & =r_{0}+r_{1} X+\cdots+r_{k} X^{k} \\
h & =s_{0}+s_{1} X+\cdots+r_{\ell} X^{\ell}
\end{aligned}
$$

with $r_{k}, s_{\ell} \neq 0$. Then $k+\ell=n$ and $a_{n}=r_{k} s_{\ell}$. As $p \nmid a_{n}, p \nmid r_{k}$ and $p \nmid s_{\ell}$. Since $p \mid a_{0}$ and $p^{2} \nmid a_{0}$, suppose wlog that $p \mid r_{0}, p \nmid s_{0}$. Suppose $p\left|r_{0}, p\right| r_{1}, p \mid r_{j-1}, p \nmid r_{j}$. Then

$$
a_{j}=s_{0} r_{j}+s_{1} r_{j-1}+s_{2} r_{j-2}+\cdots+s_{j} r_{0}
$$

so $p \nmid a_{j}$ and by $2 j=n$. Thus $\operatorname{deg} g=n$ and $h$ is a constant. As $f$ (and hence $g$ and $h)$ is a primitive $h$ is a unit.

Example. For $p \in \mathbb{Z}$ prime, $f=X^{m}-p \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$ so $f$ does not have a root in $\mathbb{Q}$. In particular, this shows that $\sqrt[m]{p} \notin \mathbb{Q})$. This will be important in IID Galois Theory.

Example. For $p \in \mathbb{Z}$ prime, let

$$
f=X^{p-1}+X^{p-2}+\cdots+X+1 \in \mathbb{Z}[X] .
$$

Note that $(X-1) f=X^{p}-1$. Consider the ring isomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z}[X] & \rightarrow \mathbb{Z}[X] \\
X & \mapsto X+1
\end{aligned}
$$

Then

$$
\varphi(f)=\underbrace{X^{p-1}}_{p \nmid}+\underbrace{\binom{p}{1}}_{p \mid} X^{p-1}+\cdots+\underbrace{\binom{p}{p-2}}_{p \mid} X+\underbrace{\binom{p}{p-1}}_{=p}
$$

so Eisenstein's criterion says that $\varphi(f)$ is irreducible, so is $f$.
Remark. The hypothesis of Eisenstein's criterion depends on the ambient ring while the conclusiohn does not. As a heuristics, we can apply ring isomorphisms to reduce the problem sometimes.

### 2.6 Gaussian integers

Recall

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\} \leq \mathbb{C}
$$

It has a norm $N(a+i b)=a^{2}+b^{2}$, making it a ED, and thus a PID and UFD. In particular primes and irreducibles agree. The units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$ as they are the only elements of norm 1 . In addition, we have the following observations:

1. $2=(1+i)(1-i)$ is not a prime.
2. $N(3)=9$. If $3=x y$ then $9=N(x) N(y)$. Either $x$ or $y$ is a unit or $N(x)=N(y)=3$. But the norm is never 3 so 3 is a prime.
3. $5=(2+i)(2-i)$ is not a prime.
4. 7 is a prime.

Proposition 2.30. A prime $p \in \mathbb{Z}$ is a prime in $\mathbb{Z}[i]$ if and only if $p \neq a^{2}+b^{2}$ for $a, b \in \mathbb{Z}$.

Proof.

- $\Rightarrow$ : If $p=a^{2}+b^{2}=(a+i b)(a-i b)$, it is reducible and thus not a prime.
- $\Leftarrow$ : Note $N(p)=p^{2}$. If $p$ factors as $u v$ with $u, v$ not units then $N(u)=$ $N(v)=p$. Write $u=a+i b$, we have $p=N(u)=a^{2}+b^{2}$.

Now we prove a lemma regarding the multiplicative group of a finite field:
Lemma 2.31. Let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ be a field with $p$ elements and $p$ prime. Then $\mathbb{F}_{p}^{\times}=\mathbb{F}_{p} \backslash\{0\}$ is a group under multiplication and is isomorphic to $C_{p-1}$.

Proof. Certainly $\mathbb{F}_{p}^{\times}$is an abelian group of order $p-1$. By the classification theorem of finite abelain groups, $\mathbb{F}_{p}^{\times}$is either cyclic or contains $C_{m} \times C_{m}$ as a subgroup for some $m \geq 2$.

Suppose $C_{m} \times C_{m} \leq \mathbb{F}_{p}^{\times}$. Consider $f=X^{m}-1 \in \mathbb{F}_{p}[X]$. Each element of $C_{m} \times C_{m} \leq \mathbb{F}_{p}^{\times} \subseteq \mathbb{F}_{p}$ gives a root of $f$ so it has at least $m^{2}$ distinct roots. But as $\mathbb{F}_{p}[X]$ is a ED and thus UFD, it can be factorised into at most $m$ unique irreducibles. Thus it has at most $m$ distinct roots in $\mathbb{F}_{p}$. Thus there is no subgroup $C_{m} \times C_{m}$ in $\mathbb{F}_{p}^{\times}$and $\mathbb{F}_{p}^{\times}$is cyclic.

Proposition 2.32. The primes in $\mathbb{Z}[i]$ are, up to associates,

1. prime $p \in \mathbb{Z}$ with $p=3 \bmod 4$,
2. $z \in \mathbb{Z}[i]$ such that $N(z)=p$ where $p$ is a prime and $p=2$, or $p=1$ $\bmod 4$.

Proof. First show what we claimed are indeed primes, i.e. irreducibles:

1. if $p=3 \bmod 4, p \neq a^{2}+b^{2}$ so $p \in \mathbb{Z}[i]$ is a prime.
2. suppose $z=u v$ then $N(u) N(v)=p$ so $N(u)$ or $N(v)=1 . u$ or $v$ is a unit so $z$ is irreducible.

Now let $z \in \mathbb{Z}[i]$ be a prime. Then $\bar{z}$ is irreducible too so $N(z)=z \bar{z}$ is a factorisation of $N(z)$ into irreducibles in $\mathbb{Z}[i]$. Let $p \in \mathbb{Z}$ be a prime dividing $N(z)$.

- Case 1: $p=3 \bmod 4$. Then $p$ is irreducible in $\mathbb{Z}[i]$. As $p|N(z), p| z$ or $p \mid \bar{z}$. Wlog $p \mid z$. As $p$ and $z$ are both irreducibles, they are associates.
- Case 2: $p=2$, or $p=1 \bmod 4$. If $p=1 \bmod 4$, consider $\mathbb{F}_{p}^{\times} \cong C_{p-1}=$ $C_{4 k}$. It has a unique element of order 2 , namely [ -1$]$. As $4 \mid p-1$, there is also an element $[a] \in \mathbb{F}_{p}^{\times}$order 4. Then $\left[a^{2}\right]$ has order 2 and thus $a^{2}=-1$ $\bmod p$. Thus there exists $b \in \mathbb{Z}$ such that $a^{2}+1=p b, p \mid(a+i)(a-i)$.
If $p=2$ then $p \mid(1+i)(1-i)$.
But $p \nmid a+i, p \nmid a-i$ so $p \in \mathbb{Z}[i]$ is not prime and thus not irreducible. Hence $p=z_{1} z_{2}$ with $z_{1}, z_{2}$ not units. $p^{2}=N(p)=N\left(z_{1}\right) N\left(z_{2}\right), N\left(z_{1}\right)=$ $N\left(z_{2}\right)=p$ so $p=z_{1} \overline{z_{1}}=z_{2} \overline{z_{2}}$. But also $p=z_{1} z_{2}$ so $z_{2}=\bar{z}_{1}$.
We choose $p$ such that $p \mid N(z)$ so $z_{1} \overline{z_{1}} \mid z \bar{z}$ and $z$ is prime so $z \mid z_{1}$ or $z \mid \overline{z_{1}} . z_{1}$ or $\overline{z_{1}}$ is an associate of $z . N(z)=N\left(z_{1}\right)$ or $N\left(\overline{z_{1}}\right)=p$.

Corollary 2.33. An integer $n \in \mathbb{Z}>0$ can be written as $a^{2}+b^{2}$, $a, b \in \mathbb{Z}$ if and only if when we write $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}$ with $p_{i}$ 's distinct, if $p_{i}=3$ $\bmod 4$ then $n_{i}$ 's are even.

Proof. Let $n=a^{2}+b^{2}=(a+i b)(a-i b)=N(a+i b)$. Let $z=a+i b$. Then $z=\alpha_{1} \cdots \alpha_{s}$ as a product of irreducibles (i.e. primes) in $\mathbb{Z}[i]$. Then $n=N\left(\alpha_{1}\right) \cdots N\left(\alpha_{s}\right)$. Each $\alpha_{i}$ is either a prime $p$ congruent to $3 \bmod 4$ so $N\left(\alpha_{i}\right)=p^{2}$, or has $N\left(\alpha_{i}\right)=q$, a prime not congruent to $3 \bmod 4$. Thus $n$ can be written as a product of primes as claimed.

Conversely, suppose $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$ with $n_{i}$ even if $p=3 \bmod 4$. For each $i$ if $p_{i}=3 \bmod 4$ then $N\left(p_{i}\right)=p_{i}^{2}, p_{i}^{n_{i}}=N\left(p_{i}^{n_{i} / 2}\right)$. As $n$ is a product of norms of Gaussian integers, it is the norm of a Gaussian integer so is a sum of squares.

