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1 Eucldiean Geometry

1 Eucldiean Geometry

1.1 Isometries
Let (⋅, ⋅) be the standard inner product, a.k.a. dot product on the Euclidean
space R𝑛 where for 𝑥, 𝑦 ∈ R𝑛,

(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖.

This induces the Euclidean norm

‖𝑥‖ = √(𝑥, 𝑥).

Also define the Euclidean distance function

𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖

which makes R𝑛 a metric space.

Definition (Isometry). A map 𝑓 ∶ R𝑛 → R𝑛 is an isometry of R𝑛 if

∀𝑃 , 𝑄 ∈ R𝑛, 𝑑(𝑓(𝑃 ), 𝑓(𝑄)) = 𝑑(𝑃 , 𝑄).

Recall that an 𝑛 × 𝑛 matrix 𝐴 is orthogonal if

𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼.

For any square matrix 𝐴 we have

(𝐴𝑥, 𝐴𝑦) = (𝐴𝑥)𝑇(𝐴𝑦) = 𝑥𝑇𝐴𝑇𝐴𝑦 = (𝑥, 𝐴𝑇𝐴𝑦)

so we find that 𝐴 is orthogonal if and only if (𝐴𝑥, 𝐴𝑦) = (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ R𝑛.
Another point of view:

(𝑥, 𝑦) = 1
2

(‖𝑥 + 𝑦‖2 − ‖𝑥‖2 − ‖𝑦‖2)

so 𝐴 is orthogonal if and only if ‖𝐴𝑥‖ = ‖𝑥‖ for all 𝑥 ∈ R𝑛.
An example of isometry: let 𝑓(𝑥) = 𝐴𝑥 + 𝑏 where 𝑏 ∈ R𝑛, then

𝑑(𝑓(𝑥), 𝑓(𝑦)) = ‖𝐴(𝑥 − 𝑦)‖.

So 𝑓 is an isometry if and only if 𝐴 is orthogonal.
Surprisingly, it turns out all isometries have this form:

Theorem 1.1. Every isometry 𝑓 ∶ R𝑛 → R𝑛 is of the form 𝑓(𝑥) = 𝐴𝑥 + 𝑏
for some orthogonal matrix 𝐴 and some vector 𝑏 ∈ R𝑛.

Proof. Let 𝑒1, … , 𝑒𝑛 ∈ R𝑛 be the standard basis of R𝑛. Let 𝑏 = 𝑓(0), 𝑎𝑖 =
𝑓(𝑒𝑖) − 𝑏 for 𝑖 = 1, … , 𝑛. We want to show that 𝑎𝑖’s form an orthonormal basis.
Firstly

‖𝑎𝑖‖ = ‖𝑓(𝑒𝑖) − 𝑓(0)‖ = 𝑑(𝑓(𝑒𝑖), 𝑓(0)) = 𝑑(𝑒𝑖, 0) = ‖𝑒𝑖‖ = 1
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1 Eucldiean Geometry

so they have unit length. For 𝑖 ≠ 𝑗,

(𝑎𝑖, 𝑎𝑗) = −1
2

(‖𝑎𝑖 − 𝑎𝑗‖2 − ‖𝑎𝑖‖2 − ‖𝑎𝑗‖2)

= −1
2

(‖𝑓(𝑒𝑖) − 𝑓(𝑒𝑗)‖2 − 2)

= −1
2

(‖𝑒𝑖 − 𝑒𝑗‖2 − 2)

= 0

Thus 𝑎𝑖’s form an orthonormal basis of R𝑛 and it follows that the matrix 𝐴 with
columns 𝑎𝑖, … , 𝑎𝑛 is orthogonal.

Let 𝑔(𝑥) = 𝐴𝑥 + 𝑏 which is an isometry. We have 𝑔(𝑥) = 𝑓(𝑥) for 𝑥 =
0, 𝑒1, … , 𝑒𝑛. In addition,

𝑔−1(𝑥) = 𝐴−1(𝑥 − 𝑏) = 𝐴𝑇(𝑥 − 𝑏)

is an isometry so the composition ℎ = 𝑔−1 ∘ 𝑓 is an isometry fixing 0, 𝑒1, … , 𝑒𝑛.
It then suffices to show ℎ = id. Consider 𝑥 = ∑𝑛

𝑖=1 𝑥𝑖𝑒𝑖 ∈ R𝑛. Let 𝑦 = ℎ(𝑥) =
∑𝑛

𝑖=1 𝑦𝑖𝑒𝑖. Then

𝑑(𝑥, 𝑒𝑖)2 = ‖𝑥‖2 + 1 − 2𝑥𝑖

𝑑(𝑥, 0)2 = ‖𝑥‖2

𝑑(𝑦, 𝑒𝑖)2 = ‖𝑦‖2 + 1 − 2𝑦𝑖

𝑑(𝑦, 0)2 = ‖𝑦‖2

Since ℎ is an isometry, ℎ(0) = 0, ℎ(𝑒𝑖) = 𝑒𝑖 and ℎ(𝑥) = 𝑦, we have ‖𝑥‖ = ‖𝑦‖ so
𝑥𝑖 = 𝑦𝑖 for all 𝑖. Thus ℎ(𝑥) = 𝑥 for all 𝑥 ∈ R𝑛.

Remark.
Isom(R𝑛) = {all isometries of R𝑛}

is a group by composition. This is also known as the group of rigid motions of
R𝑛.

Example (Reflections in an affine hyperplane 𝐻 ⊂ R𝑛). Let

𝐻 = {𝑥 ∈ R𝑛 ∶ 𝑢 ⋅ 𝑥 = 𝑐}

where ‖𝑢‖ = 1 and 𝑐 ∈ R. Observe that 𝑢 is perpendicular to 𝐻 and so is a
normal vector. The reflection in 𝐻 is defined to be

𝑅𝐻 ∶ 𝑥 ↦ 𝑥 − 2(𝑥 ⋅ 𝑢 − 𝑐)𝑢.

It is an exercise in example sheet to show that this is an isometry. Observe that
if 𝑥 ∈ 𝐻 then 𝑅𝐻(𝑥) = 𝑥. If 𝑎 ∈ 𝐻, 𝑡 ∈ R then

𝑅𝐻(𝑎 + 𝑡𝑢) = (𝑎 + 𝑡𝑢) − 2𝑡𝑢 = 𝑎 − 𝑡𝑢.

Thus 𝑅𝐻 fixes exactly the points in 𝐻.
Conversely, suppose 𝑆 ∈ Isom(R𝑛) and 𝑆 fixes every point in 𝐻. Let 𝑎 ∈ 𝐻

and defind translation by 𝑎 as

𝑇𝑎(𝑥) = 𝑥 + 𝑎
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1 Eucldiean Geometry

which is clearly an isometry. Conjugate 𝑆 by 𝑇𝑎, we get

𝑅 = 𝑇−𝑎𝑆𝑇𝑎 ∈ Isom(R𝑛)

and 𝑅 fixes 𝐻′ = 𝑇−𝑎(𝐻). We choose to work with 𝐻′ since 0 ∈ 𝐻′, making it
a subspace of R𝑛. Explicitly, if 𝐻 = {𝑥 ∶ 𝑥 ⋅ 𝑢 = 𝑐} then 𝐻′ = {𝑥 ∶ 𝑥 ⋅ 𝑢 = 0}.
Then for all 𝑥 ∈ 𝐻′,

(𝑅𝑢, 𝑥) = (𝑅𝑢, 𝑅𝑥) = (𝑢, 𝑥) = 0.

Thus 𝑅𝑢 is orthogonal to 𝐻′, i.e. lies in the orthogonal complement of 𝐻′ in
R𝑛. Thus 𝑅𝑢 = 𝜆𝑢 for some 𝜆 ∈ 𝑅 such that 𝜆2 = 1. So 𝜆 = ±1.

Since 𝑅 fixes 0 ∈ R𝑛, 𝑅 is linear by the previous theorem and either 𝑅 = id
or 𝑅 is given by the matrix

⎛⎜⎜⎜
⎝

−1
1

⋱
1

⎞⎟⎟⎟
⎠

i.e. 𝑅𝐻′ . If 𝑅 = id then 𝑆 = id. If 𝑅 = 𝑅𝐻′ then 𝑆 = 𝑇𝑎𝑅𝐻′𝑇−𝑎. Check that

𝑆 ∶ 𝑥 ↦ 𝑥 − 𝑎 ↦ (𝑥 − 𝑎) − 2(𝑥 ⋅ 𝑢 − 𝑎 ⋅ 𝑢)𝑢 ↦ 𝑥 − 2(𝑥 ⋅ 𝑢 − 𝑐)𝑢

is a reflection. Thus if 𝑆 ∈ Isom(R𝑛) fixing 𝐻 and 𝑆 ≠ id then 𝑅 is the reflection
in 𝐻.

Remark. One can show that every isometry of R𝑛 is a composition of at most
𝑛 + 1 reflections (see example sheet 1).

From the previous theorem, the subgroup

{𝑓 ∈ Isom(R𝑛) ∶ 𝑓(0) = 0} = {𝑓(𝑥) = 𝐴𝑥 ∶ 𝐴𝐴𝑇 = 𝐼}

is naturally isomorphic to 𝑂(𝑛), the orthogonal group.
As for every 𝐴 ∈ 𝑂(𝑛), (det𝐴)2 = 1, we must have det𝐴 = ±1. We call

{𝐴 ∈ 𝑂(𝑛) ∶ det𝐴 = 1} the special orthgonal group, denoted 𝑆𝑂(𝑛).

Example (𝑂(2)).

𝐴 = (𝑎 𝑐
𝑏 𝑑) ∈ 𝑂(2) ⇔ 𝑎2 + 𝑐2 = 1, 𝑏2 + 𝑑2 = 1, 𝑎𝑏 + 𝑐𝑑 = 0

Set 𝑎 = cos 𝜃, 𝑐 = sin 𝜃 and 𝑏 = − sin𝜑, 𝑑 = cos𝜑 for some 0 ≤ 𝜃, 𝜑 ≤ 2𝜋. Then
we deduce

tan 𝜃 = tan𝜑 ∈ R ∪ {∞}

so
𝜃 = 𝜑 or 𝜃 = 𝜑 ± 𝜋.

The first case corresponds to

𝐴 = (cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 )
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1 Eucldiean Geometry

which is the rotation through 𝜃 about 0. As det𝐴 = 1, 𝐴 ∈ 𝑆𝑂(2). The second
case gives

𝐴 = (cos 𝜃 sin 𝜃
sin 𝜃 − cos 𝜃)

which we claim is a relfection: it fixes the line ℓ which passes through the origin
and forms an angle 𝜃/2 with the positive 𝑥-axis. det𝐴 = −1 so 𝐴 ∉ 𝑆𝑂(2).

Remark (Orientation). For a finite-dimensional vector space, its orientation
is an equivalence class of bases — let 𝑣1, … , 𝑣𝑛 and 𝑣′

1, … , 𝑣′
𝑛 be two bases, and

𝐴 = (𝐴𝑖𝑗) be the respective change-of-basis from {𝑣𝑖} to {𝑣′
𝑖}. These bases are

equivalent, i.e. give the same orientation, if det𝐴 > 0.

Definition. An isometry 𝑓(𝑥) = 𝐴𝑥 + 𝑏 is said to be orientation-preserving
if det𝐴 = 1, and orientation-reversing if det𝐴 = −1.

