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1 Groups

1 Groups

1.1 Definitions

Definition (Group). A group is a triple (𝐺, ⋅, 𝑒) of a set 𝐺, a function
− ⋅ − ∶ 𝐺 × 𝐺 → 𝐺 and 𝑒 ∈ 𝐺 such that

• associativity: for all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐),

• identity: for all 𝑎 ∈ 𝐺, 𝑎 ⋅ 𝑒 = 𝑎 = 𝑒 ⋅ 𝑎,

• inverse: for all 𝑎 ∈ 𝐺, there exists 𝛼−1 ∈ 𝐺 such that 𝑎 ⋅ 𝑎−1 = 𝑒 =
𝑎−1 ⋅ 𝑎.

Definition (Subgroup). If (𝐺, ⋅, 𝑒) is a group, 𝐻 ⊆ 𝐺 is a subgroup if

• 𝑒 ∈ 𝐻,

• for all 𝑎, 𝑏 ∈ 𝐻, 𝑎 ⋅ 𝑏 ∈ 𝐻.

This makes (𝐻, ⋅, 𝑒) into a group. Write 𝐻 ≤ 𝐺.

Lemma 1.1. If 𝐻 ⊆ 𝐺 is non-empty and for all 𝑎, 𝑏 ∈ 𝐻, 𝑎 ⋅ 𝑏−1 ∈ 𝐻 then
𝐻 ≤ 𝐺.

Example.

1. Additive groups: (N, +, 0), (R, +, 0), (C, +, 0).

2. Groups of symmetries: 𝑆𝑛, 𝐷2𝑛, GL𝑛(R). They have subgroups 𝐴𝑛 ≤ 𝑆𝑛,
𝐶𝑛 ≤ 𝐷2𝑛, SL𝑛(R) ≤ GL𝑛(R).

3. An group 𝐺 is abelian is a group such that 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺.

If 𝐻 ≤ 𝐺, 𝑔 ∈ 𝐺, we define the left 𝐻-coset of 𝐺 to be

𝑔𝐻 = {𝑔ℎ ∶ ℎ ∈ 𝐻}.

As we have seen in IA Groups, the 𝐻-cosets form a partition of 𝐺 and are in
bijection with each other via

𝐻 ↔ 𝑔𝐻
ℎ ↦ 𝑔ℎ

𝑔−1ℎ ↤ ℎ

We write 𝐺/𝐻 for the set of left cosets.

Theorem 1.2 (Lagrange). If 𝐺 is a finite group and 𝐻 ≤ 𝐺 then

|𝐺| = |𝐻| ⋅ |𝐺/𝐻|.

We call |𝐺/𝐻| the index of 𝐻 in 𝐺.
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1 Groups

Definition (Order). Given 𝑔 ∈ 𝐺, the order of 𝑔 is the smallest 𝑛 such that
𝑔𝑛 = 𝑒. We write 𝑛 = 𝑜(𝑔) = |𝑔|. If no such 𝑛 exists then 𝑔 has infinite
order.

Recall that if 𝑔𝑚 = 𝑒 then |𝑔| ∣ 𝑚.

Lemma 1.3. If 𝐺 is finite and 𝑔 ∈ 𝐺 then |𝑔| ∣ |𝐺|.

Proof. The set
⟨𝑔⟩ = {𝑒, 𝑔, … , 𝑔|𝑔|−1}

is a subgroup of 𝐺. The result follows from Lagrange.

1.2 Normal subgroups, Quotients and Homomorphisms
Recall that 𝑔𝐻 = 𝑔′𝐻 if and only if 𝑔−1𝑔′ ∈ 𝐻. In particular, if ℎ ∈ 𝐻 then
𝑔ℎ𝐻 = 𝑔𝐻.

Given a subgroup 𝐻 ≤ 𝐺, we want to define a group structure on its cosets.
Argurably the most natural candidate for the group operation would be

− ⋅ − ∶ 𝐺/𝐻 × 𝐺/𝐻 → 𝐺/𝐻
(𝑔𝐻, 𝑔′𝐻) ↦ 𝑔𝑔′𝐻

But is this well-defined? Suppose 𝑔′𝐻 = 𝑔′ℎ𝐻, then

(𝑔𝐻) ⋅ (𝑔′ℎ𝐻) = 𝑔𝑔′ℎ𝐻 = 𝑔𝑔′𝐻

so it is well-defined in the second coordinate. Suppose 𝑔𝐻 = 𝑔ℎ𝐻, then

(𝑔ℎ𝐻) ⋅ (𝑔′𝐻) = 𝑔ℎ𝑔′𝐻 ?= 𝑔𝑔′𝐻

where the last step holds if and only if (𝑔′)−1ℎ𝑔′ ∈ 𝐻 for all ℎ ∈ 𝐻, 𝑔′ ∈ 𝐺.
Thus we need this true to define a group structure on the cosets. This motivates
us to define

Definition (Normal subgroup). A subgroup 𝐻 ≤ 𝐺 is normal if for all
ℎ ∈ 𝐻, 𝑔 ∈ 𝐺, 𝑔−1ℎ𝑔 ∈ 𝐻. Write 𝐻 ⊴ 𝐺.

Definition (Quotient group). If 𝐻 ⊴ 𝐺, then 𝐺/𝐻 equipped with the
product

𝐺/𝐻 × 𝐺/𝐻 → 𝐺/𝐻
(𝑔𝐻, 𝑔′𝐻) ↦ 𝑔𝑔′𝐻

and identity 𝑒𝐻 is a group. This is the quotient group of 𝐺 by 𝐻.

Now we have defined and seen quite a few groups. We are interested not
in the internal structure of groups but how they relate to each other. This
motivates to define morphisms between groups:
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1 Groups

Definition (Homomorphism). If (𝐺, ⋅, 𝑒𝐺) and (𝐻, ∗, 𝑒𝐻) are groups, a
function 𝜑 ∶ 𝐺 → 𝐻 is a homomorphism if for all 𝑔, ℎ ∈ 𝐺,

𝜑(𝑔 ⋅ 𝑔′) = 𝜑(𝑔) ∗ 𝜑(𝑔′).

This implies that 𝜑(𝑒𝐺) = 𝑒𝐻 and 𝜑(𝑔−1) = 𝜑(𝑔)−1. We define

ker𝜑 = {𝑔 ∈ 𝐺 ∶ 𝜑(𝑔) = 𝑒𝐻},
Im𝜑 = {𝜑(𝑔) ∶ 𝑔 ∈ 𝐺}.

Lemma 1.4.

• ker𝜑 ⊴ 𝐺,

• Im𝜑 ≤ 𝐻.

Proof. Easy.

Definition (Isomorphism). A homomorphism 𝜑 is an isomorphism if it is
a bijection. Say 𝐺 and 𝐻 are isomorphic if there exists some isomorphism
𝜑 ∶ 𝐺 → 𝐻. Write 𝐺 ≅ 𝐻.

Exercise. If 𝜑 is an isomorphism then the inverse 𝜑−1 ∶ 𝐻 → 𝐺 is also an
isomorphism.

Theorem 1.5 (1st Isomorphism Theorem). Let 𝜑 ∶ 𝐺 → 𝐻 be a homomor-
phism. Then ker ⊴≤ 𝐺, Im𝜑 ≤ 𝐺 and

𝐺/ ker𝜑 ≅ Im𝜑.

Proof. We have done the first part. For the second part, define

𝜃 ∶ 𝐺/ ker𝜑 → Im𝜑
𝑔 ker𝜑 ↦ 𝜑(𝑔)

𝐺 𝐻

𝐺/ ker𝜑

𝜑

𝜃

Check this is well-defined: if 𝑔 ker𝜑 = 𝑔′ ker𝜑 then 𝑔−1𝑔′ ∈ ker𝜑 so 𝑒𝐻 =
𝜑(𝑔−1𝑔′) = 𝜑(𝑔)−1𝜑(𝑔′), 𝜑(𝑔) = 𝜑(𝑔′) and 𝜃(𝑔 ker𝜑) = 𝜃(𝑔′ ker𝜑).

𝜃 is a homomorphism:

𝜃(𝑔 ker𝜑 ⋅ 𝑔′ ker𝜑) = 𝜃(𝑔𝑔′ ker𝜑) = 𝜑(𝑔𝑔′) = 𝜑(𝑔)𝜑(𝑔′) = 𝜃(𝑔 ker𝜑)𝜃(𝑔 ker𝜑).

𝜃 is surjective and finally to show it is injective, suppose 𝜃(𝑔 ker𝜑) = 𝑒𝐻. Then
𝑔 ∈ ker𝜑 so 𝑔 ker𝜑 = 𝑒 ker𝜑.
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1 Groups

Example. Consider

𝜑 ∶ C → C \ {0}
𝑧 ↦ 𝑒𝑧

𝑒𝑧+𝑤 = 𝑒𝑧 ⋅ 𝑒𝑤 so 𝜑 ∶ (C, +, 0) → (C \ {0}, ×, 1) is a homomorphism. 𝜑 is
surjective (as log is a left inverse).

ker𝜑 = {𝑧 ∈ C ∶ 𝑒𝑧 = 1} = {2𝜋𝑖𝑘 ∶ 𝑘 ∈ Z} = 2𝜋𝑖Z

so by 1st Isomorphism Theorem

C/2𝜋𝑖Z ≅ C \ {0}.

Theorem 1.6 (2nd Isomorphism Theorem). Let 𝐻 ≤ 𝐺 and 𝐾 ⊴ 𝐺. Then

𝐻𝐾 ≤ 𝐺
𝐻 ∩ 𝐾 ⊴ 𝐻

𝐻𝐾/𝐾 ≅ 𝐻/(𝐻 ∩ 𝐾)

Proof. Let ℎ, ℎ′ ∈ 𝐻, 𝑘, 𝑘′ ∈ 𝐾. Then

(ℎ′𝑘′)(ℎ𝑘)−1 = ℎ′𝑘′𝑘−1ℎ−1 = (ℎ′ℎ−1)(ℎ𝑘′𝑘−1ℎ−1) ∈ 𝐻𝐾.

Consider

𝜑 ∶ 𝐻 → 𝐺/𝐾
ℎ ↦ ℎ𝐾

This is the composition 𝐻
𝜄

↪ 𝐺
𝜋
↠ 𝐺/𝐾 so a homomorphism. Since

ker𝜑 = {ℎ𝐾 ∶ ℎ𝐾 = 𝑒𝐾} = 𝐻 ∩ 𝐾 ⊴ 𝐻
Im𝜑 = {𝑔𝐾 ∶ 𝑔𝐾 = ℎ𝐾 for some ℎ ∈ 𝐻} = 𝐻𝐾/𝐾

so by 1st Isomorphism Theorem

𝐻/(𝐻 ∩ 𝐾) ≅ 𝐻𝐾/𝐾.

As a corollary we have

Theorem 1.7 (Subgroup correspondence). Let 𝐾 ⊴ 𝐺. There is a bijection
between

{subgroups of 𝐺/𝐾} ↔ {subgroups of 𝐺 containing 𝐾}
𝐻 ↦ {𝑔 ∈ 𝐺 ∶ 𝑔𝐾 ∈ 𝐻}

𝐿/𝐾 ↤ 𝐾 ⊴ 𝐿 ≤ 𝐺

Moreover, the same map gives a bijection between

{normal subgroups of 𝐺/𝐾} ↔ {normal subgroups of 𝐺 containing 𝐾}.
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1 Groups

Theorem 1.8 (3rd Isomorphism Theorem). Let 𝐾 ≤ 𝐿 ≤ 𝐺 be normal
subgroups. Then

𝐺/𝐾
𝐿/𝐾

≅ 𝐺/𝐿.

Proof. Consider

𝜑 ∶ 𝐺/𝐾 → 𝐺/𝐿
𝑔𝐾 ↦ 𝑔𝐿

Check it is well-defined: if 𝑔𝐾 = 𝑔′𝐾, 𝑔−1𝑔′ ∈ 𝐾 ⊆ 𝐿 so 𝑔𝐿 = 𝑔′𝐿. 𝜑 is clearly
surjective and has kernel

ker𝜑 = {𝑔𝐾 ∈ 𝐺/𝐾 ∶ 𝑔𝐿 = 𝑒𝐿} = 𝐿/𝐾

so by 1st Isomorphism Theorem

𝐺/𝐾
𝐿/𝐾

≅ 𝐺/𝐿.

Definition (Simple group). A group 𝐺 is simple if its only normal subgroups
are {𝑒} and 𝐺.

Lemma 1.9. An abelian group is simple if and only if it is isomorphic to
𝐶𝑝 for some prime 𝑝.

Proof. In an abelian group every subgroup is normal. Let 𝑔 ∈ 𝐺 be non-trivial.
Then

⟨𝑔⟩ = {… , 𝑔−2, 𝑔−1, 𝑒, 𝑔, 𝑔2, … } ⊴ 𝐺.
If 𝐺 is simple, this must be the whole group so 𝐺 is cyclic. If 𝐺 is infinite, it is
isomorphic to Z which is not simple as 2Z ⊴ 𝐺. Therefore 𝐺 ≅ 𝐶𝑛 for some 𝑛.
If 𝑛 = 𝑎𝑏, 𝑎, 𝑏 ∈ N, 𝑎, 𝑏 ≠ 1 then ⟨𝑔𝑎⟩ ⊴ 𝐺. Absurd. Thus 𝑛 is a prime.

For the other directions, note that 𝐶𝑝 is simple for prime 𝑝 by Lagrange.

Theorem 1.10. Let 𝐺 be a finite group. Then there is a chain of subgroups

𝐺 = 𝐻0 ≥ 𝐻1 ≥ 𝐻2 ≥ ⋯ ≥ 𝐻𝑠 = {𝑒}

such that 𝐻𝑛+1 ⊴ 𝐻𝑛 and 𝐻𝑛/𝐻𝑛+1 is simple for all 𝑛.

Proof. Let 𝐻1 be a normal subgroup of 𝐻0 = 𝐺 of maximal order. If 𝐻0/𝐻1
is not simple, there would be a proper normal subgroup 𝑋 ⊴ 𝐻1/𝐻2. This
corresponds to a normal subgroup of 𝐻0, 𝑌, which strictly contains 𝐻1. Absurd.
Thus 𝐻0/𝐻1 is simple.

Choose 𝐻2 to be the maximal normal subgroup of 𝐻1 and continue. As
𝐻𝑛+1 is a proper subgroup of 𝐻𝑛, |𝐻𝑛+1| < |𝐻𝑛| so this process terminates after
finitely many steps.
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1 Groups

1.3 Actions & Permutations
Part of the reason we study groups is that they have interesting internal structures.
However, more importantly, groups are interesting because many transformations
of an object can be described by a group. This is formalised by the concept of
group action in this section.

The symmetric group 𝑆𝑛 is the set of permutations of {1, … , 𝑛}. Every
permutation is a product of transpositions. A permutation is even if it is a
product of evenly-many transpositions and odd otherwise.

The sign of a permutation is a homomorphism

sgn ∶ 𝑆𝑛 → {±1}

𝜎 ↦ {1 𝜎 is even
−1 𝜎 is odd

The kernel of sgn is the alternating group 𝐴𝑛 ⊴ 𝑆𝑛 of index 2 for 𝑛 ≥ 2.
For any set 𝑋, we let Sym(𝑋) denote the set of all permutations of 𝑋, with

composition as the group operation.
Here is a definition that is included in the syllabus but seems to be never

used anywhere:

Definition. A group 𝐺 is a permutation group of degree 𝑛 if

𝐺 ≤ Sym(𝑋)

with |𝑋| = 𝑛.

Example.

1. 𝑆𝑛 is a permutation group of order 𝑛, so is 𝐴𝑛.

2. 𝐷2𝑛 acts on the 𝑛 vertices of a regular 𝑛-gon, so

𝐷2𝑛 ≤ 𝑆({𝑛 vertices}).

Definition (Group action). An action of a group (𝐺, ⋅, 𝑒) on a set 𝑋 is a
function − ∗ − ∶ 𝐺 × 𝑋 → 𝑋 such that

1. For all 𝑔, ℎ ∈ 𝐺, 𝑥 ∈ 𝑋,

𝑔 ∗ (ℎ ∗ 𝑥) = (𝑔ℎ) ∗ 𝑥.

2. For all 𝑥 ∈ 𝑋,
𝑒 ∗ 𝑥 = 𝑥.

Lemma 1.11. Giving an action of 𝐺 on 𝑋 is the same as giving a homo-
morphism 𝜑 ∶ 𝐺 → Sym(𝑋).

Proof.

7



1 Groups

• ⇒: Let − ∗ − be an action. For all 𝑔 ∈ 𝐺, let

𝜑 ∶ 𝑋 → 𝑋
𝑥 ↦ 𝑔 ∗ 𝑥

This satisfies

𝜑(𝑔ℎ)(𝑥) = (𝑔ℎ) ∗ 𝑥 = 𝑔 ∗ (ℎ ∗ 𝑥) = 𝜑(𝑔)(𝜑(ℎ)(𝑥)) = (𝜑(𝑔) ∘ 𝜑(ℎ))(𝑥)

so 𝜑(𝑔ℎ) = 𝜑(𝑔) ∘ 𝜑(ℎ).
In addition 𝜑(𝑒)(𝑥) = 𝑒 ∗ 𝑥 = 𝑥 = id𝑋(𝑥) so 𝜑(𝑒) = id𝑋. Now we note
that

id𝑋 = 𝜑(𝑒) = 𝜑(𝑔𝑔−1) = 𝜑(𝑔) ∘ 𝜑(𝑔−1)

so 𝜑(𝑔−1) is inverse to 𝜑(𝑔). In particular 𝜑(𝑔) is a bijection.

• ⇐: Let 𝜑 ∶ 𝐺 → Sym(𝑋) be a homomorphism. Define

− ∗ − ∶ 𝐺 × 𝑋 → 𝑋
(𝑔, 𝑥) ↦ 𝜑(𝑔)(𝑥)

Verify that

𝑔 ∗ (ℎ ∗ 𝑥) = 𝜑(𝑔)(𝜑(ℎ)(𝑥)) = (𝜑(𝑔) ∘ 𝜑(ℎ))(𝑥) = 𝜑(𝑔ℎ)(𝑥) = (𝑔ℎ) ∗ 𝑥
𝑒 ∗ 𝑥 = 𝜑(𝑒)(𝑥) = id𝑋(𝑥) = 𝑥

Given a homomorphism 𝜑 ∶ 𝐺 → Sym(𝑋) induced by an action, define 𝐺𝑋 =
Im𝜑, 𝐺𝑋 = ker𝜑. Then by 1st Isomorphism Theorem 𝐺𝑋 ⊴ 𝐺, 𝐺/𝐺𝑋 ≅ 𝐺𝑋.

If 𝐺𝑋 = {𝑒}, i.e. 𝜑 is injective then we say 𝜑 is a permutation representation
of 𝐺. It follows that 𝐺 ≅ 𝐺𝑋 ≤ Sym(𝑋).

Example.

1. Let 𝐺 be the symmetries of a cube. Then 𝐺 acts on the set 𝑋 of diagonals.
|𝑋| = 4 and 𝜑 ∶ 𝐺 → Sym(𝑋) is surjective so 𝐺𝑋 = Sym(𝑋) ≅ 𝑆4.
𝐺𝑋 = {id, antipodal map} so by Lagrange

|𝐺| = |𝐺𝑋| ⋅ |𝐺𝑋| = 48.

2. For any group 𝐺, left multiplication is a homomorphism:

𝜑 ∶ 𝐺 → Sym𝐺
𝑔 ↦ 𝑔 ⋅ −

𝐺𝑋 = {𝑔 ∈ 𝐺 ∶ 𝑔ℎ = ℎ for all 𝐺} = {𝑒} so 𝜑 is a permutation representa-
tion. This is

Theorem 1.12 (Cayley). Every group is isomorphic to a subgroup of
a symmetric group.
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3. If 𝐺 is a group and 𝐻 ≤ 𝐺, we have

𝜑 ∶ 𝐺 → Sym(𝐺/𝐻)
𝑔 ↦ 𝑔 ⋅ −

𝐺𝑋 = {𝑔 ∈ 𝐺 ∶ 𝑔𝑎𝐻 = 𝑎𝐻 for all 𝑎𝐻} = ⋂𝑎∈𝐺 𝑎𝐻𝑎−1. This is the largest
subgroup of 𝐻 which is normal in 𝐺.

Theorem 1.13. Let 𝐺 be a finite group and 𝐻 ≤ 𝐺 with index 𝑛. Then
there is a 𝐾 ⊴ 𝐺, 𝐾 ≤ 𝐻 such that 𝐺/𝐾 is isomorphic to a subgroup of 𝑆𝑛.
In particular

|𝐺/𝐾| ∣ 𝑛!
𝑛 ∣ |𝐺/𝐾|

Proof. Let 𝐾 = 𝐺𝑋 for the action of 𝐺 on 𝑋 = 𝐺/𝐻. Then

𝐺/𝐺𝑋 ≅ 𝐺𝑋 ≤ Sym(𝑋) ≅ 𝑆𝑛.

Theorem 1.14. Let 𝐺 be a non-abelian simple group and 𝐻 ≤ 𝐺 is a
subgroup of index 𝑛 > 1. Then 𝐺 is isomorphic to a subgroup of 𝐴𝑛 for some
𝑛 ≥ 5.

Proof. Let 𝐺 act on 𝐺/𝐻, giving 𝜑 ∶ 𝐺 → Sym(𝐺/𝐻). Then ker𝜑 ⊴ 𝐺. As 𝐺
is simple, ker𝜑 = {𝑒} or 𝐺. But ker𝜑 = ⋂𝑔∈𝐺 𝑔−1𝐻𝑔 ≤ 𝐻, a proper subgroup
of 𝐺 so ker𝜑 = {𝑒}. By 1st Isomorphism Theorem

𝐺 = 𝐺/{𝑒} ≅ Im𝜑 = 𝐺𝑋 ≤ Sym(𝐺/𝐻) ≅ 𝑆𝑛.

Applying 2nd Isomorphism Theorem to 𝐴𝑛 ⊴ 𝑆𝑛, 𝐺𝑋 ≤ 𝑆𝑛, we get

𝐺𝑋 ∩ 𝐴𝑛 ⊴ 𝐺𝑋, 𝐺𝑋/(𝐺𝑋 ∩ 𝐴𝑛) ≅ 𝐺𝑋𝐴𝑛/𝐴𝑛.

As 𝐺𝑋 ≅ 𝐺 is simple, 𝐺𝑋 ∩ 𝐴𝑛 is either trivial or 𝐺𝑋, i.e. 𝐺𝑋 ≤ 𝐴𝑛. But if
𝐺𝑋 ∩ 𝐴𝑛 = {𝑒},

𝐺𝑋 ≅ 𝐺𝑋𝐴𝑛/𝐴𝑛 ≤ 𝑆𝑛/𝐴𝑛 ≅ 𝐶2

which contradicts 𝐺𝑋 ≅ 𝐺 being non-abelian. Hence 𝐺 ≅ 𝐺𝑋 ≤ 𝐴𝑛.

