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0 Introduction

0 Introduction
Contents:

1. free groups: “universal property”, study subgroups using topology,

2. group presentations and constructions, ways of making new groups from
old,

3. Cayley graphs, viewing groups geometrically (e.g. Z), connections to group
actions,

4. geometric properties of groups, growth, other geometric invariants, “dic-
tionary” between algebra and geometry,

5. amenable groups.
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1 Free groups

1 Free groups
Let S be a set, called an alphabet, and let S−1 be the set of formal inverses of
elements in S, i.e. S−1 = {s−1 : s ∈ S}. A word in the alphabet S is a finite
sequence of elements in S ∪ S−1 and the empty word. A word is reduced if
it does not contain occurrences of ss−1, s−1s. Given a word, we can reduce it
by removing any such subwords. For example if S = {a, b, c}, aa−1bcb−1bc−1

is a word and we can reduce it to bcc−1, and further to b. This induces an
equivalence relation such that there is a unique reduced word in each class. We
also write s2 for ss.

Definition (free group). The free group on the set S, denoted F (S), is the
set of reduced words in S, with the operation of concatenation (followed by
reduction if necessary).

Free groups satisfies the universal property

Theorem 1.1. Given a free group F (S) with an inclusion ι : S → F (S),
whenever G is a group with a function ϕ : S → G, there is a unique group
homomorphism ϕ : F (S) → G such that the following diagram commutes

S F (S)

G

ι

ϕ
ϕ

Proof. Given ϕ : S → G, define ϕ : F (S) → G by ϕ(sα1
i1

· · · sαn
in

) = ϕ(si1)
α1 · · ·ϕ(sin)αn .

Check this is a homomorphism.

Definition (rank). The cardinality of S is the rank of F (S), denoted by
rk(F (S)).

Corollary 1.2. If |S| = |T | the F (S) ∼= F (T ).

Proof. If |S| = |T | then there exists a bijection φ : S → T . Consider

S F (S)

F (S)

θ
θ

where θ is a homomorphism by the universal property. Similarly we have θ−1 :
F (T ) → F (S) and θ−1 ◦ θ : F (S) → F (S) extends the identity map S →
F (S) so must be the identity on F (S). Same for the other way so θ is an
isomorphism.

Notation. Write Fn for the isomorphism class of F (S) with |S| = n.

Exercise. If Fn
∼= Fm then n = m.
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1 Free groups

Corollary 1.3. Every group is a quotient of a free group.

Proof. Given G, consider F (G). By the universal property exists a homomor-
phism π : F (G) → G extending the identity, so must be surjective.

Definition. Let G be a group, A ⊆ G a subset. Define 〈A〉 to be the
intersection of all subgroups containing A, i.e. the unique smallest subgroup
containing A.We also call it the subgroup generated by A.

Definition. G is generated by A ⊆ G if 〈A〉 = G. Then A is a generating
set of G. G is finitely generated if exists a finite generating set of G.

Notation. Write 〈a1, . . . , an〉 to mean 〈{a1, . . . , an}〉.

Example.

1. Zn,Z can be generated by one element.

2. Zn can be generated by ≥ n elements.

3. F2 = 〈a, b〉 = 〈a, ab〉 so generating sets are not unique.

Definition. A group F is freely generated by S ⊆ F if for any group G and
any map ϕ : S → G, exists a unique homomorphism ϕ̃ : F → G extending
ϕ.

Lemma 1.4. If F is freely generated by S then F is generated by S.

1.1 Subgroups of free groups
Let’s see some examples of subgroups of free groups.

• Given any e 6= w ∈ Fn, 〈w〉 ∼= Z.

• Given T ⊆ S, 〈T 〉 is a free subgroup of F (S) of rank |T |.

• If S = {a, b}, the set {a−nban : n ∈ N} freely generates a subgroup of F2,
so isomorphic to F∞ (exercise).

Remark. Subgroups of finitely generated groups are not necessarily finitely
generated.

Revision of fundamental groups. See IID Algebraic Topology. Particularly
relevant to this course is π1(

∨n
i=1 S

1) = Fn, and a connected loop-free graph is
contractible so has trivial π1.

It is the fact that if X is sufficiently nice and Y ⊆ X is closed simply
connected, then collapsing Y to a piont does not alter π1(X). In particular,
for graphs we can collapsing T , a maximal spanning tree, to get a bouquet of
circles. Since maximal spanning tree always exists (use axiom of choice if the
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1 Free groups

graph is infinite), π1 of a graph is a free group of rank equal to the number
edges not in the maximal spanning tree.

Recall the Galois correspondence between subgroups of π1(X) and covering
spaces: we have a bijection between covering maps p : (X̃, x̃0) → (X,x0) and
subgroups of π1(X,x0).

Thus let X =
∨n

i=1 S
1. For any H ≤ π1(X) ∼= Fn, there is a covering space

X with π1(X) ∼= H. Since X, being a cover of a graph, is a graph, we have H
is free. This shows that every subgroup of a free group is free.

We work out the rank of H given its index in Fn. The index of H in Fn

is exactly the degree of the covering map X → X, i.e. the number of vertices
of X. Each vertex of X has degree 2n so the number of edges in X is [Fn :
H] · 2n · 1

2 = [Fn : H] · n. To work out the number of edges not in a maximal
spanning tree, use the graph theoretic fact that a tree on n vertices has exactly
n − 1 edges (exercise), so the number of edges not in a maximal spanning tree
is

[Fn : H] · n− [Fn : H]− 1 = (n− 1)[Fn : H] + 1.

Theorem 1.5 (Nielsen-Schreier). Every subgroup of a free group is free and
if the subgroup has finite index then

rk(H) = [Fn : H](rk(Fn)− 1) + 1.

Mnemonic:
rk(H)− 1 = (rk(Fn)− 1)[Fn : H].

Example. A degree 2 cover of S1 ∨ S1 realises F3 as a subgroup of index 2 in
F2.

The group of covering transformation, or deck transformation of a cover is
the group of isomorphisms X → X.

A cover is normal if for any two lifts of the basepoint x0 ∈ X, there is a
covering transformation of X sending one to the other.

Normal covering spaces correspond to normal subgroups of π1(X). If the
cover is normal then the group of covering transformations is isomorphic to
π1(X) quotiented by the corresponding subgroup.

Example. In the previous example we have F3 E F2. We can have a nonnormal
index 3, and a normal one.
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2 Group presentations and constructions

2 Group presentations and constructions

Definition (normal closure). The normal closure of a subset A ⊆ G, de-
noted 〈〈A〉〉, is the unique smallest normal subgroup of G containing A.

Given a free group F (S) and R ⊆ F (S), we write 〈S|R〉 for the group
F (S)/〈〈R〉〉. R and S are called generators and relators respectively.

Definition (group presentation). A presentation of a group G is an isomor-
phism of G with a group of the form 〈S|R〉.

G is finitely presented if it admits a presentation 〈S|R〉 with S,R finite.

Example.

1. If R = ∅ then 〈S|R〉 ∼= F (S).

2. 〈a|an〉 ∼= Zn.

3. 〈a, b|aba−1b−1〉 is a presentation of Z2: let Z2 = {(cn, dm) : n,m ∈ Z}.
We have a homomorphism

ϕ : F (a, b) → Z2

a 7→ c

b 7→ d

Need to show kerϕ = 〈〈aba−1b−1〉〉. ⊇ is clear since Z2 is abelian so
have F (a, b)/〈〈aba−1b−1〉〉 � F (a, b)/ kerϕ. The domain is a 2-generated
abelian group. But the only 2-generated abelian group that surjects onto
Z2 is itself.