Example. In how many ways can 65 be written as a sum of two squares?
$65=5 \times 13,5=1^{2}+2^{2}=(2+i) \overline{(2+i)}, 13=2^{2}+3^{2}=(2+3 i) \overline{(2+3 i)}$ so

$$
\begin{aligned}
65 & =(2+i)(2+3 i) \overline{(2+i)(2+3 i)} \\
& =N((2+i)(2+3 i))=N(1+8 i)=1^{2}+8^{2} \\
& =N((2+i)(2-3 i))=N(7-4 i)=7^{2}+4^{2}
\end{aligned}
$$

Exercise (Challenge). Find conditions such that $n=a^{2}+2 b^{2}$ and $a^{2}+3 b^{2}$ in $\mathbb{Z}[\sqrt{-2}]$ and $\mathbb{Z}[\sqrt{-3}]$.

### 2.7 Algebraic integers

Definition (Algebraic integer). A complex number $\alpha \in \mathbb{C}$ is an algebraic integer if it is a root of a monic polynomial with integer coefficients.

If $\alpha$ is an algebraic integer, let $\mathbb{Z}[\alpha] \leq \mathbb{C}$ be the smallest subring containing $\alpha$, i.e. it is the image of the ring homomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z}[X] & \rightarrow \mathbb{C} \\
X & \mapsto \alpha
\end{aligned}
$$

Thus by 1 st Isomorphism Theorem $\mathbb{Z}[\alpha] \cong \mathbb{Z}[X] / I$ where $I=\operatorname{ker} \varphi$.
Proposition 2.34 (Minimal polynomial). If $\alpha$ is an algebraic integer then $I=\operatorname{ker} \varphi$ is principal and is generated by an irreducible $f_{\alpha} \in \mathbb{Z}[X]$, the minimal polynomial of $\alpha$.

Proof. As $\alpha$ is an algebraic integer, it is a root of some $f \in \mathbb{Z}[X]$ so $f \in I$. Let $f_{\alpha} \in I$ be a polynomial of minimal degree, which we may assume is positive. We want to show that

1. $I=\left(f_{\alpha}\right)$,
2. $f_{\alpha}$ is irreducible.
3. Let $h \in I$. Now $\mathbb{Q}[X]$ is a ED so we can write $h=q f_{\alpha}+r \in \mathbb{Q}[X]$ with $r=0$ or $\operatorname{deg} r<\operatorname{deg} f_{\alpha}$. Clearing denominators, there is an $a \in \mathbb{Z}$ such that aq, ar $\in \mathbb{Z}[X]$, so $a h=(a q) f_{\alpha}+a r \in \mathbb{Z}[X] . \alpha$ is a root of $h$ and of $f_{\alpha}$ so is also a root of $a r$. As $f_{\alpha}$ has minimal degree among polynomials with $\alpha$ as a root, we must have $a r=0$. Thus $a h=(a q) f_{\alpha}$. Now $c(a h)=a \cdot c(h)$, $c\left((a q) f_{\alpha}\right)=c(a q)$ so $a \mid c(a q)$ so $a q=a \bar{q}$ with $\bar{q} \in \mathbb{Z}[X]$. Cancelling shows that $\bar{q}=q$. Thus $h=\bar{q} f_{\alpha}$ so $h \in\left(f_{\alpha}\right)$.
4. $\mathbb{Z}[X] /\left(f_{\alpha}\right) \cong \mathbb{Z}[\alpha] \leq \mathbb{C}$. As $\mathbb{C}$ is an integral domain, so is $\mathbb{Z}[\alpha]$. Thus $\left(f_{\alpha}\right)$ is prime. Thus $f_{\alpha} \in \mathbb{Z}[X]$ is a prime and hence irreducible.

## Example.

1. $\alpha=i, f_{\alpha}=X^{2}+1$.
2. $\alpha=\sqrt{2}, f_{\alpha}=X^{2}-2$.
3. $\alpha=\frac{1+\sqrt{-3}}{2}, f_{\alpha}=X^{2}-X+1$.
4. Less trivially, for $d \in \mathbb{Z}, X^{5}-X+d$ has a unique real root $\alpha$. This $\alpha$ cannot be constructed using $(\mathbb{Z},+, \times, \sqrt{ })$. c.f. IID Galois Theory.

Lemma 2.35. If $\alpha$ is an algebraic integer and $\alpha \in \mathbb{Q}$ then $\alpha \in \mathbb{Z}$.
Proof. $f_{\alpha} \in \mathbb{Z}[X]$ is irreducible and primitive. By Gauss' Lemma $f_{\alpha} \in \mathbb{Q}[X]$ is also irreducible. But if $\alpha \in \mathbb{Q}, X-\alpha \mid f_{\alpha}$ in $\mathbb{Q}[X]$ so $f_{\alpha}=X-a$. But $f_{\alpha} \in \mathbb{Z}[X]$ so $\alpha \in \mathbb{Z}$.

### 2.8 Hilbert Basis Theorem

Recall that a ring $R$ satisfies the ascending chain condition (ACC) if whenever

$$
I_{1} \subseteq I_{2} \subseteq \cdots
$$

ais an increasing sequence of ideals then there exists $N \in \mathbb{N}$ such that for all $n \geq N, I_{n}=I_{n+1}$.

A ring satisfying ACC is called Noetherian.
We have shown that a PID is Noetherian.
Lemma 2.36. $A$ ring $R$ is Noetherian if and only if every ideal of $R$ if finitely generated.

Proof.

- $\Leftarrow$ : Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain of ideal and $I=\bigcup_{n} I_{n}$. Then $I=\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{i} \in R$. For all $i$ there exists $n_{i} \in \mathbb{N}$ such that $a_{i} \in I_{n_{i}}$ so

$$
\left(a_{1}, \ldots, a_{n}\right) \subseteq I_{\max _{i} n_{i} \subseteq I} \subseteq
$$

Take $N=\max _{i} n_{i}$ and the result follows.

- Suppose $R$ is Noetherian and $I \unlhd R$. Choose $a_{1} \in I$. If $I=\left(a_{1}\right)$ then done, so suppose not. Then choose $a_{2} \in I \backslash\left(a_{1}\right)$. If $I=\left(a_{1}, a_{2}\right)$ then done, so suppose not. If we are never finished by this process then we get

$$
\left(a_{1}\right) \subseteq\left(a_{1}, a_{2}\right) \subseteq \cdots
$$

which is impossible as $R$ is Noetherian. Thus $I=\left(a_{1}, \ldots, a_{n}\right)$ for some $n$.

Theorem 2.37 (Hilbert Basis Theorem). If $R$ is Noetherian then so is $R[X]$.

Proof. Let $J \unlhd R[X]$. Let $f_{1} \in J$ be of minimal minimal degree. If $J=\left(f_{1}\right)$ then done, else choose $f_{2} \in J \backslash\left(f_{1}\right)$ of minimal degree. Suppose we have

$$
\left(f_{1}\right) \subseteq\left(f_{1}, f_{2}\right) \subseteq \cdots
$$

as an ascending chain of non-stabilising ideas. Let $a_{i} \in R$ be the coefficient of the largest power of $X$ in $f_{i}$ and consider

$$
\left(a_{1}\right) \subseteq\left(a_{1}, a_{2}\right) \subseteq \cdots \unlhd R .
$$

As $R$ is Noetherian this chain stabilises, i.e. there exists $m \in \mathbb{N}$ such that all $a_{i}$ 's lie in $\left(a_{1}, \ldots, a_{m}\right)$. In particular, $a_{m+1}=\sum_{i=1}^{m} a_{i} b_{i}$ for some $b_{i} \in R$. Let

$$
g=\sum_{i=1}^{m} b_{i} f_{i} X^{\operatorname{deg} f_{m+1}-\operatorname{deg} f_{i}}
$$

which has leading term

$$
\sum_{i=1}^{m} b_{i} a_{i} X^{\operatorname{deg} f_{m+1}}=a_{m+1} X^{\operatorname{deg} f_{m+1}}
$$

Thus $\operatorname{deg}\left(f_{m+1}-g\right)<\operatorname{deg} f_{m+1}$. But $g \in\left(f_{1}, \ldots, f_{m}\right)$ but $f_{m+1} \notin\left(f_{1}, \ldots, f_{m}\right)$ so $f_{m+1}-g \notin\left(f_{1}, \ldots, f_{m}\right)$. This contradicts the minimality of the degree of $f_{m+1}$.

Example. $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right], \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ are Noetherian.

Lemma 2.38. A quotient of a Noetherian ring is Noetherian.

Corollary 2.39. Any ring which may be generated by finitely many elements is Noetherian.

Example (Non-example). $\mathbb{Z}\left[X_{1}, X_{2}, \ldots\right]$ is not Noetherian since

$$
\left(X_{1}\right) \subseteq\left(X_{1}, X_{2}\right) \subseteq \cdots
$$

is an non-stabilising ascending chain.
Remark. Suppose $\mathcal{F} \subseteq \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ is a set of polynomials. $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{F}^{n}$ is a solution of $\mathcal{F}$ if and only if $\mathcal{F}$ is contained in the kernel of

$$
\begin{aligned}
\varphi_{a}: \mathbb{F}\left[X_{1}, \ldots, X_{n}\right] & \rightarrow \mathbb{F} \\
X_{i} & \mapsto a_{i}
\end{aligned}
$$

As $\mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian, $(\mathcal{F})=\left(f_{1}, \ldots, f_{m}\right)$ for finitely many $f_{i}$ 's. $\alpha$ is a simultaneous solution to $\mathcal{F}$ if and only if $\operatorname{ker} \varphi_{\alpha} \supseteq(\mathcal{F})=\left(f_{1}, \ldots, f_{m}\right)$, if and only if $\alpha$ is a simultaneous solution to $f_{1}, \ldots, f_{n}$. That is to say, we only have to consider a finite family of polynomials of which $\alpha$ is a root. This is important in algebraic geometry.

