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0 Introduction

0 Introduction
Informally, a graph consists of some vertices with some pairs of “vertices” joined
by “edges”. (formal definition later)

A few problems:

1. bridges of Königsberg (Euler, 18th century): is it possible to walk round
the city crossing each bridge precisely once and returing to starting point?
Convert it into a graph, the question becomes: is it possible to walk round
the “graph”, traversing each edge precisely once, finishing at the starting
vertex?1

2. four colour problem (first proposed in 19th century): how many colours
are needed to colour a map? Denote each country by a vertex and connect
two vertices by an edge if the countries are neighbours. Conjecture: let
𝐺 be a graph that can be drawn in the plane with no crossings. Then
the vertices of 𝐺 can be coloured with 4 colours such that each edge has
different coloured endpoints.

3. simultaneous coset representation (1930s): let 𝐺 be a finite group, 𝐻 ≤ 𝐺.
Lagrange’s Theorem says that |𝐻| ∣ |𝐺| and if |𝐺|/|𝐻| = 𝑛 then there are
𝑎1, … , 𝑎𝑛 ∈ 𝐺 such that 𝑎1𝐻, … , 𝑎𝑛𝐻 are the left cosets of 𝐻. Similarly
there exist 𝑏1, … , 𝑏𝑛 ∈ 𝐺 such that 𝐻𝑏1, … , 𝐻𝑏𝑛 are the right cosets. We
can ask the problem: can we make the 𝑎𝑖’s and 𝑏𝑖’s the same? i.e. can we
find 𝑐1, … , 𝑐𝑛 ∈ 𝐺 such that the left cosets of 𝐻 are 𝑐1𝐻, … , 𝑐𝑛𝐻 and the
rights cosets are 𝐻𝑐1, … , 𝐻𝑐𝑛? Recall that if 𝐿 is a left coset of 𝐻 and
𝑔 ∈ 𝐺 then 𝐿 = 𝑔𝐻 if and only if 𝑔 ∈ 𝐿. Take set 𝑋 of vertices, one for
each left coset, disjoint set 𝑌 of vertices, one for each right coset. For each
𝑔 ∈ 𝐺, add an edge from 𝑔𝐻 to 𝐻𝑔. The problem now becomes: can we
find a set of edges meeting each vertex precisely once?

4. Fermat equation mod 𝑝: Fermat asserted that 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no
non-trivial solutions in integers if 𝑛 ≥ 3.

Theorem 0.1. Let 𝑛 ∈ N. Then for any sufficiently large prime 𝑝,
there are 𝑥, 𝑦, 𝑧 ≠ 0 (mod 𝑝) with 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 (mod 𝑝).

The original proof involves lots of number theory and is hard. However
we can reduce it to a graph theory problem. Let 𝐺 = Z∗

𝑝, multiplicative
group of nonzero residues mod 𝑝. Let 𝐻 = {𝑔𝑛 ∶ 𝑔 ∈ 𝐺} ≤ 𝐺. We want
𝑥, 𝑦, 𝑧 ∈ 𝐻 with 𝑥 + 𝑦 = 𝑧. We can check |𝐻| ≥ |𝐺|

𝑛 so 𝐻 has at most 𝑛
left cosets. Suppose now in some left coset 𝑔𝐻 we have 𝑢, 𝑣, 𝑤 ∈ 𝑔𝐻 with
𝑢 + 𝑣 = 𝑤. Then 𝑔−1𝑢 + 𝑔−1𝑣 = 𝑔−1𝑤 is a solution in 𝐻. Thus we have
reduced the theorem to the following combinatorial statement:

Theorem 0.2 (Schur). Let 𝑘 be a positive integer. Then for any
sufficiently large 𝑛, if [𝑛] = {1, 2, … , 𝑛} is partitioned into 𝑘 parts, then
we can find 𝑥, 𝑦, 𝑧 in the same part with 𝑥 + 𝑦 = 𝑧.

1This is actually a multigraph, with more than one edge joining two vertices.
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0 Introduction

Let’s consider small cases to gain some intuition first. For 𝑘 = 1, take 𝑛 = 2.
It is trivial.

For 𝑘 = 2, take 𝑛 = 5. Suppose [5] is partitioned into 𝐴 and 𝐵. wlog |𝐴| ≥ 3,
say 𝑖 < 𝑗 < 𝑘 in 𝐴. If 𝑗 − 𝑖 ∈ 𝐴 then 𝑖 + (𝑗 − 𝑖) = 𝑗 so done. Similarly if
𝑘 − 𝑖 or 𝑘 − 𝑗 ∈ 𝐴. Otherwise, 𝑗 − 𝑖, 𝑘 − 𝑗, 𝑘 − 𝑖 ∈ 𝐵 and (𝑗 − 𝑖) + (𝑘 − 𝑗) = 𝑘 − 𝑖
so done.

For 𝑘 = 3, take 𝑛 = 16. Suppose [16] is partitioned in 𝐴, 𝐵 and 𝐶. wlog
|𝐴| ≥ 6 and 𝑎1 < ⋯ < 𝑎6 in 𝐴. If 𝑎𝑗 − 𝑎𝑖 ∈ 𝐴 for some 𝑖 < 𝑗 then done. If not,
consider 𝑎2 − 𝑎1, 𝑎3 − 𝑎1, … , 𝑎6 − 𝑎1 ∈ 𝐵 ∪ 𝐶 so wlog have 2 ≤ 𝑖 < 𝑗 < 𝑘 < 6
such that 𝑎𝑖 − 𝑎1, 𝑎𝑗 − 𝑎1, 𝑎𝑘 − 𝑎1 ∈ 𝐵. Now if 𝑎𝑗 − 𝑎𝑖 or 𝑎𝑘 − 𝑎𝑗 or 𝑎𝑘 − 𝑎𝑖 ∈ 𝐵
then done. Otherwise 𝑎𝑗 − 𝑎𝑖, 𝑎𝑘 − 𝑎𝑗, 𝑎𝑘 − 𝑎𝑖 ∈ 𝐶 and so done.

The “if not” part of 𝑘 = 3 feels quite like 𝑘 = 2 case, except that we are
dealing with 𝑎𝑖 − 𝑎1 instead of 1, … , 5. It is a bit tricky but we can do this by
induction. This is left as an exercise.

Note that what we care is the difference between the numbers. More specifi-
cally, we only care the difference between a pair of numbers, instead of what the
actual difference is. This prompts us to rephrase this as a graph theory problem.
Let [5] = 𝐴 ∪ 𝐵, say 𝐴 = {1, 3, 5}, 𝐵 = {2, 4}. Take the graph with vertices
0, … , 5 and all possible edges. Colour the edge 𝑖𝑗(𝑖 < 𝑗) to represent which of
𝐴, 𝐵 contains 𝑗 − 𝑖.

0

12

3

4 5

Supoose we have a monochromatic triangle 𝑖 < 𝑗 < 𝑘, then 𝑗 − 𝑖, 𝑘 − 𝑗, 𝑘 − 𝑖
are in the same part with (𝑘 − 𝑗) + (𝑗 − 𝑖) = 𝑘 − 𝑖. This turns out to be exactly
the setting we need to solve this problem. We will do this in chapter 1, alongside
building the machinary we need.
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1 Extremal graph theory

1 Extremal graph theory

1.1 Ramsey theory

Definition (graph, vertex, edge). A graph 𝐺 is an ordered pair 𝐺 = (𝑉 , 𝐸)
where 𝑉 is a finite set and 𝐸 is a set of unordered pairs of distinct elements
of 𝑉. The elements of 𝑉 are the vertices of 𝐺 and those of 𝐸 the edges. Write
𝑉 = 𝑉 (𝐸) and 𝐸 = 𝐸(𝐺).

Example. 𝐺 = ([9], {12, 13, 14, 23, 67, 68, 69}). We often use picture to repre-
sent a graph.

1 2

3 4

5 6 7

8 9

Notation. We denote the edge {𝑖, 𝑗} by 𝑖𝑗.

Example. The complete graph of order 𝑛 𝐾𝑛 has 𝑉 [𝐾𝑛] = [𝑛] and 𝐸(𝐾𝑛) =
{𝑖𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}. For example, 𝐾3 is the triangle.

Definition (isomorphism). An isomorphism from a graph 𝐺 to a graph
𝐻 is a bijection 𝜙 ∶ 𝑉 (𝐺) → 𝑉 (𝐻) satisfying 𝜙(𝑢)𝜙(𝑣) ∈ 𝐸(𝐻) if and only
if 𝑢𝑣 ∈ 𝐸(𝐺). If such 𝜙 exists, we say 𝐺 and 𝐻 are isomorphic and write
𝐺 ≅ 𝐻.

Definition (subgraph). A graph 𝐻 is a subgraph of a graph 𝐺 if 𝑉 (𝐻) ⊆
𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺).

More loosely, we say 𝐻 is a subgraph of 𝐺 if 𝐻 ≅ 𝐻′ for some subgraph
𝐻′ of 𝐺.

Write 𝐻 ⊆ 𝐺 to mean 𝐻 is a subgraph of 𝐺.

Notation. Write 𝑣 ∈ 𝐺 to mean 𝑣 ∈ 𝑉 (𝐺).
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1 Extremal graph theory

Definition (colouring). A 𝑘-colouring of a graph 𝐺 is a function 𝑐 ∶ 𝐸(𝐺) →
[𝑘].

In proofs, if 𝐾 is small, we often call colours blue, yellow, etc. rather than
1, 2, ….

Definition (monochromatic). If 𝐺 is 𝑘-coloured and 𝐻 ⊆ 𝐺, we say 𝐻 is
monochromatic if 𝑐|𝐸(𝐻) is constant.

Now we are ready to tackle the colouring problem in the previous chapter.

Example. Suppose 𝐾6 is coloured blue/yellow. Pick 𝑣 ∈ 𝐾6. 𝑣 has 5 edges so
some 3 are the same colour, wlog blue 𝑣𝑤, 𝑣𝑥, 𝑣𝑦. If any of 𝑤𝑥, 𝑤𝑦, 𝑥𝑦 is blue
then we have a blue triangle. Otherwise 𝑤𝑥𝑦 is a yellow triangle. Done.

Note. Note that it doesn’t work in 𝐾5, i.e. 𝐾5 can be 2-coloured with no
monochromatic triangle:

1

2

3

4

5

Proposition 1.1 (Ramsey theorem for triangles). Let 𝑘 ∈ N. Then for 𝑛
sufficiently large, if 𝐾𝑛 is 𝑘-coloured we must have a monochromatic triangle.

Proof. Induction on 𝑘. For 𝑘 = 1, 𝑛 = 3 works. For 𝑘 > 1, by induction
hypothesis we can choose 𝑚 such that if 𝐾𝑚 is (𝑘 − 1)-coloured then it has a
monochromatic triangle. Now take 𝑛 = 𝑘(𝑚 − 1) + 2. Suppose 𝐾𝑛 is 𝑘-coloured.
Pick 𝑣 ∈ 𝐾𝑛. There are 𝑘(𝑚 − 1) + 1 edges from 𝑣 so some 𝑚 are the same
colour. wlog 𝑣 is joint to a 𝐾𝑚, 𝐻, by blue edegs. If 𝐻 contains a blue edge
then we have a blue triangle with 𝑣. If not then 𝐻 is a (𝑘 − 1)-coloured 𝐾𝑚 so
by definition of 𝑚 it contains a monochromatic triangle.

Remark. How big should we take 𝑛? Write 𝑓(𝑘) for the smallest 𝑛 that works.
Then 𝑓(1) = 3. If 𝑘 > 1, the proof tells us that 𝑓(𝑘) ≤ 𝑘(𝑓(𝑘 − 1) − 1) + 2 ≤
𝑘𝑓(𝑘 − 1). So by induction 𝑓(𝑘) ≤ 3𝑘!.
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1 Extremal graph theory

Corollary 1.2 (Schur’s theorem). Let 𝑘 ≥ 1. Then for 𝑛 sufficiently larger,
if [𝑛] is partitioned into 𝑘 parts we can find 𝑥, 𝑦, 𝑧 in the same part with
𝑥 + 𝑦 = 𝑧.

Proof. Let 𝑛 be such that if 𝐾𝑛+1 is 𝑘-coloured then there exists a monochromatic
triangle. Partition

[𝑛] = 𝐴1 ∪ ⋯ ∪ 𝐴𝑘.
Now 𝑘-colour a 𝐾𝑛+1 with vertices 0, … , 𝑛 using colouring 𝑐, with, for 𝑖 < 𝑗,
𝑗 − 𝑖 ∈ 𝐴𝑐(𝑖𝑗). Let ℎ < 𝑖 < 𝑗 be a monochormatic triangle of colour 𝑢, say. Then

(𝑖 − ℎ) + (𝑗 − 𝑖) = 𝑗 − ℎ

and they are all in 𝐴𝑢.

We have shown that we can always find a monochromatic triangle, i.e. 𝐾3.
What about 𝐾4, 𝐾5 etc?

Example. Suppose 𝐾10 is coloured blue/yellow. Then there must be a blue
triangle or a yellow 𝐾4.

Proof. Pick 𝑣 ∈ 𝐾10, then

• either 𝑣 is in 4 blue edges 𝑣𝑤, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧. If any edge is among 𝑤, 𝑥, 𝑦, 𝑧 is
blue, we have a blue triangle. Else 𝑤𝑥𝑦𝑧 is a yellow 𝐾4,

v

w
x

y
z

• or 𝑣 is in 6 yellow edges. Let 𝐻 be a 𝐾6 joined to 𝑣 by yellow edges.
We know 𝐻 must have a monochromatic triangle. If it is a blue done.
Otherwise together with 𝑣 we have a yellow 𝐾4.

Definition (Ramsey number). Let 𝑠, 𝑡 ≥ 2. The Ramsey number 𝑅(𝑠, 𝑡) is
the least 𝑛 such that whenever 𝐾𝑛 is coloured blue/yellow then we can find
a blue 𝐾𝑠 or a yellow 𝐾𝑡 (if such an 𝑛 exists). We write 𝑅(𝑠) = 𝑅(𝑠, 𝑠).

Theorem 1.3 (Ramsey). Let 𝑠, 𝑡 ≥ 2. Then 𝑅(𝑠, 𝑡) exists. Moreover, if
𝑠, 𝑡 ≥ 3 then

𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1).

Proof. Induction on 𝑠 + 𝑡. For 𝑠 = 2, 𝑅(2, 𝑡) = 𝑡 and similarly for 𝑡 = 2,
𝑅(𝑠, 2) = 𝑠. For 𝑠, 𝑡 ≥ 3, by induction hypothesis we can take

𝑚 = 𝑅(𝑠 − 1, 𝑡)
𝑛 = 𝑅(𝑠, 𝑡 − 1)

Colour 𝐾𝑚+𝑛 blue/yellow. Pick a vertex 𝑣 ∈ 𝐾𝑚+𝑛. Then
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1 Extremal graph theory

• either 𝑣 is in 𝑚 blue edges. Let 𝐻 be a 𝐾𝑚 joined to 𝑣 by blue. By
definition of 𝑚, 𝐻 contains either a blue 𝐾𝑠−1, making a blue 𝐾𝑠 with 𝑣
or a yellow 𝐾𝑡.

• or 𝑣 is in 𝑛 yellow edges. Proceed as before with blue/yellow reversed.

Hence 𝑅(𝑠, 𝑡) exists and moreover

𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1).

How big is 𝑅(𝑠)? We know 𝑅(2) = 2, 𝑅(3) = 6 so

𝑅(3, 4) ≤ 𝑅(3) + 𝑅(2, 4) ≤ 10.

In fact, in example sheet we will show 𝑅(3, 4) = 9. Then

𝑅(4) = 𝑅(4, 4) ≤ 2𝑅(3, 4) = 18.

It turns out to be a sharp, which we will also show on example sheet. What
about 𝑅(5)? Nobody knows exactly. The bound as the time the note is taken is
43 ≤ 𝑅(5) ≤ 48. Although 5 seem innocuouly small, the computation required to
find the exact Ramsey number is enourmous: as 𝑅(5) ≈ 45, 𝐾45 has (45

2 ) ≈ 1000
edges so there are approximately 21000 blue/yellow colourings.

However, we can easily bound them:

Corollary 1.4. Let 𝑠, 𝑡 ≥ 2. Then 𝑅(𝑠, 𝑡) ≤ 2𝑠+𝑡. In particular, 𝑅(𝑠) ≤ 4𝑠.

