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1 Analytic Functions

1 Analytic Functions

1.1 The Complex Plane and the Riemann Sphere
Any 𝑧 ∈ C can be written in the form 𝑥 + 𝑖𝑦 where 𝑥 = Re 𝑧 and 𝑦 = Im 𝑧,
𝑥, 𝑦 ∈ R or 𝑟𝑒𝑖𝜃 where the modulus |𝑧| = 𝑟 = √𝑥2 + 𝑦2 and the argument
𝜃 = arg 𝑧 satisfies 𝑦 = 𝑥 tan 𝜃. The argument is defined only up to multiples of
2𝜋. The principal value of the argument is the value of 𝜃 in the range (−𝜋, 𝜋].
Note that the formula tan−1 𝑦

𝑥 gives the correct value for the principal value of
𝜃 only if 𝑥 > 0. If 𝑥 ≤ 0 then it might be out by ±𝜋 (consider 1 + 𝑖 and 1 − 𝑖).

An open set 𝐷 is a subset of C which does not include its boundary1.
A neighbourhood of a point 𝑧 is an open set containing 𝑧.
A domain is an open set that is connected (i.e. cannot be split into wto

disjoint open subsets). A simply-connected domain is one with no holes (i.e. any
curve lying in the domain can be shrunk continuouly to a point without leaving
the domain).

Note that a hole could be caused merely be a particular function under
consideration being undefined at a single point, e.g. 1

𝑧 .
The extended complex plane is C∗ = C ∪ {∞}. We can reach the “point

at infinity” be going off in any direction in the plane, and all are equivalent.
Conceptually we may use the Riemann sphere, which is a sphere resting on the
complex plane with its “south pole” 𝑆 at 𝑧 = 0. For any point 𝑧 ∈ C, drawing a
line through the “north pole” 𝑁 of the sphere to 𝑧 and noting where this line
intersects the sphere specifies an equivalent point 𝑃 on the sphere. Then ∞ is
equivalent to the “north pole” itself.

To investigate properties of ∞ we use the substitution 𝜁 = 1
𝑧 . A function 𝑓(𝑧)

is said to have a particular property at infinity if 𝑓( 1
𝑧 ) has the same property at

0.

1.2 Complex Differentiation
Recall the definition of differentiation for a real function 𝑓(𝑥):

𝑓 ′(𝑥) = lim
𝛿𝑥→0

𝑓(𝑥 + 𝛿𝑥) − 𝑓(𝑥)
𝛿𝑥

.

It is implicit that the limit must be the same whichever direction we approach
from. Consider |𝑥| at 𝑥 = 0 for example: if we approach from the right (𝛿𝑥 → 0+)
then the limit is +1, whereas from the left (𝛿𝑥 → 0−) it is −1. Because these
limits are different we say that |𝑥| is not differentiable at 𝑥 = 0.

Now extend the defintion to complex function 𝑓(𝑧). 𝑓 is differentiable at 𝑧 if

𝑓 ′(𝑧) = lim
𝛿𝑧→0

𝑓(𝑧 + 𝛿𝑧) − 𝑓(𝑧)
𝛿𝑧

exists (and is therefore independent of direction of approach — but now there is
an infinity of possible directions).

We say that 𝑓 is analytic at a point 𝑧 if there exists a neighbourhood of 𝑧
throughtout which 𝑓 ′ exists. The term regular and holomorphic are also used.
A function which is analytic throughtout C is called entire.

1Hint: this is an applied course.
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1 Analytic Functions

A singularity of 𝑓 is a point at which it is not analytic, or not even defined.
The property of analyticity is in fact a surprisingly strong one. For example,

two consequenses include

1. if a function is analytic then it is differentiable infinitely many times (c.f.
the existence of real functions which can be differentiated 𝑁 times but no
more, for any given 𝑁);

2. a bounded entire function is constant (c.f. tanh𝑥 for 𝑥 ∈ R, which is
bounded but not constant).