## 3 Modules

### 3.1 Definitions

Definition (Module). Let $R$ be a commutative ring. A quadruple $\left(M,+, 0_{M}, \cdot\right)$ is an $R$-module if $\left(M,+, 0_{M}\right)$ is an abelian group and the operation $-\cdot-$ : $R \times M \rightarrow M$ satisfies

- $\left(r_{1}+r_{2}\right) \cdot m=r_{1} \cdot m+r_{2} \cdot m$,
- $r \cdot\left(m_{1}+m_{2}\right)=r \cdot m_{1}+r \cdot m_{2}$,
- $r_{2} \cdot\left(r_{1} \cdot m\right)=\left(r_{2} r_{2}\right) \cdot m$,
- $1_{R} \cdot m=m$.


## Example.

1. If $R=\mathbb{F}$ is a field then an $R$-module is precisely an $\mathbb{F}$-vector space.
2. For any ring $R, R^{n}=\underbrace{R \times \cdots \times R}_{n \text { times }}$ is an $\mathbb{R}$-module via

$$
r \cdot\left(r_{1}, \ldots, r_{n}\right)=\left(r r_{1}, \ldots, r r_{n}\right) .
$$

In particular for $n=1, R$ is an $R$-module.
3. If $I \unlhd R$ then $I$ is an $R$-module via

$$
r \cdot a=r a \in I
$$

Also $R / I$ is an $\mathbb{R}$-module via

$$
r \cdot\left(r_{1}+I\right)=r r_{1}+I \in R / I .
$$

4. For $R=\mathbb{Z}$, an $\mathbb{R}$-module is precisely an abelian group. This is because the axiom for $\cdot$ says that

$$
\begin{aligned}
-\cdot-: \mathbb{Z} \times M & \rightarrow M \\
(n, m) & \mapsto \begin{cases}\underbrace{m+\cdots+m}_{n \text { times }} & n \geq 0 \\
-\underbrace{m+\cdots+m}_{n \text { times }}) & n<0\end{cases}
\end{aligned}
$$

so - is determined by the abelian structure on $M$.
5. Let $\mathbb{F}$ be a field and $V$ be a vector space over $\mathbb{F}$. Let $\alpha: V \rightarrow V$ be a linear map. Then we can make $V$ into an $\mathbb{F}[X]$-module via

$$
\begin{aligned}
\mathbb{F}[X] \times V & \rightarrow V \\
(f, v) & \mapsto f(\alpha)(v)
\end{aligned}
$$

Different $\alpha$ 's make $V$ into different $\mathbb{F}[x]$-modules.
6. Restriction of scalars: if $\varphi: R \rightarrow S$ is a ring homomorphism and $M$ is an $S$-module, then $M$ becomes an $R$-modules via

$$
r \cdot{ }_{R} m=\varphi(r) \cdot{ }_{s} m
$$

Definition (Submodule). If $M$ is an $\mathbb{R}$-module, $N \subseteq M$ is a submodule if $N$ is a subgroup of $\left(M,+, 0_{M}\right)$ and for any $n \in N, r \in R, r \cdot n \in N$. Write $N \leq M$.

Example. A subset of $R$ is a submodule if and only if it is an ideal.

Definition (Quotient module). If $N \leq M$ is a submodule, the quotient module $M / N$ is the set of $N$-cosets in $\left(M,+, 0_{M}\right)$, i.e. the quotient abelian group with

$$
r \cdot(m+N)=r \cdot m+N
$$

Definition (Homomorphism). A function $f: M \rightarrow N$ is an $\mathbb{R}$-module homomorphism if it is a homomorphism of abelian groups and $f(r \cdot m)=$ $r \cdot f(m)$.

Example. If $R=\mathbb{F}$ is a field and $V$ and $W$ are $\mathbb{F}$-modules (i.e. $\mathbb{F}$-vector spaces), then a map is an $\mathbb{F}$-module homomorphism if and only if it is an $\mathbb{F}$-linear map.

Theorem 3.1 (1st Isomorphism Theorem). If $f: M \rightarrow N$ is an $R$-module homomorphism then

$$
\begin{aligned}
\operatorname{ker} f & =\{m \in M: f(m)=0\} \leq M \\
\operatorname{Im} f & =\{n \in N: n=f(m)\} \leq N
\end{aligned}
$$

and

$$
M / \operatorname{ker} f \cong \operatorname{Im} f
$$

Theorem 3.2 (2nd Isomorphism Theorem). Let $A, B \leq M$ be submodules. Then

$$
\begin{aligned}
& A+B=\{m \in M: m=a+b, a \in A, b \in B\} \leq M \\
& A \cap B \leq M
\end{aligned}
$$

and

$$
(A+B) / A \cong B /(A \cap B)
$$

Theorem 3.3 (3rd Isomorphism Theorem). Let $N \leq L \leq M$ be a chain of submodules. Then

$$
\frac{M / N}{L / N} \cong M / L
$$

Definition (Annihilator). If $M$ is an $R$-module and $m \in M$, the annihilator of $m$ is

$$
\operatorname{Ann}(m)=\left\{r \in R: r \cdot m=0_{M}\right\} \unlhd R
$$

The annihilator of $M$ is

$$
\operatorname{Ann}(M)=\bigcap_{m \in M} \operatorname{Ann}(m) \unlhd R
$$

Definition (Generated submodule). If $M$ is an $R$-module and $m \in M$, the submodule generated by $m$ is

$$
R m=\{r \cdot m \in M: r \in R\} .
$$

Note. Intuitively, the annihilator of an element is the stabiliser of a ring action and that of a module is the kernel. We also have

$$
R m \cong R / \operatorname{Ann}(m)
$$

Definition (Finitely generated). $M$ is finitely generated if there are $m_{1}, \ldots, m_{n} \in$ $M$ such that

$$
M=R m_{1}+\ldots R m_{n}=\left\{r_{1} m_{1}+\cdots+r_{n} m_{n}: r_{i} \in R\right\} .
$$

Lemma 3.4. An $R$-module $M$ is finitely generated if and only if there is a surjection $\varphi: R^{n} \rightarrow M$ for some $n$.

Proof.

- $\Rightarrow$ : Suppose $M=R m_{1}+\cdots+R m_{n}$. Define

$$
\begin{aligned}
\varphi: R^{n} & \rightarrow M \\
\left(r_{1}, \ldots, r_{n}\right) & \mapsto r_{1} m_{1}+\cdots+r_{n} m_{m}
\end{aligned}
$$

This is an $R$-module homomorphism and is surjective.

- $\Leftarrow$ : Let $m_{i}=\varphi((0, \ldots, 0,1,0, \ldots, 0))$ with 1 in the $i$ th position. Then

$$
\begin{aligned}
\varphi\left(\left(r_{1}, \ldots, r_{n}\right)\right) & =\varphi\left(\left(r_{1}, 0, \ldots, 0\right)+\cdots+\left(0, \ldots, 0, r_{n}\right)\right) \\
& =\varphi\left(\left(r_{1}, 0, \ldots, 0\right)\right)+\cdots+\varphi\left(\left(0, \ldots, 0, r_{n}\right)\right) \\
& =r_{1} \varphi((1,0, \ldots, 0))+\cdots+r_{n} \varphi((0, \ldots, 0,1)) \\
& =r_{1} m_{1}+\cdots+r_{n} m_{n}
\end{aligned}
$$

As $\varphi$ is surjective, $M=R m_{1}+\cdots+R m_{n}$.

Corollary 3.5. Let $M$ be an $R$-module and $N \leq M$. If $M$ is finitely generated the so is $M / N$.

Proof.

$$
R^{n} \xrightarrow{f} M \xrightarrow{\pi} M / N .
$$

Note. A submodule of a finitely generated $R$-module need not be finitely generated. For example,

$$
\left(X_{1}, X_{2}, \ldots\right) \unlhd \mathbb{Z}\left[X_{1}, X_{2}, \ldots\right]=R
$$

is an $R$-module but not finitely generated, as otherwise it would be a finitely generated ideal.

Example. For $\alpha \in \mathbb{C}, \alpha$ is an algebraic integer if and only if $\mathbb{Z}[\alpha]$ is a finitely generated $\mathbb{Z}$-module.

### 3.2 Direct Sums and Free Modules

Definition (Direct sum). If $M_{1}, \ldots, M_{k}$ are $R$-modules, the direct sum $M_{1} \oplus \cdots \oplus M_{k}$ is the set $M_{1} \times \cdots \times M_{k}$ with addition

$$
\left(m_{1}, \ldots, m_{k}\right)+\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)=\left(m_{1}+m_{1}^{\prime}, \ldots, m_{k}+m_{k}^{\prime}\right)
$$

and $R$-module structure

$$
r \cdot\left(m_{1}, \ldots, m_{k}\right)=\left(r m_{1}, \ldots, r m_{k}\right) .
$$

## Example.

$$
R^{n}=\underbrace{R \oplus \cdots \oplus R}_{n \text { times }} .
$$

Definition (Independence). Let $m_{1}, \ldots m_{k} \in M$. They are independent if

$$
\sum_{i} r_{i} \cdot m_{i}=0
$$

implies that $r_{i}=0$ for all $1 \leq i \leq k$.

Definition (Free generation). A subset $S \subseteq M$ generates $M$ freely if

1. $S$ generates $M$.
2. Any function $\psi: S \rightarrow N$ to an $R$-module $N$ extends to an $R$-module homomorphism $\theta: M \rightarrow N$.


