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1 Smooth Manifolds

1 Smooth Manifolds

1.1 Definitions

Definition (Smooth). Let 𝑈 ⊆ R𝑛 be an open set and 𝑓 ∶ 𝑈 → R𝑚. 𝑓 is
said to be smooth if

𝜕 |𝛼|𝑓
𝜕𝑥𝛼

exists for all multi-indices 𝛼.

Notation. A multi-index 𝛼 = (𝛼1, … , 𝛼𝑛) is a tuple of non-negative integers
and |𝛼| = ∑𝑛

𝑖=1 𝛼𝑖.

Definition (Smooth). Let 𝑋 ⊆ R𝑛 be a subset. 𝑓 ∶ 𝑋 → R𝑚 is smooth if
for all 𝑥 ∈ 𝑋, there exists 𝑈 ⊆ R𝑛, 𝑥 ∈ 𝑈 such that there exists smooth

̃𝑓 ∶ 𝑈 → R𝑚 extending 𝑓|𝑋∩𝑈. i.e. the following diagram commutes

𝑈 R𝑚

𝑈 ∩ 𝑋

̃𝑓

𝜄
𝑓

Remark.

1. This is a local property.

2. 𝑋 is a topological space with subspace topology induced from R𝑛. 𝑓 is
smooth implies that 𝑓 is continuous.

Definition (Diffeomorphism). Let 𝑋 ⊆ R𝑛 and 𝑌 ⊆ R𝑚. A map 𝑓 ∶ 𝑋 → 𝑌
is a diffeomorphism if 𝑓 is smooth and bijective and its inverse 𝑓−1 ∶ 𝑌 → 𝑋
is also smooth.

Remark.

1. Diffeomorphism implies homeomorphism (with repsect to the subspace
topology).

2. Diffeomorphism is an equivalence relation.

Definition (Manifold). A 𝑘-dimensional manifold is a set 𝑋 ⊆ R𝑁 such that
for all 𝑥 ∈ 𝑋 there exists 𝑉 ⊆ 𝑋 open, 𝑥 ∈ 𝑉 such that 𝑉 is diffeomorphic to
an open subset 𝑈 ⊆ R𝑘, i.e. 𝑋 is locally diffeomorphic to R𝑘.

Remark. The diffeomorphism 𝜑 ∶ 𝑈 → 𝑉 is called a local parameterisation
and its inverse 𝜑−1 ∶ 𝑉 → 𝑈 is called coordinate charts. More specifically, let
𝑥𝑖 ∶ R𝑘 → R be the projection of the 𝑖th coordinate and we have local coordinate
𝑥𝑖 ∘ 𝜑−1 ∶ 𝑉 → R. However, sometimes we abuse the notation and just write
𝑥𝑖 ∶ 𝑉 → R for the above map.
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1 Smooth Manifolds

Notation. Write dim𝑋 = 𝑘 if 𝑋 is a 𝑘-dimensional manifold.

Example.

1. R𝑁 is an 𝑁-dim manifold. For example, 𝜑 ∶ R𝑁 id
→ R𝑁.

2. An open subset 𝑉 ⊆ R𝑁 is an 𝑁-dim manifold, for example by taking 𝜑
to be the restriction id |𝑉.

3. In general, if 𝑋 is a manifold and 𝑉 ⊆ 𝑋 is an open subset then 𝑉 is also
a manifold.

4. The 𝑛-sphere, 𝑆𝑛 ⊆ R𝑛+1 = {𝑥2
1 + ⋯ + 𝑥2

𝑛+1 = 1} is an 𝑛-dim manifold.
Suppose 𝑥 ∈ 𝑆𝑛 lies in the upper half hyperplane define by 𝑥𝑛+1 > 0. Take

𝑉 = 𝑆𝑛 ∩ {𝑥𝑛+1 > 0}, 𝑈 = {(𝑥1, … , 𝑥𝑛) ∶
𝑛

∑
𝑖=1

𝑥2
𝑖 < 1} = 𝐵(𝟎, 1) ⊆ R𝑛

and define

𝜑 ∶ 𝑈 → 𝑉

(𝑥1, … , 𝑥𝑛) ↦ (𝑥1, … , 𝑥𝑛, +√1 − (𝑥2
1 + ⋯ + 𝑥2

𝑛))

Let’s do a reality check: the map consists of algebraic operations so is
smooth. It is easy to check that the image lies in 𝑉. Its inverese is the
projection onto the first 𝑛 coordinates, which is the restriction of a smooth
function so also smooth.
Similarly, if 𝑥 lies in {𝑥𝑛+1 < 0}, change + to − in the last coordinate of
𝜑 will do. This accounts for “most” points, with the exception of those
on the equator. However, there is nothing special about 𝑥𝑛+1 so we may
repeat for the other coordinates. As

𝑆𝑛 =
𝑛+1
⋃
𝑖=1

((𝑆𝑛 ∩ {𝑥𝑖 > 0}) ∪ (𝑆𝑛 ∩ {𝑥𝑖 < 0}))

(which in English says that at least one coordinate is non-zero), we have
covered 𝑆𝑛 so done.

Exercise. Suppose 𝑋 ⊆ R𝑛 and 𝑌 ⊆ R𝑚 are manifolds. Show that 𝑋 × 𝑌 ⊆
R𝑛 × R𝑚 = R𝑛+𝑚 is a manifold of dimension dim𝑋 + dim𝑌.

Definition (Submanifold). Let 𝑋 ⊆ R𝑁 be a manifold. A manifold 𝑌 ⊆ R𝑁

such that 𝑌 ⊆ 𝑋 is a submanifold of 𝑋.

Remark. By definition, all manifolds are submanifolds of R𝑁 for some 𝑁.

Note that we have yet shown that the dimension of a manifold is well-defined
but we will do so in a while. Assuming so, we define
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1 Smooth Manifolds

Definition (Codimension). The codimension of 𝑌 in 𝑋 is

codim𝑋(𝑌 ) = dim𝑋 − dim𝑌 .

1.2 Tangent space

Definition (Differential). Let 𝑈 ⊆ R𝑛 and 𝑓 ∶ 𝑈 → R𝑚 be a smooth map.
The differential of 𝑓 at 𝑥 ∈ 𝑈, 𝑑𝑓𝑥 is a linear map

𝑑𝑓𝑥 ∶ R𝑛 → R𝑚

ℎ ↦ lim
𝑡→0

𝑓(𝑥 + 𝑡ℎ) − 𝑓(𝑥)
𝑡

Explicitly, 𝑑𝑓𝑥 is represented by the matrix

( 𝜕𝑓
𝜕𝑥𝑗

) where 𝑓 = ⎛⎜
⎝

𝑓1
⋮

𝑓𝑚

⎞⎟
⎠

.

It then follows that

𝑑𝑓𝑥(ℎ) = ( 𝜕𝑓
𝜕𝑥𝑗

) ⎛⎜
⎝

ℎ1
⋮

ℎ𝑛

⎞⎟
⎠

.

Proposition 1.1 (Chain rule). Let 𝑓 ∶ 𝑈 → 𝑉 , 𝑔 ∶ 𝑉 → R𝑝 be smooth maps
where 𝑈 ⊆ R𝑛, 𝑉 ⊆ R𝑚. Let 𝑥 ∈ 𝑈 and 𝑓(𝑥) ∈ 𝑉. Then

𝑑(𝑔 ∘ 𝑓)𝑥 = 𝑑𝑔𝑓(𝑥) ∘ 𝑑𝑓𝑥.

The aim of this section is to define differentials of maps between manifolds.
Before that we have to find where differential lives. Certainly in R𝑛 it is a linear
map living in a linear space.

Let 𝑋 ⊆ R𝑁 be a 𝑘-dim manifold and 𝑥 ∈ 𝑋. Let 𝜑 be a local parameteri-
sation around 𝑥. Wlog assume 𝜑−1(𝑥) = 0. Note that 𝜑 is defined on an open
subset of R𝑘 so we can do calculus on it (this is false for 𝜑−1 as 𝑉 ⊆ R𝑁 may
not be open). We can define

𝑑𝜑0 ∶ R𝑘 → R𝑁.

Definition (Tangent space). The tangent space of 𝑋 at 𝑥, denoted 𝑇𝑥𝑋, is
𝑑𝜑0(R𝑘), a subspace of R𝑁.

For this to be a good definition, we need to show that it is independent of 𝜑
and dim 𝑑𝜑0(R𝑘) = 𝑘.

Suppose 𝜑 ∶ 𝑈 → 𝑉 and 𝜑̃ ∶ ̃𝑈 → ̃𝑉 are parameterisations around 𝑥, again
assumming wlog 𝜑(0) = 𝑥 = 𝜑̃(0). By taking intersection we can assume 𝑉 = ̃𝑉.
Write

𝜑 = 𝜑̃ ∘ (𝜑̃−1 ∘ 𝜑)⏟
𝑈→𝑈̃

.
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1 Smooth Manifolds

The term in the parenthesis is a map between open subsets of R𝑘 so we can do
calculus on it. By chain rule

𝑑𝜑0 = 𝑑𝜑̃0 ∘ 𝑑(𝜑̃−1 ∘ 𝜑)0.

