
University of
Cambridge

Mathematics Tripos

Part III

Elliptic Curves

Michaelmas, 2019

Lectures by
T. A. Fisher

Notes by
Qiangru Kuang

mailto:qk206@cam.ac.uk


Contents

Contents

1 Fermat’s method of infinite descent 2
1.1 A variant for polynomials . . . . . . . . . . . . . . . . . . . . . . 3

2 Some remarks on algebraic curves 5
2.1 Order of vanishing . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Degree of a morphism . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Weierstrass equations 10

4 The group law 13
4.1 Explicit formula for the group law . . . . . . . . . . . . . . . . . 14

5 Isogenies 17

6 Invariant differential 22

7 Elliptic curves over finite fields 25
7.1 Zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 Formal groups 28

9 Elliptic curves over local fields 33

10 Elliptic curves over number fields 39

11 Kummer theory 42

12 Elliptic curves over number fields II 45

13 Heights 47

14 Dual isogenies & Weil pairing 51

15 Galois cohomology 54

16 Descent by cyclic isogeny 58

Index 63

1



1 Fermat’s method of infinite descent

1 Fermat’s method of infinite descent
Let ∆ = (a, b, c) be a right angle triangle with sides a, b, c where c is the hy-
potenuse.

Definition. ∆ is rational if a, b, c ∈ Q. ∆ is primitive if a, b, c ∈ Z and
coprime.

Lemma 1.1. Every primitive triangle is of the form (u2 − v2, 2uv, u2 + v2)
for some u, v ∈ Z, u > v > 0.

Proof. a and b cannot be both even. They cannot be both odd as then c2 = 2
mod 4. Thus wlog a is odd and b is even, so c odd. Then(

b

2

)2

=
c+ a

2
· c− a

2

and the two terms on RHS are coprime positive integers. By unique factorisation
in Z, there exist u, v ∈ Z such that

c+ a

2
= u2

c− a
2

= v2

Rearrange.

Definition. D ∈ Q>0 is a congruent number if there exists a right angle
triangle whose area is D.

Note. Suffices to consider D ∈ Z>0 square-free.

Example. D = 5, 6 are congruent.

Lemma 1.2. D ∈ Q>0 is congruent if and only if Dy2 = x3 − x for some
x, y ∈ Q, y 6= 0.

Proof. Lemma 1 shows that D is congruent if and only if Dw2 = uv(u2 − v2)
for some u, v, w ∈ Q, w 6= 0. Let x = u

v , y = w
v2 .

Fermat showed that 1 is not a congruent number.

Theorem 1.3. There are no solutions to

w2 = uv(u− v)(u+ v) (∗)

for u, v, w ∈ Z, w 6= 0.
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1 Fermat’s method of infinite descent

Proof. wlog u, v coprime, u > 0, w > 0. If v < 0 then replace (u, v, w) by
(−v, u, w). If u = v mod 2 then replace (u, v, w) by (u+v2 , u−v2 , w2 ). Then
u, v, u − v, u + v are positive coprime integers whose product is a square. By
unique prime factorisation, u = a2, v = b2, u + v = c2, u − v = d2 for some
a, b, c, d ∈ Z>0. As u 6= v mod 2, c, d are both odd. Consider a new triangle
with sides c+d

2 , c−d2 . Then(
c+ d

2

)2

+

(
c− d
2

)2

=
c2 + d2

2
= u = a2

so this is another primitive triangle. Its area is

c2 − d2

8
=
v

4
=

(
b

2

)2

.

Let w1 = b
2 so by lemma 1

w2
1 = u1v1(u1 − v1)(u1 + v1),

i.e. we have a new solution to (∗). But 4w2
1 = b2 = v | w2 so w1 ≤ 1

2w. So by
Fermat’s method of infinite descend, there is no solution to (∗).

1.1 A variant for polynomials
Let K be a field with charK 6= 2. Let K be an algebraic closure of k.

Lemma 1.4. Let u, v ∈ K[t] coprime. If αu + βv is a square for four
distinct (α : β) ∈ P1 then u, v ∈ K.

Proof. wlog K = K. Changing coordinates on P1, we may assume the ratio
(α : β) are (1 : 0), (0 : 1), (1 : −1), (1 : −λ) for some λ ∈ K \ {0, 1}. Thus we
have

u = a2

v = b2

u− v = (a− b)(a+ b)

u− λv = (a− µb)(a+ µb)

where µ =
√
λ. Use unqiue factorisation in K[t], as a, b are coprime, a+ b, a−

b, a− µb, a+ µb are squares. But

max(deg(a),deg(b)) ≤ 1

2
max(deg(u),deg(v))

so by Fermat’s method of infinite descend, u, v ∈ K.

Definition (elliptic curve).

1. An elliptic curve E/K is the projective closure of a plane affine curve
y2 = f(x) where f ∈ K[x] is a monic cubic polynomial with distinct
roots in K. The equation y2 = f(x) is called a Weierstrass function.
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1 Fermat’s method of infinite descent

2. For L/K a field extension,

E(L) = {(x, y) ∈ L2 : y2 = f(x)} ∪ {0}

where 0 is the point at infinity in the projective closure.

Fact: E(L) is naturally an abelian group.
In this course we study E(L) for L finite field, local field (meaning L/Qp

finite in this course) or number field (L/Q finite).

Theorem 1.5. If E : y2 = x3 − x then E(Q) = {0, (0, 0), (±1, 0)}.

Corollary 1.6. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. wlog K = K. By a change of coordinates we may assume

E : y2 = x(x− 1)(x− λ)

for some λ ∈ K \ {0, 1}. Suppose (x, y) ∈ E(K(t)). Write x = u
v where

u, v ∈ K[t] coprime. Then

w2 = uv(u− v)(u− λv)

for some w ∈ K[t]. Using same unique factorisation argument as before, u, v, u−
v, u− λv are all squares so by lemma u, v ∈ K so x, y ∈ K.
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2 Some remarks on algebraic curves

2 Some remarks on algebraic curves

Let K = K, charK 6= 2.

Definition (rational plane curve). A plane algebraic curve (always assumed
to be irreducible)

C = {f(x, y) = 0} ⊆ A2

is rational if it has a rational parameterisation, i.e. there exist φ, ψ ∈ K(t)
such that

1. A1 → A2, t 7→ (φ(t), ψ(t)) is injective on A1 \ {finite set}.

2. f(φ(t), ψ(t)) = 0.

Example.

1. Any nonsingular plane conic is rational. For example x2 + y2 = 1. Pick
a point (−1, 0). Putting a line through the point with slope t, i.e. y =
t(x + 1). Solve for the intersection. In general we will get a root, which
is not rational. But in the quadratic case we already have one solution so
the other solution can be expressed as a rational function. we have

x2 + t2(x+ 1)2 = 1

which is saying
(x+ 1)(x− 1 + t2(x+ 1)) = 0

so x = −1 or x = 1−t2
1+t2 . Similarly one can solve y. Then we get rational

parameterisation

(x, y) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

2. Any singular plane curve is rational. Two examples: y2 = x3, y2 = x2(x+
1). Same recipe as before except that we have to pick the singular point,
which is the origin in both cases. The line y = tx intersects the curve. We
get rational parameterisation (x, y) = (t2, t3) for the first one. The second
is an exercise.

3. Corollary 1.6 shows that elliptic curves are not rational.

Remark. The genus g(C) ∈ Z≥0 is an invariant of a smooth projective curve
C. Some facts:

1. if k = C then g(C) is the genus of the Riemann surface.

2. a smooth plane curve C ⊆ P2 of degree d has genus g(C) = (d−1)(d−2)
2 .

Proposition 2.1. Let C be a smooth projective curve.

1. C is rational if and only if g(C) = 0.

2. C is an elliptic curve if and only if g(C) = 1.
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2 Some remarks on algebraic curves

Proof.

1. Omitted.

2. For only if, check the projective closure is smooth and use remark. For if,
see later.

2.1 Order of vanishing
Let C be an algebraic curve with function field K(C). Let P ∈ C be a smooth
point. We write ordP (f) to be the order of vanishing to be the order of vanishing
of f ∈ K(C) at P . It is negative if f has a pole at P .

Some facts: ordP (f) : K(C)∗ → Z is a discrete valuation, i.e.

ordP (f1f2) = ordP (f1) + ordP (f2)

ordP (f1 + f2) ≥ min(ordP (f1), ordP (f2))

Definition (uniformiser). t ∈ K(C)∗ is a uniformiser at P if ordP (t) = 1.

Example. Let C = {g = 0} ⊆ A2 for some g ∈ K[x, y] irreducible. Then

K(C) = Frac
K[x, y]

(g)
.

Write
g = g0 + g1(x, y) + g2(x, y) + . . .

where gi is homogeneous of degree i. Suppose P = (0, 0) ∈ C is smooth, i.e.
g0 = 0, g1(x, y) = αx+βy where α, β not both zero. (Picture). Let γ, δ ∈ K. It
is a fact that γx+ δy ∈ K(C) is a uniformiser at P if and only if αδ − βγ 6= 0.

Example. Consider {y2 = x(x−1)(x−λ)} ⊆ A2 where λ 6= 0, 1. Its projective
closure is {Y 2Z = X(X − Z)(X − λZ)} ⊆ P2, then we get one point P = (0 :
1 : 0) at infinity. We can compute ordP (x) and ordP (y). We work on the affine
piece {Y 6= 0}. Put w = Z

Y , t =
X
Y , then the equation becomes

w = t(t− w)(t− λw).

Now P is the point (t, w) = (0, 0). This is a smooth point and using the fact in
the above example,

ordP (t) = ordP (t− w) = ordP (t− λw) = 1,

so ordP (w) = 3. Finally,

ordP (x) = ordP
X

Z
= ordP

t

w
= −2

ordP (y) = ordP
Y

Z
= ordP

1

w
= −3

Let C be a smooth projective curve.
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2 Some remarks on algebraic curves

Definition (divisor). A divisor is a formal sum of points on C, say D =∑
P∈C nPP with nP ∈ Z and nP = 0 for all but finitely many P . The degree

of D is
degD =

∑
nP .

Definition (effective divisor). A divisor D is effective, written D ≥ 0, if
nP ≥ 0 for all P .

If f ∈ K(C)∗ then we write

div(f) =
∑
P∈C

ordP (f)P.

The Riemann-Roch space of D ∈ Div(C) is

L(D) = {f ∈ K(C)∗ : div(f) +D ≥ 0} ∪ {0},

i.e. the K-vector space of rational functions on C with “pole no worse than
specified by D”.

Riemann-Roch for genus 1 curve says that

dimL(D) =


degD degD > 0

0 or 1 degD = 0

0 degD < 0

Example. Let us revisit some of the previous example. Consider {y2 = x(x−
1)(x − λ)} ⊆ A2 and let P the point at infinity. We calculated ordP (x) =
−2, ordP (y) = −3. Then

L(2P ) = 〈1, x〉
L(3P ) = 〈1, x, y〉

Proposition 2.2. Let C ⊆ P2 be a smooth plane cubic and P ∈ C a
point of inflection. Then we can change coordinates such that C : Y 2Z =
X(X − Z)(X − λZ) and P = (0 : 1 : 0).

Fact. The points of inflection on C = {F = 0} ⊆ P2 are given by

F = det
∂2F

∂xi∂xj
= 0.

Proof. We change coordinates such that P = (0 : 1 : 0) and TpC = {Z = 0},
where C = {F (X,Y, Z) = 0}. P ∈ C is a point of inflection, meaning that
the intersection of the tangent at P with C has multiplicity 3, so F (t, 1, 0) is a
constant multiple of t3. Thus there is no X2Y,XY 2 and Y 3 term, so

F ∈ 〈Y 2Z,XY Z, Y Z2, X3, X2Z,XZ2, Z3〉.
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2 Some remarks on algebraic curves

The coefficient of X3 is nonzero as otherwise {Z = 0} ⊆ C. The coefficient of
Y 2Z is nonzero as otherwise P ∈ C is singular. We are free to rescale X,Y, Z
and F , so wlog C is defined by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Making substitutions Y 7→ Y − 1
2a1X −

1
2a3X, w may asssume a1 = a3 = 0.

Now C : Y 2Z = Z3f(X/Z) where f is a monic cubic polynomial. As C is
smooth, f has distinct roots so wlog 0, 1, λ so C is

Y 2Z = X(X − Z)(X − λZ).

The equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

is called Weierstrass form and

Y 2Z = X(X − Z)(X − λZ)

is called Legendre form.

2.2 Degree of a morphism
Let φ : C1 → C2 be a nonconstant morphism of smooth projective curves. Let
φ∗ : K(C2)→ K(C1) be the pullback by φ.

Definition (degree of morphism). The degree of φ is

deg φ = [K(C1) : φ
∗K(C2)],

the degree of the field extension. φ is separable if the corresponding field
extension is separable (which is automatic if charK = 0).

Fact. deg φ = 1 if and only if φ is an isomorphism.

Definition (ramification index). Suppose P ∈ C1, Q ∈ C2 are such that
φ(P ) = Q. Let t ∈ K(C2) be an uniformiser at Q. The ramification index
of φ at P is

eφ(P ) = ordP (φ
∗t).

It is independent of the choice of uniformiser and is always greater than 0.

Theorem 2.3. Let φ : C1 → C2 be a nonconstant morphism of smooth
projective curves. Then ∑

P∈φ−1(Q)

eφ(P ) = deg φ

for all Q ∈ C2.
Moreover, if φ is separable then eφ(P ) = 1 for all but finitely many
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2 Some remarks on algebraic curves

P ∈ C1.
In particular,

1. φ is surjective (note that we are working over algebraically closed fields).

2. #φ−1(Q) ≤ deg φ with equality for all but finitely many Q ∈ C2.

Remark. Let C be an algebraic curve. A rational map is given by

φ : C 99K Pn

P 7→ (f0(P ) : f1(P ) : · · · : fn(P ))

where f0, . . . , fn ∈ K(C) not all zero.

Fact. If C is smooth then φ : C 99K Pn is a morphism.
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3 Weierstrass equations

3 Weierstrass equations

We assume K is a perfect field with algebraic closure K in this chapter.

Definition (elliptic curve). An elliptic curve E over K is a smooth pro-
jective curve of genus 1 defined over K with a specified K-rational point
0E .

Example. {X3 + pY 3 + p2Z3 = 0} ⊆ P2 is smooth but is not an elliptic curve
over Q since it has no Q-rational pionts.

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in
Weierstrass form via an isomorphism taking 0E to (0 : 1 : 0).

Remark. Proposition 2.7 treated the special case E is a smooth plane cubic
and 0E is a point of inflection.
Fact. If D ∈ Div(E) is defined over K (i.e. it is fixed by Gal(K/K)) then L(D)
has a basis in K(E) (not just K(E).
Proof. We have L(2 · 0E) ⊆ L(3 · 0E) with dimension 2 and 3 respectively.
Pick basis 1, x for L(2 · 0E) and 1, x, y ∈ L(3 · 0E). Note that this implies
ord0E (x) = 2, ord0E (y) = 3. The seven elements 1, x, y, x2, xy, x3, y2 in the 6-
dim vector space L(6 · 0E) must satisfy a dependence relation. Leaving out x3
or y2 gives a basis for L(6 · 0E) since each term has a different order of pole at
0E , so coefficients of x3 and y2 are nonzero. Rescaling x and y, we get

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

By the fact above, we can take ai ∈ K.
Let E′ be the projective closure of the curve defined by Weierstrass form.

