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1 Introduction

1 Introduction
Course structure:

1. introduction

2. Hodge-Tate decomposition for abelian varieties with good reduction

3. Hodge-Tate decomposition in generale (pro-étale cohomology)

4. integral aspects

5. some additional topics (Hodge-Tate decomposition theorem for rigid ana-
lytic varieties)

1.1 Hodge decomposition over C
Let X be a smooth projective variety over C. The Hodge decomposition is a
direct sum decomposition for all n ≥ 0

Hn
sing(X

an,C) =
⊕

p+q=n

Hp,q

where LHS is the singular cohomology of the C-analytic manifold Xan (the
complex analytification) and on RHS

Hp,q = Hq(Xan,Ωp
Xan)

with Ωp
Xan denoting the sheaf of holomorphic p-forms. Moreover, complex con-

jugation acts on
Hn

sing(X
an,C) ∼= Hn

sing(X
an,Q)⊗ C

via its action on C and Hp,q = Hq,p. This is called a pure structure of weight n.
These are proven via identifying Hp,q with Dolbeault cohomology and using

the (very deep) theory of harmonic forms. However, part of the theory can
be understood purely algebraically. It is known that Hn

sing(X
an,C) gives the

cohomology of the constant sheaf C on Xan. On the other hand, consider the
de Rham complex

Ω•
Xan = OXan

d−→ Ω1
Xan

d−→ Ω2
Xan → · · ·

Here d is the usual derivation and the higher d’s are given by

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2

for ω1 ∈ Ωp
Xan , ω2 ∈ Ωq

Xan . Taking hypercohomology

Hn
dR(X

an) := Hn(Xan,Ω•
Xan)

we get the so-called de Rham cohomology group.
Embedding the constant sheaf C into OXan induces a map C → Ω•

Xan of
complexes of sheaves. The (holomorphic) Poincaré lemma states that this map
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1 Introduction

is a quasi-isomorphism of sheaves. More precisely, one can cover Xan by open
balls and for any open ball U ⊆ Xan, the complex

0→ C→ OXan(U)
d−→ Ω1

Xan(U)→ · · ·

is exact: any closed differential form can be integrated on an open ball. Thus

Hn
sing(X

an,C) ∼= Hn
dR(X

an).

This is the comparison theorem between singular and de Rham cohomology.
Now the complex Ω•

Xan has a decreasing filtration of subcomplexes

Ω≥p
Xan := 0→ · · · → 0→ Ωp

Xan

d−→ Ωp+1
Xan

d−→ · · ·

We have that grp Ω•
Xan
∼= Ωp

Xan . It is well-known that there is a convergent
spectral sequence associated to Ω•

Xan with the filtration above, called the Hodge
to de Rham spectral sequence

Epq
1 = Hq(Xan,Ωp

Xan)⇒ Hp+q
dR (Xan).

The filtration on Hn
dR(X

an) given by the spectral sequence is called the Hodge
filtration.

Fact: the Hodge to de Rham spectral sequence degenerates at E1. This
together with the comparison theorem gives the Hodge decomposition

Hn
sing(X

an,C) =
⊕

p+q=n

Hq(Xan,Ωp
Xan)

for all n.

1.2 Algebraisation
On a complex variety X we may consider the algebraic de Rham complex

Ω•
X := OX

d−→ Ω1
X

d−→ · · ·

For X smooth these are locally free sheaves. The same way as above, we get
the algebraic Hodge to de Rham spectral sequence

Epq
1 = Hq(X,Ωp

X)⇒ Hp+q
dR (X).

Here we use the Zariski topology.
There are two natural maps

Hq(X,Ωp
X)→ Hq(Xan,Ωp

Xan)

Hp+q
dR (X)→ Hp+q

dR (Xan)

all compatible with the maps in the above spectral sequences. By GAGA the
first one is an isomorphism, and by a theorem of Grothendieck the second is
also an isomorphism. Hence degeneration of the analytic Hodge to de Rham is
equivalent to the degeneration of the algebraic counterpart.

However, there is no algebraic Poincaré lemma, the algebraic de Rham com-
plex is not a resolution of C and anyway the sheaf cohomology of C is trivial in
the Zariski topology.
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1 Introduction

1.3 The case of a p-adic base field
Let p be a prime. Recall Cp is the completion of the algebraic closure Qp of Qp.
The absolute Galois group GQp = Gal(Qp/Qp) acts on Cp by continuity. Let
K be a finite extension of Qp. Similarly we obtain CK and an action of GK .
Obviously CK is the same as Cp as a field but it carries the action of a subgroup
of GQp

.

1.3.1 The p-adic cyclotomic character

Let µpn = µpn(K) denote the group of pnth roots of unity in K. Fix a primitive
pnth root εn for all n ≥ 0 such that ε0 = 1 and εpn+1 = εn (compatible system
of pnth root of unity). This is similar to choosing i or −i in C. Put Kn = K(εn)
to get a tower

K ⊆ K(ε1) ⊆ · · · ⊆ K∞ =
⋃
n

Kn.

For every σ ∈ GK and n ≥ 0, there is a unique element χn(σ) ∈ (Z/pnZ)×

such that σ(εn) = ε
χn(σ)
n . By compatibility of (εn)n we have χn+1(σ) = χn(σ)

(mod pn). Thus we have a compatible system (χn(σ))n, and hence an element
χ(σ) ∈ Z×

p . Clearly this does not depend on the choice of (εn)n and we get a
homomorphism χK,p : GK → Z×

p , called the p-adic cyclotomic character . ker(χ

(mod pn)) = Gal(K/K(εn)) which is open kernel so χ is continuous.

1.3.2 Tate twists

Let X = Gm be the multiplicative group scheme. Consider the Kummer se-
quence (evaluated at K)

1 µpn(K) (K)× (K)× 1

Z/pnZ
∼=

a7→apn

and a 7→ ap gives a compatible system µpn+1(K)→ µpn(K). Define

Tp(Gm) := lim←−
n

µpn(K),

the p-adic Tate module of Gm. It is a free Zp-module of rank 1, with the choice
of (εn) providing a basis element. In modern literature, we usually write Zp(1)
for Tp(Gm). The group GK acts on Zp(1) via σ · ε = χ(σ) · ε.

Define Qp(1) = Zp(1)⊗ZpQp and more generally for any Zp-algebra R, define
R(1) := Zp(1)⊗Zp R. We may then define the Tate twists of R. First let

Zp(r) = Zp(1)
⊗r

Zp(−r) = HomZp
(Zp(r),Zp)

with the natural GK action via tensor power action and dual action (σ ·ϕ)(v) =
ϕ(σ−1 · v). Then R(i) = Zp(i)⊗Zp

R.
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1 Introduction

1.4 The Hodge-Tate decomposition
The first proof of the following theorem is given by Faltings:

Theorem 1.1 (Hodge-Tate decomposition). Let X be a smooth proper va-
riety over K. Then there is a Galois equivariant decomposition

Hn
ét(XK ,Qp)⊗Qp CK

∼=
⊕

i+j=n

Hi(X,Ωj
X/K)⊗K CK(−j).

This isomorphism is functorial in X.

The LHS is étale cohomology

Hn
ét(XK ,Qp) := lim←−

n

Hn
ét(XK ,Z/p

nZ)︸ ︷︷ ︸
Hn

ét(XK ,Zp)

⊗Zp
Qp

and hence admits a GK action via the tensor product action coming from the
natural action on Hn

ét(XK ,Qp) and on CK .
The RHS has a GK-action via its action on CK(−j) which is the tensor

product action.

Example. Let A/Q be an abelian variety (i.e. a complete connected group
variety, which is automatically projective as a variety and commutative as a
group), for example an elliptic curve. Its p-adic Tate module is the following
object. Let A(Q)[pn] be the pn-torsion elements. It is known to be isomorphic
to (Z/pnZ)2d where d = dimA. Then

Tp(A) = lim←−
n

A(Q)[pn].

GQ acts on A(Q)[pn] via the finite quotient Gal(Q(A(Q)[pn])/Q) associated
to the field generated by the coordinates of pn-torsion points. Now we may
arrange things so that then it induces an action of GQ on Tp(A) which gives us
a continuous representation ρ : GQ → GL2d(Zp). We may restrict ρ to GQp via
GQp ↪→ GQ. This representation contains information about ρ at a prime.

A fundamental arithmetic invariant is the Z-rank of the Mordell-Weil group
A(Q). This invariant is encoded in the p-adic representation of GQ associated
to A: Tp(A) has a canonical Galois action, Tp(A) ⊗Zp

Qp with induced action
by GQ (or locally GQp

) via ρ. A theorem says that this representation contains
information about all Euler factors of the Hasse-Weil L-function at primes of
good reduction away from p.

Remark. In number theory (p-adic Hodge theory) we want to understand Ga-
lois representations ofGK arising from geometry, as Tp(A)⊗Qp or more generally
Hn

ét(XK ,Qp) where X is smooth proper. By Hodge-Tate decomposition, these
representations are Hodge-Tate. We will not talk much about this but for ref-
erence, see Brinon, Conrad, p-adic Hodge theory. These representations “look
like” pure Hodge structures over C (of course without complex conjugation),
hence the name p-adic Hodge theory.
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1 Introduction

Theorem 1.2 (Tate). For i 6= 0, we have

CK(i)GK = H0(GK ,CK(i)) = H1(GK ,CK(i)) = 0.

For i = 0, each of these two cohomology groups is isomorphic to a copy of
K. In particular,

HomGK ,CK
(CK(i),CK(j)) = 0

if i 6= j.