Example. 𝑂(3) Let’s study 𝑂(3) in detail. Consider first the case det𝐴 = 1,
then

det(𝐴 − 𝐼) = det(𝐴𝑇 − 𝐼) = det(𝐴(𝐴𝑇 − 𝐼)) = det(𝐼 − 𝐴).
Since 𝐴 is a 3 × 3 matrix, we must have det(𝐴 − 𝐼) = 0 so +1 is an eigenvalue.
Thus there exists 𝑣1 ∈ R3, ‖𝑣1‖ = 1 such that 𝐴𝑣1 = 𝑣1. Set 𝑊 = ⟨𝑣1⟩⟂, a plane.
Then for 𝑤 ∈ 𝑊,

(𝐴𝑤, 𝑣1) = (𝐴𝑤, 𝐴𝑣1) = (𝑤, 𝑣1) = 0
so 𝐴 is 𝑊-stable. Thus 𝐴|𝑊 is a rotation of the 2 dimensional space 𝑊. Choose
𝑣2, 𝑣3 to be an orthonormal basis of 𝑊, then 𝐴 has matrix representation with
respect to 𝑣1, 𝑣2, 𝑣3

⎛⎜
⎝

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎞⎟
⎠

Now suppose det𝐴 = −1. Then −𝐴 in some basis is of the above matrix
form. Thus 𝐴 is of the form

⎛⎜
⎝

−1 0 0
0 cos𝜑 − sin𝜑
0 sin𝜑 cos𝜑

⎞⎟
⎠

where 𝜑 = 𝜃 + 𝜋. This is a rotated reflection (in particular a pure reflection when
𝜑 = 0).

1.2 Curves in R𝑛

Definition (Curve). A curve 𝑇 in R𝑛 is a continuous map Γ ∶ [𝑎, 𝑏] → R𝑛.

A dissection 𝒟 is a sequence

𝑎 = 𝑡0 < 𝑡1 < … , 𝑡𝑁 = 𝑏 ∈ [𝑎, 𝑏].

Set 𝑃𝑖 = 𝑇 (𝑡𝑖) and let
𝑠𝒟 = ∑

𝑖
‖𝑃𝑖𝑃𝑖+1‖.
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1 Eucldiean Geometry

Definition (Length). The length of a curve Γ is

ℓ = sup
𝒟

𝑠𝒟

if this supremum exists (i.e. finite).

If 𝒟′ is a refinement of 𝒟 (has extra points added), then 𝑠𝒟 ≤ 𝑠𝒟′ by triangle
inequality. Let

mesh𝒟 = max
𝑖

(𝑡𝑖 − 𝑡𝑖−1).

Then if ℓ exists, we have
ℓ = lim

mesh 𝒟→0
𝑠𝒟.

Note. In fact we have

ℓ = min{ ̃ℓ ∶ ̃ℓ ≥ 𝑠𝒟 for all 𝒟}.

Proposition 1.2. If Γ is continuously differentiable, then

ℓ(Γ) = ∫
𝑏

𝑎
‖Γ′(𝑡)‖𝑑𝑡.

Proof. Assume 𝑛 = 3 to avoid excessive notation. Let

Γ(𝑡) = (𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡)).

If 𝑠 ≠ 𝑡 ∈ [𝑎, 𝑏], applying Mean Value Theorem to each 𝑓𝑖 gives us

𝑓𝑖(𝑡) − 𝑓𝑖(𝑠)
𝑡 − 𝑠

= 𝑓 ′
𝑖 (𝜉𝑖)

for some 𝑠 < 𝜉𝑖 < 𝑡. 𝑓 ′
𝑖 are uniformly continuous on [𝑎, 𝑏] so for all 𝜀 > 0 there

exists 𝛿 > 0 such that

|𝑡 − 𝑠| < 𝛿 ⟹ |𝑓 ′
𝑖 (𝜉𝑖) − 𝑓 ′

𝑖 (𝜉)| < 𝜀
3

∀𝜉 ∈ (𝑠, 𝑡).

So for all 𝜉 ∈ (𝑠, 𝑡),

∥Γ(𝑠) − Γ(𝑡)
𝑠 − 𝑡

− Γ′(𝜉)∥ = ‖(𝑓 ′
1(𝜉1), 𝑓 ′

2(𝜉2), 𝑓 ′
3(𝜉3)) − (𝑓 ′

1(𝜉), 𝑓 ′
2(𝜉), 𝑓 ′

3(𝜉))‖

< 𝜀
3

+ 𝜀
3

+ 𝜀
3

= 𝜀

i.e.
‖(Γ(𝑡) − Γ(𝑠)) − (𝑡 − 𝑠)Γ′(𝜉)‖ < 𝜀(𝑡 − 𝑠)

for all 𝜉 ∈ (𝑠, 𝑡). Specialise to 𝑡 = 𝑡𝑖, 𝑠 = 𝑡𝑖−1, 𝜉 = 𝑡𝑖+𝑡𝑖−1
2 and sum over 𝑖, we get

∑
𝑖

∥(Γ(𝑡𝑖) − Γ(𝑡𝑖−1)) − (𝑡𝑖 − 𝑡𝑖−1)Γ′ (𝑡𝑖 + 𝑡𝑖−1
2

)∥ < ∑
𝑖

𝜀(𝑡𝑖 − 𝑡𝑖−1) = 𝜀(𝑏 − 𝑎).
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1 Eucldiean Geometry

Now if mesh𝒟 < 𝛿 then the reverse triangle inequality gives

∣𝑠𝒟 − ∑
𝑖

(𝑡𝑖 − 𝑡𝑖−1)∥Γ′ (𝑡𝑖 + 𝑡𝑖−1
2

)∥∣ < 𝜀(𝑏 − 𝑎).

Finally, as ‖Γ′(𝑡)‖ is a continuous function of 𝑡, it is integrable so the summation
converges to ∫𝑏

𝑎
‖Γ′(𝑡)‖𝑑𝑡 as mesh𝒟 → 0. Thus

ℓ(Γ) = lim
mesh 𝒟→0

𝑠𝒟 = ∫
𝑏

𝑎
‖Γ′(𝑡)‖𝑑𝑡

as required.
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2 Spherical Geometry

2 Spherical Geometry
Notation. Let 𝑆2 ⊆ R3 be the unit sphere with centre 0. A great circle,
sometimes also called a (spherical) line, is 𝑆2 ∩ a plane through 0. For all non-
antipodal pair of points 𝑃 , 𝑄 ∈ 𝑆2, there is a unique line in 𝑆2 passing through
𝑃 and 𝑄. It is given by the intersection of 𝑆2 and the plane through 𝑃 , 𝑄, 0.

Definition (Distance on sphere). For 𝑃 , 𝑄 ∈ 𝑆2, the distance 𝑑(𝑃 , 𝑄) is the
length of the shorter of two line segments 𝑃𝑄 along the great circle through
𝑃 , 𝑄. 𝑑(𝑃 , 𝑄) = 𝜋 if 𝑃 and 𝑄 are antipodal.

Note.

𝑑(𝑃 , 𝑄) = angle between 𝐏 = 𝑂𝑃 and 𝐐 = 𝑂𝑄
= cos−1(𝐏 ⋅ 𝐐)

Definition (Spherical triangle). A sperical triangle, 𝐴𝐵𝐶 say, is defined like
a Euclidean triangle but with 𝐴𝐵, 𝐴𝐶, 𝐵𝐶 line segments on 𝑆2 with lengths
< 𝜋.

Notation. 𝐀 = 𝑂𝐴 etc.
Set

𝑛1 = 𝐂 × 𝐁
sin 𝑎

𝑛2 = 𝐀 × 𝐂
sin 𝑏

𝑛3 = 𝐁 × 𝐀
sin 𝑐

which are the unit normals to the plane 𝑂𝐵𝐶, 𝑂𝐴𝐶, 𝑂𝐴𝐵 pointing out of the
solid 𝑂𝐴𝐵𝐶. 𝛼, 𝛽, 𝛾 are the angles between the planes defining sides of 𝐴𝐵𝐶.
Note. The angle between 𝑛2 and 𝑛3 is 𝜋 + 𝛼 so 𝑛2 ⋅ 𝑛3 = − cos𝛼. Similarly for
the other two terms.

Theorem 2.1 (Spehrical cosine rule).

sin 𝑎 sin 𝑏 cos 𝛾 = cos 𝑐 − cos 𝑎 cos 𝑏.

Proof. We use

(𝐂 × 𝐁) ⋅ (𝐀 × 𝐂) = (𝐀 ⋅ 𝐂)(𝐁 ⋅ 𝐂) − (𝐂 ⋅ 𝐂)(𝐁 ⋅ 𝐀)

which we derived in IA Vector Calculus. Note that |𝐂| = 1 and

− cos 𝛾 = 𝑛1 ⋅ 𝑛2

= 𝐂 × 𝐁
sin 𝑎

⋅ 𝐀 × 𝐂
sin 𝑏

= (𝐀 ⋅ 𝐂)(𝐁 ⋅ 𝐂) − (𝐁 ⋅ 𝐀)
sin 𝑎 sin 𝑏

= cos 𝑏 cos 𝑎 − cos 𝑐
sin 𝑎 sin 𝑏

8



2 Spherical Geometry

Corollary 2.2 (Spherical Pythagoras Theorem). If 𝛾 = 𝜋
2 then

cos 𝑐 = cos 𝑎 cos 𝑏.

Theorem 2.3 (Spherical sine rule).

sin 𝑎
sin𝛼

= sin 𝑏
sin𝛽

= sin 𝑐
sin 𝛾

.

Proof. Use the identity

(𝐀 × 𝐂) × (𝐂 × 𝐁) = (𝐂 ⋅ (𝐁 × 𝐀))𝐂.

Note that LHS equals to

−(𝑛1 × 𝑛2) sin 𝑎 sin 𝑏

and note that the angle between 𝑛1 and 𝑛2 is 𝜋 + 𝛾.
Consider the plane through 0 that is orthogonal to 𝐂. We find

𝑛1 × 𝑛2 = 𝐂 sin 𝛾.

Thus the coefficient of 𝐂 is

𝐂 ⋅ (𝐁 × 𝐀) = − sin 𝑎 sin 𝑏 sin 𝛾.

By the symmetry cof triple product, it also equals to

𝐀 ⋅ (𝐂 × 𝐁) = − sin 𝑏 sin 𝑐 sin𝛼.

Equating them we get
sin 𝑐
sin 𝛾

= sin 𝑎
sin𝛼

.

Remark. Observe that for small 𝑎, 𝑏, 𝑐, piece of 𝑆2 is approximated better and
better by piece of R2. Formally,

sin 𝑎 = 𝑎 + 𝑂(𝑎3)

cos 𝑎 = 1 − 𝑎2

2
+ 𝑂(𝑎4)

Thus we can obtain Euclidean version of cosine and sine rule by setting 𝑎, 𝑏, 𝑐
small:

𝑎𝑏 cos 𝛾 = (1 − 𝑐2

2
) − (1 − 𝑎2

2
)(1 − 𝑏2

2
) + 𝑂(‖(𝑎, 𝑏, 𝑐)‖3)

𝑐2 + 2𝑎𝑏 cos 𝛾 = 𝑎2 + 𝑏2 + 𝑂(‖(𝑎, 𝑏, 𝑐)‖3)

Now we discuss the metric property of spherical geometry. If 𝛾 = 𝜋 then 𝐂
lines in the line segment 𝐴𝐵 so 𝑐 = 𝑎 + 𝑏. Otherwise, from Spherical cosine rule,

cos 𝑐 > cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏 = cos(𝑎 + 𝑏).

As cos is decresasing on [0, 𝜋] and 0 < 𝑐 < 𝜋, 0 < 𝑎 + 𝑏 < 2𝜋, we have

𝑐 < 𝑎 + 𝑏.

This gives us

9



2 Spherical Geometry

Corollary 2.4 (Spherical triangle inequality).

𝑑(𝑃 , 𝑄) + 𝑑(𝑄, 𝑅) ≥ 𝑑(𝑃 , 𝑅)

with equality if 𝑄 is in line segment 𝑃𝑅 of shorter length.

Thus we have shown that (𝑆2, 𝑑) is a metric space.

Proposition 2.5. Given a curve Γ on 𝑆2 ⊆ R3 from 𝑃 to 𝑄 with length ℓ,
we have

ℓ ≥ 𝑑(𝑃 , 𝑄).

Moreover, if ℓ = 𝑑(𝑃 , 𝑄), then the image of Γis a spherical line segment.