1.3 Cauchy-Riemann Equations
Separate 𝑓 and 𝑧 into real and imaginary parts:

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)

where 𝑧 = 𝑥 + 𝑖𝑦 and 𝑢, 𝑣 are real functions. Suppose that 𝑓 is differentiable at
𝑧. We may take 𝛿𝑧 in any direction. First take it to be real, 𝛿𝑥 = 𝛿𝑥. Then

𝑓 ′(𝑧) = lim
𝛿𝑥→0

𝑓(𝑧 + 𝛿𝑥) − 𝑓(𝑧)
𝛿𝑥

= lim
𝛿𝑥→0

𝑢(𝑥 + 𝛿𝑥, 𝑦) + 𝑖𝑣(𝑥 + 𝛿𝑥, 𝑦) − 𝑢(𝑥, 𝑦) − 𝑖𝑣(𝑥, 𝑦)
𝛿𝑥

= 𝜕𝑢
𝜕𝑥

+ 𝑖 𝜕𝑣
𝜕𝑥

Now take 𝛿𝑧 to be pure imaginary, 𝛿𝑧 = 𝑖𝛿𝑦. Then

𝑓 ′(𝑧) = lim
𝛿𝑦→0

𝑓(𝑧 + 𝑖𝛿𝑦) − 𝑓(𝑧)
𝑖𝛿𝑦

= lim
𝛿𝑦→0

𝑢(𝑥, 𝑦 + 𝛿𝑦) + 𝑖𝑣(𝑥, 𝑦 + 𝛿𝑦) − 𝑢(𝑥, 𝑦) − 𝑖𝑣(𝑥, 𝑦)
𝑖𝛿𝑦

= −𝑖𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑦

.

The two values for 𝑓 ′(𝑧) are the same since 𝑓 is differentiable. Thus

𝜕𝑢
𝜕𝑥

= 𝜕𝑣
𝜕𝑢

𝜕𝑢
𝜕𝑦

= −𝜕𝑣
𝜕𝑥

This is know as the Cauchy-Riemann equations. The converse (that a function
satisfying the Cauchy-Riemann equaitons is differentiable) is also true as long
as we impose additional requirements, for example that the partial derivative
𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 are continuous functions of 𝑥 and 𝑦, in the sense described in IB
Analysis II.

Example.

1. 𝑓(𝑧) = 𝑧 is entire. Here 𝑢 = 𝑥, 𝑣 = 𝑦 and the Cauchy-Riemann equations
are satisfied.
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1 Analytic Functions

2. 𝑓(𝑧) = 𝑒𝑧 = 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦) is entire since

𝜕𝑢
𝜕𝑥

= 𝑒𝑥 cos 𝑦 = 𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦

= −𝑒𝑥 sin 𝑦 = −𝜕𝑣
𝜕𝑥

The derivative is

𝑓 ′(𝑧) = 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦 = 𝑒𝑥

as expected.

3. 𝑓(𝑧) = 𝑧𝑛, where 𝑛 is a positive integer, is entire. Write 𝑧 = 𝑟(cos 𝜃+𝑖 sin 𝜃)
we obtain 𝑢 = 𝑟𝑛 cos𝑛𝜃, 𝑣 = 𝑟𝑛 sin𝑛𝜃. We can check the Cauchy-Riemann
equaitions using 𝑟 = √𝑥2 + 𝑦2 and tan 𝜃 = 𝑦

𝑥 . The derivative is 𝑛𝑧𝑛−1 as
we would expect!

4. Any rational function, i.e. 𝑓(𝑧) = 𝑃(𝑧)
𝑄(𝑧) where 𝑃 and 𝑄 are polynomials,

is analytic except at points where 𝑄(𝑧) = 0. For instance 𝑓(𝑧) = 𝑧
𝑧2+1 is

analytic except at ±𝑖.