There is a morphism

φ : E → E′

p 7→ (x(P ) : y(P ) : 1)

Left to show φ is an isomorphism, i.e. deg φ = 1. We have

[K(E) : K(x)] = deg(x : E → P1) = ord0E (
1

x
) = 2

[K(E) : K(y)] = deg(y : E → P1) = ord0E (
1

y
) = 3

So by tower law
[K(E) : K(x, y)] = 1.

As K(x, y) = φ∗K(E′) so deg φ = 1 so σ is birational. If E′ is singular then
(? genus 0) E and E′ are both rational. So E′ is nonsingular and φ−1 is a
morphism.

To find the image of 0E , we cannot simply plug 0E in as x, y both have poles
at infinity. Instead, we multiply through to get

φ : E → E′

P 7→ (
x

y
(P ) : 1 :

1

y
(P ))

so φ(0E) = (0 : 1 : 0).
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3 Weierstrass equations

Proposition 3.2. Let E and E′ be elliptic curves over K in Weierstrass
form. Then E ∼= E′ over K if and only if the equations are related by a
change of variables

x = u2x′ + r

y = u3y′ + u2sx′ + t

where u, r, s, t ∈ K,u 6= 0.

Proof. We check the process of putting a single elliptic curve in Weierstrass
form and see what choices we can make. Suppose

〈1, x〉 = L(2 · 0E) = 〈1, x′〉
〈1, x, y〉 = L(3 · 0E) = 〈1, x′, y′〉

so

x = λx′ + r

y = µy′ + σx′ + t

where λ, r, µ, σ, t ∈ K,λ, µ 6= 0. Looking at coefficients of x3 and y2, must have
λ3 = µ2 so (λ, µ) = (u2, u3) for some u ∈ K∗. Finally put s = σ/u2.

A Weierstrass equation defines an elliptic curve if and only if it defines a
smooth curve, if and only if ∆(a1, . . . a6) 6= 0 where ∆ ∈ Z[a1, . . . , a6] is a
certain polynomial. Details can be found out in the lecture handout.

If charK 6= 2, 3 then we can reduce the curve to E : y2 = x3 + ax+ b with
discriminant ∆ = −16(4a3 + 27b2).

Corollary 3.3. Assume char k 6= 2, 3. Elliptic curves

E : y2 = x3 + ax+ b

E′ : y2 = x3 + a′x+ b′

are isomorphic over K if and only if

a′ = u4a

b′ = u6b

for some u ∈ K∗.

Proof. E and E′ are related as in proposition 3.2 with r = s = t = 0.

Definition (j-invariant). The j-invariant of an elliptic curve E is

j(E) =
1728(4a3)

4a3 + 27b2
.

This is just the ratio (a3 : b2) up to a Möbius transform.
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3 Weierstrass equations

Corollary 3.4. If E ∼= E′ then j(E) = j(E′) and the converse holds if
K = K.

Proof. E ∼= E′ if and only if a′ = u4a, b′ = u6b for some u ∈ K∗, which implies
that (a3 : b2) = ((a′)3 : (b′)2), which holds if and only if j(E) = j(E′). If
K = K then we can extract roots and the converse of the second implication
holds.

12



4 The group law

4 The group law
Let E ⊆ P2 be a smooth plane cubic and 0E ∈ E(K). E meets each line in 3
points, counted with multiplicity. Given P,Q ∈ E, let S be the third point of
intersection of PQ and E. Let R be the third point of intersection of 0ES and
E. We define

P ⊕Q = R.

If P = Q then take the tangent at P instead of PQ. This is the “chord and
tangent process”.

Theorem 4.1. (E,⊕) is an abelian group.

Here we recall a convention: if we don’t specify the field extension the we
mean the algebraic claosure. In notation: E = E(K).

Proof.

1. P ⊕Q = Q⊕ P .

2. 0E is the identity.

3. For inverse, let S be the point of intersection of T0EE and E, Q the third
point of intersection of PS and E. Then P ⊕Q = 0E .

4. Associativity is much harder, and we’ll prove it using divisors.

Definition (linearly equivalent divisor). D1, D2 ∈ Div(E) are linearly equiv-
alent, written D1 ∼ D2, if exists f ∈ K(E)∗ such that div(f) = D1 −D2.

This is an equivalence relation and we define

Definition (Picard group). The Picard group is defined to be

Pic(E) = Div(E)/ ∼ .

Definition. We let

Div0(E) = ker(deg : Div(E)→ Z)

and
Pic0(E) = Div0(E)/ ∼ .

Proposition 4.2. Let

φ : E → Pic0(E)

P 7→ [P − 0E ]

then

1. φ(P ⊕Q) = φ(P ) + φ(Q).

13



4 The group law

2. φ is a bijection.
Proof.

1. Let ` be the line PQ and m the curve 0ES. Then

div(
`

m
) = (P )+(S)+(Q)− (R)− (S)− (0E) = (P )+(Q)− (P ⊕Q)− (0E)

so (P ) + (Q) ∼ (P ⊕Q) + (0E) and so

(P )− (0E) + (Q)− (0E) = (P ⊕Q)− (0E)

so φ(P ⊕Q) = φ(P ) + φ(Q).

2. For injectivity, suppose φ(P ) = φ(Q) for P 6= Q. Then exists f ∈ K(E)∗

such that div(f) = P −Q. Then

deg(f : E → P1) = ordP (f) = 1

so E ∼= P1, absurd.
For surjectivity, let [D] ∈ Pic0(E). Then D+(0E) has degree 1. Riemann-
Roch tells us that L(D + (0E)) = 1 so exists f ∈ K(E)∗ such that

div(f) +D + (0E) ≥ 0

and furthermore LHS has degree 1. Thus it has to be (P ) for some P ∈ E.
It follows that (P )− (0E) ∼ D.

In a nutshell, φ identifies (E,⊕) with (Pic0(E),+) so ⊕ is associative.

4.1 Explicit formula for the group law
We consider E in Weierstrass form and 0E the point at infinity.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Remark. 0E is a point of inflection so now we can characterise the group law
as P1 ⊕ P2 ⊕ P3 = 0E if and only if P1, P2, P3 are colinear.

The inverse of P = (x1, y1) is the intersection of P0E , which is the vertical
line, and E so is given by

	P = (x1,−(a1x1 + a3)− y1).

Given P1 = (x1, y1), P2 = (x2, y2), want to find an expression for P3 = P1 ⊕ P2.
Let P1P2 intersect E at P ′ = (x′, y′). Then P3 = P1 ⊕ P2 = 	P ′. Substitute
y = λx+ ν into * and looking at the coefficient of x2 gives

λ2 + a1λ− a2 = x1 + x2 + x′

which gives

x3 = λ2 + a1λ− a2 − x1 − x2
y3 = −(a1x′ + a3)− (λx′ + ν) = −(λ+ a1)x3 − ν − a3

14



4 The group law

It remains to find formula for λ and ν. If x1 = x2 and P1 6= P2 then P1⊕P2 = 0E .
For the general case x1 6= x2, have

λ =
y2 − y1
x2 − x1

ν = y1 − λx1 =
x2y1 − x1y2
x2 − x1

Finally the case P1 = P2 is left as an exercise.

Corollary 4.3. E(K) is an abelian group.

Proof. It is a subgroup of E:

• identity: 0E ∈ E(K) by definition,

• closure/inverses: see formula above.

• associativity/commutativity: inherited.

Theorem 4.4. Elliptic curves are group varieties, i.e. [−1] : E → E,+ :
E × E → E are morphisms of algebraic varieties.

Proof. The above formulae show [−1] and + are rational maps. [−1] : E →
E is a map from a smooth curve to a projective variety so is a morphism.
Unfortunately there is no such result for surfaces. Instead, the formulae also
show + is regular on

U = {(P,Q) ∈ E × E : P,Q, P +Q,P −Q 6= 0E}.

For P ∈ E, let τP : E → E,X 7→ P +X be translation by P . τP is a rational
map so a morphism. We factor + as

E × E E × E E E
τ−A×τ−B + τA+B

so + is regular on (τA, τB)(U) for all A,B ∈ E so + is regular on E × E.

Definition (torsion subgroup). For n ∈ Z, let [n] : E → E be the “n times”
map. The n-torsion subgroup of E is E[n] = ker([n] : E → E).

Lemma 4.5. Assume char k 6= 2 and E : y2 = f(x) = (x−e1)(x−e2)(x−e3)
where ei ∈ K distinct. Then

E[2] = {0E , (e1, 0), (e2, 0), (e3, 0)} ∼= (Z/2Z)2.

Proof. Let P = (x, y) ∈ E. Then [2]P = 0 if and only if P = −P so (x, y) =
(x,−y) so y = 0.

15



4 The group law

Elliptic curves over C Let Λ = {aω1 + bω2 : a, b ∈ Z} be a lattice, where
ω1, ω2 is a basis for C as an R-vector space. The the set of meromorphic functions
on the Riemann surface C/Λ is the same as Λ-invariant meromorphisc functions
on C. This field is generated by ℘(z) and ℘′(z) where

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

(
1

(z − λ)2
− 1

λ2

)

They satisfy
℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

for some g2, g3 ∈ Λ depending on Λ. One shows C/Λ ∼= E(C) where E is the
elliptic curve

y2 = 4x3 − g2x− g3.

The isomorphism is understood as isomorphism of Riemann surfaces and iso-
morphism of groups.

Theorem 4.6. Every elliptic curve over C arises this way.

For elliptic curve E/C we have

1. E[n] ∼= (Z/nZ)2.

2. deg[n] = n2.

We’ll show 2 holds for any field K, and 1 holds if char k - n.
Statement of results

1. If K = C then E(C) ∼= C/Λ ∼= R/Z ∼= R/Z.

2. If K = R then E(R) ∼=

{
Z/2Z× R/Z ∆ > 0

R/Z ∆ < 0

3. If K = Fq then |E(Fq)− (q + 1)| ≤ 2
√
q. This is Hasse’s theorem.

4. If [K : Qp] < ∞ with rings of integers OK then E(K) has a subgroup of
finite index isomorphic to (OK ,+).

5. If [K : Q] < ∞ then E(K) is a finitely generated abelian group. This is
Mordell-Weil theorem.

Remark. The isomorphisms in 1, 2 and 4 resepcted the relevant topologies.

16



5 Isogenies

5 Isogenies
Let K be any perfect field in this chapter.

Let E1, E2 be elliptic curves.

Definition (isogeny). An isogeny φ : E1 → E2 is a nonconstant morphism
with φ(0E1) = 0E2 . We say E1 and E2 are isogenous if there exists an
isogeny from E1 to E2.

We define Hom(E1, E2) to the be set of all isogenies E1 → E2 plus 0.
This is a group under

(φ+ ψ)(P ) = φ(P ) + ψ(P ).

Note that nonconstant implies that surjectivity on K-points. The composition
of isogenies is an isogeny.

Lemma 5.1. If 0 6= n ∈ Z then [n] : E → E is an isogeny.

Proof. We have checked that [n] is a morphism. We must show [n] 6= 0. There
is a trick that we can use, if we assume charK 6= 2. If n = 2 then we computed
last time that E[2] has 4 points so [2] 6= 0. If n is odd then let T ∈ E[2] be
nonzero then nT = T 6= 0 so again [n] 6= 0. Now use [mn] = [m] ◦ [n].

If charK = 2, we can compute E[3] as in the lemma before.

Corollary 5.2. Hom(E1, E2) is torsion-free as a Z-module.

Lemma 5.3. Let φ : E1 → E2 be an isogeny. Then φ(P+Q) = φ(P )+φ(Q)
for all P,Q ∈ E.

Sketch proof. φ induces a map

φ∗ : Div0(E1)→ Div0(E2)∑
nPP 7→

∑
nPφ(P )

Recall we have a field extension φ∗ : K(E2) → K(E1) so there is a norm map
NK(E1)/K(E2) : K(E1)→ K(E2). It is a fact that if f ∈ K(E1)

∗ then

div(NK(E1)/K(E2)f) = φ∗(div f)

so φ∗ takes principal divisors to principal divisors. Since φ(0E1) = 0E2 , we have
a commutative diagram

E1 E2

Pic0(E1) Pic0(E2)

φ

∼= ∼=

φ∗

As φ∗ is a group homomorphism, so is φ.

17



5 Isogenies

Example. Let E/K be an elliptic curve. Suppose charK 6= 2 and exists 0 6=
T ∈ E(K)[2]. wlog assume E : y2 = x(x2+ ax+ b) with a, b ∈ K, b(a2− 4b) 6= 0
so T = (0, 0). If P = (x, y) and P ′ = P + T = (x′, y′) then

x′ =
(y
x

)2

− a− x =
b

x

y′ = −
(y
x

)
x′ =

−by
x2

We define two variables that remain unchanged under (?) swapping

ξ = x+ x′ + a =
(y
x

)2

η = y + y′ =
y

x
(x− b

x
)

Then

η2 =
(y
x

)2

((x+
b

x
)2 − 4b)

= ζ((ζ − a)2 − 4b)

= ζ(ζ2 − 2aζ + a2 − 4b)

Let E′ : y2 = (x2 + a′x + b′) where a′ = −2a, b′ = a2 − 4b. Then there is an
isogeny

φ : E → E′ ⊆ P2

(x, y) 7→ (ξ : η : 1)

Left to show φ(0E) = 0E′ . The three coordinates has a pole of order −2,−3, 0
respectively at 0E so multiply by uniformiser to the power of three we get
(0 : 1 : 0).

Lemma 5.4. Let φ : E1 → E2 be an isogeny. Then exists morphism ξ
making the following diagram commute

E1 E2

P1 P1

φ

x1 x2

ξ

where xi is the x coordinate on a Weierstrass equation for Ei. Moreover if
ξ(t) = r(t)

s(t) where r, s ∈ K[t] coprime then

deg φ = deg ξ = max(deg(r),deg(s)).

Example. In the example above we just have ξ = x2+ax+b
x so in particular it

has degree 2.

Proof. For i = 1, 2, K(Ei)/K(xi) is a degree 2 Galois extension with Galois
group generated by [−1]∗.

18



5 Isogenies

K(E1)

K(x1)

K(E2)

K(x2)

If f ∈ K(x2) then [−1]∗f = f so

[−1]∗(φ∗f) = φ∗([−1]∗f) = φ∗f

so indeed φ∗f ∈ K(x1). Taking f = x2 gives φ∗x2 = ξ(x1) for some rational
function ξ. By tower law deg φ = deg ξ. Now K(x2) ↪→ K(x1), x2 7→ ξ(x1) =
r(x1)
s(x1)

for some r, s ∈ K[t] coprime. Claim the minimal polynomial of x1 over
K(x2) is

f(t) = r(t)− s(t)x2 ∈ K(x2)[t].

Check f(x1) = 0. f is irreducible in k[x2, t] (since r, s are corpime) so by Gauss’
lemma f is irreducible in K(x2)[t]. Therefore

deg φ = deg ξ = [K(x1) : K(x2)] = deg(f) = max(deg(r),deg(s)).

The lemma shows that the example φ above has degree 2. We say φ is a
2-isogeny.

Lemma 5.5. deg[2] = 4.