Proof. Let Γ ∶ [0, 1] → 𝑆2 with length ℓ.For any dissection 𝒟 of [0, 1] with

0 = 𝑡1 < 𝑡1 < ⋯ < 𝑡𝑁 = 1

and 𝑃𝑖 = Γ(𝑡𝑖). Define two sums

̃𝑠𝒟 =
𝑁

∑
𝑖=1

𝑑(𝑃𝑖−1, 𝑃𝑖) > 𝑠𝒟 =
𝑁

∑
𝑖=1

|𝑃𝑖−1𝑃 |

because the arc is longer than a sector, i.e. 2𝜃 < 2 sin 𝜃.
Suppose ℓ < 𝑑(𝑃 , 𝑄), we can deduce that there exists 𝜀 > 0 such that

(1 + 𝜀)ℓ < 𝑑(𝑃 , 𝑄). As lim𝜃→0
sin 𝜃

𝜃 = 1,

2𝜃 ≤ (1 + 𝜀)2 sin 𝜃

for each small 𝜃 > 0.
Γ is uniformly continuous on [0, 1] so we can choose a refined 𝒟 such that

𝑑(𝑃𝑖−1, 𝑃𝑖) ≤ (1 + 𝜀)|𝑃𝑖−1𝑃𝑖|

for all 𝑖. Therefore

̃𝑠𝒟 ≤ (1 + 𝜀)𝑠𝐷 ≤ (1 + 𝜀) sup
𝒟

𝑠𝒟 = (1 + 𝜀)ℓ < 𝑑(𝑃 , 𝑄).

But ̃𝑠𝒟 ≥ 𝑑(𝑃 , 𝑄) by repeated use of spherical triangle inequality. Absurd.
Suppose instead ℓ = 𝑑(𝑃 , 𝑄) for some Γ ∶ [0, 1] → 𝑆2. Then for all 𝑡 ∈ [0, 1],

𝑑(𝑃 , 𝑄) = ℓ
= lengthΓ|[0,𝑡] + lengthΓ|[𝑡,1]

≥ 𝑑(𝑃 , Γ(𝑡)) + 𝑑(Γ(𝑡), 𝑄)
≥ 𝑑(𝑃 , 𝑄)

Thus we have equality throughout. By spherical triangle equality the image of Γ
is the shorter line segment from 𝑃 to 𝑄.

Remark. If Γ is the shortest path between 𝑃 and 𝑄 then Γ is a spherical line
segment. Furthermore, from argument of the above proposition

lengthΓ|[0,𝑡] = 𝑑(𝑃 , Γ(𝑡))

so the parameterisation of Γ is monotonic. In further courses in geometry such
as IID Differential Geometry, such Γ’s are sometimes called minimising geodesics.
See example sheet 1 for a similar but easier discussion of geodesics in Euclidean
space.
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2 Spherical Geometry

2.1 Area of spherical triangles

Proposition 2.6 (Gauss-Bonnet for 𝑆2). If Δ is a spherical triangle with
angles 𝛼, 𝛽, 𝛾, then

areaΔ = (𝛼 + 𝛽 + 𝛾) − 𝜋.

Proof. We assume the area of 𝑆2 is 4𝜋 and the additivity of areas.
A double line with angle 0 < 𝛼 < 𝜋 is two antipodal regions on 𝑆2 cut out by

planes through antipodal 𝐴, 𝐴′ ∈ 𝑆2 where 𝛼 is the angle between planes. The
area of such double line is 4𝛼. Then a triangle Δ = 𝐴𝐵𝐶 is the intersection of
3 single lines. The Δ and its antipodal Δ′ lie in each of the three double lines
with angles 𝛼, 𝛽, 𝛾. Any other point 𝑃 ∈ 𝑆2 \ (Δ ∪ Δ′) is in only one double line.
Thus

4(𝛼 + 𝛾 + 𝛾) = 4𝜋 + 2 ⋅ (areaΔ + areaΔ′).

The result thus follows.

Remark.

1. spherical triangles have 𝛼 + 𝛽 + 𝛾 > 𝜋. As the area of a triangle tends to
0, 𝛼 + 𝛽 + 𝛾 → 𝜋. Thus Euclidean space is an approximation of sphere..

2. If 𝑀 is a convex 𝑛-gon in 𝑆2 where 𝑛 ≥ 3, i.e. for all 𝑃 , 𝑄 ∈ 𝑀, the shorter
line segment 𝑃𝑄 is in 𝑀. Let the interior angles be 𝛼1, … , 𝛼𝑛. Then

M =
𝑛

∑
𝑖=1

𝛼𝑖 − (𝑛 − 2)𝜋

by cutting 𝑀 into triangles.

2.2 Möbius geometry
Consider C∞ = C ∪ {∞}.

Definition (Stereographic projection). The stereographic projection is a
map 𝜋 ∶ 𝑆2 → 𝐶∞ where the north pole is mapped to ∞ and other point is
mapped to the intersection of the line through 𝑃 and the north pole and the
complex plane.

We will use 𝜁 = 𝑥 + 𝑖𝑦 to denote a point in C∞. From similar triangles we
get

𝜋(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑖𝑧
1 − 𝑧

.

Lemma 2.7. If 𝜋′ ∶ 𝑆2 → C∞ is the stereographic projection from the soth
pole (0, 0, −1) then

𝜋′(𝑃 ) = 1
𝜋(𝑃)

for all 𝑃 ∈ 𝑆2.

11



2 Spherical Geometry

Proof. Easy once we write down the coordinates. Suppose 𝑃 = (𝑥, 𝑦, 𝑧). Then

𝜋(𝑃) = 𝑥 + 𝑖𝑦
𝑧

𝜋′(𝑃 ) = 𝑥 + 𝑖𝑦
1 + 𝑧

and so
𝜋(𝑃) ⋅ 𝜋′(𝑃 ) = 𝑥2 + 𝑦2

1 − 𝑧2 = 1

as 𝑆2 = {𝑥2 + 𝑦2 + 𝑧2 = 1}.

Note. 𝜋′ ∘ 𝜋−1 ∶ C∞ → C∞ takes 𝜁 → 1
𝜁 , the inversion in the circle |𝜁| = 1.

Antipodal points
If 𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝑆2, then 𝜋(𝑃) = 𝑥+𝑖𝑦

1−𝑧 ∈ C∞, 𝜋(−𝑃) = −𝑥−𝑖𝑦
1+𝑧 so

𝜋(𝑃) ⋅ 𝜋(−𝑃) = −𝑥2 + 𝑦2

1 − 𝑧2 = −1

so 𝜋(−𝑃) = − 1
𝜁 where 𝜁 = 𝑥+𝑖𝑦

1−𝑧 .

2.2.1 Möbius Transformations

Möbius transformations act on C∞ and form a group 𝐺. Given any matrix with
complex entries 𝐴 = ( 𝑎 𝑏

𝑐 𝑑 ), define

C∞ → C∞

𝜁 ↦ 𝑎𝜁 + 𝑏
𝑐𝜁 + 𝑑

For all 𝜆 ∈ C∗ = C \ {0}, 𝜆𝐴 defines the same Möbius transformation. The
converse is also true: if 𝐴1, 𝐴2 define the same Möbius transformation then there
exists 𝜆 such that 𝐴1 = 𝜆𝐴2. Therefore from group theory we know

𝐺 ≅ PGL(2,C) = GL(2,C)/C∗.

Thus it suffices to assume det𝐴 = 1. But this does not eliminate all ambiguities
— if 1 = det(𝜆 ̃𝐴) = 𝜆2 det ̃𝐴 = 𝜆2 then 𝜆 = ±1. Thus

𝐺 ≅ PSL(2,C) = SL(2,C)/{±1}.

On 𝑆2 we have rotations SO(3) acting as isometries (see example sheet).
Which Möbius transformations do they correspond to?

Theorem 2.8. Via the stereographic projection, every rotation of 𝑆2 induces
a Möbius transformation defiend by a matrix in SU(2) ≤ SL(2,C).

Proof. Denote by 𝑟(𝑧, 𝜃) the rotation about the 𝑧-axis through 𝜃. Then it
corresponds to the Möbius map 𝜁 ↦ 𝑒𝑖𝜃𝜃 with a matrix

(𝑒𝑖𝜃/2 0
0 𝑒−𝑖𝜃/2) ∈ SU(2).

12



2 Spherical Geometry

Next, the rotation 𝑟(𝑦, 𝜋
2 ) has matrix

⎛⎜
⎝

0 0 1
0 1 0

−1 0 0
⎞⎟
⎠

correspond to 𝜁 = 𝑥+𝑖𝑦
1−𝑧 ↦ 𝜁′ = 𝑧+𝑖𝑦

1+𝑥 since by drawing a diagram we know

−1 ↦ ∞
1 ↦ 0
𝑖 ↦ 𝑖

The corresponding unique Möbius map is then 𝜁′ = 𝜁−1
𝜁+1 . We check that

𝜁 − 1
𝜁 + 1

= 𝑥 + 𝑖𝑦 − 1 + 𝑧
𝑥 + 𝑖𝑦 + 1 − 𝑧

= 𝑥 − 1 + 𝑧 + 𝑖𝑦
𝑥 + 1 − (𝑧 − 𝑖𝑦)

= (𝑧 + 𝑖𝑦)(𝑥 − 1 + 𝑧 + 𝑖𝑦)
(𝑥 + 1)(𝑧 + 𝑖𝑦) + (𝑥2 − 1)

= (𝑧 + 𝑖𝑦)(𝑥 − 1 + 𝑧 + 𝑖𝑦)
(𝑥 + 1)(𝑧 + 𝑖𝑦 + 𝑥 − 1)

= 𝜁′

does give the rotation we want.
We claim that SO(3) is generated by 𝑟(𝑦, 𝜋

2 ) and 𝑟(𝑧, 𝜃). Observe that

𝑟(𝑥, 𝜑) = 𝑟(𝑦, 𝜋
2

)𝑟(𝑧, 𝜑)𝑟(𝑦, −𝜋
2

)

which is a conjugation. To check this, note that the (1, 0, 0) is an eigenvector and
the map is orientation-preserving (and some more geometric arguments). Also for
all 𝑥 ∈ 𝑆2 ⊆ R3, there exists 𝜑, 𝜓 such that 𝑔 = 𝑟(𝑧, 𝜓)𝑟(𝑥, 𝜑) which maps 𝑣 to
(1, 0, 0): choose 𝑟(𝑥, 𝜑) rotating 𝑣 to the (𝑥, 𝑦)-plane. Then 𝑟(𝑣, 𝜃) = 𝑔−1𝑟(𝑥, 𝜃)𝑔
and the claim follows.

Thus via projection, any rotation of 𝑆2 corresponds to a finite product of
Möbius transformations with matrices in SU(2).

The theorem gives a group homomorphism

SO(3) → PSU(2) ≅ SU(2)/{±𝐼}

which is in fact surjective, so an isomrphism.

Theorem 2.9. The group SO(3) of rotations of 𝑆2 correponds precisely to
the subgroup PSU(2) ≅ SU(2)/{±𝐼} of Möbius transformations acting on
C∞.

Proof. Let 𝑔 ∈ PSU(2) ≤ 𝐺, 𝑔(𝑧) = 𝑎𝑧−𝑏
𝑏𝑧+𝑎 . Suppose 𝑔(0) = 0, so 𝑏 = 0, 𝑎𝑎 = 1

so let 𝑎 = 𝑒𝑖𝜃/2 where 𝜃 ∈ R. Then 𝑔 corresponds to 𝑟(𝑧, 𝜃). In general, 𝑔(0) =
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2 Spherical Geometry

𝑤 ∈ 𝐶∞. Let 𝑄 ∈ 𝑆2, 𝜋(𝑄) = 𝑤. Choose 𝐴 ∈ SO(3) with 𝐴(𝑄) = (0, 0, −1).
Let 𝛼 ∈ PSU(2) be the correponding Möbius map in PSU(2). Thus 𝛼(𝑤) = 0
and 𝛼 ∘ 𝑔(0) = 0. So 𝛼 ∘ 𝑔 correponds to an element 𝐵 in PSU(2), and thus 𝑔
corresponds to 𝐴−1𝐵.