Proof. Induction on 𝑠 + 𝑡. For 𝑠 = 2 have 𝑅(2, 𝑡) = 𝑡 ≤ 22+𝑡. Same for 𝑡 = 2.
For 𝑠, 𝑡 ≥ 3,

𝑅(𝑠, 𝑡) ≤ 𝑅(𝑠 − 1, 𝑡) + 𝑅(𝑠, 𝑡 − 1) ≤ 2𝑠−1+𝑡 + 2𝑠+𝑡−1 = 2𝑠+𝑡.

𝑅(𝑠) ≤ 4𝑠 seems like a rather crude bound — indeed we start the induction
with a very sloppy 𝑡 ≤ 2𝑡. If we do it more carefully, we get 𝑅(𝑠, 𝑡) ≤ (𝑠+𝑡−2

𝑠−1 ) so
𝑅(𝑠) ≤ (2𝑠−2

𝑠−1 ). Approximate, e.g. by Stirling formula and we get

𝑅(𝑠) = 𝑂( 4𝑠
√

𝑠
),

which is the result by Erdős-Szekeres in 1930s. For 50 years no one is able to
improve it. In the 1980s, Andrew Thomason shows 𝑅(𝑠) = 𝑂( 4𝑠

𝑠 ), which takes
considerably more work. So far the best bound is found by David Conlon in
the 2000s, for all 𝑘, 𝑅(𝑠) = 𝑂( 4𝑠

𝑠𝑘 ). Is 𝑅(𝑠) = 𝑂((4 − 𝜀)𝑠) for some 𝜀 > 0? The
answer is unknown.

For a lower bound, however, see example sheet 1.
What if we use more colours? First we can define the Ramsey number

correspondingly:
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1 Extremal graph theory

Definition (multicolour Ramsey number). Let 𝑘 ≥ 1 and 𝑠 ≥ 2. The
multicolour Ramsey number 𝑅𝑘(𝑠) is the least 𝑛 such that whenver 𝐾𝑛 is
𝑘-coloured then there is a monochromatic 𝐾𝑠 (if it exists).

Theorem 1.5 (multicolour Ramsey theorem). Let 𝑘 ≥ 1, 𝑠 ≥ 2, then 𝑅𝑘(𝑠)
exists.

Proof. Induction on 𝑘. If 𝑘 = 1 then 𝑅1(𝑠) = 𝑠. If 𝑘 = 2 then 𝑅2(𝑠) = 𝑅(𝑠). For
𝑘 ≥ 3, let 𝑛 = 𝑅(𝑠, 𝑅𝑘−1(𝑠)) which exists by induction hypothesis and Ramsey
theorem. Suppose 𝐾𝑛 is 𝑘-coloured, give it now a blue/yellow colouring replacing
colour 1 by blue and all others by yellow. Then

• either we have blue 𝐾𝑠, i.e. colour 1 𝐾𝑠.

• or yellow 𝐾𝑅𝑘−1(𝑠). In the original colouring this is (𝑘 − 1)-coloured. So
we have a monochromatic 𝐾𝑠 inside it.

1.1.1 Infinite Ramsey theory

A short excursion into infinite analogue of Ramsey theorem. Before that we
formally define

Definition (infinite graph). An infinite graph is an ordered pair 𝐺 = (𝑉 , 𝐸)
where 𝑉 is an infinite set and 𝐸 is a set of unordered pairs of distinct elements
of 𝑉.

Note. An infinite graph is not a graph. This is for the sake of brevity as we
will deal mostly with finite graph in this course.

We carry across notations/terminologies from graphs to infinite graphs where
possible.

A not necessarily finite graph is a graph or an infinite graph.

Definition. The infinite complete graph 𝐾∞ is the infinite graph 𝐾∞ with

𝑉 (𝐾∞) = N
𝐸(𝐾∞) = {𝑖𝑗, 𝑖, 𝑗 ∈ N, 𝑖 < 𝑗}.

Suppose we finitely colour 𝐾∞. What can we find monochromatically? By
Ramsey, we get arbitrarily large monochromatic 𝐾𝑠, which is not the same as
monochormatic 𝐾∞. For example, we can connect disjoint blue 𝐾𝑠 for 𝑠 ≥ 2
using yellow edges and there is no blue 𝐾∞. However in this colouring there is
a yellow 𝐾∞.

Theorem 1.6 (infinite Ramsey). Let 𝐾∞ be finitely coloured. Then it
contains a monochromatic 𝐾∞ subgraph.

8



1 Extremal graph theory

Proof. Let 𝑐 ∶ 𝐸(𝐾∞) → [𝑘] for some 𝑘 be a colouring. Pick 𝑣1 ∈ 𝐾∞. 𝑣 is in
infinitely many edges but only finitely many colours so infinitely many of these
edges are the same colour. Formally, we can pick an infinite 𝐴1 ⊆ 𝑉 (𝐾∞) and a
colour 𝑐1 such that for all 𝑤 ∈ 𝐴, 𝑐(𝑣1𝑤) = 𝑐1.

Similarly we can pick 𝑣2 ∈ 𝐴1 and infinite 𝐴2 ⊆ 𝐴1 and colour 𝑐2 such
that for all 𝑤 ∈ 𝐴2, 𝑐(𝑣2𝑤) = 𝑐2 and so on. We obtain a sequence 𝑣1, 𝑣2, … , of
distinct vertices and a sequence 𝑐1, 𝑐2, … of colours and a decreasing sequence
𝐴1 ⊇ 𝐴2 ⊇ … of inifite subsets of 𝑉 (𝐾∞) such that for all 𝑖 ≥ 1, 𝑣𝑖+1 ∈ 𝐴𝑖 and
for all 𝑤 ∈ 𝐴𝑖, 𝑐(𝑣𝑖𝑤) = 𝑐𝑖.

In particular if 𝑖 < 𝑗 then 𝑐(𝑣𝑖𝑣𝑗) = 𝑐𝑖 so infinitely many of 𝑐1, 𝑐2, … must
be the same, say 𝑛1 < 𝑛2 < … with 𝑐𝑛1

= 𝑐𝑛2
= …. Now let 𝐻 be the infinite

complete subgraph with vertex set {𝑣𝑛𝑖
∶ 𝑖 ≥ 1}. Suppose 𝑖 < 𝑗. Then 𝑛𝑖 < 𝑛𝑗

and so 𝑐(𝑣𝑛𝑖
𝑣𝑛𝑗

) = 𝑐𝑛𝑖
= 𝑐𝑛1

. Thus 𝐻 is monochromatic.

Remark. This is sometimes called a “two-pass proof”.

As a byproduct we have

Corollary 1.7 (Bolzano-Weierstrass). A bounded real sequence has a con-
vergent subsequence.

Proof. Any bounded monotone sequence converges so enough to show if (𝑥𝑛) is
a real sequence then it must have a monotone subsequence.

Let 𝐺 be 𝐾∞ with vertex set N. Colour 𝐺 blue/yellow by giving 𝑖𝑗, 𝑖 < 𝑗
colour blue if 𝑥𝑖 < 𝑥𝑗 or yellow if 𝑥𝑖 ≥ 𝑥𝑗. By infinite Ramsey theorem we have
in infinite monochromatic complete subgraph 𝐻, say with vertices 𝑛1 < 𝑛2 < ….
Consider the subsequence (𝑥𝑛𝑗

). If 𝐻 is blue then (𝑥𝑛𝑗
) is (strictly increasing),

while if 𝐻 yellow then (𝑥𝑛𝑗
) is decreasing.

1.2 Basic definitions and concepts
Example. Some examples of graphs:

1. Complete graph of order 𝑛: 𝐾𝑛 with 𝑉 (𝐾𝑛) = [𝑛], 𝐸(𝐾𝑛) = {𝑖𝑗 ∶ 1 ≤ 𝑖 <
𝑗 ≤ 𝑛}.

2. Path of length 𝑛: 𝑃𝑛 with 𝑉 (𝑃𝑛) = {0, … , 𝑛}, 𝐸(𝑃𝑛) = {𝑖(𝑖 + 1) ∶ 0 ≤ 𝑖 <
𝑛}.

3. Cycle of length 𝑛: 𝐶𝑛 with 𝑉 (𝐶𝑛) = [𝑛], 𝐸(𝐶𝑛) = {𝑖(𝑖 + 1) ∶ 1 ≤ 𝑖 <
𝑛} ∪ {𝑛1}.

Definition (order). Let 𝐺 = (𝑉 , 𝐸) be a graph. The order of 𝐺 is |𝐺| = |𝑉 |.
We also write 𝑒(𝐺) = |𝐸|. (sometimes called the size of 𝐺)

Example.

1. |𝐾𝑛| = 𝑛, 𝑒(𝐾𝑛) = (𝑛
2).

2. |𝑃𝑛| = 𝑛 + 1, 𝑒(𝑃𝑛) = 𝑛.

3. |𝐶𝑛| = 𝑛, 𝑒(𝐶𝑛) = 𝑛.
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1 Extremal graph theory

Definition (spanned subgraph). Suppose 𝐺 = (𝑉 , 𝐸) is a graph and 𝑈 ⊆ 𝑉.
The subgraph of 𝐺 spanned or induced by 𝑈 is the subgraph 𝐺[𝑈] of 𝐺 with
𝑉 (𝐺[𝑈]) = 𝑈, 𝐸(𝐺[𝑈]) = {𝑖𝑗 ∈ 𝐸 ∶ 𝑖, 𝑗 ∈ 𝑈}.

Definition (disjoint union). Suppose 𝐺 = (𝑉 , 𝐸), 𝐺′ = (𝑉 ′, 𝐸′) are graphs
with 𝑉 ∩ 𝑉 ′ = ∅. The disjoint union of 𝐺, 𝐺′ is the graph 𝐺 ∪ 𝐺′ =
(𝑉 ∪ 𝑉 ′, 𝐸 ∪ 𝐸′).

Sometimes we use this terminology more loosely, when 𝑉 and 𝑉 ′ are not
disjoint, to mean “take isomorphic copies of 𝐺 and 𝐺′ with disjoint vertex sets
and form their disjoint union”.

Example. 𝐶5 ∪ 𝑃3 (graph)

We need a bit more notations/definitions. Let 𝐺 = (𝑉 , 𝐸) be a graph. If
𝑈 ⊆ 𝑉, the graph 𝐺 − 𝑈 is defined to be 𝐺 − 𝑈 = 𝐺[𝑉 \ 𝑈]. If 𝑈 = {𝑣}, write
𝐺 − 𝑣 = 𝐺 − 𝑈.

If 𝐹 ⊆ 𝐸, write 𝐺 − 𝐹 = (𝑉 , 𝐸 \ 𝐹). If 𝐹 = {𝑒}, write 𝐺 − 𝑒 = 𝐺 − 𝐹.
The complement of 𝐺 is the graph 𝐺 with

𝑉 (𝐺) = 𝐺
𝐸(𝐺) = {𝑢𝑣 ∶ 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ≠ 𝑣, 𝑢𝑣 ≠ 𝐸}

Example.
1. The complement of the complement graph 𝐾𝑛 is the empty graph of order

𝑛, 𝐾𝑛, with 𝑛 vertices and no edges.

2. The complement of 𝐶5 is

1

2
3

4
5

which is isomorphic to 𝐶5. We say 𝐶5 is self-complementary.

We say 𝑣, 𝑤 ∈ 𝐺 are adjacent or neighbours and write 𝑣 ∼ 𝑤 if 𝑣𝑤 ∈ 𝐸. The
neighbourhodd of 𝑣 is

Γ(𝑣) = {𝑤 ∈ 𝐺 ∶ 𝑣 ∼ 𝑤}.
The degree of 𝑣 is the number of neighbours of 𝑣: 𝑑(𝑣) = |Γ(𝑣)|. More generally,
if 𝐴 ⊆ 𝑉, the neighbourhood of 𝐴 is

Γ(𝐴) = ⋃
𝑣∈𝐴

Γ(𝑣).

The minimum degree of 𝐺 is 𝛿(𝐺) = min𝑣∈𝐺 𝑑(𝑣). The maximum degree of 𝐺 is
Δ(𝐺) = max𝑣∈𝐺 𝑑(𝑣). The average degree of 𝐺 is

𝑑(𝐺) = 1
|𝐺|

∑
𝑣∈𝐺

𝑑(𝑣).

Observe that
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1 Extremal graph theory

1. 𝛿(𝐺) ≤ 𝑑(𝐺) ≤ Δ(𝐺). If either, i.e. both, are equalities we say 𝐺 is regular .
If 𝐺 is regular, all vertices have the same degree. If that degree is 𝑟, we
say 𝐺 is 𝑟-regular.

Example. 𝐾𝑛 is (𝑛 − 1)-regular. 𝐾𝑛 is 0-regular. 𝐶𝑛 is 2-regular. 𝑃𝑛 is
not regular for 𝑛 ≥ 2 as 𝛿(𝑃𝑛) = 1 and Δ(𝑃𝑛) = 2.

2. 2𝑒(𝐺) = ∑𝑣∈𝐺 𝑑(𝑣). It is obvious as an edge has two “ends”. A formal
proof: let

𝑋 = {(𝑒, 𝑣) ∶ 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑒}.

To pick (𝑒, 𝑣) ∈ 𝑋, we can choose 𝑒 in 𝑒(𝐺) ways then we choices for 𝑣. So
|𝑋| = 𝑒(𝐺) × 2. Alternatively, pick 𝑣 first then, given 𝑣, 𝑑(𝑣) choices from
𝑒 so |𝑋| = ∑𝑣∈𝐺 𝑑(𝑣).

This gives 𝑒(𝐺) = |𝐺|𝑑(𝐺)
2 .

A path in 𝐺 from 𝑣 to 𝑤 where 𝑣, 𝑤 ∈ 𝐺, is a sequence 𝑣0, 𝑣1, … , 𝑣ℓ of distinct
vertices of 𝐺 where 𝑣0 = 𝑣, 𝑣ℓ = 𝑤 and 𝑣𝑖−1 ∼ 𝑣𝑖 for 1 ≤ 𝑖 ≤ ℓ. Usually write
this path as 𝑣0𝑣1 … 𝑣ℓ. The length of the path is ℓ. A path of length ℓ in 𝐺 yields
a subgraph isomorphic to 𝑃ℓ. In particular 𝑣 is a path (of length 0) from 𝑣 to 𝑣.

Define a relation → on 𝑉 (𝐺) by 𝑣 → 𝑤 if there is a path from 𝑣 to 𝑤. It is
an equivalence relation (example sheet 2). The equivalence class of → are the
connected componenets of 𝐺. Note 𝐺 is the disjoint union of its components. If
𝐺 has only one component, we say 𝐺 is connected.

Example. A graph with three components (graph)

A cycle of length 𝑛 in 𝐺 is a subgraph of 𝐺 isomorphic to 𝐶𝑛. Often
denote such by 𝑣1𝑣2 … 𝑣𝑛𝑣1 where 𝑣1, … 𝑣𝑛 ∈ 𝑣(𝐺) are distinct, 𝑣𝑖−1 ∼ 𝑣𝑛 for
1 < 𝑖 ≤ 𝑛 and 𝑣𝑛 ∼ 𝑣1. Note that unlike path, cycle does not have a starting
point or direction. Thus there are many notations for some cycles, for example
𝑎𝑏𝑐𝑑𝑒𝑎 = 𝑑𝑐𝑏𝑎𝑒𝑑.

A final notation: we often write 𝑒 ∈ 𝐺 to mean 𝑒 ∈ 𝐸(𝐺) if unambiguous.

1.2.1 Bipartite graphs

Definition (bipartite graph). A graph 𝐺 = (𝑉 , 𝐸) is bipartite if there is
a partition 𝑉 = 𝑋 ∪ 𝑌 such that any 𝑒 ∈ 𝐸 can be written 𝑒 = 𝑥𝑦 where
𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

The complete bipartite graph 𝐾𝑚,𝑛 has |𝑋| = 𝑚, |𝑌 | = 𝑛 and 𝑥𝑦 ∈
𝐸(𝐾𝑚,𝑛) for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

Example. 𝐾2,3

In general, |𝐾𝑚,𝑛| = 𝑚 + 𝑛, 𝑒(𝐾𝑚,𝑛) = 𝑚𝑛. There is a more useful charac-
terisation of bipartite graphs:

Proposition 1.8. A graph 𝐺 = (𝑉 , 𝐸) is bipartite if and only if it contains
no odd cycles.
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1 Extremal graph theory

Proof. Suppose 𝐺 = (𝑉 , 𝐸) is bipartite and 𝑉 = 𝑋 ∪ 𝑌 is a partition. Assume
for contradiction 𝑣1𝑣2 … 𝑣𝑛𝑣1 is a cycle with 𝑛 odd. wlog 𝑣1 ∈ 𝑋. Then
𝑣2 ∈ 𝑌 , 𝑣2 ∈ 𝑋, … , 𝑣𝑛 ∈ 𝑋, 𝑣1 ∈ 𝑌. Contradiction.