4. More generally a finitely generated abelian group is always finitely pre-
sented.

5. The same is true for nilpotent groups. Recall that G is nilpotent if the
lower central series of G terminates in a finite number of steps. The lower
central series of G is

G0 = G,Gi+1 = [Gi, G].

6. 〈a, b|aba−1b−2, a−2b−1ab〉 = {1}.

Remark.

1. It is difficult to tell which group is given by a particular presentation. In-
deed there does not exist an algorithm that, upon input of a presentation,
can determine whether the corresponding group is trivial. The is the word
problem, introduced by Dehn in early 20th century. The classes of groups
for which it does have a solution are often geometry.

2. There are uncountably many isomorphism classes of finitely generated
groups (even 2-generated). For reference, see de la Harpe Geometric Group
Theory IIIB. But there are only countably many isomorphism classes of
finitely presented groups.
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2 Group presentations and constructions

The notion of finite presentation makes sense without fixing a pecific surjec-
tion of a free group.

Theorem 2.1. Given a not necessarily finite presentation 〈(sj)j∈J |(ri)|r∈I〉
of a finitely presented group G, there exists a finite subset J0 ⊆ J and
a finite set (r̃i)i∈I0 of elements of the free group F ((sj)j∈J0) such that
〈(sj)j∈J0

|(r̃i)i∈I0〉 is a finite presentation of G.

“Proof”. de la Harpe has a proof but it seems to be wrong.

Our aim is to prove that finite index subgroups of finitely generated (resp
finitely presented) groups are finitely generated (resp finitely presented).

Definition (Schreier transversal). Let F (S) be a free group and H ≤ F (S)
a subgroup. A (right) Schreier transversal for H in F (S) is a set J of
reduced words such that each right coset of H in G contains exactly one
word of J , called a representative of this class, and all initial segments of
these words are also in J .

For g ∈ F (S), denote by g the element of J such that Hg = Hg.

Theorem 2.2. For any H ≤ F (S), there a Schreier transversal J . Moreover
H is freely generated by the set

{ts(ts)−1 : t ∈ J, s ∈ S and ts(ts)−1 6= 1}.

Proof. Take X =
∨

S S
1 so π1X = F (S). Take X to be the cover corresponding

to H ≤ F (S). The vertices of X correspond to cosets of H in F (S) and choosing
a path from a fixed basepoint to a vertex gives us a coset representative for that
coset. Pick a maximal spanning tree T ⊆ X. Choosing the unique path to each
vertex in T gives us coset representatives with initial segments that are also
such paths. Since H ∼= π1X and it is freely generated by the set of loops with
exactly one edge not in T , this generating set is of the required form.

Remark. The argument also shows that the set of Schreier transversals for H
in F (S) is in bijection with the set of maximal spanning trees in X.

Write γ(t, s) = ts(ts)−1. Explicitly, given h ∈ H written as s1s2 · · · sn where
si ∈ S ∪ S−1, we can write

h = γ(1, s1)γ(s1, s2) · · · γ(s1 · · · si−1, si) · · · γ(s1 · · · sn−1, sn)

(use γ(t, s−1) = γ(ts−1, s)−1). This is the Reidemeister-Schreier rewriting pro-
cess.

Theorem 2.3. Let G be a group with presentation 〈S|R〉 and let ϕ : F (S) →
G correspond to this presentation. Let G1 ≤ G and let H be the subgroup of
F (S) containing kerϕ such that ϕ(H) = G1. Then G1 has presentation

〈γ(t, s) : t ∈ J, s ∈ S, γ(t, s) 6= 1|trt−1 : t ∈ J, r ∈ R〉

where J is a Schreier transversal for H in F (S).
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2 Group presentations and constructions

Proof. Have G1 = H/〈〈R〉〉F (S) and would like to find some possibly larger set
of words R′ in H such that G1 = H/〈〈R′〉〉H . Let H be generated freely by
γ(t, s)’s. The subgroup 〈〈R〉〉F (S) is generated by {grg−1 : g ∈ F (S), r ∈ R},
and writing each g as g = hgg where hg ∈ H, g ∈ J , we have

grg−1 = (hgg)r(hgg)
−1 = hg(grg

−1)h−1
g

and so can take R′ = {trt−1 : t ∈ J, r ∈ R}. Thus G1 has the required
presentation.

Corollary 2.4. Any subgroup of finite index in a finitely generated (resp.
finitely presented) group is itself finitely generated (resp. finitely generated).

Proof. If [G : G1] <∞ then [F (S) : H] <∞ so J is finite.

2.1 Free product
One way to create new finitely generated/presented groups from old one is via
free products. Given two groups A,B, a normal form is an expression of the
form g1g2 · · · gn where n ≥ 0 such that if n = 0, take the identity element,
gi ∈ (A \ {1}) q (B \ {1}) and consecutive elements gi, gi+1 do not lie in the
same group. n is the length of normal form. We define multiplication of normal
forms inductively by

• (g1 · · · gn) · 1 = 1 · (g1 · · · gn) = g1 · · · gn.

• For n,m ≥ 1, set

(g1 · · · gn)(h1 · · ·hm) =


g1 · · · gnh1 · · ·hm if gn, h1 in different groups
g1 · · · gn−1kh2 · · ·hm if gn, h1 in same group, gnh1 = k 6= 1

(g1 · · · gn−1)(h2 · · ·hm) if gn, h1 in same group, gnh1 = 1

Definition (free product). The set of normal forms with this multiplication
forms a group A ∗B, called the free product of A and B.

Remark.

1. The groups A,B embed naturally into A ∗B.

2. If A,B ≤ G such that any g 6= 1 in G can be represented in a unique way
as a product g = g1 · · · gn with gi ∈ A ∪ B \ {1} and consecutive gi, gi+1

not in the same group, then G = A ∗B.

Theorem 2.5. If A = 〈SA|RA〉, B = 〈SB |RB〉 and SA ∩ SB = ∅ then

A ∗B = 〈SA ∪ SB |RA ∪RB〉.

8



2 Group presentations and constructions

Proof. Let ϕ : F (SA) → A,ψ : F (SB) → B be the homomorphisms with
kerϕ = 〈〈RA〉〉F (SA), kerψ = 〈〈RB〉〉F (SB). Let θ : F (SA ∪ SB) → A ∗ B
be the homomorphism coinciding with ϕ on SA and ψ on SB . Need to show
ker θ = 〈〈RA ∪RB〉〉F (SA∪SB). ⊇ is trivial. For ⊆, consider g = g1 · · · gn ∈ ker θ
in normal form (using F (SA ∪ SB) = F (SA) ∗ F (SB)). Then

θ(g) = θ(g1) · · · θ(gn) = 1

in A ∗B. Thus exists i such that θ(gi) = 1, so gi ∈ kerϕ or gi ∈ kerψ. Proceed
by induction.

Example. D∞ = 〈a, b|a2 = 1, a−1ba = b−1〉. It is the automorphism group
of the graph C∞, where a is a reflection (say about the origin) and b is a
translation. Then D∞ is generated by a and c = ba, both have order 2. Can
check (by acting on C∞’s vertices and edges) that (ca)n, (ca)nc, a(ca)nc, a(ca)n

give different elements of D∞. By remark above

D∞ = 〈a, c|a2, c2〉 = 〈a|a2〉 ∗ 〈c|c2〉 = Z2 ∗ Z2

Remark. Z2 ∗ Z2 is the only free product of non-trivial groups that does not
contain a non-abelian free group. For example Z2 ∗ Z3 ⊇ [Z2,Z3] ∼= F2.