Note that 𝜑−1 ∘ 𝜑̃ is the inverse of 𝜑̃−1 ∘ 𝜑 so by applying chain rule to id, we get

id = 𝑑(𝜑−1 ∘ 𝜑̃)0 ∘ 𝑑(𝜑̃−1 ∘ 𝜑)0

so both of them are invertible. Thus

𝑑𝜑0(R𝑘) = 𝑑𝜑̃0(R𝑘).

Next we want to show dim 𝑑𝜑0(R𝑘) = 𝑘. Certainly linear algebra tells us
that it is at most 𝑘. By definition there exists a smooth 𝜓 ∶ 𝑊 → R𝑘, where
𝑊 ⊆ R𝑁 is an open subset containing 𝑥 such that

𝜓|𝑋∩𝑊 = 𝜑−1.

Assume wlog 𝑉 ⊆ 𝑋 ∩ 𝑊. Then

id𝑈 = 𝜓 ∘ 𝜑

so by chain rule
id = 𝑑𝜓𝑥 ∘ 𝑑𝜑0.

Thus 𝑑𝜑0(R𝑘) is 𝑘-dimensional.

Remark. The functions 𝜑−1 ∘ 𝜑̃ are called transition functions and will appear
later in the course.

Corollary 1.2. The dimension of a manifold is well-defined.

Exercise. If 𝑋 ⊆ R𝑁 is a manifold and 𝑌 is a submanifold of 𝑋 then

𝑇𝑦𝑌 ≤ 𝑇𝑦𝑋

for all 𝑦 ∈ 𝑌. In particular codim𝑋(𝑌 ) ≥ 0.

Example.

1. 𝑇𝑥R𝑁 = R𝑁.

2. Let 𝑋 be an open subset of R𝑁. Then 𝑇𝑥𝑋 = R𝑁.

3. Let
𝑋 = {(𝑥1, 𝑥2, … , 𝑥𝑘, 0, … , 0)} ⊆ R𝑁

which can be seen as the image of the embedding 𝜑 ∶ R𝑘 → R𝑁. This is
a 𝑘-dim manifold. This is a linear map so 𝑑𝜑𝑥 = 𝜑. Thus 𝑇𝑥𝑋 = 𝑋. In
general, this holds if 𝜑 is an injective linear map.
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1 Smooth Manifolds

4. Let 𝑆𝑛 ⊆ R𝑛+1. Given a point 𝑥 ∈ 𝑆𝑛 with 𝑥𝑛+1 > 0, use the parameteri-
sation

𝜑 ∶ 𝐵(𝟎, 1) → R𝑛+1

(𝑥1, … , 𝑥𝑛) ↦ (𝑥1, … , 𝑥𝑛, +√1 − 𝑥2
1 − ⋯ − 𝑥2

𝑛)

Then
im 𝑑𝜑(𝑥1,…,𝑥𝑛) = span{ 𝜕𝜑

𝜕𝑥1
, … , 𝜕𝜑

𝜕𝑥𝑛
} .

We have
𝜕𝜑
𝜕𝑥𝑖

= (0, … , 1, … , 0, − 𝑥𝑖
𝑥𝑛+1

)

and we can verify that for all 𝑖,

𝜕𝜑
𝜕𝑥𝑖

⋅ (𝑥1, … , 𝑥𝑛, 𝑥𝑛+1) = 0

so 𝑇𝑥𝑆𝑛 is {𝑣 ∶ 𝑣 ⋅ 𝑥 = 0} ⊆ R𝑛+1.

Now we go on to define differential of maps between manifolds. Let 𝑓 ∶ 𝑋 → 𝑌
be a smooth map of manifolds where 𝑋 ⊆ R𝑛, 𝑌 ⊆ R𝑚. Let 𝜑 ∶ 𝑈 → 𝑉 and
𝜑̃ ∶ ̃𝑈 → ̃𝑉 be local parameterisations around 𝑥 and 𝑓(𝑥), where 𝑈 ⊆ R𝑘, ̃𝑈 ⊆ Rℓ.
wlog we assume 𝜑(0) = 𝑥, 𝜑̃(0) = 𝑓(𝑥). We also assume 𝑓(𝑉 ) ⊆ ̃𝑉.

We can thus define a map 𝜑̃−1 ∘ 𝑓 ∘ 𝜑 ∶ 𝑈 → ̃𝑈 and do calculus on it. As
𝑇𝑥𝑋 = im 𝑑𝜑0 and 𝑑𝜑0 is an injective map, we can define the inverse of its
restriction to the image, denoted by

(𝑑𝜑0)−1 ∶ 𝑇𝑥𝑋 → R𝑘.

Definition (Differential). The differential map of 𝑓 at 𝑥 ∈ 𝑋, denoted 𝑑𝑓𝑥,
is a linear map 𝑑𝑓𝑥 ∶ 𝑇𝑥𝑋 → 𝑇𝑓(𝑥)𝑌, defined as the composition

𝑑𝜑̃0 ∘ 𝑑(𝜑̃−1 ∘ 𝑓 ∘ 𝜑)0 ∘ (𝑑𝜑0)−1.

𝑇𝑥𝑋 𝑇𝑓(𝑥)𝑌

R𝑘 Rℓ

𝑑𝑓0

𝑑𝜑0

𝑑(𝜑̃−1∘𝑓∘𝜑)0

𝑑𝜑̃0

Now as everything else we defined in differential geometry, we have to check
that it is independent of parameterisation. It will be a horrible job, and one
that you would want to do only (at most) once in your lifetime.

Let 𝜓, ̃𝜓 be another pair of parameterisations. Define 𝜑 in terms of transition
maps

𝜑 = 𝜓 ∘ (𝜓−1 ∘ 𝜑).

By chain rule,
𝑑𝜑0 = 𝑑𝜓0 ∘ 𝑑(𝜓−1 ∘ 𝜑)0
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1 Smooth Manifolds

so
(𝑑𝜑0)−1 = (𝑑(𝜓−1 ∘ 𝜑)0)−1 ∘ (𝑑𝜓0)−1 = 𝑑(𝜑−1 ∘ 𝜓)0 ∘ (𝑑𝜓0)−1

where the last equality comes from applying chain rule to

(𝜑−1 ∘ 𝜓) ∘ (𝜓−1 ∘ 𝜑) = id .

Thus

𝑑𝑓𝑥 = 𝑑𝜑̃0 ∘ 𝑑(𝜑̃−1 ∘ 𝑓 ∘ 𝜑)0 ∘ (𝑑𝜑0)−1

= 𝑑𝜑̃0 ∘ 𝑑(𝜑̃−1 ∘ 𝑓 ∘ 𝜑)0 ∘ 𝑑(𝜑−1 ∘ 𝜓)0 ∘ (𝑑𝜓0)−1

= 𝑑𝜑̃0 ∘ 𝑑(𝜑̃−1 ∘ 𝑓 ∘ 𝜓)0 ∘ (𝑑𝜑0)−1

= ⋯

= 𝑑 ̃𝜓0 ∘ 𝑑( ̃𝜓−1 ∘ 𝑓 ∘ 𝜓)0 ∘ (𝑑𝜓0)−1

where the omitted lines are similar and are left as an exercise.

Proposition 1.3 (Chain rule). Let 𝑋, 𝑌 , 𝑍 be manifolds, 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶
𝑌 → 𝑍 smooth. Then for all 𝑥 ∈ 𝑋,

𝑑(𝑔 ∘ 𝑓)𝑥 = 𝑑𝑔𝑓(𝑥) ∘ 𝑑𝑓𝑥.

Proof. Tedious exercise using transition maps and chain rule on maps between
Euclidean spaces.

Theorem 1.4 (Inverse Function Theorem). Let 𝑓 ∶ 𝑋 → 𝑌 be a smooth
map between manifolds. If 𝑑𝑓𝑥 ∶ 𝑇𝑥𝑋 → 𝑇𝑓(𝑥)𝑌 is an isomorphism (which
implies that in particular dim𝑋 = dim𝑌), then 𝑓 is a local diffeomorphism.
In other words, there exists an open subset 𝑉 ⊆ 𝑋 such that 𝑓|𝑉 ∶ 𝑉 → 𝑌 is
a diffeomorphism onto its image.

Proof. This is easy using Inverse Function Theorem from analysis. Let 𝜑, 𝜑̃ be
local parameterisations around 𝑥 and 𝑓(𝑥) respectively. Then 𝑑(𝜑̃−1 ∘ 𝑓 ∘ 𝜑)0 is
surjection R𝑘 → R𝑘 so 𝜑̃−1 ∘ 𝑓 ∘ 𝜑 is a local diffeomorphism of Euclidean spaces.
Thus 𝑓 is a local diffeomorphism of manifolds.