Suppose 𝐺 has no odd cycles. wlog 𝐺 is connected. Pick 𝑥 ∈ 𝐺. For 𝑦 ∈ 𝐺,
define the distance from 𝑥 to 𝑦, 𝑑(𝑥, 𝑦) to be the shortest path from 𝑥 to 𝑦. Let

𝑉𝑖 = {𝑦 ∈ 𝐺 ∶ 𝑑(𝑥, 𝑦) = 𝑖}

for 𝑖 ≥ 0. Let 𝑋 = ⋃𝑖 even 𝑉𝑖, 𝑌 = ⋃𝑖 odd 𝑉𝑖. Let 𝑢𝑣 ∈ 𝐸(𝐺) with 𝑢 ∈ 𝑉𝑗, 𝑣 ∈ 𝑉𝑘
where 𝑗 ≤ 𝑘. Then must have 𝑘 = 𝑗 or 𝑘 = 𝑗 + 1. Indeed there is a path of
length 𝑗 + 1 from 𝑥 to 𝑣.

Suppose 𝑘 = 𝑗. We want to say that 𝑥, 𝑢 and 𝑣 form a cycle of length 2𝑗 + 1,
but they may intersect somewhere earlier in the path. The standard way to
deal with it is to take the closest intersection. Let 𝑢0𝑢1 … 𝑢𝑗 and 𝑣0𝑣1 … 𝑣𝑗 be
shortest paths from 𝑥 to 𝑢 and 𝑣 respectively, so 𝑢0 = 𝑣0 = 𝑥, 𝑢𝑗 = 𝑢, 𝑣𝑗 = 𝑣
and 𝑢𝑖, 𝑣𝑖 ∈ 𝑉𝑖 for 0 ≤ 𝑖 ≤ 𝑗. In particular, ℎ ≠ 𝑖 implies that 𝑢ℎ ≠ 𝑣𝑖. Pick 𝑖
largest such that 𝑢𝑖 = 𝑣𝑖, so 0 ≤ 𝑖 < 𝑗 and 𝑢𝑖𝑢𝑖+1 … 𝑢𝑗𝑣𝑗 … 𝑣𝑖 is a cycle of length
2(𝑗 − 𝑖) + 1 which is odd.

1.3 The forbidden subgraph problem
1.3.1 Complete subgraphs

The problem of determining 𝑅(𝑠) can be thought of as “how many vertices can
𝐺 have yet 𝐾𝑠 ⊈ 𝐺 and 𝐾𝑠 ⊈ 𝐺”. This is a typical example of an extremal
problem: how large can some parameter of a graph be before the graph is forced
to have a certain property?

Example. Let |𝐺| = 𝑛. How large can 𝑒(𝐺) get before 𝐺 is forced to contain a
triangle?

The idea is to try 𝐺 bipartite, as we know bipartite graphs do not contain
triangles. Clearly we need complete bipartite graph so seek 𝐾𝑠,𝑡 where 𝑠 + 𝑡 = 𝑛
so that 𝐸(𝐾𝑠,𝑡) = 𝑠𝑡 = 𝑠(𝑛 − 𝑠) is maximised. This is achieved when 𝑠 = 𝑛

2
when 𝑛 is even or 𝑠 = 𝑛±1

2 when 𝑠 is odd. Among bipartite graphs, 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉
is the best. Can we do better?

Adding any edge to it creates a triangle but this isn’t enough. For example,
𝐶5 is not bipartite but has the same property but clearly it isn’t the best.

1

2
3

4
5

In fact, bipartite always wins but we need to do some work.

Proposition 1.9 (Mantel’s theorem). Let |𝐺| = 𝑛 ≥ 3, 𝑒(𝐺) ≥ ⌊ 𝑛2

4 ⌋ and
△ ⊈ 𝐺. Then

𝐺 ≅ 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉.
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1 Extremal graph theory

Remark. It follows immediately that if |𝐺| = 𝑛, 𝑒(𝐺) > ⌊ 𝑛2

4 ⌋ and △ ⊈ 𝐺 then
it is isomorphic to 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉ so 𝑒(𝐺) = ⌊ 𝑛2

4 ⌋, absurd. Thus 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉ has
the most edges for a △-free graph. The theorem asserts something stronger: it
is uniquely the best up to isomorphism.

Proof. Induction on 𝑛. For 𝑛 = 3, |𝐺| = 3, 𝑒(𝐺) ≥ 2, △ ⊈ 𝐺 then 𝐺 ≅ 𝐾1,2.
For 𝑛 ≥ 4, assume for now 𝑛 is even so |𝐺| = 𝑛, 𝑒(𝐺) ≥ 𝑛2

4 , △ ⊈ 𝐺. First delete
edges from 𝐺 if necessary to obtain a graph 𝐻 with |𝐻| = 𝑛, 𝑒(𝐻) = 𝑛2

4 , △ ⊈ 𝐻.
Next pick 𝑣 ∈ 𝐻 of minimum degree and 𝐾 = 𝐻 − 𝑣. Then |𝐾| = 𝑛 − 1 and
△ ⊈ 𝐾. To bound 𝑒(𝐾), note that

𝑑(𝑣) = 𝛿(𝐻) ≤ 𝑑(𝐻) = 1
|𝐻|

∑
𝑥∈𝐻

𝑑(𝑥) = 1
|𝐻|

2𝑒(𝐻) = 1
𝑛

⋅ 2𝑛2

4
= 𝑛

2

so
𝑒(𝐾) = 𝑒(𝐻) − 𝑑(𝑣) ≥ 𝑛2

4
− 𝑛

2
= (𝑛 − 1)2

4
− 1

4
= ⌊(𝑛 − 1)2

4
⌋

so by induction hypothesis

𝐾 ≅ 𝐾⌊(𝑛−1)/2⌋,⌈(𝑛−1)/2⌉ = 𝐾 𝑛
2 −1, 𝑛

2
.

To recover 𝐻, we should add a vertex 𝑣 to 𝐾, joining it to precisely 𝑛
2 vertices

of 𝐾 but creating no triangle. The only way to do this is to join 𝑣 to all ⌈ 𝑛
2 ⌉

vertices in one partition of 𝐾. This thus gives 𝐻 ≅ 𝐾𝑛/2,𝑛/2.
Finally 𝐺 can be recovered by adding edges to 𝐻 without making △. But

this is impossible so 𝐺 = 𝐻, i.e. we did not in fact delete any edges in the
beginning.

𝑛 ≥ 4, 𝑛 odd is similar.

What about forbidding 𝐾4? Should we try “tripartite” graphs?

Definition (𝑟-partite). A graph 𝐺 is 𝑟-partite if we can partition if 𝑉 (𝐺) =
𝑋1 ∪ 𝑋2 ∪ ⋯ ∪ 𝑋𝑟 such that 𝑢, 𝑣 ∈ 𝑋𝑖 for some 𝑖 then 𝑢 ≁ 𝑣.

It is complete 𝑟-partite if 𝑢 ∈ 𝑋𝑖, 𝑣 ∈ 𝑋𝑗 for 𝑖 ≠ 𝑗 implies 𝑢 ∼ 𝑣.

Which 𝑟-bipartite graph of order 𝑛 has most edges? Obviously such a 𝐺
is complete 𝑟-bipartite. Suppose 𝐺 has some two vertex classes 𝑋, 𝑌 with
|𝑋| ≥ |𝑌 | + 2. Move a vertex 𝑣 from 𝑋 to 𝑌. We gain |𝑋| − 1 edges and lose |𝑌 |
edges. The net gain is |𝑋| − 1 − |𝑌 | ≥ 1, contradiction.

Definition (Turán graph). The Turán graph 𝑇𝑟(𝑛) is the complete 𝑟-partite
graph of order 𝑛 with vertex classes as equal as possible. We write 𝑡𝑟(𝑛) =
𝑒(𝑇𝑟(𝑛)).

Example. 𝑇2(𝑛) = 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉ and 𝑡2(𝑛) = ⌊ 𝑛2

4 ⌋. Mantel’s theorem can be
rephrased as to get most edges with no 𝐾3, take 𝑇2(𝑛).

Some properties of Turán graphs:

1. 𝐾𝑟+1 ⊈ 𝑇𝑟(𝑛) but adding any edge to 𝑇𝑟(𝑛) makes a 𝐾𝑟+1.
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1 Extremal graph theory

2. If 𝑟 ∣ 𝑛 then all vertex classes are the same size, namely 𝑛
𝑟 . If 𝑟 ∤ 𝑛, we

have some small classes with ⌊ 𝑛
𝑟 ⌋ vertices and some large classes with

⌈ 𝑛
𝑟 ⌉ = ⌊ 𝑛

𝑟 ⌋ + 1 vertices.

3. Each vertex is joined to everyting except vertices in its own class. Therefore
if 𝑟 ∣ 𝑛 then 𝑇𝑟(𝑛) is regular. If 𝑟 ∤ 𝑛 then 𝑣 ∈ 𝑇𝑟(𝑛) in a large class has
𝑑(𝑣) = 𝛿(𝑇𝑟(𝑛)) whereas if 𝑣 is in a small class, 𝑑(𝑣) = Δ(𝑇𝑟(𝑛)) =
𝛿(𝑇𝑟(𝑛)) + 1. Hence in either case, give the order and average degree, the
vertex degrees are as equal as possible.

4. What happens if we delete 𝑣 ∈ 𝑇𝑟(𝑛) of minimum degree? Then 𝑣 is in a
large class so we get 𝑇𝑟(𝑛 − 1). Therefore

𝑡𝑟(𝑛) − 𝛿(𝑇𝑟(𝑛)) = 𝑡𝑟(𝑛 − 1).

5. Suppose we want to add a vertex 𝑣 to 𝑇𝑟(𝑛 − 1) of as large degree as
possible without making a 𝐾𝑟+1. We can’t join 𝑣 to a vertex in every class.
So best is to join 𝑣 to everything except a small class. This makes 𝑇𝑟(𝑛).
The biggest degree we can achieve for 𝑣 is 𝑡𝑟(𝑛) − 𝑡𝑟(𝑛 − 1) and only way
to do this is to make 𝑇𝑟(𝑛).

Theorem 1.10 (Turán). Let |𝐺| = 𝑛, 𝑒(𝐺) ≥ 𝑡𝑟(𝑛) and 𝐾𝑟+1 ⊈ 𝐺 (𝑛 ≥
𝑟 + 1 ≥ 3). Then 𝐺 ≅ 𝑇𝑟(𝑛).

Note that Mantel’s theorem is just a special case with 𝑟 = 2.

Proof. Induction on 𝑛. Suppose 𝑛 = 𝑟 + 1. 𝑇𝑟(𝑟 + 1) has one class with
two vertices and all other classes with one vertex, so 𝑇𝑟(𝑟 + 1) is 𝐾𝑟+1 minus
an edge. For 𝑛 > 𝑟 + 1, if necessary, delete edges from 𝐺 to obtain 𝐻 with
|𝐻| = 𝑛, 𝑒(𝐻) = 𝑡𝑟(𝑛) and 𝐾𝑟+1 ⊈ 𝐻. Pick 𝑣 ∈ 𝐻 of minimum degree and let
𝐾 = 𝐻 − 𝑣. Then |𝐾| = 𝑛 − 1 and 𝐾𝑟+1 ⊈ 𝐾. We know |𝐻| = |𝑇𝑟(𝑛)| and
𝑒(𝐻) = 𝑒(𝑇𝑟(𝑛)) so

𝑑(𝐻) = 𝑑(𝑇𝑟(𝑛)).

But in 𝑇𝑟(𝑛) vertex degrees are as equal as possible. Hence

𝛿(𝐻) ≤ 𝛿(𝑇𝑟(𝑛))

and hence

𝑒(𝐾) = 𝑒(𝐻) − 𝛿(𝐻) ≥ 𝑡𝑟(𝑛) − 𝛿(𝑇𝑟(𝑛)) = 𝑡𝑟(𝑛 − 1)

so by induction hypothesis, 𝐾 ≅ 𝑇𝑟(𝑛 − 1). To recover 𝐻 we need to add 𝑣
to 𝐾 of degree 𝑒(𝐻) − 𝑒(𝐾) = 𝑡𝑟(𝑛) − 𝑡𝑟(𝑛 − 1) without making a 𝐾𝑟+1. So
𝐻 ≅ 𝑇𝑟(𝑛). Adding an edge to 𝐻 makes a 𝐾𝑟+1 so 𝐺 = 𝐻 ≅ 𝑇𝑟(𝑛).

This is a special case of the forbidden subgraph problem: fix a graph 𝐻 with at
least one edge. How many edges can a graph 𝐺 of order 𝑛 have yet not contain
𝐻 as a subgraph?

Write
ex(𝑛; 𝐻) = max{𝑒(𝐺) ∶ |𝐺| = 𝑛, 𝐻 ⊈ 𝐺},

then Turán’s theorem can be stated as ex(𝑛, 𝐾𝑟+1) = 𝑡𝑟(𝑛).

14



1 Extremal graph theory

1.3.2 Complete bipartite subgraphs

What is ex(𝑛; 𝐶4)? Suppose we have |𝐺| = 𝑛, 𝑒(𝐺) = 𝑚 and 𝐶4 ⊈ 𝐺. How large
can 𝑚 be? The idea is to count the number of 𝑃2-subgraphs, 𝐴, in 𝐺 in two
different ways. Each 𝑣 ∈ 𝐺 is the middle vertex of (𝑑(𝑣)

2 ) 𝑃2’s so

𝐴 = ∑
𝑣∈𝐺

(𝑑(𝑣)
2

).

Alternatively, as 𝐶4 ⊈ 𝐺, each pair of vertices are the end-vertices of at most
one 𝑃2. (graph) so

𝐴 ≤ (𝑛
2
).

It gives a bound on 𝑛

(𝑛
2
) ≥ ∑

𝑣∈𝐺
(𝑑(𝑣)

2
).

The function 𝑥 ↦ (𝑥
2) is convex so, writing 𝑚

𝑛 = 𝑎,

(𝑛
2
) ≥ ∑

𝑣∈𝐺
(𝑑(𝑣)

2
) ≥ 𝑛(

1
𝑛 ∑𝑣∈𝐺 𝑑(𝑣)

2
) = 𝑛(

2𝑚
𝑛
2

) = 𝑛(2𝑎
2

)

so
𝑛(𝑛 − 1)

2
≥ 𝑛2𝑎(2𝑎 − 1)

2
.

Rearrange to get
4𝑎2 − 2𝑎 − (𝑛 − 1) ≤ 0

so

𝑎 ≤
2 + √4 + 16(𝑛 − 1)

8
= 1

4
(1 +

√
4𝑛 − 3)

so
𝑚 ≤ 𝑛

4
(1 +

√
4𝑛 − 3)

and ex(𝑛; 𝐶4) = 𝑂(𝑛
√

𝑛).
This is a fairly typical for extremal problesm — usually we don’t get exact

answer but get some sort of bounds/aymptotics.

Remark.

1. Note that we used Jensen’s inequality: let 𝑓 ∶ 𝐼 → R be convex where 𝐼 is
an interval and 𝑥1, … 𝑥𝑛 ∈ 𝐼. Then

1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑥) ≥ 𝑓( 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖).

2. Also a quick remark about binomial coefficients: if 𝑥 ∈ R and 𝑎 ≥ 0 integer,
we define

(𝑥
𝑎
) = 𝑥(𝑥 − 1) … (𝑥 − 𝑎 + 1)

𝑎!
.

15



1 Extremal graph theory

Standard bounds:

(𝑥
𝑎
) ≤ 𝑥𝑎

𝑎!

as long as 𝑥 ≥ 𝑎 − 1. On the other hand,

(𝑥
𝑎
) ≥ (𝑥 − 𝑎 + 1)𝑎

𝑎!
≥ 1

𝑎!
(𝑥

2
)

𝑎

as long as 𝑥 ≥ 2(𝑎 − 1). Usually when dealing with extremal graph
problems, we suppose the parameters are sufficeintly large so these bounds
apply.

3. Note 𝑥 ↦ (𝑥
2) is convex on R but 𝑥 ↦ (𝑥

𝑎) is not. However, it is convex
on [𝑎 − 1, ∞), by writing 𝑦 = 𝑥 − 𝑎 + 1 to get a polynomial with positive
coefficients.