1 𝐺 Sym(𝐺/𝐻) 𝐶2
𝜑 sgn

To see that we must have 𝑛 ≥ 5, observe that 𝐴2, 𝐴3 and 𝐴4 have no
non-abelian simple subgroup.

Corollary 1.15. If 𝐺 is non-abelian simple, 𝐻 ≤ 𝐺 of index 𝑛, then

|𝐺| ∣ 𝑛!
2

.

Some futher definitions we have already met in IA Groups:
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Definition (Orbit & Stabiliser). If 𝐺 acts on 𝑋, the orbit of 𝑥 ∈ 𝑋 is

𝐺 ⋅ 𝑥 = {𝑔 ∗ 𝑥 ∶ 𝑔 ∈ 𝐺}.

and the stabiliser of 𝑥 is

𝐺𝑥 = {𝑔 ∈ 𝐺 ∶ 𝑔 ∗ 𝑥 = 𝑥∀𝑥 ∈ 𝑋}.

Theorem 1.16 (Orbit-stabiliser). If 𝐺 acts on 𝑋, for all 𝑥 ∈ 𝑋 there is a
bijection

𝐺 ⋅ 𝑥 ↔ 𝐺/𝐺𝑥

𝑔 ∗ 𝑥 ↔ 𝑔𝐺𝑥

1.4 Conjugacy class, Centraliser & Normaliser
In the previous section we use a group action of a group on itself, namely left
multiplication, to study the structure of a group. In this section we study
conjugation, another group action that gives much richer results.

There is an action of 𝐺 on 𝑋 = 𝐺 via 𝑔 ∗ 𝑥 = 𝑔𝑥𝑔−1, giving 𝜑 ∶ 𝐺 → Sym(𝐺).

Remark.

𝜑(𝑔)(𝑥𝑦) = 𝑔𝑥𝑦𝑔−1 = (𝑔𝑥𝑔−1)(𝑔𝑦𝑔−1) = 𝜑(𝑔)(𝑥)𝜑(𝑔)(𝑦)

so 𝜑(𝑔) is a group homomorphism. In fact this is an automorphism and 𝜑(𝑔) ∈
Inn(𝐺), which is the group of all automorphisms arising from conjugation.

Denote

Aut(𝐺) = {𝜃 ∶ 𝐺 → 𝐺 ∶ 𝜃 is an isomorphism} ≤ Sym(𝐺).

We have shown 𝜑 ∶ 𝐺 → Sym(𝐺) has image in Aut(𝐺) ≤ Sym(𝐺), i.e. Inn(𝐺) ≤
Aut(𝐺).

Definition (Conjugacy class). The conjugacy clss of 𝑥 ∈ 𝐺 is

𝐺 ⋅ 𝑥 = Cl𝐺(𝑥) = {𝑔𝑥𝑔−1 ∶ 𝑔 ∈ 𝐺}.

Definition (Centraliser). The centraliser of 𝑥 ∈ 𝐺 is

𝐶𝐺(𝑥) = {𝑔 ∈ 𝐺 ∶ 𝑔𝑥 = 𝑥𝑔}.

Definition (Centre). The centre of 𝐺 is

𝑍(𝐺) = ker𝜑 = {𝑔 ∈ 𝐺 ∶ 𝑔𝑥𝑔−1 = 𝑥∀𝑥 ∈ 𝐺}.

10
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Definition (Normaliser). The normaliser of 𝐻 ≤ 𝐺 is

𝑁𝐺(𝐻) = {𝑔 ∈ 𝐺 ∶ 𝑔𝐻𝑔−1 = 𝐻}.

By Orbit-stabiliser, there is a bijection between

Cl𝐺(𝑥) ↔ 𝐺/𝐶𝐺(𝑥)

so if 𝐺 is finite, |Cl𝐺(𝑥)| = |𝐺/𝐶𝐺(𝑥)| divides |𝐺|.
Recall from IA Groups that in the permutation group 𝑆𝑛

1. every element can be written as a product of disjoint cycles,

2. permutations are conjugations if and only if they have the same cycle type.

We will use these knowledge to make our first (and the only one in this
course) step towards classification of finite simple groups:

Theorem 1.17. 𝐴𝑛 is simple for 𝑛 ≥ 5.

Proof. First claim 𝐴𝑛 is generated by 3-cycles. Need to show that double
transpositions are generated by 3-cycles. There are two cases:

• (𝑎𝑏)(𝑏𝑐) = (𝑎𝑏𝑐),

• (𝑎𝑏)(𝑐𝑑) = (𝑎𝑐𝑏)(𝑎𝑐𝑑).

Let 𝐻 ⊴ 𝐴𝑛. Suppose 𝐻 contains a 3-cycle, say (𝑎𝑏𝑐). There exists 𝜎 ∈ 𝑆𝑛
such that

(𝑎𝑏𝑐) = 𝜎−1(123)𝜎.

If 𝜎 ∈ 𝐴𝑛 then (123) ∈ 𝐻. If 𝜎 ∉ 𝐴𝑛, let 𝜎′ = (45)𝜎 ∈ 𝐴𝑛. Here we use the fact
that 𝑛 ≥ 5. Then

(𝑎𝑏𝑐) = 𝜎′−1(45)(123)(45)𝜎′ = 𝜎′−1(123)𝜎′.

Hence 𝐻 contains all 3-cycles and 𝐻 = 𝐴𝑛. It then suffices to show any non-trivial
𝐻 ⊴ 𝐴𝑛 contains a 3-cycle. Split into different cases:

• Case I: 𝐻 contains 𝜎 = (12 ⋯ 𝑟)𝜏, written in disjoint cycle notation, for
some 𝑟 ≥ 4. Let 𝜋 = (123) and consider the commutator

[𝜎, 𝜋] = 𝜎−1𝜋−1𝜎𝜋 = 𝜏−1(𝑟 ⋯ 21)(132)(12 ⋯ 𝑟)𝜏(123) = (23𝑟)

which is a 3-cycle in 𝐻.

• Case II: 𝐻 contains 𝜎 = (123)(456)𝜏. Let 𝜋 = (124) and consider

[𝜎, 𝜋] = 𝜏−1(132)(465)(142)(123)(456)𝜏(124) = (12436)

which is a 5-cycle in 𝐻. This reduces to Cases I.

• Case III: 𝐻 contains 𝜎 = (123)𝜏 and 𝜏 is a product of 2-cycles. Then
𝜎2 = (132) ∈ 𝐻.

11
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• Case IV: 𝐻 contains 𝜎 = (12)(34)𝜏 where 𝜏 is a product of 2-cycles. Let
𝜋 = (123) and

𝑢 = [𝜎, 𝜋] = (12)(34)(132)(12)(34)(123) = (14)(23).

Not let 𝑣 = (125) where we used the fact 𝑛 ≥ 5 again. Then

[𝑢, 𝑣] = (14)(23)(152)(14)(23)(125) = (12345) ∈ 𝐻

which is a 5-cycle.

1.5 Finite 𝑝-groups
A finite group 𝐺 is a 𝑝-group if |𝐺| = 𝑝𝑛 for some prime 𝑝.

Theorem 1.18. If 𝐺 is a finite 𝑝-group then 𝑍(𝐺) ≠ {𝑒}.

Proof. The conjugacy classes partition 𝐺 and |Cl(𝑥)| = |𝐺/𝐶(𝑥)| which divides
|𝐺|. Thus |Cl(𝑥)| is a power of 𝑝. Class equation reads

|𝐺| = |𝑍(𝐺)| + ∑
other ccl’s

|Cl(𝑥)|

Reduce mod 𝑝, we get |𝑍(𝐺)| = 0 mod 𝑝. But |𝑍(𝐺)| ≥ 1 so |𝑍(𝐺)| ≥ 𝑝.

Corollary 1.19. A group of order 𝑝𝑛, 𝑛 > 1 is never simple.

Lemma 1.20. For any group 𝐺, if 𝐺/𝑍(𝐺) is cyclic, 𝐺 is abelian.

Proof. Let 𝐺/𝑍(𝐺) = ⟨𝑔𝑍(𝐺)⟩. Then every coset is of the form 𝑔𝑟𝑍(𝐺), 𝑟 ∈ Z.
Thus every element of 𝐺 is of the form 𝑔𝑟𝑧 where 𝑧 ∈ 𝑍(𝐺). Then

𝑔𝑟𝑧𝑔𝑟′𝑧′ = 𝑔𝑟𝑔𝑟′𝑧𝑧′ = 𝑔𝑟+𝑟′𝑧′𝑧 = 𝑔𝑟′𝑧′𝑔𝑟𝑧

and hence 𝐺 is abelian.

Corollary 1.21. If |𝐺| = 𝑝2, 𝐺 is abelian.

Proof. 𝑍(𝐺) ≠ {𝑒} so |𝑍(𝐺)| = 𝑝 or 𝑝2. Suppose |𝑍(𝐺)| = 𝑝, |𝐺/𝑍(𝐺)| = 𝑝 so
𝐺/𝑍(𝐺) ≅ 𝐶𝑝 so by the lemma 𝐺 is abelian. Absurd. Thus 𝑍(𝐺) = 𝐺 and thus
𝐺 is abelian.

Theorem 1.22. If |𝐺| = 𝑝𝑎, 𝐺 has a subgroup of order 𝑝𝑏 for all 0 ≤ 𝑏 ≤ 𝑎.

Proof. Induction on 𝑎. If 𝑎 = 1 then done. Suppose 𝑎 > 1. Then 𝑍(𝐺) ≠ {𝑒}.
Let 𝑥 ∈ 𝑍(𝐺) be non-identity. Then 𝑥 has order a power of 𝑝, say 𝑝𝑖. Then
𝑧 = 𝑥𝑝𝑖−1 has order precisely 𝑝. Let 𝐶 = ⟨𝑧⟩ ⊴ 𝐺. Then 𝐺/𝐶 has order 𝑝𝑎−1.
By induction hypothesis we can find a subgroup 𝐻 ≤ 𝐺/𝐶 of order 𝑝𝑏−1. Then
𝐻 must be of the form 𝐿/𝐶 for some 𝐿 ≤ 𝐺 and |𝐿| = 𝑝𝑏.

1.6 Finite abelian groups
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Theorem 1.23. If 𝐺 is a finite abelian group then

𝐺 ≅ 𝐶𝑑1
× 𝐶𝑑2

× ⋯ × 𝐶𝑑𝑘

with 𝑑𝑖+1 ∣ 𝑑𝑖 for all 𝑖.

Proof. This will be a corollary of the main result on modules by considering
abelian groups as Z-modules.

Example. If |𝐺| = 8 and 𝐺 is abelian, 𝐺 is isomorphic to one of 𝐶8, 𝐶4 × 𝐶2
and 𝐶2 × 𝐶2 × 𝐶2.

Lemma 1.24 (Chinese Remainder Theorem). If 𝑛 and 𝑚 are coprime, then

𝐶𝑛𝑚 ≅ 𝐶𝑛 × 𝐶𝑚.

Proof. Let 𝑔 ∈ 𝐶𝑛 has order 𝑛, ℎ ∈ 𝐶𝑚 has order 𝑚. Consider

𝑥 = (𝑔, ℎ) ∈ 𝐶𝑛 × 𝐶𝑚.

If 𝑒 = 𝑥𝑟 = (𝑔𝑟, ℎ𝑟), then 𝑛 ∣ 𝑟, 𝑚 ∣ 𝑟 so 𝑛𝑚 ∣ 𝑟. Thus |𝑥| = 𝑛𝑚. The group is
cyclic.

Corollary 1.25. If 𝐺 is a finite abelian group then

𝐺 ≅ 𝐶𝑛1
× 𝐶𝑛2

× ⋯ × 𝐶𝑛ℓ

with each 𝑛𝑖 a power of prime.

Proof. If 𝑑 = 𝑝𝑎1
1 𝑝𝑎2

2 ⋯ 𝑝𝑎𝑟𝑟 , a factorisation of distinct primes, the above lemma
shows

𝐶𝑑 ≅ 𝐶𝑝𝑎1
1

× 𝐶𝑝𝑎2
2

× ⋯ × 𝐶𝑝𝑎𝑟𝑟 .

Apply this to the theorem above.

1.7 Sylow’s Theorem

Theorem 1.26 (Sylow’s Theorem). Let |𝐺| = 𝑝𝑎 ⋅ 𝑚 with (𝑝, 𝑚) = 1 where
𝑝 is a prime. Then

1. the set
Syl𝑝(𝐺) = {𝑃 ≤ 𝐺 ∶ |𝑃 | = 𝑝𝑎}

of Sylow 𝑝-subgroups is not empty,

2. all elements of Syl𝑝(𝐺) are conjugates in 𝐺,

3. the number
𝑛𝑝 = | Syl𝑝(𝐺)|

13
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satisfies
𝑛𝑝 = 1 mod 𝑝, 𝑛𝑝 ∣ |𝐺|.

Lemma 1.27. If 𝑛𝑝 = 1 then the unqiue Sylow 𝑝-subgroup is normal in 𝐺.

Proof. Let 𝑃 ≤ 𝐺 be the Sylow 𝑝-subgroup and 𝑔 ∈ 𝐺. As 𝑔𝑃𝑔−1 ∈ Syl𝑝(𝐺),
𝑔𝑃𝑔−1 = 𝑃 so 𝑃 ⊴ 𝐺.

Example. Let 𝐺 be group of order 96 = 25 ⋅ 3. Then

• 𝑛2 = 1 mod 2 and 𝑛2 ∣ 3 so 𝑛2 = 1 or 3.

• 𝑛3 = 1 mod 3 and 𝑛3 ∣ 32 so 𝑛3 = 1, 4 or 16.

𝐺 acts on the set Syl𝑝(𝐺) by conjugation. The second part of Sylow’s Theorem
says that this action has precisely one orbit. The stabiliser of 𝑃 ∈ Syl𝑝(𝐺) is
the normaliser 𝑁𝐺(𝑃 ) ≤ 𝐺 of index 𝑛𝑝 = | Syl𝑝(𝐺)|.

Corollary 1.28. If 𝐺 is non-abelian simple, then |𝐺| ∣ (𝑛𝑝)!
2 and 𝑛𝑝 ≥ 5.

Proof. 𝑁𝐺(𝑃 ) has index 𝑛𝑝 so Theorem 1.14 to get the result. Alternatively,
consider the conjugation action of 𝐺 on Syl𝑝(𝐺).

Example (Continued). |𝐺| ∤ 3!
2 so 𝐺 cannot be simple.

Example. Suppose 𝐺 is a simple group of order 132 = 22 ⋅ 3 ⋅ 11. We have
𝑛11 = 1 mod 11 and 𝑛11 ∣ 12. As 𝐺 is simple we can’t have 𝑛11 = 1 so 𝑛11 = 12.
Each Sylow 11-subgroup has order 11 so isomorphic to 𝐶11, and thus contains
10 elements of order 11. Such subgroups can only intersect in the identity so we
have 12 × 10 = 120 elements of order 11.

In addition we know 𝑛3 = 1 mod 3 and 𝑛3 ∣ 44, so 𝑛3 = 4 or 22. If 𝑛3 = 4,
we must have |𝐺| ∣ 4!

2 by the previous corollary. Absurd. Thus 𝑛3 = 22. As
above, we get 22⋅(3−1) = 44 elements of order 3. This gives 164 > 132 elements.
Absurd.

Thus there is no simple group of order 132.

Proof of Sylow’s Theorem. Let |𝐺| = 𝑝𝑛 ⋅ 𝑚.

1. Let
Ω = {𝑋 ⊆ 𝐺 ∶ |𝑋| = 𝑝𝑛}

and 𝐺 act on Ω via

𝑔 ∗ {𝑔1, 𝑔2, … , 𝑔𝑝𝑛} = {𝑔𝑔1, 𝑔𝑔2, … , 𝑔𝑔𝑝𝑛}.

Let Σ ⊆ Ω be an orbit of the action. If {𝑔1, … , 𝑔𝑝𝑛} ∈ Σ, then

(𝑔𝑔−1
1 ) ∗ {𝑔1, … , 𝑔𝑝𝑛} ∈ Σ

so for all 𝑔 ∈ 𝐺 there is an element of Σ containing 𝑔. Thus |Σ| ≥ |𝐺|
𝑝𝑛 = 𝑚.

If there is some orbit Σ with |Σ| = 𝑚, its stabiliser 𝐺Σ has order 𝑝𝑛 so we
have a Sylow 𝑝-subgroup.
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To show this happens, we must show it is not possible for every orbit to
have size strictly bigger than 𝑚. By Orbit-stabiliser, for any Σ, |Σ| ∣ 𝑝𝑛 ⋅ 𝑚
so if |Σ| > 𝑚 then 𝑝 ∣ |Σ|. If all orbits have size > 𝑚, 𝑝 divides all of them
so 𝑝 ∣ |Ω|.
Let us calculate |Ω|. We have

|Ω| = (𝑝𝑛 ⋅ 𝑚
𝑝𝑛 ) =

𝑝𝑛−1

∏
𝑗=0

𝑝𝑛 ⋅ 𝑚 − 𝑗
𝑝𝑛 − 𝑗

.

The largest power of 𝑝 dividing 𝑝𝑛 ⋅ 𝑚 − 𝑗 is the same as the largest power
of 𝑝 dividing 𝑗, which is the same as the largest power of 𝑝 dividing 𝑝𝑛 − 𝑗.
Thus |Ω| is not divisible by 𝑝.

2. Let us show something stronger: if 𝑃 ∈ Syl𝑝(𝐺) and 𝑄 is a 𝑝-subgroup
then there is a 𝑔 ∈ 𝐺 such that 𝑔−1𝑄𝑔 ≤ 𝑃.
Let 𝑄 act on 𝐺/𝑃 by

𝑞 ∗ 𝑔𝑃 = 𝑞𝑔𝑃 .
By Orbit-stabiliser, the size of an orbit divides |𝑄| = 𝑝𝑏 so it is either 1 or
divisible by 𝑝.
On the other hand |𝐺/𝑃 | = |𝐺|

|𝑃 | = 𝑚 which is not divisible by 𝑝. Thus
there must be an orbit of size 1, say {𝑔𝑃}, i.e. for all 𝑞 ∈ 𝑄, 𝑞𝑔𝑃 = 𝑔𝑃 so
𝑔−1𝑞𝑔 ∈ 𝑃. 𝑔−1𝑄𝑔 ≤ 𝑃.

3. By 2 𝐺 acts on Syl𝑝(𝐺) by conjugation with one orbit. By Orbit-stabiliser
𝑛𝑝 = | Syl𝑝(𝐺)| divides |𝐺|, which is the second part of the statement.

Now we show 𝑛𝑝 = 1 mod 𝑝. Let 𝑃 ∈ Syl𝑝(𝐺) and let 𝑃 act on Syl𝑝(𝐺)
by conjugation. By Orbit-stabiliser, the size of an orbit divides |𝑃 | = 𝑝𝑛

so each orbit either has size 1 or dividible by 𝑝. But {𝑃} is a singleton
orbit. To show 𝑛𝑝 = 1 mod 𝑝 it suffices to show every other orbit has size
> 1.
Suppose that {𝑄} is another singleton orbit. Then for all 𝑝 ∈ 𝑃, 𝑝−1𝑄𝑝 = 𝑄
so 𝑃 ≤ 𝑁𝐺(𝑄). But we also have 𝑄 ⊴ 𝑁𝐺(𝑄) (since the normaliser is the
largest subgroup of 𝐺 in which 𝑄 is normal). Now 𝑃 and 𝑄 are Sylow
𝑝-subgroups of 𝑁𝐺(𝑄) so are conjugates in 𝑁𝐺(𝑄). Thus there exists
𝑔 ∈ 𝑁𝐺(𝑄) such that 𝑃 = 𝑔−1𝑄𝑔 = 𝑄. Thus 𝑃 = 𝑄 which contradicts 𝑄
being different from 𝑃.

Example. Let 𝐺 = GL𝑛(F𝑝). It has order

|𝐺| = (𝑝𝑛 − 1)(𝑝𝑛 − 𝑝) ⋯ (𝑝𝑛 − 𝑝𝑛−1) =
𝑛−1
∏
𝑖=0

(𝑝𝑛 − 𝑝𝑖) = 𝑝
𝑛(𝑛−1)

2

𝑛−1
∏
𝑖=0

(𝑝𝑛−𝑖 − 1).

Let 𝑈 be the set of upper triangular matrices with diagonal entries 1, which
forms a subgroup of 𝐺. |𝑈| = 𝑝

𝑛(𝑛−1)
2 so 𝑈 is a Sylow 𝑝-subgroup.

Consider GL2(F𝑝). It has order (𝑝2 − 1)(𝑝2 − 𝑝) = 𝑝(𝑝 + 1)(𝑝 − 1)2. Let ℓ
be an odd prime dividing 𝑝 − 1. Then ℓ ∤ 𝑝, ℓ ∤ 𝑝 + 1 so ℓ2 is the largest power
of ℓ dividing |GL2(F𝑝)|.
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Define the unit group

(Z/𝑝Z)× = {𝑥 ∈ Z/𝑝Z ∶ ∃𝑦 ∈ Z/𝑝Z, 𝑥𝑦 = 1} = {𝑥 ∈ Z/𝑝Z ∶ 𝑥 ≠ 0}

which is isomorphic to 𝐶𝑝−1. Thus it has a subgroup 𝐶ℓ ≤ 𝐶𝑝−1, i.e. we can find
𝑥 ∈ (Z/𝑝Z)× such that 𝑥ℓ = 1.

Let

𝐻 = {( 𝑎 0
0 𝑏 ) ∶ 𝑎, 𝑏 ∈ (Z/𝑝Z)×, 𝑎ℓ = 𝑏ℓ = 1} ≅ 𝐶ℓ × 𝐶ℓ ≤ GL2(F𝑝).

Then 𝐻 is a Sylow ℓ-subgroup.
Example. Let

SL2(F𝑝) = ker(det ∶ GL2(F𝑝) → (Z/𝑝Z)×).

det is surjective as det( 𝜆 0
0 1 ) = 𝜆 so SL2(F𝑝) ⊴ GL2(F𝑝) has index 𝑝 − 1. Thus

|SL2(F𝑝)| = (𝑝 − 1)𝑝(𝑝 + 1).

Further define
PSL2(F𝑝) = SL2(F𝑝)/{( 𝜆 0

0 𝜆 )}.
If ( 𝜆 0

0 𝜆 ) ∈ SL2(F𝑝), then 𝜆2 = 1. As long as 𝑝 > 2, there are two such 𝜆’s, ±1 so

|PSL2(F𝑝)| = (𝑝 − 1)𝑝(𝑝 + 1)
2

.