5. Many standard real functions can be extended naturally to complex
functions and obey the usual rule for their derivatives. For example
𝑓(𝑧) = sin 𝑧 = 𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖 has derivative 𝑓 ′(𝑧) = cos 𝑧. We can also write

sin 𝑧 = sin(𝑥 + 𝑖𝑦)
= sin𝑥 cos 𝑖𝑦 + cos𝑥 sin 𝑖𝑦
= sin𝑥 cosh 𝑦 + 𝑖 cos𝑥 sinh 𝑦

This applies to other trigonometric functions.
log 𝑧 = log |𝑧| + 𝑖 arg 𝑧 has derivative 1

𝑧 .
The product, quotient and chain rules hold in exactly the same way as for
real function.

Example.

1. 𝑓(𝑧) = Re 𝑧 has 𝑢 = 𝑥, 𝑣 = 0 but 𝜕𝑢
𝜕𝑥 = 1 ≠ 0 = 𝜕𝑢

𝜕𝑦 so Re 𝑧 is nowhere
analytic.

2. 𝑓(𝑧) = |𝑧| has 𝑢 = √𝑥2 + 𝑦2, 𝑣 = 0 and is nowhere analytic.

3. 𝑓(𝑧) = 𝑧 = 𝑥 − 𝑖𝑦 is nowhere analytic.

4. 𝑓(𝑧) = |𝑧|2 = 𝑥2 + 𝑦2. The Cauchy-Riemann equaitions are satisfied
only at the origin, so 𝑓 is only differentiable at 𝑧 = 0. However it is not
analytic there because there is no neighbourhood of 0 throughout which 𝑓
is differentiable.
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1 Analytic Functions

1.4 Analytic Continuation*
If we are given the values of an analytic function in some restricted region —
which could be rather small, such as a short curve somewhere in the complex
plane — then there is a unique extension of the function to the rest of C that is
still analytic. (No proof given here.) The extension might have some singularities,
and might be multivalued.

This fact can be useful in extending the domain of definition of a function.
We shall see an example in Section 5.2.

1.5 Harmonic Functions
If 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic, then

𝜕2𝑢
𝜕𝑥2 = 𝜕

𝜕𝑥
𝜕𝑢
𝜕𝑥

= 𝜕
𝜕𝑥

𝜕𝑣
𝜕𝑦

= −𝜕2𝑢
𝜕𝑦2

so 𝑢 satisfies Laplace’s equaiotn in two dimension, 𝛁2𝑢 = 0. Similarly so does 𝑣.
A function satisfying Laplace’s equation in an open set is said to be harmonic
there.

Functions 𝑢 and 𝑣 satisfying the Cauchy-Riemann equations are called har-
monic conjugates. If we know one then we can find the other, up to a constant.
For example, consider 𝑢(𝑥, 𝑦) = 𝑥2 − 𝑦2, which is easily verified to be harmonic.
Its harmonic conjugate 𝑣 satisfies

𝜕𝑣
𝜕𝑦

= 2𝑥 ⟹ 𝑣 = 2𝑥𝑦 + 𝑔(𝑥)

𝜕𝑣
𝜕𝑥

= 2𝑦 ⟹ 2𝑦 + 𝑔′(𝑥) = 2𝑦

so 𝑔 = 𝛼 for some constant 𝛼. The corresponding analytic function whose real
part is 𝑢 is therefore

𝑓(𝑧) = 𝑥2 − 𝑦2 + 2𝑖𝑥𝑦 + 𝑖𝛼 = (𝑥 + 𝑖𝑦)2 + 𝑖𝛼 = 𝑧2 + 𝑖𝛼.

If the domain is not simply-connected then this method might give a solution
that is multi-valued. For example, if 𝑢 = 1

2 log(𝑥2 + 𝑦2), which is harmonic in
the domain |𝑧| > 0, the corresponding 𝑓(𝑧) is log 𝑧, which is multi-valued (see
Section 1.6).