Let’s go for ex(𝑛; 𝐾𝑡,𝑡) for 𝑡 ≥ 2. We shall count 𝑡-fans (graph). In particular
a 2-fan is a 𝑃2 subgraph.

Definition (fan). A 𝑡-fan in a graph 𝐺 is an ordered pair (𝑣, 𝑈) where
𝑣 ∈ 𝐺, 𝑈 ⊆ 𝑉 (𝐺), |𝑈| = 𝑡 and for all 𝑢 ∈ 𝑈, 𝑣 ∼ 𝑢.

Theorem 1.11. Let 𝑡 ≥ 2. Then

ex(𝑛; 𝐾𝑡,𝑡) = 𝑂(𝑛2− 1
𝑡 ).

Proof. Let |𝐺| = 𝑛, 𝑒(𝐺) = 𝑚, 𝐾𝑡,𝑡 ⊈ 𝐺. Let 𝐴 be the number of 𝑡-fans in 𝐺.
To pick a 𝑡-fan (𝑣, 𝑈), can choose 𝑣 ∈ 𝐺 then 𝑈 ⊆ Γ(𝑣) with |𝑈| = 𝑡 so

𝐴 = ∑
𝑣∈𝐺

(𝑑(𝑣)
𝑡

).

As 𝐾𝑡,𝑡 ⊈ 𝐺, for any 𝑈 ⊆ 𝑉 (𝐺) with |𝑈| = 𝑡, there are at most (𝑡 − 1) 𝑡-fans of
the form (𝑣, 𝑈). So

𝐴 ≤ (𝑡 − 1)(𝑛
𝑡
).
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1 Extremal graph theory

Technically we are done. To extract the explicit bound,

(𝑡 − 1)𝑛𝑡

𝑡!
≥ (𝑡 − 1)(𝑛

𝑡
)

≥ 𝐴

= ∑
𝑣∈𝐺

(𝑑(𝑣)
𝑡

)

≥ 𝑛(
1
𝑛 ∑𝑣∈𝐺 𝑑(𝑣)

𝑡
)

= 𝑛(
2𝑚
𝑛
𝑡

)

≥ 𝑛
𝑡!

(𝑚
𝑛

)
𝑡

assuming 𝑚
𝑛 is sufficiently large. Hence

(𝑚
𝑛

)
𝑡

≤ (𝑡 − 1)𝑛𝑡−1

and so
𝑚 ≤ (𝑡 − 1) 1

𝑡 𝑛2− 1
𝑡 .

Remark.

1. Why can we assume that 𝑚
𝑛 is sufficiently large? For lower bound on

binomial coefficient, we need 2𝑚
𝑛 ≥ 2(𝑡 − 1), i.e. 𝑚 ≥ (𝑡 − 1)𝑛. If not true

then 𝑚 < (𝑡 − 1)𝑛 so we don’t care. Technically, we’re really showing

𝑚 < max{(𝑡 − 1)𝑛, (𝑡 − 1) 1
𝑡 𝑛2− 1

𝑡 = 𝑂(𝑛2− 1
𝑡 )}.

2. Can we use Jensen’s inequality? We know 𝑥 ↦ (𝑥
𝑡) is convex on [𝑡 − 1, ∞)

and (𝑡−1
𝑡 ) = 0. Also we know if 𝑑(𝑣) < 𝑡 − 1 then (𝑑(𝑣)

𝑡 ) = 0 so really we
are apply Jensen’s inequality to

𝑓(𝑥) = {0 𝑥 < 𝑡 − 1
(𝑥

𝑡) 𝑥 ≥ 𝑡 − 1

which is clearly convex. As 𝑚
𝑛 sufficiently large, 2𝑚

𝑛 ≥ 𝑡 − 1 so 𝑓( 2𝑚
𝑛 =

(2𝑚/𝑛
𝑡 ).

3. This is closely related to the problem of Zarankiewicz: we define

𝑍(𝑛, 𝑟) = max{𝑒(𝐺) ∶ 𝐺 bipartite, 𝑛 vertices in each class, 𝐾𝑡,𝑡 ⊈ 𝐺},

the Zarankiewicz number.
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1 Extremal graph theory

Corollary 1.12. Let 𝑡 ≥ 2. Then

𝑍(𝑛, 𝑡) = 𝑂(𝑛2− 1
𝑡 ).

Proof.
𝑍(𝑛, 𝑡) ≤ ex(2𝑛, 𝐾𝑡,𝑡).

1.4 General subgraphs
Let 𝐻 be any graph with at least one dege. What is ex(𝑛; 𝐻)? It is too much to
hope for exact results so we aim to find asymptotics. Consider, say,

ex(𝑛; 𝐻)
(𝑛

2)
,

“the proportion of edges of an 𝐻-free graph can have”. What happens as 𝑛 → ∞?
If this converges, let

ex(𝐻) ∶= lim
𝑛→∞

ex(𝑛; 𝐻)
(𝑛

2)
.

Example.
1. Turán: ex(𝑛, 𝐾𝑟+1) = 𝑡𝑟(𝑛) ≈ (1 − 1

𝑟 )(𝑛
2). In fact ex(𝐾𝑟+1) = 1 − 1

𝑟 .

2. ex(𝑛, 𝐾𝑡,𝑡) = 𝑂(𝑛2− 1
𝑡 ) = 𝑜(𝑛2) so ex(𝐾𝑡,𝑡) = 0.

3. For 𝐻 any bipartite graph with at least one edge. Then 𝐻 ⊆ 𝐾𝑡,𝑡 for some
𝑡 so 𝐾𝑡,𝑡 ⊆ 𝐺 implies that 𝐻 ⊆ 𝐺 so for all 𝑛,

ex(𝑛; 𝐻) ≤ ex(𝑛; 𝐾𝑡,𝑡)
so ex(𝐻) = 0.

Proposition 1.13. Let 𝐻 be a graph with at least one edge and let

𝑥𝑛 = ex(𝑛; 𝐻)
(𝑛

2)
.

Then (𝑥𝑛) converges.

Proof. Let |𝐺| = 𝑛 and 𝑒(𝐺) = (𝑛
2)𝑥𝑛, 𝐻 ⊈ 𝐺. Suppose 𝑣 ∈ 𝐺. Then |𝐺 − 𝑣| =

𝑛 − 1 and 𝐻 ⊈ 𝐺 − 𝑣 so

𝑒(𝐺 − 𝑣) ≤ (𝑛 − 1
2

)𝑥𝑛−1.

Summing over 𝑣 gives

𝑛(𝑛 − 1
2

)𝑥𝑛−1

≥ ∑
𝑣∈𝐺

𝑒(𝐺 − 𝑣) = ∑
𝑣∈𝐺

(𝑒(𝐺) − 𝑑(𝑣))

=𝑛𝑒(𝐺) − 2𝑒(𝐺) = (𝑛 − 2)(𝑛
2
)𝑥𝑛.
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1 Extremal graph theory

Hence 𝑥𝑛−1 ≥ 𝑥𝑛. So (𝑥𝑛) is decreasing and bounded below by zero so converges.

This shows that ex(𝐻) = lim𝑛→∞
ex(𝑛;𝐻)

(𝑛
2) exists. Can we find it? This is

answered in full by the following theorem

Notation. 𝐾𝑟(𝑡) is the complete 𝑟-bipartite graph with 𝑡 vertices in each class.
This is the same as the Turán graph 𝑇𝑟(𝑟𝑡).

Theorem 1.14 (Erdős-Stone). Let 𝑟, 𝑡 ≥ 1 be integers and 𝜀 > 0 be real.
Then there exists an integer 𝑛0 such that for all 𝑛 ≥ 𝑛0, if |𝐺| = 𝑛, 𝑒(𝐺) ≥
(1 − 1

𝑟 + 𝜀)(𝑛
2) then 𝐾𝑟+1(𝑡) ⊆ 𝐺.

Before we give the proof, we have to ask what this not so obvious statement
means. Using notation in the statement of the theorem, Turán says that if
density of edges is around 1 − 1

𝑟 then 𝐾𝑟+1 ⊆ 𝐺. What happens if we make a
tiny increase in the density? Erdős-Stone tells us that we get much, much more

— we get enormous “blown-up” 𝐾𝑟+1’s as well. Of course this is provided 𝐺 has
sufficiently many vertices.

We will get to the proof later but we can prove the case 𝑟 = 1. It says that
for |𝐺| = 𝑛, 𝑒(𝐺) ≥ 𝜀(𝑛

2) then 𝐾𝑡,𝑡 ⊆ 𝐺 for 𝑛 sufficiently large. But this follows
from Theorem 1.11:

ex(𝑛; 𝐾𝑡,𝑡) = 𝑂(𝑛2− 1
𝑡 ) = 𝑜(𝑛2).

Definition (chromatic number). The chromatic number of a graph 𝐻 is the
least 𝑟 such that 𝐻 is 𝑟-partite. It is denoted 𝜒(𝐻).

Corollary 1.15. Let 𝐻 be a graph with at least one edge. Then

ex(𝐻) = 1 − 1
𝜒(𝐻) − 1

.

Proof. Let 𝜒(𝐻) = 𝑟 + 1 and choose 𝑡 such that 𝐻 ⊆ 𝐾𝑟+1(𝑡) (e.g. 𝑡 = |𝐻|).
Let 𝜀 > 0. By Erdős-Stone there is some 𝑛0 such that if |𝐺| = 𝑛 ≥ 𝑛0 and
𝑒(𝐺) ≥ (1 − 1

𝑟 + 𝜀)(𝑛
2) then 𝐾𝑟+1(𝑡) ⊆ 𝐺. But then also 𝐻 ⊆ 𝐺. So this says

that if 𝑛 ≥ 𝑛0 then

ex(𝑛; 𝐻) ≤ (1 − 1
𝑟

+ 𝜀)(𝑛
2
)

and so
ex(𝑛; 𝐻)

(𝑛
2)

≤ 1 − 1
𝑟

+ 𝜀.

Take limit as 𝑛 → ∞, get

ex(𝐻) ≤ 1 − 1
𝑟

+ 𝜀.
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1 Extremal graph theory

As 𝜀 is arbitrary,
ex(𝐻) ≤ 1 − 1

𝑟
= 1 − 1

𝜒(𝐻) − 1
.

On the other hand, for all 𝑛, 𝐻 ⊈ 𝑇𝑟(𝑛). This means that for all 𝑛, ex(𝑛; 𝐻) ≥
𝑡𝑟(𝑛) so

ex(𝑛; 𝐻)
𝑛
2

≥ 𝑡𝑟(𝑛)
(𝑛

2)
→ 1 − 1

𝑟

as 𝑛 → ∞. So we get the other inequality. The result follows.

We have now solved the forbidden subgraph problem aymptotically for non-
bipartite 𝐻. Then Corollary 1.15 implies that

ex(𝑛; 𝐻) ∼ (1 − 1
𝜒(𝐻) − 1

)(𝑛
2
).

The situation is not so good if 𝐻 is bipartite, in which case Corollary 1.15
says that ex(𝐻) = 0, i.e. ex(𝑛, 𝐻) grows slower than (𝑛

2) but does not give the
asymptotic rate of growth.

Example.

1. For 𝑡 = 2, ex(𝑛, 𝐾𝑡,𝑡) = 𝑂(𝑛2− 1
𝑡 ) so ex(𝑛; 𝐾2,2) = 𝑂(𝑛 3

2 ). In fact
ex(𝑛; 𝐾2,2) = Θ(𝑛3/2).

2. For 𝑡 = 3, ex(𝑛; 𝐾3,3) = 𝑂(𝑛5/3). In fact, ex(𝑛; 𝐾3,3) = Ω(𝑛5/3).

3. For 𝑡 = 4, ex(𝑛; 𝐾4,4) = 𝑂(𝑛7/4). At this moment, no one knows if
ex(𝑛; 𝐾4,4) = Ω(𝑛7/4).

Notation. Big-𝑂 notation and its cousins:

𝑓 = 𝑂(𝑔) if 𝑓 < 𝐴𝑔 for some constant 𝐴
𝑓 = Ω(𝑔) if 𝑔 = 𝑂(𝑓)
𝑓 = Θ(𝑔) if 𝑓 = 𝑂(𝑔) and 𝑓 = Ω(𝑔).

Also,

𝑓 = 𝑜(𝑔) if 𝑓/𝑔 → 0 as 𝑛 → ∞
𝑓 = 𝜔(𝑔) if 𝑓/𝑔 → ∞
𝑓 ∼ 𝑔 if 𝑓/𝑔 → 1.

It’s been conjectured that

ex(𝑛, 𝐾𝑡,𝑡) = Ω(𝑛2− 1
𝑡 )

for all 𝑡 ≥ 2 but the problem remains unproven for 𝑛 > 3. Therefore even
asymptotically, forbidden subgraph problem has not been solved for bipartite 𝐻.

As another application of Erdős-Stone, we define
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1 Extremal graph theory

Definition (density). Let 𝐺 be a graph. The density of 𝐺 is

𝐷(𝐺) = 𝑒(𝐺)
(|𝐺|

2 )
.

Definition (upper density). Let 𝐺 now be an infinite graph. The upper
density of 𝐺 is the limit of the maximum densities of finite subgraphs, i.e.

ud(𝐺) = lim
𝑛→∞

sup{𝐷(𝐻) ∶ 𝐻 ⊆ 𝐺, |𝐻| = 𝑛}.

See example sheet 2 for its existence, or if you’re patient, we will prove it in
a moment.

We have ud(𝐺) ∈ [0, 1]. A priori, ud(𝐺) may take any value in [0, 1] but in
fact

Corollary 1.16. Let 𝐺 be an infinite graph. Then

ud(𝐺) ∈ {1} ∪ {1 − 1
𝑟

∶ 𝑟 = 1, 2, … }.

Proof. Let
𝑥𝑛 = sup{𝐷(𝐻) ∶ 𝐻 ⊆ 𝐺 ∶ |𝐻| = 𝑛}.

Enough to show that if
lim sup

𝑛→∞
𝑥𝑛 > 1 − 1

𝑟
then

lim inf
𝑛→∞

𝑥𝑛 ≥ 1 − 1
𝑟 + 1

.

Suppose lim sup𝑛→∞ 𝑥𝑛 > 1 − 1
𝑟 . Pick 𝜀 > 0 such that

1 − 1
𝑟

+ 𝜀 < lim sup
𝑛→∞

𝑥𝑛,

meaning that we can find a sequence (𝐻𝑗) of subgraphs of 𝐺 with |𝐻𝑗| = 𝑛𝑗 → ∞
and 𝐷(𝐻𝑗) ≥ 1 − 1

𝑟 + 𝜀. By Erdős-Stone, for any 𝑡, if 𝑗 is sufficiently large
then 𝐾𝑟+1(𝑡) ⊆ 𝐻𝑗 ⊆ 𝐺. Then for any 𝑛, if 𝑡 is suffciently large we have
𝑇𝑟+1(𝑛) ⊆ 𝐾𝑟+1(𝑡) ⊆ 𝐺. Then

𝑥𝑛 ≥ 𝐷(𝑇𝑟+1(𝑛)) =
𝑡𝑟+1(𝑛)

(𝑛
2)

→ 1 − 1
𝑟 + 1

so
lim inf
𝑛→∞

𝑥𝑛 ≥ 1 − 1
𝑟 + 1

.

Proof of Erdős-Stone. Sketch of proof, nonexaminable. The proof bears much
similarity with that of ex(𝑛; , 𝐾𝑡,𝑡) = 𝑂(𝑛2− 1

𝑡 . In the statement of the theorem
there is a condition on 𝑒(𝐺). This is a global condition and does not give any
restriction on a vertex, which we used to obtain an inequality on the number of
𝑡-fans previously. We want to convert it into a local condition, i.e. we’d rather
prefer a lower bound on 𝛿(𝐺). We begin with a technical lemma.
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1 Extremal graph theory

Lemma 1.17. Let 𝛼, 𝜀 > 0. Then there exists 𝛾 > 0 and an integer 𝑛0
such that if |𝐺| = 𝑛 ≥ 𝑛0 and 𝑒(𝐺) ≥ (𝛼 + 𝜀)(𝑛

2) then there is 𝐻 ⊆ 𝐺 with
|𝐻| = 𝑛′ ≥ 𝛾𝑛 and 𝛿(𝐻) ≥ 𝛼𝑛′.

Sketch of proof. Keep deleting vertices of minimum degree and do an unpleasant
calculation.