Let (Z/𝑝Z)∞ = Z/𝑝Z ∪ {∞}. Then PSL2(F𝑝) acts on (Z/𝑝Z)∞ by the
Möbius map

[𝑎 𝑏
𝑐 𝑑] ∗ 𝑧 = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

Take 𝑝 = 5 for example, this actions gives a homomorphism

𝜑 ∶ PSL2(F5) → 𝑆6.

|PSL2(F5)| = 60. Claim 𝜑 is injective.

Proof. Suppose 𝑎𝑧+𝑏
𝑐𝑧+𝑑 = 𝑧 for all 𝑧. Set 𝑧 = 0, 𝑏 = 0. 𝑧 = ∞, 𝑐 = 0. 𝑧 = 1, 𝑎 = 𝑑.

Thus
[𝑎 𝑏

𝑐 𝑑] = [1 0
0 1] ∈ PSL2(F5).

Further claim Im𝜑 ≤ 𝐴6.

Proof. Consider

1 PSL2(F5) 𝑆6 𝐶2.𝜑 sgn

Need to show 𝜓 = sgn ∘𝜑 is trivial. We already know elements of odd order in
PSL2(F5) has be be sent to 1.

Note that 𝐻 = {[ 𝜆 0
0 𝜆−1 ], [ 0 𝜆

−𝜆−1 0 ]} has order 4, so it is a Sylow 2-subgroup
of PSL2(F5). Any elemnt of order 2 or 4 is conjugate to an element in the group.
We will show 𝜓(𝐻) = {𝑒}.

𝐻 is generated by [ −2 0
0 2 ] and [ 0 1

−1 0 ]. [ −2 0
0 2 ] acts on (Z/5Z)∞ via 𝑧 ↦ −𝑧.

It is thus an even permutation. [ 0 1
−1 0 ] acts via 𝑧 ↦ − 1

𝑧 , which is also an even
permutation.
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2 Rings

2 Rings

2.1 Definitions

Definition (Ring). A ring is a quintuple (𝑅, +, ⋅, 0𝑅, 1𝑅) such that

• (𝑅, +, 0𝑅) is an abelian group,

• the operation − ⋅ − ∶ 𝑅 × 𝑅 → 𝑅 is associative and satisfies

1𝑅 ⋅ 𝑟 = 𝑟 = 𝑟 ⋅ 1𝑅

• 𝑟 ⋅ (𝑟1 + 𝑟2) = 𝑟 ⋅ 𝑟1 + 𝑟 ⋅ 𝑟2 and (𝑟1 + 𝑟2) ⋅ 𝑟 = 𝑟1 ⋅ 𝑟 + 𝑟2 ⋅ 𝑟.

A ring is commutative if for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎. We will only consider
commutative rings in this course.

Definition (Subring). If (𝑅, +, ⋅, 0𝑅, 1𝑅) is a ring and 𝑆 ⊆ 𝑅, then it is a
subring if 0𝑅, 1𝑅 ∈ 𝑆 and +, ⋅ make 𝑆 into a ring. Write 𝑆 ≤ 𝑅.

Example.

1. Z ≤ Q ≤ R ≤ C with usual 0, 1, + and ⋅.

2. Z[𝑖] = {𝑎 + 𝑖𝑏 ∶ 𝑎, 𝑏 ∈ Z} is the subring of Gaussian integers.

3. Q[
√

2] = {𝑎 +
√

2𝑏 ∶ 𝑎, 𝑏 ∈ Q} ≤ R.

Definition (Unit). An element 𝑟 ∈ 𝑅 is a unit if there exists 𝑠 ∈ 𝑅 such
that 𝑠 ⋅ 𝑟 = 1𝑅.

Note that being a unit depends on the ambient ring: 2 ∈ Z is not a unit but
2 ∈ Q is.

If every 𝑟 ∈ 𝑅, 𝑟 ≠ 0𝑅 is a unit, then 𝑅 is a field.

Notation. If 𝑥 ∈ 𝑅, write −𝑥 ∈ 𝑅 for the inverse of 𝑥 in (𝑅, +, 0𝑅). Write
𝑦 − 𝑥 = 𝑦 + (−𝑥).

Example. 0𝑅 + 0𝑅 = 0𝑅 so

𝑟 ⋅ 0𝑅 = 𝑟 ⋅ (0𝑅 + 0𝑅) = 𝑟 ⋅ 0𝑅 + 𝑟 ⋅ 0𝑅

so 𝑟 ⋅ 0𝑅 = 0𝑅. Thus if 𝑅 ≠ {0}, 0𝑅 ≠ 1𝑅 since choosing 𝑟 ≠ 0𝑅, we would get
𝑟 = 𝑟 ⋅ 1𝑅 = 𝑟 ⋅ 0𝑅 = 0𝑅. Absurd.

However, ({0}, +, ⋅, 0, 0) is indeed a ring.

Example. If 𝑅 and 𝑆 are rings, then 𝑅 × 𝑆 is a ring via

(𝑟1, 𝑠1) + (𝑟2, 𝑠2) = (𝑟1 + 𝑟2, 𝑠1 + 𝑠2)
(𝑟1, 𝑠1) ⋅ (𝑟2, 𝑠2) = (𝑟1 ⋅ 𝑟2, 𝑠1 ⋅ 𝑠2)

1𝑅×𝑆 = (1𝑅, 1𝑆)
0𝑅×𝑆 = (0𝑅, 0𝑆)

17



2 Rings

Let 𝑒1 = (1𝑅, 0), 𝑒2 = (0, 1𝑆), then1

𝑒2
1 = 𝑒1

𝑒2
2 = 𝑒2

𝑒1 + 𝑒2 = 1𝑅×𝑆

Example (Polynomial). Let 𝑅 be a ring. A polynomial 𝑓 over 𝑅 is an expression

𝑓 = 𝑎0 + 𝑎1𝑋 + ⋯ 𝑎𝑛𝑋𝑛

with 𝑎𝑖 ∈ 𝑅 for all 𝑖. Note that 𝑋 is just a symbol and the sum is formal. We
will consider 𝑓 and

𝑎0 + 𝑎1𝑋 + ⋯ 𝑎𝑛𝑋𝑛 + 0𝑅 ⋅ 𝑋𝑛+1

as equal.
The degree of 𝑓 is the largest 𝑛 such that 𝑎𝑛 ≠ 0. If in addition 𝑎𝑛 = 1𝑅, we

say 𝑓 is monic.
Write 𝑅[𝑋] for the set of all polynomials over 𝑅. If

𝑔 = 𝑏0 + 𝑏1𝑋 + ⋯ + 𝑏𝑚𝑋𝑚,

we define

𝑓 + 𝑔 =
max (𝑓,𝑔)

∑
𝑖=0

(𝑎𝑖 + 𝑏𝑖)𝑋𝑖

𝑓 ⋅ 𝑔 = ∑
𝑖

𝑖
∑
𝑗=0

𝑎𝑗𝑏𝑖−𝑗𝑋𝑖

which make 𝑅[𝑋] a ring.
We consider 𝑅 as a subring of 𝑅[𝑋], given by the polynomials of degree 0.

In particular, 1𝑅 ∈ 𝑅 gives 1𝑅[𝑋].

Example. Conisder Z/2Z[𝑋], 𝑓 = 𝑋 + 𝑋2 ≠ 0. We have

𝑓(0) = 0 + 0 = 0
𝑓(1) = 1 + 1 = 0

This shows that a polynomial vanishing everywhere on a finite ring is not
necessarily zero (but necessarily so for an infinite ring).

Example. Write 𝑅[[𝑋]] for the ring of formal power series with elements

𝑓 = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋2 + …

with the same addition and multiplication as above.

Example. The Laurent polynomials 𝑅[𝑋, 𝑋−1] is the set of expressions

𝑓 = ∑
𝑖∈Z

𝑎𝑖𝑋𝑖

such that only finitely many 𝑎𝑖’s are non-zero.
1This is known as orthogonal idempotents.
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Example. The ring of Laurent series are elements of the form

𝑓 = ∑
𝑖∈Z

𝑎𝑖𝑋𝑖

with only finitely many 𝑖 < 0 such that 𝑎𝑖 ≠ 0.

Example. If 𝑅 is a ring and 𝑋 is a set, the set 𝑅𝑋 of all functions 𝑓 ∶ 𝑋 → 𝑅
is a ring via

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
(𝑓 ⋅ 𝑔)(𝑥) = 𝑓(𝑥) ⋅ 𝑔(𝑥)
(1𝑅𝑋)(𝑥) = 1𝑅

(0𝑅𝑋)(𝑥) = 0𝑅

For example, we have the following chain

R[𝑋] = {𝑓 ∶ R → R polynomial} < {𝑓 ∶ R → R continuous} < RR.

2.2 Homomorphism, Ideals and Isomorphisms

Definition (Homomorphism). A function 𝜑 ∶ 𝑅 → 𝑆 between rings is a
homomorphism if

• 𝜑(𝑟1 + 𝑟2) = 𝜑(𝑟1) + 𝜑(𝑟2), i.e. 𝜑 ∶ (𝑅, +, 0𝑅) → (𝑆, +, 0𝑆) is a group
homomorphism,

• 𝜑(𝑟1𝑟2) = 𝜑(𝑟1)𝜑(𝑟2),

• 𝜑(1𝑅) = 1𝑆.

If in addition 𝜑 is a bijection, it is an isomorphism.

The kernel of 𝜑 ∶ 𝑅 → 𝑆 is

ker𝜑 = {𝑟 ∈ 𝑅 ∶ 𝜑(𝑟) = 0𝑆}.

Lemma 2.1. 𝜑 ∶ 𝑅 → 𝑆 is injective if and only if ker𝜑 = {0𝑅}.

Proof. 𝜑 ∶ (𝑅, +, 0𝑅) → (𝑆, +, 0𝑆) is a group homomorphism and its kernel as
group homomorphism is also ker𝜑.

Definition (Ideal). A subset 𝐼 ⊆ 𝑅 is an ideal if

• 𝐼 is a subgroup of (𝑅, +, 0𝑅),

• strong (multiplicative) closure: for all 𝑥 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑥 ⋅ 𝑟 ∈ 𝐼.

Write 𝐼 ⊴ 𝑅.

We say 𝐼 ⊴ 𝑅 is proper if 𝐼 ≠ 𝑅.
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Lemma 2.2. If 𝜑 ∶ 𝑅 → 𝑆 is a homomorphism then ker𝜑 ⊴ 𝑅.

Proof. The first axiom holds since 𝜑 is a group homomorphism. Let 𝑥 ∈ ker𝜑, 𝑟 ∈
𝑅, then

𝜑(𝑟 ⋅ 𝑥) = 𝜑(𝑟) ⋅ 𝜑(𝑥) = 𝜑(𝑟) ⋅ 0𝑆 = 0𝑆

so 𝑟 ⋅ 𝑥 ∈ ker𝜑.

Example.

1. If 𝐼 ⊴ 𝑅 and 1𝑅 ∈ 𝐼, then for all 𝑟 ∈ 𝑅, 𝑟 = 𝑟 ⋅ 1𝑅 ∈ 𝐼 so 𝐼 = 𝑅.
Equivalently, if 𝐼 is a proper ideal then 1𝑅 ∉ 𝐼. Consequenctly, proper
ideals are never subrings.

2. This can be generalaised to units: if 𝑢 is a unit in 𝑅 with inverse 𝑣 ∈ 𝑅,
then if 𝑢 ∈ 𝐼, so is 1𝑅 = 𝑢 ⋅ 𝑣 ∈ 𝑅 so 𝐼 = 𝑅.
Equivalently, if 𝐼 is a proper ideal then it contains no unit.

Example. If 𝑅 is a field then {0} and 𝑅 are the only ideals.

Example. In the ring Z, all ideals are of the form

𝑛Z = {… , −2𝑛, −𝑛, 0, 𝑛, 2𝑛, … }.

Proof. 𝑛Z is certainly an ideal.
Let 𝐼 ⊴ Z be an ideal. Let 𝑛 ∈ 𝐼 be the smallest positive element. Then

𝑛Z ⊆ 𝐼. If this is not an equality, choose 𝑚 ∈ 𝐼 \ 𝑛Z. By Euclidean algorithm,
𝑚 = 𝑛𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑛. So 𝑟 = 𝑚 − 𝑛𝑞 ∈ 𝐼. But 𝑛 is the smallest positive
element in 𝐼, so 𝑟 = 0. Thus 𝑚 ∈ 𝑛Z.

Definition (Generated ideal). For an element 𝑎 ∈ 𝑅, write

(𝑎) = {𝑎 ⋅ 𝑟 ∶ 𝑟 ∈ 𝑅} ⊴ 𝑅,

the ideal generated by 𝑎.
More generally, for a set of elements {𝑎1, … , 𝑎𝑠}, write

(𝑎1, … , 𝑎𝑠) = {𝑎1𝑟1 + ⋯ + 𝑎𝑠𝑟𝑠 ∶ 𝑟1, … , 𝑟𝑠 ∈ 𝑅} ⊴ 𝑅.

Definition (Principal ideal). If 𝐼 ⊴ 𝑅 if of the form (𝑎), we say it is a
principal ideal.

Example.

1. 𝑛Z = (𝑛) ⊴ Z is ideal. In fact we have shown that all ideals of Z are
principal.

2. (𝑋) = {polynomials with constant coefficient 0} ⊴ C[𝑋].
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Proposition 2.3 (Quotient ring). Let 𝐼 ⊴ 𝑅 be an ideal. The quotient ring
is the set of cosets 𝑟 + 𝐼 (i.e. (𝑅, +, 0)/𝐼). Addition and multiplication are
given by

(𝑟1 + 𝐼) + (𝑟2 + 𝐼) = 𝑟1 + 𝑟2 + 𝐼
(𝑟1 + 𝐼) ⋅ (𝑟2 + 𝐼) = 𝑟1𝑟2 + 𝐼

with 0𝑅/𝐼 = 0𝑅 + 𝐼, 1𝑅/𝐼 = 1𝑅 + 𝐼. This is a ring, and the quotient map

𝑅 → 𝑅/𝐼
𝑟 ↦ 𝑟 + 𝐼

is a ring homomorphism.

Proof. We already knew (𝑅/𝐼, +, 0𝑅/𝐼) is an abelian group and addition as
described above is well-defined. Suppose

𝑟1 + 𝐼 = 𝑟′
1 + 𝐼

𝑟2 + 𝐼 = 𝑟′
2 + 𝐼

then 𝑟′
1 − 𝑟1 = 𝑎1 ∈ 𝐼, 𝑟′

2 − 𝑟2 = 𝑎2 ∈ 𝐼. So

𝑟′
1𝑟′

2 = (𝑟1 + 𝑎1)(𝑟2 + 𝑎2) = 𝑟1𝑟2 + 𝑟1𝑎2 + 𝑟2𝑎1 + 𝑎1𝑎2⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈𝐼

.

Thus 𝑟′
1𝑟′

2 + 𝐼 = 𝑟1𝑟2 + 𝐼. This shows multiplication is well-defined. The ring
axioms for 𝑅/𝐼 then follow from those of 𝑅.

Example.

1. 𝑛Z ⊴ Z so Z/𝑛Z is a ring. It has elements

0 + 𝑛Z, 1 + 𝑛Z, … , (𝑛 − 1) + 𝑛Z

and addition and multiplication are modular arithmetic mod 𝑛.

2. (𝑋) ⊴ C[𝑋] so C[𝑋]/(𝑋) is a ring. We have

𝑎0 + 𝑎1𝑋 + 𝑎2𝑋2 + ⋯ + 𝑎𝑛𝑋𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∈(𝑋)

+(𝑋) = 𝑎0 + 𝑋.

If 𝑎0 + (𝑋) = 𝑏0 + (𝑋) then 𝑎0 − 𝑏0 ∈ (𝑋) so 𝑎0 − 𝑏0 is divisible by 𝑋,
𝑎0 − 𝑏0 = 0. Consider

𝜑 ∶ C → C[𝑋]/(𝑋)
𝑎 ↦ 𝑎 + (𝑋)

which is a bijection. Observe that 𝜑 is a bijection and its inverse is given
by the map 𝑓 + (𝑋) ↦ 𝑓(0).
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Proposition 2.4 (Euclidean algorithm for polynomials). Let 𝐹 be a field
and 𝑓, 𝑔 ∈ 𝐹 [𝑋]. Then we may write

𝑓 = 𝑔 ⋅ 𝑞 + 𝑟

with deg 𝑟 < deg 𝑔.

Proof. Let deg 𝑓 = 𝑛, deg 𝑔 = 𝑚 so

𝑓 = 𝑎0 + 𝑎1𝑋 + ⋯ + 𝑎𝑛𝑋𝑛

𝑔 = 𝑏0 + 𝑏1𝑋 + ⋯ + 𝑏𝑚𝑋𝑚

with 𝑎𝑛, 𝑏𝑚 ≠ 0.
If 𝑛 < 𝑚, let 𝑞 = 0, 𝑟 = 𝑓 so done. Suppose 𝑛 ≥ 𝑚 and proceed by induction

on 𝑛. Let
𝑓1 = 𝑓 − 𝑔𝑋𝑛−𝑚𝑎𝑛𝑏−1

𝑚

where 𝑏−1
𝑚 exists since 𝑏𝑚 ∈ 𝐹 and 𝑏𝑚 ≠ 0. This has degree < 𝑛. If 𝑛 = 𝑚 then

𝑓 = 𝑔(𝑋𝑛−𝑚𝑎𝑛𝑏−1
𝑚 ) + 𝑓1

with deg 𝑓1 < 𝑛 = 𝑚 = deg 𝑔. If 𝑛 > 𝑚, by induction we have 𝑓1 = 𝑔𝑞1 + 𝑟 with
deg 𝑟 < deg 𝑔 so

𝑓 = 𝑔(𝑋𝑛−𝑚𝑎𝑛𝑏−1
𝑚 ) + 𝑔𝑞1 + 𝑟 = 𝑔(𝑋𝑛−𝑚𝑎𝑛𝑏−1

𝑚 + 𝑞1) + 𝑟

as required.

Example. Consider (𝑋2 + 1) ⊴ R[𝑋] and let 𝑅 = R[𝑋]/(𝑋2 + 1). It has
elements of the form 𝑓 + (𝑋2 + 1). By Euclidean algorithm for polynomials
𝑓 = (𝑋2 + 1)𝑔 + 𝑟 with deg 𝑟 ≤ 1 so 𝑓 + (𝑋2 + 1) = 𝑟 + (𝑋2 + 1). Any element
can be represented by a polynomial of degree ≤ 1, say 𝑎 + 𝑏𝑋 + (𝑋2 + 1). If
𝑎1 + 𝑏1𝑋 + (𝑋2 + 1) = 𝑎2 + 𝑏2𝑋 + (𝑋2 + 1) then (𝑎1 + 𝑏1𝑋) − (𝑎2 + 𝑏2𝑋) is
divisible by 𝑋2 + 1. But degrees add in multiplication so 𝑎1 + 𝑏1𝑋 = 𝑎2 + 𝑏2𝑋.
Consider the bijection

𝜑 ∶ 𝑅 → C
𝑎 + 𝑏𝑋 + (𝑋2 + 1) ↦ 𝑎 + 𝑏𝑖

It obviously send addition to addition. For multiplication,

𝜑((𝑎 + 𝑏𝑋 + (𝑋2 + 1)) ⋅ (𝑐 + 𝑑𝑋 + (𝑋2 + 1)))
=𝜑(𝑎𝑐 + (𝑏𝑐 + 𝑎𝑑)𝑋 + 𝑏𝑑𝑋2 + (𝑋2 + 1))
=𝜑(𝑎𝑐 + (𝑏𝑐 + 𝑎𝑑)𝑋 + 𝑏𝑑(𝑋2 + 1) − 𝑏𝑑 + (𝑋2 + 1)
=(𝑎𝑐 − 𝑏𝑑) + (𝑏𝑐 + 𝑎𝑑)𝑖
=(𝑎 + 𝑏𝑖) ⋅ (𝑐 + 𝑑𝑖)
=𝜑(𝑎 + 𝑏𝑋 + (𝑋2 + 1)) ⋅ 𝜑(𝑐 + 𝑑𝑋 + (𝑋2 + 1))

Thus we have shown that C ≅ R[𝑋]/(𝑋2 + 1).

Remark. The key idea in the proof is to force 𝑋2 + 1 to vanish by quotient the
polynomial ring by the generated ideal so that “𝑋 = ±𝑖”. Similarly Q[𝑋]/(𝑋2 −
2) ≅ Q[

√
2] ≤ R.
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This is a nice result. However, the proof is too cumbersome to be generalised
as we have to check well-definedness for each case. Instead, we have the following
theorems stating the general results for abstract rings and ideals. The proofs
are similar to those for groups and are omitted.

Theorem 2.5 (1st Isomorphism Theorem). Let 𝜑 ∶ 𝑅 → 𝑆 be a ring
isomorphism. Then ker𝜑 ⊴ 𝑅, Im𝜑 ≤ 𝑆 and

𝑅/ ker𝜑 → Im𝜑
𝑟 + ker𝜑 ↦ 𝜑(𝑟)

is a ring isomorphism.

Theorem 2.6 (2nd Isomorphism Theorem). Let 𝑅 ≤ 𝑆 and 𝐽 ⊴ 𝑆. Then
𝑅 ∩ 𝐽 ⊴ 𝑅 and

𝑅 + 𝐽
𝐽

≅ 𝑅
𝑅 ∩ 𝐽

as rings.

Theorem 2.7 (Subring and ideal correspondence). Let 𝐼 ⊴ 𝑅. Then there
is a bijection between

{subrings of 𝑅/𝐼} ↔ {subrings of 𝑅 containing 𝐼}
𝐿 ≤ 𝑅/𝐼 ↦ {𝑟 ∈ 𝑅 ∶ 𝑟 + 𝐼 ∈ 𝐿}

𝑆/𝐼 ≤ 𝑅/𝐼 ↤ 𝐼 ⊴ 𝑆 ≤ 𝑅

and

{ideals of 𝑅/𝐼} ↔ {ideals of 𝑅 containing 𝐼}
𝐿 ⊴ 𝑅/𝐼 ↦ {𝑟 ∈ 𝑅 ∶ 𝑟 + 𝐼 ∈ 𝐿}

𝐽/𝐼 ⊴ 𝑅/𝐼 ↤ 𝐼 ⊴ 𝐽 ⊴ 𝑅

Theorem 2.8 (3rd Isomorphism Theorem). Let 𝐼, 𝐽 ⊴ 𝑅, 𝐼 ⊆ 𝐽. Then
𝐽/𝐼 ⊴ 𝑅/𝐼 and

𝑅/𝐼
𝐽/𝐼

≅ 𝑅/𝐽.