Exercise. Suppose 𝑌 is a submanifold of 𝑋 and 𝑓 ∶ 𝑋 → 𝑍 is a smooth map
between manifolds. Then for all 𝑦 ∈ 𝑌, show

𝑑(𝑓|𝑌)𝑦 = 𝑑𝑓𝑦|𝑇𝑦𝑌.

Exercise. Let 𝑓 ∶ 𝑋 → 𝑌 , 𝑔 ∶ 𝑋 → 𝑍 be smooth maps between manifolds. We
can define map

(𝑓, 𝑔) ∶ 𝑋 → 𝑌 × 𝑍
𝑥 ↦ (𝑓(𝑥), 𝑔(𝑥))

Show that this map is smooth and for all 𝑥 ∈ 𝑋,

𝑑(𝑓, 𝑔)|𝑥 = (𝑑𝑓𝑥, 𝑑𝑔𝑥).

Thus if differential is thought as a matrix, the map to the product space has
differential made of blocks of matrices.
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1 Smooth Manifolds

1.3 Pre-image theorem
We defined manifolds in terms of charts but in reality, the pre-image theorem
actually gives the most convenient way to define a manifold. First define some
terminologies:

Definition (Critial point, critial value, regular value). Let 𝑓 ∶ 𝑋 → 𝑌 be a
smooth map between manifolds.

• A critical point of 𝑓 is a point 𝑥 such that 𝑑𝑓𝑥 ∶ 𝑇𝑥𝑋 → 𝑇𝑓(𝑥)𝑌 fails to
be surjective. We denote the set of all critical points 𝐶.

• A critical value of 𝑓 is a point 𝑦 ∈ 𝑌 such that there exists 𝑥 ∈ 𝑋
critical and 𝑓(𝑥) = 𝑦, i.e. the set of critical values is 𝑓(𝐶) ⊆ 𝑌.

• 𝑦 ∈ 𝑌 is a regular value if 𝑦 is not a critical value, i.e. 𝑦 ∈ 𝑌 \ 𝑓(𝐶).

Remark.

1. If dim𝑋 < dim𝑌 then 𝐶 = 𝑋.

2. If 𝑓−1(𝑦) = ∅, i.e. 𝑦 ∉ 𝑓(𝑋) then 𝑦 is a regular value.

Theorem 1.5 (Pre-image theorem). Let 𝑓 ∶ 𝑋 → 𝑌 be a smooth map between
manifolds. Given 𝑦 a regular value of 𝑓, 𝑓−1(𝑦) ⊆ 𝑋 is a submanifold of 𝑋
with codimension equal to the dimension of 𝑌, i.e.

dim𝑋 − dim(𝑓−1(𝑦)) = dim𝑌 .

Remark. Suppose 𝑋 is non-empty (which we may add to our definition of
manifolds). Then this theorem gives a proof that codim ≥ 0 for this particular
case.

Proof. Let 𝑥 ∈ 𝑓−1(𝑦). Suppose 𝑋, 𝑌 ⊆ R𝑁 and 𝑞 = dim𝑋 − dim𝑌. By
surjectivity and rank-nullity, dimker 𝑑𝑓𝑥 = 𝑔. It is an exercise in linear algebra
to show that there exists a linear map 𝑇 ∶ R𝑁 → R𝑞 such that ker𝑇 ∩ker 𝑑𝑓𝑥 = 0.
Now define

𝐹 ∶ 𝑋 → 𝑌 × R𝑞

𝑥 ↦ (𝑓(𝑥), 𝑇 (𝑥))

Then by the exercises above 𝐹 is smooth with differential 𝑑𝐹𝑥 = (𝑑𝑓𝑥, 𝑑𝑇𝑥) and
𝑑(𝑇 |𝑋)𝑥 = 𝑑𝑇 |𝑇𝑥𝑋 = 𝑇 |𝑇𝑥𝑋 so 𝑑𝐹𝑥 = (𝑑𝑓𝑥, 𝑇 ) which is an isomorphism. Thus
by Inverse Function Theorem 𝐹 is a diffeomorphism around 𝑥. There exists an
open neighbourhood of 𝑥 𝑉 ⊆ 𝑋 such that

𝐹|𝑉 ∶ 𝑉 → 𝑓(𝑉 ) × 𝑇 (𝑉 )⏟
=𝑈⊆R𝑞

is a diffeomorphism. Then

𝜑 = (𝐹 |𝑉)−1|{𝑦}×𝑈 ∶ 𝑈 → 𝑉

is a local parameterisation of 𝑓−1(𝑦).
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1 Smooth Manifolds

Corollary 1.6. Suppose dim𝑋 = dim𝑌 and 𝑦 is a regular value of some
𝑓 ∶ 𝑋 → 𝑌. Then 𝑓−1(𝑦) is a manifold of dimension 0.

If 𝑍 ⊆ R𝑁 is a manifold of dimension 0, then it is a collection of discrete
points, i.e. for each 𝑧 ∈ 𝑍, there exists an open neighbourhood of 𝑧 whose
intersection with 𝑍 is {𝑧}. Thus if 𝑋 is in addition compact, then 𝑓−1(𝑦) is a
finite set of points.

Theorem 1.7 (Stack of records theorem). Under the above assumptions,
there exist open neighbourhoods 𝑊𝑖 of 𝑥𝑖’s such that

𝑓−1 (
𝑛

⋂
𝑖=1

𝑓(𝑊𝑖) \ 𝑓(𝑋 \
𝑛

⋃
𝑖=1

𝑊𝑖))

is a disjoint union of open neighbourhoods of 𝑥𝑖’s and the restriction of 𝑓 on
each of which is a diffeomorphism.

Given a regular value 𝑦, 𝑇𝑥𝑓−1(𝑦) = ker 𝑑𝑓𝑥. See example sheet 1.

Example.

1. Let 𝑆𝑛 ⊆ R𝑛+1 and

𝑓 ∶ 𝑆𝑛 → R
(𝑥1, … , 𝑥𝑛+1) ↦ 𝑥2

1 + ⋯ + 𝑥2
𝑛+1

which is smooth. We have

𝑑𝑓 = (2𝑥1, … , 2𝑥𝑛+1)

which is surjective everywhere on 𝑆𝑛. Thus by pre-image theorem 𝑓−1(1) ⊆
R𝑛+1 is a manifold of dimension 1, which is precisely 𝑆𝑛.

2. Let 𝑂(𝑛) be the set of 𝑛 × 𝑛 orthogonal matrices, i.e. matrices 𝐴 such
that 𝐴𝐴𝑇 = 𝐼. 𝑂(𝑛) can be seen as a subset of ℳ𝑛(R) = R𝑛2 . Claim that
𝑂(𝑛) is a manifold of dimension 𝑛(𝑛−1)

2 .
Let 𝑆(𝑛) ⊆ ℳ𝑛(R) be the subset of symmetric matrices. This is a subspace
of R𝑛2 so clearly a submanifold of dimension 𝑛(𝑛+1)

2 . Consider that map

𝑓 ∶ ℳ𝑛 → 𝑆(𝑛)
𝐴 ↦ 𝐴𝐴𝑇

which is a smooth map. As 𝑓−1(𝐼) = 𝑂(𝑛), if 𝐼 is a regular value of 𝑓 then
𝑂(𝑛) is a manifold of dimension 𝑛(𝑛−1)

2 .

𝑑𝑓𝐴(𝐻) = lim
𝑠→0

(𝐴 + 𝑠𝐻)(𝐴 + 𝑠𝐻)𝑇 − 𝐴𝐴𝑇

𝑠
= 𝐴𝐻𝑇 + 𝐻𝐴𝑇

Given 𝐶 ∈ 𝑆(𝑛), 𝐻 = 𝐶𝐴
2 satisfies 𝑑𝑓𝐴(𝐻) = 𝐶 so 𝑑𝑓𝐴 is surjective.

9



1 Smooth Manifolds

Remark. In addition to being a manifold, 𝑂(𝑛) is a group under matrix multi-
plication. The group operations are smooth. We call it a Lie group. In this case,
objects that preserve geometric objects (i.e. transformations) are themselves
geometric objects.

It is also worthing pointing out that 𝑂(𝑛) is not connected, as seen from the
continuous map det ∶ 𝑂(𝑛) → {±1}. The connected component of identity is
called special orthogonal group

𝑆𝑂(𝑛) = {𝐴 ∈ 𝑂(𝑛) ∶ det𝐴 = 1}.

Definition. A set 𝑆 ⊆ R𝑛 is said to be measure 0 if for all 𝜀 > 0 there exists a
countable collection of cubes 𝐶𝑚 such that 𝑆 ⊆ ⋃ 𝐶𝑚 and ∑ volume𝐶𝑚 < 𝜀.

Definition. Let 𝑋 be an 𝑛-dim manfiold and 𝑆 ⊆ 𝑋. 𝑆 has measure 0 if for
all local parameterisations 𝜑 ∶ 𝑈 → 𝑉 ⊆ 𝑋, 𝜑−1(𝑉 ∩ 𝑆) ⊆ R𝑛 is of measure
0.