So we can reformulate the theorem as:

Theorem 1.18. Let 𝑟, 𝑡 ≥ 1 be integers and 𝜀 > 0. Then there is some 𝑛0
such that for all 𝑛 ≥ 𝑛0,

|𝐺| = 𝑛, 𝛿(𝐺) ≥ (1 − 1
𝑟

+ 𝜀)𝑛

then
𝐾𝑟+1(𝑡) ⊆ 𝐺.

Proof. Induction on 𝑟. If 𝑟 = 1 then let |𝐺| = 𝑛, 𝛿(𝐺) ≥ 𝜀𝑛. So

𝑒(𝐺) ≥ 𝑛𝛿(𝐺)
2

= 𝜀𝑛2

2
.

But
ex(𝑛; 𝐾2(𝑡)) = 𝑂(𝑛2− 1

𝑛 )

so for 𝑛 sufficiently large,

ex(𝑛; 𝐾2(𝑡)) < 𝜀𝑛2

2

and so 𝐾2(𝑡) ⊆ 𝐺.
For 𝑟 > 1, suppose the result is false for some 𝑟 ≥ 2, 𝑡 ≥ 1, 𝜀 > 0. Fix 𝑇

“large”. Pick 𝑛0 such that if 𝑛 ≥ 𝑛0 then |𝐺| = 𝑛 and

𝛿(𝐺) ≥ (1 − 1
𝑟

+ 𝜀)𝑛

then 𝐾𝑟(𝑇 ) ⊆ 𝐺, which exists by induction hypothesis since 1 − 1
𝑟 > 1 − 1

𝑟−1 .
We can find a graph 𝐺 with |𝐺| = 𝑛 ≥ 𝑛0, 𝛿(𝐺) ≥ (1 − 1

𝑟 + 𝜀)𝑛 but 𝐾𝑟+1(𝑡) ⊈ 𝐺.
Note that we can choose 𝑛 to be as large as we like. We know 𝐾𝑟(𝑇 ) ⊆ 𝐺. Let
𝑉1, … , 𝑉𝑟 be the vertex sets of a 𝐾𝑟(𝑇 ) ⊆ 𝐺.

We now use the fan-counting trick (graph). Let

𝑋 = {(𝑣1, … , 𝑣𝑟, 𝑈) ∶ 𝑣𝑖 ∈ 𝑉𝑖 for all 1 ≤ 𝑖 ≤ 𝑟, 𝑢 ∼ 𝑣𝑖 for all 𝑢 ∈ 𝑈}

be the “generalised fans”. To pick (𝑣1, … , 𝑣𝑟, 𝑈) ∈ 𝑋 we could pick the 𝑣𝑖’s first
(𝑇 choices each) then pick 𝑈 ⊆ ⋂𝑟

𝑖=1 Γ(𝑣𝑖) with |𝑈| = 𝑡. Now

∣
𝑛

⋂
𝑖=1

Γ(𝑣𝑖)∣ = |𝐺| − ∣
𝑟

⋃
𝑖=1

𝐺 \ Γ(𝑣𝑖)∣ ≥ |𝐺| −
𝑟

∑
𝑖=1

|𝐺 \ Γ(𝑣𝑖)|

=𝑛 −
𝑟

∑
𝑖=1

(𝑛 − |Γ(𝑣𝑖)|) ≥ 𝑛 − 𝑟(1
𝑟

− 𝜀)𝑛 = 𝑟𝜀𝑛
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1 Extremal graph theory

so

|𝑋| ≥ 𝑇 𝑟(𝑟𝜀𝑛
𝑡

).

Suppose instead we pick 𝑈 first. As 𝐾𝑟+1(𝑡) ⊈ 𝐺, there cannot be 𝑡 possible
choices for each 𝑣𝑖 so

|𝑋| ≤ (𝑛
𝑡
)(𝑡 − 1)𝑇 𝑟−1.

Note that we’re basically done here since it can’t be the case that 𝑇 𝑟−1 ≲ |𝑋| ≲
𝑇 𝑟 as 𝑇 is arbitrary. Concretely,

𝑛𝑡

𝑡!
(𝑡 − 1)𝑇 𝑟−1 ≥ (𝑛

𝑡
)(𝑡 − 1)𝑇 𝑟−1 ≥ |𝑋|

≥ 𝑇 𝑟(𝑟𝜀𝑛
𝑡

) ≥ 𝑇 𝑟(𝑟𝜀𝑛
2

)𝑡 1
𝑡!

for 𝑛 sufficiently large so
𝑡 − 1 ≥ 𝑇 (𝑟𝜀

2
)𝑡

so
𝑇 ≤ (𝑡 − 1)( 2

𝑟𝜀
)𝑡.

But 𝑇 is arbitrary, absurd.

1.5 Hamilton cycles

Definition (Hamilton cycle). A Hamilton cycle in a graph 𝐺 is a cycle in
𝐺 of length |𝐺|.

We say 𝐺 is Hamiltonian if it contains such a cycle.

We can ask extremal questions for Hamiltonian cycles. If |𝐺| = 𝑛 for some
fixed 𝑛, how large can 𝑒(𝐺) be without 𝐺 being Hamiltonian? The answer is
not very interesting — we can have 𝐺 non-Hamiltonian with almost all edges
present by removing 𝑛 − 2 edges from a vertex in 𝐾𝑛. As better question is to
ask upper bound in 𝛿(𝐺).

Theorem 1.19 (Dirac). Let |𝐺| ≥ 3 and 𝛿(𝐺) ≥ 𝑛
2 . Then 𝐺 is Hamiltonian.

Proof. First, 𝐺 is connected: indeed, suppose 𝑥, 𝑦 ∈ 𝐺 with 𝑥 ≁ 𝑦. We have

|Γ(𝑥) ∪ Γ(𝑦)| ≤ 𝑛 − 2

but
|Γ(𝑥)| + |Γ(𝑦)| ≥ 𝑛

2
+ 𝑛

2
= 𝑛 > 𝑛 − 2

so exists 𝑧 ∈ Γ(𝑥) ∩ Γ(𝑦).

23



1 Extremal graph theory

Let 𝑣0𝑣1 … 𝑣ℓ be a path in 𝐺 of maximal length. By maximality,

Γ(𝑣0) = {𝑣1, … , 𝑣ℓ}
Γ(𝑣ℓ) = {𝑣0, … , 𝑣ℓ−1}

To show it is part of a cycle, we want to show it “doubles back” at both endpoints.
Let

𝐴 = {𝑖 ∈ [ℓ] ∶ 𝑣0 ∼ 𝑣𝑖}
𝐵 = {𝑖 ∈ [ℓ] ∶ 𝑣ℓ ∼ 𝑣𝑖−1}

Then
|𝐴| + |𝐵| ≥ 𝑛

2
+ 𝑛

2
= 𝑛

but
|𝐴 ∪ 𝐵| ≤ ℓ ≤ 𝑛 − 1 < |𝐴| + |𝐵|

so exists 𝑖 ∈ 𝐴 ∩ 𝐵 and 𝐶 = 𝑣0𝑣𝑖 … 𝑣ℓ𝑣𝑖−1𝑣𝑖−2 … 𝑣0 is a cycle of length ℓ + 1 in
𝐺. If ℓ + 1 = 𝑛 then 𝐺 is Hamiltonian. If not, relabel 𝐶 = 𝑣0𝑣1 … 𝑣ℓ𝑣0. As
𝐺 is connected there is some 𝑣𝑗 ∈ 𝐶 and some 𝑤 ∈ 𝐺 − 𝐶 with 𝑤 ∼ 𝑣𝑗. Then
𝑤𝑣𝑗𝑣𝑗+1 … 𝑣ℓ𝑣0 … 𝑣𝑗−1 is a path in 𝐺 of length ℓ+1, contradicting maximality.

This is the best possible result. For |𝐺| = 𝑛 even, 𝐾𝑛/2 ∪ 𝐾𝑛/2 has 𝛿(𝐺) =
𝑛
2 − 1 but dissconnected. For |𝐺| = 𝑛 odd, let 𝐺 be two copies of 𝐾(𝑛+1)/2 with
one edge between them.

We can prove more by same method.

Proposition 1.20. Let 𝐺 be connected and |𝐺| = 𝑛, 𝛿(𝐺) ≥ 𝑘 where 2 ≤
𝑘 < 𝑛

2 . Then 𝐺 must contain a path of length 2𝑘 and a cycle of length at
least 𝑘 + 1.

Proof. Take 𝑣0𝑣1 … 𝑣ℓ and 𝐴, 𝐵 as in the previous proof. Suppose ℓ < 2𝑘 then

|𝐴| + |𝐵| ≥ 𝑘 + 𝑘 = 2𝑘 > ℓ ≥ |𝐴 ∪ 𝐵|

so as before we can find a longer path, contradiction. So 𝐺 has a path of length
2𝑘.

Let 𝑖 = max 𝐴. Then 𝑣0𝑣1 … 𝑣𝑖𝑣0 is a cycle of length 𝑖 + 1. But 𝑖 ≥ |𝐴| ≥
𝑘.

Remark. We can’t guarantee a cycle of length exactly 𝑘 + 1. For example, take
𝑛 = 5, 𝑘 = 2 and 𝐺 = 𝐶5.

1.5.1 Eulerian graphs

Definition (circuit, Eulerian). A circuit in a graph 𝐺 (of length ℓ) is a
sequence 𝑣0𝑣1 … 𝑣ℓ of not-necessarily distinct vertices of 𝐺 such that 𝑣0 = 𝑣ℓ
and if 1 ≤ 𝑖 ≤ ℓ then 𝑣𝑖−1𝑣𝑖 ∈ 𝐸(𝐺) and if 1 ≤ 𝑖 < 𝑗 ≤ ℓ then 𝑣𝑖−1𝑣𝑖 ≠ 𝑣𝑗−1𝑣𝑗.

If for all 𝑒 ∈ 𝐸(𝐺) we have 𝑒 = 𝑣𝑖−1𝑣𝑖 for some 𝑖 we say the circuit is an
Euler circuit. If 𝐺 has an Euler circuit, we say 𝐺 is Eulerian.
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1 Extremal graph theory

Proposition 1.21. Let 𝐺 be connected. Then 𝐺 is Eulerian if and only if
every vertex has even degree.

Proof. In an Euler circuit, each vertex appears the same number of times as a
“first” vertex and as a “second” vertex of an edge.

Conversely, if every vertex has even degree then we start from a circuit and
keep augementing it until we’ve travelled along each edge. Formally, induction
on 𝑒(𝐺). If 𝑒(𝐺) = 0 then done. If 𝑒(𝐺) > 0, let 𝑣0𝑣1 … 𝑣ℓ be a longest possible
circuit. Easy to check it is non-trivial, i.e. ℓ > 0. Write 𝐶 = 𝑣0𝑣1 … 𝑣ℓ. If 𝐶 is
Euler circuit then done. Otherwise let

𝐹 = {𝑣𝑖−1𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ ℓ} ⊆ 𝐸(𝐺).

Then 𝑒(𝐺 − 𝐹) > 0 and each vertex of 𝐺 − 𝐹 has even degree. Moreover, 𝐶
meets every component of 𝐺 − 𝐹. Let 𝐻 be a component of 𝐺 − 𝐹 with at least
one edge. By induction hypothesis, 𝐻 has Euler circuit 𝐷 = 𝑤0𝑤1 … 𝑤𝑚, say. 𝐶
and 𝐷 must meet, wlog 𝑣0 = 𝑤0. Then 𝑣0𝑣1 … 𝑣ℓ−1𝑤0𝑤1 … 𝑤𝑛 is a longer circuit
in 𝐺 than 𝐶, contradiction.

By running the proof on a multigraph we can show that Königsberg problem
has a negative answer.
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2 Graph colouring

2 Graph colouring

2.1 Planar graphs
Let’s return to the map-colouring problem from chapter 0.

Definition (colouring). A 𝑘-colouring of a graph 𝐺 is a function 𝑐 ∶ 𝑉 (𝐺) →
[𝑘] such that if 𝑢𝑣 ∈ 𝐸(𝐺) then 𝑐(𝑢) ≠ 𝑐(𝑣).

Note. Unfortunately the definition is in conflict with colouring in Ramsey theory
sense. However, context should always be clear which one we’re referring to.

As we defined graph as an abstract structure built on a set, although it is
obvious what we mean by a “drawing” and we frequently employ such graphical
representations in practice, we still have to make a formal definition. It is slightly
irritating and you can forget about it as soon as we have defined it.

Definition (drawing). A (plane) drawing of a graph 𝐺 = (𝑉 , 𝐸) is an
ordered pair (𝜑, Γ) where 𝜑 ∶ 𝑉 → R2 is an injection and Γ = {𝛾𝑒 ∶ 𝑒 ∈ 𝐸}
where for each 𝑒 ∈ 𝐸, 𝛾𝑒 ∶ [0, 1] → R2 is a continuous injection satisfying

1. for all 𝑢𝑣 ∈ 𝐸, {𝛾𝑢𝑣(0), 𝛾𝑢𝑣(1)} = {𝜑(𝑢), 𝜑(𝑣)};

2. if 𝑒, 𝑓 ∈ 𝐸 with 𝑒 ≠ 𝑓 then 𝛾𝑒((0, 1)) ∩ 𝛾𝑓((0, 1)) = ∅,

3. for all 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑉, 𝜑(𝑣) ∉ 𝛾𝑒((0, 1)).

Definition (planar graph). If 𝐺 has a drawing we say 𝐺 is planar.

Remark. As we defined drawing as topological objects, it is reasonable to
worry about pathological drawings of a graph, for example, if one of the path
is a space-filling curve. However, it turns out that if 𝐺 has a drawing, then it
has a drawing in which the image of each 𝛾𝑒 is a finite union of line segments.
Henceforth assume all drawings like this. However it is more convenient to draw
an arc between vertices to represent a finite sequence of “zig-zag” line segments.

The natural question is: how many colours do we need to colour a planar
graph? Before we attempt to answer the question, we should try to understand
planar graphs.

Example.

1. 𝐾3 is planar. (graph)

2. 𝐾4 is planar. (graph)

3. What about 𝐾5? Let {𝑣, 𝑤, 𝑥, 𝑦, 𝑧} = 𝑉 (𝐺). 𝐾5 has a 5-cycle 𝑣𝑤𝑥𝑦𝑧,
which in a draing separates R2 into “inside” and “outside” (we don’t
need Jordan curve drawing since we have line segments). Need to add
𝑣𝑥, 𝑤𝑦, 𝑥𝑧, 𝑦𝑣, 𝑧𝑤. wlog 𝑣𝑥 is inside and 𝑤𝑦 is outside. Then 𝑥𝑧 has to be
inside, 𝑦𝑣 outside. Now can’t draw 𝑧𝑤 so 𝐾5 is not planar.
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4. A similar argument shows 𝐾3,3 is not planar: let {𝑎, 𝑏, 𝑐} and {𝑥, 𝑦, 𝑧} be
the vertex classes. Have a 6-cycle 𝑎𝑥𝑏𝑦𝑐𝑧𝑎. Need to add 𝑎𝑦, 𝑏𝑧, 𝑐𝑥. At
most one can be drawn outside and at most one inside, so 𝐾3,3 not planar.

Are there any other graph other than 𝐾5, 𝐾3,3 that is nonplanar? Obviously
if 𝐾5 ⊆ 𝐺 or 𝐾3,3 ⊆ 𝐺 then 𝐺 is nonplanar. It seems that there should be
more “classes” of nonplanar graphs but surprisingly, this is essentially the only
obstacle to planarity. Here essentially means the inclusion of “stupid” examples
such as replace an edge into a path with more than two vertices in 𝐾5,5. This is
not planar as otherwise we can contract some of the edges and obtain a drawing
ob 𝐾5,5.

Definition (subdivision). A graph 𝐻 is a subdivision of a graph 𝐺 if 𝐻 can
be formed from 𝐺 by repeated doing: pick 𝑢𝑣 ∈ 𝐸(𝐺), delete 𝑢𝑣, add new
vertex 𝑤 and edge 𝑢𝑤, 𝑣𝑤.

Theorem 2.1 (Kuratowski). 𝐺 is planar if and only if 𝐺 has a subdivision
of neither 𝐾5 or 𝐾3,3 as a subgraph.

Proof. Non-examinable. Omitted.

Definition (forest/acyclic graph, tree, leaf). A forest is a graph with no
cycles. It is also called an acyclic graph.

A tree is a connected forest.
A leaf is a vertex of degree 1.

Remark.