The following statement basically allows us to recover algebro-geometric in-
variants Hi(X,Ωj

X/K) and Hn
Hodge(X) :=

⊕
i+j=nH

i(X,Ωj
X/K) from topologi-

cal/arithmetic invariants Hn
ét(XK ,Qp):

Corollary 1.3. With the notations in the Hodge-Tate decomposition theo-
rem, we have

Hi(X,Ωj
X/K) ∼= (Hi+j

ét (XK ,Qp)⊗Qp
CK(j))GK .

Proof. Tensor both sides of Hodge-Tate decomposition by CK(j) (we replace j
by k in the formula),

Hn
ét(XK ,Qp)⊗Qp CK(j) ∼=

⊕
i+k=n

Hi(X,Ωk
X/K)⊗K Ck(j − k)

and apply (−)GK . Tate’s theorem gives the claim as CK(k − j)GK = 0 as
j 6= k.

1.5 Integral p-adic Hodge theory
The above is the so-called rational p-adic Hodge theory.

It is important to understand the p-torsion part of Hn
ét(XK ,Zp) in terms of

the geometry of X. In particular, we want a description of Hn
ét(XK ,Fp). It is

much less understood than the rational version.

Theorem 1.4 (Bhatt, Morrour, Scholze). Assume that X is proper smooth
over K, and it spreads to a proper smooth OK-scheme X (i.e. X is the
geometric fibre of X). Then

dimFp(H
n
ét(XK ,Fp)) ≤

∑
i+j=n

dimkH
i(Xk,Ω

j
Xk/k

).

In other words, the mod-p cohomology of XK is related to the geometry of
Xk.

Outline of the proof of Hodge-Tate decomposition:

1. Local study of Hodge cohomology via perfectoid spaces. We construct a
pro-étale cover X∞ → X and study the cohomology of X∞.

2. Descent: descend the previous understanding of the Hodge cohomology of
X∞ to X. To illustrate this process in practice, we work out the case of
abelian varieties with good reduction.
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2 The Hodge-Tate decomposition for abelian varieties with good reduction

2 The Hodge-Tate decomposition for abelian va-
rieties with good reduction

For an introduction to abelian varieties, see Milne, Abelian varieties.
Let K be as above. Recall the following facts:

1. an abelian scheme X over S (base scheme) is a smooth group scheme such
that all fibres are varieties. They are commutative and if S is normal then
X is projective.

2. we say an abelian variety A over K has good reduction if exists an abelian
scheme A over OK such that its generic fibre is A.

Theorem 2.1. There exists a canonical isomorphism

H1
ét(ACK

,CK) := H1
ét(ACK

,Zp)⊗Zp
CK

∼= (H1(A,OX)⊗K CK)⊕ (H0(A,Ω1
A/K)⊗K CK(−1)).

We want to sketch the proof. We shall construct a map

αA : H1(A,OA)⊗Zp
CK → H1

ét(ACK
,CK)

using perfectoid theory and a map

βA : H0(A,Ω1
A/K)⊗ CK(−1)→ H1

ét(ACK
,CK).

Then jA = αA ⊕ βA induces the Hodge-Tate decomposition.
Why is it enough to consider only the first étale cohomology group? Recall

the follow theorem (Milne, Theorem 12.1):

1. there is a canonical isomorphism H1
ét(AK ,Zp) ∼= Tp(A)

∨. Moreover the
usual wedge product defines isomorphisms

r∧
H1

ét(AK ,Z`)→ Hr
ét(AK ,Z`)

for all r. As a consequence, the following algebrs are isomorphic:

(a) the cohomological algebra H∗
ét(AK ,Zp) =

⊕
Hi

ét(AK ,Zp) with cup
product.

(b) the exterior algebra
∧∗

H1
ét(AK ,Zp) with wedge product.

(c) the dual of
∧∗

Tp(A) with wedge product.

2. There is a canonical identification of algebras

H∗(A,CK) ∼= H∗(Tp(A),CK)

where RHS is continuous group cohomology and with cup products on
both sides (hint: use the above and the fact that H1(A,CK) ∼= Tp(A)

∨ ⊗
CK).

3. The OK-module H1
ét(A,OA) is free of rank d = dimA. Moreover the

cohomological ring H∗
ét(A,OA) is the exterior algebra

∧∗
H1

ét(A,OA). In
particular all cohomology groups Hn

ét(A,OA) are torsion free.
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2 The Hodge-Tate decomposition for abelian varieties with good reduction

2.1 The perfectoid construction of αA

We work with OCK
-scheme AOCK

. Write An := AOCK
for n ≥ 0 and consider a

tower
· · · An · · · A1 A0 = AOCK

[p] [p] [p] [p]

where the maps are multiplication by p. We write A∞ = lim←−An and let πn :
An → A0, π : A∞ → A0 be the natural maps. The limit exists (perfectoid
abelian varieites): [p] is a finite map, hence we can apply the following theorem:
if every continuous map in the inverse system is affine then the inverse limit
exists (Stacks TAG 01YX). As we have qcqs schemes,

Hq(A∞,OA∞) = lim−→Hq(An,OAn
).

Now translation by pn-torsion points (in general, for a point a, ta is the com-
position

A → A×OK
A → A

x 7→ (x, a) 7→ xa

)gives an action of A(OCK
)[pn] ∼= A(CK)[pn] (the isomorphism can be checked

using the valuation criterion of properness (?)) on πn : An → A0. Taking
inverse limits, we have an action of Tp(A) on π : A∞ → A0. Therefore taking
pullbacks we obtain a map

H∗(A0,OA0
)→ H∗(A∞,OA∞)

Due to the presence of the group action, the image of this map is contained in
the Tp(A)-invariants of the target. Thus we have a map

H∗(A0,OA0)→ H∗(Tp(A),H
∗(A∞,OA∞))

where RHS is continuous group cohomology. We will consider this in the derived
sense:

ψ : RΓ(A0,OA0
)→ RΓcont(Tp(A), RΓ(A∞,OA∞)).

We need the following vanishing theorem.

Proposition 2.2. The canonical map OCK
→ RΓ(A∞,OA∞) induces an

isomorphism (in the derived category) after p-adic completion.

Proof. As A is an abelian scheme, its cohomology is an exterior algebra on
H1(A,OA). Moreover multiplication by an integer N on A induces a multipli-
cation by N on H1(A,OA). Combining these observations with the formula

Hq(A∞,OA∞) = lim−→Hq(An,OAn
),

we see that

Hi(A∞,OA∞) =

{
OCK

i = 0

Hi(AOCK
,OACK

)[ 1p ] i > 1

(localisation is exactly this colimit).
So modulo any power of p, these latter groups vanish, so does taking p-adic

completion. The claim then follows.
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2 The Hodge-Tate decomposition for abelian varieties with good reduction

p-adic completion of ψ gives

ψ̂ : RΓ(A,OA)→ RΓcont(Tp(A),OCK
).

(LHS A or A0?) On the other hand, as abelian varieties are K(π, 1), we can
interpret the above map as a map

ψ̂ : RΓ(A,OA)→ RΓ(ACK
,OCK

).

In particular, applying H1 and inverting p, we get a map

H1(A,OA)→ H1
ét(ACK

,CK).

After linearising we get

αA : H1(A,OA)⊗ CK → H1(AC,CK).

Remark. A K(π, 1) spaces is a qcqs schemes X that has finitely many con-
nected components, and for any geometic point x of X and p-torsion lcc abelian
sheaf F (locally constant constructible sheaf, i.e. every geometric point of X
has an étale neighbourhood U such that F|U is a constant sheaf induced by a
finite set). The natural maps

Hq(πét
1 (X,x),Fx)→ Hq

ét(X,F)

are all isomorphisms. This uses the finite monodromy correspondence that

{lcc sheaves} ←→ {finite contπet
1 (X,x)-sets}F 7→ Fx

This extends to smooth Zp-schemes (inverse limits of lcc Z/pnZ-sheaves). We
can show

H1(πét
1 ,Zp) ∼= Hom(πét

1 ,Zp).

It can also be shown that Tp(A) ∼= πét
1 (X,x)⊗ Zp. By the adjunction between

extension of scalars, we get RHS isomorphic to

Hom(Tp(A),Zp) = Tp(A)
∨.

2.2 Fontaine’s construction of βA

Theorem 2.3 (differential forms on OCK
). We write Ω for the Tate module

of Ω1
OCK /OK

. This module is free of rank 1 over OCK
. Moreover there is

a Galois-equivariant isomorphism CK(1) ∼= Ω[ 1p ]
a such that a compatible

system (εn)n of p-power roots of unity is mapped to (d log εn)n ∈ Ω.
aThe action on Ω is as follow: TpΩ1 = lim←−Ω1

OCK /OK
[pn]. Ω1

OCK /OK
has a natural

GK -action by functoriality and this induces an action on Ω.

Recall that the p-adic logarithm

log : O×
CK
→ pOCK

x 7→
∑
n≥1

(−1)n−1x
n

n

9



2 The Hodge-Tate decomposition for abelian varieties with good reduction

Then εn is mapped to a pn-torsion element via d log (this map is actulally
O×

CK
→ Ω1

OCK/OK
, f 7→ df

f ). Taking inverse limit (εn)n ∈ Ω we get Zp(1)→ Ω.
Base changing it to get

OCK
(1) = Zp(1)⊗OCK

→ Ω.

Fontaine proves that this map is injective with torsion cokernel, giving CK(1) ∼=
Ω[ 1p ].