Note. We can show this extension is unique: given $\theta_{1}, \theta_{2}: M \rightarrow N$ two extensions of $\psi, \theta_{1}-\theta_{2}: M \rightarrow N$ is an $R$-module homomorphism so $\operatorname{ker}\left(\theta_{1}-\right.$ $\left.\theta_{2}\right) \leq M$. But $\theta_{1}, \theta_{2}$ both extend $\psi$ so $S \subseteq \operatorname{ker}\left(\theta_{1}-\theta_{2}\right)$. As $S$ generates $M$, $M \leq \operatorname{ker}\left(\theta_{1}-\theta_{2}\right)$ so $\theta_{1}=\theta_{2}$.

An $R$-module which is freely generated by $S \subseteq M$ is said to be free and $S$ is called a basis.

Proposition 3.6. For a finite subset $S=\left\{m_{1}, \ldots, m_{k}\right\} \subseteq M$, TFAE:

1. $M$ is freely generated by $S$.
2. $M$ is generated by $S$ and $S$ is independent.
3. Every $m \in M$ can be written as $r_{1} m_{1}+\cdots+r_{k} m_{k}$ for some unique $r_{i} \in R$.

Proof.

- $1 \Rightarrow 2$ : Let $S$ generate $M$ freely. If $S$ is not independent, then there is a non-trivial relation

$$
\sum_{i=1}^{k} r_{i} m_{i}=0
$$

with $r_{j} \neq 0$. Let

$$
\begin{aligned}
\psi: S & \rightarrow R \\
m_{i} & \mapsto \begin{cases}0_{R} & i \neq j \\
1_{R} & i=j\end{cases}
\end{aligned}
$$

This extends to an $R$-module homomorphism $\theta: M \rightarrow R$. Then

$$
0=\theta(0)=\theta\left(\sum r_{i} m_{i}\right)=\sum r_{i} \theta\left(m_{i}\right)=r_{j}
$$

Absurd. Thus $S$ is independent.

- The other steps follow similarly from those in IB Linear Algebra.

Example. Unlike vector spaces, a minimal generating set need not be independent. For example $\{2,3\} \subseteq \mathbb{Z}$ generates $\mathbb{Z}$ but is not linear independent as $(-3) \cdot 2+(2) \cdot 3=0$.

However, like vector spaces, in case a module is freely generated, it is isomorphic to direct sums of copies of the ring:

Lemma 3.7. If $S=\left\{m_{1}, \ldots, m_{k}\right\} \subseteq M$ freely generates $M$ then

$$
M \cong R^{k}
$$

as an $R$-module.
Proof. This is entirely analogous to vector spaces. Let

$$
\begin{aligned}
f: R^{k} & \rightarrow M \\
\left(r_{1}, \ldots, r_{k}\right) & \mapsto \sum_{i} r_{i} m_{i}
\end{aligned}
$$

It is surjective as $S$ generates $M$ and injective as $m_{i}$ 's are independent.
If an $R$-module is generated by $m_{1}, \ldots, m_{k}$, we have seen before that there is a surjection $f: R^{k} \rightarrow M$. We define

Definition (Relation module). The relation module for the generators is

$$
\text { ker } f \leq R^{k} \text {. }
$$

As $M \cong R^{k} / \operatorname{ker} f$, knowing $M$ is equivalent to knowing the relation module.
Definition (Finitely presented). $M$ is finitely presented if there is a finite generating set $m_{1}, \ldots, m_{k}$ for which the associated relation module is finitely generated.

Let $\left\{n_{1}, \ldots, n_{r}\right\} \subseteq \operatorname{ker} f \leq R^{k}$ be a set of generators. Then

$$
n_{i}=\left(r_{i 1}, r_{i 2}, \ldots, r_{i k}\right)
$$

and $M$ is generated by $m_{1}, \ldots, m_{k}$ subject to relations

$$
\sum_{j=1}^{k} r_{i j} m_{j}=0
$$

for $1 \leq i \leq r$.
| Proposition 3.8 (Invariance of Dimension). If $R^{n} \cong R^{m}$ then $n=m$.
Note. This does not hold in general for modules over non-commutative rings.
Proof. As a general strategy, let $I \unlhd R$. Then

$$
I M=\left\{\sum a_{i} m_{i}: a_{i} \in I, m_{i} \in M\right\} \leq M
$$

is a submodule as

$$
r \cdot \sum a_{i} m_{i}=\sum\left(r a_{i}\right) m_{i} \in I M
$$

Thus we have a quotient $R$-module $M / I M$. We can make this into an $R / I$-module via

$$
(r+I) \cdot(m+I M)=r m+I M
$$

Let $I \unlhd R$ be a maximal proper ideal (this requires Zorn's Lemma). Then $R / I$ is a field and therefore $R^{n} \cong R^{m}$ implies

$$
\begin{aligned}
R^{n} / I R^{n} & \cong R^{m} / I R^{m} \\
(R / I)^{n} & \cong(R / I)^{m}
\end{aligned}
$$

This is a vector space isomorphism so $n=m$.
We have classified all finite abelian groups (well, at least we claimed so), i.e. $\mathbb{Z}$-modules. What if we want to classify all $R$-modules? That is going to be the final goal we will build towards.

Recall that $M$ is finitely generated by $m_{1}, \ldots, m_{k}$ if and only if there is a surjection $f: R^{k} \rightarrow M . M$ is finitely presentely if and only ker $f$ is finitely generated, say $n_{1}, \ldots, n_{\ell}$. Let

$$
n_{i}=\left(r_{i 1}, r_{i 2}, \ldots, r_{i k}\right)
$$

then such an $R$-module $M$ is determined by the matrix

$$
\left(\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 \ell} \\
r_{r 1} & & & \\
\vdots & & \ddots & \\
r_{k 1} & & & r_{k \ell}
\end{array}\right) \in \mathcal{M}_{k, \ell}(R)
$$

### 3.3 Matrices over Euclidean Domains

For this section assume $R$ to be a Euclidean domain and let $\varphi: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ be the Euclidean function. For $a, b \in R$, we have shown that $\operatorname{gcd}(a, b)$ exists and is unique up to associates. In addition, the Euclidean algorithm shows that $\operatorname{gcd}(a, b)=a x+b y$ for some $x, y \in R$.

What follows would be very similar to what we have learned in IB Linear Algebra - in fact identical except a single modification:

Definition (Elementary row operation). Elementary row operation on an $m \times n$ matrix with entries in $R$ are

1. Add $\lambda \in R$ times the $i$ th row to the $j$ th row where $i \neq j$. This can be realised by left multiplication by $I+C$ where $C$ is $\lambda$ in $(j, i)$ th position and 0 elsewhere.
2. Swapping the $i$ th and $j$ th row where $i \neq j$. Realised by left multiplication by

$$
\left(\begin{array}{cccccc}
1 & 0 & \cdots & & & 0 \\
\vdots & \ddots & & & & \vdots \\
& & 0 & & 1 & 0 \\
0 & \cdots & 0 & \ddots & 0 & 0 \\
& & 1 & 0 & 0 & \\
\vdots & & & \ddots & & \\
0 & & \cdots & & \cdots & 0
\end{array}\right)
$$

3. Multiply the $i$ th row by a unit $c \in R$. Realised by left multiplication by

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & & 0 \\
& \ddots & & & \\
\vdots & & c & & \vdots \\
& & & \ddots & \\
0 & \cdots & & 0 & 1
\end{array}\right)
$$

Definition (Elementary column operation). Defined analogously by replacing "row" with "column".

Similarly to IB Linear Algebra, we define an equivalence relation
Definition (Equivalence). $A, B \in \mathcal{M}_{m, n}(R)$ are equivalent if there is a sequence of elementary row and column operations taking $A$ to $B$.

If $A$ and $B$ are equivalent then there are invertible square matrices $P$ and $Q$ such that

$$
B=Q A P^{-1}
$$

Theorem 3.9 (Smith Normal Form). An $n \times m$ matrix over a Euclidean
domain $R$ is equivalent to

$$
\left(\begin{array}{ccccccc}
d_{1} & & & & & & \\
& d_{2} & & & & & \\
& & \ddots & & & & \\
& & & d_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & \\
& & & & & & 0
\end{array}\right)
$$

where the $d_{i}$ 's are non-zero and

$$
d_{1}\left|d_{2}\right| \cdots \mid d_{r} .
$$

Proof. This proof is going to be algorithmic. If the matrix $A=0$ we are done. Otherwise there is a $A_{i j} \neq 0$. By swapping 1st and $i$ th row, and 1st and $j$ th column we may suppose $A_{11} \neq 0$. We want to reduce $\varphi\left(A_{11}\right)$ as much as possible. Split into three cases:

- Case 1: if there is a $A_{1 j}$ not divisible by $A_{11}$ then have

$$
A_{1 j}=q A_{11}+r
$$

with $\varphi(r)<\varphi\left(A_{11}\right)$. Add $-q$ times the 1st column to the $j$ th. This makes the $(1, j)$ th entry $r$. Swap 1 st and $j$ th column to get $A_{11}=r$. Thus we have strictly decreased the $\varphi$ value of the $(1,1)$ entry.