1. A forest is a disjoint union of trees.

2. Every connected graph 𝐺 has a spanning tree 𝑇, i.e. a subgraph 𝑇 with
𝑉 (𝑇 ) = 𝑉 (𝐺) and 𝑇 a tree, by removing edges from cycles until it is
acyclic.

Proposition 2.2. Every nontrivial tree has a leaf.

Proof. Let 𝑇 be a tree and 𝑣0𝑣1 … 𝑣ℓ be a maximal-length path in 𝑇. Then 𝑣ℓ
has no neighbour in the path except 𝑣ℓ−1 (as 𝑇 is acyclic) and no neighbours
outside the path (by maximality) so 𝑣ℓ is a leaf.

This is a not so surprising result that is not difficult at all either. However it
comes in handy when we want to convert our intuition for a tree into a formal
proof about its property (hint: induction!).

Proposition 2.3. Let 𝑇 be a tree with |𝑇 | = 𝑛 ≥ 1. Then 𝑒(𝑇 ) = 𝑛 − 1.

Proof. Induction on 𝑛. Holds for 𝑛 = 1. For 𝑛 > 1, let 𝑣 be a leaf of 𝑇. Then
𝑇 − 𝑣 is a tree with order 𝑛 − 1. By induction hypothesis 𝑒(𝑇 − 𝑣) = 𝑛 − 2 so
𝑒(𝑇 ) = 𝑛 − 1.
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Proposition 2.4. Every forest is planar.

Proof. Enough to show that every tree 𝑇 is planar. Induction on 𝑛 = |𝑇 |. Holds
for 𝑛 = 1. For 𝑛 > 1, let 𝑣 ∈ 𝑇 be a leaf and 𝑢 the neighbour of 𝑣. By induction
hypothesis, 𝑇 − 𝑣 has a drawing. On a sufficiently small ball around 𝑢 in R2,
there are finitely many radial segments. So can add 𝑣 and 𝑢𝑣 to the drawing.

Any drawing of a planar graph divides the plane divides the plane into
connected regions, called faces. Precisely one is unbounded, called the infinite
face.

1 2

3

4 5

which has 3 faces. The infinite face has 5 edges.
We can also draw it differently

1 2

3 4

5

in which case the infinite face has 4 edges. Even worse, we can produce
drawing with 3, 3, 4, 6 edges and 3, 3, 5, 5 edges (graph). Thus face is an object
associated with a drawing, not with a graph. However, there does exists a
drawing invariant of a graph: the number of faces.

Theorem 2.5 (Euler’s formula). Let 𝐺 be a connected planar graph, |𝐺| =
𝑛 ≥ 1, 𝑒(𝐺) = 𝑚. Suppose 𝐺 can be drawn with ℓ faces. Then

𝑛 − 𝑚 + ℓ = 2.

Thus sometimes we can make statements like “a certain graph has 17 faces”.

Proof. Induction on 𝑚. If 𝐺 is a tree then clearly ℓ = 1 and by Proposition 2.3,
𝑚 = 𝑛 − 1 so

𝑛 − (𝑛 − 1) + 1 = 2.
For general 𝐺, take a drawing of 𝐺 and pick an edge 𝑒 in a cycle in 𝐺. Delete 𝑒
from 𝐺 and the drawing. Now have a drawing of 𝐺 − 𝑒 with ℓ − 1 faces. Also
𝐺 − 𝑒 is connected with |𝐺 − 𝑒| = 𝑛, 𝑒(𝐺 − 𝑒) = 𝑚 − 1. By induction hypothesis,

𝑛 − (𝑚 − 1) + (ℓ − 1) = 2

so
𝑛 − 𝑚 + ℓ = 2.
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Using Euler’s formula, we can get a much better bound on the number of
vertices a planar graph than (𝑛

2).

Theorem 2.6. Let 𝐺 be planar with |𝐺| = 𝑛 ≥ 3. Then

𝑒(𝐺) ≤ 3𝑛 − 6.

Proof. There is one special case which we single out first. If 𝐺 ≅ 𝑃2 then the
result holds so suppose it isn’t. Given a drawing of 𝐺 with ℓ faces, wlog 𝐺 is
connected (add edges if necessary), by Euler’s formula we know 𝑛 − 𝑚 + ℓ = 2.
Each edge borders at most 2 faces and each face is bordered by at least 3 edges
so

ℓ ≤ 2
3

𝑚
so

2 ≤ 𝑛 − 𝑚 + 2
3

𝑚.

Rearrange to get the desired result.

Proposition 2.7 (six-colour theorem). Every planar graph is 6-colourable.

Proof. Let 𝐺 be planar with |𝐺| = 𝑛. Induction on 𝑛. For 𝑛 ≤ 6 this is obviously
true. For 𝑛 > 6, pick 𝑣 ∈ 𝐺 of minimal degree. By induction hypothesis we can
6-colour 𝐺 − 𝑣. But

𝑑(𝑣) = 𝛿(𝐺) ≤ 2𝑒(𝐺)
𝑛

≤ 6𝑛 − 12
𝑛

< 6

so 𝑑(𝑣) ≤ 5. So some colour is missing on Γ(𝑣). Use this to colour 𝑣.

That feel like a enourmous progress to bring down the number from infinity
to 6. With some more work, we can do better.

Theorem 2.8 (five-colour theorem). Every planar graph is 5-colourable.

Proof. Let 𝐺 be planar with |𝐺| = 𝑛. Induction on 𝑛. Obvious for 𝑛 ≤ 5.
For 𝑛 > 5, as in the proof of 6-colour theorem, pick 𝑣 ∈ 𝐺 with 𝑑(𝑣) ≤ 5 and
by induction hypothesis there exists a 5-colouring of 𝐺 − 𝑣. If some colour is
missing from Γ(𝑣) then done. Otherwise consider a drawing of 𝐺 in which 𝑣
has neighbours 𝑥1, … , 𝑥5 in clockwise order around 𝑣 with 𝑐(𝑥𝑖) = 𝑖 wlog. The
strategy is to change colouring of 𝑥1 from 1 to 3, and “propagate the change”
retrogradely until all things are done. There is one case it might not work,
namely there is a 13-path between 𝑥1 and 𝑥3, as in the end we just swapped the
colouring on the two vertices.

Formally, suppose that there is no 13-path from 𝑥1 to 𝑥3, i.e. a path all
of whose vertices have colour 1 or 3. Then swap colours 1 and 3 on the 13-
component of 𝑥1, i.e. the component containing 𝑥1 of the subgraph 𝐺[𝑊] where
𝑊 = {𝑥 ∈ 𝐺 ∶ 𝑐(𝑥) = 1 or 3}. Now can give 𝑣 colour 1.

Suppose instead there is such a 13-path. Then there is no 24-path from 𝑥2
to 𝑥4 so swap colours 2, 4 on 24-component of 𝑥2. Then give 𝑣 colour 2.

Can we still do better? In fact we can.
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Theorem 2.9 (four-colour theorem). Every planar graph is 4-colourable.

False proof, non-examinable. Let 𝐺 be planar with |𝐺| = 𝑛. Induction on 𝑛.
Obvious for 𝑛 ≤ 4. For 𝑛 > 4. Draw 𝐺. As in five-colour theorem, can find
𝑣 ∈ 𝐺 with 𝑑(𝑣) ≤ 5 and a 4-colouring 𝑐 of 𝐺 − 𝑣. Done unless every colour is
used on Γ(𝑣), giving 3 cases:

1. 𝑑(𝑣) = 4: wlog 𝑣 has neighbours 𝑥1, … , 𝑥4 clockwise with 𝑐(𝑥𝑖) = 𝑖. Can’t
have both 13-path from 𝑥1 to 𝑥3 and 24-path from 𝑥2 to 𝑥4, so as in
five-colour theorem, can do some recolouring and colour 𝑣.

2. 𝑑(𝑣) = 5, and 𝑣 has neighbours 𝑥1, 𝑥′
1, 𝑥2, 𝑥3, 𝑥4 clockwise with 𝑐(𝑥𝑖) =

𝑖, 𝑐(𝑥′
1) = 1. Done unless there there is a 24-path from 𝑥2 to 𝑥4. But then

neither 𝑥1 nor 𝑥′
1is in 13-component of 𝑥3, so swap 1 and 3 on 13-component

of 𝑥3 and colour 𝑣 3.

3. 𝑑(𝑣) = 5, and 𝑣 has neighbours 𝑥1, 𝑥2, 𝑥′
1, 𝑥3, 𝑥4 clockwise with 𝑐(𝑥𝑖) =

𝑖, 𝑐(𝑥′
1) = 1. Done unless there are both a 23-path from 𝑥2 to 𝑥3 and a

24-path from 𝑥2 to 𝑥4 (graph). Then there is no 14-path from 𝑥′
1 to 𝑥4,

and no 13-path from 𝑥1 to 𝑥3. So swap colours 1, 4 on 14-component of
𝑥′

1 and swap colours 1, 3 on 13-component of 𝑥1. Give 𝑣 colour 1.

Remark. This is wrong. See example sheet 3 for why.
Four-colour theorem was conjected in 1852 and the above “proof” was pub-

lished by Kempe in 1879. The misktake stayed unnoticed for 11 years — until
Heawood spotted it in 1890. But it is not a complete disaster as some ideas
could still be used to prove five-colour theorem. For this reason, 𝑖𝑗-path are
called Kempe chains.

Same ideas useful to produce a proper proof.

Definition (plane triangulation). A plane triangulation is a planar graph
𝐺 together with a drawing of 𝐺 with every face a triangle.

Note that any planar graph with a drawing can be made into a triangulation
by adding edges. Thus the statement of four-colour theorem is equivalent to
every plane triangulation is 4-colourable. Henceforth we’ll use this form.

Think about a minimal counterexample, i.e. a plane triangulation 𝐺 with
|𝐺| as small as possible, 𝐺 not 4-colourable. What can we say about 𝐺? For
example must have 𝛿(𝐺) ≥ 5, as we otherwise can just delete the vertex with
minimal degree and still have a non-4-colourable graph.

Definition (reducible, unavoidable configuration). A configuration is re-
ducible if it cannot appear in 𝐺.

A set of configurations is unavoidable if one must appear in 𝐺.

Thus 4-colour theorem is equivalent to the statement that there exists an
unavoidable set of reducible configurations.

Example.
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1. By Euler’s formula, a vertex of degree 5 is unavoidable. It is not obviously
reducible.

2. By Kampe chains, a vertex of degree 4 is reducible, but not obviously
unavoidable.

3. The Birkhoff diamond consists of a vertex 𝑥 of degree 5 with three consec-
utive neighbours (i.e. in cyclic order around 𝑥) of degree 5 (graph). It has
a 6-cycle 𝑣1𝑣2 … 𝑣6𝑣1 and inside the 6-cycle, 𝐺 has precisely what’s in the
drawing.

Exercise. The Birkhoff diamond is reducbile. Outline of proof:

1. Prove that 𝐺 cannot contain a separaing triangle, which is a triangle that
has a vertices both inside and outside, so 𝑣2 ≁ 𝑣4.

2. Suppose 𝐺 has the Birkhoff diamond. Erase everthing inside the 6-cycle,
identify 𝑣2 with 𝑣4 to make 𝑣2,4 and join 𝑣2,4 to 𝑣6. By minimality we
can 4-colour new graph. Up to chaning colour names, this region has 6
possible colourings. This gives 6 different 4-colourings of 𝐺 with 4 vertices
in middle of Birkhoff uncoloured. It is an easy, albeit tedious exercise to
show that in 5 cases we can extend the colouring to all of 𝐺, and in the
last case Kempe chain argument works, so contradiction. In particular this
shows that Birkhoff diamond is reducible.

Clarify: a separating triangle in 𝐺 is a triangle in 𝐺 such that some vertices
of 𝐺 lie inside the triangle and some vertex outside.

Example. The configuration “two neighbouring vertices of degree 5” and “two
neighbouring vertices of degree 5 and 6” form an unavoidable set.

Proof. Let |𝐺| = 𝑛, 𝑒(𝐺) = 𝑚 and 𝐺 has ℓ faces. By Euler

2𝑛 − 2𝑚 + 2ℓ = 4.

Let 𝑛𝑖 be the number of vertices with degree 𝑖. As 𝛿(𝐺) ≥ 5 we have

𝑛 =
∞

∑
𝑖=5

𝑛𝑖

2𝑚 =
∞

∑
𝑖=5

𝑖𝑛𝑖

A final relation is 2𝑚 = 3ℓ by triangulation. Thus
∞

∑
𝑖=5

(2 − 𝑖)𝑛𝑖 + 2ℓ = 4

∞
∑
𝑖=5

2𝑛𝑖 − ℓ = 4

2 times the first equation plus 5 times the second equation,
∞

∑
𝑖=5

(14 − 2𝑖)𝑛𝑖 − ℓ = 28,
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which is
ℓ + 28 = 4𝑛5 + 2𝑛6 − 2𝑛8 − …

so
ℓ < 4𝑛5 + 2𝑛6.

Now assume 𝐺 has no vertex of degree 5 adjacent to a degree 5 or 6 vertex and
count faces adjacent to vertices of degree 5 or 6.

1. 𝑑(𝑣) = 5: 5 faces next to it. These faces don’t touch any other 𝑤 with
𝑑(𝑤) = 5 or 6 so 𝑣 contributes 5.

2. 𝑑(𝑣) = 6: next to 6 faces, each of which could be next to up to 3 vertices
of degree 6

so 𝑣 contributes ≥ 6
3 = 2. Hence ℓ ≥ 5𝑛5 + 2𝑛6.

The method looks very ad hoc and it is not obvious that this can be generalised
to other configurations. A more general construction is called discharging. Assign
charge 6−𝑑(𝑣) to each vertex 𝑣. Aim to move charge around to “totally discharge”
the graph, i.e. each vertex has charege ≤ 0. This is impossible as total charge
on 𝐺 is

∑
𝑣∈𝐺

(6 − 𝑑(𝑣)) = 6𝑛 − 2𝑚 = 6𝑛 − 2(3𝑛 − 6) = 12 > 0.

Thus there must be some obstacle to discharging, which leads to an unavoidable
set.

For example, we give the rule as follow: each 𝑣 of degree 5 gives charge 1
5 to

each neighbour of degree ≥ 7. Suppose there is no vertex of degree 5 next to
one of degree 5 or 6,

degree new charge
5 1 − 5 × 1

5 = 0
6 0

𝑘 ≥ 7 ≤ 6 − 𝑘 + 1
5

𝑘
2 ≤ −0.3 < 0

where the last line is because the graph is triangulated and no two degree 5
vertices are in each other.

This is the key idea in the proof of four colour theorem. It was proved in
1976 by Appel and Haken. They found an unavoidable set of 1936 reducible
configurations. Reducible sets are easy to check by computer as you just
keep removing things. To show unavoidability, they designed more than 300
discharging rules. It was controversial at the time but with the increasing
availability of computing power, people generally accept it. But who knows what
will happen after 11 years!

2.2 Colouring general graphs
Note that 𝐺 is 𝑟-colourable if and only if 𝐺 is 𝑟-partite so

𝜒(𝐺) = min{𝑟 ∶ 𝐺 is 𝑟-colourable},

which justifies its name. Four colour theorem then says that all planar 𝐺 has
𝜒(𝐺) ≤ 4. What if 𝐺 is non-planar? For example 𝜒(𝐾𝑛) = 𝑛. Can we find
bounds in terms of other parameters?
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Definition (clique number). The clique number of a graph 𝐺 is the largest
𝑘 such that 𝐾𝑘 ⊆ 𝐺. It is denoted 𝜔(𝐺).

Thus for lower bound, if 𝐾𝑘 ⊆ 𝐺 then 𝜒(𝐺) ≥ 𝑘 so 𝜒(𝐺) ≥ 𝜔(𝐺). But
sometimes this isn’t good enough. On example sheet 2 and later we have |𝐺| = 𝑛
with 𝜔(𝐺𝑛) = 2 but 𝜒(𝐺𝑛) → ∞.

Definition. A set of vertices is an independence set if no two vertices are
adjacent.

The independence number of 𝐺 is

𝛼(𝐺) = max{|𝑈| ∶ 𝑈 ⊆ 𝑉 (𝐺), 𝑈 independent}.

At most 𝛼(𝐺) vertices of any one colour so

𝜒(𝐺) ≥ |𝐺|
𝛼(𝐺)

.