Example. Consider the homomorphism

𝜑 ∶ R[𝑋] → C

∑ 𝑎𝑛𝑋𝑛 ↦ ∑ 𝑎𝑛𝑖𝑛

i.e. evaluation at 𝑖. It is surjective and

ker𝜑 = {𝑓 ∈ R[𝑋] ∶ 𝑓(𝑖) = 0} = (𝑋2 + 1)

because real polynomials with 𝑖 as a root also have −𝑖 as aroot, so are divisible
by (𝑋 − 𝑖)(𝑋 + 𝑖) = 𝑋2 + 1. By 1st Isomorphism Theorem

R[𝑋]/(𝑋2 + 1) ≅ C.
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Example (Characteristic of a ring). For any ring 𝑅 there is a unique homomor-
phism

𝜄 ∶ Z → 𝑅

𝑛 ↦
⎧{
⎨{⎩

1𝑅 + 1𝑅 + ⋯ + 1𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

𝑛 > 0

− (1𝑅 + 1𝑅 + ⋯ + 1𝑅)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

𝑛 < 0

ker 𝜄 ⊴ Z so ker 𝜄 = 𝑛Z for some 𝑛 ≥ 0. This number 𝑛 is called the characteristic
of 𝑅, denoted ch𝑅.

For example, Z ≤ Q ≤ R ≤ C all have characteristic 0. Z/𝑛Z have character-
istic 𝑛.

2.3 Integral domain, Field of fractions, Maximal and Prime
ideals

Definition (Integral domain). A non-zero ring 𝑅 is an integral domain if
for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ⋅ 𝑏 = 0 implies that 𝑎 = 0 or 𝑏 = 0.

Definition (Zero divisor). 𝑥 is a zero divisor in 𝑅 if 𝑥 ≠ 0 and there exists
𝑦 ≠ 0 such that 𝑥 ⋅ 𝑦 = 0.

Example.

1. All fields are integral domains: if 𝑥𝑦 = 0 with 𝑦 ≠ 0, then 𝑦−1 exists and

0 = 0 ⋅ 𝑦−1 = (𝑥𝑦) ⋅ 𝑦−1 = 𝑥.

2. A subring of an integral domain is an integral domain. Thus Z ≤ Q,Z[𝑖] ≤
C are integral domains.

Definition (Principal ideal domain). A ring 𝑅 is a principal ideal domain
(PID) if it is an integral domain and every ideal is principal, i.e. for all 𝐼 ⊴ 𝑅,
there exists 𝑎 ∈ 𝑅 such that 𝐼 = (𝑎).

Example. Z is a PID.

Lemma 2.9. A finite integral domain is a field.

Proof. Let 𝑎 ≠ 0 ∈ 𝑅 and consider

𝑎 ⋅ − ∶ 𝑅 → 𝑅
𝑏 ↦ 𝑎𝑏

This is a group homomorphism and its kernel is

ker(𝑎 ⋅ −) = {𝑏 ∈ 𝑅 ∶ 𝑎𝑏 = 0} = {0}.

Thus 𝑎 ⋅ − is injective. As |𝑅| < ∞, 𝑎 ⋅ − must also be surjective. Thus there
exists 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 1. 𝑏 = 𝑎−1.
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Lemma 2.10. Let 𝑅 be an integral domain. Then 𝑅[𝑋] is an integral
domain.

Proof. Let

𝑓 =
𝑛

∑
𝑖=0

𝑎𝑖𝑋𝑖

𝑔 =
𝑚

∑
𝑗=0

𝑏𝑗𝑋𝑗

with 𝑎𝑛, 𝑏𝑚 ≠ 0 be non-zero polynomials. Then the largest power of 𝑋 in 𝑓𝑔 is
𝑋𝑚+𝑛 and its coefficient is 𝑎𝑛𝑏𝑚 ∈ 𝑅. This is a product of non-zero elements
on an integral domain so non-zero. Thus 𝑓𝑔 ≠ 0.

This gives us a way to produce a new integral domain from old ones. Moreover,
iterating this, 𝑅[𝑋1, … , 𝑋𝑛] = ((𝑅[𝑋1])[𝑋2] … [𝑋𝑛]) is an integral domain.

Theorem 2.11 (Field of fractions). Let 𝑅 be an integral domain. There is
a field of fractions 𝐹 of 𝑅 with the following properties:

1. 𝐹 is a field,

2. 𝑅 ≤ 𝐹,

3. every element of 𝐹 is of the form 𝑎 ⋅ 𝑏−1 where 𝑎, 𝑏 ∈ 𝑅 ≤ 𝐹.

Proof. Consider 𝑆 = {(𝑎, 𝑏) ∈ 𝑅2 ∶ 𝑏 ≠ 0} with an equivalence relation

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇔ 𝑎𝑑 = 𝑏𝑑 ∈ 𝑅.

This is reflexive and symmetric. To show it is transitive, suppose (𝑎, 𝑏) ∼
(𝑐, 𝑑), (𝑐, 𝑑) ∼ (𝑒, 𝑓). Then

(𝑎𝑑)𝑓 = (𝑏𝑐)𝑓 = 𝑏(𝑐𝑓) = 𝑏(𝑒𝑑)

so 𝑑(𝑎𝑓 − 𝑏𝑒) = 0. As 𝑑 ≠ 0 and 𝑅 is an integral domain, 𝑎𝑓 − 𝑏𝑒 = 0, i.e.
(𝑎, 𝑏) ∼ (𝑒, 𝑓).

Let 𝐹 = 𝑆/ ∼ and write [(𝑎, 𝑏)] = 𝑎
𝑏 . Define

𝑎
𝑏

+ 𝑐
𝑑

= 𝑎𝑑 + 𝑏𝑐
𝑏𝑑

𝑎
𝑏

⋅ 𝑐
𝑑

= 𝑎𝑐
𝑏𝑑

0𝐹 = 0
1

1𝐹 = 1
1

These are well-defined. If 𝑎
𝑏 ≠ 0𝐹 = 0

1 then 𝑎 ⋅ 1 ≠ 0 ⋅ 𝑏 = 0. Then 𝑏
𝑎 ∈ 𝐹 and

𝑎
𝑏 ⋅ 𝑏

𝑎 = 1
1 = 1𝐹 so 𝑎

𝑏 ∈ 𝐹 has an inverse. 𝐹 is a field.
𝑅 is a subring of 𝐹 via

𝑅 ↪ 𝐹

𝑟 ↦ 𝑟
1

which is injective as 𝑅 is an integral domain.
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Example.

1. The field of fractions of Z is Q.

2. The field of fractions of C[𝑋] is

C(𝑋) = {𝑝(𝑋)
𝑞(𝑋)

∶ 𝑝(𝑋), 𝑞(𝑋) ∈ C[𝑋], 𝑞(𝑋) ≠ 0} ,

the field of rational functions.

As we have mentioned before, {0} is a bona fide ring although it is a (trivial)
counterexample to many results. However, it is not a field as we require 0 ≠ 1.
To emphasise this, we declare

Fiat. The ring {0} is not a field.

Lemma 2.12. A non-zero ring 𝑅 is a field if and only if its only ideals are
{0} and 𝑅.

Proof.

• ⇒: Suppose 𝐼 ⊴ 𝑅 is a non-zero ideal, then it contains 𝑎 ≠ 0. But an ideal
containing a unit must be the whole ring.

• ⇐: Let 𝑥 ≠ 0 ∈ 𝑅. Then (𝑥) = 𝑅 as it is not the zero ideal. Thus there
exists 𝑦 ∈ 𝑅 such that 𝑥𝑦 = 1𝑅 so 𝑥 is a unit.

Definition (Maximal ideal). An ideal 𝐼 ⊴ 𝑅 is maximal if there is no proper
ideal which properly contains 𝐼.

Lemma 2.13. An ideal 𝐼 ⊴ 𝑅 is maximal if and only if 𝑅/𝐼 is a field.

Proof. 𝑅/𝐼 is a field if and only if 𝐼/𝐼 and 𝑅/𝐼 are the only ideals in 𝑅/𝐼, if and
only if 𝐼, 𝑅 ⊴ 𝑅 are the only ideals containing 𝐼.

Definition (Prime ideal). An ideal 𝐼 ⊴ 𝑅 is prime if 𝐼 is proper and if
𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝐼 then 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼.

Example. The ideal 𝑛Z is prime if and only if 𝑛 is 0 or a prime number: if 𝑝 is
prime and 𝑎, 𝑏 ∈ 𝑝Z then 𝑝 ∣ 𝑎𝑏 so 𝑝 ∣ 𝑎 or 𝑝 ∣ 𝑏, i.e. 𝑎 ∈ 𝑝Z or 𝑏 ∈ 𝑝Z. Conversely,
if 𝑛 = 𝑢𝑣 is composite, 𝑢 < 𝑛 then 𝑢𝑣 ∈ 𝑛Z but 𝑢 ∉ 𝑛Z.

Lemma 2.14. 𝐼 ⊴ 𝑅 is prime if and only if 𝑅/𝐼 is an integral domain.

Proof.
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• ⇒: Supose 𝐼 ⊴ 𝑅 is prime. Let 𝑎 + 𝐼, 𝑏 + 𝐼 ∈ 𝑅/𝐼 be such that (𝑎 + 𝐼)(𝑏 +
𝐼) = 0𝑅/𝐼. Since 𝑎𝑏 + 𝐼 = 0𝑅/𝐼, 𝑎𝑏 ∈ 𝐼. As 𝐼 is prime, 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼, i.e.
𝑎 + 𝐼 = 0𝑅/𝐼 or 𝑏 + 𝐼 = 0𝑅/𝐼. Thus 𝑅/𝐼 is an integral domain.

• ⇐: Suppose 𝑅/𝐼 is an integral domain. Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏+𝐼 = 0𝑅/𝐼.
(𝑎 + 𝐼)(𝑏 + 𝐼) = 0𝑅/𝐼. As 𝑅/𝐼 is an integral domain, 𝑎 + 𝐼 = 0𝑅/𝐼 or
𝑏 + 𝐼 = 0𝑅/𝐼, i.e. 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼.

Corollary 2.15. Maximal ideals are prime.

Proof. Fields are integral domains.

Lemma 2.16. If 𝑅 is an integral domain then its characteristic is 0 or a
prime number.

Proof. Consider ker(𝜄 ∶ Z → 𝑅) = 𝑛Z. By 1st Isomorphism Theorem

Z/𝑛Z ≅ Im 𝜄 ≤ 𝑅.

As a subring of an integral domain is an integral domain, Z/𝑛Z is an integral
domain so 𝑛Z ⊴ Z is prime. Thus 𝑛 = 0 or a prime number.

2.4 Factorisation in integral domains
Let 𝑅 be an integral domain in this section.

We begin with several definitions. Note that for every statement about an
element of the ring there is an equivalent one in terms of ideals.

Definition (Unit, divisibility, associates, irreducible, prime).

• An element 𝑎 ∈ 𝑅 is a unit if there is 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 1𝑅.
Equivalently, (𝑎) = 𝑅.

• 𝑎 ∈ 𝑅 divides 𝑏 ∈ 𝑅 if there is a 𝑐 ∈ 𝑅 such that 𝑏 = 𝑎𝑐. Equivalently,
(𝑏) ⊆ (𝑎). Write 𝑎 ∣ 𝑏.

• 𝑎, 𝑏 ∈ 𝑅 are associates if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎. Equivalently, (𝑎) = (𝑏).

• 𝑟 ∈ 𝑅 is irreducible if it is not zero, not a unit and if 𝑟 = 𝑎𝑏 then 𝑎 or
𝑏 is a unit.

• 𝑟 ∈ 𝑅 is prime if it is not zero, not a unit and if 𝑟 ∣ 𝑎𝑏 then 𝑟 ∣ 𝑎 or
𝑟 ∣ 𝑏. Equivalently, 𝑎𝑏 ∈ (𝑟) ⇒ 𝑎 ∈ (𝑟) or 𝑏 ∈ (𝑟).

Remark. Being a unit/irreducible/prime depends not only on the element but
also on the ambient ring: 2𝑋 ∈ Z[𝑋] is not irreducible but 2𝑋 ∈ Q[𝑋] is.
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Lemma 2.17. (𝑟) ⊴ 𝑅 is prime if and only if 𝑟 is zero or prime.

Proof.

• ⇒: Let (𝑟) ⊴ 𝑅 be a prime ideal and 𝑟 ∣ 𝑎𝑏. Then 𝑎𝑏 ∈ (𝑟) so 𝑎 ∈ (𝑟) or
𝑏 ∈ (𝑟) as (𝑟) is prime. So 𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏. 𝑟 is 0 or a prime.

• ⇐: If 𝑟 = 0 then (0) ⊴ 𝑅 is a prime ideal since 𝑅 ≅ 𝑅/(0) is an integral
domain. Let 𝑟 ≠ 0 be a prime and 𝑎𝑏 ∈ (𝑟). Then 𝑟 ∣ 𝑎𝑏 so 𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏.
𝑎 ∈ (𝑟) or 𝑏 ∈ (𝑟) as required.

Lemma 2.18. If 𝑟 ∈ 𝑅 is prime then it is irreducible.

Proof. Let 𝑟 = 𝑎𝑏. Then 𝑟 ∣ 𝑎𝑏 so 𝑟 ∣ 𝑎 or 𝑟 ∣ 𝑏. Suppose 𝑟 ∣ 𝑎 wlog. Then 𝑎 = 𝑟𝑐.
𝑟 = (𝑟𝑐)𝑏, 𝑟(𝑏𝑐 − 1) = 0. As 𝑟 ≠ 0 and 𝑅 is an integral domain, 𝑏𝑐 − 1 = 0 so 𝑏
is a unit.

Example. Let 𝑅 = Z[
√

−5] = {𝑎 + 𝑏
√

−5 ∶ 𝑎, 𝑏 ∈ Z} ≤ C. This is a subring of
a field so an integral domain. Define

𝑁 ∶ 𝑅 → Z≥0

𝑎 + 𝑏
√

−5 ↦ 𝑎2 + 5𝑏2

so 𝑁(𝑧) = 𝑧𝑧. Note 𝑁(𝑟1𝑟2) = 𝑁(𝑟1)𝑁(𝑟2). If 𝑟 is a unit then there exists 𝑠 ∈ 𝑅
such that 𝑟𝑠 = 1, then 𝑁(𝑟)𝑁(𝑠) = 𝑁(1) = 1, so 𝑁(𝑟) = 1. So 𝑟 = 𝑎 + 𝑏

√
−5

such that 𝑎2 + 5𝑏2 = 1. The only possibility is 𝑟 = ±1. Claim that 2 ∈ 𝑅 is
irreducible:

Proof. Let 2 = 𝑎𝑏 so 𝑁(𝑎)𝑁(𝑏) = 4. 𝑁(𝑎) = 1, 2 or 4. But 𝑁(𝑎) ≠ 2 so
𝑁(𝑎) = 1 or 4, 𝑁(𝑏) = 4 or 1 so 𝑎 or 𝑏 is a unit.

Similarly we can show that 3 and 1 ±
√

−5 are irreducible.
Note that

(1 +
√

−5)(1 −
√

−5) = 1 + 5 = 6 = 2 ⋅ 3

so 2 ∣ (1 +
√

−5)(1 −
√

−5) but 𝑁(1 ±
√

−5) = 6 is not divisible by 𝑁(2) = 4 so
2 ∤ 1 ±

√
−5. Thus 2 ∈ 𝑅 is not prime.

We also find that 6 = 2 ⋅ 3 = (1 +
√

−5)(1 −
√

−5) has two different factori-
sations into irreducibles.

Definition (Euclidean domain). An integral domain 𝑅 is a Euclidean domain
(ED) if there is a function 𝜑 ∶ 𝑅 \ {0} → Z≥0, a Euclidean function such that

1. ∀𝑎, 𝑏 ∈ 𝑅 \ {0}, 𝜑(𝑎𝑏) ≥ 𝜑(𝑎),

2. ∀𝑎, 𝑏 ∈ 𝑅, 𝑏 ≠ 0, we have 𝑎 = 𝑏𝑞 + 𝑟 with 𝑟 = 0 or 𝜑(𝑟) < 𝜑(𝑏).

Example.

1. Z is a Euclidean domain with 𝜑(𝑛) = |𝑛|.
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2. For a field F, F[𝑋] is a Euclidean domain with 𝜑(𝑓) = deg 𝑓.

3. Z[𝑖] is a Euclidean domain with 𝜑(𝑎 + 𝑖𝑏) = 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏).

Proof. Let 𝑧1, 𝑧2 ∈ Z[𝑖], 𝑧2 ≠ 0. Consider 𝑧1
𝑧2

∈ C. By considering the
lattice of Gaussian integers on the complex plane, we can find 𝑞 ∈ Z[𝑖]
such that ∣ 𝑧1

𝑧2
− 𝑞∣ < 1. Consider 𝑟 = 𝑧1 − 𝑞𝑧2 ∈ Z[𝑖],

∣ 𝑟
𝑧2

∣ = ∣𝑧1
𝑧2

− 𝑞∣ < 1

so |𝑟| < |𝑧2| so 𝜑(𝑟) = |𝑟|2 < |𝑧2|2 = 𝜑(𝑧2).

4. Similarly we can show Z[
√

−2] is a Euclidean domain.

Proposition 2.19. If 𝑅 is a ED then it is a PID.

This proof is a generalisation of the proof that Z is a PID.

Proof. Let 𝐼 ⊴ 𝑅 and choose 0 ≠ 𝑏 ∈ 𝐼 such that 𝜑(𝑏) is minimal. If 𝑎 ∈ 𝐼
then Euclidean property gives 𝑎 = 𝑞𝑏 + 𝑟 with 𝜑(𝑟) < 𝜑(𝑏) or 𝑟 = 0. Then
𝑟 = 𝑎 − 𝑞𝑏 ∈ 𝐼 but if 𝑟 ≠ 0 then minimality of 𝜑(𝑏) is contradicted. Thus 𝑟 = 0
and 𝑎 ∈ (𝑏). 𝐼 = (𝑏).

Example. Z,F[𝑋] and Z[𝑖] are PIDs.

Example. Z[𝑋] is not a PID. Consider (2, 𝑋) ⊴ Z[𝑋]. Suppose (2, 𝑋) = (𝑓)
for some 𝑓 ∈ Z[𝑋], then 𝑓 ∣ 2. Degrees of polynomials on an integral domain add
under multiplication so if 𝑓 divides a constant polynomial it must be constant.
Thus 𝑓 = ±1, ±2. If 𝑓 = ±2, ±2 ∤ 𝑋. Absurd. Thus 𝑓 = ±1, (𝑓) = Z[𝑋]. But
1 ≠ (2, 𝑋). Absurd.

Example. Let F be a field and 𝐴 ∈ ℳ𝑛(F). Consider

𝐼 = {𝑓 ∈ F[𝑋] ∶ 𝑓(𝐴) = 0}.

If 𝑓, 𝑔 ∈ 𝐼, (𝑓 + 𝑔)(𝐴) = 𝑓(𝐴) + 𝑔(𝐴) = 0. If ℎ ∈ F[𝑋], (𝑓ℎ)(𝐴) = 𝑓(𝐴)ℎ(𝐴) = 0
so 𝐼 ⊴ F[𝑋]. As F[𝑋] is a PID, 𝐼 = (𝑚𝐴) for some 𝑚𝐴 ∈ F[𝑋]. This 𝑚𝐴 is the
minimal polynomial of 𝐴 and it follows that it is unique up to a unit.

Definition (Unique factorisation domain). An integral domain is a unique
factoriation domain (UFD) if

• every non-zero, non-unit is a product of irreducibles,

• if 𝑝1 ⋯ 𝑝𝑛 = 𝑞1 ⋯ 𝑞𝑚 are factorisations into irreducibles, then 𝑛 = 𝑚
and 𝑝𝑖 is an associate of 𝑞𝑖 up to reordering.

We will show that PIDs are UFDs.
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Lemma 2.20. If 𝑅 is a PID then irreducibles are primes.

Proof. Let 𝑝 ∈ 𝑅 be irreducible and suppose 𝑠 ∣ 𝑎𝑏. Need to show that 𝑝 ∣ 𝑎 or
𝑝 ∣ 𝑏. Suppose 𝑝 ∤ 𝑎. Consider (𝑝, 𝑎) ⊴ 𝑅. As 𝑅 is a PID, there exists 𝑑 ∈ 𝑅
such that (𝑑) = (𝑝, 𝑎), so 𝑝 = 𝑞1𝑑, 𝑎 = 𝑞2𝑑. As 𝑝 is irreducible, either 𝑞1 or 𝑑 is
a unit. If 𝑞1 is a unit then 𝑎 = 𝑞2𝑑 = 𝑞2(𝑞−1

1 𝑝) so 𝑝 ∣ 𝑎. Thus 𝑑 must be a unit
and (𝑝, 𝑎) = (𝑑) = 𝑅. Thus 1𝑅 = 𝑟𝑝 + 𝑠𝑎 for some 𝑟 and 𝑠. 𝑏 = 𝑏𝑟𝑝 + 𝑎𝑏𝑠 so
𝑝 ∣ 𝑏.

Lemma 2.21. Let 𝑅 be a PID and 𝐼1 ⊆ 𝐼2 ⊆ 𝐼2 ⊆ ⋯ be an increasing
sequence of ideal. Then there exists 𝑁 ∈ N such that for all 𝑛 ≥ 𝑁, 𝐼𝑛 = 𝐼𝑛+1.

Definition (Noetherian). The above condition is the ascending chain con-
dition. A chain satisfying the above condition is Noetherian.

Proof. Let 𝐼 = ⋃∞
𝑛=1 𝐼𝑛 which is again an ideal so 𝐼 = (𝑎) for some 𝑎 ∈ 𝑅. Then

𝑎 ∈ 𝐼 so there exists 𝑁 ∈ N such that 𝑎 ∈ 𝐼𝑁. Then

(𝑎) ⊆ 𝐼𝑁 ⊆ 𝐼𝑁+1 ⋯ ⊆ (𝑎)

so equality throughout.

Theorem 2.22. PID is UFD.

Proof. Let 𝑅 be a PID. The proof consists of two parts: first show the existence
of factorisation in 𝑅 (the proof thereof generalises to all Noetherian rings), and
then show its uniqueness.

1. Suppose for contradiction there exists 𝑎 ∈ 𝑅 which cannot be written as a
product of irreducibles. then 𝑎 is not irreducible so 𝑎 = 𝑎1𝑏1 with 𝑎1, 𝑏1
not units and one of then cannot be written as a product of irreducibles
(otherwise 𝑎 would be), say it is 𝑎1. Hence 𝑎1 = 𝑎2𝑏2 where 𝑎2, 𝑏2 are
not units and wlog 𝑎2 could not be written as a product of irreducibles.
Continue this way. Now

(𝑎) ⊆ (𝑎1) ⊆ (𝑎2) ⊆ ⋯

is an ascending chain so by ACC we must have (𝑎𝑁) = (𝑎𝑁+1) for some 𝑁,
i.e. 𝑎𝑁 = 𝑎𝑁+1𝑏𝑁+1 with 𝑏𝑁+1 a unit.