We end this section by a geometric obseravation:

Proposition 1.1. Contours of harmonic conjugate functions are perpendic-
ular to each other:

Proof. 𝛁𝑢 is perpendicular to contours of 𝑢 (i.e. curves 𝑢 = constant), using a
result from IA Vector Calculus. Similarly 𝛁𝑣 is perpendicular to contour of 𝑣.
But

𝛁𝑢 ⋅ 𝛁𝑣 = 𝜕𝑢
𝜕𝑥

𝜕𝑣
𝜕𝑥

+ 𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑦

= 𝜕𝑢
𝜕𝑥

(−𝜕𝑢
𝜕𝑦

) + 𝜕𝑢
𝜕𝑦

𝜕𝑢
𝜕𝑥

= 0

and the result follows.
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1 Analytic Functions

1.6 Multi-valued functions
For 𝑧 = 𝑟𝑒𝑖𝜃 we define log 𝑧 = log 𝑟 + 𝑖𝜃. There are thus infinitely many values
of log 𝑧, for 𝜃 may take an infinity of values. For example,

log 𝑖 = 𝜋𝑖
2

or 5𝜋𝑖
2

or − 3𝜋𝑖
2

or …

depending on which choice of 𝜃 we make.
Missed a lecture
Note that a branch cut alone does not specify a branch (compare (b) above,

with the principal branch which is a different branch even though it has the same
branch cut) nor is a single value of the fucntion sufficient by itself (compare (a)
and (c) above).

1.6.1 Riemann Surfaces*

Riemann imagined different branches as separate copies of C, stacked on top of
each other but each one joined to the next at the branch cut. This structure is a
Riemann surface.

1.6.2 Multiple Branch Cuts

When there is more than one branch point we may need more than one branch
cut. FOr 𝑓(𝑧) = (𝑧(𝑧 − 1))1/3 there are branch points at 0 and 1, so we need
two branch cuts. A possibility is shown below. Then no curve can wrap round
either 0 or 1.

For any 𝑧 write 𝑧 = 𝑟𝑒𝑖𝜃 and 𝑧 − 1 = 𝑟1𝑒𝑖𝜃1 with 𝜃 ∈ (−𝜋, 𝜋], 𝜃1 ∈ [0, 2𝜋) and
define

𝑓(𝑧) = 3
√𝑟𝑟1𝑒𝑖(𝜃+𝜃1)/3

This is continuous so long as we don’t cross either cut. Sometimes we need fewer
branch cuts than we might think. See the worked example.

1.7 Möbius Maps
The Möbius map 𝑧 ↦ 𝑤 = 𝑎𝑧+𝑏

𝑐𝑧+𝑑 where 𝑎𝑑 − 𝑏𝑐 ≠ 0, is analytic except at 𝑧 = −𝑑
𝑐 .

It is useful to consider it as a map C∗ → C∗ with

−𝑑
𝑐
↦ ∞

∞ ↦ 𝑎
𝑐

It is then bijective, the inverse being 𝑤 ↦ 𝑧 = −𝑑𝑤+𝑏
𝑐𝑤−𝑎 , another Möbius map.

Definition (Circline). A circline is either a circle or a line.

Möbius maps take circlines to circlines.

Proof. Any circline can be expressed as a circle of Apollonius

|𝑧 − 𝑧1| = 𝜆|𝑧 − 𝑧2|

6



1 Analytic Functions

where 𝑧1, 𝑧2 ∈ C, 𝜆 ∈ R>0. This is a result from IA Vectors and Matrices. The
case 𝜆 = 1 corresponds to a line and 𝜆 ≠ 1 to a circle. Apply a Möbius map,

