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0 Introduction

0 Introduction

Motivation: complex geometry is the study of complex manifolds. These locally
look like open subsets of C™ with holomorphic transition functions. In particu-
lar one dimensional complex manifolds are Riemann surfaces. Every (smooth)
projective variety is a complex manifolds. A main result of the course is to give
a partial converse.

Complex tools are often used to study projective varieties. For example
Hodge conjecture and moduli theory. On the other hand there are lots of ques-
tions that are also interesting in their own right. Projective surfaces were clas-
sified in 1916. Classification of compact complex surfaces is still open (most
recent progress in 2005).



1 Several complex variables

1 Several complex variables

Definition (holomorphic). Let U € C™ be open. A smooth function f :
U — C is holomorphic if it is holomorphic in each variable. A function
F:U — C™ is holomorphic if each coordinate is holomorphic.

Remark. There is an equivalent definition in terms of power series.
Consider the homeomorphism
C" — R*"
(x1 4+ Y1,y +iyn) = (T1,Y1,- -+, Ty Yn)

If f = uw+4v then complex analysis implies that f is holomorphic if and only if

Ou  Ov
dx;  Oy;
ou  Ov
ayiiigj

this is the Cauchy-Riemann equations. If one formally defines

o 1,0 .9
95~ 20, oy,
o 1.9 .9
o5~ 2, Ty,

then f is holomorphic if and only if % =0 for all j.

Proposition 1.1 (maximum principle). Let U C C™ be open and connected.
If f is holomorphic on some bounded open disk U with D C U then

max |f(z)| = max|f(z)|.
D oD

Proof. Repeated application of single variable maximum principle. O

Thus if | f| achieves its maximum at an interior point, f is constant.

Proposition 1.2 (identity principle). If U C C™ is open connected and
f U — C is holomorphic and f vanishes on an open subset of U then

F=o.

Proof. Repeated application of single variable version of identity principle. [



2 Complex manifolds

2 Complex manifolds

Let X be a second countable Hausdorff topological space. We always assume
X is connected.

Definition (holomorphic atlas). A holomorphic atlas for X is a collection
of (Uy, pa) where ¢, : Uy = 00 (U,) € C™ is a homeomorphism, with

1. X =U, Ua,

2. g 0 @El are holomorphic.

Definition (equivalent atlas). Two holomorphic atlases (U, ¢a), (Us, Us)
are equivalent if o, o @gl is holomorphic for all a, 5.
Equivalently, their union is an atlas.

Definition (complex manifold, complex structure). A complex manifold is a
topological space as above with an equivalence class of holomorphic atlases.
Such an equivalence class is called a complex structure.

Example.
1. C™ is trivially a complex manifold.
2. A={z:]z| <1 CC.

3. P, the (complex) projective space. As a set this is the one-dimensional

linear subspaces of C"*1. A point is [29 : - - : 2z,]. A holomorphic atlas is
given by
)= (BB
willzo -+t zn)) (Zi,...,Zi,...,Zi)

where the hat denotes that the omitted coordinate. One can check that
transition functions are holomorphic. Moreover P™ is compact.

Definition (holomorphic, biholomorphic). A smooth function f : X — C
is holomorphic if f oo~ : p(U) — C is holomorphic for all (U, ¢).

A smooth map F : X — Y is holomorphic if for all charts (U, ¢) for X,
(V, 1) for Y, the map 1 o F o o1 is holomorphic. F is biholomorphic if it
has a holomorpic inverse.

Exercise. If X is compact then any holomorphic function on X is constant.
As a corollary, compact complex manifold cannot embed in C™ for any m.

Exercise. If X — C is holomorphic and vanishes on an open set on X then
f =0. Thus there is no holomorphic analogue of bump functions.



2 Complex manifolds

Definition (closed complex submanifold). Let Y C X be a smooth sub-
manifold of dimension 2k < 2n = dim X. We say Y is a closed complex
submanifold if there exists a holomorphic atlas (Uy, p.) for X such that it
restricts to

o :UsNY = o(U,) NCE

with C¥ C C" as (21,...,21,0,...,0).

Exercise. Show that a closed complex submanifold is naturally a complex man-
ifold.

| Definition (projective manifold). We say X is projective is it is biholomor-
phic to a compact closed complex submanifold of P™ for some m.