Proof. Omitted. We will see a more general statement later.

In particular this connects Tate twists (Galois side) to differential forms (de
Rham side). Using this, considering OCK

-rational points SpecOCK
→ A, we

get a map

H0(A,Ω1
A/OCK

)→ H0(SpecOCK
,Ω1

OCK /OK
) = Ω1

OCK /OK
.

This induces a pairing

H0(A,Ω1
A/OCK

)⊗A(OCK
)→ Ω1

OCK /OK
.

Passing to p-adic Tate module

H0(A,Ω1
A/OK

)⊗ Tp(A)→ Ω.

Use the identification Tp(A) ∼= H1
ét(ACK

,Zp)
∨, we get a map

H0(A,Ω1
A/OK

)→ H1(ACK
,Zp)⊗ Ω.

Inverting p and using Fontaine’s theorem and linearising, we get

βA : H0(A,Ω1
A/K)⊗ CK(−1)→ H1(ACK

,CK).

Now taking direct sum of αA and βA, we get

γA : (H1(A,OA)⊗ CK)⊕ (H0(A,Ω1
A/K))⊗ CK(−1)→ H1

ét(ACK
,CK).

Remark. Each summand on LHS has dimension d and RHS has dimension
2d so it suffices to show injectivity. In fact the two term have different Galios
action and γA is Galois-equivariant, so it is enough to check injectivity termwise.
Classically, for βA it follows from a classical formal group argument. For αA we
will have a more general statement.
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3 Hodge-Tate decomposition in general

3 Hodge-Tate decomposition in general

3.1 Étale cohomology of adic spaces and rigid varieties
Throughout we will mean étale cohomology of adic spaces (and there won’t be
cohomology for schemes). Recall the results by Huber

1. let f : X → Y be a morphism of rigid analytic varieties. f is étale if
for every x ∈ X, OX,x is flat over OY,f(x) and OX,x/mxOX,x is a finitely
separable field extension of OY,f(x)/mf(x)OY,f(x).
There is a natural way to get an adic space Xad from an rigid analytic
variety X.

2. Let (A,A+) be an affinoid K-algebra. A map f : (A,A+) → (B,B+) is
finite étale if

(a) A→ B is étale (in the sense of algebra),
(b) B+ is the integral closure of A+ in B.

Definition. A morphism f : X → Y of adic spaces is étale if for all x ∈ X
we can find a factorisation

x ∈ U X

f(x) ∈ V Y

aff open

f

aff open

such that U → V is finite étale.
In this way we get the étale site for adic spaces.

Proposition 3.1. For every rigid analytic variety X, the natural map of
toposes

(X̃ad)ét → X̃ét

is an equivalence.

Let X be a rigid analytic variety over CK .

Theorem 3.2 (Hodge-Tate spectral sequence, Scholze). Assume X is smooth
and proper. Then there exists a spectral sequence

Eij
2 = Hi(X,Ωj

X/CK
)(−j)⇒ Hi+j

ét (X,CK).

If X is already defined over some discrete valuation field L ⊆ CK then
this spectral sequence degenerates at page 2 and we obtain the Hodge-Tate
decomposition.

Remark. By the work of Huber (Étale cohomology of rigid analytic varieties
and adic spaces) if X arises as the analytification of some algebraic variety Y
then for torsion abelian sheaves (in particular constant sheaves Z/nZ), étale
cohomology of X is isomorphic to the étale cohomology of Y . Hence we get
back the algebraic version of the above Hodge-Tate decomposition.

11



3 Hodge-Tate decomposition in general

Remark. First Scholze considered the completed structure sheaf ÔX on the
pro-étale site (to be defined later). Roughly the objects are towers {Ui} of finite
étale covers with U0 → X étale and ÔX is the sheaf which assigns to such a
tower the completion of the direct limit of the rings of analytic functions on the
Ui’s. In particular this sheaf is a sheaf of CK-algebras.

Theorem 3.3 (primitive comparison theorem). The natural inclusion CK ⊆
ÔX gives an isomorphism

H∗
ét(X,CK) ∼= H∗

proét(X, ÔX).

So to prove Hodge-Tate theorem, it is enough to use pro-étale cohomology with
ÔX which enables us to consider on both sides sheaf cohomology. Have a natural
map

v : Xproét → Xét

(recall that the morphism of sites goes in the opposite direction of the functors
between the categories. v is induced by the fact that étale morphisms are pro-
étale). The spectral sequence in primitive comparison theorem arises using the
Leray spectral sequence for v and the following theorem:

Theorem 3.4 (Hodge-Tate filtration, local version). There is a canonical
isomorphism Ωj

X/CK
(−j) ∼= Rjv∗ÔX .

Our aim is to prove this theorem.

12



4 Cotangent complex and perfectoid rings

4 Cotangent complex and perfectoid rings
Reference: Stacks TAG 08P5

4.1 Simplicial algebra
Denote by ∆ the category of whose objects are the finite ordered sets [n] =
{0 < 1 < · · · < n} and morphisms are nondecreasing functions. ∆ is called the
simplex category.

Definition ((co)simplicial object). A simplicial (resp. cosimplicial) object
in a category C is a contravariant (resp. covariant) functor X : ∆ → C.
Simplicial objects in C form a category Simp(C), whose morphisms are
morphisms of functors. Fix integer n ≥ 1 and 0 ≤ i ≤ n, define a face map
εi : [n − 1] → [n] as the unique non-decreasing map whose image does not
contain i. The degeneracy map ηi : [n]→ [n−1] is the unique non-decreasing
map that is surjective and maps exactly two elements to i.

Lemma 4.1. Giving a simplicial object X in C is equivalent to giving objects
Xn for n ≥ 0 with face maps and degeneracy maps

∂i = X(εi) : Xn → Xn−1, σi = X(ηi) : Xn−1 → Xn

satisfying

∂i∂j = ∂j−1∂i i < j

σiσj = σj+1σi i ≤ j

∂iσj =


σj−1∂i i < j

id i = j or i = j + 1

σj∂i−1 i > j + 1

Example. If B is an object in C, the constant simplicial object B• is Bn = B
and all maps in the lemma are idB .

Definition (augmentation). Give B ∈ C and X• ∈ Simp(C), we define
the augmentation ε : X• → B to be a morphism X• → B•.

Definition (associated chain complex of a simplicial object). Given X• ∈
Simp(A) where A is an abelian category, we define its associated chain
complex CX• with CXn = Xn and differentials dn : Xn → Xn−1 given by
dn =

∑n
i=0(−1)i∂i.

Definition (simplicial resolution). An augmented simplicial object ε : X• →
B in an abelian category is a simplicial resolution if ε0 : X0 → B is epic
and the associated chain complex CX• is acyclic except at degree 0 where
its homology is B.
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4 Cotangent complex and perfectoid rings

4.2 Construction of cotangent complex
Reference for cotangent complex:

- T. Szamuely and G. Zabradi: The p-adic Hodge decomposition according
to Beilison

- Stacks: The cotangent complex
This construction is due to Quillen.
For any ring A, we write A[S] for the polynomial algebra over A on a set

of variables xs indexed by s ∈ S. The functor S 7→ A[S] is left adjoint to the
forgetful functor from AlgA → Set. In particular we have a canonical surjection
ηB : A[B] → B for any A-algebra B. Repeating this construction, we obtain
A[A[B]]→ A[B]. Iterating this, we get a simplicial A-algebra PB/A• augmented
over B

(· · ·A[A[A[B]]] ⇒ A[A[B]]→ A[B])→ B.

This map is a resolution of B in the category of simplicial A-algebras. More
concretely, the associated chain complex is a free resolution of B over A.

Definition (cotangent complex). For any map A → B of commutative
rings, we define the cotangent complex LB/A, which is a complex of B-
modules and most of the time viewed as an an object of D(B), as follows:
set

LB/A = C(Ω1
P•/A

⊗P• B•)

where P• → B is the resolution that we defined earlier (by polynomial A-
algebras) and Ω1

P•/A
is defined by applying the functor A′ 7→ Ω1

A′/A for any
A-algebra A′. The tensor product goes diagonally. In other words

(LB/A)n = Ω1
P•/A

⊗Pn
B.

Non-trivial fact (Thm 2.7 in the first reference) Let Q• → B be another sim-
plicial resolution by polynomial A-algebras. We then have a quasi-isomorphism

LB/A ' C(Ω1
Q•/A

⊗Q• B•)

of complexes, i.e. an isomorphism in D(B).
Properties of LB/A (try to prove these!):

1. polynomial algebras: if B is a polynomial A-algebra then

LB/A ' Ω1
B/A[0],

(concentrated in degree 0). It is because polynomial algebra resolutions
are homotopic to each other, so we may use the constant simplicial A-
algebra B to compute LB/A.

2. Künneth formula: if B,C are flat A-algebras, then

LB⊗AC/A ' LB/A ⊗A C ⊕ LC/A ⊗A B.

We can reduce this to the case of polynomial algebras by passing to res-
olutions and flatness is used to show that if P• → B and Q• → C are
polynomial resolutions then P• ⊗A Q• → B ⊗A C is also a polynomial
resolution.
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4 Cotangent complex and perfectoid rings

3. transitivity triangle: given a composition A→ B → C, we have a canoni-
cal exact (distinguished) triangle

LB/A ⊗L
B C → LC/A → LC/B

in D(C). To prove this we first settles the case where A → B,B → C
are polynomial maps. The general case follows by passing to resolutions.
(Thm 2.13 in the first reference)

4. base change: given a flat map A→ C and a map A→ B, we have

LB/A ⊗A C ' LB⊗AC/C .