Proof. Assume charK 6= 2, 3 so write E : y2 = f(x) = x3+ax+ b. If P = (x, y)
then

x(2P ) =

(
2x2 + a

2y

)2

− 2x =
(3x2 + a)2 − 8xf(x)

4f(x)
=
x4 + · · ·
4f(x)

The numerator and the denominator are coprime. Indeed otherwise exists θ ∈ K
with f(θ) = f ′(θ) = 0, so f has a multiple root, absurd. Therefore by the lemma
deg[2] = max(4, 3) = 4.

We will show that deg[n] = n2 by showing that deg is a quadratic form.
This will also be useful when we prove Hasse’s theorem later.

Definition. Let A be an abelian group. q : A→ Z is a quadratic form if

1. q(nx) = n2q(x) for all n ∈ Z, x ∈ A.

2. (x, y) 7→ q(x+ y)− q(x)− q(y) is Z-bilinear.

19



5 Isogenies

Lemma 5.6. q : A → Z is a quadratic form if and only if it satisfies the
parallelogram law

q(x+ y) + q(x− y) = 2q(x) + 2q(y)

for all x, y ∈ A.

Proof. Only if is an easy exercise. If will be on example sheet 2.

Theorem 5.7. deg : Hom(E1, E2)→ Z is a quadratic form.

Here by convention the 0 map has degree 0.
For the proof we assume charK 6= 2, 3 and write E2 : y2 = f(x) = x3+ax+b.

Let P,Q ∈ E2 with P,Q, P +Q,P −Q 6= 0. Let x1, . . . , x4 be the x coordinates
of these four points.

Lemma 5.8. There exist W0,W1,W2 ∈ Z[a, b][x1, x2] of degree ≤ 2 in x1
and of degree ≤ 2 in x2 such that

(1 : x3 + x4 : x3x4) = (W0 :W1 :W2).

Proof. Method 1 is to calculate directly and get W0 = (x1 − x2)
2, . . .. See

formula sheet.
Method 2: let y = λx+ ν be the line through P and Q so

f(x)− (λx+ ν)2 = (x− x1)(x− x2)(x− x3).

By comparing coefficients we get

λ2 = s1

−2λν = s2 − a
ν2 = s3 + b

where si is the ith elementary symmetric polynomial in x1, x2, x3. Eliminating
λ and µ gives

(s2 − a)2 − 4s1(s3 + b)︸ ︷︷ ︸
F (x1,x2,x3)

= 0

where F has degree ≤ 2 in each xi. x3 is a root of the quadratic W (t) =
F (x1, x2, t). Repeating for line through P and −Q shows x4 is also a root of
W (t). Write W (t) =W0t

2 −W1t+W2 and then

(1 : x3 + x4 : x3x4) = (W0 :W1 :W2).

We show that if φ, ψ ∈ Hom(E1, E2) then

deg(φ+ ψ) + deg(φ− ψ) ≤ 2 deg(φ) + 2 deg(ψ).

We may assume φ, ψ, φ+ψ, φ−ψ 6= 0 as the other cases are trivial or we may use
deg[2] = 4. Let the x coordinate of φ(x, y), ψ(x, y), (φ + ψ)(x, y), (φ − ψ)(x, y)
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5 Isogenies

be ξ1(x), . . . , ξ4(x) respectively. Put ξi = ri
si

where ri, si ∈ K[x] coprime and
use the above lemma, we get

(s3s4 : r3s4 + r4s3 : r3r4) = ((r1s2 − r2s1)2 : · · · ).

Note that the three coordinates on LHS are coprime. We have

deg(φ+ ψ) + deg(φ− ψ)
= max(deg(r3),deg(s3)) + max(deg(r4),deg(s4))

= max(deg(s3s4),deg(r3s4 + r4s3),deg(r3r4)) case checking
≤ 2max(deg(r1),deg(s1)) + 2max(deg(r2),deg(s2)) as terms on LHS are coprime
= 2deg(φ) + 2 deg(ψ)

Now replace φ, ψ by φ+ ψ and φ− ψ to get

deg(2φ) + deg(2ψ) ≤ 2 deg(φ+ ψ) + 2 deg(φ− ψ)

Since deg[2] = 4 we get

2 deg(φ) + 2 deg(ψ) ≤ deg(φ+ ψ) + deg(φ− ψ)

Together they show deg satisfies the parallelogram law, so deg is a quadratic
form.

Corollary 5.9. deg(nφ) = n2 deg(φ) for all n ∈ Z, φ ∈ Hom(E1, E2). In
particular deg[n] = n2.
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6 Invariant differential

6 Invariant differential
We want to find out when a morphism is separable so we may apply Riemann-
Hurwitz. To do so we use differentials.

Let C be an algebraic curve over K = K. The space of differentials ΩC is
the K(C)-vector spaces generated by df for f ∈ K(C) subject to the relations

1. d(f + g) = df + dg,

2. d(fg) = fdg + gdf ,

3. da = 0 for all a ∈ K.
Fact. ΩC is a 1-dimensional K(C)-vector space.

Let 0 6= ω ∈ ΩC . Let P ∈ C be a smooth point with uniformiser t ∈ K(C).
It is a fact that dt 6= 0 so we may write ω = fdt for some f ∈ K(C)∗. We define
ordp(ω) = ordp(f). This is independent of choice of t.
Fact. Suppose f ∈ K(C)∗ and ordP (f) = n 6= 0. If charK - n then ordP (df) =
n− 1.

We now assume C is a smooth projective curve.
Fact. ordp(ω) = 0 for all but finitely many P ∈ C.

Definition. We define div(ω) =
∑
P∈C ordP (ω)P ∈ Div(C).

Definition. We define the genus of C to be

g(C) = dimK{ω ∈ ΩC : div(ω) ≥ 0},

the dimension of the space of regular differentials.

As a consequence of Riemann-Roch, we have if 0 6= ω ∈ ΩC then deg(div(ω)) =
2g(C)− 2.

Lemma 6.1. Assume char k 6= 2 and E : y2 = (x−e1)(x−e2)(x−e3). Then
ω = dx

y is a differential on E with no zeros or poles. In particular g(E) =
1 and the K-vector space of regular differentials on E is 1-dimensional,
spanned by ω.

Proof. Let Ti = (ei, 0) and we know E[2] = {0, T1, T2, T3}. We have

div(y) = (T1) + (T2) + (T3)− 3(0E)

Ti appears with multiplicity 1 in div y since we know deg div y = 0. If P ∈ E\{0}
then

div(x− xP ) = (P ) + (−P )− 2(0E).

If P ∈ E \ E[2] then ordP (x − xP ) = 1 so ordP (dx) = 0. If P = Ti then
ordP (x − xP ) = 2 so ordP (dx) = 1. Finally if P = 0E then ordP (x) = −2 so
ordP (dx) = −3. Therefore

div(dx) = (T1) + (T2) + (T3)− 3(0E).

It follows that div(dxy ) = 0.
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6 Invariant differential

Definition. If φ : C1 → C2 is a nonconstant morphism then we have
pullback of differentials defined by

φ∗ : ΩC2
→ ΩC1

fdg 7→ (φ∗f)d(φ∗g)

Lemma 6.2. Let P ∈ E and τP : E → E,X 7→ P + X. If ω = dx
y then

τ∗Pω = ω. ω is called the invariant differential.

Proof. τ∗pω is again a regular differential on E so τ∗Pω = λPω for some λP ∈ K∗.
The map E → P1, P 7→ λP (after a calculation we know the map is rational)
is a morphism of smooth projective curve but not surjective, as it misses 0,∞.
Therefore it is constant. Thus exists λ ∈ K∗ such that τ∗Pω = λω for all P ∈ E.
Taking P = 0E shows λ = 1.

Remark. If K = C then remember we have an isomorphism C/Λ ∼= E(C), z 7→
(℘(z), ℘′(z)) so

dx

y
=
℘′(z)dz

℘′(z)
= dz,

which is manifestly invariant under z 7→ z + constant.

Lemma 6.3. Let φ, ψ ∈ Hom(E1, E2) and ω the invariant differential on
E2. Then (φ+ ψ)∗ω = φ∗ω + ψ∗ω.

Proof. Write E = E2. We have three maps

E × E → E

µ : (P,Q) 7→ P +Q

π1 : (P,Q) 7→ P

π2 : (P,Q) 7→ Q

As E×E is 2-dimensional, it is a fact that ΩE×E is a 2-dimensional K(E×E)-
vector space with basis π∗

1ω, π
∗
2ω. Then µ∗ω = fπ∗

1ω + gπ∗
2ω for some f, g ∈

K(E × E). For Q ∈ E let ιQ : E → E × E,P 7→ (P,Q). Applying ι∗Q gives

(µιQ)
∗ω = (ι∗Qf)(π1ιQ)

∗ω + (ι∗Qg)(π2ιQ)
∗ω,

i.e.
τ∗Qω = (ι∗Qf)ω + 0

so ι∗Qf = 1 for all Q ∈ E, so f(P,Q) = 1 for all P,Q ∈ E. Similarly g(P,Q) = 1.
Thus µ∗ω = π∗

1ω+π∗
2ω. Now pullback by E → E×E,P 7→ (φ(P ), ψ(P )) to get

(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

23



6 Invariant differential

Lemma 6.4. Let φ : C1 → C2 be a nonconstant morphism. Then φ is
separable if and only if φ∗ : ΩC2

→ ΩC1
is non-zero.

Proof. Omitted.

Example. Consider the group variety Gm = A1 \{0} = P1 \{0,∞} with group
law being multiplication. Let n ≥ 2 be an intger and consider φ(x) = xn. We
know from Galois theory that if charK - n then kerφ has n elements. This can
also be deducted geometrically using differentials: φ∗(dx) = dxn = nxn−1dx so
if charK - n then φ is separable. Then #φ−1(Q) = deg φ for all but finitely
many Q ∈ Gm. φ is a group homomorphism so #φ−1(Q) = kerφ for all Q ∈ Gm
so in fact #kerφ = deg φ = n. Thus K (which is algebraically closed) contains
exactly n nth roots of unity.

Theorem 6.5. If charK - n then E[n] ∼= (Z/nZ)2.

Proof. By induction [n]∗ω = nω so if charK - n then [n] : E → E is separable.
Thus by the theorem #[n]−1(Q) = deg[n] for all but finitely many Q ∈ E. But
[n] is a group homomorphism so #[n]−1(Q) = #E[n] for all Q ∈ E. Thus

#E[n] = deg[n] = n2.

By classification of finitely generated abelian groups,

E[n] ∼= Z/d1Z× Z/d2Z× · · · × Z/dtZ

with d1 | d2 | · · · | dt | n and
∏
di = n2. If p is a prime with p | d1 then

E[p] ∼= (Z/pZ)t. But #E[p] = p2 so t = 2 and d1 | d2 | n, d1d2 = n2 so
d1 = d2 = n.

Remark. If charK = p then [p] is inseparable. It can be shown that either
E[pr] ∼= Z/prZ for all r ≥ 1, or E[pr] = 0 for all r ≥ 1. They are called ordinary
and supersingular.

24



7 Elliptic curves over finite fields

7 Elliptic curves over finite fields
We begin by proving a form of Cauchy-Schwarz.

Lemma 7.1. Let A be an abelian group and q : A → Z a positive definite
quadratic form. If x, y ∈ A then

|q(x+ y)− q(x)− q(y)| ≤ 2
√
q(x)q(y).

Notation. 〈x, y〉 = q(x+ y)− q(x)− q(y) and note that 〈x, x〉 = 2q(x).
Proof. We may assume x 6= 0 as otherwise the result is clear. Let m,n ∈ Z.
Then

0 ≤ q(mx+ ny)

1

2
〈mx+ ny,mx+ ny〉

= m2qx+mn〈x, y〉+ n62q(y)

= q(x)(m+
n〈x, y〉
2q(x)

)2 + n2(q(y)− 〈x, y〉
2

4q(x)

Take m = 〈x, y〉, n = −2q(x) to deduce

〈x, y〉2 ≤ 4q(x)q(y).

Let Fq be the field with q elements where q = pm for some p prime. Then
Gal(Fqr/Fq) is cyclic of order r generated by the Frobenius map x 7→ xq.

Theorem 7.2 (Hasse). Let E/Fq be an elliptic curve. Then

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Proof. Let E have Weierstrass equation with coefficients a1, . . . , a6 ∈ Fq so aqi =
ai for all i. Define the Frobenius endomorphism φ : E → E, (x, y) 7→ (xq, yq)
which is an isogeny of degree q. Then

E(Fq) = {P ∈ E : φ(P ) = P} = ker(1− φ).

Note φ is not separable as

φ∗ω = φ∗(
dx

y
) =

dxq

yq
=
qxq−1dx

yq
= 0

but
(1− φ)∗ω = ω − φ∗ω = ω 6= 0

so 1− φ is separable. Same as before, we have #ker(1− φ) = deg(1− φ).
Recall that deg : End(E) → Z is a positive definite quadratic form so by

Cauchy-Schwarz

|deg(1− φ)− deg[1]− deg[φ]| ≤ 2
√

deg[1] deg[φ]

so
|#E(Fq)− 1− q| ≤ 2

√
q

as required.
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7 Elliptic curves over finite fields

7.1 Zeta function
For K a number field, define

ζK(s) =
∑

a⊆OK

1

N(a)s
=

∏
p⊆OK prime

(
1− 1

(N(p))s

)−1

For K a function field, i.e. K = Fq(C) where C/Fq is a smoth projective curve,
we define

ζK(s) =
∏
x∈|C|

(
1− 1

(Nx)s

)−1

where |C| is the set of closed points of C, and is the same as the orbits of
Gal(Fq/Fq) on C(F q). Have Nx = qdeg x where deg x is the size of the orbit.

We have ζK(s) = F (q−s) for some F ∈ Q[[T ]]. Explicitly

F (T ) =
∏
x∈|C|

(1− T deg x)−1.

Take logarithm of the formal power series, we get

logF (T ) =
∑
x∈|C|

∞∑
m=1

1

m
Tm deg x

T
d

dT
logF (T ) =

∑
x∈|C|

∞∑
m=1

(deg x)Tm deg x

=
∞∑
n=1

(
∑

x∈|C|,deg x|n

deg x)Tn

=

∞∑
n=1

#C(Fqn)Tn

Now reverse the process,

F (T ) = exp

∞∑
n=1

#C(Fqn)
n

Tn.

We define tr : End(E)→ Z, φ 7→ 〈φ, 1〉.

Lemma 7.3. If φ ∈ End(E) then

φ2 − (trφ)φ+ deg φ = 0.

Proof. Example sheet 2.

Definition (zeta function). The zeta function of a variety V/Fq is the formal
power series (?)

ZV (T ) = exp

∞∑
n=1

#V (Fqn)
n

Tn.
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7 Elliptic curves over finite fields

Lemma 7.4. Suppose E/Fq is an elliptic curve, #E(Fq) = q+1−a. Then

ZE(T ) =
1− aT + qT 2

(1− T )(1− qT )
.

Proof. Let φ : E → E be the q-power Frobenius. By the proof of Hasse’s
theorem

#E(Fq) = deg(1− φ) = q + 1− trφ

so a = trφ and deg φ = q. By the above lemma φ2 − aφ + q = 0 so φn+2 −
aφn+1 + qφn = 0. Upon taking trace,

trφn+2 − a trφn+1 + q trφn = 0.