Remark. THa mep
SU(2)/{±𝐼} ≅ SO(3)

is a double cover.
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3 Triangulations and the Euler number

3 Triangulations and the Euler number
First introduce one more “geometry”: the locally Euclidean torus.

Definition (Torus). The torus 𝑇 is the set R2/Z2of equivalence classes of
(𝑥, 𝑦) ∈ R2 with equivalence relation

(𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) ⇔ 𝑥1 − 𝑥2, 𝑦1, 𝑦2 ∈ Z.

Thus a point in 𝑇 is a coset (𝑥, 𝑦) + Z2 of the subgroup Z2 of (R2, +).
For a closed square 𝑄 ⊆ R2 with side length 1, 𝑇 is obtained by identifying

the opposite sides.
Define the distance 𝑑, for 𝑃1, 𝑃2 ∈ 𝑇

𝑑(𝑃1, 𝑃2) = min{|𝑣1 − 𝑣2| ∶ 𝑣1, 𝑣2 ∈ R2, 𝑣𝑖 + Z2 = 𝑃𝑖}.

It is easy to check (𝑇 , 𝑑) is a metric space.
Let 𝑄0 be the interior of 𝑄. The natural map

𝑓 ∶ 𝑄0 → 𝑇
𝑣 ↦ 𝑣 + Z2

is a bijection onto an open set 𝑈 = 𝑓(𝑄0) ⊆ 𝑇. Moreover 𝑓 ∶ 𝑄0 → 𝑈 is
a homeomorphism. Let 𝑃 ∈ 𝑄. 𝑓 restricted to small open disc about 𝑃 is
an isometry onto the image. Such 𝑑 (on 𝑇) is said to correspond to a locally
Euclidean metric on 𝑇.

𝑇 maybe embedded in R3 but the distance function we get by considering
curves on 𝑇 ⊆ R3 is not the same as the locally Euclidean distance.

Definition (Topological triangle). A topological triangle on 𝑋 = 𝑆2 or 𝑇
(or in general, any metric space 𝑋) is the image 𝑅 ⊆ 𝑋 of a closed Euclidean
triangle △ ⊆ R2 under a homeomorphism △ → 𝑅.

For example, any spherical triangle is a topological triangle, by using radial
projection from 0 to an affine plane in R2.

Definition (Topological triangulation). A (topological) triangulation 𝜏 of 𝑋
is a finite collection of topologtical triangles which cover 𝑋 and satisfy

1. every two topological triangles of 𝜏 are either disjoint, or meet in exactly
one edge, or meet in exactly one vertex.

2. each edge belongs to exactly two triangles.

Definition (Euler number). The Euler number 𝑒 = 𝑒(𝑋, 𝜏) is

𝑒 = 𝐹 − 𝐸 + 𝑉

where 𝐹 = #faces in 𝜏, 𝐸 = #edges in 𝜏 and 𝑉 = #vertices in 𝜏.

Fact (From algebraic topology). 𝑒 is independent of the choice of 𝜏, i.e. 𝑒 = 𝑒(𝑋).
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3 Triangulations and the Euler number

Example. (See pictures.)
In both examples we use geodesic triangles, i.e. used spherical triangles on

𝑆2 and Euclidean triangles on 𝑄0.

Proposition 3.1. Each geodesic triangulation of 𝑆2, repsectively 𝑇, has
𝑒 = 2, respectively 0.

Remark. The results also hold without the geodesic assumption but we will
not prove it in this course.

Proof. Denote the faces △1, … , △𝐹 and 𝜏𝑖 = 𝛼𝑖 +𝛽𝑖 +𝛾𝑖, 𝑖 = 1, … , 𝐹 the interior
angles. Then ∑𝐹

𝑖=1 𝜏𝑖 = 2𝜋𝑉. Also 3𝐹 = 2𝐸 so 𝐹 = 2𝐸 − 2𝐹.

• 𝑆2: Gauss-Bonnet says area△𝑖 = 𝜏𝑖 − 𝜋 so

4𝜋 =
𝐹

∑
𝑖=1

area△𝑖

=
𝐹

∑
𝑖=1

(𝜏𝑖 − 𝜋)

= 2𝜋𝑉 − 𝜋𝐹
= 2𝜋𝑉 − 2𝜋𝐸 + 2𝜋𝐹
= 2𝜋𝑉

so 𝑒 = 2.

• 𝑇: 𝜏𝑖 = 𝜋 for all 𝑖 so

2𝜋𝑉 =
𝐹

∑
𝑖=1

𝜏𝑖 = 𝜋𝐹

2𝑉 = 𝐹 = 2𝐸 − 2𝐹

thus 𝑒 = 0.

Remark. We can use topological polygonal decomposition of 𝑋 and the propo-
sition above still holds. The Euler’s formula for 𝑆2 is

𝑉 − 𝐸 + 𝐹 = 2.
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4 Hyperbolic geometry

4 Hyperbolic geometry
There are three “classical” types of “geometries” and we have seen two of them:
Euclidean and spherical. The third type is hyperbolic geometry. We shall require
the concept of Riemannian metric on an open 𝑈 ⊆ R2.

4.1 Revision of differentiability
It would be convenient to recall from IA Analysis I and IB Analysis I facts about
the derivatives and make precise sense of the differentials.

Let 𝑈 ⊆ R𝑛 be an open set, 𝑓 = (𝑓1, … , 𝑓𝑚) ∶ 𝑈 → R𝑚. 𝑓 is smooth, i.e. 𝐶∞,
if each 𝑓𝑖 has continuous partial derivatives of every order. In particular, 𝐶∞

implies the existence of continuous derivatives of 1st order so it is differentiable.
The derivatives of 𝑓 at 𝑎 ∈ 𝑈 is a linear map 𝑑𝑓𝑎 ∶ R𝑛 → R𝑚 such that

lim
ℎ→0

‖𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑑𝑓𝑎 ⋅ ℎ‖
‖ℎ‖

= 0.

If 𝑚 = 1, 𝑑𝑓𝑎 is determined by

( 𝜕𝑓
𝜕𝑥1

(𝑎), … , 𝜕𝑓
𝜕𝑥𝑛

(𝑎))

via
𝑑𝑓𝑎 ∶ (ℎ1, … , ℎ𝑛) ↦

𝑛
∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(𝑎)ℎ𝑖𝑖.

For general 𝑚, we may use the Jacobian matrix

𝐽(𝑓)𝑎 = ( 𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑎))

and use matrix multiplication

ℎ ↦ 𝐽(𝑓)𝑎ℎ.

Example. Consider a holomorphic, i.e. analytic function function of complex
variable 𝑓 ∶ 𝑈 → C where 𝑈 ⊆ C is open, with derivative 𝑓 ′(𝑧) such that

lim
𝑤→0

|𝑓(𝑧 + 𝑤) − 𝑓(𝑧) − 𝑓 ′(𝑧)𝑤|
|𝑤|

= 0.

Suppose 𝑓 ′(𝑧) = 𝑎 + 𝑖𝑏 and 𝑤 = ℎ1 + 𝑖ℎ2, then

𝑓 ′(𝑧)𝑤 = (𝑎ℎ1 − 𝑏ℎ2) + 𝑖(𝑎ℎ2 + 𝑏ℎ1)

Now identify C ≅ R2, 𝑓 ∶ 𝑈 → R2 has derivative 𝑑𝑓𝑧 ∶ R2 → R2 given by

(𝑎 −𝑏
𝑏 𝑎 )

Chain rule: let 𝑈 ⊆ R𝑛, 𝑉 ⊆ R𝑝 both open, 𝑓 ∶ 𝑈 → R𝑚, 𝑔 ∶ 𝑉 → 𝑈 both
smooth. THen 𝑓∘ ∶ 𝑉 → R𝑚 has for all 𝑝 ∈ 𝑉,

𝑑(𝑓 ∘ 𝑔)𝑝 = (𝑑𝑓)𝑔(𝑝) ∘ (𝑑𝑔)𝑝

or in terms or Jacobians,

𝐽(𝑓 ∘ 𝑔)𝑝 = 𝐽(𝑓)𝑔(𝑝) ⋅ 𝐽(𝑔)𝑝

where ⋅ denotes matrix multiplication.
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4 Hyperbolic geometry

4.2 Riemannian metrics on open sets in R2

Use the coordinates (𝑢, 𝑣) ∈ R2. Let 𝑉 ⊆ R2 be open.

Definition (Riemannian metric). A Riemannian meric is define by giving
𝐶∞ functions 𝐸, 𝐹 , 𝐺 ∶ 𝑉 → R such that

(𝐸(𝑝) 𝐹(𝑝)
𝐹(𝑝) 𝐺(𝑝))

is a positive-definite matrix for all 𝑝 ∈ 𝑉.

Hence a Riemannian metric defines an inner product ⟨⋅, ⋅⟩𝑝 on R2.

Remark. There are two ways to view R2: one way is the standard vector space
R2, which has a distinguished zero vector. The other is the affine space A2

(space of points) with operation

point + vector = point.

So the inner product could be thought of an operation on the affine space, with
𝑝 identified as the zero.

Let 𝑒1, 𝑒2 be the standard basis of R2. Then given the inner product defined
above,

⟨𝑒1, 𝑒1⟩𝑝 = 𝐸(𝑝)
⟨𝑒1, 𝑒2⟩𝑝 = 𝐹(𝑝)
⟨𝑒2, 𝑒2⟩𝑝 = 𝐺(𝑝)

Notation. Use 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 to denote a family of inner products.
For pedagogical purpose it might be helpful to explain the origin of the

notation 𝑑𝑢, 𝑑𝑏. Let 𝑢, 𝑣 ∶ 𝑉 → R be the components of the coordinates, which
are 𝐶∞. Since they are linear maps, their derivatives are just themselves, i.e.
for all 𝑝 ∈ 𝑉

(𝑑𝑢)𝑝 ∶ R2 → R
(ℎ1, ℎ2) ↦ ℎ1

(𝑑𝑣)𝑝 ∶ R2 → R
(ℎ1, ℎ2) ↦ ℎ2

Since the derivatives do not depend on 𝑝, we write 𝑑𝑢, 𝑑𝑣 for brevity, which are
elements of the dual space (R2)∗. Furthermore, 𝑑𝑢, 𝑑𝑣 form the dual basis to
standard basis 𝑒1, 𝑒2 of R2. Then 𝑑𝑢2, 𝑑𝑢𝑑𝑣, 𝑑𝑣2 are symmetric bilinear forms
on R2, with

𝑑𝑢2(ℎ, 𝑘) = 𝑑𝑢(ℎ)𝑑𝑢(𝑘)

𝑑𝑢𝑑𝑣(ℎ, 𝑘) = 1
2

(𝑑𝑢(ℎ)𝑑𝑣(𝑘) + 𝑑𝑢(𝑘)𝑑𝑣(𝑘))

𝑑𝑣2(ℎ, 𝑘) = …

with matrices given by ...
and so 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 is indeed the bilinear form ( 𝐸 𝐹

𝐹 𝐺 ).
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4 Hyperbolic geometry

Definition (Length). The length with repsect to a Riemannian metric of
smooth curve 𝛾 = (𝛾1, 𝛾2) ∶ [0, 1] → 𝑉 ⊆ R2 is

∫
1

0
⟨ ̇𝛾, ̇𝛾⟩𝛾(𝑡)𝑑𝑡 = ∫

1

0
(𝐸 ̇𝛾2

1 + 2𝐹 ̇𝛾1 ̇𝛾2 + 𝐺 ̇𝛾2
2)1/2𝑑𝑡.

Note that this is compatible with the definition of length in Euclidean metric,
with 𝐸 = 𝐺 = 1, 𝐹 = 0.

Definition. The area with respect to a Riemannian metric of a region 𝑊 ⊆ 𝑉
is defined as

∫
𝑊

(𝐸𝐺 − 𝐹 2)1/2𝑑𝑢𝑑𝑣

whenever the integral exists.

Note that 𝐸𝐺 − 𝐹 2 = det( 𝐸 𝐹
𝐹 𝐺 ), the Gram determinant.