We state without proof a theorem:

Theorem 2.1 (Chow). A projective complex manifold is a projective variety,
i.e. the vanishing set in P™ of some homogeneous polynomial equations.

In the example sheet we’ll see an example of a compact complex manifold
which is not projective.



8 Almost complex structures

3 Almost complex structures

How much complex structure can be recovered from linear data?
Let V be a real vector space.

Definition (complex structure). A linear map J : V — V with J? = —id
is called a complex structure.

This is motivated by the endomorphism on R?"

(xlyyla s 71‘n7yn) = (yh L1y Yn, —$n)

This is called the standard complex structure.

As J? = —id, the eigenvalues are £i. Since V is real, there are no eigenspaces.
Consider Ve = V @ C. Then J extends to J : Vo — V¢ with J? = —id. Let
V10 and V%! denote the eigenspaces of +i respectively.

Lemma 3.1.
1. Ve=Vi0gvol
2. VIO = Y01,
Proof.
1. For v € V¢, write

1 1
v=—(v—1iJv)+= (v+iJv).
22—

cvio evo.l

2. Follows from 1.

Definition (almost complex structure). Let X be a smooth manifold. An
almost complex structure is a bundle isomorphism J : TX — TX with
J? = —id.

Suppose X admits an almost complex structure. One can complexify T'X
to obtain (TX )¢ = TX ® C so each fibre of (TX)c — X is a complex vector
space. (T'X)c is called the complezified tangent bundle.

Same as the case for complex structure, (T'X )¢ splits as a direct sum

(TX)e =2TX" oTX%
To obtain this, one uses, for example,

TX"0 = ker(J —iid)
TX% = ker(J +iid)

Exercise. Let U,V C C" open, f: U — V smooth. Then f is holomorphic if
and only if df is C-linear.



8 Almost complex structures

On TR?" there is a natural almost complex structure coming from the one
on R??, denoted Ji. Let X be a complex manifold. If U C X is a chart
with ¢ : U — o(U) C C* = R?", the differential of ¢ gives a bundle map
J=dp toJyodp:TU = TU.

Proposition 3.2. J defined above is independent of (holomorphic) chart,
so gives an almost complex structure on X.

Proof. Suppose ¢, 1) are charts around the same point. What we need to show
is

de™' o Jgodp=dip" o Jy o dip,

i.e.

d((po ¢_1)_1) oJsgod(po 1/}_1) = Jst-
¢ o1~ is a holomorphic map between open open subsets of C* and so d((¢ o
1~ 1)) commutes with Jg, which is similar to the exercise. O

Remark. There are lots of almost complex structure not arising in this way.
Those that do are called integrable. In general it is difficult to tell whether a
smooth manifold with an almost complex structure admits a complex structure.
For example S% admits an almost complex structure which is not integrable. It’s
an open problem whether or not S® admits a complex structure. As an aside,
an almost complex structure is integrable if and only if the Nijenhuis tensor
vanishes.

Definition (holomorphic tangent bundle). T X' is called the holomorphic
tangent bundle of X.

If V is a real vector space and J is a complex structure then one obtains a
complex structure on V* in the natural way. Thus analoguously one obtains

(T*X>(C o~ T*Xl’o ) T*Xo’l.

Locally if ¢ : U — C" is a chart, we say that z; = x; +14y; are local coordinates.
Then

0 0

) = ay;
0 0
o) = "o,

(see the connection with Cauchy-Riemann) and

J(d.%J) = 7dyj
J(dy;) = dz;

where we also use J to denote the dual of J.



8 Almost complex structures

Definition. We define

de = de —|— Zdy]
dz; = dx; —idy;

o 1/0 0
8%_2(%_2%>
o 1(0 .0
8%‘?(%“8%)

Then dz;,dz; are sections of (T*X)c and %, % are sections of (T'X)c.
J J

Note that
J(dZJ) = ide, J(dE]) = 7Z‘d2j
0 0 0 0

A

(8725]‘):2872]‘7 (azj azj

We see the dz; form a local frame for 7% X !0, similarly dz; form a local frame
for T*X%!. Same for tangent bundle.
If f: X —C,say f=wu+iv then df = du+ idv is a smooth section of

(T*X)(C o~ T*XI,O oy T*Xo’l.
We denote by p1, ps the two projections.
Definition. Define

of = pl(df)
5f = pa(df)

In a local frame,
of of =
df =) 5=dzj+ ) ==-dz; = 0f +0f
j J

so f is holomorphic if and only if 9f = 0.
We now do the same for higher degree forms.