This second order difference equation with initial condition tr 1 = 2, trφ = q
has solution trφn = αn+βn where α, β ∈ C ar roots of X2−aX+ q = 0. Then

#E(Fqn) = deg(1− φn) = deg φn + 1− trφn = qn + 1− αn − βn

Thus the zeta function is

ZV (T ) = exp

∞∑
n=1

1

n
(Tn + (qT )n − (αT )n − (βT )n) =

(1− αT )(1− βT )
(1− T )(1− qT )

using − log(1− x) =
∑∞
m=1

xm

m . Expand.

Remark. Hasse’s theorem as Riemann hypothesis for finite fields: Hasse’s the-
orem gives a bound |a| ≤ 2

√
q so α = β. As αβ = q, have |α| = |β| = sqrtq.

Let K = Fq(E). Then ζK(s) = 0 if and only if ZE(q−s) = 0, so qs = α or β so
qRe s =

√
q, i.e. Re s = 1

2 . Thus we have proven the Riemann hypothesis.
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8 Formal groups

8 Formal groups

Definition (I-adic topology). Let R be a ring and I ⊆ R an ideal. The
I-adic topology is the topology on R with basis {r + In : r ∈ R,n ≥ 1}

Definition. A sequence (xn) in R is Cauchy if for all k exists N such that
for all m,n ≥ N , have xm − xn ∈ Ik.

Definition. R is complete if

1.
⋂
n≥0 I

n = {0} (Hausdorff condition),

2. every Cauchy sequence converges.

Remark. Suppose R is complete. If x ∈ I then 1
1−x = 1 + x + x2 + · · · so

1− x ∈ R∗.

Example.

1. R = Zp with I = pZp. This is complete by construction.

2. R = Z[[t]] with I = (t).

Lemma 8.1 (Hensel’s lemma). Let R be an integral domain and is complete
with respect to the ideal I. Let F ∈ R[X], s ≥ 1. Suppose a ∈ R satisfies
F (a) = 0 (mod Is), F ′(a) ∈ R×. Then there exists a unique b ∈ R satisfying
F (b) = 0, b = a (mod Is).

Proof. Let u ∈ R× with F ′(a) = u (mod I). Replacing F by X+A
u , we may

assume a = 0 and F ′(0 = 1 (mod I). We define

x0 = 0, xn+1 = xn − F (xn).

An easy induction shows xn = 0 (mod Is) for all n. Also

F (X)− F (Y ) = (X − Y )(F ′(0) +XG(X,Y ) + Y H(X,Y ))

for some G,H ∈ R[X,Y ]. Claim that xn+1 = xn (mod In+s) for all n ≥ 0.

Proof. Induction on n. n = 0 holds. Suppose xn = xn−1 (mod In+s−1). Then

F (xn)− F (xn−1) = (xn − xn−1)(1 + c)

for some c ∈ I. Modulo In+s, get

F (xn)− F (xn−1) = xn − xn−1 (mod In+s]).

Rearrange to get

xn+1 = xn − F (xn) = xn−1 − F (xn−1) = xn (mod In+s).
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8 Formal groups

Thus by completeness xn → b as n → ∞ for some b ∈ R. Taking limit of
the recurrence relation and use the continuity of F to get F (b) = 0. Taking
limit in xn = 0 (mod Is) gives b = 0 (mod Is). Uniqueness follows from the
assumption R is an integral domain.

Consider E : Y 2Z + a1XY Z + a3yZ
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.
We want to study the behaviour near 0E so use the affine piece Y 6= 0. Let
t = −X/Y,w = −Z/Y . Then

w = f(t, w) = t3 + a1tw + a2t
2w + a3w

2 + a4tw
2 + a6w

3.

Apply Hensel’s lemma to R = Z[a1, . . . , a6][[t]], I = (t) and F (X) = X−f(t,X).
The approximate root is a = 0 for s = 3. Check F (0) = −t3, F ′(0) = 1 −
a1t − a2t2 ∈ R×. Then there exists a unique w(t) ∈ Z[a1, . . . , a6][[t]] such that
w(t) = f(t, w(t)) and w(t) = 0 (mod t3).

To see w(t) explicitly, we follow the proof of Hensel’s lemma (with u = 1)
and get w(t) = limn→∞ wn(t) where

w0(t) = 0, wn+1(t) = f(t, wn(t)).

In fact

ω(t) = t3(1 +A1t+A2t
2 + . . . ) =

∞∑
n=2

An−2t
n+1

where A1 = a1, A2 = a21 + a2, A3 = a31 + 2a1a2 + a3, . . .

Lemma 8.2. Let R be an integral domain, complete with respect to an ideal
I. Let a1, . . . , a6 ∈ R and K the field of fraction of R. Then

Ê(I) = {(t, w) ∈ E(K) : t, w ∈ I}

is a subgroup of E(K).

Remark. By unqiueness in Hensel’s lemma (with s = 1), we can also describe
Ê(I) as

Ê(I) = {(t, w(t)) ∈ E(K) : t ∈ I}.

Proof. Taking (t, w) = (00) shows 0E ∈ Ê(I), so suffices to show if P1, P2 ∈ Ê(I)
then −P1 − P2 ∈ Ê(I). Suppose Pi = (ti, wi). The line P1P2 is given by
ω = λt+ ν where

λ =

{
w(t2)−w(t1)

t2−t1 t1 6= t2

w′(t1) t1 = t2

so

λ =

∞∑
n=2

An−2(t
n
1 + tn−1

1 t2 + · · ·+ tn2 ) ∈ I

ν = w1 − λt1 ∈ I

Subsituting w = λt+ ν into w = f(t, w), we get

A = coefficient of t3 = 1 + a2λ+ a4λ
2 + a6λ

3

B = coefficient of t2 = a1λ+ a2ν + a3λ
2 + 2a4λν + 3a6λ

2ν

we have A ∈ R×, B ∈ I so t3 = −B/A− t1 − t2 ∈ I and w3 = λt3 + ν ∈ I.
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8 Formal groups

Taking R = Z[a1, . . . , at][[t]], I = (t). The lemma shows that there exists
ι(t) ∈ Z[a1, . . . , a6][[t]] with ι(0) = 0 such that [−1](t, w(t)) = (ι(t), w(ι(t))).
Taking R = Z[a1, . . . , a6][[t1, t2]], I = (t1, t2), the lemma says there exists F ∈
Z[a1, . . . , a6][[t]] with F (0, 0) = 0 such that

(t1, w(t1)) + (t2, w(t2)) = (F (t1, t2), w(F (t1, t2))).

In fact

ι(X) = −X − a1X2 − a2X3 − (a31 + a3)X
4 + . . .

F (X,Y ) = X + Y − a1XY − a2(X2Y +XY 2) + . . .

By properties of the group law we deduce

1. F (X,Y ) = F (Y,X).

2. F (X, 0) = X and F (0, Y ) = Y .

3. F (F (X,Y ), Z) = F (X,F (Y, Z)).

4. F (X, ι(X)) = 0.

Definition (formal group). Let R be a ring. A formal group over R is a
power series F (X,Y ) ∈ R[[X,Y ]] satisfying 1, 2, 3.

A question on example sheet 2 shows that for any formal group, there exists
a unique ι(t) = −t+ · · · ∈ R[[t]] satisfying 4.

Example.

1. F (X,Y ) = X + Y . We call this formal group Ĝa.

2. F (X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1 so is secretly the same as
above. We call this formal group Ĝm.

3. F arising from an elliptic curve. We call it Ê.

Definition. Let F and G be formal groups, given by power series F and G.

1. A morphism f : F → G is a power series f(T ) ∈ R[[T ]] with f(0) = 0
satisfying f(F (X,Y )) = G(f(X), f(Y )).

2. F ∼= G if there exists morphisms f : F → G, g : G → F such that
f(g(X)) = X, g(f(X)) = X.

Theorem 8.3. If charR = 0 then every formal group F over R is isomorphic
to Ĝa over R⊗Q. More precisely,

1. there is a unique power series log(T ) = T + a2
2 T

2 + a3
3 T

3 + · · · with
ai ∈ R such that

logF (X,Y ) = log(X) + log(Y ). (∗)

2. there is a unique power series exp(T ) = T + b2
2! T

2 + b3
3! T

3 + · · · with
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8 Formal groups

bi ∈ R such that

exp log(T ) = log exp(T ) = T.

Proof.

1. Write F1(X,Y ) = ∂F
∂X (X,Y ). For uniqueness, let

p(T ) =
d

dT
log T = 1 + a2T + a3T

2 + . . . .

Differentiating (∗) with respect to X gives

p(F (X,Y ))F1(X,Y ) = p(X).

Putting X = 0 gives p(Y )F1(0, Y ) = 1 so p(Y ) = F1(0, Y )−1 is unqiue.
Thus log is unique.
For existence, let p(T ) = F1(0, T )

−1 = 1 + a2T + a3T
2 + . . . for some

ai ∈ R. Let log T = T + a2
2 T

2 + . . .. Differentiate the associativity law
with respect to X we get

F1(F (X,Y ), Z)F1(X,Y ) = F1(X,F (Y, Z)).

Sub X = 0 and use identity law,

F1(Y, Z)F1(0, Y ) = F1(0, F (Y, Z))

so
F1(Y, Z)p(F (Y, Z)) = p(Y ).

Integrate with repsect to Y to get

log(F (Y, Z)) = log Y + h(Z)

for some power series h. By symmetry in Y, Z have h(Z) = logZ.

2. We use

Lemma 8.4. Let f = aT + · · · ∈ R[[t]] with a ∈ R×. Then exists a
unique g = a−1T + · · · ∈ R[[T ]] such that f(g(T )) = g(f(T )) = T .

Proof. We construct polynomials gn(T ) such that f(gn(T )) = T (mod Tn+1)
and gn+1(T ) = gn(T ) (mod Tn+1). Then g(T ) = limn→∞ gn(T ) exists
and satisfies f(g(T )) = T .
To start the induction set g1(T ) = a−1T . Now suppose n ≥ 2 and gn−1(T )
exists so f(gn−1(T )) = T + bTn (mod Tn+1) for some b ∈ R. We put
gn(T ) = gn−1(T ) + λTn for some λ ∈ R to be chosen later. Then

f(gn(T )) = f(gn−1(T ) + λTn)

= f(gn−1(T )) + λaTn (mod Tn+1)

= T + (b+ λa)Tn (mod Tn+1)

so we take λ = −b/a.
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8 Formal groups

We get g(T ) = a−1T + · · · ∈ R[[T ]] such that f(g(T )) = T . Applying the
same argument to g gives h(T ) = aT+ · · · ∈ R[[T ]] such that g(h(T )) = T .
Then

f(T ) = f(g(h(T ))) = h(T ).

The theorem then follows except for showing bn ∈ R (not just R ⊗ Q).
This is on example sheet 2.

Notation. Let F (e.g. Ĝa, Ĝm, Ê) be a formal group given by F ∈ R[[X,Y ]].
Suppose R is complete with respect to I. For x, y ∈ I put x⊕F y = F (x, y) ∈ I.
Then F(I) = (I,⊕F ) is an abelian group. For example ˆG(I) = (I,+), ˆGm(I) ∼=
(1 + I,×) and Ê(I) ⊆ E(K) as in lemma 8.2. This also explains the earlier
choice of notation.

Corollary 8.5. Let F be a formal group over R and n ∈ Z. Suppose
n ∈ R×. Then

1. [n] : F → F is an isomorphism.

2. If R is complete with respect to an ideal I then ×n : F(I) → F(I) is
an isomorphism. In particular F(I) has no n-torsion.

Proof. We first explain the notation [n]. We inductively define [1](T ) = T, [n](T ) =
F ([n − 1]T, T ) for n ≥ 2 (for n < 0, use [−1](T ) = ι(T )). An easy induction
show [n](T ) = nT + · · · ∈ R[[T ]] so by Lemma 8.4 it is an isomorphism.
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9 Elliptic curves over local fields

9 Elliptic curves over local fields
Let K be a field, complete with respect to a a discrete valuation v : K∗ � Z.
The valuation ring, also known as ring of integers, is

OK = {x ∈ K∗ : v(x) ≥ 0} ∪ {0}

with unit group
O∗
K = {x ∈ K∗ : v(x) = 0}

and maximal ideal πOK where v(π) = 1. It has residue field k = Ok/πOK . We
assume charK = 0, char k = p > 0. For example K = Qp,OK = Zp, k = Fp.

Let E/K be an elliptic curve.

Definition (integral/minimal Weierstrass equation). A Weierstrass equa-
tion for E with coefficients a1, . . . , a6 ∈ K is integral if a1, . . . , a6 ∈ OK and
is minimal if v(∆) is minimal among all integral equations for E.

Remark.

1. Putting x = u2x′, y = u3y′ gives ai = uia′i so integral equation exists.

2. If a1, . . . , a6 ∈ OK then ∆ ∈ OK so v(∆) ≥ 0 so minimal Weierstrass
equations exist.

3. If char k 6= 2, 3 then exists a minimal Weierstrass equation of the form
y2 = x3 + ax+ b.

Lemma 9.1. Let E/K have integral Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let 0 6= P ∈ E(K), say P = (x, y). Then either x, y ∈ OK or v(x) =
−2s, v(y) = −3s for some s ≥ 1.

Proof. First we deal with the case v(x) ≥ 0 (or x = 0). If v(y) < 0 then
v(LHS) = 0 while v(RHS) > 0, absurd so x, y ∈ OK .

Now suppose v(x) < 0. Then

v(LHS) ≥ min(2v(y), v(x) + v(y), v(y)), v(RHS) = 3v(x).

In each of the three cases, v(y) < v(x) so 2v(y) = 3v(x).

Remark. See example sheet 1.

Fix a minimal Weierstrass equation for E/K, we get a formal group Ê over
OK , and

Ê(πrOK) = {(x, y) ∈ E(K) : −x
y
,−1

y
∈ πrOK} ∪ {0}

= {(x, y) ∈ E(K) : v(
x

y
) ≥ r, v(1

y
) ≥ r} ∪ {0}

= {(x, y) ∈ E(K) : v(x) ≤ −2r, v(y) ≤ −2r} ∪ {0}
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9 Elliptic curves over local fields

by using the lemma. This is a π-neighbourhood of 0. By theorem 8.2 this is a
subgroup of E(K), say Er(K). Then we have a nested sequence of groups

E1(K) ⊇ E2(K) ⊇ · · ·

More generally for F a formal group over OK , we have

F(πOK) ⊇ F(π2OK) ⊇ · · ·

We will show that F(πrOK) ∼= (OK ,+) for r sufficiently large and
F(πrOK)

F(πr+1OK)
∼= (k,+)

for all r ≥ 1.
A reminder we are working over charK = 0, char k = p.

Proposition 9.2. Let F be a formal group over OK . Let e = v(p). If
r > e

p−1 then
log : F(πrOK)→ Ĝa(πrOK)

is an isomorphism with inverse exp.

Proof. For x ∈ πrOK we must show that the power series exp and log in theorem
8.3 converge. Recall exp(T ) = T + b2

2! T
2+ . . . where bn ∈ OK . Note that while a

“big” denominator is good in Archimedean analysis, the situation is the opposite
in the non-Archimedean case. Claim vp(n!) =

n−1
p−1 .