Again pass to resolutions and check for polynomial algebras.

5. vanishing for étale maps: if A → B is étale then LB/A ' 0. Strategy
of proof: for Zariski localisations (i.e. B ∼=

∏n
i=1A[

1
fi
] for fi ∈ A) we

have that B ⊗A B ' B induced by pushout diagram. Then the Künneth
formula shows that

LB/A ' LB/A ⊕ LB/A

so LB/A ' 0. For an étale map A→ B, one shows m : B ⊗A B → B is a
Zariski localisation so LB/B⊗AB ' 0. By the trnasitivity triangle for

B
i1−→ B ⊗A B → B,

this yields that
LB⊗A⊗B ⊗B⊗AB B ' 0

By base change LB⊗AB/B ' LB/A⊗B, so the base change of LB/A along

A→ B → B ⊗A B → B

vanishes. But this composition is just the original étale map, so LB/A⊗A

B ' 0. Then the canonical map LB/A → LB/A⊗AB has a section coming
from the action of B on LB/A, hence LB/A ' 0.

6. étale localisation: if B → C is an étale map of A-algebras then LB/A ⊗B

C ' LC/A. This follows from 2 and 5 as LC/B ' 0.

7. relation to Kähler differentials: for any mapA→ B we have thatH0(LB/A) ∼=
Ω1

B/A. This can be directly shown from the definition.

8. smooth algebras: if A→ B is smooth then

LB/A ' Ω1
B/A[0].

Use that smooth algebras look like polynomial algebras étale locally, and
apply 1, 3 and 6.

Example (cotangent complex for a complete intersection). Let R be a ring,
I ⊆ R generated by a regular sequence and S = R/I. Then LS/R ' I/I2[1]. To
see this, consider first the case R = Z[x1, . . . , xn] and I = (x1, . . . , xn). Then
S = Z and the transitivity triangle for Z→ R→ S collapses to give

LS/R ' Ω1
R/Z ⊗R S[1] ' I/I2[1]

15



4 Cotangent complex and perfectoid rings

where the first quasi-isomorphism is induced by I/I2 → Ω1
R/Z⊗RS, f 7→ df⊗1.

For general R, we choose a regular sequence f1, . . . , fr ∈ I. Then we consider
the pushout square

Z[x1, . . . , xr] R

Z S

xi 7→fi

xi 7→0

As fi’s form a regular sequence, the base change map for the cotangent complex
implies

LS/R ' LZ/Z[x1,...,xn] ⊗Z S ' I/I2[1].

The reason we introduced the cotangent complex in the following theorem:

Theorem 4.2 (deformation invariant of the category of finite étale alge-
bras). For any ring A, denote by CA the category of flat A-algebras B such
that LB/A ' 0. Then for any surjective map A′ → A with nilpotent kernel,
base change induces an equivalence of categories CA ' C ′

A. In other words,
every A→ B in CA lifts uniquely to A′ → B′ in CA′ .

Any étale A-algebra B is an onject of CA. Conversely if B is finitely pre-
sented over A and B ∈ CA then can show B is étale over A (TAG 0D12). Hence
the above theorem really shows the invariance of the étale sites of such maps
(TAG 04DZ).

The above is too restrictive for our purpose, therefore we prove the following
statement:

Proposition 4.3. Assume that A has characteristic p. Let A → B be a
flat map that is relatively perfect, i.e. the relative Frobenius FB/A : B(1) :=
B⊗A,FA

→ B is an isomorphism. Then LB/A ' 0.

Proof. We show that for any A → B, FB/A induces the zero map LFB/A :
LB(1)/A → LB/A. When B is a polynomial A-algebra it is clear (as dxp = 0) and
then we pass to the associated standard resolutions to conclude for the general
case. Now if A→ B is relatively perfect then LFB/A is also an isomorphism by
functoriality. Then the zero map is also an isomorphism so LB/A ' 0.

This leads to the following description of the Witt vector functor:

Witt vectors via deformation theory Let R be a perfect ring of charac-
teristic p. Then R is relatively perfect over Fp so LR/Fp

' 0. Use the theorem
about deformation invarinats, which says that R has a unique flat lift to Z/pnZ
for any n. This lift is Wn(R) from the canonical construction. Taking inverse
limit,

W (R) = lim←−Wn(R)

gives the ring of Witt vectors of R, which can be seen to be the unique p-adically
complete p-torisonfree Zp-algebra lift of R.
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4 Cotangent complex and perfectoid rings

Fontaine’s Ainf and the map θ Fix a ring A and A→ B in CA. Analysing
the proof of the above theorem (TAG 0D11), one can show the following: if
C ′ → C is a surjective map of A-algebras with nilpotent kernel, every A-algebra
map B → C has a unique A-algebra lift B → C ′. In particular given a p-adically
complete Zp-algebra C, a perfect ring D and a map D → C/(p), we obtain a
unique lift Wk(D) → C/(pn). Taking limits we get a unique map W (D) → C
which lifts D → C/(p). This way we obtain Fontaine’s θ map via abstract
nonsense:

Proposition 4.4. Given any p-adically complete ring R, the canonical pro-
jection

θ : R[ := lim←−
x7→xp

R/p→ R/p

lifts uniquely to a map

θ : Ainf(R) :=W (R[)→ R.

Exercise. θ is surjective if and only if R/p is semiperfect, i.e. has sujrective
Frobenius. In this case by p-adic completeness θ is also surjective.

A short review of integral perfectoid theory.

Definition (integral perfectoid ring). A ring R is integral perfectoid if R is
π-adically complete for some π ∈ R such that p ∈ (πp), the ring R/p has
surjective Frobenius and the kernel of θ is principal.

Example.

• Ring of integers of a perfectoid field.

• perfect ring of characteristic p.

• if K is a perfectoid field of characteristic 0 then a p-adically complete,
p-torsionfree OK-algebra R is integral perfect if and only if OK/p→ R/p
is relatively perfect.

Remark (tilting). For an integral perfectoid ring R, the map θ fits into the
following commutative diagram

W (R[) R

R[ R/p

θ

θ

Then the above theorem and proposition 4.3 can be used to prove half of the
tilting correspondence by Scholze.

4.3 Ainf and differential forms
We sketch the proof of a statement that in particular proves Fontaine’s theorem
on differential forms on OCK

(c.f. theorem 2.3).
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4 Cotangent complex and perfectoid rings

Let A be a perfect ring of characteristic p. By proposition 4.3 we have a
canonical map Zp →W (A) and its has the property that LA/Fp

' 0. Note that
in the base change property of cotangent complex, if we relax the flatness of
A→ C to TorA>0(B,C) = 0, the same argument shows that

LBN/A ⊗L
A C ' LB⊗AC/C .

Thus
LW (A)/Zp

⊗L
Zp

Fp ' LA/Fp
' 0.

Digression on derived completion Reference TAG 091N, 0BKF.

Definition (derived completeness). Let A be a commutative ring and I
be a finitely generated ideal in A. An A-complex M• ∈ D(A) is derived
I-complete if for each f ∈ I, the derived inverse limit

T (M•, f) := R lim(· · · f−→M
f−→M) ∈ D(A)

vanishes. This is equivalent to requiring that the natural map

M• → R lim(M• ⊗L
Z[x] Z[x]/(x

n))

(we treat M• as a Z[x]-module via Z[x]→ A, x 7→ f) is a quasi-isomorphism.
An A-module M is derived I-complete if M [0] is derived I-complete.

Fact:

1. For any finitely generated idael I ⊆ A, M is I-adically complete if and
only if M ∈ D(A) is derived I-complete and the filtration is separated,
i.e.

⋂
InM = 0.

2. Derived I-completenesss can be checked on any generating set of I.

3. An object M• ∈ D(A) is derived I-complete if and only if Hi(M•) is so.

4. Derived Nakayama lemma: let I ⊆ A be finitely generated. Then for any
M• ∈ D(A) which is derived I-complete, if M•⊗L

AA/I = 0 ∈ D(A) then
M• = 0 D(A) as well. See TAG 0GTU.

5. If I = (f1, . . . , fr), the collection of all derived I-complete A-complexes
form a full triangulated subcategory of D(A) closed under derived inverse
limits.

Now we can define derived completion. For any M• ∈ D(A), the object

M̂• := R lim(M• ⊗L
Z[x1,...,xr]

Z[xn1 , . . . , xnr ])

is called the derived I-completion of M•.
If I is principal then

M̂• ' R lim(M• ⊗L
A (A

fn

−−→ A)).

Now back to the discussion of Witt ring. We have

LW (A)/Zp
⊗L

Zp
Fp ' LA/Fp

' 0

18



4 Cotangent complex and perfectoid rings

so taking the derived p-completion and using derived Nakayama and that

0 ' LW (A)/Zp
⊗L

Zp
Fp ' ̂LW (A)/Zp

⊗L
Zp

Fp

we see that ̂LW (A)/Zp
' 0. By transitivity triangle, for any W (A)-algebra R,

we have
L̂R/Zp

' L̂R/W (A).

If R is an integral perfectoid ring and A = R[, with θ : W (A) → R then
L̂R/Zp

' ̂LR/Ainf. But ker θ is principal generated by a non-zero divisor (see
Bhatt-Scholze Lemma 3.10 for a proof. See also IV Perfectoid Spaces). Then
our example about the cotangent complex for complete intersections shows

L̂R/Zp
' ker θ/(ker θ)2[1].