Definition (form). A section of
APIT*X = APT*X 0 @ AIT* X1
is called a (p, q)-form.
Locally a (p, q)-form looks like
Zfdzj1 A Adzj, AdZe, A AdZ, .

Note that f is only required to be smooth and not required to be either holo-
morphic or antiholomorphic. For example Zdz is a section of T* X0,



8 Almost complex structures

Definition. We denote by AX(U) the sections of A*(T*X)c over U C X.
We also denote by AZ?(U) the smooth sections of AP4T*X.

In particular A%O(U) consists of smooth C-valued functions.

Lemma 3.3.

1. There is a natural identification

AT X)e= P API(T7X)
p+q=k

SO

ALU) = P ARYU).

pt+q=k

2. Ifa e ABUU), B e ALY (U) then o A B € AT T4 (1),

Proof. Fibrewise this follows from linear algebra. One can use a frame to obtain
the bundle results. O

3.1 Dolbeault cohomology

Denote by d : AL(U) — AETH(U) the usual exterior derivative.
Definition. 9 : A2Y(U) — AXTH9(U) is defined as d composed with pro-
jection to ALTHY(U). Similarly define 8 : AXY(U) — ALITH(D).

Locally if
o = Z fdzr ANdz;
then

da:ZZ%dZT-AdszEpLZZgédz,.AdzmdzJ.

oo Do

Lemma 3.4.
1.d=0+0.
2. 92=0,8 = 0,00 = —90.
3. Ifa € ALYU), B € AL T (U) then

I aAB)=0anB+ (—1)PTaAdp
IaAB)=0aA B+ (—1)PTa A dp

Proof.



8 Almost complex structures

1. Follows from local expression.
2. Follows from d? = 0.

3. Follows from
d(a A B) =daA B+ (=1)PTa Adp.

Definition (Dolbeault cohomology). The (p, q)-Dolbeault cohomology of X
is given by ~
pra(x) = Kerd s ARIX) = AT (X)

2 imd : AZTH(X) = ARY(X)

. =2
which makes sense as 3 = 0. These are vector spaces.

Remark. One could make an analogous definition using 0 and the informa-
tion would be equivalent. Historically, people are interested in holomorphic
functions, i.e. f with 0f = 0.

Recall the de Rham cohomology group

ker(d : AL (X) — AGTH(X))
im(d : AL 1(X) = AL(X))

HéR(XQR) =

One similarly defines

ker(d : AL(X) — AZH(X))

Hip(X;C) = im(d : AT (X) = AL(X))

~ Hir(X;R) @ C

so we do not gain or lose anything.

Much of the course will be devoted to prove Hodge decomposition, which
asserts that for a certain class of compact manifolds, which include projective
varieties,

Hip(X;0) = P HEY(X).
ptq=k

Note that the statement alone is not true in general.
Exercise. If F': X — Y is holomorphic then F induces a map
* . Py P.q
F .H5 (Y)—>H5 (X)
via pullback.

Dolbeaut cohomology is the obstruction of a smooth section to being holo-
morphic and has its origin in the Mittag-Leffler problem: let S be a Riemann
surface, i.e. one dimensional complex manifold. A principal part at x € S is a
Laurent series of the form .

Z akz_’c
k=1

10



8 Almost complex structures

with z a local coordinate. The Mittag-Leffler problem then asks given z1, ..., x, €
S and principal parts Pi,..., P., is there a meromorphic function on S with
these principal parts at x;’s?

Take local solutions f; at z;, defined on some U; which form a cover of S
and a partition of unity p; subordinate to the U;. Then Z;Zl p;fj is smooth
on S\ {z1,...,x,.} with prescribed local expression (which is not necessarily
holomorphic).

A calculation shows that g = 5(2;‘ p;fj) extends to a smooth (0, 1)-form

on S. Clearly dg = 0 as 3’ =0so [q] € Hg’l(S). Suppose Hg’l(S) = 0. Then
there is a smooth function h with O0h = ¢ and f = ijjfj — h solves the

Mittag-Leffler problem. In fact it can be shown that this is possible if and only
if[g] =0¢ Hg’l(S) using sheaf cohomology.