Proof.

vp(n!) =

∞∑
r=1

⌊
n

pr

⌋
<

∞∑
r=1

n

pr
=

n

p− 1

so (p − 1)vp(n!) < n. By noting that it is integer valued we get the required
inequality.

Now
v(
bnx

n

n!
≥ nr − e

(
n− 1

p− 1

)
= (n− 1) (r − e

p− 1
)︸ ︷︷ ︸

>0

+r

This is always ≥ r and goes to infinity as n→∞ so expx converges and belongs
to πrOK . log x is similar but easier.

Proposition 9.3. For r ≥ 1,

F(πrOK)

F(πr+1OK)
∼= (k,+).

Proof. Recall F (X,Y ) = X + Y +XY (· · · ) so if x, y ∈ OK ,

F (πrx, πry) = πr(x+ y) (mod πr+1).

Thus

F(πrOK)→ (k,+)

πrx 7→ x (mod π)

is a surjective homomorphism with kernel F(πr+1OK).
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9 Elliptic curves over local fields

Corollary 9.4. If k is finite then F(πOK) contains a subgroup of finite
index and is isomorphic to (OK ,+).

Notation. We denote reduction mod π by x 7→ x̃.

Proposition 9.5. Suppose E/K is an elliptic curve. The reduction mod π
of two minimal Weierstrass equations for E define isomorphic curves over
k.

Proof. Say Weierstrass equations are related by [u; r, s, t] where u ∈ K×, r, s, t ∈
K. Then ∆1 = u12∆2. Minimality of equations implies that u ∈ O∗

K . By trans-
formation formula for ai and bi, we conclude r, s, t ∈ OK . Then the Weierstrass
equation for the reductions mod π are related by [ũ; r̃, s̃, t̃]. Note that all these
are to ensure that things work in characteristic 2 or 3.

Definition (reduction). The reduction Ẽ/k of E/K is defined to be the
reduction of a minimal Weierstrass equation.

E has good reduction if Ẽ is nonsingular (and so is an elliptic curve),
otherwise bad reduction.
For an integral Weierstras equation, v(∆) = 0 is a sufficient condition for

good reduction. On the other hand if 0 < v(∆) < 12 then by ∆1 = u12∆2 we
have bad reduction. If v(∆) ≥ 12 then the equation might not be minimal.

There is a well-defined map

P2(K)→ P2(k)

(x : y : z) 7→ (x̃ : ỹ : z̃)

where we choose representatives with min(v(x), v(y), v(z)) = 0 to ensure we do
not get (0 : 0 : 0). We restrict to get E(K) → E(k), P 7→ P̃ . If P = (x, y) ∈
E(K) then either x, y ∈ OK so P̃ = (x̃, ỹ), or v(x) = −2s, v(y) = −3s and we
choose P = (π3sx : π3sy : π3s) which reduces to P̃ = (0 : 1 : 0). Thus

E1(K) = Ê(πOK) = {P ∈ E(K) : P̃ = 0}

is the kernel of reduction.
Let Ẽns be the set of nonsingular points on Ẽ. If E has good reduction then

this is the same as Ẽ. Otherwise we delete the singular points. The chord and
tangent process still defines a group law on Ẽns (since the third intersection
point only has multiplicity 1). In case of bad reduction Ẽns

∼= Ga or Gm (over
k), called additive reduction or multiplicative reduction. For simpicity suppose
char k 6= 2 and we have Ẽ : y2 = f(x). Then Ẽ is singular if and only if f has
a repeated root. For double root (y2 = x2(x+ 1)) we have a curve with a node
and we use multiplicative reduction. For triple root (y2 = x3) we have a curve
with a cusp and we use additive reduction

Ẽns → Ga

(x, y) 7→ x

y

(t−2, t−3)← [ t
∞← [ 0
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9 Elliptic curves over local fields

We check this is a group homomorphism. Let P1, P2, P3 be on the line ax+by =
1. Write Pi = (xi, yi), ti =

xi

yu
. Then x3i = y2i = y2i (axi + byi) so t1, t2, t3 are

roots of X3−aX− b = 0. Looking at the coefficient of X2 gives t1+ t2+ t3 = 0.
The node case is on example sheet.

Definition. We define

E0(K) = {P ∈ E(K) : P̃ ∈ Ẽns(k)},

the points that do not become singular upon reduction.

Proposition 9.6. E0(K) is a subgroup of E(K) and reduction mod π is a
surjective group homomorphism E0(K)→ Ẽns(k).

Proof. First check this is a group homomorphism. A line ` in P2 defined
over K has equation aX + bY + cZ = 0 where a, b, c ∈ K. We may assume
min(v(a), v(b), v(c)) = 0. Reduction mod π given the line ˜̀ ãX + b̃Y + c̃Z = 0.
If P1, P2, P3 ∈ E(K) with P1 + P2 + P3 = 0 then they lie on a line `. Then
P̃1, P̃2, P̃3 lie on ˜̀. If P̃1, P̃2 ∈ Ẽns(k) then P̃3 ∈ Ẽns(k) so if P1, P2 ∈ E0(K)

then P3 ∈ E0(K) and P̃1 + P̃2 + P̃3 = 0. It is an exercise to check that this still
works when P̃1, P̃2, P̃3 are not necessarily distinct.

Now we show surjectivity. Let f(x, y) = y2 + a1xy + a3y − (x3 + . . . ) be
the Weierstrass equation. Let P̃ ∈ Ẽns(k) \ {0}, say P̃ = (x̃0, ỹ0) for some
x0, y0 ∈ OK . P̃ nonsingular implies that either ∂f

∂x (x0, y0) 6= 0 (mod π) or
∂f
∂y (x0, y0) 6= 0 (mod π). In the first case put g(t) = f(t, y0) ∈ OK [t]. Then

g(x0) = 0 (mod π), g′(x0) ∈ O∗
K

so by Hensel’s lemma exists b ∈ OK such that g(b) = 0, b = x0 (mod π). Then
P = (b, y0) ∈ E(K) has reduction P̃ . The second case is similar.

Recall that for r ≥ 1 we put

Er(K) = {(x, y) ∈ E(K) : v(x) ≤ −2r, v(y) ≤ −3r} ∪ {0}

and we have a nested sequence of groups

(OK ,+) ∼= Er(K) ⊆ · · · ⊆ E2(K) ⊆ E1(K) ⊆ E0(K) ⊆ E(K)

for r > e
p−1 . The quotient E0(K)

E1(K)
∼= Ẽns(K) and all quotients Et+1

Et

∼= (k,+).
What about E0(K) ⊆ E(K)? There are much to be said about this but we only
cover a special case here. More can be found is Silverman’s sequel.

Lemma 9.7. If |k| < ∞ then Pn(K) is compact (with respect to π-adic
topology).

Proof. If |k| < ∞ then OK

πrOK
is finite for r ≥ 1 so OK ∼= lim←−rOK/π

rOK is
compact. Pn(K) is the union of compact sets

{(a0 : a1 : · · · : ai−1 : 1 : ai+1 : · · · : an) : aj ∈ OK}

and hence compact.
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9 Elliptic curves over local fields

Lemma 9.8. If |k| <∞ then E0(K) ⊆ E(K) has finite index.

Proof. E(K) ⊆ P2(K) is a closed subset so (E(K),+) is a compact topological
group. If Ẽ has singular point (x̃0, ỹ0) then

E(K) \ E0(K) = {(x, y) ∈ E(K) : v(x− x0) ≥ 1, v(y − y0) ≥ 1}

(?) is a closed subset of E(K) and so E0(K) is an open subgroup of E(K). The
cosets of E0(K) are an open cover of E(K), and thus E0(K) has finite index in
E(K) by compactness. The index is called Tamagawa number and is denoted
cK(E).

Remark. Good reduction implies that cK(E) = 1 but the converse is false.

Fact. For these facts it is essential that E is defined by a minimal Weierstrass
equation, but we don’t need |k| <∞.

Either cK(E) = v(∆) or cK(E) ≤ 4

Theorem 9.9. If [K : Qp] < ∞ then E(K) contains a subgroup Er(K) of
finite index with Er(K) ∼= (OK ,+).

Proof. We have |k| <∞. Combine all results in this chapter.

Corollary 9.10. E(K)tors injects into E(K)
Er(K) and is therefore finite.

We now quote some results from algebraic number theory. Let [K : Qp] <∞
and L/K a finite extension. Then [L : K] = ef where vL|K∗ = evK and
f = [k′ : k] where k′ and k are the residue fields of L and K respectively. If L/K
is Galois then there is a natural group homomorphism Gal(L/K)→ Gal(k′/k).
This map is surjective with kernel of order e.

Definition (unramified extension). L/K is unramified if e = 1.

Fact. For each integer m ≥ 1,

1. k has a unique extension of degree m, say km.

2. K has a unique unramified extension of degree m, say Km.

Definition (maximal unramified extension). We define the maximal un-
ramified extension to be Knr =

⋃
m≥1Km (inside K).

Theorem 9.11. Suppose [K : Qp] < ∞, E/K an elliptic curve with good
reduction and p - n. If P ∈ E(K) then K([n]−1P )/K is unramified.
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9 Elliptic curves over local fields

Recall that when we do not specify a base field then we refer to the algebraic
closure so

[n]−1P = {Q ∈ E(K) = nQ = P}.

Also we denote

K({P1, . . . , Pr}) = K(X1, . . . , xr, y1, . . . , yr)

where Pi = (xi, yi).

Proof. For each m ≥ 1 there is a short exact sequence

0 E1(Km) E(Km) Ẽ(km) 0

Taking union over all m ≥ 1 gives a commutative diagram with exact rows

0 E1(K
nr) E(Knr) Ẽ(k) 0

0 E1(K
nr) E(Knr) Ẽ(k) 0

n n n

The left vertical map is an isomorphism by corollary 8.5, which applies since
p - n implies n ∈ O∗

K . The right vertical map is surjective by Theorem 2.8 and
has kernel isomorphic to (Z/nZ)2 by theorem 6.5. Then by snake lemma

E(Knr)[n] ∼= (Z/nZ)2,
E(Knr)

nE(Knr)
= 0

so if P ∈ E(K) then P = nQ for some Q ∈ E(Knr) so

[n]−1P = {Q+ T : T ∈ E[n]} ⊆ E(Knr)

so K([n]−1P ) ⊆ Knr so K([n]−1P )/K is unramified.
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10 Elliptic curves over number fields

10 Elliptic curves over number fields
Suppose [K : Q] < ∞ and E/K is an elliptic curve. Throughout we let p be a
prime of K (i.e. of OK), Kp the p-adic completion of K and kp = Ok/p.

Definition (prime of good reduction). p is a prime of good reduction for
E/K if E/Kp has good reduction.

Lemma 10.1. E/K has only finitely many primes of bad reduction.

Proof. Take a Weierstrass equation for E with coefficients a1, . . . , a6 ∈ OK .
E is nonsingular implies that 0 6= ∆ ∈ OK . Write (∆) = pα1

1 · · · pαr
r for the

factorisation into prime ideals. Let S = {p1, . . . , pr}. If p /∈ S then vp(∆) = 0
so E/Kp has good reduction.

Remark. If K has class number 1 (e.g. K = Q) then we can always find a
Weierstrass equation for a1, . . . , a6 ∈ OK which is minimal at all primes p.

Lemma 10.2. E(K)tor is finite.

Proof. Take any p. Note K ⊆ Kp and apply theorem 9.8.

Lemma 10.3. Let p be a prime of good reduction with p - n. Then reduction
modulo p gives an injection E(K)[n] ↪→ Ẽ(kp)[n].

Proof. Proposition 9.5 says that E(Kp)→ Ẽ(kp) is a group homomorphism with
kernel E1(Kp). Then corollary 8.5 implies that E1(Kp) has no n-torsion.

Example. Let E/Q : y2 + y = x3 − x2. ∆ = −11. E has good reduction at
all primes p 6= 11. so by looking at 2 and 3, #E(Q)tor | 5 · 2a for some a ≥ 0.

p 2 3 5 7 11 13
#Ẽ(Fp) 5 5 5 10 - 10

#E(Q)tor | 5 · 3b for some b ≥ 0, so #E(Q)tor | 5. Let T = (0, 0) ∈ E(Q). We
can check that 5T = 0 so E(Q)tor ∼= Z/5Z.

Example. Let E/Q : y2 + y = x3 + x. ∆ = −43. E has good reduction at all
p 6= 43. By considering p = 2, 11 we show E(Q)tor = {0}. Thus P = (0, 0) ∈

p 2 3 5 7 11 13
#Ẽ(Fp) 5 6 10 8 9 19

E(Q) is a point of infinite order. Thus rank of E(Q) ≥ 1.

Example. Let ED : y2 = y2 = x3 − D2x where D ∈ Z square free and
∆ = 26D6. We know the torsion group contains {0, (0, 0), (±d, 0)} ∼= (Z/2Z)2.
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10 Elliptic curves over number fields

Let f(x) = x3 − D2x. We can count the number of points using Legendre
symbol. If p - 2D then

#ẼD(Fp) = 1 +
∑
x∈Fp

(

(
f(x)

p

)
+ 1).

If p = 3 (mod 4) then since f(x) is an odd function,(
f(−x)
p

)
=

(
−f(x)
p

)
=

(
−1
p

)(
f(x)

p

)
= −

(
f(x)

p

)
so #ẼD(Fp) = p+ 1.

Let m = #ED(Q)tor. We have 4 | m | (p + 1) for all sufficiently large
primes p with p = 3 (mod 4). Then by m = 4 as otherwise we will get a
contradiction to Dirichlet’s theorem on primes in arithmetic progression. Thus
ED(Q)tor ∼= (Z/2Z)2. Thus rank ED(Q) ≥ 1 if and only if there exists x, y ∈ Q
with y 6= 0 and y2 = x3 −D2x, if and only if D is a congruent number.

Lemma 10.4. Let E/Q be given by a Weierstrass equation with a1, . . . , a6 ∈
Z. Suppose 0 6= T = (x, y) ∈ E(Q)tor. Then

1. 4x, 8y ∈ Z,

2. if 2 | a1 or 2T 6= 0 then x, y ∈ Z.

Proof.

1. The Weierstrass equation defines a formal group Ê over Z. For r ≥ 1,
recall

Ê(prZp) = {(x, y) ∈ E(Qp) : vp(x) ≤ −2r, vp(y) ≤ −3r} ∪ {0}.

Proposition 9.2 says Ê(prZp) ∼= (Zp,+) if r > 1
p−1 . Thus Ê(4Z2) and

Ê(pZp) for p odd are torsion free. Thus if 0 6= T = (x, y) ∈ E(Q)tors
then T /∈ Ê(4Z2), so v2(x) ≥ −2, v2(y) ≥ −3. T /∈ Ê(pZp) so vp(X) ≥
0, vp(y) ≥ 0.

2. Suppose T ∈ Ê(2Z2), i.e. v2(x) = −2, v3(y) = −3. Since Ê(2Z2)

Ê(4Z2)
∼= (F2,+)

and Ê(4Z2) is torsion free, we get 2T = 0. Also

(x, y) = T = −T = (x,−y − a1x− a3)

so 2y+a1x+a3 = 0. Thus 8y+a1(4x)+4a3 = 0, and 8y, 4x are both odd
and 4a3 = 0 so a1 is odd. Thus if 2T 6= 0 or a1 is even then T ∈ Ê(2Z2)
and so x, y ∈ Z.