This is well-defined since we can show any manifold can be parameterised by
a chart of countably many parameterisations and the countable union of measure
0 subsets in R𝑛 has measure 0.

Remark.

1. An open subset 𝑉 ⊆ 𝑋 is not of measure 0.

2. Suppose 𝑌 ⊆ 𝑋 is a submanifold of 𝑋 and dim𝑌 < dim𝑌. Then 𝑌 is of
measure 0 in 𝑋.

Theorem 1.8 (Sard’s Theorem). Let 𝑓 ∶ 𝑋 → 𝑌 be a smooth map between
manifolds. Then the set of critical values of 𝑓 is of measure 0 in 𝑌.

Corollary 1.9. Regular values are dense.

1.4 Transversality
Suppose 𝑓 ∶ 𝑋 → 𝑌 is a smooth map between manifolds and 𝑍 ⊆ 𝑌 is a
submanifold.

Definition (Transversality). 𝑓 is transversal to 𝑍, denoted 𝑓 𝑍, if for all
𝑥 ∈ 𝑓−1(𝑍),

im 𝑑𝑓𝑥 + 𝑇𝑓(𝑥)𝑍 = 𝑇𝑓(𝑥)𝑌 .

Remark.

1. If 𝑓(𝑋) ∩ 𝑍 = ∅ then 𝑓 is vacuously transversal to 𝑍.

2. This is a generalisation of regular value: if 𝑍 = {𝑦} then 𝑓 𝑍 if and only if
𝑦 is a regular value of 𝑓 since the tangent space of a dimension 0 manifold
is 0.

10



1 Smooth Manifolds

Example. Let 𝑋 = R, 𝑌 = R2, 𝑓(𝑡) = (0, 𝑡) and 𝑍 ⊆ 𝑌 is the 𝑥-axis. Then
𝑑𝑓0 = (0

1) and 𝑇(𝑤,0)𝑍 = span{(𝑤
0)} so Im 𝑑𝑓0 + 𝑇(𝑤,0)𝑍 = R2 so 𝑓 𝑍.

Example. Let 𝑓(𝑡) = (𝑡, 𝑡2). Then 𝑑𝑓0 = (1
0) so

Im 𝑑𝑓0 + 𝑇(𝑤,0)𝑍 ≠ R2

so 𝑓 is not transversal to 𝑍.

The corresponding generalisation of pre-image theorem is

Theorem 1.10 (Transversality theorem). Suppose 𝑓 ∶ 𝑋 → 𝑌 is a smooth
map between manifolds and 𝑍 ⊆ 𝑌 is a submanifold. If 𝑓 𝑍 then 𝑓−1(𝑍) ⊆ 𝑋
is a submanifold of 𝑋 with codimension equal to codim𝑌(𝑍).

Proof. It is enough to show that for all 𝑥 ∈ 𝑍, there exists 𝑉 ⊆ 𝑍 open such
that 𝑓−1(𝑉 ) is a submanifold of 𝑋, i.e. we can work locally to deduce global
result. This is because if {𝑉𝑖}𝑖∈𝐼 is a cover of 𝑍 then

𝑓−1(𝑍) = ⋃
𝑖∈𝐼

𝑓−1(𝑉𝑖).

Given 𝑥 ∈ 𝑍, let codim𝑌 𝑍 = 𝑘. Claim that there exist 𝑉 ⊆ 𝑍 open containing
𝑥: there exists ̃𝑉 ⊆ 𝑌 open such that

𝑉 = 𝑍 ∩ ̃𝑉 =

⎧{{
⎨{{⎩

ℎ1 = 0
ℎ2 = 0
⋮
ℎ𝑘 = 0

where 𝑘𝑖 ∶ ̃𝑉 → R and moreover 𝑍 ∩ ̃𝑉 = ℎ−1(0) and 0 is a regular value of ℎ.
This is basically saying that a submanifold of codimension 𝑘 can be expressed as
the pre-image of 0 where 0 is a regular value. This is left as an exercise.

Now we prove the theorem. wlog assume 𝑍 = 𝑍 ∩ ̃𝑉. Consider ℎ∘𝑓 ∶ 𝑋 → R𝑘.
Its differential is

𝑑(ℎ ∘ 𝑓)𝑥 = 𝑑ℎ𝑓(𝑥) ∘ 𝑑𝑓𝑥.

Claim that 0 is a regular value of ℎ ∘ 𝑓: 𝑥 ∈ (ℎ ∘ 𝑓)−1(0) if and only if 𝑥 ∈ 𝑓−1(𝑍).
Recall that 𝑇𝑦𝑍 = ker 𝑑ℎ𝑦 (see example sheet). From transversality we know

Im 𝑑𝑓𝑥 + 𝑇𝑓(𝑥)𝑍 = 𝑇𝑓(𝑥)𝑌

so
Im 𝑑𝑓𝑥 + ker 𝑑ℎ𝑓(𝑥) = 𝑇𝑓(𝑥)𝑌 .

Apply 𝑑ℎ𝑓(𝑥) to both sides, we get

Im 𝑑ℎ𝑓(𝑥) ∘ 𝑑𝑓𝑥 = Im 𝑑ℎ𝑓(𝑥) = R𝑘

where the last equality is by surjectivity.
Therefore (ℎ ∘ 𝑓)−1(0) ⊆ 𝑋 is a submanifold of codimension 𝑘. So does

𝑓−1(𝑍).

11



1 Smooth Manifolds

Consider the special case where 𝑋 and 𝑍 are both submanifolds of 𝑌, i.e.
𝑓 = 𝜄 ∶ 𝑋 → 𝑌. Then 𝜄 𝑍 if and only if

Im 𝑑𝜄𝑥 + 𝑇𝜄(𝑥)𝑍 = 𝑇𝜄(𝑥)𝑌

which can be rewritten as

𝑇𝑥𝑋 + 𝑇𝑥𝑍 = 𝑇𝑥𝑌 .

In this case write 𝑋 𝑍 (which is clearly a symmetric relation).

Example. If 𝑓 𝑍, it is not necessarily the case that 𝑓(𝑋) 𝑍. Consider
𝑋 = R, 𝑌 = R2, 𝑓(𝑡) = (0, 𝑡2) and 𝑍 ⊆ 𝑌 is the 𝑥-axis. Then 𝑓−1(𝑍) ∩ 𝑋 is a
submanifold of 𝑋 of dimension 0.

Corollary 1.11. If 𝜄−1(𝑍) ⊆ 𝑋, then 𝑋 ∩ 𝑍 is a submanifold of 𝑌 with
codimension

codim𝑌(𝑋 ∩ 𝑍) = codim𝑌 𝑋 + codim𝑌 𝑍.

1.5 Manifolds with boundary
Notation. H𝑛 = {(𝑥1, … , 𝑥𝑛) ∶ 𝑥𝑖 ≥ 0} ⊆ R𝑛.

Definition (Manifold with boundary). 𝑋 ⊆ R𝑛 is an 𝑛-dimensional manifold
with boundary if for all 𝑥 ∈ 𝑋 there exists 𝑉 ⊆ 𝑋 open, 𝑈 ⊆ H𝑛 open and
𝜑 ∶ 𝑈 → 𝑉 a diffeomorphism.

It is possible that 𝑈 is also open in R𝑛.

Definition (Boundary, interior). The boundary of 𝑋, denoted 𝜕𝑋, is defined
to be

𝜕𝑋 = {𝑥 ∶ ∃𝜑 as above such that 𝑥 = 𝜑(𝑥1, … , 𝑥𝑛−1, 0)}.

Equivalently, 𝑥 ∈ 𝜑(𝑈 ∩ 𝜕H𝑛) where 𝜕H𝑛 = {(𝑥1, … , 𝑥𝑛−1, 0)}.
The interior of 𝑋, denoted Int𝑋, is defined to be 𝑋 \ 𝜕𝑋.

Remark.

1. The above definition is consistent, i.e. independent of parameterisation: if
𝑥 ∈ 𝜑(𝑈 ∩ 𝜕𝐻𝑛) for some 𝜑 then it holds for all 𝜑 such that 𝑥 ∈ Im𝜑.

2. H𝑛 is an 𝑛-dimensional manifold with boundary.

3. Boundary of manifolds is not the same as topological boundary, defined to
be the set difference between the closure and the interior.

4. For any manifold with boundary 𝑋, 𝜕𝑋 and Int𝑋 are manifolds without
boundary of dimension dim𝑋 − 1 and dim𝑋 respectively. This can be
seen by restricting image of 𝜑 to 𝜕H and IntH respectively.

Example.
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1. The closed unit ball 𝐵𝑛 ⊆ R𝑛 is a manifold with bounday, whose boundary
is 𝜕𝐵𝑛 = 𝑆𝑛−1.