3.2 O-Poincaré lemma
Recall Poincaré lemma: if X is a contractible smooth manifold then
Hig(X;R) =0

for i > 0. We'll prove the analogous result for Dolbeault cohomology: a polydisk
is a subset of C™ of the form P = {|z;| < r;} (with r = oo allowed). Have

p,q —
H2(P) =0

ifp+¢>0.

Proposition 3.5. Let D = D(a,r) C C be a disk, f € C°(D),z € D.
Then 1 1 0 d d
A dw
oy L[ )L 0fw) dunds
27t Jop w— 2z 2mi Jp 0w w—2z

This is a generalisation of Cauchy integral formula, with a correction term for
non-holomorphic component.

Proof. Let D, = D(z,¢) and

_ 1 f(w) 1

i Zdw € A(D\ Dg).
Then L 8 d q

dn = B = f(w) dw A dw

Comi 0w w-—=z
so by Stokes’,
1 (w) 1 (w) 1 Of (w) dw A dw

— dw = — dw + ——
271 oD, W — 2 w 21t Jop w— 2 w+27ri D\D. ow w-—z

The first term converges to f(z) as ¢ — 0: set w — z = ce? so

L/ f(w) dw = L f(z+ee)db

21 Jop, W — 2 2 ),

11



8 Almost complex structures

which goes to f(z) as ¢ — 0 since f is smooth.
As dw A dw = —2idx A dy = —2irdr A d6,

laf(w)dw/\dw’ of

%dr A de‘ < C|dr A db)

ow w-—=z

SO

Of (w) dw A dw
/D ow w—z —0

as e — 0. O

Theorem 3.6 (J-Poincaré lemma in one variable). Let D = D(a,r) be a
disk (r < o0) and let g € C*°(D). Then

Flz) = = /Dg(“’) dw A dw € C(D)

211 w— z

and

Proof. First reduce to the case g has compact support. Take zg € D and € > 0
such that
Dgg = D(ZQ7 28) g D.

Using a partition of unity for the cover of D given by {D \ D, Da.}, write
9(2) = 91(2) + 92(2)

where g; vanishes outside Dy, and go vanishes on D..

Define
fa(2) = ! /g2(w)dw/\d@.
D

211 w—z

Then fo(z) is smooth on D, as go vanishes on D.. Differentiate under the
integral sign (as the integrand is smooth), get

0f2(z) _ 1 [ O galw)

0z 27 )Jp0zw—2z

dw A dw =0 = ga2(2).

As g1(2) has compact support we can write

i/ de/\dmzi/wdwmm
D C

211 w— z 211 w—z
1
:7./7gl(u+z)du/\dﬂ
21t Je U

1 . .
- _Z / g1(z +re®)edr A df € C(D)
™ Jc

12



8 Almost complex structures

Define this to be f;. The trick here is that we defined f; in this way so that it
is automatically smooth. Then

Ofiz) 1 [ dgi(z+re?)
_ ﬂ/ci

—i0
5z o7 e "dr Ado

Og1(w) 0z +e?) _,p  Ogi(w) A(z+e ) .,
= —— v Ydr A dé
om0z ° T ow oz v
=1 =0
1 [ 9g1(w) dwAdw
21 Jo Ow  w—z
so by Cauchy integral,
1 g1 (w 8g1 ) dw A dw afl( )
91(2) =
27i Jopw—z w — z 27rz —z 0z
=0 as g1=0 on BD
Setting f = f1 + fo gives
0
%) =90
for z € D.. But zy was arbitrary so this works for all zj. O

In other words, if « = gdz € A?C’l(D) and f is as above, then df = a. Thus
| Corollary 3.7. Hg’l(D) =0.

For the general 0-Poincaré lemma, we shall use multiindex notation: if I =
(I1,...,1)) then

dzy =dzp, A ... Adzp,
fr=frn.n

0 ok

Dz 0z, ...0zn,

and |I| = k.
At some point we are going to extend the result to C™ by taking a sequence
of holomorphic functions. The following result justifies the process:

Lemma 3.8. Let U C C™ be open, B C B’ C U where B, B’ are bounded
polydisks. Then for any multiindices I there is a constant c; such that for
all u holomorphic on U, we have

< C[”u”(jo(B/).
co(B)

H Ozr

Proof. Follows from multivariable Cauchy integral formula, which follows from
the single variable version. O

13



8 Almost complex structures

Corollary 3.9. Let uy be a sequence of holomorphic functions on U with
up — u uniformly on compact subsets of U. Then w is holomorphic.