In particular, this is a free R-module of rank 1. In the case of R = OCK
, this

recovers Theorem 2.3: LHS is quasi-isomorphic to Ω

Tp(Ω
1
OCp/Zp

) ' L̂OCK/Zp
[−1].

RHS is “OCK
(1)”: if we choose a compatible system of p-poer roots of unity

and look at its tilt ε[ ∈ O[
CK

then µ := [ε[] ∈ ker θ and its iamge spans a copy of
OCK

(1). The quotient (ker θ/(ker θ)2)/OCK(1) is torsion and killed by p1/(p−1)

(section 3.3 in Bhatt-Morrow-Scholze).

Remark (on the notation Ainf (and Acrys)). Let R be an integral perfectoid
ring. Be definition θ : R[ → R/p is the inverse limit of the maps φn : R/p →
R/p. Since R is perfectoid (using semiperfectness), these maps are infinitesimal
thickenings (i.e. surjections with nilpotent kernels). Therefore R[ is the inverse
limit of infinitesimal thickenings on R/p. Using that R[ is perfect, θ : R[ → R/p
is universal in the sense that for any infinitesimal thickening S → R/p with S
an Fp-algebra, we have R[ → S factoring θ. One uses the construction in the
last lecture to show that θ :W (R[)→ R is also an inverse limit of infinitesimal
thickenings of R and in a universal way. Then by definition AR = W (R[) is
the global sections of the structure sheaf of the infinitesimal site for Spec(R/p).
Hence the name AR.

Likewise, adjoining divided powers along the kernels of θ to Ainf and p-
adically completing produces AcrysR and similarly one can show AcrysR is the
global sections of the structure sheaf on the crystalline site of Spec(R/p).
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5 Pro-étale site

5 Pro-étale site
Recall from SGA 4 I.8 some abstract nonsense about pro-objects in a category
C.

Definition (cofiltered category). A category I is cofiltered if for every
i1, i2 ∈ I, exists i3 ∈ I such that there are morphisms i3 → i1, i3 → i2,
and if i1 ⇒ i2 are two arrows the exists a morphism i → i1 such that the
compositions i→ i1 ⇒ i2 are equal.

Definition (pro-object). Let C be a category. A pro-object of C is a functor
F : I → C where I is a small cofiltered category.

The category pro-C is the category whose objects are pro-objects of C,
and if F : I → C, G : J → C are pro-objects, Hompro−C(F,G) is the limit
of the functor Iop×J → Set given by HomC(F (−), G(−)). Thus the homset
in pro−C is

lim
J

colim
I

HomC(F (i), G(j)).

Equivalent point of view: take Ĉ = SetC
op

and consider pro−C to be the
full subcategory given by functors that are small cofiltered limits of representat-
ble objects. Note that by Yoneda we have a natural embedding C→ Ĉ, called
the Yoneda embedding. To see the equivalence, if we have a functor F : I → C,
compose it with the Yoneda-embedding to get F̃ : I → Ĉ. Take limit lim F̃ ∈ Ĉ.
This yields a functor from pro−C in the first definition to that in the second
definition. This functor is fully faithful and essentially surjective.

Since we can combine double inverse systems to single inverse systems, the
category Ĉ has arbitrary cofiltered inverse limits.

Now let X be a locally noetherian adic space, i.e. it is locally of the form
Spa(A,A+) where either A is noetherian or A has a noetherian ring of definition.
We may look at pro-Xét. Note that every U ∈ pro-Xét has an underlying
topological space |U | = lim←−|Ui| in the category Top. We may thus speak of
topological properties such as open, quasicompact etc.

Definition. The pro-finite étale site Xprofét has as underlying category the
category of pro-Xfét. Coverings are given by open morphisms {fi : Ui → U}
such that |U | =

⋃
fi(|Ui|).

For a profinite group G, let G−fset be the site whose underlying category
is the category of finite sets S with continuous G-action and whose coverings
are given by families of G-equivariant maps {fi : Si → S} such that S =⋃
fi(Si).
Let G−pfset be the site with objects profinite sets S with continuous

G-actions and coverings {fi : Si → S} open G-equivariant maps such that
S =

⋃
fi(Si).

Proposition 5.1. Let X be a connected locally noetherian adic space. Then
there is a canonical equivalence of sites

Xprofét ∼= π1(X,x)−pfset.
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5 Pro-étale site

Sketch proof. The functor sends U ∈ Xprofét to lim←− si where si are the stalks of
Ui at x. Note that by definition G−pfset ∼= pro−(G − fset) and we use the
well-known fact that

Xfét ∼= π1(X,x)−fset.
One may check that coverings are also identified.

Now we define the pro-étale site. We take the definitions in Scholze: p-adic
Hodge theory for rigid analytic vareities.

Definition. A morphism U → V in pro−Xét is called étale (resp. finite
étale) if there exists a morphism U0 → V0 in Xét (resp. Xfét) such that
U = V ×U0

V0 via some morphism V → V0.
A morphism U → V in pro−Xét is called pro-étale if it can be written

as a cofiltered inverse limit U = lim←−Ui of objects Ui → V in pro−Xét that
are étale in pro−Xét, such that Ui → Uj is finite étale and surjective for
large i > j. Such a presentation is called pro-étale presentation.

Definition (pro-étale site). The pro-étale site Xproét has as underlying
category space the full subcategory of pro−Xét of objects that are pro-étale
over X. A cover in Xproét is given by a family {fi : Ui → U} such that fi’s
are pro-étale and |U | =

⋃
fi(|Ui|).

Verifying that Xproét is a site amounts to prove the following proposition,
which we state only:

Proposition 5.2.

1. If U, V,W ∈ pro−Xét and U → V is an étale morphism (resp. finite
étale, resp. pro-étale) and W → V is any morphism then U ×V W
exists in pro−Xét and U ×V W →W is étale (resp. finite étale, resp.
pro-étale), and the map |U ×V W | → |U | ×|V | |W | is surjective.

2. Composition of étale (resp. finite étale) morphisms is étale (resp. finite
étale).

3. Any pro-étale map U → V is open.

4. Let U → V, V → W be pro-étale morphism in pro−Xét and W ∈
Xproét. Then U, V ∈ Xproét and the composition U →W is pro-étale.

There is a fully fiathful embedding of categories Xprofét ⊆ Xproét. The
coverings coincide so we get morphism of sites Xproét → Xprofét. There is a
canonical map v : Xproét → Xét as any étale map U → V in Xét is by definition
étale in Xproét.

Theorem 5.3.

• An object U ∈ Xproét is quasicompact (every covering can be refined
to a finite subcovering) if and only if |U | is quasicompact.

• An object U ∈ Xproét is quasiseparated (for all pair V → U ← W
where V,W are quasicompact, V ×U W is quasicompact) if and only
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5 Pro-étale site

if |U | is quasiseparated

• A morphism f : U → V is quasicompact (resp. quasiseparated) if and
only if |f | : |U | → |V | is quasicompact (resp. quasiseparated).

Theorem 5.4 (comparison theorem between étale and pro-étale cohomol-
ogy). For any F ∈ X̃ét, the adjunction morphism F → Rv∗v

∗F is an iso-
morphism (in the derived category). Consequently v∗ gives a fully faithful
embedding X̃ét → X̃proét.

Proof. We know that for i ≥ 0, Riv∗v
∗F is the sheaf associated to the presheaf

U 7→ Hi(U, v∗F) where U is considered as an object in Xproét. As X is qua-
siseparated, one can just work with Xproétqc ⊆ Xproét. Recall that we have the
following theorem

Theorem 5.5. Let F ∈ X̃ét and U ∈ Xproét with pro-étale presentation
U = lim←−Ui such that U is qcqs. Then for any j ≥ 0

Hj(U, v∗F) = lim−→Hj(Ui,F).

By this theorem for j = 0, H0(U, v∗F) = H0(U,F). Moreover in j > 0,
Hj(U, v∗F) = Hj(u,F). But any section vanishes locally on the étale topology,
so the associated sheaf is trivial, so we get a quasiisomorphism F → Rv∗v

∗F .

5.1 Structure sheaf on pro-étale site

Definition. Let X be a locally noetherian adic space over Spa(Qp,Zp).

1. The uncompleted structure sheaf OX := v∗OXét with subsheaf of in-
tegral elements O+

X := v∗O+
Xét

.

2. The integral completed structure sheaf Ô+
X := lim←−O

+
X/p

n and the com-
pleted structure sheaf ÔX := Ô+

X [ 1p ].

Remark. One can really see that for any x ∈ |U | for any object U ∈ Xproét,
we have a natural conrinuous valuation f 7→ |f(x)| on OX and

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1 for all x ∈ |U |}.

Moreover the natural map of sheaves O+
X/p

n → Ô+
X/p

n is an isomorphism and
ÔX

+
(U) is flat over Z/p and p-adically complete. The valuation f 7→ |f(x)|

extends to a continuous valuation on Ô+
X(U) and

Ô+
X(U) = {f ∈ ÔX(U) : |f(x)| ≤ 1 for all x ∈ |U |}.

In particular Ô+
X(U) ⊆ ÔX(U) is integrally closed.

How to construct a valuation on OX(U)? This can be checked locally so we
may assume that U is qcqs. Also any point x ∈ |U | = lim←−|Ui| is given by a
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5 Pro-étale site

compatible system xi ∈ |Ui| which in turn corresponds to continuous valuations
x̃i on OXét(Ui) = OX(Ui). But

OX(U) = (v∗OXt)(U) = lim−→OX(Ui)

so x̃i combine into a continuous valuation on OX(U).