2. Any manifold is a manifold with boundary (without boundary).

Exercise (Classification of 1-dim connected manifolds with boundary). Show
that any 1-dim connected manifolds is up to diffeomorphism one of

𝑋 𝜕𝑋 Compactness
𝑆1 ∅ Yes

(0, 1) ∅ No
[0, 1) {0} No
[0, 1] {0, 1} Yes

Table 1: 1-dim manifolds

Lemma 1.12. Let 𝑋 be an 𝑛-dim manifold (without boundary) and 𝑓 ∶ 𝑋 →
R smooth. Suppose 0 is a regular value of 𝑓. Then {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≥ 0} ⊆ 𝑋
is a submanifold with boundary whose boundary is {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) = 0}.

Proof. Immediate from pre-image theorem. Suppose 𝑥 ∈ 𝑋 such that 𝑓(𝑥) > 0
then 𝑥 ∈ 𝑓−1((0, ∞) which is open in 𝑋. If 𝑓(𝑥) = 0, just proceed as in pre-image
theorem and consider (𝐹 |𝑈)−1 ∶ 𝐼 × 𝑇 (𝑈) → 𝑈 restricted to 𝐼 ∩ {𝑡 ≥ 0}.

Example. Let

𝑓 ∶ R𝑛 → R

(𝑥1, … , 𝑥𝑛) ↦ 1 −
𝑛

∑
𝑖=1

𝑥2
𝑖

Then 𝐵𝑛 = 𝑓−1((0, ∞)) is a manifold with boundary.

Note that with the definition of tangent space as before, for all 𝑥 ∈ 𝑋 (even
those on the bounday), we have

dim 𝑑𝑇𝑥𝑋 = dim𝑋.

Also for 𝑥 ∈ 𝜕𝑋,
𝑇𝑥𝜕𝑋 ≤ 𝑇𝑥𝑋.

Next up is an extension of pre-image theorem

Theorem 1.13. Let 𝑋 be a manifold with boundary and 𝑓 ∶ 𝑋 → 𝑌 be
a smooth map betwween manifolds. Suppose 𝑦 ∈ 𝑌 is a regular value of 𝑓
and 𝑓|𝜕𝑋, then 𝑓−1(𝑦) is a submanifold with boundary of 𝑋, with boundary
𝜕𝑓−1(𝑦) = 𝑓−1(𝑦) ∩ 𝜕𝑋.

In this case dim𝑋 > dim𝑌.

13
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Proof. Note that if 𝑥 ∈ 𝑓−1 ∩ Int𝑋 we can apply pre-image theorem. Thus
assume 𝑥 ∈ 𝑓−1(𝑦) ∩ 𝜕𝑋. As an open set in H𝑛 with non-empty intersection
with its boundary is diffeomorphic to H𝑛, assume wlog 𝑋 = H𝑛 and similarly
𝑌 = R𝑚, where dim𝑋 = 𝑛, dim𝑌 = 𝑚.

Given such an 𝑥, there exists 𝑈 open in R𝑛 containing 𝑥 such that there
exists 𝐹 ∶ 𝑈 → R𝑚 smooth such that 𝐹|𝑈∩H𝑛 = 𝑓|𝑈. 𝑦 is a regular value of 𝑓 so
𝑑𝑓𝑥 is surjective. For 𝑈 small enough, 𝑑𝑓𝑧 surjective for all 𝑧 ∈ 𝑈 ∩ H𝑛. Then
𝑑𝐹𝑧 is surjective for all 𝑧 ∈ 𝑈. Then 𝑦 is a regular value of 𝑈.

We want 𝑓−1(𝑦) ∩ 𝑈 to be a manifold with boundary. Claim that the set
equal to 𝐹 −1 ∩ H𝑛. 𝐹 −1(𝑦) is a manifold by pre-image theorem. Introduce
projection map

𝜋 ∶ R𝑛 → R
(𝑥1, … , 𝑥𝑛) ↦ 𝑥𝑛

Then 𝐹 −1(𝑦) ∩ H𝑛 = 𝐹 −1(𝑦){𝑥 ∶ 𝜋(𝑥) ≥ 0} = {𝑥 ∶ (𝜋|𝑓−1(𝑦))−1(𝑥) ≥ 0}. All we
need to do is to show 0 is a regular value of the map (𝜋|𝑓−1(𝑦))−1. But from
example sheet

𝑑𝜋|𝑓−1(𝑦) = 𝜋|𝑇𝑥𝐹 −1(𝑥) = 𝜋|ker 𝑑𝐹𝑥
= 𝜋|ker 𝑑𝑓𝑥

.

Thus just need to show ker 𝑑𝑓𝑥 ≠ R𝑛−1 = 𝑇𝑥𝜕𝑋. Done by assumption on 𝑓.

If 𝑓 𝑍 and 𝑓|𝜕𝑋 𝑍 Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin.
Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo,
lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc
nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique
neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum
augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit
blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis.
Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan
semper.

1.6 Degree mod 2
Let 𝑋 be a manifold and 𝑌 be a manifold with boundary.

Definition (Smooth homotopy). Two smooth maps 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are said
to be smoothly homotopic if there exists a smooth map 𝐹 ∶ [0, 1] × 𝑋 → 𝑌
such that 𝐹|{0}×𝑋 = 𝑓 and 𝐹|{1}×𝑋 = 𝑔.

Notation. For 𝑡 ∈ [0, 1], 𝑓𝑡 = 𝐹|{𝑡}×𝑋. It is a restriction of a smooth map so is
smooth.

Remark. 𝑓 smoothly homeomorphic to 𝑔 is an equivalence relation. See example
sheet. This is slightly less trivial than its topological counterpart since arbitrary
reparameterisation is not necessarily smooth.
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Definition (Smooth isotopy). If 𝑓 and 𝑔 above are smoothly homotopic
diffeomorphisms and 𝑓𝑡 is a diffeomrophism for all 𝑡 ∈ [0, 1] then we say that
𝐹 is a smooth isotopy and 𝑓 and 𝑔 are smoothly isotopic.

Remark. This is also an equivalence relation.

Lemma 1.14 (Homogeneity lemma). Let 𝑋 be a connected manifold, 𝑦, 𝑧 ∈
𝑋. Then there exists a map 𝜑 ∶ 𝑋 → 𝑋 smoothly isotopic to the identity
such that 𝜑(𝑦) = 𝑧.

This says that in differential topology, there is no “particular” point in a
connected component of a manifold.

Sketch of proof. Say 𝑦 and 𝑧 isotopic if there exists such a 𝜑. This defines an
equivalence relation ∼ on 𝑋. It then suffices, by connectivity, to show that the
equivalence classes are open. Given 𝑦 ∈ 𝑋, must find an open neighbourhood 𝑉
of 𝑦 such that for all 𝑧 ∈ 𝑉, 𝑧 ∼ 𝑦.

Suffices to show given 𝑧 ∈ 𝐵(0, 1) ⊆ R𝑛, there exists 𝐹 ∶ R𝑛 × [0, 1] → R𝑛

smooth isotopy of diffeomorphisms such that 𝑓0 = idR𝑛 and 𝑓1(0) = 𝑧 with
𝑓𝑡|R𝑛\𝐵(0,2) (by considering a chart covering ???, we can pushforward the map
and extend it by identity outside the ball to ensure smoothness).

One way to do this is to use cut-off function and ODE theory.

Lemma 1.15. Let 𝑋 be a compact manifold, 𝑌 a manifold and dim𝑋 =
dim𝑌. Let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be smoothly homotopic. Let 𝑦 be a regular value of
both 𝑓 and 𝑔. Then

#𝑓−1(𝑦) = #𝑔−1(𝑦) (mod 2).

Proof. Let 𝐹 ∶ 𝑋 ×[0, 1] → 𝑌 be the smooth homotopy between 𝑓 and 𝑔. Assume
first 𝑦 is a regular value of 𝐹. Note that

𝜕(𝑋 × [0, 1]) = {0} × 𝑋 ∪ {1} × 𝑋

so denote
𝐹|𝜕(𝑋×[0,1]) = 𝑓 ∪ 𝑔.

Then by generalised pre-image theorem, 𝐹 −1(𝑦) is a manifold with boundary,
whose boundary is

𝜕𝐹 −1(𝑦) = 𝐹 −1 ∩ 𝜕(𝑋 × [0, 1]) = ( ⋃
𝑥∈𝑓−1(𝑦)

{0} × {𝑥}) ∪ ( ⋃
𝑥∈𝑔−1(𝑦)

{1} × {𝑥}) .

By assumption 𝐹 −1(𝑦) is a compact 1-dim manifold, which by classification
above is a union of disjoint circles or closed intervales. But both of these have
even number of boundary points so

#𝜕𝐹 −1(𝑦) = #𝑓−1(𝑦) + #𝑔−1(𝑦) = 0 (mod 2).