- Case 2: if $A_{11}$ does not divide some $A_{i 1}$, do the analogous to entries in the first column to strictly reduce $\varphi\left(A_{11}\right)$.
As $\varphi\left(A_{11}\right)$ can only strictly decrease finitely many times, after some applications of Case 1 and 2 we can assumes $A_{11}$ divides all the entries in the 1 st row and 1 st column. If $A_{1 j}=q A_{11}$ then we can add $-q$ times the 1st column to the $j$ th row to make the $(i, j)$ th entry 0 . Thus we obtain

$$
A=\left(\begin{array}{ll}
d & 0 \\
0 & C
\end{array}\right)
$$

- Case 3: if there is an entry $c_{i j}$ of $C$ not divisible by $d$, write

$$
c_{i j}=q d+r
$$

where $\varphi(r)<\varphi(d)$. Conduct the following series of elementary operations

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
d & 0 & \cdots & 0 & \cdots & 0 \\
0 & & & & & \\
\vdots & & & & & \\
0 & & & c_{i j} & & \\
\vdots & & & & & \\
0 & & & & &
\end{array}\right) \xrightarrow{\mathrm{EC} 1}\left(\begin{array}{cccccc}
d & 0 & \cdots & d & \cdots & 0 \\
0 & & & & & \\
\vdots & & & & & \\
0 & & & c_{i j} & & \\
\vdots & & & & & \\
0 & & & & &
\end{array}\right) \\
& \xrightarrow{\text { ER } 1}\left(\begin{array}{cccccc}
d & 0 & \cdots & d & \cdots & 0 \\
0 & & & & & \\
\vdots & & & & & \\
-q d & & & r & & \\
\vdots & & & & &
\end{array}\right) \underset{\rightarrow}{\operatorname{ER}} \underset{2, \mathrm{EC}}{ } 2\left(\begin{array}{cccc}
r & * & \cdots & * \\
* & & & \\
\vdots & & * & \\
* & & &
\end{array}\right)
\end{aligned}
$$

Repeat Case 1 and 2, we finally get

$$
\left(\begin{array}{ll}
d^{\prime} & \\
& C^{\prime}
\end{array}\right)
$$

where $\varphi\left(d^{\prime}\right)<\varphi(d)$.
Eventually we can suppose that $d^{\prime}$ divides every entry of $C^{\prime}$. By induction $C^{\prime}$ is equivalent to

$$
\left(\begin{array}{ccccccc}
d_{2} & & & & & & \\
& d_{3} & & & & & \\
& & \ddots & & & & \\
& & & d_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & \\
& & & & & & 0
\end{array}\right)
$$

with

$$
d_{2}\left|d_{3}\right| \cdots \mid d_{r}
$$

and we must have $d^{\prime} \mid d_{i}$ for $i>1$.
Remark. The $d_{i}$ 's in Smith Normal Form are unique up to associates.
Certainly Smith Normal Form is a nice form and the algorithm guarantees its existence and uniqueness (up to associates). However, the computation is too cumbersome to be useful. However, if we could prove it is invariant under matrix conjugation, we may apply some clever tricks to extract the $d_{i}$ 's in Smith Normal Form without explicitly computing them.

Definition (Minor). A $k \times k$ minor of a matrix $A$ is the determinant of a matrix formed by forgetting all but $k$ rows and $k$ columns of $A$.

Definition (Fitting ideal). The $k$ th Fitting ideal of $A \operatorname{Fit}_{k}(A) \unlhd R$ is the ideal generated by all $k \times k$ minors of $A$.

Given a matrix $A$ in Smith Normal Form as above with $d_{1}|\cdots| d_{r}$, the only $k \times k$ submatrices which do not have a whole row or column 0 are those which keep both $i_{1}$ th row and $i_{1}$ th column, both $i_{2}$ th row and $i_{2}$ th column, etc. Therefore

$$
\begin{aligned}
\operatorname{Fit}_{k}(A) & =\left(\operatorname{det}\left(\begin{array}{llll}
d_{i_{1}} & & & \\
& d_{i_{2}} & & \\
& & \ddots & \\
& & & d_{i_{k}}
\end{array}\right)\right) \\
& =\left(d_{i_{1}} \cdots d_{i_{k}}: \text { sequences } i_{1}, \cdots, i_{k}\right) \\
& =\left(d_{1} d_{2} \cdots d_{k}\right)
\end{aligned}
$$

as $d_{m} \mid d_{i_{m}}$ for all $m$.
Therefore from the above computation $\operatorname{Fit}_{k}(A)$ and $\operatorname{Fit}_{k-1}(A)$ determine $d_{k}$ up to associates.

Lemma 3.10. If $A$ and $B$ are equivalent matrices then $\operatorname{Fit}_{k}(A)=\operatorname{Fit}_{k}(B)$ for all $k$.

Proof. It amounts to show that elementary operations does not change $\operatorname{Fit}_{k}(A) \unlhd$ $R$. We do the first type of row operation. Fix a $k \times k$ submatrix $C$ in $A$. Recall that this row operation adds $\lambda$ times the $i$ th row to the $j$ th row. Depending on $i$ and $j$, split into three cases:

- Case 1: if the $j$ th row is not in $C$ then $C$ is unchanged, so is its determinant.
- Case 2: if the $i$ th and $j$ th rows are both in $C$, the operation changes $C$ by a row operation so its determinant is unchanged.
- Cases 3: if the $j$ th row is in $C$ but the $i$ th is not, suppose wlog the $i$ th row of $A$ corresponding to columns of $C$ has entries $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$. After the row operation, $C$ is changed to $C^{\prime}$ whose $j$ th row is

$$
\left(c_{j, 1}+\lambda f_{1}, c_{j, 2}+\lambda f_{2}, \ldots, c_{j, k}+\lambda f_{k}\right)
$$

By expansion along the $j$ th row,

$$
\operatorname{det} C^{\prime}=\operatorname{det} C \pm \lambda \operatorname{det} D
$$

where $D$ is the matrix obtained by replacing the $j$ th row of $C$ with $\left(f_{1}, \ldots, f_{k}\right)$, which is a $k \times k$ submatrix of $A$ up to reordering (which is accounted for by the $\pm$ sign), by multilinearity of $\operatorname{det}$. So $\operatorname{det} C^{\prime} \in \operatorname{Fit}_{k}(A)$ as it is a linear combination of minors. Therefore $\operatorname{Fit}_{k}\left(A^{\prime}\right) \subseteq \operatorname{Fit}_{k}(A)$ where $A^{\prime}$ is obtained from $A$ by this operation. As row operations are invertible, we must have equality.

The other two types of row operations are similar but easier. Column operations follow analogously.

Example. Let

$$
A=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{Z})
$$

Algorithmically, we can carry out the following sequence of operations to obtain Smith Normal Form:

$$
\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right) \xrightarrow{\text { ER } 2}\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right) \xrightarrow{\text { ER } 1}\left(\begin{array}{cc}
1 & 2 \\
0 & -5
\end{array}\right) \xrightarrow{\text { ER } 1}\left(\begin{array}{cc}
1 & 0 \\
0 & -5
\end{array}\right) \xrightarrow{\text { ER } 3}\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right)
$$

Alternatively, using what we have just proved,

$$
\begin{aligned}
& \operatorname{Fit}_{1}(A)=(2,-1,2,1)=(1) \\
& \operatorname{Fit}_{2}(A)=(\operatorname{det} A)=(5)
\end{aligned}
$$

so $d_{1}=1, d_{1} d_{2}=5$ so $d_{2}=5$.
Recall that we have remarked that a submodule of a finitely genereated module may not be finitely generated. However the following lemma tells us that submodules of finitely generated free modules over some particular rings are so:

Lemma 3.11. Let $R$ be a PID. Any submodule of $R^{n}$ is generated by at most $n$ elements.

Proof. Let $N \leq R^{n}$ and consider the ideal

$$
I=\left\{r \in R: \exists r_{2}, \ldots, r_{n} \text { such that }\left(r, r_{2}, \ldots, r_{n}\right) \in N\right\}
$$

which is the image of $N \xrightarrow{\iota} R^{n} \xrightarrow{\pi_{1}} R$, a submodule of $R$.
As $R$ is a PID, $I=(a) \unlhd R$ for some $a \in R$. Thus there is some

$$
n_{1}=\left(a, a_{2}, a_{2}, \ldots, a_{n}\right) \in N
$$

Suppose $\left(r_{1}, r_{2}, \ldots, r_{n}\right) \in N$. Then there exists some $x \in R$ such that $r_{1}=a x$. Then

$$
\left(r_{1}, \ldots, r_{n}\right)-x \cdot n_{1}=\left(0, r_{2}-x a_{2}, \ldots, r_{n}-x a_{n}\right) \in N \cap\left(0 \oplus R^{n-1}\right)
$$

By induction $N \cap\left(0 \oplus R^{n-1}\right) \cong N^{\prime} \leq R^{n-1}$ is generated by $n_{2}, \ldots, n_{n}$ so $n_{1}, \ldots, n_{n}$ generate $N$.

Theorem 3.12. Let $R$ be a Euclidean domain and $N \leq R^{n}$. Then there is a basis $v_{1}, \ldots, v_{n}$ of $R^{n}$ such that $N$ is generated by $d_{1} v_{1}, \ldots, d_{r} v_{r}$ for some $0 \leq r \leq n$ and some $d_{1}|\ldots| d_{r}$.

Proof. By the previous lemma there are $x_{1}, \ldots, x_{m} \in N$ which generate $N$ and $0 \leq m \leq n$. Each $x_{i}$ is an element of $R^{n}$ so we can form an $n \times m$ matrix whose first $m$ columns are $x_{i}$, i.e.

$$
A=\left(\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
x_{1} & x_{2} & \cdots & x_{m} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right) \in \mathcal{M}_{n, m}(R)
$$

We can put $A$ into Smith Normal Form with diagonal entries $d_{1}|\cdots| d_{r}$ by elementary operations. Each row operation is given by a change of basis of $R^{n}$ and each column operation is given by rechoosing the generating set $x_{1}, \ldots, x_{m}$. Thus after a change of basis of $R^{n}$ to $v_{1}, \ldots, v_{n}, N$ is generated by $d_{1} v_{1}, \ldots, d_{r} v_{r}$.