∣−𝑑𝑤 + 𝑏
𝑐𝑤 − 𝑎

− 𝑧1∣ = 𝜆 ∣−𝑑𝑤 + 𝑏
𝑐𝑤 − 𝑎

− 𝑧2∣

|(𝑐𝑧1 + 𝑑) − (𝑎𝑧1 + 𝑏)| = 𝜆|(𝑐𝑧1 + 𝑑)𝑤 − (𝑎𝑧2 + 𝑏)|

|𝑤 − 𝑤1| = 𝜆 ∣𝑐𝑧2 + 𝑑
𝑐𝑧1 + 𝑑

∣ |𝑤 − 𝑤2|

where 𝑤1 = 𝑎𝑧1+𝑏
𝑐𝑧1+𝑑 , 𝑤2 = 𝑎𝑧2+𝑏

𝑐𝑧2+𝑑 , which is another circle of Apollonius.
The proof failsif either 𝑐𝑧1 +𝑑 = 0 or 𝑐𝑧2 +𝑑 = 0, but in either of these cases

the equation trivially defines a circle.

Geometrically it is clear that choosing three distinct points in C∗ uniquely
specifies a circline (if one of the points is ∞ then we have specified the straight
line through the other two points).

Given 𝛼, 𝛽, 𝜂, 𝛼′, 𝛽′, 𝛾′ ∈ C∗ we can find a Möbius map which sends 𝛼 ↦ 𝛼′

etc.

Proof. The map
𝑓1(𝑧) =

𝛽 − 𝛾
𝛽 − 𝛼

𝑧 − 𝛼
𝑧 − 𝛾

sends 𝛼 ↦ 0, 𝛽 ↦ 1, 𝛾 ↦ ∞. Let 𝑓2(𝑧) be defined analogously for the primed
version. Then 𝑓−1

2 ∘ 𝑓1 is the required mapping. It is also a Möbius map as they
are closed under composition.

Putting all these results together, we conclude that we can find a Möbius
map taking any given circline to any other.

1.8 Conformal Maps

Definition (Conformal map). A conformal map 𝑓 ∶ 𝑈 → 𝑉, where 𝑈, 𝑉 are
open subsets of C, is one which is analytic with non-zero derivative in 𝑈.

Though not part of the definition, it is usual (and helpful) to require that 𝑓
be one-to-one from 𝑈 to 𝑉.

An alternative definition is that a conformal map is one that preserves the
angle (in both magnitude and orientation) between intersecting curves. We shall
show that our definition implies this. The converse is also true (proof omittted)
so the two definitions are equivalent.

Suppose that 𝑧1(𝑡) is a curve in C parameterised by 𝑡 ∈ R, which passes
through a point 𝑧0 when 𝑡 = 𝑡1. Suppose further that its tangent there, 𝑧′

1(𝑡1),
has a wel-defined direction. Then 𝑧′

1(𝑡) ≠ 0 and the curve makes an angle 𝜙 =
arg 𝑧′

1(𝑡1) to the 𝑥-axis at 𝑧0. Consider the image of the curve, 𝑍1(𝑡) = 𝑓(𝑧1(𝑡)).
Its tangent direction at 𝑡 = 𝑡1 is

𝑍′
1(𝑡1) = 𝑧′

1(𝑡1)𝑓 ′(𝑧1(𝑡1)) = 𝑧′
1(𝑡1)𝑓 ′(𝑧0)

and therefore makes an angle with the 𝑥-axis of

arg𝑍′
1(𝑡1) = 𝜙 + arg 𝑓 ′(𝑧0).

7
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Note that arg 𝑓 ′(𝑧0) exists since 𝑓 is conformal so 𝑓 ′(𝑧0) = 0. In other words,
the trangent direction is rotated by arg 𝑓 ′(𝑧0).

Now if 𝑧2(𝑡) is another curve passing throught 𝑧0 then its tangent direction
will also be rotated by arg 𝑓 ′(𝑧0). The result follows.