2.2 Group actions

Theorem 2.6 (ping-pong lemma). Let G act on X. Let H1,H2 ≤ G such
that |H1| ≥ 3, |H2| ≥ 2 and let H = 〈H1,H2〉. Suppose there exists nonempty
X1, X2 ⊆ X with X2 * X1 such that

h(X2) ⊆ X1 for all h ∈ H1 \ {e}
h(X1) ⊆ X2 for all h ∈ H2 \ {e}

then H ∼= H1 ∗H2.

Proof. Let w be a nonempty reduced word in the alphabet H1 \ {e}qH2 \ {e}.
Need to show that the element defined by w in G is not e. Cases:

• if w = a1b1a2b2 · · · ak with ai ∈ H1 \ {e}, bi ∈ H2 \ {e}, then

w(X2) = a1b1 · · · ak(X2) ⊆ a1b1 · · · bk−1(X1) ⊆ · · · ⊆ a1(X2) ⊆ X1.

As X2 * X1, w 6= e in G.

• if w = b1a2b2 · · · bk, then let a ∈ H1 \ {e} we have a−1wa 6= e by above.

• if w = a1b1 · · · akbk take a ∈ H1 \ {e, a1} and a−1wa 6= e.

• if w = b1a2 · · · ak, take a ∈ H1 \ {e, ak} and use awa−1.

9



2 Group presentations and constructions

Example. Let SL2(Z) act on R2 in the usual way. Consider

H1 = {
(

1 0
2n 1

)
: n ∈ Z} = 〈

(
1 0
2 1

)
〉 ∼= Z

H2 = {
(
1 2n
0 1

)
: n ∈ Z} = 〈

(
1 2
0 1

)
〉 ∼= Z

and

X1 = {
(
x
y

)
: |x| < |y|}

X2 = {
(
x
y

)
: |x| > |y|}

If |x| > |y| then

|2nx+ y| ≥ |2n| · |x| − |y| ≥ 2|x| − |y| > |x|

so the two subgroups map the subsets into each other. Thus by ping-pong
lemma

〈H1,H2〉 ∼= F2 ≤ SL2(Z).

Check this subgroup has finite index.

Amalgamated free product Suppose A ≤ G,B ≤ H and there is an iso-
morphism ϕ : A→ B. Then the free product of G and H with amalgamation A
and B (via ϕ) is

G ∗A H = G ∗H/〈〈ϕ(a)a−1 : a ∈ A〉〉.

The intuition is to glue G and H along A. G,H embed as subgroups and
elements in G ∗A H admits normal forms. It is related to Seifert-van Kampen
theorem.

Example. SL2(Z) = Z4 ∗Z2
Z6, see de la Harpe.

2.3 HNN extension
Suppose A,B ≤ G, ϕ : A → B is an isomorphism. We want A and B to be
isomorphic via conjugation, but it might not be the case in G so we extend G
to a larger group. The HNN extension of G (with A,B, ϕ) is

G∗ϕ = G ∗ 〈t〉/〈〈t−1atϕ(a)−1 : a ∈ A〉〉.

G embed in G∗ϕ and its elements admit normal forms. It has application to
calculation of fundamental groups of surface bundles.

2.4 Semidirect product
G is the semidirect product of N by H of N E G,H ≤ G, N ∩ H = {e}
and G = NH. Write N o H = G. Equivalently, if H ≤ G and exists a

10



2 Group presentations and constructions

homomorphism ϕ : G → H (such that the inclusion is a section) such that
kerϕ = N , then G = N oH, i.e. the short exact sequence of groups

1 N G H 1

splits.
Alternatively, given two groups H and N and a homomorphism α : H →

Aut(N), we can construct G = N oα H as follow: as a set G = N × H. The
multiplication is defined by

(n1, h1)(n2, h2) = (n1α(h1)(n2), h1h2).

The subgroups N×{e}, {e}×H satisfiy the conditions above. Conversely, given
subgroups N and H, we can recover α : H → Aut(N), α(h)(n) = hnh−1.

Example.

1. Direct product H ×H.

2. D2n
∼= Zn o Z2.

3. π1(Klein bottle) ∼= ZoZ where the action is the only nontrivial automor-
phism.

More generally, a group extension is a group G given by

1 N G H 0

We say G is the extension of N by H.

Note.

1. If H is free then G splits.

2. Not all extensions split: 2Z → Z → Z2.

2.5 Wreath product

Definition (wreath product). The wreath product of G and H, G o H, is⊕
H GoH where, thinking of

⊕
H G as the set of finitely supported function

H → G, the action of H is given by

h(f)(h1) = f(h−1h1).

Example. Lamplight group Z2 oZ, which is not finitely presented. An element
f ∈

⊕
Z Z2 is a function Z → 0, 1 with compact support and the action of Z is

shifting.

Theorem 2.7 (Kaloujnine-Krasner). If D is a group and Q is a finite group
then D oQ contains an isomorphic copy of every extension of D by Q.

11



2 Group presentations and constructions

Proof. If G is an extension of D by Q then let π : G → Q where kerπ = D.
We are going to define ϕ : G→ D oQ and show its an injective homomorphism.
Choose transversal for D in G, writing it as a map T : Q → G. For a ∈ G,
define fa : Q→ D by

fa(x) = T (x)−1aT (π(a−1)x)

and define ϕ(a) = (fa, π(a)). To show this is a homomorphism, if a, b ∈ G then

(fa · π(a)fb)(x) = fa(x)fb(π(a)
−1x)

= T (x)−1aT (π(a−1)x) · T (π(a)−1x)−1︸ ︷︷ ︸
=e

bT (π(b−1)π(a)−1x)

= T (x)−1abT (π((ab)−1)x)

= fab(x)

For injectivity, suppose a ∈ kerϕ then π(a) = e so a ∈ D and e = fa(x) =
T (x)−1aT (x) so a = e.

Remark. The proof works verbatim for not necessarily finite groups G and H
by using

∏
H GoH.

2.6 Sketch of Bass-Serre theory
Reference: J-P. Serre, Trees.

Theorem 2.8. Let G = G1 ∗A G2. Then G acts without inversion of edges
on a tree X such that the quotient graph G\X is a segment. Moreoever this
segment can be lifted to one in X such that the stabilisers of its vertices are
G1, G2 and stabiliser of the edge is A.

Sketch proof. Let X0 = G/G1 qG/G2 and the positively oriented edges X1
+ =

G/A. It is well-defined since A = G1 ∩ G2. Check G acts on X via left multi-
plication.

X is connected: suffices to show gG1 is connected to G1. Express g as
g1g2 · · · gn with gi ∈ G1 q G2 and no consecutive elements in the same Gi.
Suppose gn ∈ G2, then gG2 = g1 · · · gn−1G2. Proceed by induction.

Acyclicity follows from the uniqueness of normal form for almagmated free
product.

Serre gave a converse to the statement: if exists such an action then the
group is an amalgmated product.

group G G acting on a graph without in-
version of edges

G1 ∗A G2 G\X segment
G = H∗ϕ G\X loop
fundamental group of a graph of
groups π1(G,Y )

G\X = Y a graph

Table 1: Correspondence

Conseuquence: Kurosh subgroup theorem: if G = A ∗ B then H ≤ G has
the form H = F (S) ∗ (∗conjugate of subgroups of A ∗ ()

12



3 Cayley graphs

3 Cayley graphs
We’ll focus on finitely generated groups.

Definition (Cayley graph). Let G = 〈S〉, S ⊆ G finite. The Cayley graph
of G with respect to S (Cay(G,S)) is given by

V (Cay(G,S)) = G

E((Cay(G,S)) = {(g, gs) : g ∈ G, s ∈ S}.