Corollary 3.13. A submodule $N \leq R^{n}$ is isomorphic to $R^{m}$ for some $m \leq n$.
Proof. By the theorem above, we can find a basis $v_{1}, \ldots, v_{n}$ for $R^{n}$ such that $N$ is generated by $d_{1} v_{1}, \ldots, d_{m} v_{m}$. These are linearly independent as a dependence between them would give a dependence between $v_{1}, \ldots, v_{n}$.

Now we are ready for the big theorem in this course:
Theorem 3.14 (Classification Theorem for Finitely Generated Modules over Euclidean Domain). Let $R$ be a Euclidean domain and $M$ a finitely generated $R$-modules. Then

$$
M \cong \frac{R}{\left(d_{1}\right)} \oplus \frac{R}{\left(d_{2}\right)} \oplus \cdots \oplus \frac{R}{\left(d_{r}\right)} \oplus R \oplus \cdots \oplus R
$$

$\|$ for some $d_{i} \neq 0$ with $d_{1}\left|d_{2}\right| \cdots \mid d_{r}$.
Proof. Let $M$ be generated by $m_{1}, \ldots, m_{n} \in M$, giving a surjection $\varphi: R^{n} \rightarrow M$ so $M \cong R^{n} / \operatorname{ker} \varphi$. By the previous theorem there is a basis $v_{1}, \ldots, v_{n}$ of $R^{n}$ such that $\operatorname{ker} \varphi$ is generated by $d_{1} v_{1}, \ldots, d_{r} v_{r}$ with $d_{1}|\cdots| d_{r}$. Thus by changing the basis of $R^{n}$ to $v_{i}$ 's, $\operatorname{ker} \varphi$ is generated by columns of

$$
\left(\begin{array}{ccccccc}
d_{1} & & & & & & \\
& d_{2} & & & & & \\
& & \ddots & & & & \\
& & & d_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & \\
& & & & & & 0
\end{array}\right)
$$

so

$$
M \cong \frac{R^{n}}{\operatorname{ker} \varphi} \cong\left(\bigoplus_{i=1}^{r} \frac{R}{\left(d_{i}\right)}\right) \oplus R \oplus \cdots \oplus R
$$

as required.
Example. Let $R=\mathbb{Z}$, a Euclidean domain, and $A$ be the abelian group (i.e. $\mathbb{Z}$-module) generated by $a, b, c$, subject to

$$
\left\{\begin{array}{l}
2 a+3 b+c=0 \\
a+2 b=0 \\
5 a+6 b+7 c=0
\end{array}\right.
$$

Thus $A=\mathbb{Z}^{3} / N$ where $N \leq \mathbb{Z}^{3}$ is generated by $(2,3,1)^{T},(1,2,0)^{T},(5,6,7)^{T}$. The matrix $A$ whose columns are these vectors

$$
A=\left(\begin{array}{lll}
2 & 1 & 5 \\
3 & 2 & 6 \\
1 & 0 & 7
\end{array}\right)
$$

has Smith Normal Form with diagonal entries 1, 1, 3:
Proof.

$$
\begin{aligned}
& \operatorname{Fit}_{1}(A)=(1) \\
& \operatorname{Fit}_{2}(A) \supseteq\left(\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\right)=(1) \\
& \operatorname{Fit}_{3}(A)=(\operatorname{det} A)=3
\end{aligned}
$$

so $d_{1}=1, d_{1} d_{2}=1, d_{1} d_{2} d_{3}=3$.
After change of basis, $N$ is generated by $(1,0,0)^{T},(0,1,0)^{T},(0,0,3)^{T}$ so

$$
A \cong \mathbb{Z} / 1 \mathbb{Z} \oplus \mathbb{Z} / 1 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \cong \mathbb{Z} / 3 \mathbb{Z}
$$

We can derive, as a corollary actually, what we stated earlier without proof

Theorem 3.15 (Structure Theorem for Finitely Generated Abelian Groups). Any finitely generated abelian group is isomorphic to

$$
C_{d_{1}} \times C_{d_{2}} \times \cdots \times C_{d_{r}} \times C_{\infty} \times \cdots \times C_{\infty}
$$

with $d_{1}|\cdots| d_{r}$.
Proof. "Trivial" should suffice here but let us spell it out: apply Classification Theorem for Finitely Generated Modules over Euclidean Domain to $\mathbb{Z}$, and note that

$$
\mathbb{Z} /(d)=C_{d}, \mathbb{Z}=C_{\infty}
$$

The above classification theorem decompose into modules whose relation modules' principal ideals form a descending chain by divisibility. It turns out it is also possible to decompose by the coprime factors of the relation modules. Before that let us prove something we have known for a (very) long time, but at a higher level:

Lemma 3.16 (Chinese Remainder Theorem). Let $R$ be a Euclidean domain and $a, b \in R$ with $\operatorname{gcd}(a, b)=1$. Then

$$
R /(a b) \cong R(a) \oplus R /(b)
$$

Proof. Consider the $R$-module homomorphism

$$
\begin{aligned}
\varphi: R /(a) \oplus R /(b) & \rightarrow R /(a b) \\
\left(r_{1}+(a), r_{2}+(b)\right) & \mapsto b r_{1}+a r_{2}+(a b)
\end{aligned}
$$

As $\operatorname{gcd}(a, b)=1,(a, b)=(1)$ so $1=x a+y b$ for some $x, y \in R$. Therefore for $r \in R, r=r x a+r y b$ so

$$
r+(a b)=r x a+r y b+(a b)=\varphi((r y+(a), r x+(b)))
$$

and so $\varphi$ is surjective.
If $\varphi\left(\left(r_{1}+(a), r_{2}+(b)\right)\right)=0$ then $b r_{1}+a r_{2} \in(a b)$. Thus $a\left|b r_{1}+a r_{2}, a\right| b r_{1}$. As $\operatorname{gcd}(a, b)=1, a \mid r_{1}$ so $r_{1}+(a)=0+(a)$. Similarly $r_{2}+(b)=0+(b)$ so $\varphi$ is injective.

We thus have
Theorem 3.17 (Primary Decomposition Theorem). Let $R$ be a Euclidean domain and $M$ be a finitely generated $R$-module. Then

$$
M \cong \bigoplus_{i=1}^{n} N_{i}
$$

with each $N_{i}$ either equal to $R$ or $R /\left(p^{m}\right)$ for some prime $p \in R$ and $n \geq 1$.
Proof. Note that if $d=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ with $p_{i} \in R$ distinct primes, by the previous lemma

$$
\frac{R}{(d)} \cong \frac{R}{\left(p_{1}^{n_{1}}\right)} \oplus \cdots \oplus \frac{R}{\left(p_{k}^{m_{k}}\right)} .
$$

Plug this into Classification Theorem for Finitely Generated Modules over Euclidean Domain to get the required result.

## $3.4 \mathbb{F}[X]$-modules and Normal Form

For any field $\mathbb{F}, \mathbb{F}[X]$ is a Euclidean domain and so results of the last section apply. If $V$ is an $\mathbb{F}$-vector space and $\alpha: V \rightarrow V$ is an endomorphism, then we have

$$
\begin{aligned}
\mathbb{F}[X] \times V & \rightarrow V \\
(f, v) & \mapsto f(\alpha)(v)
\end{aligned}
$$

which makes $V$ into an $\mathbb{F}[X]$-module, call it $V_{\alpha}$. It turns out that $\mathbb{F}[X]$-module is the correct tool to study endomorphisms and many results in IB Linear Algebra, as well as many further results in algebra, can be obtained by looking into the $\mathbb{F}[X]$-module structure.

Lemma 3.18. If $V$ is finite-dimensional then $V_{\alpha}$ is finitely generated as an $\mathbb{F}[X]$-module.

Proof. $V$ is a finitely generated $\mathbb{F}$-module and $\mathbb{F} \leq \mathbb{F}[X]$ so $V$ is also a finitely generated $\mathbb{F}[X]$-module.

## Example.

1. Suppose $V_{\alpha} \cong \mathbb{F}[X] /\left(X^{r}\right)$ as an $\mathbb{F}[X]$-module. This has $\mathbb{F}$-basis $\left\{X^{i}\right\}_{i=0}^{r-1}$ and the action of $\alpha$ corresponds to multiplication by $X$. Thus in this basis $\alpha$ has matrix representation

$$
\left(\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & & \ddots & \\
& & & 1 & 0
\end{array}\right)
$$

2. Suppose $V_{\alpha} \cong \mathbb{F}[X] /\left((X-\lambda)^{r}\right)$. Consider $\beta=\alpha-\lambda$. id. Then $V_{\beta} \cong$ $\mathbb{F}[Y] /\left(Y^{r}\right)$ as an $\mathbb{F}[Y]$-module. By the previous example $V$ has a basis so that $\beta$ is given by the matrix above and $\alpha$ is given by

$$
\left(\begin{array}{ccccc}
\lambda & & & & \\
1 & \lambda & & & \\
& 1 & \lambda & & \\
& & & \ddots & \\
& & & 1 & \lambda
\end{array}\right)
$$

3. Suppose $V_{\alpha} \cong \mathbb{F}[X] /(f)$ where

$$
f=X^{r}+a_{r-1} X^{r-1}+\cdots+a_{1} X+a_{0}
$$

Then $\left\{X^{i}\right\}_{i=0}^{r-1}$ is an $\mathbb{F}$-basis and in this basis $\alpha$ is given by

$$
\left(\begin{array}{ccccccc}
0 & & & & & & -a_{0} \\
1 & 0 & & & & & -a_{1} \\
& 1 & 0 & & & & -a_{2} \\
& & 1 & 0 & & & -a_{3} \\
& & & & \ddots & & \vdots \\
& & & & & 1 & -a_{r-1}
\end{array}\right)
$$

This matrix is called the companion matrix for $f$, written $C(f)$.