Proof. By the previous lemma, wu is smooth. Moreover % — % so since
J J
g;‘? =0, Ou = 0 so u is holomorphic. O
J

Then we have the following result due to Grothendieck:
Theorem 3.10 (9-Poincaré lemma). Let
P=P(a,r) ={|zi —ai| <r;} S C"

with r; € (0,00]. Then for all ¢ > 0 we have

That is, if Ow = 0 then exists ¢ with Oy = w.

Proof. We first reduce to p = 0. Indeed if w € A%?(P) is closed then dw = 0 so
we may write

where dp; = 0. Hence if we can find ¢; with 0¢; = ¢; and then

0 Z’(/)[/\dZ[ = w.

|T|=p

Thus we may assume p = 0. The proof consists of two steps.

Step 1 Given w € A%(P), we show that if P’ = P(a,s) with s; < ; neces-
sarily finite then we can find ¢ € A%qil(P’) with 9y = w|pr.

Given a form
w = Z wrdzy,
[I]=¢
we say
w=0 mod {dzy,...,dzx}

ifwr =0unless I C {1,...,k}. Weshall prove that ifw =0 mod {dzy,...,dz;}
then there is 1 € AZY""(P’) such that w — 9y = 0 mod {dz1,...,dZs_1}. By
induction and k& = n being vacuous, this will prove step 1.

So suppose w =0 mod {dzy,...,dzx} and write

w=wi NdZg + wa

where w1y, ws have no dz; terms. Have

wyp = Z w[dfj\{k},u& =0 mod {dfl, .. .,dzk_l}.
I:kel

14



8 Almost complex structures

Since Ow = 0, we have

Qwr _
0%, n
for ¢ > k. Set
Y=Y (D yrdz gy
kel
where _
1 ( ¢ )d§ A dE
= — wr(z1,. .y 26— z cey 2
I 27_[_2 |£|S5k I\<1, s Ak—15GSy fk+1, yon f_Zk;
is given by Cauchy integral formula. Then
Wr _
0z, !
by O-Poincaré in one variable and
Opr _ 1 %(2 21,6, 2 Z)dg/\dg_o
85[ _27_” |£|§8k aze 1y 9 ”Rk—19GQs Rk+1y -3 <n g—Zk -

by assumption. Hence w — 9y = 0 mod dZzy,...,dZx_1.

Step 2 Let r;; be a strictly increasing sequence, 7, — 7 as j — oo for all
k=1,...,nandlet P; = P(a,r;). By step 1 we can find ¢; € Ag’qfl(Pj) with
0v; = w on Pj.

We induct on ¢, leaving ¢ = 1 for last. Since d(¢); — ;1) = 0 on P;, we
can choose ;41 with

VY —¥j41 = 0B
on P;_; by induction (?). Extend 9,41, 8; smoothly to P and set

Gj1 = Vj41 + 0B,
This produces a sequence (¢;) such that

5¢j+1 = w on Pj+1
$j+1 = ¢j on Py
Thus the (¢;) converges to ¢ on P for ¢ such that d¢ = w.

Now consider the case w is a (0, 1)-form, so ;s are functions. We construct
a sequence ¢; on P; such that

5¢j =won P
®j+1 — ¢; holomorphic on P;

l¢j+1 — dillcocp,_y <277

Assuming this, the (¢,) converges uniformly to some ¢ on P. Moreover ¢ — ¢;
is holomorphic on P; as a uniform limit of (¢, — ¢;), all holomorphic following
the corollary. So 9¢ = gqﬁj = w on P}, Hence 0¢ = w on P.

We now construct (¢;). Solve di; = w on P; as before and set ¢; =
¥1. We construct ¢;41, inducting on j. Since 9(¢; — ¥j11) = 0 on Pj, 0; —

15



8 Almost complex structures

;41 is holomorphic on P;. Hence it has a power series expansion valid on P;.
Truncating gives a polynomial -4 such that

165 — ¥jr1 — Virrllcop, 1) <277

Idea: approximate holomorphic by polynomial to arbitrary small error and ex-
tend the polynomial to the entire disk.
Extend -; holomorphically to P; and set

Pj+1 = Vi1 + Vj+1-

Then 0¢j1 = won Pji1, ¢j41—¢; holomorphic on P; and ||¢j41—¢;llcocp,_,) <
277, This ends the proof.