Now we turn to determine a basis for the pro-étale topology. Assume that K
is a perfectoid field and X is locally noetherian over Spa(K,K+) (for example
Spa(CK ,OCK

)).

Definition ((affinoid) perfectoid object of pro-étale topology). An object
U = lim←−Ui ∈ Xproét is called affinoid perfectoid if it satisfies the following:

1. each Ui = Spa(Ri, R
+
i ) is affinoid,

2. setting R+ = ̂colimR+
i (p-adic completion) and R := R+[ 1p ], the pair

(R,R+) is a perfectoid K-algebra (Spa(R,R+) is affinoid perfectoid
over Spa(K,K+)). For such an object, write Û = Spa(R,R+).

We say that U is perfectoid if it has an open cover by affinoid perctoids.

Example (perfectoid torus). If

X = Tn = Spa(K〈T±1
1 , . . . , T±1

k 〉,K
+〈T±1

1 , . . . , T±1
n 〉)

then the inverse limit T̃n ∈ Xproét of

Spa(K〈T±1/pm

1 , . . . , T
±1/pm

k 〉,K+〈T±1/pm

1 , . . . , T±1/pm

n 〉)

is affinoid perfectoid.

Remark. Affinoid perfectoid objects are important because they provide a basis
for the pro-étale topology. If X is smooth then locally it admits an étale map
to Tn

x ∈ U Tn

Spa(Qp,Zp)

étale

(See Huber, Étale cohomology I.6.10).

Proof. If X = Tn then T̃n → Tn is an explicity cover. If X → T̃n is pro-
étale then X is also perfectoid: we may factor X → T̃n as the composition
X

f−→ X0
g−→ T̃n where f is an inverse limit of finite étale surjective maps

Xi → X0 and X = lim←−Xi, and g is an étale map.
Since étale maps can be written locally as a composition of a rational subset

of a finite étale cover. As rational subsets of affinoid perfectoid spaces are
affinoid perfectoid, we need to check for finite étale maps. By almost purity,
i.e. tilting induces an equivalence of categories between finite étale R-algebras
and finite étale R[-algebras where R is any perfectoid Tate algebra, and the fact
that for perfectoid Fp-algebras finite étale induces perfectness, we get what we
want.
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5 Pro-étale site

For X → X0, we use that the completion of direct limit of affinoid perfectoid
is affinoid perfectoid and again the same reasoning as above for finite étale.

In general X is smooth so it factorises locally as

x ∈ U Tn

Spa(K,K+)

étale

and for any such U ∈ Xproét, U×Tn T̃n → U is a covering such that U×Tn T̃n →
T̃n is pro-étale.

5.2 Vanishing theorems on Xproét

By Lemma 4.1 in “Scholze: p-adic Hodge...”, one may see that ÔX behaves
as expected: for any affinoid perfectoid U ∈ Xproét with Û = Spa(R,R+),
ÔX(U) ∼= R and Ô+

X(U) ∼= R+ and Ô+
X is really the p-adic completion of

O+
X(U). We may consider the relative version of LB/A, i.e. for Ô+

X , LÔ+
X/OCK

is
the sheafification of

U 7→ LÔ+
X(U)/OCK

for U ∈ Xpro-ét.

Proposition 5.6. The cotangent complex LÔ+
X/OCK

vanishes mod p on

Xpro-ét. Hence the p-adic derived completion ̂LÔ+
X/OCK

' 0.

Proof. It is enough to check for affinoid perfectoid objects that the presheaf

U 7→ LÔ+
X(U)/OCK

⊗L
Zp

Fp

vanishes. By the remark at the beginning of the section, Ô+
X(U) = R+ is

integrally perfectoid. Therefore as OCK
/p → R+/p is relatively perfect (by

semi-perfectness), we may use proposition 1 in lecture 8 (?) to conclude that
LR+/OCK

' 0.

In other words there is no differential geometric information when we work
on the ringed site (Xpro-ét, ÔX).

Theorem 5.7 (acyclicity of ÔX on affinoid perfectoids). Let U ∈ Xpro-ét
be affinoid perfectoid. Then Hi(U, ÔX) = 0 for i > 0.

Proof. Scholze p-adic 4.11. The proof goes through almost mathematics by
Faltings. One must show that Hi(U, Ô+

X) almost vanishes, in the sense that it
is killed by (p1/p

∞
).

Remark. We may use this to compute Hi(U, ÔX) for U ∈ Xpro-ét affinoid
object. If we choose a pro-étale cover V → U with V affinoid perfectoid. Then
by Leray acyclicity and the above theorem we may use the Čech complex

ÔX(V ) ÔX(V ×U V ) ÔX(V ×U V ×U V ) · · ·
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5 Pro-étale site

to compute Hi(U, ÔX). Note that all fibre products V ×U · · · ×U V are affinoid
perfectoid (Scholze 6.18). Moreover if G is a profinite group and V → U is a
G-torsor, i.e. it is a homogeneous space and G acts freely, then one can show

V ×U V ∼= V ×G

where G : Y 7→ Homcont(|Y |, G), and hence

Hi(U, ÔX) ∼= Hi
cont(G, ÔX(V ))

(this is analogous to the derivation of Hilbert theorem 90 from faithfully flat
descent). In other words we may compute pro-étale cohomology of ÔX in terms
of continuous group cohomology.

Lemma 5.8. The OX-mdoule R1v∗ÔX is locally free of rank n, the dimen-
sion of X and taking cup products gives an isomorphism

i∧
R1v∗ÔX ' Riv∗ÔX .

Proof. This is a local statement so we may assume that X is affinoid and there is
an étale morphism X → Tn such that it factors as the composition of a rational
subset of a finite étale cover. Let X̃ = X ×Tn T̃n → X be a pro-étale cover such
that X̃ is affinoid perfectoid. T̃n is a Zp(1)-torsor:

(̂T̃n) = Spa(R,R+)

:= Spa(CK〈T±1/p∞

i , 〉,OCK
〈T±1/p∞

i 〉)

= lim←−
n

Spa(CK〈T±1/pn

i 〉,OCK
〈T±1/p∞

i 〉).

Each map in the inverse system is canonically a µp(CK)-torsor (for example for
n = 1, T a/pm 7→ εam · T a/pm) in a compatible way so we get a Zp(1)-torsor.

By remark above

Hi(Xpro-ét, ÔX) ∼= Hi
cont(Zp(1), ÔX(X̃)).

By Lemma 4.5 and 5.5 in “Scholze: p-adic...”,

ÔX(X̃) = ˆ̃OX(X)⊗CK〈T±1
i ,...,T±1

n 〉 R

and

Hi
cont(Zp(1), ÔX(X̃)) ∼= ÔX(X)⊗CK〈T±1

i ,...,T±1
n 〉 H

i
cont(Zp(1), R)

so it is enough to do every thing for X = Tn.
We prove for n = 1 and the whole argument works for general n. We have

a canonical presentation

CK〈T±1/p∞
〉 ∼=

⊗̂
i∈Z[ 1p ]

CK · T i
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5 Pro-étale site

and by the above Zp(1)-action, if ε = (εn) ∈ Zp(1) then by standard facts about
continuous group cohomology of pro-cyclic groups

RΓ(Xpro-ét, ÔX) ∼=
⊗̂

i∈Z[ 1p ]
(CKT

i T i 7→(εi−1)·T i

−−−−−−−−−→ CKT
i)

with the convention that if i = a
pm then εi = εam.

To see this, recall that, in general, if M is a topological Zk
p-module such

that M = lim←−M/pm then continuous Zk
p-cohomology with values in M can be

computed by the Koszul complex

0 M Mk · · ·
∧q

Mk · · · Mk M 0d

where d : Mk → M is (γ1 − 1, . . . , γk − 1) where the γi’s provide a basis for
Zk
p. To check this, the Iwasawa algebra Λ = Zp[[Zn

p ]]
∼= Zp[[x1, . . . , xk]] where

xi corresponds to γi − 1, use the Koszul complex

0 Λ Λk · · ·
∧q

Λk · · · Λk Λ 0
(x1,...,xk)

is a resolution of Zp. Now take Homcont(−,M), this gives a resolution of M is
a topological Zk

p-module. Then taking cohomology gives the result.)
So the Koszul complex above assigned to T i 7→ (εi − 1) · T i computes the

continuous group cohomology and we get the result.
If i ∈ Z then εi = 1 so d is 0. If i /∈ Z then εi 6= 1 so εi − 1 6= 0 so d is an

isomorphism. Thus up to quasiisomorphism we may ignore i /∈ Z powers to get

RΓ(Xpro-ét, ÔX) ∼=
⊕̂

i∈Z
(CKT

i 0−→ CKT
i).

Now it is easy to see that H1 is free of rank 1 and Hi’s are exterior products of
H1.

5.3 Construction of the map φi

Recall that we reduce the degeneracy of Hodge-Tate spactral sequence to the
statement that we have isomorphism

φi : Ωi
X/CK

→ Riv∗ÔX .