Example. Let 𝑉 = R2 with Riemannian metric

4(𝑑𝑢2 + 𝑑𝑣2)
(1 + 𝑢2 + 𝑣2)2 .

Recall the stereographic projection

𝜋 ∶ 𝑆2 \ {𝑁} → R2

(𝑥, 𝑦, 𝑧) ↦ (𝑢, 𝑣)

For all 𝑃 ≠ 𝑁 ∈ 𝑆2 have 𝜋(𝑃) ∈ R2 then the Riemannian metric above gives
⟨⋅, ⋅⟩𝜋(𝑝).

The tangent plane to 𝑆2 at 𝑃 is

{𝑥 ∈ R3 ∶ 𝑥 ⋅ 𝑂𝑃 = 0}.

Then (𝑑𝜋−1)𝜋(𝑝) identifies ⟨⋅, ⋅⟩𝜋(𝑝) with restriction of standard inner product on
R2 to the tangent plane.

Missed 2 lectures
Let

𝐺𝐷 = {Möbius transformations sending 𝐷 onto 𝐷} ≅ PSL(2,R).

1. 𝐺𝐷 acts transitively on the hyperbolic lines in 𝐷 (and on paris ℓ, 𝑃 ∈ ℓ).

2. The length-minimizing curves on 𝐷 are segments of hyperbolic lines pa-
rameterised monotonically.

Recall the notation 𝜌(⋅, ⋅), the hyperbolic distance makes sense on 𝐻 and on
𝐷.

Lemma 4.1.

1. Rotations 𝑧 ↦ 𝑒𝑖𝜃𝑧, 𝜃 ∈ R are in 𝐺𝐷.

2. If 𝑎 ∈ 𝐷, then
𝑔(𝑧) = 𝑧 − 𝑎

1 − 𝑎𝑧
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4 Hyperbolic geometry

is in 𝐺𝐷.
Proof.

1. The map is clearly linear and preserves both |𝑧| and |𝑑𝑧|, and thus the
metric

4|𝑑𝑧|2

(1 − |𝑧|2)2 .

2. 𝑔 send {|𝜁| = 1} to itself: if |𝜁| = 1 then

|1 − 𝑎𝜁| = |𝜁(1 − 𝑎𝜁)| = |𝜁 − 𝑎| = |𝜁 − 𝑎| ≠ 0

unless 𝑎 = 0 in which case 𝑔(𝑧) = 𝑧. Thus |𝑔(𝜁) = 1. Also 𝑔(𝑎) = 0 so
𝑔 ∈ 𝐺𝐷.

This does not exhaust all elements of 𝐺𝐷 yet. But in example sheet we will
show every 𝑔 ∈ 𝐺𝐷 is of the form

𝑔(𝑧) = 𝑒𝑖𝜃 𝑧 − 𝑎
1 − 𝑎𝑧

for some 𝑎 ∈ 𝐷, 𝜃 ∈ 𝑅, and 𝐺𝐷 ⊂ Isom(𝐷) is a subgroup of index 2.

Proposition 4.2. If 0 ≤ 𝑟 < 1 then

𝜌(0, 𝑟) = 𝜌(0, 𝑒𝑖𝜃𝑟) = 2 tanh−1 𝑟.

In general, for 𝑧1, 𝑧2 ∈ 𝐷,

𝜌(𝑧1, 𝑧2) = 2 tanh−1 ∣ 𝑧1 − 𝑧2
1 − 𝑧1𝑧2

∣ .

Proof. The first equality is clear from the above lemma. Now let 𝛾(𝑡) = 𝑡, 0 ≤
𝑡 ≤ 𝑟, a hyperbolic line segment through 0 and 𝑟. Then from definitions the
length is

𝜌(0, 𝑟) = ∫
𝑟

0

2
1 − 𝑡2 𝑑𝑡 = 2 tanh−1 𝑟.

For the general case, let ℓ be the hyperbolic line through 𝑧1, 𝑧2. Apply

𝑔(𝑧) = 𝑧 − 𝑧1
1 − 𝑧1𝑧

which is an isometry by the above lemma. Then 𝑔(ℓ) is a diameter. Further
rotate about 0 to achieve 𝑔(𝑧2) = 𝑟 ∈ R+. Then

𝑟 = |𝑔(𝑧2)| = ∣ 𝑧2 − 𝑧2
1 − 𝑧1𝑧2

∣

and
𝜌(𝑧1, 𝑧2) = 𝜌(0, 𝑟) = 2 tanh−1 𝑟.
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4 Hyperbolic geometry

Remark. When there is a “distinguished” point, it is sometimes convenient to
send it to 0 ∈ 𝐷 (and then use the disc model).

In Euclidean geometry, we know that there is a unique line through a give
point perpendicular to a given line. Similarly, we will show that

Proposition 4.3. For all points 𝑃 and hyperbolic lines ℓ such that 𝑃 ∉ ℓ,
there exists a unique ℓ′, 𝑃 ∈ ℓ′ such that ℓ′ meet ℓ orthogonally, in 𝑄 say,
and

𝜌(𝑃 , 𝑄) ≤ 𝜌(𝑃 , �̃�)

for all �̃� ∈ ℓ, with equality if and only if �̃� = 𝑄.

Proof. Example sheet.

The next lemma concerns “reflections” in hyperbolic plane:

Lemma 4.4. Suppose 𝑔 is an isometry of 𝐻 and 𝑔 fixes every point in
𝐿+ ⊆ 𝐻. Then either 𝑔 = id𝐻 or 𝑔(𝑧) = −𝑧, i.e. reflection in the 𝑦-axis.

Proof. Let 𝑃 ∈ 𝐻, 𝑃 ∉ 𝐿+. Then there exists a unique ℓ ≠ 𝑃 , ℓ′ ⟂ 𝐿+. Theus
ℓ′ must be a semi-circle. Let 𝑄 = ℓ ∩ 𝐿+. As 𝑔(𝑄) = 𝑄, 𝜌(𝑃 , 𝑄) = 𝜌(𝑔(𝑃 ), 𝑄).
Then 𝑔(𝑃 ) ∈ ℓ′ by the properties of ℓ′ and the uniqueness of ℓ′. Thus we must
have either 𝑔(𝑃 ) = 𝑃 or 𝑔(𝑃 ) = 𝑃 ′.

Suffices to show if 𝑔(𝑃 ) = 𝑃 then 𝑔 = id𝐻 (for if 𝑔(𝑃 ) = 𝑃 ′ then compose
with the isometry 𝑧 ↦ −𝑧). Let 𝑔(𝑃 ) = 𝑅. Wlog 𝑃 ∈ 𝐻+ = {𝑧 ∈ 𝐻 ∶ Re 𝑧 > 0}
and consider any 𝐴 ∈ 𝐻+. If 𝑔(𝐴) = 𝐴′ then 𝜌(𝐴′, 𝑃 ) = 𝜌(𝐴, 𝑃 ). But

𝜌(𝐴′, 𝑃 ) = 𝜌(𝐴′, 𝐵) + 𝜌(𝐵, 𝑃) = 𝜌(𝐴, 𝐵) + 𝜌(𝐵, 𝑃) = 𝜌(𝐴, 𝑃 )

and 𝐵 ∈ ℓ𝐴𝑃, contradicting the triangle inequality.

We call 𝑅 ∶ 𝐻 → 𝐻, 𝑧 ↦ −𝑧 the (hyperbolic) relfection in 𝐿+. Now we can
extend the definition to every hyperbolic line: for each hyperbolic line ℓ ∈ 𝐻
with 𝑇 ∈ PSL(2,R) chosen such that 𝑇 (ℓ) = 𝐿+, we call

𝑅ℓ = 𝑇 −1𝑅𝑇

the reflection in ℓ. By proposition above, 𝑅ℓ is the unique non-identity isometry
of 𝐻 fixing ℓ.

Exercise. It is instructive to write out the reflections in ℓ ⊆ 𝐷 using an isometry
𝐷 → 𝐻 and Q4 on example sheet 2.

4.3 Hyperbolic triangle

Definition (Hyperbolic triangle). A hyperbolic triangle △ is the region
bounded by 3 hyperbolic line segments, including the extreme cases of
vertices “at infinity” (i.e. in R ∪ {∞} for 𝐻, in {|𝜁| = 1} for 𝐷) (in this case
the angle is 0).
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4 Hyperbolic geometry

Theorem 4.5 (Gauss-Bonnet for hyperbolic triangle). For each 𝑇 = △𝐴𝐵𝐶
with angles 𝛼, 𝛽, 𝛾 ≥ 0, then

area𝑇 = 𝜋 − 𝛼 − 𝛽 − 𝛾.

Proof. Use the 𝐻 model. Recall that for a region 𝑅 ⊆ 𝐻, the area is computed
as

∫ ∫
𝑅

𝑑𝑥𝑑𝑦
𝑦2 .

First do the case when 𝛾 = 0, so 𝐶 is “at infinity” (𝑖𝑛R or ∞). Wlog 𝐶 = ∞
(apply 𝑔 ∈ PSL(2,R). Then 𝐴𝐶 and 𝐵𝐶 are in vertical half-lines and 𝐴𝐵 is an
arc of semi-circle. Use 𝑧 ↦ 𝑧 + 𝑎, 𝑎 ∈ R to ensure the semi-circle is centred at 0,
𝑧 ↦ 𝑏𝑧, 𝑧 > 0 to achieve radius 1. Thus wlog

𝐴𝐵 ⊆ ({𝑥2 + 𝑦2 = 1} ∩ {𝑦 > 0}).

Then

area𝑇 = ∫
cos 𝛽

cos(𝜋−𝛼)
∫

∞

(1−𝑥2)1/2

𝑑𝑦𝑑𝑥
𝑦2

= ∫
cos 𝛽

cos(𝜋−𝛼)

1
(1 − 𝑥2)1/2 𝑑𝑥

= − arccos ∣
cos 𝛽

cos(𝜋−𝛼)

= 𝜋 − 𝛼 − 𝛽

as required.
In general, using 𝐻 again, we can apply 𝑔 ∈ PSL(2,R) to move 𝐴𝐶 into a

vertical half-line. Then as before, move 𝐴𝐵 into {𝑥2 + 𝑦2 = 1} (and 𝐴𝐶 remains
vertical). Consider △1 = 𝐴𝐵∞, △2 = 𝐶𝐵∞. Apply the previous result to get

area△1 = 𝜋 − 𝛼 − (𝛽 + 𝛿)
area△2 = 𝜋 − 𝛿 − (𝜋 − 𝛾)

so
area𝑇 = area△1 − area2 𝜋 − 𝛼 − 𝛽 − 𝛾.

There are cosine and sine rules for hyperbolic triangles. See example sheet.
Here is another observation: any two lines in 𝑆2 (great circles) always meet (in
2 points), any two lines in R2 meet (in 1 point) if and only if not parallel.

Definition (Parallel, ultraparallel). Using the 𝐷 model, two hyperbolic
lines ℓ1, ℓ2 ⊆ 𝐷 are parallel if they meet only at {|𝜁| = 1}.

They are ultraparallel if and only if they do not meet anywhere in
{|𝜁| ≤ 1}.
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4 Hyperbolic geometry

Axiom 4.6 (Euclid’s parallel axiom (5th axiom)). Given a line ℓ and 𝑃 ∉ ℓ,
there exists a unique line ℓ′ ∋ 𝑃 with ℓ ∩ ℓ′ = ∅.

It fails in both 𝑆2 and hyperbolic plane — but for very different reasons!