Theorem 3.19 (Rational Canonical Form). Let $V$ be a finite-dimensional $\mathbb{F}$-vector space and $\alpha: V \rightarrow V$ be linear. Regard $V$ as an $\mathbb{F}[X]$-module $V_{\alpha}$, we have

$$
V_{\alpha} \cong \frac{\mathbb{F}[X]}{\left(d_{1}\right)} \oplus \cdots \oplus \frac{\mathbb{F}[X]}{\left(d_{r}\right)}
$$

with $d_{1}\left|d_{2}\right| \cdots \mid d_{r}$. There is a basis of $V$ with respect to which $\alpha$ is given by

$$
\left(\begin{array}{cccc}
C\left(d_{1}\right) & & & \\
& C\left(d_{2}\right) & & \\
& & \ddots & \\
& & & C\left(d_{r}\right)
\end{array}\right)
$$

Proof. Apply Classification Theorem for Finitely Generated Modules over Euclidean Domain to $\mathbb{F}[X]$, a Euclidean domain. Note that no copies of $\mathbb{F}[X]$ appear as it has infinite dimension over $V$.

Some observations:

1. If $\alpha$ is represented by a matrix $A$ in some basis, then $A$ is conjugate to the above matrix.
2. The minimal polynomial of $\alpha$ is $d_{r} \in \mathbb{F}[X]$.
3. The characteristic polynomial of $\alpha$ is $d_{1} d_{2} \cdots d_{r}$.

Recall that we have two classification theorems for modules over Euclidean domain. The above theorem corresponds to invariant decomposition. One might naturally ask what result follows from primary decomposition. Before that let's convince ourselves that primes in $\mathbb{C}[X]$ are as simple as they can be:

Lemma 3.20. The primes in $\mathbb{C}[X]$ are $X-\lambda$ for $\lambda \in \mathbb{C}$ up to associates.
Proof. If $f \in \mathbb{C}[X]$ is irreducible then Fundamental Theorem of Algebra says that $f$ has a root $\lambda$, or $f$ is a constant. If it is constant then it is 0 or a unit, absurd. Thus $(X-\lambda) \mid f$, write $f=(X-\lambda) g$. But $f$ is irreducible so $g$ is a unit. Thus $f$ is an associate of $X-\lambda$.

Remark. The lemma is equivalent to the statement that $\mathbb{C}$ is algebraically closed, which says that every polynomial with coefficients in $\mathbb{C}$ factorises into linear factors over $\mathbb{C}$. In fact, every field can be extended to an algebraically closed one. This will be discussed in detail in IID Galois Theory.

Theorem 3.21 (Jordan Normal Form). Let $V$ be a finite-dimensional $\mathbb{C}$ vector space and $\alpha: V \rightarrow V$ linear. Consider $V_{\alpha}$ as an $\mathbb{C}[X]$-module, then

$$
V_{\alpha} \cong \frac{\mathbb{C}[X]}{\left(\left(X-\lambda_{1}\right)^{a_{1}}\right)} \oplus \frac{\mathbb{C}[X]}{\left(\left(X-\lambda_{2}\right)^{a_{2}}\right)} \oplus \cdots \oplus \frac{\mathbb{C}[X]}{\left(\left(X-\lambda_{r}\right)^{a_{r}}\right)}
$$

where the $\lambda_{i}$ 's are not necessarily distinct. There is a basis of $V$ with respect to which $\alpha$ is given by

$$
\left(\begin{array}{cccc}
J_{a_{1}}\left(\lambda_{1}\right) & & & \\
& J_{a_{2}}\left(\lambda_{2}\right) & & \\
& & \ddots & \\
& & & J_{a_{r}}\left(\lambda_{r}\right)
\end{array}\right)
$$

where

$$
J_{m}(\lambda)=\left(\begin{array}{ccccc}
\lambda & & & & \\
1 & \lambda & & & \\
& 1 & \lambda & & \\
& & & \ddots & \\
& & & 1 & \lambda
\end{array}\right)
$$

has size $m$.
Proof. Immediate from Primary Decomposition Theorem and knowing all the primes in $\mathbb{C}[X]$.

## Remark.

1. The $J_{m}(\lambda)$ are called Jordan $\lambda$-blocks.
2. The minimal polynomial of $\alpha$ is

$$
m_{\alpha}(t)=\prod_{\lambda}(X-\lambda)^{a_{\lambda}}
$$

where $a_{\lambda}$ is the largest $\lambda$-block.
3. The characteristic polynomial of $\alpha$ is

$$
\chi_{\alpha}(t)=\prod_{\lambda}(X-\lambda)^{b_{\lambda}}
$$

where $b_{\lambda}$ is the sum of the sizes of the $\lambda$-blocks.
4. Consider $\operatorname{ker}\left(X \cdot-: V_{\alpha} \rightarrow V_{\alpha}\right)$. What is its dimension?

On $\mathbb{C}[X] /(X-\lambda)^{a}$, if $\lambda \neq 0$ then the map $X \cdot-$ is an isomorphism since

$$
\operatorname{ker}(X \cdot-)=\left\{f+\left((X-\lambda)^{a}\right): X f \in\left((X-\lambda)^{a}\right)\right\}
$$

so if $X f=(X-\lambda)^{a} \cdot g$, as $X$ and $X-\lambda$ are coprime, $X\left|g,(X-\lambda)^{a}\right| f$ so $\operatorname{ker}(X \cdot-)=0$.
If $\lambda=0, X \cdot-: \mathbb{C}[X] /\left(X^{a}\right) \rightarrow \mathbb{C}[X] /\left(X^{a}\right)$ has matrix

$$
\left(\begin{array}{ccccc}
0 & & & & \\
1 & 0 & & & \\
& 1 & 0 & & \\
& & & \ddots & \\
& & & 1 & 0
\end{array}\right)
$$

so 1-dimensional kernel. Thus

$$
\operatorname{dim} \operatorname{ker}\left(X \cdot-: V_{\alpha} \rightarrow V_{\alpha}\right)=\text { \#Jordan 0-blocks. }
$$

5. Similarly, $X^{2} \cdot-: \mathbb{C}[X] /\left((X-\lambda)^{a}\right) \rightarrow \mathbb{C}[X] /\left((X-\lambda)^{a}\right)$ is an isomorphism for $\lambda \neq 0$ and for $\lambda=0$ is given by the matrix

$$
\left(\begin{array}{ccccc}
0 & & & & \\
0 & 0 & & & \\
1 & 0 & 0 & & \\
& 1 & 0 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right)
$$

which has 2-dimensional kernel if $a>1$ and 1-dimensional kernel if $a=1$. Therefore

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker}\left(X^{2} \cdot-: V_{\alpha} \rightarrow V_{\alpha}\right) & =\text { \#Jordan 0-blocks } \\
& + \text { \#Jordan 0-blocks of size }>1
\end{aligned}
$$

SO

$$
\text { \#Jordan } 0 \text {-blocks of size } 1=2 \operatorname{dim} \operatorname{ker}(X \cdot-)-\operatorname{dim} \operatorname{ker}\left(X^{2} \cdot-\right)
$$

Using the same method we can find Jordan 0-blocks of other sizes.

### 3.5 Conjugacy*

Lemma 3.22. If $\alpha: V \rightarrow V$ and $\beta: W \rightarrow W$ are endomorphism of $\mathbb{F}$-vector spaces, then $V_{\alpha} \cong W_{\beta}$ as $\mathbb{F}[X]$-modules if and only if there is an isomorphism $\gamma: V \rightarrow W$ such that

$$
\gamma^{-1} \beta \gamma=\alpha
$$

i.e. $\alpha$ and $\beta$ are conjugates.

Proof. Let $\hat{\gamma}: V_{\alpha} \rightarrow W_{\beta}$ be an $\mathbb{F}[X]$-module isomorphism. In particular $\hat{\gamma}$ gives an $\mathbb{F}$-vector space isomorphism $\gamma: V \rightarrow W$. Then

$$
\begin{aligned}
\beta \circ \gamma: W_{\beta} & \rightarrow W_{\beta} \\
v & \mapsto X \cdot \gamma(v)
\end{aligned}
$$

Now

$$
\begin{aligned}
X \cdot \gamma(v) & =X \cdot \hat{\gamma}(v) \hat{\gamma} \text { as an } \mathbb{F}[X] \text {-module map } \\
& =\hat{\gamma}(X \cdot v) \text { in } \mathbb{F}[X] \text {-module } V_{\alpha} \\
& =\hat{\gamma}(\alpha(v)) \\
& =\gamma(\alpha(v))
\end{aligned}
$$

so $\beta \circ \gamma=\gamma \circ \alpha, \gamma^{-1} \circ \beta \circ \gamma=\alpha$. Therefore if $W=V$ then $V_{\alpha} \cong V_{\beta}$ if and only if $\alpha$ and $\beta$ are conjugates.


Applying Classification Theorem for Finitely Generated Modules over Euclidean Domain, we get

Corollary 3.23. There is a bijection $\left\{\right.$ conjugacy class of $\left.\mathcal{M}_{n}(\mathbb{F})\right\} \leftrightarrow\left\{\begin{array}{c}\text { sequence of monic polynomials } d_{1}, \ldots, d_{r} \\ \text { where } d_{1}|\cdots| d_{r} \text { and } \operatorname{deg}\left(d_{1} \cdots d_{r}\right)=n\end{array}\right\}$

Example. Consider $\mathrm{GL}_{2}(\mathbb{F})$. The conjugacy classes are described by $d_{1}|\cdots| d_{r}$ where $\operatorname{deg}\left(d_{1} \cdots d_{r}\right)=2$. Therefore we have one of the followings:

1. $\operatorname{deg} d_{1}=2$,
2. $\operatorname{deg} d_{1}=\operatorname{deg} d_{2}=1$. As $d_{1} \mid d_{2}, d_{1}=d_{2}$.