We choose a formal model X over OCK
of X (a formal model is a formal scheme

X topologically of finite type over OCK
such that its general fibre is X. By a

theorem of Raynaud we may always choose one since X is proper). Write Xaff
for the category of affine opens in X with the indiscrete topology (i.e. the only
coverings are isomophisms). It is easy to check that then all presheaves are
sheaves. Consider the morphisms of ringed sites

µ : (Xpro-ét, ÔX)
v−→ (Xét,OX)

π−→ (Xaff,OX)

We construct a map
ϕ : Ω1

X/OCK
→ R1µ∗ÔX(1) (1)
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5 Pro-étale site

(Ω1
X/OCK

denotes the Kähler differentials on the formal scheme X: if X = Spf(R)

of topologically of finite type over R then consider the continuous Kähler dif-
ferentials on R. This module is the p-adic completion of Ω1

R/OCK
of algebraic

differentials).
In general if F is a right exact functor then Ri(F ◦G) ∼= F ◦ RiG for some

other functors (this can be seen using δ-functors). Hence as pullbacks are right
exact, if we construct (1) and take π∗, we have a map π∗(ϕ)

π∗Ω1
X/OCK

→ R1v∗ÔX(1).

As π∗Ω1
X/OCK

= Ω1
X/CK

, twisting π∗(ϕ) gives φ1. Taking exterior products and
use the lemma above we get all φi’s.

Before we construct ϕ, we remark Bhatt, Morrow, Scholze, integral p-adic
Hodge theory 8.2 contains all the details so we will omit some coimputations.
Consider morphisms of sheaves of rings on Xpro-ét

Zp → OCK
→ Ô+

X .

We have the transitivity triangle

LOCK /Zp
⊗OCK

Ô+
X → LÔ+

X/Zp
→ LÔ+

X/OCK
.

After taking derived p-adic completion, RHS vanishes (Proposition from lecture
12). Therefore

̂LOCK /Zp
⊗OCK

Ô+
X ' L̂Ô+

X/Zp
.

By Fontaine’s theorem, especially the proof, after inverting p

Ω⊗OCK
Ô+

X [1][
1

p
] ' ÔX(1)[1] ' L̂Ô+

X/Zp
[
1

p
].

Taking pullback with respect to µ,

L̂X/Zp
→ Rµ∗L̂Ô+

X/Zp
→ Rµ∗L̂Ô+

X/Zp
[
1

p
] ' Rµ∗ÔX(1)[1].

Apply H0 to get
H0(L̂X/Zp

)→ R1µ∗ÔX(1).

If we manage to show Ω1
X/OCK

∼= H0(L̂X/Zp
) then we get the desired ϕ.

To show the isomorphism take

Zp → OCK
→ OX.

The transitivity triangle provides

LOCK /Zp
⊗OCK

OX → LX/Zp
→ LX/OCK

.

Applying derived p-adic completion and noting that LHS vanishes (by derived
Nakayama) we get

H0(L̂X/Zp
) ∼= Ho(L̂X/OCK

)
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5 Pro-étale site

and as H0(LB/A) ' Ω1
B/A and we take “p-adic completion”, we know also that

Ω1
X/OCK

is the p-adic completion of algebraic Kähler differentials. Thus the
desired isomorphism follows. More details can of this step can be found in
Gaber-Ramero: Almost ring theory.

Now we show that the maps φi’s are all isomorphisms. Using the key lemma
from lecture 12, it is enough to prove for φ1 : Ω1

X/CK
(−1) → R1v1∗ÔX . We

note that both sides are coherent sheaves on Xét (properness and the fact
that we have a rigid variety X). By smoothness X → Spa(CK ,OK) can
be written as a composition of a rational subset of a finite étale cover of
Tn = Spa(CK〈T±1

1 , . . . , T±1
n 〉,OCK

〈T±1
1 , . . . , T±1

n 〉). Using standard facts about
higher direct images (composition and vanishing) and Grothendieck spectral se-
quence provides that we may assume that X = Tn and also we may take global
sections. We may assume that n = 1 as both sides are compatible with taking
fibre products of adic spaces. In other words, we have reduced the problem to
showing

φ1(X) : Ω1
X/CK

(−1)→ H1(Xpro-ét, ÔX)

is an isomorphism where X = Spa(CK〈T±1〉,OCK
〈T±1〉).

By the key lemma in lecture 12 we know that both sides are free of rank
1 as OX(X)-modules. By Fontaine’s result d log T ∈ Ω1

X/CK
is a generator.

Then direct computation shows φ1(d log T ) is a generator for RHS, so φ1 is an
isomorphism.
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6 Integral p-adic Hodge theory

6 Integral p-adic Hodge theory
Let X be a smooth and proper formal scheme over OCK

. Let X be the generic
fibre and Xk the special fibre (k = OCK

/m). We have a degenerate Hodge-Tate
spectral sequence

Hi(X,Ωj
X/CK

)(−j)⇒ Hi+j
ét (X,CK)

which leads to

dimQp
Hn

ét(X,Qp) = dimCK
Hn(X,CK) =

∑
i+j=n

dimCK
Hi(X,Ωj

X/CK
).

This relates étale and Hodge cohomology for the generic fibre.
We may talk about the cohomology of the special fibre Hi(Xk,Ω

j
Xk/k

) and
Hn

ét(X,Fp) and we may ask if the above has a good modulo p variant.

Theorem 6.1 (Bhatt, Morrow, Scholze, integral...). One has inequalities

dimFp H
n
ét(X,Fp) ≤ dimi+j=n dimkH

i(Xk,Ω
j
Xk/k

).

Example. This can be a strict inequality. Assume p = 2. Let S over OCK
be

a proper smooth scheme with

π1(SCK
)

∼=−→ π1(S)
∼=←− π1(Sk) ∼= Z/2.

One may construct an Enriques surface with these properties: take the Enriques
surface over F2 with the desired property. One may lift this to Z2 by a theorem
of Ogus and Lang.

Let E be an elliptic curve over OCK
with ordinary reduction. Hence exists

an injection µ2 ↪→ E. Choosing the element −1, µ2(OCK
) defines a morphism

α : Z/2Z→ µ2 ⊆ E of group schemes over OCK
. There is a Z/2Z-cover S̃ → S

given by the intersection of three quadratics in P5
F2

which admits a free Z/2Z-
action, then S ∼= S̃/Z/2Z.

Consider the E-torsor (along α) Y = (S̃ ×S E)/Z/2Z (there is a canonical
Z/2Z-action (j · s, α(j) · e). Take the quotient scheme Y , this admits an E-
action). Yk → Sk is the split torsor Ek×k S̃k → Sk. Passing to the special fibre,
αk is the zero map over k. One may show that dimFp

H1
ét(YCK

,F2) = 2.
For the Hodge side, by Künneth formula and the observation above for

Yk → Sk

h0,1(Yk) ∼= h0,1(Sk) + h0,1(Ek)

h1,0(Yk) ∼= h1,0(Sk) + h1,0(Ek)

Standard facts about elliptic curves show h1,0(Ek) = h0,1(Ek) = 1. Alao as
π1(Sk) ∼= F2, Artin-Schreier sequence shows H1

ét(Sk,O§k) 6= 0 so RHS has di-
mension at least 3.

Before we explain the proof of the theorem, we do a quick recap on crystalline
cohomology. It is well-known that (in characteristic p) `-adic cohomology (` 6= p)
is a good cohomology theory (it is a Weil cohomology theory) and if X0 over
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6 Integral p-adic Hodge theory

Fp comes from a smooth proper scheme X over R where R ⊆ C, there is a
comparison theorem

H∗
ét(Xk,Z`) = H∗

sing(X
an,Z)⊗ Z`.

Moreover this does not kill `-torsion of RHS so `-torsion can be recovered from
étale cohomology.

However when ` = p almost none of the above is true so we need a good p-adic
cohomology theory. For X smooth proper over C there exists an isomorphism

H∗
sing(X

an,C) = H∗(X,Ω•
X/C)

by Poincaré lemma and GAGA. The idea know is for X over k of characteristic
p, we lift it to Zp and consider de Rham cohomology. Questions abound in
this process: does X admits a lift X̃ (in general no)? If so is the cohomology
independent of the lift? Can the cohomology be defined in a canonical way
without referring to X̃?

Inspiration: in characteristic 0, i.e. for X over C, Grothendieck’s idea was
to consider all possible infinitesimal local liftings.

Definition. For X over C, let X/Cinf be the site whose underlying category
has as objects pairs (U, T ) where U ⊆ X open subset and U → T is a closed
nilpotent immersion (i.e. the ideal sheaf is nilpotent). The coverings are
{(Ui, Ti)} such that {Ti} cover T .

A sheaf is a collection {FT } of Zariski sheaves for each (U, T ). Given
f : (U, T ) → (U ′, T ′), if f∗FT → FT ′ is an isomorphism we call {FT } a
crystal.

Theorem 6.2. H∗
inf(X) ∼= H∗

sing(X,C) ∼= H∗(X,Ω•
X/C).

More generally when X → Y is a closed immersion such that Y is smooth,
we have

H∗
inf(X) ∼= H∗(Ŷ ,Ω•

Ŷ /C)

where Ŷ is the formal completion of Y along X.
Applying this to characteristic p we see the following.

Example (example where Poincaré lemma fails). Let X = Spec k. If k = C and
we consider the closed immersion X → A1

C = Y,C[x]→ C[x]/(x). By vanishing
of higher cohomology for affine schemes, we have that de Rham cohomology of
the formal completion can be computed by the complex

0 C[[x]] C[[x]]dx 0d

Since each xndx can be integrated to xn−1

n , we know that H0
dR(Ŷ ) = C and

higher cohomology vanishes. This is exactly the same as H∗
dR(Ŷ /C) where Ŷ /C

is the trivial closed immersion X → Y = SpecC.
Now in characteristic p, e.g. k = Fp, the formal completion of Y = A1

Zp
along

X → Y is Spf(Zp〈t〉) and de Rham cohomology is computed by

0 Zp〈t〉 Zp〈t〉dt 0d
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6 Integral p-adic Hodge theory

However there is no element in Zp〈t〉 whose derivative is tp−1dt. So we need
eleemnts of the form tn

n! (n-th infinitesimal lift of t). We add those ot Zp〈t〉. Then
d becomes surjective. So we added elements an

n! where a comes from the defining
ideal of an infinitesimal object. Looking at object with a PD (power divided)
structure with respect to the definie ideal. The same idea give crystalline site
and crystalline cohomology.