2. Let 𝑝1 ⋯ 𝑝𝑛 = 𝑞1 ⋯ 𝑞𝑚 be factorisations into irreducibles. Thus 𝑝1 ∣ 𝑞1 ⋯ 𝑞𝑛.
In a PID irreducibles are primes so 𝑝1 ∣ 𝑞𝑖 for some 𝑖. After reordering
𝑝1 ∣ 𝑞1 so 𝑞1 = 𝑝1 ⋅ 𝑎. As 𝑞1 is irreducible, 𝑎 is a unit so 𝑝1 and 𝑞1
are associates. Now 𝑝1(𝑝2 ⋯ 𝑝𝑛 − 𝑎𝑞2 ⋯ 𝑞𝑚) = 0. As 𝑅 is an integral
domain 𝑝2 ⋯ 𝑝𝑛 = (𝑎𝑞2) ⋯ 𝑞𝑚. Continue this way, we get 𝑛 ≤ 𝑚 and
1 = (unit) ⋅ 𝑞𝑛+1 ⋯ 𝑞𝑚. Thus 𝑞𝑛+1, … 𝑞𝑚 are units. Absrud. Thus 𝑛 = 𝑚
and 𝑝𝑖’s and 𝑞𝑖’s are associates up to reordering.
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Definition (gcd, lcm).

• 𝑑 is a greatest common divisor (gcd) of 𝑎1, … , 𝑎𝑛, written gcd(𝑎1, … , 𝑎𝑛),
if 𝑑 ∣ 𝑎𝑖 for all 𝑖 and if 𝑑′ ∣ 𝑎𝑖 for all 𝑖 then 𝑑′ ∣ 𝑑.

• 𝑑 is a lowest common multiple (lcm) of 𝑎1, … , 𝑎𝑛, written lcm(𝑎1, … , 𝑎𝑛),
if 𝑎𝑖 ∣ 𝑚 for all 𝑖 and if 𝑎𝑖 ∣ 𝑑′ for all 𝑖 then 𝑑 ∣ 𝑑′.

It is easy to see that if gcd or lcm exists then it is unique up to associates.

Proposition 2.23. If 𝑅 is a UFD then gcd’s and lcm’s exist.

Proof. Write each 𝑎𝑖 as a product

𝑎𝑖 = 𝑢𝑖 ⋅ ∏
𝑗

𝑝𝑛𝑖𝑗
𝑗

where 𝑢𝑖 is a unit and 𝑝𝑗’s are (the same) irreducibles which are not associates
of each other. Set

𝑑 = ∏
𝑗

𝑝𝑚𝑗
𝑗

where 𝑚𝑗 = min𝑖 𝑛𝑖𝑗. Certainly 𝑑 ∣ 𝑎𝑖 for all 𝑖. If 𝑑′ ∣ 𝑎𝑖 for all 𝑖 then write

𝑑′ = 𝑢 ⋅ ∏
𝑗

𝑝𝑡𝑗
𝑗

for some 𝑡𝑗. As 𝑑′ ∣ 𝑎 we must have 𝑡𝑗 ≤ 𝑛𝑖𝑗 for all 𝑖 so 𝑡𝑗 ≤ min𝑖 𝑛𝑖𝑗 = 𝑚𝑗 for
all 𝑗. Thus 𝑑′ ∣ 𝑑.

The argument for lcm is similar.

2.5 Factoriation in polynomial rings
For a field F we know F[𝑋] is a ED, so also a PID and UFD so

1. any 𝐼 ⊴ F[𝑋] is principal, i.e. 𝐼 = (𝑓) for some 𝑓;

2. 𝑓 ∈ F[𝑋] is irreducible if and only if 𝑓 is prime;

3. let 𝑓 ∈ F[𝑋] be irreducible and (𝑓) ⊆ 𝐽 ⊴ F[𝑋] be a larger ideal. Then
𝐽 = (𝑔) for some 𝑔 ∈ F[𝑋] so (𝑓) ⊆ (𝑔), i.e. 𝑔 ∣ 𝑓. But 𝑓 is irreducible so
either 𝑔 is a unit, then (𝑔) = F[𝑋], or 𝑔 is an associate of 𝑓, so (𝑔) = (𝑓).
Thus (𝑓) is maximal;

4.
(𝑓) prime ⟹ 𝑓 prime ⟹ 𝑓 irreducible ⟹ (𝑓) maximal

so prime ideals of F[𝑋] are precisely the maximal ideals;

5. 𝑓 ∈ F[𝑋] is irreducible if and only if (𝑓) is maximal, if and only if F[𝑋]/(𝑓)
is a field.

31



2 Rings

Definition (Content). Let 𝑅 be a UFD and

𝑓 = 𝑎0 + 𝑎1𝑋 + … 𝑎𝑛𝑋𝑛 ∈ 𝑅[𝑋]

with 𝑎𝑛 ≠ 0. The content is

𝑐(𝑓) = gcd(𝑎0, … , 𝑎𝑛).

Definition (Primitive). 𝑓 above is primitive if 𝑐(𝑓) is a unit, i.e. 𝑎𝑖’s are
coprime.

Theorem 2.24 (Gauss’ Lemma). Let 𝑅 be a UFD and 𝐹 be its field of
fractions. Let 𝑓 ∈ 𝑅[𝑋] be primitive. Then 𝑓 is irreducible in 𝑅[𝑋] if and
only if 𝑓 is irreducible in 𝐹[𝑋].

Example. Let 𝑓 = 1 + 𝑋 + 𝑋3 ∈ Z[𝑋]. 𝑐(𝑓) = 1 so 𝑓 is primitive. Suppose
𝑓 = 𝑔ℎ, a product of irreducibles in Z[𝑋]. As 𝑓 is primitive, neither 𝑔 nor ℎ
can be a constant polynomial so they have degree 1 and 2 respectively. Wlog
suppose 𝑔 = 𝑏0 +𝑏1𝑋, ℎ = 𝑐0 +𝑐1𝑋 +𝑐2𝑋2 ∈ Z[𝑋]. Expanding out and equating
the coefficients, 𝑏0𝑐0 = 1, 𝑏1𝑐2 = 1 so 𝑏0𝑏1 = ±1. Thus 𝑔 has one of ±1 as a
root and so does 𝑓. But it doesn’t so such factorisation does not exist. Thus
Q[𝑋]/(1 + 𝑋 + 𝑋3) is a field.

Lemma 2.25. Let 𝑅 be a UFD. If 𝑓, 𝑔 ∈ 𝐹 [𝑋] are primitives then so is 𝑓𝑔.

Proof. Let

𝑓 = 𝑎0 + 𝑎1𝑋 + ⋯ + 𝑎𝑛𝑋𝑛

𝑔 = 𝑏0 + 𝑏1𝑋 + ⋯ + 𝑏𝑚𝑋𝑚

with 𝑎𝑛, 𝑏𝑚 ≠ 0. If 𝑓𝑔 is not primitive, then 𝑐(𝑓𝑔) is not a unit so there is an
irreducible 𝑝 ∣ 𝑐(𝑓𝑔). As 𝑐(𝑓) and 𝑐(𝑔) are units, we have

𝑝 ∣ 𝑎0, 𝑝 ∣ 𝑎1, … , 𝑝 ∣ 𝑎𝑘−1, 𝑝 ∤ 𝑎𝑘

𝑝 ∣ 𝑏0, 𝑝 ∣ 𝑏1, … , 𝑝 ∣ 𝑏ℓ−1, 𝑝 ∤ 𝑏ℓ

The coefficients of 𝑋𝑘+ℓ in 𝑓𝑔 is

∑
𝑖+𝑗=𝑘+ℓ

𝑎𝑖𝑏𝑗 = ⋯ + 𝑎𝑘+1𝑏ℓ−1 + 𝑎𝑘𝑏ℓ + 𝑎𝑘−1𝑏ℓ+1 + ⋯

where LHS is divisible by 𝑝 so 𝑝 ∣ 𝑎𝑘𝑏ℓ but 𝑝 is prime so 𝑝 ∣ 𝑎𝑘 or 𝑝 ∣ 𝑏ℓ. Absurd.
Thus 𝑐(𝑓𝑔) is a unit and 𝑓𝑔 is a primitive.

Corollary 2.26. Let 𝑅 be a UFD. Then 𝑐(𝑓𝑔) is an associate of 𝑐(𝑓)𝑐(𝑔).

Proof. Let 𝑓 = 𝑐(𝑓) ⋅ 𝑓1, 𝑔 = 𝑐(𝑓) ⋅ 𝑔1 with 𝑓1, 𝑔1 primitive. Then

𝑓𝑔 = 𝑐(𝑓)𝑐(𝑔) ⋅ (𝑓1𝑔1)

where 𝑓1𝑔1 is primitive by the lemma above. Thus 𝑐(𝑓)𝑐(𝑔) is a gcd of the
coefficients of 𝑓𝑔.
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Proof of Gauss’ Lemma. Let 𝑓 ∈ 𝑅[𝑋] be primitive. If 𝑓 = 𝑔ℎ is reducible in
𝑅[𝑋] then 𝑔, ℎ cannot be constants as otherwise 𝑓 would not be primitive. Thus
𝑔, ℎ ∈ 𝐹 [𝑋] are not units so 𝑓 ∈ 𝐹 [𝑋] is reducible.

Suppose instead 𝑓 is reducible in 𝐹[𝑋], say 𝑓 = 𝑔ℎ. We can “clear the
denominators”: find 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑔, 𝑏ℎ ∈ 𝑅[𝑋], then

𝑎𝑏𝑓 = (𝑎𝑔) ⋅ (𝑏ℎ) ∈ 𝑅[𝑋].

Take contents, 𝑎𝑔 = 𝑐(𝑎𝑔) ⋅ 𝑔1, 𝑏ℎ = 𝑐(𝑏ℎ) ⋅ ℎ1 with 𝑔1, ℎ1 primitive. Then

𝑎𝑏 ⋅ 𝑓 = 𝑐(𝑎𝑔)𝑐(𝑏𝑓) 𝑔1ℎ1⏟
primitive

so 𝑎𝑏 is an associate of 𝑐(𝑎𝑔)𝑐(𝑏ℎ) so 𝑐(𝑎𝑔)𝑐(𝑏ℎ) = 𝑢𝑎𝑏 where 𝑢 is a unit. Thus
𝑎𝑏𝑓 = 𝑢𝑎𝑏𝑔1ℎ1 and cancel to get 𝑓 = (𝑢𝑔1)ℎ1 is reducible in 𝑅[𝑋].

Proposition 2.27. Let 𝑅 be a UFD and 𝑔 ∈ 𝑅[𝑋] primitive. Let 𝐼 = (𝑔) ⊴
𝐹[𝑋] where 𝐹 is the field of fraction of 𝑅 and 𝐽 = (𝑔) ⊴ 𝑅[𝑋]. Then

𝐽 = 𝐼 ∩ 𝑅[𝑋].

Equivalently, if 𝑓 ∈ 𝑅[𝑋] is divisible by a primitive 𝑔 ∈ 𝐹 [𝑋] then it is
divisible by 𝑔 in 𝑅[𝑋].

Proof. The ⊆ inclusion is clear. To show the other direction, let 𝑓 = 𝑔ℎ ∈ 𝐹[𝑋].
Clear denominators by find 𝑏 ∈ 𝑅 such that 𝑏ℎ ∈ 𝑅[𝑋] so 𝑏𝑓 = (𝑏ℎ) ⋅ 𝑔 ∈ 𝑅[𝑋].
Thus 𝑏𝑓 = 𝑐(𝑏ℎ)ℎ1𝑔 with ℎ1 primitive. Now it follows that 𝑏 ∣ 𝑐(𝑏ℎ), as
𝑏𝑐(𝑓) = 𝑐(𝑏ℎ), so we get 𝑓 = 𝑐(𝑓) ⋅ ℎ1𝑔 ∈ 𝑅[𝑋]. 𝑔 divides 𝑓 in 𝑅[𝑋].

Theorem 2.28. If 𝑅 is a UFD then so is 𝑅[𝑋].

Proof. To show existence, let 𝑓 ∈ 𝑅[𝑋] and write 𝑓 = 𝑐(𝑓) ⋅ 𝑓1 with 𝑓1 primitive.
As 𝑅 is a UFD we can write 𝑐(𝑓) = 𝑝1 ⋯ 𝑝𝑛 ∈ 𝑅 with 𝑝𝑖 irreducible in 𝑅, so
also irreducible in 𝑅[𝑋]. If 𝑓1 is not irreducible, write 𝑓1 = 𝑓2 ⋅ 𝑓3with 𝑓2, 𝑓3 not
units and are primitive. Thus 𝑓2, 𝑓3 are not constants so have degree smaller
than that of 𝑓1. If 𝑓2 or 𝑓3 is irreducible, factor again. The degree continues to
strictly decrease and this stops eventually. So

𝑓 = 𝑝1 ⋯ 𝑝𝑛𝑞1 ⋯ 𝑞𝑚,

a product of irreducibles.
Now for the uniqueness part, note 𝑝1 ⋯ 𝑝𝑛 = 𝑐(𝑓) ∈ 𝑅, a UFD so the

𝑝𝑖’s are unique up to reordering and associates. Thus it suffices to show if
𝑞1 ⋯ 𝑞𝑚 = 𝑟1 ⋯ 𝑟ℓ as products of primitive polynomials then 𝑚 = ℓ and the 𝑞𝑖’s
and 𝑟𝑖’s are the same up to reordering and associates. Since 𝐹[𝑋] is a PID and
thus UFD, 𝑞1 ⋯ 𝑞𝑚 = 𝑟1 ⋯ 𝑟ℓ ∈ 𝑅[𝑋] ⊆ 𝐹[𝑋] implise that 𝑚 = ℓ and 𝑞𝑖’s equal
to 𝑟𝑖’s in 𝐹[𝑋]. If 𝑞1 is an associate of 𝑟1 in 𝐹[𝑋] then 𝑞1 = 𝑢𝑟1 for some unit
𝑢 ∈ 𝐹[𝑋]. Then 𝑢 ∈ 𝐹 is a unit, write 𝑢 = 𝑎

𝑏 . Get 𝑏𝑞1 = 𝑎𝑟1 ∈ 𝑅[𝑋]. Taking
contents, it follows that 𝑏 is an associate of 𝑎 in 𝑅. Cancel to get 𝑞1 = 𝑎𝑟1 ∈ 𝑅[𝑋].
Repeat for 𝑞𝑖’s and 𝑟𝑖’s.
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Example.

1. Z[𝑋] is a UFD.

2. If 𝑅 is a UFD then so is 𝑅[𝑋1, … , 𝑋𝑛].

Proposition 2.29 (Eisenstein’s criterion). Let 𝑅 be a UFD and 𝑓 = 𝑎0 +
𝑎1𝑋 + ⋯ + 𝑎𝑛𝑋𝑛 ∈ 𝑅[𝑋] with 𝑎𝑛 ≠ 0 be primitive. Suppose 𝑝 ∈ 𝑅 is an
irreducible such that

• 𝑝 ∤ 𝑎𝑛,

• 𝑝 ∣ 𝑎𝑖 for 𝑖 = 0, 1, … , 𝑛 − 1,

• 𝑝2 ∤ 𝑎0

then 𝑓 is irreducible in 𝑅[𝑋], so also in 𝐹[𝑋].

Proof. Let 𝑓 = 𝑔ℎ with

𝑔 = 𝑟0 + 𝑟1𝑋 + ⋯ + 𝑟𝑘𝑋𝑘

ℎ = 𝑠0 + 𝑠1𝑋 + ⋯ + 𝑟ℓ𝑋ℓ

with 𝑟𝑘, 𝑠ℓ ≠ 0. Then 𝑘 + ℓ = 𝑛 and 𝑎𝑛 = 𝑟𝑘𝑠ℓ. As 𝑝 ∤ 𝑎𝑛, 𝑝 ∤ 𝑟𝑘 and
𝑝 ∤ 𝑠ℓ. Since 𝑝 ∣ 𝑎0 and 𝑝2 ∤ 𝑎0, suppose wlog that 𝑝 ∣ 𝑟0, 𝑝 ∤ 𝑠0. Suppose
𝑝 ∣ 𝑟0, 𝑝 ∣ 𝑟1, 𝑝 ∣ 𝑟𝑗−1, 𝑝 ∤ 𝑟𝑗. Then

𝑎𝑗 = 𝑠0𝑟𝑗 + 𝑠1𝑟𝑗−1 + 𝑠2𝑟𝑗−2 + ⋯ + 𝑠𝑗𝑟0

so 𝑝 ∤ 𝑎𝑗 and by 2 𝑗 = 𝑛. Thus deg 𝑔 = 𝑛 and ℎ is a constant. As 𝑓 (and hence 𝑔
and ℎ) is a primitive ℎ is a unit.

Example. For 𝑝 ∈ Z prime, 𝑓 = 𝑋𝑚 − 𝑝 ∈ Z[𝑋] is irreducible in Z[𝑋] and
Q[𝑋] so 𝑓 does not have a root in Q. In particular, this shows that 𝑚

√𝑝 ∉ Q).
This will be important in IID Galois Theory.

Example. For 𝑝 ∈ Z prime, let

𝑓 = 𝑋𝑝−1 + 𝑋𝑝−2 + ⋯ + 𝑋 + 1 ∈ Z[𝑋].

Note that (𝑋 − 1)𝑓 = 𝑋𝑝 − 1. Consider the ring isomorphism

𝜑 ∶ Z[𝑋] → Z[𝑋]
𝑋 ↦ 𝑋 + 1

Then

𝜑(𝑓) = 𝑋𝑝−1⏟
𝑝∤

+ (𝑝
1
)

⏟
𝑝∣

𝑋𝑝−1 + ⋯ + ( 𝑝
𝑝 − 2

)
⏟

𝑝∣

𝑋 + ( 𝑝
𝑝 − 1

)
⏟

=𝑝

so Eisenstein’s criterion says that 𝜑(𝑓) is irreducible, so is 𝑓.

Remark. The hypothesis of Eisenstein’s criterion depends on the ambient ring
while the conclusiohn does not. As a heuristics, we can apply ring isomorphisms
to reduce the problem sometimes.
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2.6 Gaussian integers
Recall

Z[𝑖] = {𝑎 + 𝑏𝑖 ∶ 𝑎, 𝑏 ∈ Z} ≤ C.

It has a norm 𝑁(𝑎 + 𝑖𝑏) = 𝑎2 + 𝑏2, making it a ED, and thus a PID and UFD.
In particular primes and irreducibles agree. The units in Z[𝑖] are ±1, ±𝑖 as they
are the only elements of norm 1. In addition, we have the following observations:

1. 2 = (1 + 𝑖)(1 − 𝑖) is not a prime.

2. 𝑁(3) = 9. If 3 = 𝑥𝑦 then 9 = 𝑁(𝑥)𝑁(𝑦). Either 𝑥 or 𝑦 is a unit or
𝑁(𝑥) = 𝑁(𝑦) = 3. But the norm is never 3 so 3 is a prime.

3. 5 = (2 + 𝑖)(2 − 𝑖) is not a prime.

4. 7 is a prime.

Proposition 2.30. A prime 𝑝 ∈ Z is a prime in Z[𝑖] if and only if 𝑝 ≠ 𝑎2+𝑏2

for 𝑎, 𝑏 ∈ Z.

Proof.

• ⇒: If 𝑝 = 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏), it is reducible and thus not a prime.

• ⇐: Note 𝑁(𝑝) = 𝑝2. If 𝑝 factors as 𝑢𝑣 with 𝑢, 𝑣 not units then 𝑁(𝑢) =
𝑁(𝑣) = 𝑝. Write 𝑢 = 𝑎 + 𝑖𝑏, we have 𝑝 = 𝑁(𝑢) = 𝑎2 + 𝑏2.

Now we prove a lemma regarding the multiplicative group of a finite field:

Lemma 2.31. Let F𝑝 = Z/𝑝Z be a field with 𝑝 elements and 𝑝 prime. Then
F×

𝑝 = F𝑝 \ {0} is a group under multiplication and is isomorphic to 𝐶𝑝−1.

Proof. Certainly F×
𝑝 is an abelian group of order 𝑝 − 1. By the classification

theorem of finite abelain groups, F×
𝑝 is either cyclic or contains 𝐶𝑚 × 𝐶𝑚 as a

subgroup for some 𝑚 ≥ 2.
Suppose 𝐶𝑚 × 𝐶𝑚 ≤ F×

𝑝 . Consider 𝑓 = 𝑋𝑚 − 1 ∈ F𝑝[𝑋]. Each element of
𝐶𝑚 × 𝐶𝑚 ≤ F×

𝑝 ⊆ F𝑝 gives a root of 𝑓 so it has at least 𝑚2 distinct roots. But
as F𝑝[𝑋] is a ED and thus UFD, it can be factorised into at most 𝑚 unique
irreducibles. Thus it has at most 𝑚 distinct roots in F𝑝. Thus there is no
subgroup 𝐶𝑚 × 𝐶𝑚 in F×

𝑝 and F×
𝑝 is cyclic.

Proposition 2.32. The primes in Z[𝑖] are, up to associates,

1. prime 𝑝 ∈ Z with 𝑝 = 3 mod 4,

2. 𝑧 ∈ Z[𝑖] such that 𝑁(𝑧) = 𝑝 where 𝑝 is a prime and 𝑝 = 2, or 𝑝 = 1
mod 4.

Proof. First show what we claimed are indeed primes, i.e. irreducibles:
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1. if 𝑝 = 3 mod 4, 𝑝 ≠ 𝑎2 + 𝑏2 so 𝑝 ∈ Z[𝑖] is a prime.

2. suppose 𝑧 = 𝑢𝑣 then 𝑁(𝑢)𝑁(𝑣) = 𝑝 so 𝑁(𝑢) or 𝑁(𝑣) = 1. 𝑢 or 𝑣 is a unit
so 𝑧 is irreducible.

Now let 𝑧 ∈ Z[𝑖] be a prime. Then 𝑧 is irreducible too so 𝑁(𝑧) = 𝑧𝑧 is a
factorisation of 𝑁(𝑧) into irreducibles in Z[𝑖]. Let 𝑝 ∈ Z be a prime dividing
𝑁(𝑧).

• Case 1: 𝑝 = 3 mod 4. Then 𝑝 is irreducible in Z[𝑖]. As 𝑝 ∣ 𝑁(𝑧), 𝑝 ∣ 𝑧 or
𝑝 ∣ 𝑧. Wlog 𝑝 ∣ 𝑧. As 𝑝 and 𝑧 are both irreducibles, they are associates.