16



4 Sheaves and cohomology

4 Sheaves and cohomology

4.1 Definitions

We now compare Dolbeault cohomology with sheaf cohomology. Let’s begin
with general theory of sheaves. Let X be a topological space.

Definition (presheaf). A presheaf F on X of abelian groups consists of
abelian groups F(U) for all U C X open and restriction homomorphisms

VU - ]:(U) —).F(V)
for all V' C U open with

Twv oTrvu = Twu
rvu = id

One similarly defines presheaves of vector spaces.

Most often F(U) is some class of functions on U with restrictions given
by restricting the functions, which we simply write ryy(s) = s|y. Another
frequent example is given by F(U) consisting of sections of vector bundles. We
call elements of F(U) sections.

Definition (sheaf). A presheaf F on X is a sheaf if in addition

1. for all s € F(U), if U = |JU; is an open cover and s|y, = 0 for all
then s = 0.

87,|UlﬁUJ = Sj|U7;nt

then there exists s € F(U) with s|y, = s;.
Example. The following are sheaves on complex manifolds:
1. CY(U): continuous functions on U.
2. C*°(U): smooth functions on U.
AZUU): (p,q)-forms on U.

-~ w

O(U): holomorphic functions on U.

ot

O*(U): nowhere vanishing holomorphic functions on U.

6. QP(U): holomorphic p-forms on U, which are defined to be sections s €
AP (U) with s = 0.

Definition (morphism of (pre)sheaves). A morphism o : F — G of (pre)sheaves
on X consists of homomorphisms ay : F(U) — G(U) for all U C X open

17



4 Sheaves and cohomology

such that if V' C U open then the diagram

FU) 2% g(U)

J{""VU erU

F(V) 25 G(V)
commutes.

« is an isomorphism if «|y : F(U) — G(U) is an isomorphism for all
U C X open.

Definition (short exact sequence of sheaves). We say that

B

0 F—=g H 0

is a short exact sequence if for all U the sequence

0 —— F(U) 2% gU) 2% #(U)

is exact and if s € H(U) and = € U then there exists a neighbourhood V' of
x and t € G(V) with By (t) = s|v.

Example. The sequence

O Z X271 O exp O* 0

is exact. It is called the exponential short exact squence. Here Z is the constant
sheaf: Z(U) is the space of continuous functions U — Z, i.e. Z-valued locally
constant functions (similarly we define the sheaf C to be continuous functions
U — C with C given the discrete topology).

The exactness of

0 —— Z(U) =225 oU) =22 0*(U)

is clear. If f € O*(U) then one can take a local branch of log on some V C U
to obtain the last condition.

The moral is, we can have local but not global inverse in complex geometry.
For example it is not true that

0 —— Z(A*) 2255 0(A%) 22,5 0%(AY) —— 0

is exact where A* is the punctured disk.
Definition (stalk). Let F be a sheaf on X and € X. The stalk of F at
T is
Fe={(Us):z€eUCX,se FU)} ~
where (U, s) ~ (V,t) if there is W C U NV with s|w = t|w.

A morphism F — G induces a map F, — G,.

18



4 Sheaves and cohomology

Exercise. Show

0 F—=g

is exact if and only if

0 Fo —5 G, L, 0

is exact for all z € X.

Definition (kernel of sheaf morphism). The kernel of o : F — G is the
sheaf defined by

ker a(U) = ker(ay : F(U) = G(U)).

The definitions of cokernel and image are more complicated. See example
sheet.

4.2 Cech cohomology

Our aim is to define sheaf cohomology groups H (X, F) where F is a sheaf on
X, and show that
Hg’q(X) ~ HUX,QP).

We begin with an example. Let X be a topological space with X = U UV

where U,V open. If sy € F(U),sy € F(V), when is there s € F(X) with

S|U = SU7S|V = Sv?

As F is a sheaf, this happens if and only if
SU‘UQV = SV‘UQV-
Define
S: FU)eF(V)—=FUNYV)
(su,sv) = sulunv — svivnv
then F(X) = ker 6.