Suppose instead 𝑦 is not a regular value of 𝐹. Consider an open neighbourhood
𝑉 ⊆ 𝑌 of 𝑦. By Sard’s Theorem the sets of critical values of 𝑓, 𝑔 and 𝐹 are all
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of measure 0, so is the union of them. Then there exist ̃𝑦 ∈ 𝑉 that is a regular
value of 𝑓, 𝑔, 𝐹. But by stack of records theorem there exists 𝑉 containing 𝑦 such
that 𝑓−1(𝑉 ) = ⋃𝑛

𝑖=1 𝑈𝑖 such that 𝑓|𝑈𝑖
∶ 𝑈𝑖 → 𝑉 is a diffeomorphism.

Theorem 1.16 (Degree mod 2). If 𝑦 and 𝑧 are regular values of 𝑓 then

#𝑓−1(𝑦) = 𝑓−1(𝑧) (mod ()2).

Proof. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut,
ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed
interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.
Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia
lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Putting everyting together, under the assumptions above, we have 𝑓−1(𝑦)
does not depend on the choice of regular value 𝑦. Moreover if 𝑔 is smoothly
homotopic to 𝑓 then 𝑔−1(𝑧) = 𝑓−1(𝑦) (mod 2) for any regular value 𝑧 of 𝑔.

Definition (Degree mod 2). Suppose 𝑋 is a compact manifold, 𝑌 a connected
manifold and dim𝑋 = dim𝑌. Let 𝑓 ∶ 𝑋 → 𝑌 be a smooth map. Then the
degree mod 2 of 𝑓, denoted deg2(𝑓), is defiend to be #𝑓−1(𝑦) (mod 2) for
some regular value 𝑦 of 𝑓.

By Sard’s theorem, there exists a regular value and by theorems above, this
is well-defined. Moreover, this only depends on the homotopy class of 𝑓.

Example.

1. Let 𝑋, 𝑌 = 𝑆𝑛, 𝑓 ∶ 𝑋 → 𝑌 be a constant map. Then deg2 𝑓 = 0 since we
can find 𝑦 ∈ 𝑌 \ Im 𝑓 and #𝑓−1(𝑦) = 0.

2. Let 𝑋, 𝑌 = 𝑆𝑛, id ∶ 𝑋 → 𝑌 be the identity. Then deg2 id = 1. Thus 𝑓 and
id are not smoothly homotopic.

Corollary 1.17. There does not exist a smooth retraction 𝐵𝑛 → 𝜕𝐵𝑛 =
𝑆𝑛−1, i.e. a map 𝑓 ∶ 𝐵𝑛 → 𝜕𝐵𝑛 such that 𝑓|𝜕𝐵𝑛 ∶ 𝜕𝐵𝑛 → 𝜕𝐵𝑛 is the
identity.

Proof. Suppose not. Define

𝐹 ∶ 𝑆𝑛−1 × [0, 1] → 𝑆𝑛−1

(𝑥, 𝑡) ↦ 𝑓(𝑡𝑥)

whose smoothness is left as an exercise. Then 𝐹 is an homotopy of 𝑓 and id.
Absurd.
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Corollary 1.18 (Brouwer’s fixed point theorem). Let 𝑓 ∶ 𝐵𝑛 → 𝐵𝑛 be
smooth. Then there exists 𝑥0 ∈ 𝐵𝑛 such that 𝑓(𝑥0) = 𝑥0.

Proof. Suppose 𝑓 is smooth without fixed point. Then the ray from 𝑓(𝑥) to 𝑥
intersects 𝜕𝐵𝑛 at precisely one point, say 𝑔(𝑥). Claim that 𝑔 is smooth (left
as an exercise). If 𝑥 ∈ 𝜕𝐵𝑛 then 𝑔(𝑥) = 𝑥. Then 𝑔 is a smooth retraction.
Absurd.

Corollary 1.19 (Brouwer’s fixed point theorem). Same true with continuous
assumption.

Proof. Weierstrass approximation theorem.

1.6.1 Intersection number mod 2

Let 𝑋 be a compact manifold, 𝑌 be a manifold, 𝑍 ⊆ 𝑌 a closed subset. Suppose
𝑓 ∶ 𝑋 → 𝑌 is smooth and 𝑓 𝑍 and dim𝑋 + dim𝑍 = dim𝑌.

Definition. The intersection number mod 2 is

𝐼2(𝑓, 𝑍) = #𝑓−1(𝑍) (mod 2).

Claim that if 𝑓 and 𝑔 are smoothly homotopic and 𝑔 𝑍 then 𝐼2(𝑓, 𝑍) =
𝐼2(𝑔, 𝑍).

In the speical case 𝑋 ⊆ 𝑌, we have 𝑋 𝑍 and denote it 𝐼2(𝑋, 𝑍).

Example. Let 𝑌 be a torus. Let 𝑋 and 𝑍 be the two “perpendicular circles” on
𝑌. Then 𝐼2(𝑋, 𝑍) = 1.

It turns out we can still define intersection number without the assumption
𝑋 𝑍.

Example. Suppose dim𝑌 is even and dim𝑋 is dim 𝑌
2 . Note that 𝑋 is not

transversal to 𝑋. Let 𝑌 be the Möbius band and 𝑋 a central circle, 𝐼2(𝑋, 𝑋) = 1.

1.7 Abstract manifolds

Definition (Smooth manifold). A smooth 𝑛-dimensional manifold is a
Hausdorff, second-countable topological space 𝑋 together with a collection of
maps 𝜑 ∶ 𝑈𝛼 → 𝑉𝛼 where 𝑈𝛼 ⊆ R𝑛, 𝑉𝛼 ⊆ 𝑋, called charts, with the following
properties:

1. 𝜑𝛼 ∶ 𝑈𝛼 → 𝑉𝛼 are homeomorphisms,

2. ⋃𝛼 𝑉𝛼 = 𝑋,

3. 𝜑−1
𝛽 ∘ 𝜑𝛼|𝜑−1

𝛼 (𝑈𝛼∩𝑉𝛽) are diffeomorphisms for all 𝛼, 𝛽,

4. lastly, it is conventional to require the collection of charts to be maximal,
i.e. if {𝜑𝛼}𝛼 ∪ {𝜑̃} satisfies 1, 2, 3 then 𝜑̃ = 𝜑𝛼 for some 𝛼.
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1 Smooth Manifolds

Note that Hausdorffness and second-countability are hereditary properties.
We can now define smooth maps 𝑋 → R𝑚 and smooth maps between

manifolds, similar as before. Also compatibility condition requires us only to
check smoothness on an open cover of 𝑋.

What about differentials and tangent spaces? Since our manifold 𝑋 is no
longer sitting inside an Euclidean space, the differential of a chart is not very
meaningful. This is point where the abstract theory diverges from what we
have learned. In III Differential Geometry you will learn to do it properly using
tangent bundles.

Definition (Immersion, submersion, embedding). A smooth map 𝑓 ∶ 𝑋 → 𝑌
between manifolds is an immersion if 𝑑𝑓𝑥 is injective for all 𝑥 ∈ 𝑋, a
submersion if 𝑑𝑓𝑥 is surjective for all 𝑥 ∈ 𝑋, and an embedding if it is an
immersion and a homeomorphism onto its image.

Theorem 1.20 (Whitney embedding theorem). Let 𝑋 be a smooth manifold.
Then there exists an embedding 𝑓 ∶ 𝑋 → R2𝑛+1.

Thus the abstract formulation of manifold is not any more general than the
one we begin with.

In fact, Whitney proved the better upper bound R2𝑛, which is in fact a sharp
bound.
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2 Geometry

2 Geometry

Definition (Regular curve). Let 𝑋 be a manifold. A regular curve in 𝑋 is
a smooth immersion 𝛾 ∶ 𝐼 → 𝑋 where 𝐼 ⊆ R is an interval, i.e. 𝑑𝛾𝑡(1) ≠ 0.

Notation. We write ̇𝛾(𝑡) = 𝑑𝛾𝑡.

Exercise. Suppose 𝑋 = R3 and 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), show that ̇𝛾(𝑡) =
( ̇𝑥(𝑡), ̇𝑦(𝑡), ̇𝑧(𝑡)).

Definition (Arc-length). Let 𝛾 ∶ 𝐼 → R3 is a regular curve and 𝑡0 ∈ 𝐼. The
arc-length of 𝛾 (measured from 𝑡0) is

𝑠(𝑡) = ∫
𝑡

𝑡0

| ̇𝛾(𝑡′)|𝑑𝑡′

where | ⋅ | is the Euclidean norm.

Arc-length is invariant to reparameterisation: a reparameterisation of 𝛾 is
a map ̂𝛾( ̂𝑡) such that 𝑡 = 𝑡( ̂𝑡) is a diffeomorphism, i.e. the following diagram
commutes:

𝐼 R3

̂𝐼

𝛾

𝛾̂

Wlog suppose 𝑑𝑡
𝑑 ̂𝑡 > 0. Let 𝑡0 = 𝑡( ̂𝑡0), then

𝑠(𝑡) = ∫
𝑡

𝑡0

| ̂𝛾(𝑡′)|𝑑𝑡′ = ∫
𝑡

𝑡0

∣ 𝑑𝛾
𝑑𝑡′ ∣ 𝑑𝑡′ = ∫

̂𝑡

̂𝑡0

∣ 𝑑𝛾
𝑑 ̂𝑡′

∣ 𝑑𝑡′ = 𝑠( ̂𝑡)

Note that 𝑠′(𝑡) = | ̂𝛾(𝑡)| ≠ 0 by Fundmental Theorem of Calculus. Thus by
Inverse Function Theorem and connectivity 𝑠(𝑡) is a diffeomorphism, i.e. can be
inverted to 𝑡(𝑠). Thus we can reparameterise any regular curve by 𝑠. We will
write 𝛾(𝑠) for 𝛾(𝑡(𝑠)).