Example. y2 + xy + x3 + 4x+ 1 has (− 1
4 ,

1
8 ) ∈ E(Q)[2].
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10 Elliptic curves over number fields

Theorem 10.5 (Lutz Nagell). Let E/Q : y2 = x3 + ax+ b where a, b ∈ Z.
Suppose 0 6= T = (x, y) ∈ E(Q)tors. Then x, y ∈ Z and either y = 0 or
y2 | (4a2 + 27b2).

Proof. Lemma 10.4 implies x, y ∈ Z. If 2T = 0 then y = 0. Otherwise 0 6= 2T =

(x2, y2) is torsion so x2, y2 ∈ Z. Then x2 =
(
f ′(x)
2y

)2

− 2x. Everything is integer
so y | f ′(x). E is nonsingular so f(X) and f ′(X) are coprime. f(X) and f ′(X)2

are coprime so exists g, h ∈ Q[X] such that g(X)f(X) + h(X)f ′(X)2 = 1. A
calculation gives

(3X3 + 4a)f ′(X)2 − 27(X3 + aX − b)f(X) = 4a3 + 27b2.

Since y | f ′(x) and y2 = f(x) we get y2 | (4a3 + 27b2).

Remark. Mazur has shown that if E/Q is an elliptic curve then E(Q)tors is
isomorphic to one of the below:

Z/nZ for 1 ≤ n ≤ 12, n 6= 11 or Z/2Z× Z/2nZ for 1 ≤ n ≤ 4.

Moreover all 15 possibilities occur.
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11 Kummer theory
Let K be a field with charK - n. Assume µn ⊆ K.

Lemma 11.1. Let ∆ ⊆ K∗/(K∗)n be a finite subgroup. Let L = K( n
√
∆).

Then L/K is Galois and

Gal(L/K) ∼= Hom(∆, µn).

Proof. L/K is Galois since µn ⊆ K and charK - n. Define the Kummer pairing

〈·, ·〉 : Gal(L/K)×∆→ µn

(σ, x) 7→ σ( n
√
x)

n
√
x

Check this is well-defined: if α, β ∈ L with αn = βn = x then (αβ )
n = 1 so

α
β ∈ µn ⊆ K so σ(αβ ) =

α
β so σ(α)

α = σ(β)
β . It is bilinear:

〈στ, x〉 = σ(τ n
√
x)

τ n
√
x

τ n
√
x

n
√
x

= 〈σ, x〉〈τ, x〉

〈σ, xy〉 =
σ n
√
xy

n
√
xy

=
σ n
√
x

n
√
x

σ n
√
y

n
√
y

= 〈σ, x〉〈σ, y〉

The pairing is nondegenerate in both arguments: let σ ∈ Gal(L/K). If 〈σ, x〉 = 1
for all x ∈ ∆ then σ n

√
x = n

√
x for all x ∈ ∆ so σ fixes L pointwise so σ = 1.

Conversely let x ∈ ∆. If 〈σ, x〉 = 1 for all σ ∈ Gal(L/K) then σ n
√
x = n

√
x for

all σ so n
√
x ∈ K∗ so x ∈ (K∗)n.

To put it in another way Gal(L/K) and ∆ are dual groups to each other
and we have two injective group homomorphisms

1. Gal(L/K) ↪→ Hom(∆, µn),

2. ∆ ↪→ Hom(Gal(L/K), µn).

Statement 1 implies Gal(L/K) is an abelian group of exponent dividing n. Now
similar to the fact that the dual group of a finite abelian group has the same
size, we have |Hom(∆, µn)| = |∆| and same for the other so

|Gal(L/K)| ≤ |∆| ≤ |Gal(L/K)|

so 1 and 2 are isomorphisms.

Example. Gal(Q(
√
2,
√
3,
√
5)/Q) ∼= (Z/2Z)3.
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11 Kummer theory

Theorem 11.2. There is a bijection

{
finite subgroups
∆ ⊆ K∗/(K∗)n

}
←→

 finite abelian extensions
L/K of exponent

dividing n


∆ 7→ K(

n
√
∆)

(L∗)n ∩K∗

(K∗)n
← [ L

Proof. Let ∆ ⊆ K∗/(K∗)n be a finite subgroup. Let L = K( n
√
∆) and ∆′ =

(L∗)n∩K∗

(K∗)n . Clearly ∆ ⊆ ∆′. To show equality,

L = K(
n
√
∆) ⊆ K(

n
√
∆′) ⊆ L

so K( n
√
∆) = K( n

√
∆′) so |∆| = |∆′| by the lemma. Thus equality.

Conversely let L/K be a finite abelian extension of exponent dividing n.
Let ∆ be as defined in the statement. Then K( n

√
∆) ⊆ L. We aim to show

equality by showing [K( n
√
∆) : K] = [L : K]. Let G = Gal(L/K). The Kummer

pairing defines an injective group homomorphism ∆ ↪→ Hom(G,µn). Claim this
is surjective.

Proof. Let χ : G → µn be a group homomorphism. From basic Galois theory
distinct automorphisms are linearly independent so exists a ∈ L such that y =∑
τ∈G χ(τ)

−1τ(a) 6= 0. Let σ ∈ G. Then

σ(y) =
∑
τ∈G

χ(τ)−1στ(a) =
∑
τ∈G

χ(σ−1τ)−1τ(a) = χ(σ)y

Thus σ(yn) = yn for all σ ∈ G so x = yn ∈ K∗ ∩ (L∗)n. Then x ∈ ∆ and
χ : σ 7→ σ(y)

y = σ n
√
x

n
√
x
.

Now
[K(

n
√
∆) : K] = |∆| = |Hom(G,µn)| = |G| = [L : K].

Proposition 11.3. Let K be a number field and µn ⊆ K. Let S be a finite
set of primes of K. There are only finitely many extensions L/K such that

1. L/K is abelian of exponent dividing n.

2. L/K is unramified at all primes p /∈ S.

Proof. By 11.2 L = K( n
√
∆) for some finite subgroup ∆ ⊆ K∗/(K∗)n. Let p be

a prime of K with
pOL = Pe1

1 · · ·Per
r

for distinct primes Pi of L. If x ∈ K∗ represents an element of ∆ then

nvPi
( n
√
x) = vPi

(x) = eivp(x).

If p /∈ S then ei = 1 for all i so vp(x) = 0 (mod n). Thus ∆ ⊆ K(S, n) where

K(S, n) = {x ∈ K∗/(K∗)n : vp(x) = 0 (mod n) for all p /∈ S}.
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11 Kummer theory

Lemma 11.4. K(S, n) is finite.

Proof. The map

K(S, n)→ (Z/nZ)|S|

x 7→ (vp(x) (mod n))p∈S

is a group homomorphism with kernel K(∅, n) so suffice to prove the lemma
with S = ∅. If x ∈ K∗ represents an element of K(∅, n) then (x) = an for some
ideal a. There is an exact sequence

0 O∗
K/(O∗

K)n K(∅, n) ClK [n] 0

From algebraic number theory |ClK | <∞ and O∗
K is finitely generated (Dirich-

let’s unit theorem) so K(∅, n) is finite.
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12 Elliptic curves over number fields II
Mordell-Weil Theorem

Lemma 12.1. Let E/K be an elliptic curve and L/K be a finite Galois
extension. Then the map E(K)

nE(K) →
E(L)
nE(L) has finite kernel.

Proof. For each element in the kernel we pick a coset representative P ∈ E(K)
and then exists Q ∈ E(L) such that nQ = P . Gal(L/K) is finite and E[n]
is finite so there are only finitely many possibilities for the map Gal(L/K) →
E[n], σ 7→ σQ − Q. But if P1, P2 ∈ E(K) with Pi = nQi and σQ1 − Q2 =
σQ2−Q2 for all σ ∈ Gal(L/K) then σ(Q1−Q2) = Q2−Q2 so Q1−Q2 ∈ E(K),
and hence P1 − P2 ∈ nE(K).

Theorem 12.2 (weak Mordell-Weil theorem). Let K be a number field and
E/K an elliptic curve. Then for n ≥ 2, | E(K)

nE(K) | <∞.

Proof. By lemma wlog we can assume µn ⊆ K and E[n] ⊆ E(K). Let S =
{p | n} ∪ {primes of bad reduction for E}. For each P ∈ E(K) the extension
K([n]−1P )/K is unramified outside S by theorem 9.9.

Let Q ∈ [n]−1P . Since E[n] ⊆ E(K), K(Q) = K([n]−1P ) is a Galois
extension of K. Define

Gal(K(Q)/K)→ E[n] ∼= (Z/nZ)2

σ 7→ σQ−Q

Check this is a homomorphism:

στQ−Q = σ(τQ−Q) + σQ−Q = (τQ−Q) + (σQ−Q).

It is injective as σQ = Q implies σ fixes K(Q) so σ = 1. Thus K(Q)/K is an
abelian extension of exponent dividing n, unramified outside S. By 11.3 only
there are only finitely many possibilities for K(Q). Let L be the composite of
all such extensions (i.e. for all P ∈ E(K)). Then L/K is finite (and Galois) and
E(K)
nE(K) →

E(L)
nE(L) is the zero map. Apply lemma 12.1.

Remark. If K = R or C or [K : Qp] <∞ then | E(K)
nE(K) | <∞, yet E(K) is not

finitely generated (even uncountable).

Fact. Let E/K be a elliptic curve over a number field. Then there exists a
quadratic form, called canonical height ĥ : E(K)→ R≥0 with the property that
for any B ≥ 0, {P ∈ E(K) : ĥ(P ) ≤ B} is finite.

Theorem 12.3 (Mordell-Weil). Let K be a number field and E/K an
elliptic curve. Then E(K) is a finitely generated abelian group.

Proof. Fix an integer n ≥ 2. Weak Mordell-Weil implies that | E(K)
nE(K) | <

∞. Pick coset representatives P1, . . . , Pm. Let Σ = {P ∈ E(K) : ĥ(P ) ≤
max1≤i≤n ĥ(Pi)}. Claim Σ generates E(K).
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12 Elliptic curves over number fields II

Proof. Suppose not. Then exists P ∈ E(K) \ {subgroup generated by Σ} of
minimal height. Then P = Pi + nQ for some 1 ≤ i ≤ m where Q ∈ E(K) \
{subgroup generated by Σ}. Then ĥ(P ) ≤ ĥ(Q). Then

4ĥ(P ) ≤ 4ĥ(Q)

≤ n2(̂Q)

= ĥ(nQ)

= ĥ(P − P2)

≤ ĥ(P − Pi) + ĥ(P + Pi)

= 2ĥ(P ) + 2ĥ(P1) parallalogram law

so ĥ(P ) ∈ ĥ(Pi) so P ∈ Σ, contradiction.

Σ is finite so done.
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13 Heights
For simplicity take K = Q. Write P ∈ Pn(Q) as P = (a1 : · · · : an) where
a0, . . . , an ∈ Z, gcd(a0, . . . , an) = 1.

Definition (height). We define the height of P to be

H(P ) = max
0≤i≤n

|ai|.

Lemma 13.1. Let f1, f2 ∈ Q[X1, X2] be coprime homogeneous polynomials
of degree d. Let

F : P1 → P1

(x1 : x2) 7→ (f1(x1, x2) : f2(x1, x2))

Then exists c1, c2 > 0 such that

c1H(P )d ≤ H(F (P )) ≤ c2H(P )d

for all P ∈ P1(Q).

Proof. wlog f1, f2 ∈ Z[X1, X2]. We prove the upper bound first. Write P = (a :
b) where a, b ∈ Z coprime. Then

H(F (P )) ≤ max(|f1(a, b)|, |f2(a, b)|) ≤ c2 max(|a|d, |b|d) = c2H(P )d

where c2 is the maximum of the sum of absolute values of coefficients of f1 and
f2.

For the lower bound, we claim exists gij ∈ Z[X1, X2] homogeneous of degree
d− 1 and κ ∈ Z>0 such that

2∑
j=1

gijfj = κX2d−1
i . (†)

Proof. Indeed running Euclid’s algorihm on f1(X, 1) and f2(X, 1) gives r, s ∈
Q[X] such that

r(X)f1(X, 1) + s(X)f2(X, 1) = 1.

Homgogenising and clearing denominators gives (†) for i = 2 Likewise for i =
1.

Write P = (a1 : a2) where a1, a2 ∈ Z coprime. Then (†) gives
w∑
j=1

gij(ai, a2)fj(a1, a2) = κa2d−1
i .

Thus gcd(f1(a1, a2), f2(a1, a2)) divides gcd(κa2d−1
1 , κa2d−1

2 ) = κ. But also

|κa2d−1
i | ≤ max

j=1,2
|fj(ai, a2)|︸ ︷︷ ︸

≤κH(F (P ))

2∑
j=1

|gij(a1, a2)|︸ ︷︷ ︸
≤γiH(P )d−1

.

47
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where γi is the sum over j of absolute values of coefficients of gij . Thus

|ai|2d−1 ≤ γiH(F (P ))H(P )d−1

for i = 1, 2. Thus

H(P )2d−1 ≤ max(γ1, γ2)H(F (P ))H(P )d−1.

Take c1 = max(γ1, γ2)
−1.

Notation. For x ∈ Q we define H(x) = H((x : 1)) = max(|u|, |v|) where x = u
v

for u, v ∈ Z coprime.

Let E/Q be an elliptic curve of the form y2 = x3 + ax+ b.

Definition (height). The height is defined as the map

H : E(Q)→ R≥1

P 7→

{
H(x) P = (x, y)

1 P = 0E

We define the logarithmic height to be h = logH.

Lemma 13.2. Let E,E′ be elliptic curves over Q, φ : E → E′ an isogeny
defined over Q. Then exists c > 0 such that

|h(φ(P ))− deg(φ)h(P )| ≤ c

for all P ∈ E(Q). Note that c depends on E,E′ and φ.

Proof. Recall (Lemma 5.4) we have commutative diagram

E E′

P1 P1

φ

x x

ξ

and deg φ = deg ξ = d, say. Lemma 13.1 says that there exist c1, c2 > 0 such
that

c1H(P )d ≤ H(φ(P )) ≤ c2H(P )d

for all P ∈ E(Q). Taking logs gives

|h(φ(P ))− dh(P )| ≤ max(log c2,− log c1).

Example. Let φ = [2] : E → E. Then exists c > 0 such that

|h(2P )− 4h(P )| < c

for all P ∈ E(Q).
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Definition (canonical height). The canonical height is

ĥ(P ) = lim
n→∞

1

4n
h(2nP ).

Check convergence: for m ≥ n,

| 1
4m

h(2mP )− 1

4n
h(2nP )| ≤

m−1∑
r=n

| 1

4r+1
h(2r+1P )− 1

4r
h(2rP )|

≤
m−1∑
r=n

1

4r+1
|h(2r+1P )− 4h(2rP )|

≤ c
∞∑
r=n

1

4r+1

→ 0

as n→∞ so the sequence is Cauchy so ĥ(P ) exists.

Lemma 13.3. |h(P )− ĥ(P )| is bounded for P ∈ E(Q).

Proof. Put n = 0 in the above calcultion to give

| 1
4m

h(2mP )− h(P )| ≤ c

3
.

Take limit as m→∞.

Corollary 13.4. For any B > 0, #{P ∈ E(Q) : ĥ(P ) < B} <∞.