• Case 2: 𝑝 = 2, or 𝑝 = 1 mod 4. If 𝑝 = 1 mod 4, consider F×
𝑝 ≅ 𝐶𝑝−1 =

𝐶4𝑘. It has a unique element of order 2, namely [−1]. As 4 ∣ 𝑝 − 1, there is
also an element [𝑎] ∈ F×

𝑝 order 4. Then [𝑎2] has order 2 and thus 𝑎2 = −1
mod 𝑝. Thus there exists 𝑏 ∈ Z such that 𝑎2 + 1 = 𝑝𝑏, 𝑝 ∣ (𝑎 + 𝑖)(𝑎 − 𝑖).
If 𝑝 = 2 then 𝑝 ∣ (1 + 𝑖)(1 − 𝑖).
But 𝑝 ∤ 𝑎 + 𝑖, 𝑝 ∤ 𝑎 − 𝑖 so 𝑝 ∈ Z[𝑖] is not prime and thus not irreducible.
Hence 𝑝 = 𝑧1𝑧2 with 𝑧1, 𝑧2 not units. 𝑝2 = 𝑁(𝑝) = 𝑁(𝑧1)𝑁(𝑧2), 𝑁(𝑧1) =
𝑁(𝑧2) = 𝑝 so 𝑝 = 𝑧1𝑧1 = 𝑧2𝑧2. But also 𝑝 = 𝑧1𝑧2 so 𝑧2 = 𝑧1.
We choose 𝑝 such that 𝑝 ∣ 𝑁(𝑧) so 𝑧1𝑧1 ∣ 𝑧𝑧 and 𝑧 is prime so 𝑧 ∣ 𝑧1 or
𝑧 ∣ 𝑧1. 𝑧1 or 𝑧1 is an associate of 𝑧. 𝑁(𝑧) = 𝑁(𝑧1) or 𝑁(𝑧1) = 𝑝.

Corollary 2.33. An integer 𝑛 ∈ Z > 0 can be written as 𝑎2 + 𝑏2, 𝑎, 𝑏 ∈ Z
if and only if when we write 𝑛 = 𝑝𝑛1

1 𝑝𝑛2
2 ⋯ 𝑝𝑛𝑘

𝑘 with 𝑝𝑖’s distinct, if 𝑝𝑖 = 3
mod 4 then 𝑛𝑖’s are even.

Proof. Let 𝑛 = 𝑎2 + 𝑏2 = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑁(𝑎 + 𝑖𝑏). Let 𝑧 = 𝑎 + 𝑖𝑏.
Then 𝑧 = 𝛼1 ⋯ 𝛼𝑠 as a product of irreducibles (i.e. primes) in Z[𝑖]. Then
𝑛 = 𝑁(𝛼1) ⋯ 𝑁(𝛼𝑠). Each 𝛼𝑖 is either a prime 𝑝 congruent to 3 mod 4 so
𝑁(𝛼𝑖) = 𝑝2, or has 𝑁(𝛼𝑖) = 𝑞, a prime not congruent to 3 mod 4. Thus 𝑛 can
be written as a product of primes as claimed.

Conversely, suppose 𝑛 = 𝑝𝑛1
1 ⋯ 𝑝𝑛𝑘

𝑘 with 𝑛𝑖 even if 𝑝 = 3 mod 4. For each 𝑖
if 𝑝𝑖 = 3 mod 4 then 𝑁(𝑝𝑖) = 𝑝2

𝑖 , 𝑝𝑛𝑖
𝑖 = 𝑁(𝑝𝑛𝑖/2

𝑖 ). As 𝑛 is a product of norms of
Gaussian integers, it is the norm of a Gaussian integer so is a sum of squares.

Example. In how many ways can 65 be written as a sum of two squares?
65 = 5 × 13, 5 = 12 + 22 = (2 + 𝑖)(2 + 𝑖), 13 = 22 + 32 = (2 + 3𝑖)(2 + 3𝑖) so

65 = (2 + 𝑖)(2 + 3𝑖)(2 + 𝑖)(2 + 3𝑖)
= 𝑁((2 + 𝑖)(2 + 3𝑖)) = 𝑁(1 + 8𝑖) = 12 + 82

= 𝑁((2 + 𝑖)(2 − 3𝑖)) = 𝑁(7 − 4𝑖) = 72 + 42

Exercise (Challenge). Find conditions such that 𝑛 = 𝑎2 + 2𝑏2 and 𝑎2 + 3𝑏2 in
Z[

√
−2] and Z[

√
−3].

2.7 Algebraic integers
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Definition (Algebraic integer). A complex number 𝛼 ∈ C is an algebraic
integer if it is a root of a monic polynomial with integer coefficients.

If 𝛼 is an algebraic integer, let Z[𝛼] ≤ C be the smallest subring containing
𝛼, i.e. it is the image of the ring homomorphism

𝜑 ∶ Z[𝑋] → C
𝑋 ↦ 𝛼

Thus by 1st Isomorphism Theorem Z[𝛼] ≅ Z[𝑋]/𝐼 where 𝐼 = ker𝜑.

Proposition 2.34 (Minimal polynomial). If 𝛼 is an algebraic integer then
𝐼 = ker𝜑 is principal and is generated by an irreducible 𝑓𝛼 ∈ Z[𝑋], the
minimal polynomial of 𝛼.

Proof. As 𝛼 is an algebraic integer, it is a root of some 𝑓 ∈ Z[𝑋] so 𝑓 ∈ 𝐼. Let
𝑓𝛼 ∈ 𝐼 be a polynomial of minimal degree, which we may assume is positive. We
want to show that

1. 𝐼 = (𝑓𝛼),

2. 𝑓𝛼 is irreducible.

1. Let ℎ ∈ 𝐼. Now Q[𝑋] is a ED so we can write ℎ = 𝑞𝑓𝛼 + 𝑟 ∈ Q[𝑋] with
𝑟 = 0 or deg 𝑟 < deg 𝑓𝛼. Clearing denominators, there is an 𝑎 ∈ Z such
that 𝑎𝑞, 𝑎𝑟 ∈ Z[𝑋], so 𝑎ℎ = (𝑎𝑞)𝑓𝛼 + 𝑎𝑟 ∈ Z[𝑋]. 𝛼 is a root of ℎ and of 𝑓𝛼
so is also a root of 𝑎𝑟. As 𝑓𝛼 has minimal degree among polynomials with
𝛼 as a root, we must have 𝑎𝑟 = 0. Thus 𝑎ℎ = (𝑎𝑞)𝑓𝛼. Now 𝑐(𝑎ℎ) = 𝑎⋅𝑐(ℎ),
𝑐((𝑎𝑞)𝑓𝛼) = 𝑐(𝑎𝑞) so 𝑎 ∣ 𝑐(𝑎𝑞) so 𝑎𝑞 = 𝑎𝑞 with 𝑞 ∈ Z[𝑋]. Cancelling shows
that 𝑞 = 𝑞. Thus ℎ = 𝑞𝑓𝛼 so ℎ ∈ (𝑓𝛼).

2. Z[𝑋]/(𝑓𝛼) ≅ Z[𝛼] ≤ C. As C is an integral domain, so is Z[𝛼]. Thus (𝑓𝛼)
is prime. Thus 𝑓𝛼 ∈ Z[𝑋] is a prime and hence irreducible.

Example.

1. 𝛼 = 𝑖, 𝑓𝛼 = 𝑋2 + 1.

2. 𝛼 =
√

2, 𝑓𝛼 = 𝑋2 − 2.

3. 𝛼 = 1+
√

−3
2 , 𝑓𝛼 = 𝑋2 − 𝑋 + 1.

4. Less trivially, for 𝑑 ∈ Z, 𝑋5 − 𝑋 + 𝑑 has a unique real root 𝛼. This 𝛼
cannot be constructed using (Z, +, ×,

√
). c.f. IID Galois Theory.

Lemma 2.35. If 𝛼 is an algebraic integer and 𝛼 ∈ Q then 𝛼 ∈ Z.

Proof. 𝑓𝛼 ∈ Z[𝑋] is irreducible and primitive. By Gauss’ Lemma 𝑓𝛼 ∈ Q[𝑋] is
also irreducible. But if 𝛼 ∈ Q, 𝑋 −𝛼 ∣ 𝑓𝛼 in Q[𝑋] so 𝑓𝛼 = 𝑋 −𝑎. But 𝑓𝛼 ∈ Z[𝑋]
so 𝛼 ∈ Z.
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2.8 Hilbert Basis Theorem
Recall that a ring 𝑅 satisfies the ascending chain condition (ACC) if whenever

𝐼1 ⊆ 𝐼2 ⊆ ⋯

ais an increasing sequence of ideals then there exists 𝑁 ∈ N such that for all
𝑛 ≥ 𝑁, 𝐼𝑛 = 𝐼𝑛+1.

A ring satisfying ACC is called Noetherian.
We have shown that a PID is Noetherian.

Lemma 2.36. A ring 𝑅 is Noetherian if and only if every ideal of 𝑅 if
finitely generated.

Proof.

• ⇐: Let 𝐼1 ⊆ 𝐼2 ⊆ ⋯ be an ascending chain of ideal and 𝐼 = ⋃𝑛 𝐼𝑛. Then
𝐼 = (𝑎1, … , 𝑎𝑛) for some 𝑎𝑖 ∈ 𝑅. For all 𝑖 there exists 𝑛𝑖 ∈ N such that
𝑎𝑖 ∈ 𝐼𝑛𝑖

so
(𝑎1, … , 𝑎𝑛) ⊆ 𝐼max𝑖 𝑛𝑖

⊆ 𝐼.
Take 𝑁 = max𝑖 𝑛𝑖 and the result follows.

• Suppose 𝑅 is Noetherian and 𝐼 ⊴ 𝑅. Choose 𝑎1 ∈ 𝐼. If 𝐼 = (𝑎1) then done,
so suppose not. Then choose 𝑎2 ∈ 𝐼 \ (𝑎1). If 𝐼 = (𝑎1, 𝑎2) then done, so
suppose not. If we are never finished by this process then we get

(𝑎1) ⊆ (𝑎1, 𝑎2) ⊆ ⋯

which is impossible as 𝑅 is Noetherian. Thus 𝐼 = (𝑎1, … , 𝑎𝑛) for some 𝑛.

Theorem 2.37 (Hilbert Basis Theorem). If 𝑅 is Noetherian then so is
𝑅[𝑋].

Proof. Let 𝐽 ⊴ 𝑅[𝑋]. Let 𝑓1 ∈ 𝐽 be of minimal minimal degree. If 𝐽 = (𝑓1)
then done, else choose 𝑓2 ∈ 𝐽 \ (𝑓1) of minimal degree. Suppose we have

(𝑓1) ⊆ (𝑓1, 𝑓2) ⊆ ⋯

as an ascending chain of non-stabilising ideas. Let 𝑎𝑖 ∈ 𝑅 be the coefficient of
the largest power of 𝑋 in 𝑓𝑖 and consider

(𝑎1) ⊆ (𝑎1, 𝑎2) ⊆ ⋯ ⊴ 𝑅.

As 𝑅 is Noetherian this chain stabilises, i.e. there exists 𝑚 ∈ N such that all 𝑎𝑖’s
lie in (𝑎1, … , 𝑎𝑚). In particular, 𝑎𝑚+1 = ∑𝑚

𝑖=1 𝑎𝑖𝑏𝑖 for some 𝑏𝑖 ∈ 𝑅. Let

𝑔 =
𝑚

∑
𝑖=1

𝑏𝑖𝑓𝑖𝑋deg 𝑓𝑚+1−deg 𝑓𝑖

which has leading term
𝑚

∑
𝑖=1

𝑏𝑖𝑎𝑖𝑋deg 𝑓𝑚+1 = 𝑎𝑚+1𝑋deg 𝑓𝑚+1 .
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Thus deg(𝑓𝑚+1 − 𝑔) < deg 𝑓𝑚+1. But 𝑔 ∈ (𝑓1, … , 𝑓𝑚) but 𝑓𝑚+1 ∉ (𝑓1, … , 𝑓𝑚)
so 𝑓𝑚+1 − 𝑔 ∉ (𝑓1, … , 𝑓𝑚). This contradicts the minimality of the degree of
𝑓𝑚+1.

Example. Z[𝑋1, … , 𝑋𝑛], F[𝑋1, … , 𝑋𝑛] are Noetherian.

Lemma 2.38. A quotient of a Noetherian ring is Noetherian.

Corollary 2.39. Any ring which may be generated by finitely many elements
is Noetherian.

Example (Non-example). Z[𝑋1, 𝑋2, … ] is not Noetherian since

(𝑋1) ⊆ (𝑋1, 𝑋2) ⊆ ⋯

is an non-stabilising ascending chain.

Remark. Suppose ℱ ⊆ F[𝑋1, … , 𝑋𝑛] is a set of polynomials. 𝛼 = (𝑎1, … , 𝑎𝑛) ∈
F𝑛 is a solution of ℱ if and only if ℱ is contained in the kernel of

𝜑𝑎 ∶ F[𝑋1, … , 𝑋𝑛] → F
𝑋𝑖 ↦ 𝑎𝑖

As F[𝑋1, … , 𝑋𝑛] is Noetherian, (ℱ) = (𝑓1, … , 𝑓𝑚) for finitely many 𝑓𝑖’s. 𝛼 is
a simultaneous solution to ℱ if and only if ker𝜑𝛼 ⊇ (ℱ) = (𝑓1, … , 𝑓𝑚), if and
only if 𝛼 is a simultaneous solution to 𝑓1, … , 𝑓𝑛. That is to say, we only have to
consider a finite family of polynomials of which 𝛼 is a root. This is important in
algebraic geometry.
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3 Modules

3.1 Definitions

Definition (Module). Let 𝑅 be a commutative ring. A quadruple (𝑀, +, 0𝑀, ⋅)
is an 𝑅-module if (𝑀, +, 0𝑀) is an abelian group and the operation − ⋅ − ∶
𝑅 × 𝑀 → 𝑀 satisfies

• (𝑟1 + 𝑟2) ⋅ 𝑚 = 𝑟1 ⋅ 𝑚 + 𝑟2 ⋅ 𝑚,

• 𝑟 ⋅ (𝑚1 + 𝑚2) = 𝑟 ⋅ 𝑚1 + 𝑟 ⋅ 𝑚2,

• 𝑟2 ⋅ (𝑟1 ⋅ 𝑚) = (𝑟2𝑟2) ⋅ 𝑚,

• 1𝑅 ⋅ 𝑚 = 𝑚.

Example.
1. If 𝑅 = F is a field then an 𝑅-module is precisely an F-vector space.

2. For any ring 𝑅, 𝑅𝑛 = 𝑅 × ⋯ × 𝑅⏟⏟⏟⏟⏟
𝑛 times

is an R-module via

𝑟 ⋅ (𝑟1, … , 𝑟𝑛) = (𝑟𝑟1, … , 𝑟𝑟𝑛).

In particular for 𝑛 = 1, 𝑅 is an 𝑅-module.

3. If 𝐼 ⊴ 𝑅 then 𝐼 is an 𝑅-module via

𝑟 ⋅ 𝑎 = 𝑟𝑎 ∈ 𝐼.

Also 𝑅/𝐼 is an R-module via

𝑟 ⋅ (𝑟1 + 𝐼) = 𝑟𝑟1 + 𝐼 ∈ 𝑅/𝐼.

4. For 𝑅 = Z, an R-module is precisely an abelian group. This is because the
axiom for ⋅ says that

− ⋅ − ∶ Z × 𝑀 → 𝑀

(𝑛, 𝑚) ↦
⎧{
⎨{⎩

𝑚 + ⋯ + 𝑚⏟⏟⏟⏟⏟
𝑛 times

𝑛 ≥ 0

−(𝑚 + ⋯ + 𝑚⏟⏟⏟⏟⏟
𝑛 times

) 𝑛 < 0

so ⋅ is determined by the abelian structure on 𝑀.

5. Let F be a field and 𝑉 be a vector space over F. Let 𝛼 ∶ 𝑉 → 𝑉 be a linear
map. Then we can make 𝑉 into an F[𝑋]-module via

F[𝑋] × 𝑉 → 𝑉
(𝑓, 𝑣) ↦ 𝑓(𝛼)(𝑣)

Different 𝛼’s make 𝑉 into different F[𝑥]-modules.

6. Restriction of scalars: if 𝜑 ∶ 𝑅 → 𝑆 is a ring homomorphism and 𝑀 is an
𝑆-module, then 𝑀 becomes an 𝑅-modules via

𝑟 ⋅𝑅 𝑚 = 𝜑(𝑟) ⋅𝑠 𝑚.
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Definition (Submodule). If 𝑀 is an R-module, 𝑁 ⊆ 𝑀 is a submodule if
𝑁 is a subgroup of (𝑀, +, 0𝑀) and for any 𝑛 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑟 ⋅ 𝑛 ∈ 𝑁. Write
𝑁 ≤ 𝑀.

Example. A subset of 𝑅 is a submodule if and only if it is an ideal.

Definition (Quotient module). If 𝑁 ≤ 𝑀 is a submodule, the quotient
module 𝑀/𝑁 is the set of 𝑁-cosets in (𝑀, +, 0𝑀), i.e. the quotient abelian
group with

𝑟 ⋅ (𝑚 + 𝑁) = 𝑟 ⋅ 𝑚 + 𝑁.

Definition (Homomorphism). A function 𝑓 ∶ 𝑀 → 𝑁 is an R-module
homomorphism if it is a homomorphism of abelian groups and 𝑓(𝑟 ⋅ 𝑚) =
𝑟 ⋅ 𝑓(𝑚).

Example. If 𝑅 = F is a field and 𝑉 and 𝑊 are F-modules (i.e. F-vector spaces),
then a map is an F-module homomorphism if and only if it is an F-linear map.

Theorem 3.1 (1st Isomorphism Theorem). If 𝑓 ∶ 𝑀 → 𝑁 is an 𝑅-module
homomorphism then

ker 𝑓 = {𝑚 ∈ 𝑀 ∶ 𝑓(𝑚) = 0} ≤ 𝑀
Im 𝑓 = {𝑛 ∈ 𝑁 ∶ 𝑛 = 𝑓(𝑚)} ≤ 𝑁

and
𝑀/ ker 𝑓 ≅ Im 𝑓.

Theorem 3.2 (2nd Isomorphism Theorem). Let 𝐴, 𝐵 ≤ 𝑀 be submodules.
Then

𝐴 + 𝐵 = {𝑚 ∈ 𝑀 ∶ 𝑚 = 𝑎 + 𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ≤ 𝑀
𝐴 ∩ 𝐵 ≤ 𝑀

and
(𝐴 + 𝐵)/𝐴 ≅ 𝐵/(𝐴 ∩ 𝐵).

Theorem 3.3 (3rd Isomorphism Theorem). Let 𝑁 ≤ 𝐿 ≤ 𝑀 be a chain of
submodules. Then

𝑀/𝑁
𝐿/𝑁

≅ 𝑀/𝐿.

Definition (Annihilator). If 𝑀 is an 𝑅-module and 𝑚 ∈ 𝑀, the annihilator
of 𝑚 is

Ann(𝑚) = {𝑟 ∈ 𝑅 ∶ 𝑟 ⋅ 𝑚 = 0𝑀} ⊴ 𝑅.
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The annihilator of 𝑀 is

Ann(𝑀) = ⋂
𝑚∈𝑀

Ann(𝑚) ⊴ 𝑅.

Definition (Generated submodule). If 𝑀 is an 𝑅-module and 𝑚 ∈ 𝑀, the
submodule generated by 𝑚 is

𝑅𝑚 = {𝑟 ⋅ 𝑚 ∈ 𝑀 ∶ 𝑟 ∈ 𝑅}.

Note. Intuitively, the annihilator of an element is the stabiliser of a ring action
and that of a module is the kernel. We also have

𝑅𝑚 ≅ 𝑅/Ann(𝑚).

Definition (Finitely generated). 𝑀 is finitely generated if there are 𝑚1, … , 𝑚𝑛 ∈
𝑀 such that

𝑀 = 𝑅𝑚1 + … 𝑅𝑚𝑛 = {𝑟1𝑚1 + ⋯ + 𝑟𝑛𝑚𝑛 ∶ 𝑟𝑖 ∈ 𝑅}.

Lemma 3.4. An 𝑅-module 𝑀 is finitely generated if and only if there is a
surjection 𝜑 ∶ 𝑅𝑛 ↠ 𝑀 for some 𝑛.

Proof.

• ⇒: Suppose 𝑀 = 𝑅𝑚1 + ⋯ + 𝑅𝑚𝑛. Define

𝜑 ∶ 𝑅𝑛 → 𝑀
(𝑟1, … , 𝑟𝑛) ↦ 𝑟1𝑚1 + ⋯ + 𝑟𝑛𝑚𝑚

This is an 𝑅-module homomorphism and is surjective.

• ⇐: Let 𝑚𝑖 = 𝜑((0, … , 0, 1, 0, … , 0)) with 1 in the 𝑖th position. Then

𝜑((𝑟1, … , 𝑟𝑛)) = 𝜑((𝑟1, 0, … , 0) + ⋯ + (0, … , 0, 𝑟𝑛))
= 𝜑((𝑟1, 0, … , 0)) + ⋯ + 𝜑((0, … , 0, 𝑟𝑛))
= 𝑟1𝜑((1, 0, … , 0)) + ⋯ + 𝑟𝑛𝜑((0, … , 0, 1))
= 𝑟1𝑚1 + ⋯ + 𝑟𝑛𝑚𝑛

As 𝜑 is surjective, 𝑀 = 𝑅𝑚1 + ⋯ + 𝑅𝑚𝑛.

Corollary 3.5. Let 𝑀 be an 𝑅-module and 𝑁 ≤ 𝑀. If 𝑀 is finitely generated
the so is 𝑀/𝑁.

Proof.
𝑅𝑛 𝑀 𝑀/𝑁.𝑓 𝜋
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Note. A submodule of a finitely generated 𝑅-module need not be finitely
generated. For example,

(𝑋1, 𝑋2, … ) ⊴ Z[𝑋1, 𝑋2, … ] = 𝑅

is an 𝑅-module but not finitely generated, as otherwise it would be a finitely
generated ideal.

Example. For 𝛼 ∈ C, 𝛼 is an algebraic integer if and only if Z[𝛼] is a finitely
generated Z-module.

3.2 Direct Sums and Free Modules

Definition (Direct sum). If 𝑀1, … , 𝑀𝑘 are 𝑅-modules, the direct sum
𝑀1 ⊕ ⋯ ⊕ 𝑀𝑘 is the set 𝑀1 × ⋯ × 𝑀𝑘 with addition

(𝑚1, … , 𝑚𝑘) + (𝑚′
1, … , 𝑚′

𝑘) = (𝑚1 + 𝑚′
1, … , 𝑚𝑘 + 𝑚′

𝑘)

and 𝑅-module structure

𝑟 ⋅ (𝑚1, … , 𝑚𝑘) = (𝑟𝑚1, … , 𝑟𝑚𝑘).

Example.
𝑅𝑛 = 𝑅 ⊕ ⋯ ⊕ 𝑅⏟⏟⏟⏟⏟

𝑛 times
.

Definition (Independence). Let 𝑚1, … 𝑚𝑘 ∈ 𝑀. They are independent if

∑
𝑖

𝑟𝑖 ⋅ 𝑚𝑖 = 0

implies that 𝑟𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑘.

Definition (Free generation). A subset 𝑆 ⊆ 𝑀 generates 𝑀 freely if

1. 𝑆 generates 𝑀.