Sometimes we do not know what 𝑉, the image set of 𝑓 acting on 𝑈, is in
advance. Often the easiest way to find it is first to find the iamge of the boundary
𝜕𝑈, which will form the boundary 𝜕𝑉 of 𝑉; but, since this does not reveal upon
which side of 𝜕𝑉 𝑉 lies, to then find the image of a single point of our choice
within 𝑈, which will lie within 𝑉.

Example.

1. The map 𝑧 ↦ 𝑎𝑧 + 𝑏 where 𝑎, 𝑏 ∈ C, 𝑎 ≠ 0, rotates by arg 𝑎, enlarges by
|𝑎| and translates by 𝑛 and is conformal everywhere.

2. 𝑓(𝑧) = 𝑧2 is a conformal map from

𝑈 = {𝑧 ∶ 0 < |𝑧| < 1, 0 < arg 𝑧 < 𝜋
2
}

to
𝑉 = {𝑤 ∶ 0 < |𝑤| < 1, 0 < arg𝑤 < 𝜋}.

Note that the right angle between the two boundary curves at 𝑧 = 1 is
preserved because 𝑓 is conformal there. Similarly at 𝑧 = 1. But the right
angle at 𝑧 = 0 is not preserved because 𝑓 is not conformal there (𝑓 ′(0) = 0).
Fortunately this does not matter since 𝑈 is an open set so does not include
0.

3. How would we map the lef-hand half-plane

𝑈 = {𝑧 ∶ Re 𝑧 < 0}

to a wedge
𝑉 = {𝑤 ∶ −𝜋

4
< arg𝑤 < 𝜋

4
}?

We need to halve the angle, so by using 𝑧1/2, for which we need to choose
a branch. The branch cut must not lie in 𝑈 (since 𝑧1/2 is not analytic
on the branch cut) so choose a cut along the negative imaginary axis:
𝑟𝑒𝑖𝜃 ↦

√
𝑟𝑒𝑖𝜃/2 where 𝜃 ∈ (−𝜋/2, 3𝜋/2]. Having defined this branch, we

now apply 𝑧1/2 to 𝑈 to produce the wedge {𝑧′ ∶ 𝜋/4 < arg 𝑧′ < 3𝜋/4}; so
we just need to rotate through −𝜋/2. The final map is 𝑓(𝑧) = −𝑖𝑧1/2.

4. 𝑒𝑧 takes rectangles conformally to sectors of annuli. With an appropriate
choice of branch, log 𝑧 does the reverse.

5. Möbius maps (which are conformal everywhere except at the point that
it is sent to ∞ are very useful in taking circles, or parts of them, to
straight lines, or vice versa. Consider 𝑓(𝑧) = 𝑧−1

𝑧+1 acting on the unit disc
𝑈 = {𝑧 ∶ |𝑧| < 1}. The boundary of 𝑈 is a cricle; the three points −1, 𝑖 and
1 lie on the circle and are mapped to ∞, 𝑖 and 0 respectively. Therefore
the image of 𝜕𝑈 is the imaginary axis; since 𝑓(0) = −1 we see that the
image of 𝑈 is the left-hand half-plane.
The inverse map, which is 𝑧 ↦ 1+𝑧

1−𝑧 , maps 𝑉 to 𝑈 conformally.
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Alternatively, 𝑤 = 𝑧−1
𝑧+1 if and only if 𝑧 = 1+𝑤

1−𝑤 . So |𝑧| < 1 if and only if
|𝑤 + 1| < |𝑤 − 1|, i.e. 𝑤 is close to −1 than ti is to 1, which describges
precisely the left-hand half-plane.
In fact this particular map can usefully be depoloyed more generally on
quadrants of the unit disc or of the complex plane.

6. 𝑓(𝑧) = 1
𝑧 is a simple Möbius map useful for acting on vertical or horizontal

lines, which maps to circles passing through the origin with centres one of
the axes, or for mapping sectors within the unit circle to sectors outside
the circle, or vice versa.