Notation. If = {U,} is a locally finite open cover indexed by a subset of
N (or any ordered set), we write

Uao N+ NUa, = Uny...ap-
Define
', F)=1[FUa)

C'U,F) =[] FUap)
a<lf

cru,F)= [] FUap. o)

< <ay
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4 Sheaves and cohomology

If o € CP(U,F), we also set
Oag...azoigr-ap = ~Oag...oit1qinop-
We define the boundary map
§:CP(U,F) = CPT U, F)

by
p+1

(6U)a0"'ap+l = Z(_l)jaaonﬂjmawl |Uu0...ap+1 .
=0

Example. Let U = {Uy,Uy,Us}, 0 = {0g,01,02} € C°(U,F). Then do is
given by

(60)o1 = (00 — 01)|vny

(60)02 = (00 — 02)|Uqe

(60)12 = (01 — 02)|U7,

and thus

600 = ((50’)|12 — ((50’)|02 + ((50’)|01
= (0'1 — 0'2) + (CT() — CTQ) + (O’o — 0'1)
=0

which is defined on Ups.

Exercise. Show § o § = 0 in general.

Definition. Let X be a topological space and U be a locally finite open
cover of X. Let F be a sheaf on X. Define cohomology groups

ker(6 : CUU, F) — CHL (U, F))

HIU, F) = im(s : CoL(U, F) — C4(U, F))

Example. Let X = P! with homogeneous coordinates [z : w]. Let

U=A{[z1]:2€C} ={w#0}
V={1:w]:weC}={z#0}

Then U 2 C,V 2 C,UNV 2 C*. Let U = {U,V}, with ordering U < V. Then

CO'(U,0)=0U)®O(V)
ctU,0)=0UnV)

and

§:C°U,0) = CHU,0)
(f,9) = (2= f(z) —g(1/2))
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4 Sheaves and cohomology

so ker § consists of (f,g) such that f = g constant: by writing

flz) = Z anz"
n=0

9(1/z) = Z bn(1/2)" = Z bpz™"
n=0 n=0
it follows that ag = bg and a; = b; = 0 for ¢ > 0. im 0 consists of all holomorphic
functions on C*, again by a Laurent series argument. Thus
H(U,0)=C
H'(U,0)=0foralli>0

We'll see that this computes Cech cohomology H {(PL, 0), which we will define
later.

However, this definition is dependent on the choice of cover. We now take
the direct limit of these cohomology groups with respect to cover refinement.

Definition (refinement of cover). Given open covers U, V, we say V refines
U if there exists ¢ : N — N increasing such that for all 3,

VoVs CUgyp €U.
We write V < U.
If YV < U, we have natural maps
pyvu : CP(U,F) — CP(V, F)

given by
(Pqu)BO»--ﬂp = (U@(ﬁo)“'ﬁp(ﬁp))‘VBU”-BIJ'

One sees pyy © 6 = d 0 pyy S0 pyy induces a homomorphism
p:HIU,F)— HIV,F)

for all g. One can check that this is independent of .

Definition (Cech cohomology). Define Cech cohomology to be the direct
limit §
HY(X,F) = HQHQ(UJ:).
u
Note that we omit the check symbol.

A quick recap of direct limit: if I is a partially ordered set, G; is an abelian
group for all ¢ € I with maps ¢;; : G; = G; for i < j with

Pij © Pik = Pik;
then the direct limit is defined to be

lim G = pai/~

I icl
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4 Sheaves and cohomology

where if g; € Gy, g; € G then g; ~ g; if and only if there is k with ¢, 7 < k such
that
eik(9:) = ¢jr(g5)-

The direct limit is an abelian group.

Thus elements of H?(X,F) are represented by {oay...a,} € H?(U,F) and
equality is checked on a common refinement.

We’ll see that

HY(X,0) = HIU,O)

when each intersection of the U; is isomorphic to a polydisk.
Example.
1. HYU,F) = F(X) for all U so
HY(X,F) = F(X),
the global sections.

2. We show HY(X, A¢") =0 for all ¢ > 0. Let [o] € HY(X, Ag") be repre-
sented by o € C9(U, Ag”) for some U with do = 0.

Let p, be a partition of unity subordinate to U = {U,}. Define

7'040...0411_1 = Zpﬁaﬁao---aq_1
B

and extend by 0 to Uyg...a,_, s0 7 € CT (U, Ag®). We prove the special
case where U = {U,V,W}, [o] € H' (U, Az"). Have

boc =oyy —oyw +ovw =0

TU = pvovu + pwowu

TV = pvovyu + pwowv

W = puouw + pvovw

Then
(6r)vv =T1v — U0
=pvovu + PWOwWV — PvOvVU — PWOWU
=pvovu + pvouv + pwowv — PwWOwWuU
= (pu + pv + pw)ouv  use cocycle condition

=ouv

The general case is an exercise on example sheet 2.
Similarly H9(X, AE) = 0 for all ¢ > 0.