But if 𝐺𝑛 = 𝐾𝑛 ∪ 𝐾𝑛2 then 𝜒(𝐺𝑛) = 𝑛 but |𝐺|
𝛼(𝐺) − 𝑛2+𝑛

𝑛2+1 → 1.
What about upper bound? We can try the greedy algorithm: list vertices

𝑣1, … , 𝑣𝑛. Go along list colouring each vertex in turn, giving it the least colour
not already used on one of its neighbours. Each vertex 𝑣 gets colour ≤ 𝑑(𝑣) + 1
so

𝜒(𝐺) ≤ Δ(𝐺) + 1.

This is not always a good bound. For example 𝜒(𝐾𝑡,𝑡) = 2 but Δ(𝐾𝑡,𝑡) = 2.

Remark. Greedy algorithm does always colour 𝐾𝑡,𝑡 with 2 colours, whichever
enumeration of vertices we choose. Even better, for any graph 𝐺, we can take
ordering of vertices where greedy produces a 𝜒(𝐺)-colouring: given a colouring
𝑐 of 𝐺, list all vertices of colour 1 first, then colour 2 etc. However this is utterly
useless as to find such a listing one has to colour the graph first.

Greedy algorithm can be really bad. (graph) there exists 𝐺𝑛 where |𝐺𝑛| =
2𝑛, 𝜒(𝐺) = 2 but with some ordering, greedy used 𝑛 + 1 colours.

Example.

1. For 𝐺 = 𝐶𝑛 where 𝑛 odd, have 𝜒(𝐺) = 3, Δ(𝐺) = 2 so the inequaltiy
𝜒(𝐺) ≤ Δ(𝐺) + 1 is saturated.

2. For 𝐺 = 𝐾𝑛, 𝜒(𝐺) = 𝑛, Δ(𝐺) = 𝑛 − 1 so also saturated.

These are the only two types of examples where the inequality is saturated.
Otherwise we can improve the bound slightly.

Theorem 2.10 (Brookes). Let 𝐺 be connected and neither complete nor an
odd cycle. Then

𝜒(𝐺) ≤ Δ(𝐺).

Proof. For Δ(𝐺) ≤ 2 we exhaust all the possibilities. So assume Δ(𝐺) = Δ ≥ 3
and 𝐺 ≠ 𝐾Δ+1. Induction on |𝐺|. Suppose 𝑊 ⊆ 𝑉 (𝐺) with 𝑊 ≠ ∅ and let
𝐻 be a component of 𝐺 − 𝑊. Then |𝐻| < |𝐺|, Δ(𝐻) ≤ Δ and 𝐻 ≠ 𝐾Δ+1 (as

33



2 Graph colouring

𝐺 𝜒(𝐺) Δ(𝐺)
𝑃0 1 0 𝐾1
𝑃1 2 1 𝐾2

𝑃𝑛, 𝑛 ≥ 2 2 2
𝐶𝑛, 𝑛 odd 3 2 odd cycle
𝐶𝑛, 𝑛 even 2 2

Table 1: Δ(𝐺) ≤ 2

if 𝐾Δ+1 ⊆ 𝐺 then no vertex in the 𝐾Δ+1 can be joined to outside, but 𝐺 is
connected and not 𝐾Δ+1, contradiction). So by hypothesis (or greedy algorithm)
𝜒(𝐻) ≤ Δ. Hence 𝜒(𝐺 − 𝑊) ≤ Δ.

Let 𝑣2 ∈ 𝐺 with 𝑑(𝑣2) = Δ. As 𝐺 ≠ 𝐾Δ+1 there are distinct 𝑣1, 𝑣3 ∈ Γ(𝑣2)
with 𝑣1 ≁ 𝑣3. Extend 𝑣1𝑣2𝑣3 for as long as possible to a path 𝑃 = 𝑣1𝑣2 ⋯ 𝑣𝑘.
Two possibilities:

1. 𝑘 = |𝐺|: have 𝑉 (𝐺) = 𝑉 (𝑃). As 𝑑(𝑣2) ≥ 3 exists 𝑗 > 3 with 𝑣2 ∼ 𝑣𝑗.
Greedily colour in order

𝑣1, 𝑣3, … , 𝑣𝑗−1, 𝑣𝑘, 𝑣𝑘−1, … , 𝑣𝑗, 𝑣2.

(a) For 𝑣 ≠ 𝑣2 when we colour 𝑣 it has an uncoloured neighbour 𝑗.
(b) 𝑣2 has neighbours of the same colour (𝑣1, 𝑣3 both colour 1).

Thus in both cases when a vertex 𝑣 is coloured there are at most Δ − 1
colours used on Γ(𝑣) already. Hence 𝜒(𝐺) ≤ Δ.

2. 𝑘 < |𝐺|: in this case Γ(𝑣𝑘) ⊆ 𝑉 (𝑃). If 𝑑(𝑣𝑘) = 1 then Δ-colour 𝐺 − 𝑣𝑘
and give 𝑣𝑘 a different colour from 𝑣𝑘−1. So assume 𝑑(𝑣𝑘) ≥ 2. Pick 𝑖
minimal such that 𝑣𝑘 ∼ 𝑣𝑖 where 𝑖 < 𝑘 − 1. Then 𝐶 = 𝑣𝑖𝑣𝑖+1 ⋯ 𝑣𝑘𝑣𝑖 is a
cycle and Γ(𝑣𝑘) ⊆ 𝑉 (𝐶). Now 𝐶 has a vertex with no neighbours outside
𝐶 (e.g. 𝑣𝑘) and also a vertex with at least one neighbour outside 𝐶 (as 𝐺
is connected).
Relabel 𝐶 = 𝑤1𝑤2 ⋯ 𝑤ℓ𝑤1 with Γ(𝑤1) ⊆ 𝑉 (𝐶) and ℓ ∼ 𝑢 ∉ 𝐶. Now
Δ-colour 𝐺 − 𝑉 (𝐶) and then extend the colouring to all of 𝐺 by greedily
colouring 𝑤1, … , 𝑤ℓ. wlog in colouring of 𝐺 − 𝑉 (𝐶), 𝑢 has colour 1. Now

(a) if 𝑤 ≠ 𝑤ℓ then when we colour 𝑤 it has an uncoloured neighbour,
(b) 𝑤ℓ has 2 neighbour of the same colorur (𝑢 and 𝑤1 have colour 1).

So as before 𝜒(𝐺) ≤ Δ.

2.3 Graphs on surfaces
We should not restrict our attention to drawing on the Euclidean plane. We
consider the problem of drawing on other smooth 2-manifolds, i.e. surfaces
(drawing problem is trivial for dimension higher than 2. Why?).
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Definition (chromatic number). Let 𝑆 be a surface. The chromatic number
of 𝑆 is

𝜒(𝑆) = max{𝜒(𝐺) ∶ 𝐺 can be drawn on 𝑆}.

For example, four colour theorem says 𝜒(R2) = 4. On the other had, it is
not hard to draw 𝐾5 on a torus. Thus the topology of the ambient space does
make a difference.

Henceforth only consider compact boundaryless surfaces. This exludes R2,
but it is easy to see that by compactification a graph can be drawn on R2 if and
only if it can be drawn on 𝑆2.

We quote without two important theorems in algebraic topotlogy. The
first one is classification theorem for compact sufaces, which state that, up to
homeomorphism, compact surfaces fall into two classes

1. for 𝑔 ≥ 0, 𝑇𝑔 the orientable surface of genus 𝑔 “𝑔-holed torus”,

2. for 𝑔 ≥ 1, 𝑆𝑔 the non-orientable surfaces of genus 𝑔.

and furthermore they are pairwise non-homeomorphic. The second is

Proposition 2.11 (Euler-Poincaré forumla). If |𝐺| = 𝑛, 𝑒(𝐺) = 𝑚 and can
be drawn on 𝑆 with ℓ faces then

𝑛 − 𝑚 + ℓ ≥ 𝐸

where 𝐸 is the Euler characterisitc of 𝑆 and

𝐸(𝑇𝑔) = 2(1 − 𝑔)
𝐸(𝑆𝑔) = 2 − 𝑔

Theorem 2.12. Let 𝑆 be a surface of Euler characteristic 𝐸 ≤ 1. Then

𝜒(𝑆) ≤ ⌊7 +
√

49 − 24𝐸
2

⌋.

Proof. Write 𝜒 = 𝜒(𝑆). Let 𝐺 be drawn on 𝑆 where 𝐺 is minimal 𝜒-chromatic,
i.e. 𝜒(𝐺) = 𝜒 but 𝜒(𝐻) < 𝜒 if 𝐻 ⊊ 𝐺. Let |𝐺| = 𝑛, 𝑒(𝑔) = 𝑚 and ℓ faces.

By Euler-Poincaré, 𝑛 − 𝑚 + ℓ ≥ 2 but 2𝑚 ≥ 3ℓ so ℓ ≤ 2
3 𝑚 so 𝑛 − 1

3 𝑚 ≥ 𝐸,
𝑚 ≤ 3(𝑛 − 𝐸). Also note 𝑛 ≥ 𝜒. As 𝐺 is minimal 𝜒-chromatic,

𝜒 − 1 ≤ 𝛿(𝐺) ≤ 𝛿(𝐺) = 2𝑚
𝑛

≤ 6 − 6𝐸
𝑛

.

If 𝐸 = 1 then 𝜒 − 1 < 6 so 𝜒 < 7, i.e. 𝜒 ≤ 6. If 𝐸 ≤ 0 then as 𝑛 ≥ 𝜒,

𝜒 − 1 ≤ 6 − 6𝐸
𝑛

≤ 6 − 6𝐸
𝜒

then 𝜒2 − 7𝜒 + 6𝐸 ≤ 0 so

𝜒 ≤ 7 +
√

49 − 24𝐸
2

.
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Remark. The condition 𝐸 ≤ 1 rules out only the sphere. Heawood for the
sphere would be four colour theorem but proof fails (six colour theorem).

Example.

1. The torus 𝑇1: 𝐸 = 0 so Heawood says 𝜒(𝑇1) ≤ 7. In fact 𝐾7 can be drawn
on 𝑇1 so 𝜒(𝑇1) = 7.

2. The Klein bottle 𝑆2: 𝐸 = 0 but 𝐾7 cannot be drawn on 𝑆2, but 𝑆6 can.
Hence 6 ≤ 𝜒(𝑆2) ≤ 7. Suppose 𝜒(𝑆2) = 7. Let 𝐺 be a minimal 7-chromatic
drawn on 𝑆2. Then 𝐺 conneced and, from proof of Heawood,

6 ≤ 𝛿(𝐺) ≤ 𝑑(𝐺) = 2𝑒(𝐺)
|𝐺|

≤ 6

so must have equality throughout so 𝐺 is 6-regular. By Brookes 𝐺 ≅ 𝐾7,
contradiction.

It can be shown (hard!) that if 𝑆 has Euler characteristic 𝐸 and 𝑆 ≠ 𝑆2 then
𝐾𝜒 can be drawn on 𝑆, where 𝜒 = ⌊𝑓𝑟𝑎𝑐7 +

√
49 − 24𝐸2⌋, i.e. 𝜒(𝑆) = 𝜒.

2.4 Edge colouring

Definition (edge-colouring, edge-chromatic-number). A 𝑘-edge-colouring of
a graph 𝐺 is a function 𝜑 ∶ 𝐸(𝐺) → [𝑘] with |𝑒 ∩ 𝑓| = 1 implies 𝜑(𝑒) ≠ 𝜑(𝑓).

The edge-chromatic-number of 𝐺 is

𝜒′(𝐺) = min{𝑘 ∶ 𝐺 has a 𝑘-edge colouring}.

Clearly
Δ(𝐺) ≤ 𝜒′(𝐺) ≤ 2Δ(𝐺) − 1

where the second inequality is by greedy algorithm. It seems like this is an
interesting topic and worth studying. In fact

Theorem 2.13 (Vizing). Let 𝐺 be a graph. Then 𝜒′(𝐺) ≤ Δ(𝐺) + 1.

Proof. Induction on 𝑒(𝐺). Obvious for 𝑒(𝐺) = 0. If 𝑒(𝐺) > 0, write 𝑘 = Δ(𝐺)+1.
Pick an edge 𝑥𝑦 ∈ 𝐸(𝐺) and by induction hypothesis let 𝜑 be a 𝑘-colouring of
𝐺 − 𝑥𝑦. As 𝐾 > Δ, every vertex has at least one colour “missing”. Construct
recursively vertices 𝑦0, 𝑦1, … and colours 𝑐0, 𝑐1, …:

1. set 𝑦0 = 𝑥 and let 𝑐0 be a colouring missing at 𝑦0.

2. Given 𝑦0, … , 𝑦𝑗 and 𝑐0, … , 𝑐𝑗, if 𝑐𝑗 is missing at 𝑦 then STOP.

3. If 𝑐𝑗 = 𝑐𝑘 for some 𝑘 < 𝑗 then STOP.

4. Otherwise, let 𝑦𝑗+1 ∈ Γ(𝑦) with 𝜑(𝑦𝑦𝑗+1) = 𝐶𝑗 and let 𝐶𝑗+1 be missing at
𝑦𝑗+1.
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As vertices are finite we must stop. What happens at that moment? In case
2, (re-)colour 𝑦𝑦𝑖 in colour 𝑐𝑖 whre 0 ≤ 𝑖 ≤ 𝑗. In case 3, wlog 𝑘 = 0 (if not,
(re-)colour 𝑦𝑦𝑖 in 𝐶𝑖 (0 ≤ 𝑖 < 𝑘), uncolour 𝑦𝑦𝑘, relabel 𝑦𝑘, … , 𝑦𝑗 as 𝑦0, … , 𝑦𝑗−𝑘
and similarly for colours).

Let 𝑐 be a colour missing at 𝑦. Note 𝑐 ≠ 𝑐0. Let 𝐻 be the 𝑐𝑐0-subgraph of 𝐺.
Then Δ(𝐻) ≤ 2. So each component of 𝐻 is a path or a cycle.

In 𝐻, 𝑦, 𝑦0 and 𝑦𝑗 have degree ≤ 1. So not all in same component of 𝐻.

1. If 𝑦, 𝑦0 in different components then swap 𝑐, 𝑐0 on the component of 𝑦 and
recolour 𝑦𝑦0 with 𝑐0.

2. If 𝑦, 𝑦0 in the same component then 𝑦𝑗 in a different component. Swap
𝑐, 𝑐0 on component of 𝑦𝑗, (re-)colour 𝑦𝑦𝑖 in 𝑐𝑖 (0 ≤ 𝑖 < 𝑗) and re-colour
𝑦𝑦𝑗 in 𝑐.
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3 Connectivity

3.1 Matchings

Definition (matching). Let 𝐺 be a bipartite graph with parts 𝑋, 𝑌. A
matching from 𝑋 to 𝑌 is a set of |𝑋| independent edges (i.e. no two edges
share a vertex).

When does 𝐺 contain a matching? Clearly a necessary condition is that there
is no “isolated” vertices in 𝑋 which are connected to nothing in 𝑌. Moreover, we
cannot have all of 𝑋 connect to a single vertex in 𝑌. Think a bit more and we
can conclude clearly we need for all 𝐴 ⊆ 𝑋, |Γ(𝐴)| ≥ |𝐴|, this is Hall’s condition.
Surprisingly, this is also sufficient:

Theorem 3.1 (Hall). Let 𝐺 be a bipartite graph with parts 𝑋, 𝑌. Then 𝐺
has a matching from 𝑋 to 𝑌 if and only if 𝐺 satisfies Hall condition.

Proof. Only if is obvious. For the converse, induction on |𝑋|. Obvious for
|𝑋| = 0, 1. For |𝑋| ≥ 2, suppose |Γ(𝐴)| > |𝐴| for all 𝐴 ≠ ∅, 𝑋. Then pick
𝑥 ∈ 𝑋 and 𝑦 ∈ Γ(𝑥). Then 𝐺 − {𝑥, 𝑦} satisfies Hall’s condition so by induciton
hypothesis has a matching from 𝑋 − {𝑥} to 𝑌 − {𝑦}. Add 𝑥𝑦 and done.