Example.

• Z2, S = {(1, 0), (0, 1)}. Grid

• In fact we don’t have to require S generating G. Z2, S = {(1, 0)}. Parallel
lines.

The Cayley graph has the following properties:

1. Cay(G,S) is a 2|S|-regular graph.

2. Cay(G,S) is connected if and only if 〈S〉 = G.

3. Relators in elements of S give rise to cycles.

4. When 〈S〉 = G, paths from e to g give words in S representing g.

5. Cay(G,S) allows us to view G as a metric space, with word metric

dS(g, h) = min{length of path from g to h in Cay(G,S)}.

Define word length to be |g| = dS(e, g). Note dS(g, h) = |g−1h|.

6. It follows that G acts on Cay(G,S) via left-multiplication by isometry.

Theorem 3.1. Cay(F (S), S) is a tree.

Let X be a covering space of X =
∨

S S
1, corresponding to N E F (S). Then

X is exactly Cay(F (S)/N, π(S)) where π : F (S) → F (S)/N is the quotient map.

Definition (quasi-isometric embedding, quasi-isometry). Let (X, dX), (Y, dY )
be metric spaces. A map f : X → Y is a quasi-isometric embedding if exists
λ ≥ 1, C ≥ 0 such that for all a, b ∈ X,

1

λ
dX(a, b)− C ≤ dY (f(a), f(b)) ≤ λdX(a, b) + C.

f is a quasi-isometry if in addition exists D ≥ 0 such that for all y ∈ Y
exists x ∈ X such that dY (f(x), y) ≤ D. Write X 'QI Y and we usually
say (λ,C,D) is a quasi-isometry.

Quasi-isometry preserves large-scale structure of a space.

13



3 Cayley graphs

Proposition 3.2. Quasi-isometry is an equivalence relation on metric spaces.

Example.

1. A non-empty bounded metric space is quasi-isometric to a point. In par-
ticular all finite groups have Cayley graphs quasi-isometric to a point.

2. R× [0, 1] 'QI R.

3. Cay(Z, S) 'QI R.

4. Cay(Zn, S) 'QI Rn.

Example. Cayley graph cannot determine the group. For example C4 � C2 ×
C2 but taking S to be the set of all elements, both Cayley graphs are the
complete graph on four vertices.

In fact Cayley graph doesn’t even determine the group with respect to a min-
imal generating set. For example C2 × C3 = 〈(1, 0), (0, 1)〉, S3 = 〈(12), (123)〉.
The resulting Cayley graphs are isomorphic as undirected graphs but noniso-
morphic as directed graphs.

On the other hand we can obtain nonisomorphic Cayley graphs of G by
choosing different generating sets. For example C2 × C3 = 〈(1, 0), (0, 1)〉 =
〈(1, 1), (1, 0)〉.

Example. 3 regular trees T3 ∼= T4 by contracting edges (graph)

Example. On the other hand, by using quasi-isomorphism invariants we can
show some Cayley graphs are not isomorphic.

1. boundedness is an invariant so for example R �QI ∗.

2. R �QI [0,∞): suppose ϕ : R → [0,∞) is a quasi-isomorphism (λ,C,D).
Then ϕ(t), ϕ(−t) → ∞ as t→ ∞. For any x ∈ [0,∞), let

Mx = max{n ∈ Z : ϕ(n) < x}
Nx = min{n ∈ Z : ϕ(n) < x}

They exist because for all x ∈ [0,∞), there are only finitely many n ∈ Z
with ϕ(n) < x. We thus have

ϕ(Mx) < x ≤ ϕ(Mx + 1)

ϕ(Nx) < x ≤ ϕ(Nx − 1)

Since dR(Mx,Mx + 1) = dR(Nx, Nx + 1),

d[0,∞)(ϕ(Mx), ϕ(Nx)) ≤ d[0,∞)(ϕ(Mx), x) + d[0,∞)(x, ϕ(Nx))

≤ d[0,∞)(ϕ(Mx), ϕ(Mx + 1)) + d[0,∞)(ϕ(Nx − 1), ϕ(Nx))

≤ (λ · 1 + C) + (λ · 1 + C)

≤ 2λ+ 2C

which is bounded independent of x. But dR(Mx, Nx) → ∞ as x → ∞ as
more and more elements will land in [0, x) as x→ ∞. Absurd.

3. Rm �QI Rn for m 6= n.

4. T3 �QI R.

14



3 Cayley graphs

Proposition 3.3. Let G be a finitely generated group, S, S′ two finite gen-
erating sets of G. Then Cay(G,S) ∼=QI Cay(G,S

′).

Proof. Consider the identity map ϕ = id : |Cay(G,S)| → |Cay(G,S′)|. Let

λ = max{|a|S′ : a ∈ S}
λ′ = max{|a|S : a ∈ S′}

then

dS′(ϕ(g), ϕ(h)) ≤ λdS(g, h)

dS(g, h) ≤ λ′dS′(ϕ(g), ϕ(h))

Set λ = maxλ, λ′.

Recall that

1. a metric space is proper if all closed balls are compact.

2. a metric space is geodesic if for any x, y there is a path between them with
length d(x, y).

3. an action G on X is proper if for all K ⊆ X compact, |{g ∈ G : gK ∩K 6=
∅}| <∞. This implies that X/G is Hausdorff and locally compact.

Theorem 3.4 (Švarc–Milnor lemma). Let X be a proper geodesic metric
space and G acts on X properly by isometry. Assume also the quotient
X/G is compact. Then G is finitely generated and picking x0 ∈ X defines a
quasi-isomorphism ϕx0

: G→ X, g 7→ gx0.

Proof. Since the quotient space is compact, there is a closed ball B = B(x0, D)
such that GB = X. Since X is proper, B is compact. Define

S = {g ∈ G : g 6= e, gB ∩B 6= ∅}

which is finite by properness. For A,B ⊆ X, define

d(A,B) = inf{dX(a, b) : a ∈ A, b ∈ B}.

Pick some g ∈ G \ (S ∪ {e}) such that d(B, gB) = R > 0. Consider

H = {g ∈ G \ (S ∪ {e}) : d(B, gB) ≤ R}.

Note as H is a subset of

{g ∈ G : gB(x0, D +R) ∩B(x0, D +R) 6= ∅}

it is finite. Thus

inf{d(B, gB) : g ∈ G \ (U ∪ {e})} = min{d(B, hB) : h ∈ H}

so the infimum, say 2d, is achieved. Thus if d(B, gB) < 2d then g ∈ S ∪ {e}.

15



3 Cayley graphs

To prove that G = 〈S〉 we translate paths in X to words in G. Take g ∈ G.
Let k = bdX(x0,gx0)

d c. Take a sequence of points y0 = x0, y1, . . . , yk+1 = gx0
on the geodesic from x0 to gx0 such that dX(yi, yi+1) ≤ d for all i. Take a
corresponding sequence hi ∈ G such that for all i, yi ∈ hiB. Taking h0 =
e, hk+1 = g. We have

d(hiB, hi+1B) ≤ dX(yi, yi+1) ≤ d

so d(B, h−1
i hi+1B) ≤ d so h−1

i hi+1 ∈ S ∪ {e}, i.e. hi+1 = his. Inductively
g = hk+1 = s0 · · · sk.