2. Any function 𝜓 ∶ 𝑆 → 𝑁 to an 𝑅-module 𝑁 extends to an 𝑅-module
homomorphism 𝜃 ∶ 𝑀 → 𝑁.

𝑆 𝑅𝑆

𝑁
𝜓

𝜃

Note. We can show this extension is unique: given 𝜃1, 𝜃2 ∶ 𝑀 → 𝑁 two
extensions of 𝜓, 𝜃1 − 𝜃2 ∶ 𝑀 → 𝑁 is an 𝑅-module homomorphism so ker(𝜃1 −
𝜃2) ≤ 𝑀. But 𝜃1, 𝜃2 both extend 𝜓 so 𝑆 ⊆ ker(𝜃1 − 𝜃2). As 𝑆 generates 𝑀,
𝑀 ≤ ker(𝜃1 − 𝜃2) so 𝜃1 = 𝜃2.

An 𝑅-module which is freely generated by 𝑆 ⊆ 𝑀 is said to be free and 𝑆 is
called a basis.
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Proposition 3.6. For a finite subset 𝑆 = {𝑚1, … , 𝑚𝑘} ⊆ 𝑀, TFAE:

1. 𝑀 is freely generated by 𝑆.

2. 𝑀 is generated by 𝑆 and 𝑆 is independent.

3. Every 𝑚 ∈ 𝑀 can be written as 𝑟1𝑚1 + ⋯ + 𝑟𝑘𝑚𝑘 for some unique
𝑟𝑖 ∈ 𝑅.

Proof.

• 1 ⇒ 2: Let 𝑆 generate 𝑀 freely. If 𝑆 is not independent, then there is a
non-trivial relation

𝑘
∑
𝑖=1

𝑟𝑖𝑚𝑖 = 0

with 𝑟𝑗 ≠ 0. Let

𝜓 ∶ 𝑆 → 𝑅

𝑚𝑖 ↦ {0𝑅 𝑖 ≠ 𝑗
1𝑅 𝑖 = 𝑗

This extends to an 𝑅-module homomorphism 𝜃 ∶ 𝑀 → 𝑅. Then

0 = 𝜃(0) = 𝜃 (∑ 𝑟𝑖𝑚𝑖) = ∑ 𝑟𝑖𝜃(𝑚𝑖) = 𝑟𝑗.

Absurd. Thus 𝑆 is independent.

• The other steps follow similarly from those in IB Linear Algebra.

Example. Unlike vector spaces, a minimal generating set need not be inde-
pendent. For example {2, 3} ⊆ Z generates Z but is not linear independent as
(−3) ⋅ 2 + (2) ⋅ 3 = 0.

However, like vector spaces, in case a module is freely generated, it is
isomorphic to direct sums of copies of the ring:

Lemma 3.7. If 𝑆 = {𝑚1, … , 𝑚𝑘} ⊆ 𝑀 freely generates 𝑀 then

𝑀 ≅ 𝑅𝑘

as an 𝑅-module.

Proof. This is entirely analogous to vector spaces. Let

𝑓 ∶ 𝑅𝑘 → 𝑀

(𝑟1, … , 𝑟𝑘) ↦ ∑
𝑖

𝑟𝑖𝑚𝑖

It is surjective as 𝑆 generates 𝑀 and injective as 𝑚𝑖’s are independent.

If an 𝑅-module is generated by 𝑚1, … , 𝑚𝑘, we have seen before that there is
a surjection 𝑓 ∶ 𝑅𝑘 ↠ 𝑀. We define
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Definition (Relation module). The relation module for the generators is

ker 𝑓 ≤ 𝑅𝑘.

As 𝑀 ≅ 𝑅𝑘/ ker 𝑓, knowing 𝑀 is equivalent to knowing the relation module.

Definition (Finitely presented). 𝑀 is finitely presented if there is a finite
generating set 𝑚1, … , 𝑚𝑘 for which the associated relation module is finitely
generated.

Let {𝑛1, … , 𝑛𝑟} ⊆ ker 𝑓 ≤ 𝑅𝑘 be a set of generators. Then

𝑛𝑖 = (𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖𝑘)

and 𝑀 is generated by 𝑚1, … , 𝑚𝑘 subject to relations
𝑘

∑
𝑗=1

𝑟𝑖𝑗𝑚𝑗 = 0

for 1 ≤ 𝑖 ≤ 𝑟.

Proposition 3.8 (Invariance of Dimension). If 𝑅𝑛 ≅ 𝑅𝑚 then 𝑛 = 𝑚.

Note. This does not hold in general for modules over non-commutative rings.
Proof. As a general strategy, let 𝐼 ⊴ 𝑅. Then

𝐼𝑀 = {∑ 𝑎𝑖𝑚𝑖 ∶ 𝑎𝑖 ∈ 𝐼, 𝑚𝑖 ∈ 𝑀} ≤ 𝑀

is a submodule as
𝑟 ⋅ ∑ 𝑎𝑖𝑚𝑖 = ∑(𝑟𝑎𝑖)𝑚𝑖 ∈ 𝐼𝑀.

Thus we have a quotient 𝑅-module 𝑀/𝐼𝑀. We can make this into an 𝑅/𝐼-module
via

(𝑟 + 𝐼) ⋅ (𝑚 + 𝐼𝑀) = 𝑟𝑚 + 𝐼𝑀.
Let 𝐼 ⊴ 𝑅 be a maximal proper ideal (this requires Zorn’s Lemma). Then

𝑅/𝐼 is a field and therefore 𝑅𝑛 ≅ 𝑅𝑚 implies

𝑅𝑛/𝐼𝑅𝑛 ≅ 𝑅𝑚/𝐼𝑅𝑚

(𝑅/𝐼)𝑛 ≅ (𝑅/𝐼)𝑚

This is a vector space isomorphism so 𝑛 = 𝑚.

We have classified all finite abelian groups (well, at least we claimed so), i.e.
Z-modules. What if we want to classify all 𝑅-modules? That is going to be the
final goal we will build towards.

Recall that 𝑀 is finitely generated by 𝑚1, … , 𝑚𝑘 if and only if there is a
surjection 𝑓 ∶ 𝑅𝑘 ↠ 𝑀. 𝑀 is finitely presentely if and only ker 𝑓 is finitely
generated, say 𝑛1, … , 𝑛ℓ. Let

𝑛𝑖 = (𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖𝑘)

then such an 𝑅-module 𝑀 is determined by the matrix

⎛⎜⎜⎜
⎝

𝑟11 𝑟12 ⋯ 𝑟1ℓ
𝑟𝑟1
⋮ ⋱

𝑟𝑘1 𝑟𝑘ℓ

⎞⎟⎟⎟
⎠

∈ ℳ𝑘,ℓ(𝑅).
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3.3 Matrices over Euclidean Domains
For this section assume 𝑅 to be a Euclidean domain and let 𝜑 ∶ 𝑅 \ {0} → Z≥0
be the Euclidean function. For 𝑎, 𝑏 ∈ 𝑅, we have shown that gcd(𝑎, 𝑏) exists
and is unique up to associates. In addition, the Euclidean algorithm shows that
gcd(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦 for some 𝑥, 𝑦 ∈ 𝑅.

What follows would be very similar to what we have learned in IB Linear
Algebra — in fact identical except a single modification:

Definition (Elementary row operation). Elementary row operation on an
𝑚 × 𝑛 matrix with entries in 𝑅 are

1. Add 𝜆 ∈ 𝑅 times the 𝑖th row to the 𝑗th row where 𝑖 ≠ 𝑗. This can be
realised by left multiplication by 𝐼 + 𝐶 where 𝐶 is 𝜆 in (𝑗, 𝑖)th position
and 0 elsewhere.

2. Swapping the 𝑖th and 𝑗th row where 𝑖 ≠ 𝑗. Realised by left multiplica-
tion by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
⋮ ⋱ ⋮

0 1 0
0 ⋯ 0 ⋱ 0 0

1 0 0
⋮ ⋱
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

3. Multiply the 𝑖th row by a unit 𝑐 ∈ 𝑅. Realised by left multiplication
by

⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 ⋯ 0
⋱

⋮ 𝑐 ⋮
⋱

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

Definition (Elementary column operation). Defined analogously by replac-
ing “row” with “column”.

Similarly to IB Linear Algebra, we define an equivalence relation

Definition (Equivalence). 𝐴, 𝐵 ∈ ℳ𝑚,𝑛(𝑅) are equivalent if there is a
sequence of elementary row and column operations taking 𝐴 to 𝐵.

If 𝐴 and 𝐵 are equivalent then there are invertible square matrices 𝑃 and 𝑄
such that

𝐵 = 𝑄𝐴𝑃 −1.

Theorem 3.9 (Smith Normal Form). An 𝑛 × 𝑚 matrix over a Euclidean
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domain 𝑅 is equivalent to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑1
𝑑2

⋱
𝑑𝑟

0
⋱

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where the 𝑑𝑖’s are non-zero and

𝑑1 ∣ 𝑑2 ∣ ⋯ ∣ 𝑑𝑟.
Proof. This proof is going to be algorithmic. If the matrix 𝐴 = 0 we are done.
Otherwise there is a 𝐴𝑖𝑗 ≠ 0. By swapping 1st and 𝑖th row, and 1st and 𝑗th
column we may suppose 𝐴11 ≠ 0. We want to reduce 𝜑(𝐴11) as much as possible.
Split into three cases:

• Case 1: if there is a 𝐴1𝑗 not divisible by 𝐴11 then have

𝐴1𝑗 = 𝑞𝐴11 + 𝑟

with 𝜑(𝑟) < 𝜑(𝐴11). Add −𝑞 times the 1st column to the 𝑗th. This makes
the (1, 𝑗)th entry 𝑟. Swap 1st and 𝑗th column to get 𝐴11 = 𝑟. Thus we
have strictly decreased the 𝜑 value of the (1, 1) entry.

• Case 2: if 𝐴11 does not divide some 𝐴𝑖1, do the analogous to entries in the
first column to strictly reduce 𝜑(𝐴11).
As 𝜑(𝐴11) can only strictly decrease finitely many times, after some appli-
cations of Case 1 and 2 we can assumes 𝐴11 divides all the entries in the
1st row and 1st column. If 𝐴1𝑗 = 𝑞𝐴11 then we can add −𝑞 times the 1st
column to the 𝑗th row to make the (𝑖, 𝑗)th entry 0. Thus we obtain

𝐴 = (𝑑 0
0 𝐶)

• Case 3: if there is an entry 𝑐𝑖𝑗 of 𝐶 not divisible by 𝑑, write

𝑐𝑖𝑗 = 𝑞𝑑 + 𝑟

where 𝜑(𝑟) < 𝜑(𝑑). Conduct the following series of elementary operations

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑 0 ⋯ 0 ⋯ 0
0
⋮
0 𝑐𝑖𝑗
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

EC 1
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑 0 ⋯ 𝑑 ⋯ 0
0
⋮
0 𝑐𝑖𝑗
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ER 1
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑 0 ⋯ 𝑑 ⋯ 0
0
⋮

−𝑞𝑑 𝑟
⋮
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ER 2,EC 2
→

⎛⎜⎜⎜
⎝

𝑟 ∗ ⋯ ∗
∗
⋮ ∗
∗

⎞⎟⎟⎟
⎠

47



3 Modules

Repeat Case 1 and 2, we finally get

(𝑑′

𝐶′)

where 𝜑(𝑑′) < 𝜑(𝑑).

Eventually we can suppose that 𝑑′ divides every entry of 𝐶′. By induction
𝐶′ is equivalent to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑2
𝑑3

⋱
𝑑𝑟

0
⋱

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with
𝑑2 ∣ 𝑑3 ∣ ⋯ ∣ 𝑑𝑟

and we must have 𝑑′ ∣ 𝑑𝑖 for 𝑖 > 1.

Remark. The 𝑑𝑖’s in Smith Normal Form are unique up to associates.

Certainly Smith Normal Form is a nice form and the algorithm guarantees
its existence and uniqueness (up to associates). However, the computation is
too cumbersome to be useful. However, if we could prove it is invariant under
matrix conjugation, we may apply some clever tricks to extract the 𝑑𝑖’s in Smith
Normal Form without explicitly computing them.

Definition (Minor). A 𝑘 × 𝑘 minor of a matrix 𝐴 is the determinant of a
matrix formed by forgetting all but 𝑘 rows and 𝑘 columns of 𝐴.

Definition (Fitting ideal). The 𝑘th Fitting ideal of 𝐴 Fit𝑘(𝐴) ⊴ 𝑅 is the
ideal generated by all 𝑘 × 𝑘 minors of 𝐴.

Given a matrix 𝐴 in Smith Normal Form as above with 𝑑1 ∣ ⋯ ∣ 𝑑𝑟, the
only 𝑘 × 𝑘 submatrices which do not have a whole row or column 0 are those
which keep both 𝑖1th row and 𝑖1th column, both 𝑖2th row and 𝑖2th column, etc.
Therefore

Fit𝑘(𝐴) =
⎛⎜⎜⎜⎜
⎝

det
⎛⎜⎜⎜⎜
⎝

𝑑𝑖1
𝑑𝑖2

⋱
𝑑𝑖𝑘

⎞⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟
⎠

= (𝑑𝑖1
⋯ 𝑑𝑖𝑘

∶ sequences 𝑖1, … , 𝑖𝑘)
= (𝑑1𝑑2 ⋯ 𝑑𝑘)

as 𝑑𝑚 ∣ 𝑑𝑖𝑚
for all 𝑚.

Therefore from the above computation Fit𝑘(𝐴) and Fit𝑘−1(𝐴) determine 𝑑𝑘
up to associates.
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Lemma 3.10. If 𝐴 and 𝐵 are equivalent matrices then Fit𝑘(𝐴) = Fit𝑘(𝐵)
for all 𝑘.

Proof. It amounts to show that elementary operations does not change Fit𝑘(𝐴) ⊴
𝑅. We do the first type of row operation. Fix a 𝑘 × 𝑘 submatrix 𝐶 in 𝐴. Recall
that this row operation adds 𝜆 times the 𝑖th row to the 𝑗th row. Depending on
𝑖 and 𝑗, split into three cases:

• Case 1: if the 𝑗th row is not in 𝐶 then 𝐶 is unchanged, so is its determinant.

• Case 2: if the 𝑖th and 𝑗th rows are both in 𝐶, the operation changes 𝐶 by
a row operation so its determinant is unchanged.

• Cases 3: if the 𝑗th row is in 𝐶 but the 𝑖th is not, suppose wlog the 𝑖th row
of 𝐴 corresponding to columns of 𝐶 has entries (𝑓1, 𝑓2, … , 𝑓𝑘). After the
row operation, 𝐶 is changed to 𝐶′ whose 𝑗th row is

(𝑐𝑗,1 + 𝜆𝑓1, 𝑐𝑗,2 + 𝜆𝑓2, … , 𝑐𝑗,𝑘 + 𝜆𝑓𝑘).

By expansion along the 𝑗th row,

det𝐶′ = det𝐶 ± 𝜆 det𝐷

where 𝐷 is the matrix obtained by replacing the 𝑗th row of 𝐶 with
(𝑓1, … , 𝑓𝑘), which is a 𝑘 × 𝑘 submatrix of 𝐴 up to reordering (which is
accounted for by the ± sign), by multilinearity of det. So det𝐶′ ∈ Fit𝑘(𝐴)
as it is a linear combination of minors. Therefore Fit𝑘(𝐴′) ⊆ Fit𝑘(𝐴)
where 𝐴′ is obtained from 𝐴 by this operation. As row operations are
invertible, we must have equality.

The other two types of row operations are similar but easier. Column
operations follow analogously.

Example. Let

𝐴 = (2 −1
1 2 ) ∈ ℳ2,2(Z).

Algorithmically, we can carry out the following sequence of operations to obtain
Smith Normal Form:

(2 −1
1 2 )

ER 2
→ (1 2

2 −1)
ER 1
→ (1 2

0 −5)
ER 1
→ (1 0

0 −5)
ER 3
→ (1 0

0 5)

Alternatively, using what we have just proved,

Fit1(𝐴) = (2, −1, 2, 1) = (1)
Fit2(𝐴) = (det𝐴) = (5)

so 𝑑1 = 1, 𝑑1𝑑2 = 5 so 𝑑2 = 5.

Recall that we have remarked that a submodule of a finitely genereated
module may not be finitely generated. However the following lemma tells us that
submodules of finitely generated free modules over some particular rings are so:
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Lemma 3.11. Let 𝑅 be a PID. Any submodule of 𝑅𝑛 is generated by at
most 𝑛 elements.

Proof. Let 𝑁 ≤ 𝑅𝑛 and consider the ideal

𝐼 = {𝑟 ∈ 𝑅 ∶ ∃𝑟2, … , 𝑟𝑛 such that (𝑟, 𝑟2, … , 𝑟𝑛) ∈ 𝑁},

which is the image of 𝑁
𝜄

→ 𝑅𝑛
𝜋1
→ 𝑅, a submodule of 𝑅.

As 𝑅 is a PID, 𝐼 = (𝑎) ⊴ 𝑅 for some 𝑎 ∈ 𝑅. Thus there is some

𝑛1 = (𝑎, 𝑎2, 𝑎2, … , 𝑎𝑛) ∈ 𝑁.

Suppose (𝑟1, 𝑟2, … , 𝑟𝑛) ∈ 𝑁. Then there exists some 𝑥 ∈ 𝑅 such that 𝑟1 = 𝑎𝑥.
Then

(𝑟1, … , 𝑟𝑛) − 𝑥 ⋅ 𝑛1 = (0, 𝑟2 − 𝑥𝑎2, … , 𝑟𝑛 − 𝑥𝑎𝑛) ∈ 𝑁 ∩ (0 ⊕ 𝑅𝑛−1).

By induction 𝑁 ∩ (0 ⊕ 𝑅𝑛−1) ≅ 𝑁 ′ ≤ 𝑅𝑛−1 is generated by 𝑛2, … , 𝑛𝑛 so
𝑛1, … , 𝑛𝑛 generate 𝑁.

Theorem 3.12. Let 𝑅 be a Euclidean domain and 𝑁 ≤ 𝑅𝑛. Then there is
a basis 𝑣1, … , 𝑣𝑛 of 𝑅𝑛 such that 𝑁 is generated by 𝑑1𝑣1, … , 𝑑𝑟𝑣𝑟 for some
0 ≤ 𝑟 ≤ 𝑛 and some 𝑑1 ∣ … ∣ 𝑑𝑟.

Proof. By the previous lemma there are 𝑥1, … , 𝑥𝑚 ∈ 𝑁 which generate 𝑁 and
0 ≤ 𝑚 ≤ 𝑛. Each 𝑥𝑖 is an element of 𝑅𝑛 so we can form an 𝑛 × 𝑚 matrix whose
first 𝑚 columns are 𝑥𝑖, i.e.

𝐴 = ⎛⎜
⎝

↑ ↑ ↑
𝑥1 𝑥2 ⋯ 𝑥𝑚
↓ ↓ ↓

⎞⎟
⎠

∈ ℳ𝑛,𝑚(𝑅)

We can put 𝐴 into Smith Normal Form with diagonal entries 𝑑1 ∣ ⋯ ∣ 𝑑𝑟
by elementary operations. Each row operation is given by a change of basis
of 𝑅𝑛 and each column operation is given by rechoosing the generating set
𝑥1, … , 𝑥𝑚. Thus after a change of basis of 𝑅𝑛 to 𝑣1, … , 𝑣𝑛, 𝑁 is generated by
𝑑1𝑣1, … , 𝑑𝑟𝑣𝑟.

Corollary 3.13. A submodule 𝑁 ≤ 𝑅𝑛 is isomorphic to 𝑅𝑚 for some
𝑚 ≤ 𝑛.

Proof. By the theorem above, we can find a basis 𝑣1, … , 𝑣𝑛 for 𝑅𝑛 such that 𝑁
is generated by 𝑑1𝑣1, … , 𝑑𝑚𝑣𝑚. These are linearly independent as a dependence
between them would give a dependence between 𝑣1, … , 𝑣𝑛.

Now we are ready for the big theorem in this course:

Theorem 3.14 (Classification Theorem for Finitely Generated Modules
over Euclidean Domain). Let 𝑅 be a Euclidean domain and 𝑀 a finitely
generated 𝑅-modules. Then

𝑀 ≅ 𝑅
(𝑑1)

⊕ 𝑅
(𝑑2)

⊕ ⋯ ⊕ 𝑅
(𝑑𝑟)

⊕ 𝑅 ⊕ ⋯ ⊕ 𝑅
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for some 𝑑𝑖 ≠ 0 with 𝑑1 ∣ 𝑑2 ∣ ⋯ ∣ 𝑑𝑟.

Proof. Let 𝑀 be generated by 𝑚1, … , 𝑚𝑛 ∈ 𝑀, giving a surjection 𝜑 ∶ 𝑅𝑛 ↠ 𝑀
so 𝑀 ≅ 𝑅𝑛/ ker𝜑. By the previous theorem there is a basis 𝑣1, … , 𝑣𝑛 of 𝑅𝑛

such that ker𝜑 is generated by 𝑑1𝑣1, … , 𝑑𝑟𝑣𝑟 with 𝑑1 ∣ ⋯ ∣ 𝑑𝑟. Thus by changing
the basis of 𝑅𝑛 to 𝑣𝑖’s, ker𝜑 is generated by columns of

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑1
𝑑2

⋱
𝑑𝑟

0
⋱

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

so
𝑀 ≅ 𝑅𝑛

ker𝜑
≅ (

𝑟
⨁
𝑖=1

𝑅
(𝑑𝑖)

) ⊕ 𝑅 ⊕ ⋯ ⊕ 𝑅

as required.

Example. Let 𝑅 = Z, a Euclidean domain, and 𝐴 be the abelian group (i.e.
Z-module) generated by 𝑎, 𝑏, 𝑐, subject to

⎧{
⎨{⎩

2𝑎 + 3𝑏 + 𝑐 = 0
𝑎 + 2𝑏 = 0
5𝑎 + 6𝑏 + 7𝑐 = 0

Thus 𝐴 = Z3/𝑁 where 𝑁 ≤ Z3 is generated by (2, 3, 1)𝑇, (1, 2, 0)𝑇, (5, 6, 7)𝑇.
The matrix 𝐴 whose columns are these vectors

𝐴 = ⎛⎜
⎝

2 1 5
3 2 6
1 0 7

⎞⎟
⎠

has Smith Normal Form with diagonal entries 1, 1, 3:

Proof.

Fit1(𝐴) = (1)

Fit2(𝐴) ⊇ (det(2 1
3 2)) = (1)

Fit3(𝐴) = (det𝐴) = 3

so 𝑑1 = 1, 𝑑1𝑑2 = 1, 𝑑1𝑑2𝑑3 = 3.

After change of basis, 𝑁 is generated by (1, 0, 0)𝑇, (0, 1, 0)𝑇, (0, 0, 3)𝑇 so

𝐴 ≅ Z/1Z ⊕ Z/1Z ⊕ Z/3Z ≅ Z/3Z.