These give us respecively

1. $\mathbb{F}[X] /\left(X^{2}+a_{1} X+a_{0}\right)$,
2. $\mathbb{F}[X] /(X-\lambda) \oplus \mathbb{F}[X] /(X-\lambda)$.

Therefore any $A \in \mathrm{GL}_{2}(\mathbb{F})$ is conjugate to one of

$$
\left(\begin{array}{ll}
0 & -a_{0} \\
1 & -a_{1}
\end{array}\right), \quad\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)
$$

They are not conjugates.
The first case be futher split into two cases. If $X^{2}+a_{1} X+a_{0}$ is reducible they it factorises as either $(X-\lambda)^{2}$ or $(X-\lambda)(X-\mu)$ where $\lambda \neq \mu$. Thus we get one of

$$
\left(\begin{array}{ll}
\lambda & 0 \\
1 & \lambda
\end{array}\right), \quad\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)
$$

Example. Let $\mathbb{F}=\mathbb{Z} / 3 \mathbb{Z}$. For what $a_{1}, a_{0}$ is $X^{2}+a_{1} X+a_{0} \in \mathbb{F}[X]$ irreducible? There are $3 \times 3=9$ polynomials in total, of which $\binom{3}{1}+\binom{3}{2}=6$ are reducible. Guess (any verify!) that the irreducibles are $X^{2}+1, X^{2}+2 X+2, X^{2}+2 X+2$. Therefore the conjugacy classes in $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ are

| $\left(\begin{array}{lll}0 & -1 \\ 1 & 0\end{array}\right)$ | $\left(\begin{array}{lll}0 & -2 \\ 1 & -1\end{array}\right)$ | $\left(\begin{array}{ll}0 & -2 \\ 1 & -2\end{array}\right)$ |
| :--- | :--- | :--- |
| $\left(\begin{array}{ll}\lambda & 0 \\ 1 & \lambda\end{array}\right)$ | $\lambda \neq 0$ |  |
| $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$ | $\lambda, \mu \neq 0$ |  |

so there are in total 8 conjugacy classes. They have order

| $\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ | $\left(\begin{array}{cc}0 & 1 \\ 1 & 2\end{array}\right)$ | $\left(\begin{array}{cc}0 & 1 \\ 1 & 1\end{array}\right)$ | $\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)$ | $\left(\begin{array}{cc}2 & 0 \\ 1 & 2\end{array}\right)$ | $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 8 | 8 | 3 | 6 | 2 |

Just for fun, let's use what we deduced above and knowledge about Sylow $p$-subgroups way back in the beginning of the course to determine the group structure of $\mathrm{GL}_{2}(\mathbb{Z} / 3 / Z)$.

Recall that

$$
\left|G L_{2}(\mathbb{Z} / 3 \mathbb{Z})\right|=\left(3^{2}-1\right)\left(3^{2}-3\right)=2^{4} \cdot 3
$$

so the Sylow 2-subgroup has order $2^{4}=16$. There are no elements of order 16 so it cannot be cyclic. Let

$$
A=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)
$$

so

$$
A^{-1} B A=\left(\begin{array}{ll}
2 & 2 \\
2 & 0
\end{array}\right)=B^{3}
$$

Therefore $\langle B\rangle \unlhd\langle A, B\rangle \leq \mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$. The 2nd Isomorphism Theorem says that

$$
\langle A, B\rangle /\langle B\rangle \cong\langle A\rangle /(\langle A\rangle \cap\langle B\rangle) .
$$

Now $\langle A\rangle \cap\langle B\rangle=\left\langle\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\right\rangle$, a group of order 2. Therefore

$$
|\langle A, B\rangle|=\frac{|\langle A\rangle| \cdot|\langle B\rangle|}{|\langle A\rangle \cap\langle B\rangle|}=\frac{8 \cdot 4}{2}=16
$$

which is a Sylow 2-subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$. It has presentation

$$
\left\langle A, B \mid A^{4}=B^{8}=1, A^{-1} B A=B^{3}\right\rangle,
$$

the semidihedral group of order 16.
Since we still have time left, we can do one more fun example.
Example. Let $R=\mathbb{Z}[X] /\left(X^{2}+5\right) \cong \mathbb{Z}[\sqrt{-5}] \leq \mathbb{C}$. Then

$$
(1+X)(1-X)=1-X^{2}=1+5=6=2 \cdot 3 .
$$

As $1 \pm X, 2$ and 3 are irreducibles $R$ is not a UFD. Let

$$
I_{1}=(3,1+X), I_{2}=(3,1-x)
$$

be submodules of $R$. Consider

$$
\begin{aligned}
\varphi: I_{1} \oplus I_{2} & \rightarrow R \\
(a, b) & \rightarrow a+b
\end{aligned}
$$

Then $\operatorname{Im} \varphi=(3,1+X, 1-X)$. Since $3-(1+X)-(1-X)=1, \operatorname{Im} \varphi=R$. Also

$$
\operatorname{ker} \varphi=\left\{(a, b) \in I_{1} \oplus I_{2}: a+b=0\right\} \cong I_{1} \cap I_{2}
$$

where the last isomorphism can be deduced from the map $(x,-x) \leftarrow x$. Note that $(3) \subseteq I_{1} \cap I_{2}$. Let

$$
s \cdot 3+t \cdot(1+X) \in(3,1-X) \subseteq R=\mathbb{Z}[X] /\left(X^{2}-5\right)
$$

Reduce mod 3, we get

$$
t \cdot(1+X)=(1-X) p \quad \bmod \left(3, X^{2}+5\right)=\left(3, X^{2}-1\right)=(2,(X+1)(X-1))
$$

so $1-X|t,(1+X)(1-X)| t(1+X)$ so

$$
t(1+X)=q\left(X^{2}-1\right)=q\left(X^{2}+5-6\right)=3(-2 q)
$$

Then $s \cdot 3+t \cdot(1+X)$ is divisible by 3 so $I_{1} \cap I_{2} \subseteq(3)$. Equality follows.
From example sheet 4 we know that if $N \leq M$ and $M / N \cong \mathbb{R}^{n}$ then $M \cong N \oplus R^{n}$. Here

$$
I_{1} \oplus I_{2} / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi=R
$$

so

$$
I_{1} \oplus I_{2} \cong R \oplus \operatorname{ker} \varphi=R \oplus(3) .
$$

Consider

$$
\begin{aligned}
\psi: R & \rightarrow(3) \\
x & \mapsto 3 x
\end{aligned}
$$

a surjective $R$-module map. $\operatorname{ker} \varphi=0$ as $R$ is an integral domain so $\varphi$ is an isomorphism. Thus

$$
I_{1} \oplus I_{2} \cong R \oplus R=R^{2} .
$$

In particular this shows that sums of non-free modules can be free.
Next we claim that $I_{1}$ is not principal. If $I_{1}=(a+b X)$ then $I_{2}=(a+b X)$. This is because $I_{1}=(3,1+X)$ and $I_{2}=(3,1-X)$ and $R$ has automorphism $X \mapsto-X$ which interchanging $I_{1}$ and $I_{2} \cdot{ }^{1}$ But then

$$
\text { (3) }=I_{1} \cap I_{2}=((a+b X)(a-b X))=\left(a^{2}-b^{2} X^{2}\right)=\left(a^{2}+5 b^{2}\right)
$$

so $a^{2}+5 b^{2} \mid 3$, absurd.
In summary, we have shown that

1. $I_{1}$ needs 2 elements to generate (as it is not principal), but it is not the free module $R^{2}$.
2. $I_{1}$ is a direct summand of $R^{2}$.
[^1]
## Index

algebraic integer, 37
annihilator, 41
ascending chain condition, 30
associate, 27
basis, 43
Cayley's theorem, 8
centraliser, 10
centre, 10
Chinese Remainder Theorem, 13
conjugacy class, 10
content, 32
direct sum, 43
Eisenstein's criterion, 34
equivalence, 46
Euclidean domain, 28
field of fractions, 25
finitely generated, 42
finitely presented, 45
Fitting ideal, 48
free generation, 43
free module, 43
Gauss' Lemma, 32
group, 2
abelian, 2
homomorphism, 4
index, 2
isomorphism, 4
quotient, 3
subgroup, 2
normal, 3
group action, 7
Hilbert Basis Theorem, 38
ideal, 19
generated, 20
maximal, 26
prime, 26
principal, 20
independence, 43
integral domain, 24
irreducible, 27
isomorphism theorem, 4, 23, 41
Jordan normal form, 55
Lagrange's Theorem, 2
minimal polynomial, 37
minor, 48
module, 40
homomorphism, 41
quotient, 41
submodule, 41
generated, 42
Noetherian, 30
normaliser, 11
Orbit-stabiliser theorem, 10
order, 3
PID, 24
primary decomposition, 52
prime, 27
primitive, 32
Rational Canonical Form, 54
relation module, 45
ring, 17
homomorphism, 19
quotient, 21
subring, 17
sign, 7
Simith Normal Form, 46
simple group, 6
Structural Theorem for modules, 50
Sylow subgroup, 13
Sylow's Theorem, 13
symmetric group, 7
unique factorisation domain, 29
unit, 17, 27
zero divisor, 24


[^0]:    ${ }^{1}$ This is known as orthogonal idempotents.

[^1]:    ${ }^{1}$ This technique will play a central role in IID Galois Theory.