All word metrics on G are quasi-isometric so take S as above. Clearly we
have that 2D-neighbourhood of the image of the map ϕx0

: g 7→ gx0 is X so
just need to show ϕx0

is a quasi-isometric embedding. By construction

|g|S ≤ k + 1 ≤ dX(x0, gx0)

d
+ 1.

On the other hand if |g|S = m and t1 · · · tm = g in G, ti ∈ S then

dX(x0, gx0) ≤ dx(t
−1
1 x0, x0) + dX(x0, t2 · · · tmx0)

≤ dX(x0, t1x0) + dX(x0, t2 · · · tmx0)

≤
m∑
i=1

dX(x0, tix0)

≤ 2Dm

= 2D|g|s

Finally apply left-invariance of dS and dX .

Corollary 3.5. Let M be a compact connected Riemannian manifold and
let M̃ be its universal. π1M acts on M̃ isometrically so π1M is finitely
generated and is quasi-isometric to M̃ .

Corollary 3.6. Let G be a connected real Lie group and let Γ be a cocompact
lattice in G, i.e. a discrete subgroup such that G/Γ is compact. Then Γ is
finitely generated and Γ ∼=QI G.

Corollary 3.7. Let G be a finitely generated group.

1. If H is a finite index subgroup of G then G ∼=QI H.

2. If H E G finite then G ∼=QI G/N .

3. If G,H are commensurable finitely generated groups then G ∼=QI H.

Definition (commensurable). G and H are commensurable if exists K1 ≤
G,K2 ≤ H finite index such that K1

∼= K2.

Proof.

16



3 Cayley graphs

1. H acts on Cay(G).

2. G acts on Cay(G/N).

3. Immediate.

Corollary 3.8. All finitely generated free groups are quasi-isometric.

Proof. Fn ≤ F2 of finite index for all n ≥ 2.

One may wonder if all quasi-isometric groups are commensurable. In other
words, when does geometric similarity forces algebraic similarity?

Example. There exist groups which are quasi-isometric but not commensu-
rable. Take

G = Z4 o Z,H = (Z2 × Z2) o Z.

Not commensurable: the only elements of finite order in H, and hence in a finite
index subgroup thereof, are of order 2. On the other hand, given a finite index
subgroup K ≤ G, K necessarily contains elements of order 4 as

[
⊕
Z

Z4 : K ∩
⊕

Z4] = [K ·
⊕

Z4 : K] <∞

and the subgroup generated by all elements of order 2 in
⊕

Z4 has infinite index.
Quasi-isometric: take the generating set

S = {(0, 1)} ∪ {(f1, 0), (f2, 0), (f3, 0)}

of Z4 o Z where fi(0) = i, fi(n) = 0 otherwise. Similarly take

S′ = {(0, 1)} ∪ {(f(0,1), 0), (f(1,0), 0), (f(1,1), 0)}

of (Z2 × Z2) o Z. Then the Cayley graphs are actually isomorphic.

Question: in which case does quasi-isometry imply commensurability? Typ-
ical rigidity question.

Since quasi-isometry only sees finite index subgroups, it is convenient to
define

Definition (virtual property). A group is called virtually P for some prop-
erty P if it has a finite index subgroup that is P .

Example.

• Z2 × Z is virtually Z.

• SL2(Z) is virtually free.

17



3 Cayley graphs

Theorem 3.9. Let G be a finitely generated group such that Cay(G) ∼=QI Z.
Then G is virtually Z.

Sketch proof. First show there is an element of infinite order in G. We will find
g ∈ G and A ⊆ G such that gA ( A (then gn 6= e for all n). Let ϕ : Cay(G) → R
be a quasi-isometry. As G acts on Cay(G) by isometry, any g ∈ G determines
a quasi-isometry ψg : R → R. Take [0,∞) ⊆ R, then ψg([0,∞)) is either a
bounded distance1 from [ψg(0),∞) or (−∞, ψg(0)]. If ψg([0,∞)) is bounded
distance from [ψg(0),∞) then setting

A = V (Cay(G)) ∩ ϕ−1([0,∞)).

If ψg(0) � 0 then gA ( A: this is possible since ψg(0) is bounded below in terms
of the quasi-isometry constants, while inf ψg([0,∞)) (the “left-most point” the
image of [0,∞) reaches before going off to infity) is bounded above.

So need g so that ψg([0,∞)) is bounded distance from [ψg(0),∞) and ψg(0) �
0. To find such g, take h, k ∈ G such taht e, g, k far apart in Cay(G) (if and only
if ϕ(e), ϕ(h), ϕ(h) far apart in R). Consider images of [0,∞) under ψe, ψh, ψk

— at least two of thse images will be of bounded distance from each other, so
at least two of A, hA, kA are nested. So take g to be one of the elements of
h, k, k−1h, h−1k.

Let H = 〈g〉. Want to show H has finite index in G. We have d(e, gn) → ∞
as n→ ±∞ and d(gn, gm) = d(e, gn−m). Define

f : Z → R
n 7→ ϕ(gn)

Then |f(n) − f(n − 1)| is bounded independent of n and for all r ≥ 0 exists
K ∈ N such that |f(n) − f(m)| ≤ r implies |m − n| ≤ K. It is an exercise
to check that exists C > 0 such that for all x ∈ R, exists n ∈ Z such that
|x− f(n)| ≤ C. Then exists C ′ such that for all g′ ∈ G, exists gn ∈ H such that
d(g′, gn) ≤ C ′, i.e. Cay(G)/H is finite, so H is a finite index subgroup in G.

Other examples:

• If both groups are virtually ablian then quasi-isometry implies commen-
surability. This is an exercise.

• It is also true if just one of the groups is assumed to be abelian. This is
much deeper. See next chapter.

• True if both groups are virtually free.

• True if only one of the groups is assumed to be virtually free.

1X is bounded distance from Y if exists M ≥ 0 such that for all x ∈ X exists y ∈ Y such
that d(x, y) ≤ M and vice versa.
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4 Geometric property of groups

4 Geometric property of groups

4.1 Growth
Notation. Let f, g : X → R where X ⊆ R, we write

• f � g if exists a, b > 0 and x0 such that f(x) ≤ ag(bx) for x ≥ x0.

• f � g if f � g, g � f .

Definition (growth function). Let X be a discrete metric space and x0 ∈ X
a basepoint. The growth function is the function

βX,x0
(r) = |BX(x0, r)|.

Lemma 4.1. The equivalence class of growth function under � is a quasi-
isometry invariant for groups. In particular βG,g = βG,h for all g, h ∈ G
and write βG for this equivalence class.

We write βG,S for the growth function relative to the generating set S.

Proposition 4.2.

1. If G is infinite then βG,S |N is strictly increasing.

2. βG,S(r + t) ≤ βG,S(r) · βG,S(t).

3. βG,S(r) ≤ |S|r.

Example.

1. βZk(r) � rk.

2. βFk
(r) � (2k)r.

Remark. The proposition implies that

lim
n→∞

βG,S(n)
1/n ≥ 1.

The limit exists by Fekete’s lemma: if (an) is a subadditive sequence then lim an

n
exists.

Definition ((sub)exponential/polynomial growth). We say G has exponen-
tial growth if limβG,S(n)

1/n > 1. Otherwise we say G has subexponential
growth.

G has polynomial growth if exists D such that βG(r) ≤ rD.

Proposition 4.3.

1. If H is a finitely generated subgroup of G then βH � βG.

2. If H is a finite index subgroup of G then βH � βG.

3. If N E G then βG/N � βG.
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4 Geometric property of groups

4. If N E G is finite then βG/N � βG.

Proof. 2 and 4 are easy consequences Švarc-Milnor. For 1, take T to be a finite
generating set of H and take S ⊇ T to be a finite generating set of G. Then
Cay(H,T ) is a subgraph of G so dS(e, h) ≤ dT (e, h) for all h ∈ H. Thus the
closed ball of radius r about e in Cay(G,S) contains the corresponding ball of
Cay(H,T ).