4.4 THe hyperboloid model
Consider Lorenzian inner product ⟨⋅, ⋅⟩ on R3 with matrix

⎛⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞⎟
⎠

with signature 𝑝 = 2, 𝑞 = 1.
Set

and

𝑆 = {𝐱 ∈ R3 ∶ 𝑞(𝐱) = −1}
𝑆+ = 𝑆 ∩ {𝑧 > 0}

Define a projection from the upper sheet of the hyperboloid to the unit disc
in the complex plane

𝜋 ∶ 𝑆+ → 𝐷 ⊆ C

(𝑥, 𝑦, 𝑧) ↦ 𝑥 + 𝑖𝑦
1 + 𝑧

= 𝑦 + 𝑖𝑣

Put 𝑟2 = 𝑢2 + 𝑣2 and by striaghforward calculation,

𝜎 = 𝜋−1 ∶ 𝐷 ↦ 𝑆+

(𝑢, 𝑣) ↦ 1
1 − 𝑟2 (2𝑢, 2𝑣, 1 + 𝑟2)

Now we can check the inner product on the tangent plane to 𝑆+ at 𝜎(𝑢, 𝑣)
spanned by

𝜎𝑢 = 𝑑𝜎(𝑒1) = 2
(1 − 𝑟2)2 (1 + 𝑢2 − 𝑣2, 2𝑢𝑣, 2𝑢)

𝜎𝑣 = 𝑑𝜎(𝑒2) = 2
(1 − 𝑟2)2 (2𝑢𝑣, 1 + 𝑣2 − 𝑢2, 2𝑣)

The restriction of Lorenzian ⟨⋅, ⋅⟩ to the span of 𝜎𝑢, 𝜎𝑣 assigns to each (𝑢, 𝑣) ∈ 𝐷
a symmetric bilinear form on R2 with

𝐸 = ⟨𝜎𝑢, 𝜎𝑢⟩ = 4
(1 − 𝑟2)2

𝐹 = 0
𝐺 = 𝐸

which is exactly the Poincare disc model of the hyperplane.
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5 Smooth embedded surfaces

5 Smooth embedded surfaces

Definition (Smooth embedded surface). 𝑆 ⊆ R3 is a (parameterised) smooth
embedded surface if for all 𝑃 ∈ 𝑆, there is an open neighbourhood 𝑈 = 𝑊 ∩𝑆
and a map 𝜎 ∶ 𝑉 → 𝑈 from 𝑉 ⊆ R2 such that

1. 𝜎 is a homeomorphism of 𝑉 into 𝑈,

2. 𝜎(𝑢, 𝑣) is 𝐶∞,

3. at each 𝑄 = 𝜎(𝑃), the vectors 𝜕𝜎
𝜕𝑢 (𝑃 ), 𝜕𝜎

𝜕𝑣 (𝑃 ) are linearly independent.

(𝑢, 𝑣) ∈ 𝑉 ⊆ R2 are smooth coordinates on 𝑈 ⊆ 𝑆. The subspace in R2

spanned by𝜕𝜎
𝜕𝑢 (𝑃 ), 𝜕𝜎

𝜕𝑣 (𝑃 ) is the tangent space to 𝑆 at 𝜎(𝑃). 𝜎 is a smooth
parameterisation of 𝑈 ⊆ 𝑆.

Proposition 5.1. Suppose 𝜎 ∶ 𝑉 → 𝑈, �̃� ∶ ̃𝑉 → 𝑈 are smooth parameterisa-
tions, then

𝜑 ∶ 𝜎−1 ∘ �̃� ∶ ̃𝑉 → 𝑉

is a diffeomorphism.

Proof. It suffices to consider 𝜑 on some neighbourhood of 𝑃 = (𝑢0, 𝑣0) ∈ ̃𝑉. The
Jacobian matrix of 𝜎, (

𝑥𝑢 𝑥𝑣𝑦𝑢 𝑦𝑣𝑧𝑢 𝑧𝑣
) has rank 2 at each (𝑢, 𝑣) ∈ ̃𝑉. Wlog

det(𝑥𝑢 𝑥𝑣
𝑦𝑢 𝑦𝑣

) ≠ 0

at (𝑢0, 𝑣0). Let 𝐹(𝑢, 𝑣) = ( 𝑥(𝑢,𝑥)
𝑦(𝑢,𝑣) ), then by Inverse function theorem, 𝐹 maps

some open 𝑁 ⊆ R2, (𝑢0, 𝑣0) ∈ 𝑁, diffeomorphically onto an open 𝑁 ′ ⊆ R2.

𝜎(𝑁)

𝑁 𝑁 ′ ̃𝑁

𝜋𝜎

𝐹

�̃�

̃𝐹

Here 𝜎(𝑁) is open in 𝑆 as 𝜎 is a homeomorphism. 𝜋 = 𝐹 ∘ 𝜎−1 is bijective as
𝜎, 𝐹 are so. ̃𝑁 = �̃�−1(𝜎(𝑁)) ⊆ ̃𝑉 is open and ̃𝐹 = 𝜋 ∘ �̃�. 𝜋−1 ∶ 𝑁 ′ → 𝜎(𝑁) is
well-defined. Furthermore, 𝜋(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦) is linear, so smooth. Now

𝜑 = 𝜎−1 ∘ �̃� = (𝜎−1 ∘ 𝜋−1) ∘ (𝜋 ∘ �̃�) = 𝐹 −1 ∘ ̃𝐹

on ̃𝑁 is smooth as 𝐹 −1 and ̃𝐹 are.
Similarly (by symmetry of notation) 𝜑−1 is smooth.

Recall that if 𝑃 ∈ 𝑉 , 𝑄 ∈ 𝜎(𝑃), then the tangent space 𝑇𝑄𝑆 is the span of
𝜎𝑢(𝑃 ), 𝜎𝑣(𝑃 ).

Corollary 5.2. The tangent plane 𝑇𝑄𝑆 is independent of 𝜎.
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5 Smooth embedded surfaces

Proof. Use the same notation as the previous propositoin. Then

�̃�(�̃�, ̃𝑣) = 𝜎(𝜑1(�̃�, ̃𝑣), 𝜑2(�̃�, ̃𝑣))

where 𝜑 = (𝜑1, 𝜑2) by defintion. By chain rule,

�̃��̃� = (𝜑1)�̃�𝜎𝑢 + (𝜑2)�̃�𝜎𝑣

�̃� ̃𝑣 = (𝜑1) ̃𝑣𝜎𝑢 + (𝜑2) ̃𝑣𝜎𝑣

The Jacobian of 𝜑 is just the matrix composed of the coefficients in parenthesis
and thus 𝜑 is invertible. Thus 𝜎𝑢, 𝜎𝑣 and �̃��̃�, �̃� ̃𝑣 have the same span.

Remark. We can compute

�̃��̃� × �̃� ̃𝑣 = det(𝐽(𝜑))𝜎𝑢 × 𝜎𝑣.

Definition (Unit normal). The unit normal to 𝑆 at 𝑄 is

𝑁 = 𝑁𝑄 = 𝜎𝑢 × 𝜎𝑣
‖𝜎𝑢 × 𝜎𝑣‖

(𝑃 ).

By the above remark, 𝑁 is well-defined up to a sign.

Definition (Chart). 𝜙 = 𝜎−1 ∶ 𝑈 → 𝑉 where 𝑈 ⊆ 𝑆, 𝑉 ⊆ R2 is a chart.

Example. For 𝑆2, the two stereographic projections, from ( 0
0

±1
) are charts.

Their domains cover 𝑆2.

Definition (First fundamental form). If 𝑆 ⊆ R3 is an embedded surface,
then 𝑇𝑄𝑆 at each 𝑄 ∈ 𝑆 has an induced inner product from R3 — the resulting
family of inner products on tangent planes is called the first fundamental
form of 𝑆.

Given a parameterisation 𝜎 ∶ 𝑉 → 𝑈 ⊆ 𝑆, 𝑃 ∈ 𝑉 , 𝑎, 𝑏 ∈ R2, set

⟨𝑎, 𝑏⟩𝑃 = ⟨𝑑𝜎𝑃(𝑎), 𝑑𝜎𝑃(𝑏)⟩R3 .

With respect to the standard basis 𝑒1, 𝑒2 of R2, RHS becomes

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 (∗)

with

𝐸 = ⟨𝜎𝑢, 𝜎𝑢⟩
𝐹 = ⟨𝜎𝑢, 𝜎𝑣⟩
𝐺 = ⟨𝜎𝑣, 𝜎𝑣⟩

are 𝐶∞ functrions of (𝑢, 𝑣) ∈ 𝑉. Thus we have recovered our previous defintion
of Riemannian metric. Thus the Riemannian metric (??) on 𝑉 is also called the
first fundamental form corresponding to a parameterisatio 𝜎.

(first fundamental form is abstract but invariant to parameterisation, while
Riemannian metric is easier to do computations with)
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5 Smooth embedded surfaces

Definition (Length, energy). Given a smooth curve Γ ∶ [𝑎, 𝑏] → 𝑆 ⊆ R2,
define the length of Γ to be

∫
𝑏

𝑎
‖Γ′(𝑡)‖𝑑𝑡

and the energy to be

∫
𝑏

𝑎
‖Γ′(𝑡)‖2𝑑𝑡.

If Γ([𝑎, 𝑏]) ⊆ 𝑈 = 𝜎(𝑁) for some parameterisation 𝜎, then there exists a
unique 𝛾 ∶ [𝑎, 𝑏] → 𝑉 such that Γ = 𝜎 ∘ 𝛾. Thus it suffices to consider 𝛾, a curve
“in R2”. Write 𝛾 = (𝛾1, 𝛾2), then

Γ′(𝑡) = (𝑑𝜎)𝛾(𝑡)( ̇𝛾1(𝑡)𝑒1 + ̇𝛾2(𝑡)𝑒2).

Thus

Γ′(𝑡) = ̇𝛾1(𝑡)𝜎𝑢|𝛾(𝑡) + ̇𝛾2(𝑡)𝜎𝑣|𝛾(𝑡)

‖𝛾′(𝑡)‖ = ⟨ ̇𝛾, ̇𝛾⟩1/2
𝛾(𝑡) = (𝐸 ̇𝛾2

1 + 2𝐹 ̇𝛾1 ̇𝛾2 + 𝐺 ̇𝛾2
2)1/2.

With these expressions, we can write

length(𝛾) = ∫
𝑏

𝑎
(𝐸 ̇𝛾2

1 + 2𝐹 ̇𝛾1 ̇𝛾2 + 𝐺 ̇𝛾2
2)1/2𝑑𝑡

energy(𝛾) = ∫
𝑏

𝑎
(𝐸 ̇𝛾2

1 + 2𝐹 ̇𝛾1 ̇𝛾2 + 𝐺 ̇𝛾2
2)𝑑𝑡

Definition (Area). Given a parameterisation 𝜎 ∶ 𝑉 → 𝑈 ⊆ 𝑆 ⊆ R3 of 𝑆
and a region 𝑇 𝜋𝑈, the area of 𝑇 is

∫
𝜃(𝑇 )

√
𝐸𝐺 − 𝐹 2𝑑𝑢𝑑𝑣

where 𝜃 = 𝜎−1 is a chart, whenever RHS is defined.

We state without proof a proposition:

Proposition 5.3. The area defined as above is independent of parameteri-
sation.

In particular, this shows that if the area does not exist in one parameterisation,
then it does not exist in others as well.

Remark.

1. In examples we encounter in this course, often 𝜎(𝑉 ) = 𝑈 is dense in 𝑆.
Then area of 𝑆 is just the integral over 𝑉.

2. The area and lengths on 𝑆 are invariant under isometries.
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6 Geodesics

6 Geodesics
Let 𝑉 ⊆ R2

𝑢,𝑣 be open, 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 a Riemannian metric on 𝑉,
𝛾 = (𝛾1, 𝛾2) ∶ [𝑎, 𝑏] → 𝑉 a smooth curve.

Definition (Geodesic). 𝛾 is a geodesic if

𝑑
𝑑𝑡

(𝐸 ̇𝛾1 + 𝐹 ̇𝛾2) = 1
2

(𝐸𝑢 ̇𝛾2
1 + 2𝐹𝑢 ̇𝛾1 ̇𝛾2 + 𝐺𝑢 ̇𝛾2

2)

𝑑
𝑑𝑡

(𝐹 ̇𝛾1 + 𝐺 ̇𝛾2) = 1
2

(𝐸𝑣 ̇𝛾2
1 + 2𝐹𝑣 ̇𝛾1 ̇𝛾2 + 𝐺𝑣 ̇𝛾2

2)

holds for all 𝑡 ∈ [𝑎, 𝑏].