In practice, complicated conformal maps are usually built up from individual
building blocks, each a simple conformal map; the required map is the composition
of these (note that the composition of conformal maps is conformal, by the chain
rule). Seee the worked examples.

Hungry. Skipped a lecture.
Hungry. Skipped two lectures.
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2 Laurent series and Cauchy’s theorem

2.1 Taylor and Laurent series
2.2 Zeroes
Example.

1. 𝑧3 + 𝑖𝑧2 + 𝑧 + 𝑖 = (𝑧 − 𝑖)(𝑧 + 𝑖)2 has a simple zero at 𝑧 = 𝑖 and a zero of
order two at 𝑧 = −𝑖.

2. sinh𝑥 has zero where
𝑒𝑧 − 𝑒−𝑧

2
= 0

so 𝑧 ∈ 𝜋𝑖Z. The zeros are all simple since cosh𝑛𝜋𝑖 = cos𝑛𝜋 ≠= 0.

3. Since sinh 𝑧 has a simple zero at 𝑧 = 𝜋𝑖, sinh3 𝑧 has a zero of order 3 there.
If needed, we can find its Taylor series about 𝜋𝑖 by write 𝜁 = 𝑧 − 𝜋𝑖.

sinh3 𝑧 = sinh3(𝜁 + 𝜋𝑖)
= (− sinh 𝜁)3

= −(𝜁 + 1
3!
𝜁3 +…)3

= −𝜁3 − 1
2
𝜁5 −…

= −(𝑧 − 𝜋𝑖)3 − 1
2
(𝑎 − 𝜋𝑖)5 +…

2.3 Laurent Series
If 𝑓 has a singularity at 𝑧0 then we cannot expect it to have a Taylor series there.
Instead, if 𝑓 is analytic in an annulus 𝑅1 < |𝑧 − 𝑧0| < 𝑅2 then it has a Laurent
series about 𝑧0

𝑓(𝑧) =
∞
∑

𝑛=∞
𝑎𝑛(𝑧 − 𝑧0)𝑛

convergent within the annulus. See the proof in the separate sheet.
It can be shown that the Laurent series for 𝑓 about a particular 𝑧0 is unique

within any given radius. Note that Taylor series are just a special case of Laurent
series, with 𝑎𝑛 = 0 for all 𝑛 < 0.

Example.
1. 𝑒𝑧

𝑧3 has a Laurent series about 𝑧0 = 0 given by

𝑒𝑧

𝑧3 =
∞
∑
𝑚=0

𝑧𝑚−3

𝑚!
=

∞
∑

𝑛=−3

𝑧𝑛

(𝑛 + 3)!

so 𝑎𝑛 = 1
(𝑛+3)! for 𝑛 ≥ −3.

2. 𝑒1/𝑧 about 𝑧0 = 0 has

𝑒1/𝑧 = 1 + 1
𝑧
+ 1

2!𝑧2 + 1
3!𝑧3 +…

so 𝑎𝑛 = 1
(−𝑛)! for 𝑛 ≤ 0.
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3. If 𝑓(𝑧) = 1
𝑧−𝑎 where 𝑎 ∈ C then 𝑓 is analytic in |𝑧| < |𝑎| so it has a Taylor

series about 𝑧 = 0 given by

1
𝑧 − 𝑎

= −1
𝑎
(1 − 𝑧

𝑎
)

−1
= −

∞
∑
𝑛=0

𝑎−𝑛−1𝑧𝑛.

The binomial expansion is valid since ∣ 𝑧
𝑎 ∣ < 1. In |𝑧| > |𝑎| it has a Laurent

series (in the annulus |𝑎| < |𝑧| < ∞) given by

1
𝑧 − 𝑎

= 1
𝑧
(1 − 𝑎

𝑧
)

−1
=

∞
∑
𝑚=0

𝑎𝑚

𝑧𝑚+1 .
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