For 3, take S to be a finite generating set of G. Let T = SN/N be a finite
generating set of N . π : G→ G/N maps closed r-ball about e onto closed r-ball
around e in G/N .

We can ask many questions about growth, for example

1. what types of growth can groups display?

2. which group have which types of growth?

We have seen that virtually abelian groups have polynomial growth. This
generalises to

Proposition 4.4. Let G be a 2-step nilpotent finitely generated group, i.e.
[[G,G], G] = {e}. Then G has polynomial growth.

Proof. Suppose G is generated by g1, . . . , gm. As G is 2-step nilpotent, [G,G] ⊆
Z(G). We bound the size of all products of n generators using a normal form.
Note we can exchange two elements at the cost of a commutator:

gh = hg · g−1h−1gh = hg[g, h].

Commutators are central so we can move them to the right. Thus in ≤ n2

moves we can express the element as gα1
1 · · · gαm

m · C, where C is a product
of ≤ n2 commutators. It is an easy exercise to check that [G,G] is finitely
generated, in this case by [g±1

i , g±1
j ]. Thus the commutators are words of length

1 in generators of [G,G] , which has polynomial growth (say degree D). Thus
G has polynomial growth of degree ≤ m+ 2D.

Theorem 4.5. All finitely generated virtually nilpotent groups have poly-
nomial growth.

Proof. Exercise.

Can we push this result further? The natural class of groups to consider
after nilpotent groups is solvable groups. Unfortunately, there do exist solvable
groups of exponential growth, for example the lamplight group Z2 o Z. In fact,

Theorem 4.6 (Gromov). A finitely generated group has polynomial growth
if and only if it is virtually nilpotent.

Remark. The proof uses what is now called asymptotic cones, the limit of the
objects (X, d

n ) as n→ ∞.
Tits alternative: in the language of growth, a group either has exponential

growth or is virtually solvable. Then we can use algebraic techniques to show
it’s virtually nilpotent.

20



4 Geometric property of groups

c.f. paper by Wilkie van den Dries (rewrite the old paper), Kleiner (different
proof, elementary but hard), Ozawa (functional analysis, representation theory)

For ultralimits and asymptotic growth, see Druţu and Kapovich Chapter 7.
There is also a proof based on approximate groups.

Corollary 4.7. Being virtually nilpotent is quasi-isometry invariant.

Does there exist groups whose growth is between polynomial and exponen-
tial? The answer is yes, and such groups are said to have intermediate growth

Theorem 4.8 (Grigorchuk, 1983). There exists a finitely generated group
G such that

2r
α1 � βG(r) � 2r

α2

for 0 < α1 < α2 < 1.

For more on intermediate growth see de la Harpe.

4.2 Ends
How many ways are there to go to infinity in a Cayley graph? Informally,
for F2 there are “infinitely many” while for Z2 there is “only one” way. For
Z × Z/2 there are “two” ways. Of course for finite groups there is no way to
move to infinity. We are going to formalise this notion using ends and prove
that, perhaps surprisingly, the above are all the possibilities that can arise from
the Cayley graph of a finitely generated group.

Definition (proper map). A map f : X → Y between topological spaces is
proper if f−1(C) is compact whenever C is compact.

Definition (ray). Let X be a topological space. A ray in X is a proper
continuous map r : [0,∞) → X.

Definition (convergence to the same end). Let r1, r2 : [0,∞) → X be rays.
r1, r2 converge to the same end if for all compact C ⊆ X, exists N ∈ N such
that r1([N,∞)) and r2([N,∞)) are contained in the same path component
of X \ C.

(pic of Calyay graph of F2)
This defines an equivalence relation on rays, the equivalence classes of which

are called the set of ends of X and is denoted Ends(X). If |Ends(X)| = m we
say X has m ends.

We can topologise Ends(X) by declaring a set B ⊆ Ends(X) to be closed
if end(rn) ∈ B for all n and end(rn) → end(r) imply that end(r) ∈ B, where
end(rn) → end(r) if for all C ⊆ X compact, exists a sequence of natural numbers
(Nn) such that rn([Nn,∞)) and r([Nn,∞)) lie in the same path compnent of
X \ C for n sufficiently large.
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4 Geometric property of groups

Definition. A k-path from x to y in a metric space X is a sequence of
points x1 = x, x2, . . . , xn = y such that d(xi, xi+1) ≤ k for all i.

The following lemma justifies the heuristics at the beginning of the section
of thinking ends as ways of escaping to infinity from a fixed point.

Lemma 4.9. Let X be a proper geodesic metric space, k > 0 and r1, r2 rays
in X. Let Gx0(X) be the set of (proper) geodesic rays starting at x0 ∈ X.
Then

1. end(r1) = end(r2) if and only if for all R > 0, exists T > 0 such that
for all t > T , r1(t) can be connected to rt(t) by a k-path in X\B(x0, R).

2. the natural map Gx0(X) → Ends(X) is surjective.

Proof.
1. Every compact subset of X is contained in an open ball about x0 and vice

versa. Given a k-path from x1 to xn in X \B(x0, R+ k), concatenate any
geodesics from xi to xi+1 to get a continuous path in B(x0, R).

2. Let r : [0,∞) → X be a ray. Let cn : [0, dn] → X be a geodesic from x0 to
r(n) where dn = d(x0, r(n). Extend cn to [dn,∞) by setting cn(t) = r(n)
for t ∈ [dn,∞). Ay Arzela-Ascoli, there exists a convergent subsequence
of cn converging to c : [0,∞) → X a geodesic ray with end(c) = end(r).

LetX be a metric space. Given f, g : X → X, say f ∼ g if supx∈X dX(f(x), g(x))
is finite. The set of equivalent classes of quasi-isometries of X forms a group,
which we denote by QI(X). A quasi-isometry ϕ : X → Y induces an isomor-
phism ϕ∗ : QI(X) → QI(Y ).

Proposition 4.10. Let X and Y be proper geodesic metric spaces. A quasi-
isometry f : X → Y induces a homeomorphism f : Ends(X) → Ends(Y )
which will be defined below. Then

QI(X) → Homeo(Ends(X))

f 7→ f

is a homomorphism.

Proof. Let r be a geodesic ray in X from x0, f∗r be the ray in Y obtained by
concatenating some choice of geodesic segments [f(r(n)), f(r(n + 1))]. f is a
quasi-isometry implies that f∗r is a (proper) ray. end(f∗r) is independent of
the choice of geodesic segments. Define

f : Ends(X) → Ends(Y )

end(r) 7→ end(f∗r)

The image of a k-path under f is a (λk + c)-path so f is well-defined and
continuous by the previous lemma part 1.

Lemma part 2 ensures that f is defined on all of Ends(X). The rest are
exercise.
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4 Geometric property of groups

Definition (ends of a group). Let G be a finitely generated group. Then
Ends(G) = Ends(Cay(G)).

Theorem 4.11. Let G be a finitely generated group.