Assume instead there exists 𝐴 ≠ ∅, 𝑋 with |Γ(𝐴)| ≠ |𝐴|. Let

𝐺1 = 𝐺[𝐴 ∪ Γ(𝐴)]
𝐺2 = 𝐺[(𝑋 \ 𝐴) ∪ (𝑋 \ Γ(𝐴))]

Clearly 𝐺1 satisfies Hall’s condition. Let 𝐵 ⊆ 𝑋 \ 𝐴. Writing Γ2 for neighbour-
hood in 𝐺2. Have

|Γ2(𝐵)| = |Γ(𝐵)\Γ(𝐴)| = |Γ(𝐴∪𝐵)\Γ(𝐴)| = |Γ(𝐴∪𝐵)|−|Γ(𝐴)| ≥ |𝐴∪𝐵|−|𝐴| = |𝐵|

so 𝐺2 satisfies Hall’s condition. By indiciton hypothesis have matchings from
𝐴, 𝑋 \ 𝐴 to Γ(𝐴), 𝑌 \ Γ(𝐴) respectively. Combine them and done.

Corollary 3.2. Let 𝐺 be a finite graph and let 𝐻 ≤ 𝐺 with |𝐺/𝐻| = 𝑛. Then
there are 𝑔1, … , 𝑔𝑛 ∈ 𝐺 such that 𝑔1𝐻, … , 𝑔𝑛𝐻 are the left and 𝐻𝑔1, … , 𝐻𝑔𝑛
are the right cosets of 𝐻.

Proof. Consider the bipartite graph with parts

𝑋 = {𝑔𝐻 ∶ 𝑔 ∈ 𝐺}
𝑌 = {𝐻𝑔 ∶ 𝑔 ∈ 𝐺}

and for 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑥 ∼ 𝑦 if and only if 𝑥 ∩ 𝑦 ≠ ∅. Then the conclusion of the
theorem is equivalent to the existence of a matching from 𝑋 to 𝑌.

Let 𝐴 ⊆ 𝑋. Then

∣ ⋃
𝑥∈𝐴

𝑥∣ = |𝐴||𝐻|

∣ ⋃
𝑦∈Γ(𝐴)

𝑦∣ = |Γ(𝐴)||𝐻|

But ⋃𝑥∈𝐴 𝑥 ⊆ ⋃𝑦∈Γ(𝐴) 𝑦. Hence |Γ(𝐴)| ≥ |𝐴|.
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Corollary 3.3. Let 𝐺 be a bipartite graph with parts 𝑋, 𝑌 and let 𝑑 ≥ 1.

1. 𝐺 contains a set of |𝑋| − 𝑑 independent edges if and only if for all
𝐴 ⊆ 𝑋, |Γ(𝐴)| ≥ |𝐴| − 𝑑.

2. 𝐺 has a 𝑑-to-1 matching from 𝑋 to 𝑌 (i.e. a subgraph 𝐻 where for
all 𝑥 ∈ 𝑋, 𝑑(𝑥) = 𝑑 and for all 𝑦 ∈ 𝑌 , 𝑑(𝑦) ≤ 1) if and only if for all
𝐴 ⊆ 𝑋, |Γ(𝐴)| ≥ 𝑑|𝐴|.

Proof.

1. ⟹ is easy. For ⟸ , add 𝑑 new vertices to 𝑌, each jointed to all 𝑥 ∈ 𝑋.
This satisfies Hall’s condition so has a matching. Throw away the new
vertices: at least |𝑋| − 𝑑 edges remain.

2. ⟹ is easy. For ⟸ , for each 𝑥 ∈ 𝑋, add 𝑑 − 1 new copies of 𝑥 to 𝑋
each with same neighbours as 𝑥. This satisfies Hall’s condition so has a
matching. Delete the new vertices and assign their edges in the matching
to the original vertex that they were copies of.

3.2 Connectivity
Some connected graphs seem more connected than others. For example (graph
𝐻, 𝐾). 𝐻 has a “cut vertex” but 𝐾 does not.

Definition. An incomplete graph 𝐺 is 𝑘-connected if whenever 𝑊 ⊆ 𝑉 (𝐺)
with |𝑊| < 𝑘 then 𝐺 − 𝑊 is connected.

Example. 𝐺 is 0-connected for every 𝐺. 𝐺 is 1-connected if and only if 𝐺 is
connected. 𝐺 is 2-connected if and only if 𝐺 is connected has no cut vertex.

Suppose whenever 𝑎, 𝑏 ∈ 𝐺 with 𝑎 ≠ 𝑏 there are 𝑘 independent paths from 𝑎
to 𝑏 — paths meeting only at 𝑎 and 𝑏, then certainly 𝐺 is 𝑘-connected. Is it also
necessary? We aim to prove this but notice at this moment that it is not a good
idea to consider paths sequentially as some choice of paths may “block” others.
For example consider (graph of 𝐻).

It is better to consider paths between sets rather than between vertices.

Definition (cut). Let 𝐺 be a graph and 𝐴, 𝐵 ⊆ 𝑉 (𝐺). An 𝐴𝐵-path is a
path 𝑣0𝑣1 ⋯ 𝑣ℓ with 𝑣0 ∈ 𝐴, 𝑣ℓ ∈ 𝐵, 𝑣𝑖 ∉ 𝐴 ∪ 𝐵 for 1 ≤ 𝑖 ≤ ℓ − 1.

An 𝐴𝐵-cut is a set 𝑊 ⊆ 𝑉 (𝐺) such that 𝐺 − 𝑊 has no 𝐴𝐵-path.

Remark. 𝐴 is an 𝐴𝐵-cut. So is 𝐵. Moreover we do not insist 𝐴 ∩ 𝐵 = ∅. If
𝑥 ∈ 𝐴 ∩ 𝐵 then 𝑥 is an 𝐴𝐵-path (of length 0). Hence if 𝑊 is an 𝐴𝐵-cut then
𝐴 ∩ 𝐵 ⊆ 𝑊.

Lemma 3.4. Let 𝐺 be a graph and 𝐴, 𝐵 ⊆ 𝑉 (𝐺). Suppose the smallest
possible order of an 𝐴𝐵-cut in 𝐺 is 𝑘 then we can find 𝑘 vertex-disjoint
𝐴𝐵-paths.
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Proof. Induction on 𝑒(𝐺). If 𝑒(𝐺) = 0 then the smallest 𝐴𝐵-cut is 𝐴 ∩ 𝐵 so
𝑘 = |𝐴 ∩ 𝐵|. Each vertex of 𝐴 ∩ 𝐵 gives a zero-length 𝐴𝐵-path so we have 𝑘
vertex-disjoint 𝐴𝐵-paths.

For 𝑒(𝐺) > 0. Pick an edge 𝑥𝑦 ∈ 𝐺 and let 𝐻 = 𝐺 − 𝑥𝑦. If every 𝐴𝐵-cut
in 𝐻 has order ≥ 𝑘 then done by induction hypothesis. So assume 𝐻 has an
𝐴𝐵-cut 𝑊 with |𝑊| < 𝑘. Then 𝑊 ∪ {𝑥} is an 𝐴𝐵-cut in 𝐺 so |𝑊 ∪ {𝑥}| ≥ 𝑘.
Hence |𝑊| = 𝑘 − 1. Write 𝑊 = {𝑤1, … , 𝑤𝑘−1}. 𝑊 is not an 𝐴𝐵-cut in 𝐺 so
𝐺 − 𝑊 has an 𝐴𝐵-path that must use edge 𝑥𝑦. wlog 𝑥 appears before 𝑦 on this
path.

Let 𝑇 = 𝑊 ∪ {𝑥}. Suppose 𝑆 is an 𝐴𝑇-cut in 𝐻. Then 𝑆 is an 𝐴𝐵-cut
in 𝐺. Hence |𝑆| ≥ 𝑘. By the induction hypothesis there are 𝑘 vertex-disjoint
𝐴𝑇-paths in 𝐻. Call them 𝑃0, … , 𝑃𝑘−1 with 𝑃0 ending at 𝑥 and 𝑃𝑖 ending at 𝑤𝑖
for 1 ≤ 𝑖 ≤ 𝑘 − 1.

Similarly if 𝑈 = 𝑊 ∪ {𝑦} then 𝐻 has 𝑘 vertex-disjoint 𝑈𝐵-paths, say
𝑄0, … , 𝑄𝑘−1 with 𝑄0 starting at 𝑦 and 𝑄𝑖 starting at 𝑤𝑖 for 1 ≤ 𝑤𝑖 ≤ 𝑘 − 1.
Join these paths to form 𝑘 vertex-disjoint 𝐴𝐵-paths in 𝐺: 𝑃0𝑥𝑦𝑄0 and 𝑃𝑖𝑄𝑖 for
1 ≤ 𝑖 ≤ 𝑘 − 1.

Theorem 3.5 (Menger). Let 𝐺 be 𝑘-connected and 𝑎, 𝑏 ∈ 𝐺 with 𝑎 ≠ 𝑏.
Then 𝐺 contains 𝑘 independent 𝑎𝑏-paths.

Proof. Suppose first 𝑎 ≁ 𝑏. Let 𝐴 = Γ(𝑎), 𝐵 = Γ(𝑏) and 𝑊 bean 𝐴𝐵-cut of
minimal order. Clearly 𝑎, 𝑏 ≠ 𝑊 and in 𝐺−𝑊 there is no 𝑎𝑏-path. So 𝐺−𝑊 is not
connected and hence |𝑊| ≥ 𝑘. Now by the lemma 𝐺 contains 𝑘 vertex-disjoint
paths from 𝐴 to 𝐵. Extend these to 𝑎 and 𝑏.

On the other hand if 𝑎 ∼ 𝑏. Then 𝐺 − 𝑎𝑏 is (𝑘 − 1)-connected so by the
previous case, has (𝑘 − 1) independent 𝑎𝑏-paths. In 𝐺, 𝑎𝑏 is a 𝑘th.

Remark.
1. It is often easier to apply the previous lemma rather than the theorem

when constructing things.

2. Hall’s theorem follows from Menger: let 𝐺 be bipartite with parts 𝑋 and
𝑌, satisfying Hall’s condition. Suppose 𝑊 is an 𝑋𝑌-cut. (graph). Then
Γ(𝑋 \ 𝑊) ⊆ 𝑊 ∩ 𝑌. So

|𝑊| = |𝑊 ∩ 𝑋| + |𝑊 ∩ 𝑌 | ≥ |𝑊 ∩ 𝑋|
≥ |Γ(𝑋 \ 𝑊)|
≥ |𝑊 ∩ 𝑋| + |𝑋 \ 𝑊|
= |𝑋|

Hence by lemma 𝐺 has 𝑘 vertex-disjoint 𝑋𝑌-paths, aka a matching.

Definition. Let 𝐺 be an incomplete graph. The connectivity of 𝐺 is

𝒦(𝐺) = max{𝑘 ∶ 𝐺 is 𝑘-connected}.

In light of Menger, we define

𝒦(𝐾𝑛) = 𝑛 − 1
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for 𝑛 ≥ 2.

3.3 Edge-connectivity

Definition (edge-connectivity). Let 𝐺 be a graph with |𝐺| ≥ 2 and let
ℓ ≥ 0. We say 𝐺 is ℓ-edge-connected if whenever 𝐹 ⊆ 𝐸(𝐺) with |𝐹 | < ℓ
then 𝐺 − 𝐹 is connected. Then edge-connectivity of 𝐺 is

𝜆(𝐺) = max{ℓ ∶ 𝐺 is ℓ-edge-connected}.

Corollary 3.6 (edge Menger). Let 𝐺 be ℓ-edge-connected and 𝑎, 𝑏 ∈ 𝐺 with
𝑎 ≠ 𝑏. Then 𝐺 contains ℓ edge-disjoint 𝑎𝑏-paths.

Proof. The line graph of 𝐺 is the graph 𝐿(𝐺) with 𝑉 (𝐿(𝐺) = 𝐸(𝐺) and 𝑒𝑓 ∈
𝐸(𝐿(𝐺)) if and only if |𝑒 ∩ 𝑓| = 1. Let

𝐴 = {𝑎𝑥 ∶ 𝑥 ∈ Γ(𝑎)}
𝐵 = {𝑏𝑥 ∶ 𝑥 ∈ Γ(𝑏)}

Now 𝐴, 𝐵 ⊆ 𝑉 (𝐿(𝐺)) and if 𝑊 is an 𝐴𝐵-separator in 𝐿(𝐺) then 𝑊 ⊆ 𝐸(𝐺)
and 𝐺 − 𝑊 has no 𝑎𝑏-path. So |𝑊| ≥ ℓ. Hence by lemma, 𝐿(𝐺) contains ℓ
vertex-disjoint 𝐴𝐵-paths, yielding ℓ edge-disjoint 𝑎𝑏-paths in 𝐺.
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4 Probabilistic methods

4.1 Ramsey numbers
Recall 𝑅(𝑠) = 𝑂(4𝑠). In example sheet 1 we slightly improved it to 𝑅(𝑠) = 𝑂( 4𝑠

√
𝑠 ).

The best known bound so far is 𝑅(𝑠) = 𝑂( 4𝑘

𝑠𝑘 for all 𝑘. What about lower bounds?
We also prove that 𝑅(𝑠) = Ω(𝑠3) but it seems quite hard. Also there is a large
gap between the lower and upper bound. But in fact there is a clever way to
obtain a better bound more easily.

Theorem 4.1 (Erdos).
𝑅(𝑠) = Ω(

√
2

𝑠
).

Proof. Given 𝐾𝑛, colour the edges blue/yellow at random independently and
each colour equally likely. Let 𝑁 = (𝑛

𝑠) and let 𝐻 −1, … , 𝐻𝑛 be the 𝐾𝑠-sbgraphs
of our 𝐾𝑛. Then for each 𝑖,

P(𝐻𝑖 monochromatic) = 2 ⋅ (1
2

)
(𝑠

2)
.

Hence

P(some 𝐾𝑠 is mono) = P(
𝑁
⋃
𝑖=1

{𝐻𝑖 mono})

≤
𝑁

∑
𝑖=1

P(𝐻𝑖 mono)

= (𝑛
𝑠
)2 ⋅ (1

2
)

(𝑠
2)

≤ 2
𝑠!

𝑛𝑠 1
2𝑠(𝑠−1)/2

≤ ( 𝑛
2𝑠−1/2 )

𝑠

< 1

if 𝑛 < 𝑠 𝑠−1
2 . This says that if 𝑛 < 2 𝑠−1

2 then there is one colouring of 𝐾𝑛 with
no monochromatic 𝐾𝑠. Hence

𝑅(𝑠) ≥ 2 𝑠−1
2 = Ω(

√
2

𝑠
).

Remark.

1. This was very surprising when first published.

2. Erdos theorem tells us that if 𝑛 < 2 𝑠−1
2 then 𝐾𝑛 does have a “bad” colouring

(one with no monochromatic 𝐾𝑠). But it gives no idea what such a colouring
looks like.

3. All we used is P(𝐴) < 1 then sometimes 𝐴 does not happen.
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4. We now have close to best known-bounds on 𝑅(𝑠). Is 𝑅(𝑠) = 𝑂((4 − 𝜀)𝑠)?
Is 𝑅(𝑠) = Ω(

√
2 + 𝜀𝑠)? Both are unknown.

5. We could do this in terms of expectation. Colour 𝐾𝑛 randomly as above
and let 𝑋 be the number of monochromatic 𝐾𝑠-subgraphs. Then define
𝑋 = ∑𝑁

𝑖=1 𝑋𝑖 where

𝑋𝑖 = {1 𝐻𝑖 mono
0 otherwise

By linearity,

E𝑋 =
𝑁

∑
𝑖=1

E𝑋𝑖 =
𝑁

∑
𝑖=1

P(𝐻1 mono) = (𝑛
𝑠
)2 ⋅ (1

2
)

(𝑠
2)

so if 𝑛 < 2 𝑠−1
𝑠 then E𝑋 < 1. So sometimes 𝑋 < 1, i.e. 𝑋 = 0.

Missed lectures from 17/11/18 and onwards.
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face, 28
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forbidden subgraph problem, 14
forest, 27

graph, 4
𝑟-partite, 13
acyclic, 27
connected, 11
Eulerian, 24
Hamiltonian, 23
planar, 26
regular, 11

Hall’s theorem, 38
Hamiltonian cycle, 23

infinite graph, 8
isomorphism, 4

Kempe chain, 30
Kuratowsi’s theorem, 27

leaf, 27
length, 11

Mantel’s theorem, 12
matching, 38
Menger theorem, 40

edge, 41
monochromatic, 5

neighbourhood, 10

order, 9

path, 11
plane triangulation, 30

Ramsey number, 6
multicolour, 8

Ramsey theorem, 6
for triangle, 5
infinite, 8
multicolour, 8

Schur’s theorem, 6
spanning tree, 27
subdivision, 27
subgraph, 4

spanned, 10

tree, 27
triangle, 4
Turán graph, 13
Turán’s theorem, 14

upper density, 21

Vizing theorem, 36
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