Proof. By the lemma ĥ(P ) is bounded implies h(P ) is bounded, so only finitely
many possibilities for x. Each x leaves at most 2 choices for y.

Lemma 13.5. Suppose φ : E → E′ is an isogeny defined over Q. Then

ĥ(φP ) = (deg φ)ĥ(P )

for all P ∈ E(Q).

Proof. By lemma 13.2 exists c > 0 such that

|h(φP )− (deg φ)h(P )| < c

for all P ∈ E(Q). Replace P by 2nP , divide by 4n and take limit as n→∞.

Remark.

1. The case deg φ = 1 shows that ĥ, unlike h, is independent of the choice of
Weierstrass equation.

2. Taking φ = [n] : E → E gives ĥ(nP ) = n2ĥ(P ) for all P ∈ E(Q).

(Going to prove ĥ is a quadratic form by showing that it satisfies the paral-
lelogram law).
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Lemma 13.6. Let E/Q be an ellitpic curve. There exists c > 0 such that

H(P +Q)H(P −Q) ≤ cH(P )2H(Q)2

for all P,Q, P +Q,P −Q 6= 0E.

Proof. Let E have Weierstrass equation y2 = x3+ax+b, a, b ∈ Z. Let P,Q, P +
Q,P −Q has x coordinates x1, . . . , x4. By lemma 5.8 there exist W0,W1,W2 ∈
Z[x1, x2] of degree ≤ 2 in x1 and degree ≤ 2 in x2 such that

(1 : x3 + x4 : x3x4) = (W0 :W1 :W2)

and W0 = (x1 − x2)2. Write xi = ri
si

where ri, si ∈ Z coprime. Then we get

(s3s4 : r3s4 + r4s3 : r3r4) = ((r1s2 − r2s1)2 : · · · ).

So

H(P +Q)H(P −Q) = max(|r3|, |s3|)max(|r4|, |s4|)
≤ 2max(|s3s4|, |r3s4 + r4s3|, |r3r4|)
≤ 2max(|r1s2 − r2s1|, · · · )
≤ cH(P )2H(Q)2

where c depends on E but not on P and Q.

Theorem 13.7. ĥ : E(Q)→ R≥0 is a quadratic form.

Proof. Lemma 13.6 and |h(2P )− 4h(P )| bounded implies that

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) + c

for P,Q ∈ E(Q) (there are several special cases to check). Replacing P,Q by
2nP, 2nQ, dividing by 4n and taking limit n→∞ gives

ĥ(P +Q) + ĥ(P −Q) ≤ 2ĥ(P ) + 2ĥ(Q).

Replacing P,Q by P + Q,P − Q and writing ĥ(2P ) = 4ĥ(P ) gives the reverse
inequality. Thus ĥ satisfies the parallelogram law and ĥ is a quadratic form.

Remark. For K a number field, P = (a0 : · · · : an) ∈ Pn(K), define

H(P ) =
∏
v

max
0≤i≤n

|ai|v

where the product is over all places v and the absolute values |·|v are normalised
such that

∏
v |λ|v = 1 for all λ ∈ K∗. Then all results in this section generalises

to K.
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14 Dual isogenies & Weil pairing

14 Dual isogenies & Weil pairing
Let K be a perfect field and E/K an elliptic field.

Proposition 14.1. Let Φ ⊆ E(K) be a finite Gal(K/K)-stable subgroup.
Then exists an elliptic curve E′/K and a separable isogeny φ : E → E′

defined over K with kernel Φ such that for every ψ : E → E′′ with ψ ⊆ kerψ
factors uniquely via φ.

E E′′

E′

φ

ψ

∃!

Proof. Omitted. See Silverman Chapter 3.

Proposition 14.2. Let φ : E → E′ be an isogeny of degree n. Then exists a
unique isogeny φ̂ : E′ → E such that φ̂φ = [n]. φ̂ is called the dual isogeny.

Proof. Case φ separable: | kerφ| = n so kerφ ⊆ E[n]. Apply proposition 14.1
with ψ = [n]. The φ inseparble case is omitted (see Silverman. Suffice to check
for Frobenius map). For uniqueness if ψ1φ = ψ2φ = [n] then (ψ1 − ψ2)φ = 0 so
ψ1 = ψ2 since φ nonconstant is surjective.

Remark.
1. The relation of elliptic curves being isogenous is an equivalence relation.

2. If deg φ = n then deg[n] = n2 implies that deg φ̂ = deg φ and [̂n] = [n].

3. φφ̂φ = φ[n]E = [n]E′φ implies that φφ̂ = [n]E′ . In particular ˆ̂
φ = φ.

4. If E ψ−→ E′ φ−→ E′′ then φ̂ψ = ψ̂φ̂.

5. If φ ∈ End(E) then by example sheet 2

φ2 − (trφ)φ+ deg φ = 0

so
([trφ]− φ)︸ ︷︷ ︸

φ̂

φ = [deg φ]

and hence trφ = φ+ φ̂.

Lemma 14.3. If φ, ψ ∈ Hom(E,E′) then φ̂+ ψ = φ̂+ ψ̂.

Proof. If E = E′ then this follows from tr(φ + ψ) = trφ + trψ. In general let
α : E′ → E be any isogeny (e.g. φ̂). Thus

̂(αφ+ αψ) = α̂φ+ α̂ψ

so
φ̂+ ψα̂ = (φ̂+ ψ̂)α̂.
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14 Dual isogenies & Weil pairing

Remark. In Silverman’s book, he proves Lemma 14.3 first and uses this to
show deg : Hom(E,E′)→ Z is a quadratic form.

Definition (sum). The sum map is defined as

sum : Div(E)→ E∑
nP (P ) 7→

∑
nPP

where LHS is a formal sum and RHS is sum using group law.

Recall that we have a group isomorphism E → Pic0(E), P 7→ [P − 0]. Thus
sumD 7→ [D] for all D ∈ Div0(E).

Lemma 14.4. Let D ∈ Div(E). Then D ∼ 0 if and only if degD = 0 and
sumD = 0.

Let φ : E → E′ be an isogeny of degree n with dual isogeny φ̂ : E′ → E.
Assume charK - n. We define the Weil pairing eφ : E[φ] × E′[φ̂] → µn. Let
T ∈ E′[φ̂]. Then nT = 0 so exists f ∈ K(E′) such that div(f) = n(T ) − n(0).
Pick T0 ∈ E(K) with φ(T0) = T . Then

φ∗(T )− φ∗(0) =
∑

P∈E[φ]

(P + T0)−
∑

P∈E[φ]

(P )

has sum nT0 = φ̂φT0 = φ̂T = 0 so exists g ∈ K(E) such that div(g) = φ∗(T )−
φ∗(0). Now div(φ∗f) = φ∗(div f) = n(φ∗(T ) − φ∗(0)) = div(gn) so φ∗f = cgn

for some c ∈ K∗. Recaling f , wlog c = 1, i.e. φ∗f = gn.
If S ∈ E[φ] then τ∗S(div g) = div g so div(τ∗Sg) = div g so τ∗Sg = ζg for some

ζ ∈ K∗, i.e. ζ = g(X+S)
g(X) independent of choice of X ∈ E(K). Now

ζn =
g(X + S)n

g(X)n
=
f(φ(X + S))

f(φ(X))
= 1

since S ∈ E[φ]. Thus ζ ∈ µn. Finally we define

eφ(S, T ) =
g(X + S)

g(X)

for any X ∈ E.

Proposition 14.5. eφ is bliniear and nondegenerate.

Proof. Linearity in first argument:

eφ(S1 + S2, T ) =
g(X + S1 + S2)

g(X + S2)

g(X + S2)

g(X)
= eφ(S1, T )eφ(S2, T ).

Linearity in second argument: let T1, T2 ∈ E′[φ̂]. We can find fi, gi such
that div(fi) = n(Ti)− n(0), φ∗fi = gnn . There exists h ∈ K(E′) such that

div(h) = (T1) + (T2)− (T1 + T2)− (0).
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14 Dual isogenies & Weil pairing

Then put f = f1f2
hn , g = g1g2

φ∗(h) . Check

div(f) = n(T1 + T2)− n(0)

φ∗f =
φ∗f1φ

∗f2
(φ∗h)n

=

(
g1g2
φ∗(h)

)n
= gn

so

eφ(S, T1 + T2) =
g(X + S)

g(X)

=
g1(X + S)

g1(X)

g2(X + S)

g2(X)

h(φ(X))

h(φ(X + S))︸ ︷︷ ︸
=1

= eφ(S, T1)eφ(S, T2)

eφ is nondegenerate: fix T ∈ E′[φ̂]. Suppose eφ(S, T ) = 1 for all S ∈ E[φ],
so τ∗Sg = g for all S ∈ E[φ]. Thus

K(E)

φ∗K(E′)

is a Galois extension with group E[φ], with S ∈ E[φ] acting as τ∗S . Thus g = φ∗h
for some h ∈ K(E′)∗. Thus φ∗f = gn = φ∗hn so f = hn. Thus div h = (T )−(0)
so T = 0E .

For the other direction, we’ve show E′[φ̂] ↪→ Hom(E[φ], µn). It is an isomor-
phism by counting.

Remark.

1. If E,E′ and φ are defined over K then eφ is Galois equivariant, i.e.
eφ(σS, σT ) = σ(eφ(S, T )).

2. Taking φ = [n] : E → E (so φ̂ = [n]) gives en : E[n] × E[n] → µn2 = µn
since en is bilinear.

Corollary 14.6. If E[n] ⊆ E(K) then µn ⊆ K.

Proof. We claim exists S, T ∈ E[n] such that en(S, T ) is a primitive nth root
of unit, say ζn. We pick T ∈ E[n] of order n. The group homomorphism
E[n] → µn, S 7→ en(S, T ) has image µd for some d | n. Then en(S, dT ) = 1 for
all S ∈ E[n]. By nondegeneracy dT = 0 so d = n, proving the claim. To show
ζn ∈ K we use Galois equivariance: for all σ ∈ Gal(K/K),

σ(ζn)σ(en(S, T )) = en(σS, σT ) = en(S, T ) = ζn

so ζn ∈ K.

Example. There does not exist E/Q with E(Q)tor ∼= (Z/3Z)2.

Remark. In fact en is alternating, i.e. en(T, T ) = 1 for all T ∈ E[n]. By
expanding en(S + T, S + T ), we have en alternating: en(S, T ) = en(T, S)

−1.
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15 Galois cohomology

15 Galois cohomology
Let G be a group and A a G-module, i.e. an abelian group with an action of
G via group homomorphism (in other words a Z[G]-module). We begin with a
very practical definition of group cohomology (or more precisely, H0 and H1).

Definition (group cohomology). We define

H0(G,A) = AG = {a ∈ A : σ(a) = a for all σ ∈ G}.

We define the first cochains, cocyles and coboundaries

C1(G,A) = {G→ A}
Z1(G,A) = {(aσ)σ∈G : aστ = σ(aτ ) + aσ}
B1(G,A) = {(σb− b)σ∈G : b ∈ A}

Then we define
H1(G,A) =

Z1(G,A)

B1(G,A)
.

Remark. If G acts trivially on A then H1(G,A) = Hom(G,A).

We quote some elementary results from homological algebra:

Theorem 15.1. A short exact sequence of G-modules

0 A B C 0
φ ψ

gives rise to a long exact sequence of abelian groups

0 AG BG CG H1(G,A) H1(G,B) H1(G,C)

Proof. Omitted. We note the definition of δ : CG → H1(G,A): given c ∈ CG,
exists b ∈ B such that ψ(b) = c. Then

τ(σb− b) = σc− c = 0

for all σ ∈ G so σb−b = φ(aσ) for some aσ ∈ A. Can show (aσ)σ∈G ∈ Z1(G,A).
We define δ(c) to be the class of (aσ)σ∈G in H1(G,A).

Theorem 15.2. Let A be a G-module and H E G be a normal subgroup.
Then there is an inflation-restriction exact sequence

0 H1(G/H,AH) H1(G,A) H1(H,A)inf res

Proof. Omitted.

Let K be a perfect field. Then Gal(K/K) is a topological group with basis
of open subgroups Gal(K/L) for [L : K] < ∞. If G = Gal(K/K) we modify
the definition of H1(G,A) by insisting
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15 Galois cohomology

1. the stabiliser of each a ∈ A is an open subgroup of G,

2. all cochains G→ A are continuous, where A is given the discrete topology.

Then

H1(Gal(K/K), A) = lim−→
L/K finite Galois

H1(Gal(L/K), AGal(K/L)).

Here the direct limit is with respect to inflation maps.

Theorem 15.3 (Hilbert theorem 90). Suppose L/K is a finite Galois ex-
tension. Then

H1(Gal(L/K), L∗) = 0.

Proof. Let G = Gal(L/K) and (aσ)σ∈G ∈ Z1(G,L∗). Distinct automorphisms
are linearly independent so exists y such that

x =
∑
τ∈G

a−1
τ τ(y) 6= 0.

For σ ∈ G,

σ(x) =
∑
τ∈G

σ(aτ )
−1στ(y) = aσ

∑
τ∈G

a−1
στ στ(y) = aσx.

Thus aσ = σ(x)
x so (aσ)σ∈G ∈ B1(G,L∗). Thus H1(G,L∗) = 0.

Corollary 15.4. H1(Gal(K/K),K
∗
) = 0.

As an application, assume charK - n. There is a short exact sequence of
Gal(K/K)-modules

0 µn K
∗

K
∗

0x7→xn

so we have a long exact sequence

K∗ K∗ H1(Gal(K/K), µn) H1(Gal(K/K),K
∗
) = 0x 7→xn

so
H1(Gal(K/K), µn) ∼= K∗/(K∗)n.

Now let’s revisit Kummer theory. If µn ⊆ K then

Hom(Gal(K/K), µn) ∼= K∗/(K∗)n.

Finite subgroups of LHS are of the form Hom(Gal(L/K), µn) for L/K a finite
abelian extension of exponent dividing n. Thus we get another proof of Theorem
11.2.

Remark. Every continuous group homomorphism χ : Gal(K/K) → µn fac-
torises uniquely as

Gal(K/K) � Gal(L/K) ↪→ µn

for L the fixed field of kerχ.
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15 Galois cohomology

Notation. Since we are dealing with Galois cohomology, write H1(K,−) for
H1(Gal(K/K),−).

Let φ : E → E′ be an isogeny of elliptic curves over K. There is a short
exact sequence of Gal(K/K)-modules

0 E[φ] E E′ 0
φ

which induces a long exact seqeucne

E(K) E′(K) H1(K,E[φ]) H1(K,E) H1(K,E′)
φ δ φ∗

from which we get a short exact sequence

0 E′(K)
φE(K) H1(K,E[φ]) H1(K,E)[φ∗] 0

Now takeK a number field. For each place v ofK we fix an embeddingK ⊆ Kv.
Then Gal(KV /KV ) ⊆ Gal(K/K). We get a commutative diagram

0 E′(K)
φE(K) H1(K,E[φ]) H1(K,E)[φ∗] 0

0 E′(Kv)
φE(Kv)

H1(Kv, E[φ]) H1(Kv, E)[φ∗] 0

resV resV

Definition (Selmer group). The φ-Selmer group S(φ)(E/K) is the kernel
of the dotted arrow in

0 E′(K)
φE(K) H1(K,E[φ]) H1(K,E)[φ∗] 0

0
∏
v
E′(Kv)
φE(Kv)

∏
vH

1(Kv, E[φ])
∏
vH

1(Kv, E)[φ∗] 0

resV resV

δv

so

S(φ)(E/K) = ker(H1(K,E[φ])→
∏
v

H1(Kv, E))

= {α ∈ H1(K,E[φ]) : resV (α) ∈ im(δv) for all v}

Definition (Tate-Shafarevich group). The Tate-Shafarevich group is

X(E/K) = ker(H1(K,E)→
∏
v

H1(Kv, E)).