Breul-Kissing twist We have defined p-adic Tate module Ω = Tp(Ω
1
OCK /Zp

)

and showed that ̂LOCK /Zp
[−1] ∼= Ω. For a OCK

-module M , define M{i} :=

M ⊗OCK
Ω⊗i. It is related to the Tate twists via an inclusion M(i) ⊆ M{i}

with torsion cokernel. More generally we may replace OCK
by any integral

perfectoid ring (by “formal étale nature of Ainf and differential forms” section).
Recall that Ainf := Ainf(OCK

) =W (O[
CK

) with θ : Ainf → OCK
.

• We have an automorphism φ : Ainf → Ainf called the Frobenius on O[
CK

.
Write θ̃ = θ ◦ φ−1 : Ainf → OCK

.

• By functorialityO[
CK
→ C[

K (fraction field) induces a map Ainf →W (C[
K).

• Also O[
CK
→ k induces Ainf →W (k).

• We have a canonical map Ainf → O[
CK

.

Theorem 6.3. There exists a perfect Ainf-complex (i.e. quasi-isomorphic
to a bounded complex of finite projective Ainf-modules) in a functorial way,
denoted by RΓAinf(X), where X is a smooth proper smooth scheme over OCK

,
together with φ-semilinear endomorphism ϕ, that is an isomorphism outside
the divisor θ̃ : Spec(OCK

) → Spec(Ainf). Moreover we have the following
comparisons:

1. étale cohomology: there exists a canonical isomorphism

RΓAinf(X)⊗Ainf W (C[
K) ' RΓ(Xét,Zp)⊗Zp

W (C[
K)

that is φ-equivariant.
In fact, considering µ ∈ Ainf where µ = [ε]− 1 ∈ ker θ, one may show
that this quasi-isomorphism exists over Ainf[

1
µ ].

2. de Rham cohomology: we have a canonical isomorphism

RΓAinf(X)⊗L
Ainf,θ

OCK
' RΓdR(X/OOCK

).

3. Hodge-Tate spectral sequence: there exists a spectral sequence

Hi(X,Ωi
X/OCK

){−j} ⇒ Hi+j(θ̃∗RΓAinf(X)).
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6 Integral p-adic Hodge theory

4. crystalline cohomology of the special fibre: there exists a φ-equivariant
isomorphism

RΓAinf(X)⊗L
Ainf

W (k) ' RΓcrys(Xk/W (k)).

Remark. Properness of X is only used in statement 1.

Consequences of the theorem:

1. We can recover the Hodge-Tate spectral sequence from lecture 1. Use 3
and 1 toghether with the first statement so we may base change along
Ainf

θ̃−→ OCK
⊆ CK .

2. We can recover the inequality at the beginning of this chapter. Consider
the perfect complex

K := RΓAinf(X)⊗Ainf O[
CK
.

By 1 we have
K ⊗ C[

K ' RΓ(Xét,Fp)⊗ C[
K .

By 2 we have
K ⊗ k ' RΓdR(Xk/k).

By upper-semicontinuity of the ranks of cohomology groups of perfect
complex, we have that

dimFp
Hn

ét(X,Fp) ≤ dimkH
n
dR(Xk/k).

Using the Hodge-to-de Rham spectral sequence,

dimkH
n
dR(Xk/K) ≤

∑
i+j=n

dimkH
i(Xk,Ω

j
Xk/k

).

3. We can recover crystalline cohomology. Assume that Hi
crys(Xk),H

i+1
crys(Xk)

are p-torsion free. Then Hi
crys(Xk) can be recovered functorially from the

generic fibre X. More precisely the Zp-module Hi
ét(X,Zp) equipped with

the de Rham comparison theorem functorially recovers Hi
crys(Xk).

Let B+
dR denote the ring which is given by the completion of Ainf[

1
p ] by

ξ = [ε]−1
[ε]1/p−1

= φ−1(µ). One may show that ξ is a non-zero divisor and
generates ker θ. Fact: B+

dR is a complete DVR with residue field CK and
uniformiser ξ. Take the fraction field BdR = B+

dR[
1
ξ ].

Theorem 6.4. There is a canonical identification

Hi
dR(X)⊗K BdR ∼= Hi

ét(X,Zp)⊗Zp BdR.

Using the assumptions on the cohomology groups one can show thatHi
ét(X,Zp)

is finite free and Hi
dR⊗B

+
dR is a B+

dR-lattice in Hi
ét(X,Zp)⊗BdR. By a theorem

of Fargue, we have an equivalence of categories

{Breul-Kissing-Fargue modules} ↔ {(T,Σ) : Tfinite freeZp-module,Σ ⊆ T⊗BdR is a B+
dR-lattice}
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6 Integral p-adic Hodge theory

where a Breul-Kissing-Fargue module is a finitely presented Ainf-module M with
a φ-equivariant isomorphism ϕ : M [ 1ε ]

∼= M [ 1
φ(ε) such that M [ 1p ] is finite free

over Ainf[
1
p ].

One can show that Hi
Ainf

(X) is a BKF-module. By 1 and 4 if we base change
(M,ϕ) (coming from (Hi

ét(X,Zp,H
i
dR(X) ⊗ B+

dR) by Fargue) by W (k) we get
(Hi

crys(Xk), ϕ).
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A Review of derived categories

A Review of derived categories
Let A be an abelian category.

Definition (homotopy category). The homotopy category K(A) is the cat-
egory whose objects are complexes in A and whose morphisms are

HomCh(A)(X
•, Y •)/ ∼

where∼ is homotopy of complexes. Similarly we define K+(A),K−(A),Kb(A)
to be the full subcategories of bounded below, bounded above and bounded
complexes.

Recall that f : X• → Y • is a quasi-isomorphism if the induced maps
Hi(f) : Hi(X•) → Hi(Y •) are isomorphisms. The derived category D(A)
is obtained by localising K(A) at quasi-isomorphism, i.e. formally inverses all
quasi-isomorphisms. Similar for D+(A) etc.

The objects of D(A) are the same as in K(A). The morphisms are equiva-
lence classes of diagrams

C•

A• B•

fs

where s is a quai-isomorphism and f is a morphism, written fs−1. The equiva-
lence relation is for C and C ′ exists a dominant morphisms C u←− D → C ′ such
that s ◦ u is a quasi-isomorphism.

D(A) has an analogue of short exact sequences. For f : X• → Y • a mor-
phism of complexs, its mapping cone is the complex M•

f where

Mn
f = Xn+1 ⊕ Y n, dn : (xn+1, yn) 7→ (−dk+1(xn+1), f(xn+1) + dn(y

n)).

Definition (distinguished triangle). A distinguished triangle in K(A) (resp.
D(A)) is a sequence of morphisms (the top row in the diagram below)

X• Y • Z• X•[1]

X ′• Y ′• M•
f X ′•[1]

which is isomorphic to a triangle of the form as the lower triangle. In this
case we have a long exact sequence

· · · Hi(X) Hi(Y ) Hi(Z) Hi+1(X) · · ·

Given a functor F : A → B, how can we get an induced functor between
the derived categories?
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A Review of derived categories

• If F is exact then F naturally lifts to a functor F : D(A) → D(B) by
applying F to each element of a complex. This preserves distinguished
triangles.

• If F is only right-exact and A has enough projectives then any X• ∈
D−(A) is isomorphic to a complex of projectives P • in D(A) and we
check that

LF (X•) = LF (P •) = F (P •)

is well-defined. This gives the left derived functor

LF : D−(A)→ D−(B).

• If F is left-exact, we do the same with injective resolutions to get RF :
D+(A)→ D+(B), the right derived functor .
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B Review of simplicial homotopy
Let C be a category with finite coproducts. Given X• ∈ Simp(C) and a
simplicial object U• in the category of non-empty finite sets, we define the
product X• × U• as a simplicial object in C with terms

(X• × U•)n =
∐

u∈Un

Xn

and for a map j : [m] → [n], the morphism (X• × U•)(j) maps the component
Xn indexed by u ∈ Un to the component Xm indexed by U•(j)(u) ∈ Um via the
morphism X•(j).

In particular we may talk about X• × ∆[n]• where ∆[n]• is the simplicial
set such that ∆[n]m = Hom∆([m], [n]) and the simplicial structure is induced
by the contravariant property of the Hom functor. Note that ε0, ε1 : [0] → [1]
induce morphisms e0, e1 : X• ∼= X• ×∆[0]• → X• ×∆[1]•.

Definition (simplicial homotopy). Assume that C is as above and consider
f•, g• : X• → Y• in Simp(C). A simplicial homotopy from f• to g• is a
morphism h• : X•×∆[1]• → Y• satisfying f• = h• ◦ e0, g• = h• ◦ e1. If such
a h• exists we say f• is homotopic to g•.

Given f• : X• → Y•, g• : Y• → X• such that f•◦g• ' idY• , g•◦f• ' idX• ,
we say that X• is homotopy equivalent to Y•.

It is a fact that homotopy equivalence induces quasi-isomorphisms between
the associated chain complexes (part of Dold-Kan correspondence).
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