To recoginise the importance of the definition, we need some knowledge from
calculus of variantion.

Definition (Proper variation). Let 𝛾(𝑎) = 𝑝, 𝛾(𝑏) = 𝑞. A proper variation
of 𝛾 is a 𝐶∞ map ℎ ∶ [𝑎, 𝑏] × (−𝜀, 𝜀) → 𝑉 such that

ℎ(𝑡, 0) = 𝛾(𝑡) ∀𝑡 ∈ [𝑎, 𝑏]
ℎ(𝑎, 𝜏) = 𝑝, ℎ(𝑏, 𝜏) = 𝑞 ∀𝜏 ∈ (−𝜀, 𝜀)

and put 𝛾𝜏(𝑡) = ℎ(𝑡, 𝜏), 𝛾𝜏 ∶ [𝑎, 𝑏] → 𝑉 is a 𝐶∞ curve.

Proposition 6.1. 𝛾 satisfies the geodesic ODE’s if and only if 𝛾 is a
stationary point for the energy for all proper variations (in the sense of
Euler-Lagrange).

Proof. Relabel 𝛾(𝑡) = (𝑢(𝑡), 𝑣(𝑡)). Recall that energy can be written as

∫
𝑏

𝑎
(𝐸(𝑢, 𝑣)�̇�2 + 2𝐹(𝑢, 𝑣)�̇� ̇𝑣 + 𝐺(𝑢, 𝑣) ̇𝑣2)𝑑𝑡 = ∫

𝑏

𝑎
𝐼(𝑢, 𝑣, �̇�, ̇𝑣)𝑑𝑡

for some formal expression 𝐼 taking 4 variables. Euler-Lagrange equations assert
that 𝛾 is stationary if and only if

𝑑
𝑑𝑡

𝜕𝐼
𝜕�̇�

= 𝜕𝐼
𝜕𝑢

𝑑
𝑑𝑡

𝜕𝐼
𝜕 ̇𝑣

= 𝜕𝐼
𝜕𝑣

which in our case of 𝛾 is

2 𝑑
𝑑𝑡

(𝐸�̇� + 𝐹 ̇𝑣) = 𝐸𝑢�̇�2 + 2𝐹𝑢�̇� ̇𝑣 + 𝐺𝑢 ̇𝑣2

2 𝑑
𝑑𝑡

(𝐹�̇� + 𝐺 ̇𝑣) = 𝐸𝑣�̇�2 + 2𝐹𝑣�̇� ̇𝑣 + 𝐺𝑣 ̇𝑣2

and the result follows.

Let 𝑆 ⊆ R3 be an embedded surface and 𝜎 ∶ 𝑉 → 𝑈 be a parameterisation
and 𝜃 = 𝜎−1 be a chart. Let Γ ∶ [𝑎, 𝑏] → 𝑈 be a smooth curve in 𝑆. Then
𝛾 = 𝜃 ∘ Γ is a smooth curve in 𝑉.

Now we can define geodesic in an equivalent but more synthetic way:
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6 Geodesics

Definition (Geodesic). Γ is a geodesic curve on 𝑆 if and only if 𝛾 is a
geodesic in 𝑉. Thus Γ is a stationary point for the energy ∫𝑏

𝑎
‖Γ′(𝑡)‖2𝑑𝑡.

Note that this is independent of the choice of chart 𝜃.

Corollary 6.2. If the curve Γ minimises the energy for curves joining
𝑃 = Γ(𝑎) and 𝑄 = Γ(𝑏) in 𝑆, then Γ is a geodesic.

Proof. For all 𝑎 ≤ 𝑎1 < 𝑏1 ≤ 𝑏, Γ1 = Γ|[𝑎1,𝑏1] minimises energy for all curves
from Γ(𝑎1) to Γ(𝑏1). If 𝑎1, 𝑏1 are so that Γ([𝑎1, 𝑏1]) ⊆ 𝑈 for some chart 𝜃 ∶ 𝑈 → 𝑉
then Γ1 is a geodesic by the previous proposition. Now just vary 𝑎1, 𝑏1 to get a
cover of [𝑎, 𝑏].

So far we have characterised geodesic as energy-minimising curves. There are
some valid reasons that this is helpful. To get to the more intuitive understanding
of geodesic as length-minimising curve, we need a techinical lemma:

Lemma 6.3. Let 𝑉 ⊆ R2 open and endowed with a Riemannian metric. Let
𝑃 , 𝑄 ∈ 𝑉 and consider 𝐶∞ curves 𝛾 ∶ [0, 1] → 𝑉 with 𝛾(0) = 𝑃 , 𝛾(1) = 𝑄.
Then such 𝛾0 minimises energy if and only if 𝛾0 minimised the length and
has constant speed.

Proof. Recall Cauchy-Schwarz for 𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏]:

(∫
𝑏

𝑎
𝑓𝑔)

2

≤ ∫
𝑏

𝑎
𝑓2 ⋅ ∫

𝑏

𝑎
𝑔2

with equality if and only if 𝑔 = 𝜆𝑓 for some 𝑓 ∈ R or 𝑓 = 0.
Put 𝑓 = 1, 𝑔 = ‖ ̇𝛾‖ (with respect to the Riemannian metric), 𝑎 = 0, 𝑏 = 1.

Then
(length 𝛾)2 ≤ energy 𝛾

with equality if and only if ‖ ̇𝛾‖ is constant. If the length is ℓ then the minimal
energy is ℓ2, occurs precisely when ‖ ̇𝛾‖ is constant.

This gives a necessary condition for geodesic and one naturally wonders if it
is also sufficient. It turns out that it is a pretty close guess but one has to be
more careful:

Fact. Γ is a geodesic if and only if it locally minimises the energy and also if
and only if it locally minimises energy the length and has constant speed. In
this case, “locally minimises” means that for all 𝑡0, there exists 𝜀 > 0 such that
Γ|[𝑡0−𝜀,𝑡0+𝜀] minimises the desired quantity. This is not a caprice of our own but
comes from ODE theory.j

Fact. The geodesic ODE’s imply that ‖Γ′(𝑡)‖ is constant, see example sheet 3.

Remark. Given that ( 𝐸 𝐹
𝐹 𝐺 ) is invertible, the geodesic ODE’s are equivalent to

(�̈�, ̈𝑣) = 𝐹(𝑣, 𝑢, �̇�, ̇𝑣)

Following from standard theory of ODE’s. For all 𝑃 = (𝑢0, 𝑣0) ∈ 𝑉, for all 𝐚 =
(𝑎0, 𝑏0) ∈ R2, there exists a unique geodesic 𝛾(𝑡), |𝑡|𝜀 with 𝛾(0) = 𝑃 , ̇𝛾(0) = 𝐚.
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6 Geodesics

Example. Consider the surface 𝑆2. For all 𝑃 ∈ 𝑆2, for all tangent at 𝑃, there
exists a unique great circle as arcs < 𝜋 are length-minimising. Great circles are
all the geodesics on 𝑆2.

Recall that

1. We defined the geodesic curves on a surface 𝑆 ⊆ R3 as solutions of certain
ODE of 2nd order.

2. Equivalently, we can determine a geodesic Γ(𝑡) uniquely by the initial
condition

Γ(0) = 𝑃 ∈ 𝑆
Γ̇(0) = 𝐚 ∈ 𝑇𝑃𝑋

where Γ ∶ [0, 𝑇 ] → 𝑆, 𝛾 = 𝜎 ∘ Γ.

3. If Γ(𝑡) minimises the length between its end points and ‖Γ̇(𝑡)‖ is constant,
then Γ(𝑡) is a geodesic. This is a sufficient but not necessary condition.

Example.

1. Arcs of great circles on 𝑆2 are precisely the geodesics.

2. Similarly on a hyperbolic plane, the geodesics are precisely the hyperbolic
line segments.The can also be computed directly. See example sheet.

As solutions of geodesic ODEs depend smoothly on the initial conditions,
we may use this to construct around 𝑃 ∈ 𝑆 geodesic polar coordinates (i.e. a
particular chart). We will do an informal construction here while the more
technical details will be left to IID Differential Geometry.

Sketch of construction. Let 𝜓 ∶ 𝑈 → 𝑉 be a chart. Let 𝑃 ∈ 𝑈. May assume wlog
𝜓(𝑃) = 0 ∈ 𝑉.Denote by 𝜃 the polar angle coordinate on R2 \ {0}. For each
value of 𝜃, there exists a unique geodesic 𝛾𝜃 ∶ (−𝜀, 𝜀) → 𝑉 with

𝛾𝜃(0) = 0
̇𝛾𝜃(0) = cos 𝜃𝑒1 + sin 𝜃𝑒2

Set 𝜎(𝑟, 𝜃) = 𝛾𝜃(𝑟). Then we can show

1. 𝜎 is smooth on

𝑊 = {(𝑟, 𝜃) ∶ 0 < 𝑟 < 𝜀0, 𝜃0 < 𝜃 < 𝜃0 + 2𝜋}.

2. For all 𝜃0, 𝜓−1 ∘𝜎 ∶ 𝑊 → 𝑆 is a valid parameterisation. Respectivly, 𝜎−1 ∘𝜓
is a valid chart on 𝑆.

The values (𝑟, 𝜃) of the chart are geodesic polar coordinates on some open 𝑈 ⊆ 𝑆.
Note that 𝑃 ∉ 𝑈.
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6 Geodesics

Theorem 6.4 (Gauss’ lemma). Geodesic circles {𝑟 = 𝑟0} ⊆ 𝑊 are perpen-
dicular to their radii, i.e. to 𝛾𝜃(𝑡) and the induced Riemannian metric on 𝑊
(i.e. first fundamental form with respect to 𝜎(𝑟, 𝜃)) is

𝑑𝑟2 + 𝐺(𝑟, 𝜃)𝑑𝜃2.

Definition (Atlas). An atlas on 𝑆 is a collection of charts covering 𝑆.

For example, the family of geodesic polar charts is an atlas. There are two
more examples of interesting atlases in example sheet.

6.1 Surfaces of revolution
In this section, 𝑆 will be obtained by rotating a plane curve around a straight
line ℓ. Wlog ℓ is the 𝑧-axis in R3 and the curve is in the (𝑥, 𝑧)-plane. Let

𝜂 ∶ (𝑎, 𝑏) → R3

𝑢 ↦ (𝑓(𝑢), 0, 𝑔(𝑢))

where 𝑎 and 𝑏 may be infinite such that

1. ‖𝜂′(𝑢)‖ = 1 (see example sheet 3),

2. 𝑓(𝑢) > 0 for all 𝑢,

3. 𝜂 is a homeomorphism onto its image (this is to rule out for example, figure
8 or oscillating curve).

Define 𝑆 as the image of

𝜎(𝑢, 𝑣) = (𝑓(𝑢) cos 𝑣, 𝑓(𝑢) sin 𝑣, 𝑔(𝑢)), 𝑎 < 𝑢 < 𝑏, 0 ≤ 𝑣 ≤ 2𝜋

and for all 𝛼 ∈ R, the restriction 𝜎𝛼 ∶ (𝑎, 𝑏) × (𝛼, 𝛼 + 2𝜋) is a homeomorphism
onto its image.

Then

𝜎𝑢 = (𝑓 ′ cos 𝑣, 𝑓 ′ sin 𝑣, 𝑔′)
𝜎𝑣 = (−𝑓 sin 𝑣, 𝑓 cos 𝑣, 0)

𝜎𝑢 × 𝜎𝑣 = (−𝑓𝑔′ cos 𝑣, −𝑓𝑔′ sin 𝑣, 𝑓𝑓 ′)
‖𝜎𝑢 × 𝜎𝑣‖ = 𝑓2(𝑓 ′2 + 𝑔′2) = 𝑓2 ≠ 0

Thus 𝜎𝛼 is a valid parameterisation and 𝑆 is a valid embedded surface.