1. G has 0, 1, 2 or finitely many ends.

2. G has 0 end if and only if G is finite.

3. G has 2 ends if and only if G is virtually Z.

4. G has infinitely many ends if and only if G can be expressed as A∗CB
or A∗C with C finite, |A/C| ≥ 3, |B/C| ≥ 2.

Proof. We prove 1. Fix a generating set S of G and work with Cay(G,S). G acts
Cay(G,S) by isometry, giving a homomorphismG→ Homeo(Ends(Cay(G,S))).
Let H be its kernel. Suppose |Ends(G)| < ∞, so H has finite index in G.
Assume further e0, e1, e2 ∈ Ends(G) are distinct for contracdiction. Fix geodesic
rays r1, r2 : [0,∞) → Cay(G) with r1(0) = r2(0) = eG such that end(ri) = ei.
The ray corresponding to e0 is defined slightly differently. Since H has finite
index in G, exists µ > 0 such that for all g ∈ G, exists h ∈ H with d(g, h) ≤ µ.
Thus exists a ray r0 : [0,∞) → Cay(G) with

• end(r0) = e0,

• d(r0(n), eG) ≥ n,

• r0(n) ∈ H for all n.

Set hn = rn(n). Fix N > 0 such that ri[N,∞) lie in different path components
of Cay(G) \ B(eG, N). If t, t′ > 2N then d(r1(t), r2(t

′)) > 2N since any path
joining r1(t) and r2(t

′) must pass though B(eG, N).
H acts trivially on Ends(G) so end(hnri) = end(ri) for all i. Let n > 3N .

Then hnri(0) = hn lie in a different path component of Cay(G)\B(eG, N) from
ri[N,∞) for i = 1, 2, so hnri must though B(eG, N). Thus exists ti such that
hnri(ti) ∈ B(en, N) for i = 1, 2. Since hn is an isometry, d(r1(t1), r2(t2)) < 2N ,
contradicting d(r1(t1), r2(t2)) > 2N .

Remark. We have seen that being virtually nilpotent is a geometric property.
In fact,

1. being virtually free is geometric, as it is equivalent to being quasi-isometric
to a tree. c.f. Antolin.

2. being finitely presentable is geometric. c.f. Bridson-Haefliger Prop 8.24.
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5 Amenability

5.1 Paradoxical decomposition
The motivating example for this chapter is paradoxical decomposition, which is
the key argument in Banach-Tarski.

Definition (equidecomposable). Let G act on a set X and A,B ⊆ X. Say
that A and B are (finitely) G-equidecomposable if exist partitions

A = A1 ∪A2 ∪ · · · ∪An

B = B1 ∪B2 ∪ · · · ∪Bn

and g1, . . . , gn ∈ G such that giAi = Bi for all i. We write A ∼ B. If A ∼ C
for some C ⊆ B then write A . B.

A realisation h of A ∼ B is a bijection h : A→ B such that there exists
a decomposition as above with h(ai) = gi(ai) for all i and for all ai ∈ Ai.

Note that if h : A→ B is a realisation of A ∼ B and S ⊆ A then S ∼ h(S).
For fixed X, G-equidecomposability is an equivalence relation.

Theorem 5.1. Suppose G acts on X and A,B ⊆ X. Then A . B and
B . A implies A ∼ B.

Proof. Schöder-Bernstein.

Corollary 5.2. Let G act on X. Then TFAE:

1. there exist proper disjoint subsets A,B ⊆ X such that A ∼ X ∼ B.

2. there exist proper disjoint subsets A,B ⊆ X such that A∪B = X and
A ∼ X ∼ B.

Proof. For 1 =⇒ 2, since X ∼ B ⊆ X \ A, have X . X \ A. Trivially
X \A . X. Thus A ∼ X ∼ X \A.

Definition (G-paradoxical). Let G act on X. If the condition in the pre-
vious corollary holds, we say X is (finitely) G-paradoxical.

Proposition 5.3.

1. F2 is F2-paradoxical (left multiplication).

2. If F2 acts on X freely then X is F2-paradoxical.

Proof.

1. Let F2 = 〈a, b〉. Let W (y) be the set of reduced words starting in y where
y ∈ {a±1, b±1}. Then

F2 = {e} ∪W (a) ∪ (a−1) ∪W (b) ∪W (b−1)
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as a disjoint union. We can also write

F2 =W (a) ∪ aW (a−1) =W (b) ∪ bW (b−1)

so define

A =W (a) ∪W (a−1)

B =W (b) ∪W (b−1)

and A,B satisfies the first condition in the corollary.

2. Take M to be a set of representatives of F2-orbits of X. Set

Xy = {zm : z ∈W (y),m ∈M}.

Then Xa, Xa−1 , Xb, Xb−1 are disjoint and

X = Xa ∪ aXa−1 = Xb ∪ bXb−1 ,

giving the desired decomposition.

Note that in the second part we need the axiom of choice.

Proposition 5.4. F2 ≤ SO(3,R), with generators1 0 0

0 1
3

−2
√
2

3

0 2
√
2

3
1
3

 ,

 1
3

−2
√
2

3 0
2
√
2

3
1
3 0

0 0 1


Proof. Exercise. Uses a ping-pong lemma argument.

Theorem 5.5 (Hausdorff paradox). There exists a countable set D ⊆ S2

such that S2 \D is SO(3,R)-paradoxical.

Proof. Every non-trivial element in SO(3,R) fixes exactly two points of S2.
Let D be the union of fixed points of F2 ⊆ SO(3,R). F2 then acts freely on
S2 \D.

Proposition 5.6. For any countable D ⊆ S2, S2 and S2 \ D are SO(3)-
equidecomposable.

Proof. Let ` be a line though the origin that misses D. As D is countable, exists
θ such that for all n > 0, the image ρn(D) of D under rotation ρn by nθ about
` does not intersect D. Set D =

⋃∞
n=0 ρ

n(D). Then

S2 = D ∪ (S2 \D)

∼ ρ(D) ∪ ρ(S2 \D)

∼ ρ(D) ∪ (S2 \D)

= S2 \D

Together this shows
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Theorem 5.7 (Banach-Tarski). S2 is SO(3,R)-paradoxical.

Theorem 5.8. Let E(3) be the group of isometries of R3. Then any solid
ball in R3 is E(3)-paradoxical, as is R3.

Moral: cannot put a finitely-additive probability measure that is invariant
under rotations on subsets of S2.

Theorem 5.9 (Tarski). Let G act on X and E ⊆ X. Then there is a finitely-
additive measure µ : P(X) → [0,∞] with µ(E) = 1 that is G-invariant if
and only if E is not G-paradoxical.

5.2 Amenable group

Definition (amenable). Let G be a discrete (resp. locally compact) group.
A measure on G is a finitely-additive left-invariant measure µ on P(G) (resp.
Borel sets of G) with µ(G) = 1. G is amenable if it it has such a measure.

Remark. Clearly if G acts on itself by multiplication and G is paradoxical
then G is not amenable. In particular F2 is not amenable, nor is any group
containing F2. One might naturally wonder if it is the only obstruction to
amenability. This is the von Neumann conjecture: any non-amenable group
contains F2. It is disproved by Ol’shanskii, who constructed a counterexample
called Tarski monster. It has the strange propery that for p a fixed prime, every
non-trivial proper subgroup has order p.

Definition. Let G be a finitely generated group, and let `∞(G) be the
space of bounded functions on G. A linear functional M : `∞(G) → R is a
left-invariant mean on G if

• M(f) ≥ 0 if f(g) ≥ 0 for all g ∈ G.

• M(χG) = 1 for the characteristic function on G.

• M(g(f)) =M(f) for all g ∈ G, where g(f)(h) = f(g−1h).

Proposition 5.10. G is amenable if and only if G admits a left-invariant
mean.

Proof. If G is amenable then define

M(f) =

∫
fdµ.