We get a short exact sequence

0 E′(K)
φE(K) S(θ)(E/K) (E/K)[φ∗] 0

In particular we can specialise to φ = [n]. Rearranging our proof of weak
Mordell-Weil gives
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15 Galois cohomology

Theorem 15.5. S(n)(E/K) is finite.

Proof. For L/K a finite Galois extension there is an exact sequence

0 H1(Gal(L/K), E(L)[n]) H1(K,E[n]) H1(L,E[n])

S(n)(E/K) S(n)(E/K)

inf

⊇

res

⊇

As H1(Gal(L/K), E(L)[n]) is finite, we we extend our field K and assume
E[n] ⊆ E(K) and hence µn ⊆ K. Thus E[n] ∼= µn × µn as Galois modules.
Thus

H1(K,E[n]) ∼= H1(K,µn)×H1(K,µn) ∼= K∗/(K∗)n ×K∗/(K∗)n.

Let S be the union of primes of bad reduction for E, v such that v | n and
the infinite places. Note S is a finite set of places.

Definition. The subgroup of H1(K,A) unramified outside S is

H1(K,A;S) = ker(H1(K,A)→
∏
v/∈S

H1(Knr
v , A)).

There is a commutative diagram with exact rows

E(Kv) E(Kv) H1(Kv, E[n])

E(Knr
v ) E(Knr

v ) H1(Knr
v , E[n])

×n δv

res

×n 0

Multiplication by n on the second row is surjective for all v /∈ S (Thm 9.9).
Thus

S(n)(E/K) = {α ∈ H1(K,E[n]) : resv(α) ∈ im(δv) for all v}
⊆ H1(K,E[n];S)

∼= H1(K,µn;S)×H1(K,µn;S)

(?using the fact that res ◦ δv = 0) But

H1(K,µn;S) = ker(K∗/(K∗)n →
∏
v/∈S

(Knr
v )∗/(Knr

v )∗n) = K(S, n)

which is finite.

Remark. S(n)(E/K) is finite and effectively computable. It is conjectured that
|(E/K)| <∞. This would imply that rankE(K) is effctively computable.
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16 Descent by cyclic isogeny

16 Descent by cyclic isogeny
Let E,E′ be elliptic curves over a number field K. Let φ : E → E′ be an isogeny
of degree n. Suppose E′[φ̂] ∼= Z/nZ is generated by T ∈ E′(K). Then E[φ] ∼=
µn, S 7→ eφ(S, T ) as a Gal(K/K)-module. We have a short exact sequence of
Gal(K/K)-modules

0 µn E E′ 0
φ

giving rise to long exact sequence

E(K) E′(K) H1(K,µn) H1(K,E)

K∗/(K∗)n

δ

α
∼=

Theorem 16.1. Let f ∈ K(E′) and g ∈ K(E) with div(f) = n(T ) − n(0)
and φ∗f = gn. Then α(P ) = f(P ) (mod (K∗)n) for all P ∈ E′(K)\{0, T}.

Proof. Let Q ∈ φ−1P . Then δ(P ) ∈ H1(K,µn) is represented by the cocyle
σ 7→ σQ−Q ∈ E[φ] ∼= µn. For any X ∈ E not a zero or pole of g,

eφ(σQ−Q,T ) =
g(σQ−Q+X)

g(X)
=
g(σQ)

g(Q)
=
σ(g(Q))

g(Q)
=
σ( n

√
f(P ))

n
√
f(P )

But

H1(K,µn) ∼= K∗/(K∗)n

σ 7→ σ n
√
x

n
√
x
← [ x

so α(P ) = f(P ) (mod (K∗)n).

Descent by 2-isogeny Let E : y2 = x(x2+ax+ b), E′ : y2 = x(x2+a′x+ b′)
where b(a2 − 4b) 6= 0, a′ = −2a, b′ = a2 − 4b. Define

φ : E → E′

(x, y) 7→ ((
y

x
)2,

y(x2 − b)
x2

)

φ̂ : E′ → E

(x, y) 7→ (
1

4
(
y

x
)2,

y(x2 − b′)
8x2

)

Check they are dual to each other. Have E[φ] = {0, T}, E′[φ̂] = {0, T ′} where
T = (0, 0) ∈ E(K), E′ = (0, 0) ∈ E′(K).
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16 Descent by cyclic isogeny

Proposition 16.2. There is a group homomorphism

E′(K)→ K∗/(K∗)2

(x, y) 7→

{
x (mod (K∗)2) x 6= 0

b′ (mod (K∗)2) x = 0

with kernel φ(E(K)).

Proof. Either apply theorem 16.1 with f = x ∈ K(E′), g = y
x ∈ K(E), or direct

calculation, see example sheet 4.

Let

αE :
E(K)

φ̂(E′(K))
↪→ K∗/(K∗)2, αE′ :

E′(K)

φ(E(K))
↪→ K∗/(K∗)2.

Lemma 16.3. 2rankE(K) = 1
4 | imαE | · | imαE′ |.

Proof. Since φ̂φ = [2]E there is an exact sequence

0 E(K)[φ] E(K)[2] E′(K)[φ̂]

E′(K)
φE(K)

E(K)
2E(K)

E(K)

Ê′(K)
0

φ

φ̂

so the alternative product of group orders is 1. Thus

|E(K)/2E(K)|
E(K)[2]

=
| imαE | · | imαE′ |

4
.

By Mordell-Weil E(K) ∼= ∆×Zr where ∆ is finite and r is the rank of E(K).
Thus

E(K)

2E(K)
∼=

∆

2∆
× (Z/2Z)r, E(K)[2] ∼= ∆[2].

Since ∆ is finite, ∆
2∆ and ∆[2] have the same order. The result thus follows.

Lemma 16.4. If K is a number field and a, b ∈ OK then imαE ⊆ K(S, 2)
where S = {primes dividing b}.

Proof. Must show if x, y ∈ K, y2 = x(x2 + ax+ b) and vp(b) = 0 then vp(x) is
even. If vp(x) < 0 then by lemma 9.1 vp(x) = −2r, vp(y) = −3r for some r ≥ 1.
If vp(x) > 0 then vp(x2 + ax+ b) = 0 so vp(x) = vp(y

2) = 2vp(y).

Lemma 16.5. If b1b2 = b then b1(K
∗)2 ∈ imαE if and only if

w2 = b1u
4 + au2v2 + b2v

4

is soluble for u, v, w ∈ K not all zero.
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16 Descent by cyclic isogeny

Proof. If b1 ∈ (K∗)2 or b2 ∈ (K∗)2 then both conditions are satisfied so may
assume b1, b2 /∈ (K∗)2. b1(K∗)2 ∈ imαE if and only if exists (x, y) ∈ E(K) such
that x = b1t

2 for some t ∈ K∗, so

y2 = b1t
2((b1t

2)2 + ab1t
2 + b)

so
(
y

b1t
)2 = b1t

4 + at2 + b2

so have solution (u, v, w) = (t, 1, wb1t ).
Conversely if (u, v, w) is a solution then uv 6= 0. Check (b1(

u
v )

2, b1
uw
v3 ) ∈

E(K).

Now take K = Q.

Example. E : y2 = x3−x. By lemma 16.4, imαE ⊆ 〈−1〉 ⊆ Q∗/(Q∗)2. But we
know (0, 0) ∈ imαE , equality. E′ : y2 = x3 + 4x, imαE′ ⊆ 〈−1, 2〉 ⊆ Q∗/(Q∗)2.
Need to check

b1 = 1,w2 = −u4 − 4u4

b1 = 2,w2 = 2u4 + 2v4

b1 = −2,w2 = −2u4 − 2v4

The first and third are not soluble over R. The second has solution (u, v, w) =
(1, 1, 2) so imαE′ = 〈2〉 ⊆ Q∗/(Q∗)2. Thus rankE(Q) = 0 so 1 is not a congurent
number.

Example. E : y2 = x3 + px where p is a prime, p = 5 (mod 8). b1 = −1, w2 =
−u4 − pv4 is insoluble over R so imαE = 〈p〉 ⊆ Q∗/(Q∗)2. E′ : y2 = x3 − 4px
so imαE′ ⊆ 〈−1, 2, p〉 ⊆ Q∗/(Q∗)2. Note αE′(T ′) = (−4p)(Q∗)2 = (−p)(Q∗)2

so only need to consider

b1 = 2,w2 = 2u4 − 2pv4

b1 = −2,w2 = −2u4 + 2pv4

b1 = p,w2 = pu4 − 4v4

Suppose equation 1 is soluble. wlog u, v, w ∈ Z, gcd(u, v) = 1. If p | u then p | w
and then p | v, absurd. Thus w2 = 2u4 6= 0 (mod p) so

(
2
p

)
= 1, contradicting

p = 5 (mod 8).
Likewise 2 has no solution since

(−2
p

)
= −1.

To recall, for E : y2 = x(x2 + ax + b), φ : E → E′ a 2-isogeny. w2 =
b1u

4 + au2v2 + b2v
4(∗). Have a short exact sequence

0 E′(Q)
φE(Q) S(φ)(E/Q) X(E/Q)[φ∗] 0

Q∗/(Q∗)2

αE′

imαE′ = {b1(Q∗)2 : ∗ is soluble over Q}
⊆ S(φ)(E/Q) = {b1(Q∗)2 : ∗ is soluble over R and over Qp for all p}
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16 Descent by cyclic isogeny

Fact. (Uses example sheet 3 question 9 and Hensel’s lemma) If a, b1, b2 ∈ Z
and p - 2b(a2 − 4b) then ∗ is solubleover Qp.

Example (example 2 continued). E : y2 = x3 + px, p = 5 (mod 8), w2 =
pu4 − 4v4†. E(Q) has rank 0 if (†) is insoluble over Q and rank 1 if soluble. By
the fact we only have to look at p- and 2-adics.

• † is soluble over Qp since
(−1
p

)
= 1 so −1 ∈ (Z∗

p)
2 (by Hensel’s lemma).

• soluble over Q2 since p− 4 = 1 (mod 8) so p− 4 ∈ (Z∗
2)

2.

• soluble over R since √p ∈ R.

We can try to spot solutions:

p u v w
5 1 1 1
13 1 1 3
29 1 1 5
37 5 3 151
53 1 1 7

Conjecture: rank(E(Q)) = 1 for all primes p = 5 (mod 8).

Example (Lind). E : y2 = x3 + 17x. imαE = 〈17〉 ⊆ Q∗/(Q∗)2. E′ : y2 =
x3 − 68x. imαE′ ⊆ 〈−1, 2, 17〉 ⊆ Q∗/(Q∗)2. Consider b1 = 2. w2 = 2u4 − 34v4.
Replace w by 2w and divide through by 2 to get C : 2w2 = u4 − 17v4. Denote
by

C(K) = {(u, v, w) ∈ K3 \ {0} satisfying C}/ ∼
where (u, v, w) ∼ (λu, λv, λ2w) for all λ ∈ K∗.

C(Q2) 6= ∅ as 17 ∈ (Z∗
2)

4. C(Q17) 6= ∅ since 2 ∈ (Z∗
17)

2. C(R) 6= ∅ since√
2 ∈ R. Thus C(Qv) 6= ∅ for all places of Q. However it has no solution over

Q: suppose (u, v, w) ∈ C(Q). wlog u, v ∈ Z, gcd(u, v) = 1, then w ∈ Z and
can assume w > 0. If 17 | w then 17 | u and then 17 | v, absurd. So if p | w
then p 6= 17 and

(
17
p

)
= 1 so by quadratic reciprocity

(
p
17

)
=

(
17
2

)
= 1 (for p

odd. For p = 2 have
(
2
17

)
= 1. Thus

(
w
17

)
= 1. But 2w2 = u4 (mod 17) so

2 ∈ (F∗
17)

4 = {±1,±4}, absurd. Thus C(Q) = ∅. C is a counterexample to the
Hasse principle. It representes a non-trivial element in X(E/Q).

Birch Swinnerton-Dyer conjecture Let E/Q be an elliptic curve.

Definition (l-function). The L-function of E is L(E, s) =
∏
p Lp(E, s)

where

Lp(E, s) =


(1− app−s + p1−2s)−1 good reduction
(1− p−s)−1 split multiplicative reduction
(1 + p−s)−1 nonsplit multiplicative reduction
1 additive reduction

where #(Fp) = p+ 1− ap.

Hasse’s theorem says that |ap| < s
√
p so L(E, s) converges for Re s > 3

2 .
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16 Descent by cyclic isogeny

Theorem 16.6 (Wiles, Breuil, Conrad, Diamond, Taylor). L(E, s) is the L-
function of a weight 2 modular form and hence has an analytic continuation
to all of C (and a functional equation relating L(E, s) and L(E, 2− s)).

Conjecture (weak Birch Swinnerton-Dyer conjecutre). ords=1 L(E, s) = rankE(Q).

Assuming weak BSD and let r = ords=1 L(E, s) be the analytic rank, we
have

Conjecture (strong Birch Swinnerton-Dyer conjecutre).

lim
s→1

1

(s− 1)r
L(E, s) =

ΩE |X(E/Q)|RegE(Q)
∏
P cp

|E(Q)tors|2

where

• cp = [E(Qp) : E0(Qp)] = tamagawa number of E/Qp, if E(Q)
E(Q)tors

=

〈P1, . . . , Pr〉 then
RegE(Q) = det([Pi, Pj ])ij

where [P,Q] = ĥ(P +Q)− ĥ(P )− ĥ(Q).

• ΩE =
∫
E(R)

dx
|2y+a1x+a3| where ai is the coefficient of a globally minimal

Weierstrass equation for E.

Best result so far:

Theorem 16.7 (Kolvragin). If ords=1 L(E, s) = 0 or 1 then weak BSD is
trus and |X(E/Q)| <∞.
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L-function, 61
j-invariant, 11
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61

canonical height, 45, 49

divisor, 7
effective, 7
linearly equivalent, 13

dual isogeny, 51

elliptic curve, 10
ellptic curve, 3

formal group, 30
Frobenius endomorphism, 25

good reduction, 39
group cohomology, 54

Hasse’s theorem, 25
height, 47, 48
Hensel’s lemma, 28
Hilbert theorem 90, 55

inflation-restriciton exact sequence,
54

invariant differential, 23

isogeny, 17

kernel of reduction, 35
Kummer pairing, 42

maximal unramified extension, 37
Mordell-Weil theorem, 45

Picard group, 13

ramification index, 8
rational plane curve, 5
reduction, 35

Selmer group, 56
sum, 52

Tate-Shafarevich group, 56
torsion subgroup, 15

uniformiser, 6
unramified extension, 37

Weierstrass equation, 8
integral, 33
minimal, 33

Weierstrass function, 3
Weil pairing, 52

zeta function, 26
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