We can derive, as a corollary actually, what we stated earlier without proof
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Theorem 3.15 (Structure Theorem for Finitely Generated Abelian Groups).
Any finitely generated abelian group is isomorphic to

𝐶𝑑1
× 𝐶𝑑2

× ⋯ × 𝐶𝑑𝑟
× 𝐶∞ × ⋯ × 𝐶∞

with 𝑑1 ∣ ⋯ ∣ 𝑑𝑟.

Proof. “Trivial” should suffice here but let us spell it out: apply Classification
Theorem for Finitely Generated Modules over Euclidean Domain to Z, and note
that

Z/(𝑑) = 𝐶𝑑, Z = 𝐶∞.

The above classification theorem decompose into modules whose relation
modules’ principal ideals form a descending chain by divisibility. It turns out
it is also possible to decompose by the coprime factors of the relation modules.
Before that let us prove something we have known for a (very) long time, but at
a higher level:

Lemma 3.16 (Chinese Remainder Theorem). Let 𝑅 be a Euclidean domain
and 𝑎, 𝑏 ∈ 𝑅 with gcd(𝑎, 𝑏) = 1. Then

𝑅/(𝑎𝑏) ≅ 𝑅(𝑎) ⊕ 𝑅/(𝑏).

Proof. Consider the 𝑅-module homomorphism

𝜑 ∶ 𝑅/(𝑎) ⊕ 𝑅/(𝑏) → 𝑅/(𝑎𝑏)
(𝑟1 + (𝑎), 𝑟2 + (𝑏)) ↦ 𝑏𝑟1 + 𝑎𝑟2 + (𝑎𝑏)

As gcd(𝑎, 𝑏) = 1, (𝑎, 𝑏) = (1) so 1 = 𝑥𝑎 + 𝑦𝑏 for some 𝑥, 𝑦 ∈ 𝑅. Therefore for
𝑟 ∈ 𝑅, 𝑟 = 𝑟𝑥𝑎 + 𝑟𝑦𝑏 so

𝑟 + (𝑎𝑏) = 𝑟𝑥𝑎 + 𝑟𝑦𝑏 + (𝑎𝑏) = 𝜑((𝑟𝑦 + (𝑎), 𝑟𝑥 + (𝑏)))

and so 𝜑 is surjective.
If 𝜑((𝑟1 + (𝑎), 𝑟2 + (𝑏))) = 0 then 𝑏𝑟1 + 𝑎𝑟2 ∈ (𝑎𝑏). Thus 𝑎 ∣ 𝑏𝑟1 + 𝑎𝑟2, 𝑎 ∣ 𝑏𝑟1.

As gcd(𝑎, 𝑏) = 1, 𝑎 ∣ 𝑟1 so 𝑟1 + (𝑎) = 0 + (𝑎). Similarly 𝑟2 + (𝑏) = 0 + (𝑏) so 𝜑 is
injective.

We thus have

Theorem 3.17 (Primary Decomposition Theorem). Let 𝑅 be a Euclidean
domain and 𝑀 be a finitely generated 𝑅-module. Then

𝑀 ≅
𝑛

⨁
𝑖=1

𝑁𝑖

with each 𝑁𝑖 either equal to 𝑅 or 𝑅/(𝑝𝑚) for some prime 𝑝 ∈ 𝑅 and 𝑛 ≥ 1.

Proof. Note that if 𝑑 = 𝑝𝑚1
1 ⋯ 𝑝𝑚𝑘

𝑘 with 𝑝𝑖 ∈ 𝑅 distinct primes, by the previous
lemma

𝑅
(𝑑)

≅ 𝑅
(𝑝𝑛1

1 )
⊕ ⋯ ⊕ 𝑅

(𝑝𝑚𝑘
𝑘 )

.
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Plug this into Classification Theorem for Finitely Generated Modules over
Euclidean Domain to get the required result.

3.4 F[𝑋]-modules and Normal Form
For any field F, F[𝑋] is a Euclidean domain and so results of the last section
apply. If 𝑉 is an F-vector space and 𝛼 ∶ 𝑉 → 𝑉 is an endomorphism, then we
have

F[𝑋] × 𝑉 → 𝑉
(𝑓, 𝑣) ↦ 𝑓(𝛼)(𝑣)

which makes 𝑉 into an F[𝑋]-module, call it 𝑉𝛼. It turns out that F[𝑋]-module is
the correct tool to study endomorphisms and many results in IB Linear Algebra,
as well as many further results in algebra, can be obtained by looking into the
F[𝑋]-module structure.

Lemma 3.18. If 𝑉 is finite-dimensional then 𝑉𝛼 is finitely generated as an
F[𝑋]-module.

Proof. 𝑉 is a finitely generated F-module and F ≤ F[𝑋] so 𝑉 is also a finitely
generated F[𝑋]-module.

Example.

1. Suppose 𝑉𝛼 ≅ F[𝑋]/(𝑋𝑟) as an F[𝑋]-module. This has F-basis {𝑋𝑖}𝑟−1
𝑖=0

and the action of 𝛼 corresponds to multiplication by 𝑋. Thus in this basis
𝛼 has matrix representation

⎛⎜⎜⎜⎜⎜⎜
⎝

0
1 0

1 0
⋱
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

2. Suppose 𝑉𝛼 ≅ F[𝑋]/((𝑋 − 𝜆)𝑟). Consider 𝛽 = 𝛼 − 𝜆 ⋅ id. Then 𝑉𝛽 ≅
F[𝑌 ]/(𝑌 𝑟) as an F[𝑌 ]-module. By the previous example 𝑉 has a basis so
that 𝛽 is given by the matrix above and 𝛼 is given by

⎛⎜⎜⎜⎜⎜⎜
⎝

𝜆
1 𝜆

1 𝜆
⋱
1 𝜆

⎞⎟⎟⎟⎟⎟⎟
⎠

3. Suppose 𝑉𝛼 ≅ F[𝑋]/(𝑓) where

𝑓 = 𝑋𝑟 + 𝑎𝑟−1𝑋𝑟−1 + ⋯ + 𝑎1𝑋 + 𝑎0.
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Then {𝑋𝑖}𝑟−1
𝑖=0 is an F-basis and in this basis 𝛼 is given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −𝑎0
1 0 −𝑎1

1 0 −𝑎2
1 0 −𝑎3

⋱ ⋮
1 −𝑎𝑟−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

This matrix is called the companion matrix for 𝑓, written 𝐶(𝑓).

Theorem 3.19 (Rational Canonical Form). Let 𝑉 be a finite-dimensional
F-vector space and 𝛼 ∶ 𝑉 → 𝑉 be linear. Regard 𝑉 as an F[𝑋]-module 𝑉𝛼, we
have

𝑉𝛼 ≅ F[𝑋]
(𝑑1)

⊕ ⋯ ⊕ F[𝑋]
(𝑑𝑟)

with 𝑑1 ∣ 𝑑2 ∣ ⋯ ∣ 𝑑𝑟. There is a basis of 𝑉 with respect to which 𝛼 is given by

⎛⎜⎜⎜
⎝

𝐶(𝑑1)
𝐶(𝑑2)

⋱
𝐶(𝑑𝑟)

⎞⎟⎟⎟
⎠

Proof. Apply Classification Theorem for Finitely Generated Modules over Eu-
clidean Domain to F[𝑋], a Euclidean domain. Note that no copies of F[𝑋] appear
as it has infinite dimension over 𝑉.

Some observations:

1. If 𝛼 is represented by a matrix 𝐴 in some basis, then 𝐴 is conjugate to the
above matrix.

2. The minimal polynomial of 𝛼 is 𝑑𝑟 ∈ F[𝑋].

3. The characteristic polynomial of 𝛼 is 𝑑1𝑑2 ⋯ 𝑑𝑟.

Recall that we have two classification theorems for modules over Euclidean
domain. The above theorem corresponds to invariant decomposition. One might
naturally ask what result follows from primary decomposition. Before that let’s
convince ourselves that primes in C[𝑋] are as simple as they can be:

Lemma 3.20. The primes in C[𝑋] are 𝑋 − 𝜆 for 𝜆 ∈ C up to associates.

Proof. If 𝑓 ∈ C[𝑋] is irreducible then Fundamental Theorem of Algebra says
that 𝑓 has a root 𝜆, or 𝑓 is a constant. If it is constant then it is 0 or a unit,
absurd. Thus (𝑋 − 𝜆) ∣ 𝑓, write 𝑓 = (𝑋 − 𝜆)𝑔. But 𝑓 is irreducible so 𝑔 is a unit.
Thus 𝑓 is an associate of 𝑋 − 𝜆.

Remark. The lemma is equivalent to the statement that C is algebraically
closed, which says that every polynomial with coefficients in C factorises into
linear factors over C. In fact, every field can be extended to an algebraically
closed one. This will be discussed in detail in IID Galois Theory.
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Theorem 3.21 (Jordan Normal Form). Let 𝑉 be a finite-dimensional C-
vector space and 𝛼 ∶ 𝑉 → 𝑉 linear. Consider 𝑉𝛼 as an C[𝑋]-module, then

𝑉𝛼 ≅ C[𝑋]
((𝑋 − 𝜆1)𝑎1)

⊕ C[𝑋]
((𝑋 − 𝜆2)𝑎2)

⊕ ⋯ ⊕ C[𝑋]
((𝑋 − 𝜆𝑟)𝑎𝑟)

where the 𝜆𝑖’s are not necessarily distinct. There is a basis of 𝑉 with respect
to which 𝛼 is given by

⎛⎜⎜⎜⎜
⎝

𝐽𝑎1
(𝜆1)

𝐽𝑎2
(𝜆2)

⋱
𝐽𝑎𝑟

(𝜆𝑟)

⎞⎟⎟⎟⎟
⎠

where

𝐽𝑚(𝜆) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜆
1 𝜆

1 𝜆
⋱
1 𝜆

⎞⎟⎟⎟⎟⎟⎟
⎠

has size 𝑚.
Proof. Immediate from Primary Decomposition Theorem and knowing all the
primes in C[𝑋].

Remark.
1. The 𝐽𝑚(𝜆) are called Jordan 𝜆-blocks.

2. The minimal polynomial of 𝛼 is

𝑚𝛼(𝑡) = ∏
𝜆

(𝑋 − 𝜆)𝑎𝜆

where 𝑎𝜆 is the largest 𝜆-block.

3. The characteristic polynomial of 𝛼 is

𝜒𝛼(𝑡) = ∏
𝜆

(𝑋 − 𝜆)𝑏𝜆

where 𝑏𝜆 is the sum of the sizes of the 𝜆-blocks.

4. Consider ker(𝑋 ⋅ − ∶ 𝑉𝛼 → 𝑉𝛼). What is its dimension?
On C[𝑋]/(𝑋 − 𝜆)𝑎, if 𝜆 ≠ 0 then the map 𝑋 ⋅ − is an isomorphism since

ker(𝑋 ⋅ −) = {𝑓 + ((𝑋 − 𝜆)𝑎) ∶ 𝑋𝑓 ∈ ((𝑋 − 𝜆)𝑎)}

so if 𝑋𝑓 = (𝑋 − 𝜆)𝑎 ⋅ 𝑔, as 𝑋 and 𝑋 − 𝜆 are coprime, 𝑋 ∣ 𝑔, (𝑋 − 𝜆)𝑎 ∣ 𝑓
so ker(𝑋 ⋅ −) = 0.
If 𝜆 = 0, 𝑋 ⋅ − ∶ C[𝑋]/(𝑋𝑎) → C[𝑋]/(𝑋𝑎) has matrix

⎛⎜⎜⎜⎜⎜⎜
⎝

0
1 0

1 0
⋱
1 0

⎞⎟⎟⎟⎟⎟⎟
⎠
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so 1-dimensional kernel. Thus

dimker(𝑋 ⋅ − ∶ 𝑉𝛼 → 𝑉𝛼) = #Jordan 0-blocks.

5. Similarly, 𝑋2 ⋅ − ∶ C[𝑋]/((𝑋 − 𝜆)𝑎) → C[𝑋]/((𝑋 − 𝜆)𝑎) is an isomorphism
for 𝜆 ≠ 0 and for 𝜆 = 0 is given by the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0 0
1 0 0

1 0
⋱

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which has 2-dimensional kernel if 𝑎 > 1 and 1-dimensional kernel if 𝑎 = 1.
Therefore

dimker(𝑋2 ⋅ − ∶ 𝑉𝛼 → 𝑉𝛼) = #Jordan 0-blocks
+ #Jordan 0-blocks of size > 1.

so

#Jordan 0-blocks of size 1 = 2 dimker(𝑋 ⋅ −) − dimker(𝑋2 ⋅ −).

Using the same method we can find Jordan 0-blocks of other sizes.

3.5 Conjugacy*

Lemma 3.22. If 𝛼 ∶ 𝑉 → 𝑉 and 𝛽 ∶ 𝑊 → 𝑊 are endomorphism of F-vector
spaces, then 𝑉𝛼 ≅ 𝑊𝛽 as F[𝑋]-modules if and only if there is an isomorphism
𝛾 ∶ 𝑉 → 𝑊 such that

𝛾−1𝛽𝛾 = 𝛼,

i.e. 𝛼 and 𝛽 are conjugates.

Proof. Let ̂𝛾 ∶ 𝑉𝛼 → 𝑊𝛽 be an F[𝑋]-module isomorphism. In particular ̂𝛾 gives
an F-vector space isomorphism 𝛾 ∶ 𝑉 → 𝑊. Then

𝛽 ∘ 𝛾 ∶ 𝑊𝛽 → 𝑊𝛽

𝑣 ↦ 𝑋 ⋅ 𝛾(𝑣)

Now

𝑋 ⋅ 𝛾(𝑣) = 𝑋 ⋅ ̂𝛾(𝑣) ̂𝛾 as an F[𝑋]-module map
= ̂𝛾(𝑋 ⋅ 𝑣) in F[𝑋]-module 𝑉𝛼

= ̂𝛾(𝛼(𝑣))
= 𝛾(𝛼(𝑣))

so 𝛽 ∘ 𝛾 = 𝛾 ∘ 𝛼, 𝛾−1 ∘ 𝛽 ∘ 𝛾 = 𝛼. Therefore if 𝑊 = 𝑉 then 𝑉𝛼 ≅ 𝑉𝛽 if and only if
𝛼 and 𝛽 are conjugates.

𝑉 𝑉 𝑉𝛼 𝑉𝛼

𝑊 𝑊 𝑊𝛽 𝑊𝛽

𝛼

𝛾 𝛾

𝛼=𝑋⋅−

�̂� �̂�
𝛽 𝛽=𝑋⋅−
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Applying Classification Theorem for Finitely Generated Modules over Eu-
clidean Domain, we get

Corollary 3.23. There is a bijection

{conjugacy class of ℳ𝑛(F)} ↔ { sequence of monic polynomials 𝑑1, … , 𝑑𝑟
where 𝑑1 ∣ ⋯ ∣ 𝑑𝑟 and deg(𝑑1 ⋯ 𝑑𝑟) = 𝑛 }

Example. Consider GL2(F). The conjugacy classes are described by 𝑑1 ∣ ⋯ ∣ 𝑑𝑟
where deg(𝑑1 ⋯ 𝑑𝑟) = 2. Therefore we have one of the followings:

1. deg 𝑑1 = 2,

2. deg 𝑑1 = deg 𝑑2 = 1. As 𝑑1 ∣ 𝑑2, 𝑑1 = 𝑑2.

These give us respecively

1. F[𝑋]/(𝑋2 + 𝑎1𝑋 + 𝑎0),

2. F[𝑋]/(𝑋 − 𝜆) ⊕ F[𝑋]/(𝑋 − 𝜆).

Therefore any 𝐴 ∈ GL2(F) is conjugate to one of

(0 −𝑎0
1 −𝑎1

) , (𝜆 0
0 𝜆)

They are not conjugates.
The first case be futher split into two cases. If 𝑋2 + 𝑎1𝑋 + 𝑎0 is reducible

they it factorises as either (𝑋 − 𝜆)2 or (𝑋 − 𝜆)(𝑋 − 𝜇) where 𝜆 ≠ 𝜇. Thus we
get one of

(𝜆 0
1 𝜆) , (𝜆 0

0 𝜇)

Example. Let F = Z/3Z. For what 𝑎1, 𝑎0 is 𝑋2 + 𝑎1𝑋 + 𝑎0 ∈ F[𝑋] irreducible?
There are 3 × 3 = 9 polynomials in total, of which (3

1) + (3
2) = 6 are reducible.

Guess (any verify!) that the irreducibles are 𝑋2 + 1, 𝑋2 + 2𝑋 + 2, 𝑋2 + 2𝑋 + 2.
Therefore the conjugacy classes in GL2(Z/3Z) are

( 0 −1
1 0 ) ( 0 −2

1 −1 ) ( 0 −2
1 −2 )

( 𝜆 0
1 𝜆 ) 𝜆 ≠ 0

( 𝜆 0
0 𝜇 ) 𝜆, 𝜇 ≠ 0

so there are in total 8 conjugacy classes. They have order

( 0 2
1 0 ) ( 0 1

1 2 ) ( 0 1
1 1 ) ( 1 0

1 1 ) ( 2 0
1 2 ) ( 𝜆 0

0 𝜇 )
4 8 8 3 6 2

Just for fun, let’s use what we deduced above and knowledge about Sylow
𝑝-subgroups way back in the beginning of the course to determine the group
structure of GL2(Z/3/𝑍).

Recall that
|𝐺𝐿2(Z/3Z)| = (32 − 1)(32 − 3) = 24 ⋅ 3
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3 Modules

so the Sylow 2-subgroup has order 24 = 16. There are no elements of order 16
so it cannot be cyclic. Let

𝐴 = (0 2
1 0) , 𝐵 = (0 1

1 2)

so
𝐴−1𝐵𝐴 = (2 2

2 0) = 𝐵3.

Therefore ⟨𝐵⟩ ⊴ ⟨𝐴, 𝐵⟩ ≤ GL2(Z/3Z). The 2nd Isomorphism Theorem says
that

⟨𝐴, 𝐵⟩/⟨𝐵⟩ ≅ ⟨𝐴⟩/(⟨𝐴⟩ ∩ ⟨𝐵⟩).

Now ⟨𝐴⟩ ∩ ⟨𝐵⟩ = ⟨( 2 0
0 2 )⟩, a group of order 2. Therefore

|⟨𝐴, 𝐵⟩| = |⟨𝐴⟩| ⋅ |⟨𝐵⟩|
|⟨𝐴⟩ ∩ ⟨𝐵⟩|

= 8 ⋅ 4
2

= 16

which is a Sylow 2-subgroup of GL2(Z/3Z). It has presentation

⟨𝐴, 𝐵|𝐴4 = 𝐵8 = 1, 𝐴−1𝐵𝐴 = 𝐵3⟩,

the semidihedral group of order 16.
Since we still have time left, we can do one more fun example.

Example. Let 𝑅 = Z[𝑋]/(𝑋2 + 5) ≅ Z[
√

−5] ≤ C. Then

(1 + 𝑋)(1 − 𝑋) = 1 − 𝑋2 = 1 + 5 = 6 = 2 ⋅ 3.

As 1 ± 𝑋, 2 and 3 are irreducibles 𝑅 is not a UFD. Let

𝐼1 = (3, 1 + 𝑋), 𝐼2 = (3, 1 − 𝑥)

be submodules of 𝑅. Consider

𝜑 ∶ 𝐼1 ⊕ 𝐼2 → 𝑅
(𝑎, 𝑏) → 𝑎 + 𝑏

Then Im𝜑 = (3, 1 + 𝑋, 1 − 𝑋). Since 3 − (1 + 𝑋) − (1 − 𝑋) = 1, Im𝜑 = 𝑅. Also

ker𝜑 = {(𝑎, 𝑏) ∈ 𝐼1 ⊕ 𝐼2 ∶ 𝑎 + 𝑏 = 0} ≅ 𝐼1 ∩ 𝐼2

where the last isomorphism can be deduced from the map (𝑥, −𝑥) ↤ 𝑥. Note
that (3) ⊆ 𝐼1 ∩ 𝐼2. Let

𝑠 ⋅ 3 + 𝑡 ⋅ (1 + 𝑋) ∈ (3, 1 − 𝑋) ⊆ 𝑅 = Z[𝑋]/(𝑋2 − 5).

Reduce mod 3, we get

𝑡 ⋅ (1 + 𝑋) = (1 − 𝑋)𝑝 mod (3, 𝑋2 + 5) = (3, 𝑋2 − 1) = (2, (𝑋 + 1)(𝑋 − 1))

so 1 − 𝑋 ∣ 𝑡, (1 + 𝑋)(1 − 𝑋) ∣ 𝑡(1 + 𝑋) so

𝑡(1 + 𝑋) = 𝑞(𝑋2 − 1) = 𝑞(𝑋2 + 5 − 6) = 3(−2𝑞).
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Then 𝑠 ⋅ 3 + 𝑡 ⋅ (1 + 𝑋) is divisible by 3 so 𝐼1 ∩ 𝐼2 ⊆ (3). Equality follows.
From example sheet 4 we know that if 𝑁 ≤ 𝑀 and 𝑀/𝑁 ≅ R𝑛 then

𝑀 ≅ 𝑁 ⊕ 𝑅𝑛. Here
𝐼1 ⊕ 𝐼2/ ker𝜑 ≅ Im𝜑 = 𝑅

so
𝐼1 ⊕ 𝐼2 ≅ 𝑅 ⊕ ker𝜑 = 𝑅 ⊕ (3).

Consider

𝜓 ∶ 𝑅 → (3)
𝑥 ↦ 3𝑥

a surjective 𝑅-module map. ker𝜑 = 0 as 𝑅 is an integral domain so 𝜑 is an
isomorphism. Thus

𝐼1 ⊕ 𝐼2 ≅ 𝑅 ⊕ 𝑅 = 𝑅2.

In particular this shows that sums of non-free modules can be free.
Next we claim that 𝐼1 is not principal. If 𝐼1 = (𝑎 + 𝑏𝑋) then 𝐼2 = (𝑎 + 𝑏𝑋).

This is because 𝐼1 = (3, 1 + 𝑋) and 𝐼2 = (3, 1 − 𝑋) and 𝑅 has automorphism
𝑋 ↦ −𝑋 which interchanging 𝐼1 and 𝐼2.1 But then

(3) = 𝐼1 ∩ 𝐼2 = ((𝑎 + 𝑏𝑋)(𝑎 − 𝑏𝑋)) = (𝑎2 − 𝑏2𝑋2) = (𝑎2 + 5𝑏2)

so 𝑎2 + 5𝑏2 ∣ 3, absurd.
In summary, we have shown that

1. 𝐼1 needs 2 elements to generate (as it is not principal), but it is not the
free module 𝑅2.

2. 𝐼1 is a direct summand of 𝑅2.

1This technique will play a central role in IID Galois Theory.
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