Conversely if M is a left-invariant mean on G define

µ(A) =M(χA).
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5 Amenability

Proposition 5.11. Let G amenable act on X. Then there exists a finitely-
additive probability measure on P(X) that is G-invariant. In particular X
is not G-paradoxical.

Proof. Let µ be the measure realising amenability of G. Fix x0 ∈ X and define

ν : P(X) → [0, 1]

A 7→ µ{g ∈ G : g(x0) ∈ A}

To summarise

Theorem 5.12. TFAE:

1. G amenable.

2. G admits a left-invariant measure.

3. G is not paradoxical.

Example. All finite groups are amenable via normalised counting measure.

Proposition 5.13.

1. If G is amenable and H ≤ G then H is amenable.

2. If G is amenable and N E G then G/N is amenable.

3. If N E G and G/N are amenable then G is amenable.

4. If {Gi} is a direct system of amenable groups then so is lim−→Gi.

Proof.

1. Let µ : P(G) → [0, 1] realise the amenability of G. Let M be a right
transversal of H ≤ G and define

ν : P(H) → [0, 1]

A 7→ µ(AM)

2. Define

λ : P(G/N) → [0, 1]

A 7→ µ(AN)

3. Let ν1, ν2 realise amenability of N,G/N respectively. For A ≤ G define

fA : G→ R
g 7→ ν1(N ∩ g−1A)

Note for n ∈ N , by translation invariance

fA(gn) = ν1(N ∩ n−1g−1A) = ν1(N ∩ g−1A) = fA(g)
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5 Amenability

so fA descends to a function on G/N . Now define the measure on G to be

µ : P(G) → [0, 1]

A→
∫
fAdν2

To show left-invariance, note

fhA(g) = ν1(N ∩ g−1hA) = fA(h
−1g) = hfA(g)

The action of G on functions G/N → R factors thorugh G/N :

hnfA(g) = fA(n
−1h−1g) = ν1(N ∩ g−1hnA) = ν1(N ∩ g−1hA) = hfA(g)

so
µ(hA) =

∫
h−1fAdν2 =

∫
fAdν2 = µ(A)

by G/N -invariance of ν2.

4. Omitted.

5.3 Amenability from a geometric viewpoint
We first derive a combinatorial characterisation of amenability.

Definition (Følner condition). A finitely generated group G is said to sat-
sify the Følner condition if for all finite subsets A ⊆ G, for all ε > 0, exists
finite nonemepty subset F ⊆ G such that

|aF4F |
|F |

≤ ε

for all a ∈ A where 4 denotes symmetric difference.

Theorem 5.14. Suppose G is a finitely generated group. Then TFAE:

1. G is amenable.

2. G satisfies the Følner condition.

Proof. For 1 =⇒ 2, see Theorem 16.62 in Druţu and Kapovich, or Theorem
4.2.3 in Juschenko’s “Amenability”.

For 2 =⇒ 1, [0, 1]P(G) is compact in product topology. For A ⊆ G finite,
ε > 0, define MA,ε to be the set of finitely additive probability meansure µ on
G such that |µ(B)− µ(aB)| ≤ ε for all B ⊆ G, for all a ∈ A. MA,ε is closed in
[0, 1]P(G). To show it is nonempty, define µ(B) = |B∩F |

|F | where F is a Følner set
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5 Amenability

for A, ε. Check

|µ(B)− µ(aB)| =
∣∣∣∣ |B ∩ F |

|F |
− |aB ∩ F |

|F |

∣∣∣∣
=

∣∣∣∣ |B ∩ F |
|F |

− |B ∩ a−1F |
|F |

∣∣∣∣
≤ |F4a−1F |

|F |

=
|aF4F |

|F |
≤ ε

As
n⋂

i=1

MAi,εi ⊇M⋃
Ai,min εi 6= ∅,

{MA,ε} has finite intersection property so
⋂

A,εMA,ε is nonempty.

Definition (Cheeger constant). Let X be a graph. The Cheeger constant
h(X) is defined by

h(X) = inf
|∂A|
|A|

over all nonempty finite A ⊆ V (X), where ∂A is the set of vertices in
V (X) \A that are connected by an edge to some element in A.

Note that under this definition h(finite group) = 0. This fits our purpose of
studying amenability. Usually, a more useful definition is to take A such that
|A| ≤ 1

2 |V (X)| for finite graphs.

Proposition 5.15. Let G be a finitely generated group. Then TFAE:

1. G satsifies the Følner condition.

2. h(Cay(G,S)) = 0 for all generating sets S.

3. h(Cay(G,S)) = 0 for some generating set S.

Informally this is saying non-amenability is equivalent to a “connectivity”
property.

Proof. 2 =⇒ 3 is clear. 3 =⇒ 1 is an exercise. For 1 =⇒ 2, note that the
Folner condition can be equivalently phrased in terms of right translates: take
the Folner set F corresponding to A−1 and then

|F−1a4F−1|
|F−1|

=
|a−1F4F |

|F |
< ε.

Now take A = S±1 for some generating set S of G and ε > 0. Let F be the
Folner set such that

|Fs4F |
|F |

≤ ε
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for all s ∈ S±1. Then

|∂F |
|F |

=
|{gs : g ∈ F, s ∈ S±1, gs /∈ F}|

|F |

≤
|
⋃

s∈S±1(Fs4F )|
|F |

≤ |S±1| · ε
≤ 2|S| · ε

so indeed its infimum is 0.

Example. h = 0 is quasi-isometry-invariant.

Corollary 5.16. Amenability is a quasi-isometry invariant.

Corollary 5.17. All finitely generated groups of subexponential growth are
amenable.

Proof. Recall that if G has subexponential growth then at most

βG,S(n)
1/n = |B(n)|1/n → 1.

If exists ε such that for all k, |B(k+1)|
|B(k)| > 1 + ε then

|B(k + 1)| > (1 + ε)k · |B(1)|

and letting k → ∞, β(k)1/k 9 1. Thus for all N > 0 exists kN such that

|B(kN + 1)|
|B(kN )|

< 1 +
1

N

and so
|∂B(kN )|
|B(kN )|

=
|B(kN + 1) \B(kN )|

|B(kN )|
<

1

N
.

The converse is not true, by the following corollary and the existence of
solvable groups of exponential growth:

Corollary 5.18. All solvable groups are amenable.

Proof. All abelian groups have polynomial growth and are thus amenable. Any
solvable group can be written as the direct limit of abelian groups. Use Propo-
sition 5.13.

Take the closure of finite groups and abelian groups by the operations of
Proposition 5.13, we obtain the class of elementary amenable groups. They
are strictly contained in amenable groups, as Grigorchuk group of intermediate
growth.

Open question:

30



5 Amenability

1. Is “elementary amenable” a quasi-isometry invariant?

2. Is Thompson’s group F amenable?

More topics in geometric groups theory:

• Martin Bridson: world of finitely presented groups.

• Gromov: Space and Questions.

• word problem. word problem for hyperbolic groups, solved by Dehn.

• small cancellation. It leads to the construction of many interesting exam-
ples.

• expander graphs, Kazhdan’s property (T).

To conclude this course we mention the characterisation of non-amenability
in terms of Ponzi scheme. Consider a function ρ : G→ G such that

• exists R such that d(g, ρ(g)) ≤ R.

• |ρ−1(g)| ≥ 2.

Imagine each person indexed by G holds £1, and person g passes his money to
ρ(g). In this process everyone ends up with stricly more money than they had,
and money has moved by a bounded distance. An example is F2, where everyone
passes the money towards the centre of the Cayley graph. This condition is, in
fact, equivalent to non-amenability.
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