Definition (Parallel & meridian). Curves on 𝑆 of the form 𝛾(𝑡) = 𝜎(𝑢0, 𝑡)
are parallels and 𝛾(𝑡) = 𝜎(𝑡, 𝑣0) are meridians.

The first fundamental form with respect to 𝜎 is

𝐸 = ‖𝜎𝑢‖2 = 𝑓 ′2 + 𝑔′2 = 1
𝐹 = 𝜎𝑢 ⋅ 𝜎𝑣 = 0
𝐺 = ‖𝜎𝑣‖2 = 𝑓2
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6 Geodesics

i.e. 𝑑𝑢2 + 𝑓2(𝑢)𝑑𝑣2. The geodesic equations on 𝑆 are

�̈� = 𝑓 ⋅ 𝑑𝑓
𝑑𝑢

⋅ ̇𝑣2

𝑑
𝑑𝑡

(𝑓2 ̇𝑣) = 0

Which of them is a geodesic?

Proposition 6.5. Assume ‖ ̇𝛾‖𝑉 = 1 where 𝛾 ∶ 𝐼 → 𝑉 ⊆ R2, i.e. if 𝛾 =
(𝑢(𝑡), 𝑣(𝑡)) then �̇�2 + 𝑓2(𝑢) ̇𝑣2 = 1. Then

1. every meridian 𝛾 is geodesic.

2. a parallel 𝛾 is a geodesic if and only if

𝑑𝑓
𝑑𝑢

(𝑢0) = 0,

i.e. 𝑢0 is a stationary/critical point of 𝑓.

Proof.

1. 𝑣 = 𝑣0 is constant so the second equation holds. As ̇𝑣 = 0, |�̇�(𝑡)| = 1 so
�̈� = 0 and the first equation also holds.

2. Suppose 𝑢 = 𝑢0. Then 𝑓2 ̇𝑣2 = 1 whence ̇𝑣 = ± 1
𝑓(𝑢0) ≠ 0 is a constant so

the second equation holds. Then the first equation holds if and only if
𝑑𝑓
𝑑𝑢 (𝑢0) = 0.
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7 Gaussian curvature

7 Gaussian curvature
Let’s begin by considering a 1-dimensional example. Let 𝜂 ∶ [0, ℓ] → R2 be a
smooth curve with ‖𝜂′‖ = 1. Then

𝜂′ ⋅ 𝜂″ = 1
2

(𝜂′ ⋅ 𝜂′)′ = 0.

Recall the curvature 𝜅 at 𝜂(𝑠) is determined by

𝜂″ = 𝜅𝑛

where ‖𝑛‖ = 1, 𝑛 ⋅ 𝜂′ = 0 is the unit normal and sign such that 𝜅 ≥ 0.
When 𝑓 ∶ [𝑐, 𝑑] → [0, ℓ] is smooth with 𝑓 ′(𝑡) > 0, we may reparameterise

𝛾(𝑡) = 𝜂(𝑓(𝑡)). Then ̇𝜂 = ̇𝑓(𝑡)𝜂′(𝑓(𝑡)) and ‖ ̇𝛾‖2 = ̇𝑓2. Also 𝜂″(𝑓(𝑡)) = 𝜅𝑛 where
𝜅 is the curvature at 𝑓(𝑡). Then by Taylor’s theorem,

𝛾(𝑡+Δ𝑡)−𝛾(𝑡) = ̇𝑓𝜂′(𝑓(𝑡))⋅Δ𝑡1
2

( ̈𝑓𝜂′(𝑓(𝑡))+ ̇𝑓2𝜂″(𝑓(𝑡)))Δ𝑡2 + high order terms

so
(𝛾(𝑡 + Δ𝑡) − 𝛾(𝑡)) ⋅ 𝑛 = 1

2
𝜅‖ ̇𝛾‖2Δ𝑡2 + high order terms.

On the other hand,

‖𝛾(𝑡 + Δ𝑡) − 𝛾(𝑡)‖2 = ‖ ̇𝛾‖2Δ𝑡2 + high order terms.

Comparing these two equations, 𝜅 is the ratio of the leading (quadratic) terms
of RHS and is independent of parameterisation of the curve.

We want to generalise this to two dimension.
Let 𝜎 ∶ 𝑉 → 𝑈 be a parameterisation of a surface 𝑆 ⊆ R3. Apply Taylor’s

theorem,

𝜎(𝑢 + Δ𝑢, 𝑣 + Δ𝑣) − 𝜎(𝑢, 𝑣)
=𝜎𝑢Δ𝑢 + Δ𝑣Δ𝑣

+1
2

(𝜎𝑢𝑢Δ𝑢2 + 2𝜎𝑢𝑣Δ𝑢Δ𝑣 + 𝜎𝑣𝑣Δ𝑣2) + …

The “deviation from the tangent plane” is

(𝜎(𝑢 + Δ𝑢, 𝑣 + Δ𝑣) − 𝜎(𝑢, 𝑣)) ⋅ 𝐍 + 1
2

(𝐿Δ𝑢2 + 2𝑀Δ𝑢Δ𝑣 + 𝑁Δ𝑣2) + …

where

𝐿 = 𝜎𝑢𝑢 ⋅ 𝐍
𝑀 = 𝜎𝑢𝑣 ⋅ 𝐍
𝑁 = 𝜎𝑣𝑣 ⋅ 𝐍

Recall that

‖𝜎(𝑢 + Δ𝑢, 𝑣 + Δ𝑣) − 𝜎(𝑢, 𝑣)‖2 = 𝐸Δ𝑢2 + 2𝐹Δ𝑢Δ𝑣 + 𝐺Δ𝑣2 + …

We want to take similarly the “quotient” of the leading coefficients as an invariant.
To do so we define
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7 Gaussian curvature

Definition (Second fundamental form). The second fundamental form for
𝑆 (on 𝑉 with respect to 𝜎 is

𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2

where 𝐿, 𝑀, 𝑁 are smooth maps as defined above.

Definition (Gaussian curvature). The Gaussian curvature 𝐾 of 𝑆 at 𝑃 ∈ 𝑆
is

𝐾 = 𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹 2 .

If 𝐾 > 0, the second fundamental form is positive or negative definite. If
𝐾 < 0 then it is indefinite. If 𝐾 = 0 then it is semi-definite.

Example (Informal). The unit sphere 𝑆2 has 𝐾 > 0. A Pringle crisp has
𝐾 < 0.

Remark. It can be checked, similar to the case of curves, that 𝐾 is independent
of the parameterisation 𝜎.

Proposition 7.1. Let 𝐍 = 𝜎𝑢×𝜎𝑣
‖𝜎𝑢×𝜎𝑣‖ , the unit normal for a surface local patch

𝜎. Then at each point,

𝐍𝑢 = 𝑎𝜎𝑢 + 𝑏𝜎𝑣

𝐍𝑣 = 𝑐𝜎𝑢 + 𝑑𝜎𝑣

where
− ( 𝐿 𝑀

𝑀 𝑁) = (𝑎 𝑏
𝑐 𝑑) (𝐸 𝐹

𝐹 𝐺) .

In particular, 𝐾 = 𝑎𝑑 − 𝑏𝑐.

Proof. ‖𝐍‖ = 1 so 𝐍 ⋅ 𝐍𝑢 = 𝐍 ⋅ 𝐍𝑣 = 0 so the relations must hold for some
𝑎, 𝑏, 𝑐, 𝑑. As 𝐍 ⋅ 𝜎𝑢 = 0, 𝐍𝑢 ⋅ 𝜎𝑢 + 𝐍 ⋅ 𝜎𝑢𝑢 = 0 so 𝐍𝑛 ⋅ 𝜎𝑢 = −𝐿. Similarly
𝐍𝑢 ⋅ 𝜎𝑣 = −𝑀 = 𝐍𝑣 ⋅ 𝜎𝑢, 𝐍𝑣 ⋅ 𝜎𝑣 = −𝑁. Dot * with 𝜎𝑢, 𝜎𝑣,

−𝐿 = 𝑎𝐸 + 𝑏𝐹
−𝑀 = 𝑐𝐸 + 𝑑𝐹
−𝑀 = 𝑎𝐹 + 𝑏𝐺
−𝑁 = 𝑐𝐹 + 𝑑𝐺

which is **. Taking the determinants, obtain 𝐾 = 𝑎𝑑 − 𝑏𝑐.

Theorem 7.2. Suppose for a parameterisation 𝜎 ∶ 𝑉 → 𝑈 the first funda-
mental form is 𝑑𝑢2 + 𝐺(𝑢, 𝑣)𝑑𝑣2. Then

𝐾 = −(
√

𝐺)𝑢𝑢√
𝐺

.
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7 Gaussian curvature

We notice that this formula for Gaussian curvature depends on the first funda-
mental form only. In fact, the general case, found in example sheet 3, is not
much more difficult.

Proof. Set 𝑒 = 𝜎𝑢, 𝑓 = 𝜎𝑣√
𝐺 , 𝐍 is an orthonormal basis of R3 dependent on (𝑢, 𝑣).

Take dot products, 𝑒 ⋅ 𝑒 = 1 so 𝑒 ⋅ 𝑒𝑢 = 0 = 𝑒 ⋅ 𝑒𝑣. Thus we may write

𝑑𝑎𝑔𝑔𝑒𝑟𝑒𝑢 = 𝛼𝑓 + 𝜆1𝐍
𝑒𝑣 = 𝛽𝑓 + 𝜆2𝐍
𝑓𝑢 = − ̃𝛼𝑒 + 𝜇1𝐍

𝑓𝑣 = − ̃𝛽𝑒 + 𝜇2𝐍

Since 𝑒 ⋅ 𝑓 = 0, we have

𝑒𝑢 ⋅ 𝑓 + 𝑒 ⋅ 𝑓𝑢 = 0
𝑒𝑣 ⋅ 𝑓 + 𝑒 ⋅ 𝑓𝑣 = 0

so 𝛼 = ̃𝛼, 𝛽 = ̃𝛽. But

𝛼 = 𝑒𝑢 ⋅ 𝑓 = 𝜎𝑢𝑢 ⋅ 𝜎𝑣√
𝐺

= [(𝜎𝑢𝜎𝑣)𝑢⏟
=𝐹=0

−1
2

(𝜎𝑢𝜎𝑢)𝑣 = 0.

Similarly
𝛽 = 𝑒𝑣 ⋅ 𝑓 = 𝜎𝑢𝑣 ⋅ 𝜎𝑣√

𝐺
= 𝐺𝑢√

𝐺
= (

√
𝐺)𝑢.

Using dagger again,

𝜆1𝜇2 − 𝜆2𝜇2

= 𝑒𝑢 ⋅ 𝑓𝑣 − 𝑒𝑣 ⋅ 𝑓𝑢

= (𝑒 ⋅ 𝑓𝑣)𝑢 − (𝑒 ⋅ 𝑓𝑢)𝑣⏟
=−�̃�=0

= −𝛽𝑢

= −(
√

𝐺)𝑢𝑢

Now from * in the previous proposition,

𝐍𝑢 × 𝐍𝑣

= (𝑎𝜎𝑢 + 𝑏𝜎𝑣) × (𝑐𝜎𝑢 + 𝑑𝜎𝑣)
= (𝑎𝑑 − 𝑏𝑐)𝜎𝑢 × 𝜎𝑣

= 𝐾𝜎𝑢 × 𝜎𝑣

= 𝐾
√

𝐺𝑒 × 𝑓

= 𝐾
√

𝐺𝐍

so

𝐾
√

𝐺 = (𝐍𝑢 × 𝐍𝑣) ⋅ 𝐍
= (𝐍𝑛 × 𝐍𝑣) ⋅ (𝑒 × 𝑓)
= (𝐍 ⋅ 𝑒𝑢)(𝐍 ⋅ 𝑓𝑣) − (𝐍 ⋅ 𝑓𝑢)(⋅𝑒𝑣)
= 𝜆1𝜇2 − 𝜆2𝜇1

= −(
√

𝐺)𝑢𝑢
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