Missed a lecture
Frenet equations

⎛⎜
⎝

̇𝑡
𝑛̇
̇𝑏
⎞⎟
⎠

= ⎛⎜
⎝

0 𝑘 0
−𝑘 0 −𝜏
0 𝜏 0

⎞⎟
⎠

⎛⎜
⎝

𝑡
𝑛
𝑏
⎞⎟
⎠

The curvature 𝑘 and torsion 𝜏 is invariant under isometries.

Theorem 2.1 (Fundamental theorem of curves in R3). Given smooth func-
tion 𝑘 > 0 and 𝜏(𝑠), 𝑠 ∈ 𝐼, there exists a regular curve 𝛼 ∶ 𝐼 → R3 such that
𝑠 is the arclength, 𝑘(𝑠) is the curvature and 𝜏(𝑠) is the torision of 𝛼.

Moreover, given 𝑘 = 𝑘̃, 𝜏 = ̃𝜏, then there exists an isometry of R3 such
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that
̃𝛾 = 𝑅 ∘ 𝛾 + 𝑏.

Proof. Let 𝑏 = ̃𝛾(0) − 𝛾(0) and we can assume ̃𝛾(0) = 𝛾(0) = 0. Given two
orthonormal basis {𝑡(0), 𝑠(0), 𝑛(0)} and { ̃𝑡(0), ̃𝑠(0), 𝑛̃(0)} in the same orientation,
it is an exercise in Euclidean geometry to show that there exists an element
𝑅 ∈ SO(3) sending the first triplet to the second.

To avoid excessive notation, replace 𝛾 with 𝑅 ∘ 𝛾. Then 𝛾(𝑠) and ̃𝛾(𝑠) satisfy
the Frenet equations, which is a linear ODE, with the same initial condition.
Thus by uniqueness of solutions of ODE 𝛾 = ̃𝛾.

Geometric intuition: curvature measures the turning of the tangent, 𝑘 the
magnitude and 𝑛 measures the direction. Torsion measures the non-planiness of
a curve.

Proposition 2.2. Given a regular curve 𝛾(𝑠), 𝜏 = 0 if and only if 𝛾 lies in
a plane.

Proof. Suppose 𝜏 = 0. Then ̇𝑏 = 0 so (𝑡 ∧ 𝑛)′ = 0. Let Π be the plane spanned
by 𝑡 and 𝑛 and so Π(𝑠) = Π0 is constant.

Consider the plane 𝛾(0) + Π, claim 𝛾(𝐼) ⊆ 𝛾(0) + Π0: this is equivalent to
claiming that 𝛾(𝑠) − 𝛾(0) ∈ Π for all 𝑠. But

𝛾(𝑠) − 𝛾(0) = ∫
𝑠

0
𝛾′(𝑢)𝑑𝑢 = ∫

𝑠

0
𝑡(𝑢)𝑑𝑢 ∈ Π.

The other direction is left as an exercise.

Definition (Plane curve). A regular curve is said to be a plane curve if its
image lies in a plane Π ⊆ R3.

Wlog we will consider all plane curves as maps 𝛾 ∶ 𝐼 → R2.
For regular plane curves, there is an alternative definition of the curvature:

Definition (Signed curvature). Let 𝛾(𝑠) be a plane curve in R2 parame-
terised by arc-length 𝑠. 𝑡 = ̇𝛾(𝑠) is the tangent. Pick 𝑛(𝑠) so that 𝑡, 𝑛 has
the usual orientation (exercise: exhibit such 𝑛). Then ̇𝑡(𝑠) ⋅ 𝑡(𝑠) = 0 so define
signed curvature 𝑘(𝑠) to be such that

̇𝑡(𝑠) = 𝑘(𝑠)𝑛(𝑠)

where 𝑘(𝑠) ∈ R, i.e. not necessarily non-vanishing.

Note the subtleties in the order of terms being defined: in general regular
curves we defined 𝑘(𝑠) and 𝑛(𝑠) in terms of ̇𝑡(𝑠) but for plane curves, we fixed
𝑛(𝑠) first (using orientation of orthonormal basis) and then define 𝑘(𝑠) to be the
signed magitude of ̇𝑡(𝑠).

Exercise. Define the Frenet formulae for plane curves:

̇𝑡(𝑠) = 𝑘(𝑠)𝑛(𝑠)
𝑛̇(𝑠) = −𝑘(𝑠)𝑡(𝑠)
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2.1 Isoperimetric inequality in the plane
The is the first global result we meet in differential geometry. Let 𝛾 be a smooth
simple closed curve in R2, i.e. 𝛾 ∶ 𝑆1 → R2 is a smooth embedding. Thanks to

Theorem 2.3 (Jordan curve theorem). 𝛾(𝑆1) is the boundary of a bounded,
simply-connected open set in R2.

we let Ω be the bouned open set (alternatively assume Ω is a 2-manifold with
boundary in R2 with boundary diffeomorphic to 𝑆1).

Note. We want to define 𝛼(R) = 𝛼(𝑆1).
Let 𝛼 ∶ R → R2 be a regular curve parameterised by arc-length. Let 𝐿 be

the first 𝑠 > 0 such that 𝛼(𝐿) = 𝛼(0). Then 𝛼 be periodic with period 𝐿. 𝐿 is
the arc-length of 𝛾.

Theorem 2.4 (Isoperimetric inequality).

𝐿2 ≥ 4𝜋 area(Ω)

with equality if and only if 𝛾 is a circle.

Remark. It suffices to assume 𝛼 is 𝐶1.

Write 𝛼(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) where 𝑥(𝑠) and 𝑦(𝑠) are 𝐶1 functions. Let 𝐕 ∶
R2 → R2 be the identity and think of it as a vector field. By divergence theorem
applied to 𝐕 in Ω,

2 area(Ω) = ∫
Ω

𝛁 ⋅ 𝐕

= ∫
𝐿

0
𝐕 ⋅ (−𝑛)𝑑𝑠

≤ ∫
𝐿

0
‖𝐕(𝑠)‖𝑑𝑠

≤ (∫
𝐿

0
‖𝐕(𝑠)‖2𝑑𝑠 ∫

𝐿

0
12𝑑𝑠)

1/2

Missed a lecture

2.2 Riemannian metric
something something Riemannian metric. See printed notes.

Definition (Isometry). Let 𝑋 and 𝑌 be (Riemannian) manifolds with Rie-
mannian metrics 𝑔𝑝 and ̃𝑔𝑞 respectively. We say 𝑋 and 𝑌 are isometric if
there exists 𝑓 ∶ 𝑋 → 𝑌 smooth such that

𝑑𝑓𝑥 ∶ 𝑇𝑥𝑋 → 𝑇𝑓(𝑥)𝑌
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is an isometry of inner product spaces, i.e. for all 𝑣, 𝑤 ∈ 𝑇𝑥𝑋,

𝑔𝑥(𝑣, 𝑤) = ̃𝑔𝑓(𝑥)(𝑑𝑓𝑥(𝑣), 𝑑𝑓𝑥(𝑤)).

Furthermore 𝑑𝑓𝑥 is invertible.

Note that conventions vary. If 𝑑𝑓𝑥 is not required to be invertible then 𝑓 is
usually called an isometric embedding.

Definition (Local isometry). Two Riemannian manifolds 𝑋 and 𝑌 are locally
isometric around 𝑝 ∈ 𝑋 if there exist 𝑉 ∋ 𝑝 open in 𝑋 and 𝑊 open in 𝑌 such
that 𝑓 ∶ 𝑉 → 𝑊 is an isometry.

Question.

1. When are two surfaces 𝑋 and 𝑌 (say embedded in R3) locally isometric?
Globally isometric?

2. When is 𝑋 locally isometric to the plane? (intrinsic geometry)

3. When do 𝑋 and 𝑌 differ by a Euclidean isometry, i.e. 𝑌 = 𝑅(𝑋) + 𝑏 where
𝑅 ∈ SO(3)? (extrinsic geometry)

Let 𝑋 be a Riemannian 2-manifold. Let 𝜑 ∶ 𝑈 → 𝑉 be a local parameterisation.
Define

𝐸(𝑢, 𝑣) = 𝑔(𝜑𝑢, 𝜑𝑢) > 0
𝐹(𝑢, 𝑣) = 𝑔(𝜑𝑢, 𝜑𝑣)
𝐺(𝑢, 𝑣) = 𝑔(𝜑𝑣, 𝜑𝑣) > 0

with 𝐸𝐺 − 𝐹 2 > 0 and 𝐸, 𝐹 , 𝐺 smooth. Claim that ( 𝐸 𝐹
𝐹 𝐺 ) defines a Riemannian

metric.
A converse question is, given such 𝐸, 𝐹 , 𝐺, does there exist a local param-

eterisation 𝜑 ∶ 𝑈 → 𝑉 such that 𝐸, 𝐹 , 𝐺 are coefficients of 𝐼𝑝? The answer is
positive for analytic functions, but in more general settings this is still an open
problem. Thus it is possible that local Riemannian geometry is richer than
Euclidean geometry.

First fundamental form

Example (Embedded torus).

Exercise. Do for general surfaces of revolution.

Definition. Let 𝑋 be a surface in R3. Let 𝜑 ∶ 𝑈 → 𝑉 be a local parameteri-
sation. Let Ω ⊆ 𝑉 be an open set with smooth boundary. Then the area of
Ω is

∫
𝜑−1(Ω)

|𝜑𝑢 × 𝜑𝑣|𝑑𝑢𝑑𝑣.

Claim that the definition is independent of parameterisation. Use chain rule
for change of variable.
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Exercise.
areaΩ = ∫

𝜑−1(Ω)

√
𝐸𝐺 − 𝐹 2𝑑𝑢𝑑𝑣

so the area depends only on the first fundamental form. Thus an isometry
preserves area. In the other words, area is an intrinsic geometric property.

Remark. Using partition of unity, we can drop the restriction that Ω lies in
the range of a local parameterisation. In fact there exists a Borel measure on 𝑋,
denoted 𝑑𝐴, such that

area(Ω) = ∫
Ω

𝑑𝐴.

Subsequently, we can define the integral of any smooth (actually measurable)
map with respect to the measure.

Note that 𝐸 ⊆ 𝑋 has measure zero as defined before if and only if 𝐸 has
measure 0 with respect to 𝑑𝐴.

Example. The area of the embedded torus 𝑋 define before is

area(𝑋) = ∫
2𝜋

0
∫

2𝜋

0
𝑟(𝑎 + 𝑟 cos𝑢)𝑑𝑢𝑑𝑣 = 4𝜋2𝑎𝑟.

2.3 Gauss map
Let 𝑋 be a surface in R3. Let 𝜑 ∶ 𝑈 → 𝑉 be a local parameterisation. Given
𝑝 ∈ 𝑋, 𝜑𝑢, 𝜑𝑣 form a basis for 𝑇𝑝𝑋. Define a map

𝑓 ∶ 𝑉 → 𝑆2

𝑝 ↦ (𝜑𝑢 × 𝜑𝑣)(𝜑−1(𝑝))
|(𝜑𝑢 × 𝜑𝑣)(𝜑−1(𝑝))|

which is a smooth map such that 𝑓(𝑝) ⟂ 𝑇𝑝𝑋.
Note that the map with such property is not unique, for example taking it

negative value.

Definition (Gauss map). Let 𝑋 be a surface in R3. A Gauss map of 𝑋 is a
smooth map 𝑁 ∶ 𝑋 → 𝑆2 such that 𝑁(𝑝) ⟂ 𝑇𝑝𝑋 for all 𝑝 ∈ 𝑋.

Note. Let 𝑋 be connected. If there exists a Gauss map then there exists
precisely 2 Gauss maps 𝑁, −𝑁. Moreover

𝑁 = ± 𝜑𝑢 × 𝜑𝑣
|𝜑𝑢 × 𝜑𝑣|

in a local chart.

Definition (Orientability). If there exists a Gauss map, we say 𝑋 is ori-
entable. (𝑋, 𝑁) is called an oriented surface.

Remark.
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1. There exists non-orientable surface, such as the Möbius band.

2. The above definition is an extrinsic one. It is possible to characterise
orientability intrinsically using transition maps.

Example. The sphere is orientable, with 𝑁 = ± id.

Let 𝑋 be an orientable surface and 𝑁 ∶ 𝑋 → 𝑆2 a Gauss map. Consider
the differential 𝑑𝑁𝑝 ∶ 𝑇𝑝𝑋 → 𝑇𝑁(𝑝)𝑆2. Since 𝑁(𝑝) ⟂ 𝑇𝑝𝑋 by definition, and
𝑁(𝑝) ⟂ 𝑇𝑁(𝑝)𝑆2 by the observation in the example above, we can identify
𝑇𝑝𝑋 = 𝑇𝑁(𝑝)𝑆2. Thus we can treat 𝑑𝑁𝑝 ∶ 𝑇𝑝𝑋 → 𝑇𝑝𝑋 as an endormorphism
of an inner product space. Next time we will show that it is self-adjoint with
respect to the first fundamental form.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut,
ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed
interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.
Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia
lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

2.4 Theorema Egregium
Since {𝜑𝑢, 𝜑𝑣, 𝑁} form an orthonormal basis, we can express 𝜑𝑢𝑢, 𝜑𝑢𝑣 etc as
unique linear combinations of them. But what are the indices? Recall that

𝑒 = −⟨𝜑𝑢, 𝑁𝑢⟩ = ⟨𝜑𝑢𝑢, 𝑁⟩

and 𝑁 is orthogonal to 𝜑𝑈, 𝜑𝑣 so we have

𝜑𝑢𝑢(𝑢, 𝑣) = Γ1
11(𝑢, 𝑣)𝜑𝑢 + Γ2

11𝜑𝑣 + 𝑒𝑁

and etc.

Definition. Γ𝑘
𝑖𝑗 are called the Christoffel symbols.

Remark.

1. The Christoffel symbols are symmetric with repsect to lower indices, i.e.
Γ𝑘

𝑖𝑗 = Γ𝑘
𝑗𝑖.

2. Γ𝑘
𝑖𝑗 = 𝐴(𝐸, 𝐹 , 𝐺, 𝜕𝐸, … , 𝜕𝐺) where 𝐴 is a universal function. Take the

inner product of the above relations with 𝜑𝑢 and recoginising ⟨𝜑𝑢, 𝜑𝑢⟩ = 𝐸,
we get

Γ1
11𝐸 + Γ2

1𝐹 = ⟨𝜑𝑢𝑢, 𝜑𝑢⟩ = 1
2

𝜕𝑢⟨𝜑𝑢, 𝜑𝑢⟩ = 1
2

𝜕𝑢𝐸

Γ1
11𝐹 + Γ2

1𝐺 = ⟨𝜑𝑢𝑢, 𝜑𝑣⟩ = 𝜕𝑢⟨𝜑𝑢, 𝜑𝑣⟩ − ⟨𝜑𝑢, 𝜑𝑣𝑢⟩ = 𝜕𝑢𝐹 − 1
2

𝜕𝑣𝐸
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2 Geometry

Write it in matrix form,

(𝐸 𝐹
𝐹 𝐺) (Γ1

11
Γ2

11
) = (

1
2 𝜕𝑢𝐸

𝜕𝑢𝐹 − 1
2 𝜕𝑣𝐸)

We can repeat for the other Γ𝑘
𝑖𝑗’s.

Let’s go on and continue differentiating. Differentiate * with respect to 𝑣
and ** with respect to 𝑢, and by symmetry of partial derivatives,

𝜕𝑣Γ1
11𝜑𝑢 + 𝜕𝑣Γ2

11𝜑𝑣 + (𝜕𝑣𝑒)𝑁 + Γ1
11𝜑𝑢𝑣 + Γ2

11𝜑𝑣𝑣 + 𝑒𝑁𝑣

=𝜕𝑢Γ1
12𝜑𝑢 + 𝜕𝑢Γ2

12𝜑𝑣 + (𝜕𝑢𝑓)𝑁 + Γ1
12𝜑𝑢𝑢 + Γ2

12𝜑𝑣𝑢 + 𝑓𝑁𝑢

Expand this in our favourite basis {𝜑𝑢, 𝜑𝑣, 𝑁}, we get three equations, each for
a basis element. The first three components on each side are already in this
form. Look up in * and **, we get

𝜕𝑣Γ2
11

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis
facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet
mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices
augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut,
ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed
interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo.
Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia
lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

And after some algebra we find that 𝐾 can be expressed purely in terms of
the first fundamental form and its derivative.
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3 Critical points of length and curve

3 Critical points of length and curve
Suppose 𝑋 ⊆ R3 is a surface and 𝑝, 𝑞 ∈ 𝑋. Let Ω(𝑝, 𝑞) be the set of all regular
paths from 𝑝 to 𝑞. Then the length could be seen as a functional on Ω(𝑝, 𝑞). Since
length depends only on the first fundamental form, i.e. an intrinsic geometric
quantity, it turns out that the curves minimising the length functional are also
special and intrinsic to the surface. They are called geodesic.

Similarly, area is also a functional on the space of all surfaces. The area-
miniming surfaces are called minimal surfaces and eventually we can derive an
equation depending on the mean curvature.
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