4.3 Short exact sequence of sheaves

Let 5 : F — G be a morphism of sheaves. Then /8 induces C?(U, F) — CP(U, G)
for any U. These maps commute with J so induce maps

8" HP(X,F) - H?(X,G).
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4 Sheaves and cohomology

Suppose we have a short exact sequence of sheaves

0 e r-Lsg 0
we get maps

o HP(X,E) — HP (X, F)
" HP(X,F) — H(X,G)

This induces a long exact sequence of homology groups. Explicitly, we define

coboundary maps
5" HP(X,G) — HPTH(X, €).

Given o € CP(U,G), assume for now we can find a refinement V of U and
7€ CP(V,F) with (1) = pyyo. As do =0,

5(57') =081 = dpyyo = pyydo = 0.
Thus we can find u € Cp+1(V, £) such that ap = é7. Then
Ck((s,u) = (5a’u, =821 =0.

Since « is injective, du = 0. This defines 6*[o] = [u] € HPT(X, E).

Theorem 4.1. Given a short exact sequence of sheaves on X

0 2,5 P.g 0

the morphism 0* is well-defined and there is a long exact sequence of coholo-
mogy groups

IO(X, &) —* HO(X,F) -2 HO(X,G

T2 (X,6) — ...

We won’t prove this in general, but for all sheaves in this course, it is an
implication of the following stronger condition: for any open cover U there exists
a refinement V such that

0 EWV) FV)— G(V) — 0
is exact for all V' € V. In this case the theorem is an exercise.

We say that
Fi SN Fy X ...
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4 Sheaves and cohomology

is a complex of sheaves if a;11 0 ; = 0 for all i. We say that a complex is ezact
if
0 — keray — F; — kera;41 — 0

is a short exact sequence for all i. Equivalently the induced sequence on stalk
is exact everywhere.

4.4 Dolbeault’s theorem

Theorem 4.2 (de Rham). If X is a smooth manifold then
Hix(X;R) = HY(X,R).

Remark. It follows that

HZ(Xv R) = Hsllng(Xa R)
where HY ,(X;R) is the singular cohomology.

Proof. By Poincaré lemma, the complex

0 R A0 4y o1 4 g2

is exact. Note that A is the sheaf of smooth functions and AP is the sheaf of
p-forms and d is the usual exterior derivative. That is, for all p, if ZP = ker(d :
AP — APT1) we have exact sequences

0 R A° zZ! 0

0 zZr=1 AP~ —— 2P — 0

We saw that H4(X,.AP) =0 for all p > 0,¢q > 0.
The long exact sequence associated to the first short exact sequence gives

HP(X,R) = HP1(X,2Y)  as HP(X,A%) = HP (X, A%) =0
~ gP—%(X, 2?)

~

~ Y (X, 2P Y

Since
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is exact, we have

1 17\ A HO(X,zP 440, ¢ 7P
702 % ity A = g = TR

Theorem 4.3 (Dolbeault). If X is a complex manifold then
q P\ o~ f7P:q
HY(X,Q )_H5 (X)

where QP(U) = {o € AZ°(U) : o = 0}.

Proof. Similar to de Rham’s theorem but with 0-Poincaré lemma instead. We
have an exact complex

0 8 1 )
0 v AP AP,

by the -Poincaré lemma. We write 277 = ker(d : AZ? — AZY™). Thus we
have exact sequences

0 or AP0 zZrl 0

0 s Zpq—1 s APa—1 ZP:q 0

as any open set in X has an open subset biholomorphic to a polydisk.
It follows that H*(X, Ag") = 0 for all ¢ > 0, for all r,s. Argue as in de
Rham’s theorem,

HY(X,QF) = HI71(X, zPh)

o~

~ HY(X, 2Pt
HO(X, ZP9)

T O(HO(X, ALTT))
2ZPa(X)

T 9AT(X)

= HZ(X)

4.5 Computation of Cech cohomology

The direct limit in the definition of Cech cohomology means that it is very
difficult to work out the cohomology directly. However, in a previous example
we claimed that H'(P', O) equals to H*({P'\ {0},P'\ {c0}}, ), which can
then be computed manually. This is due the following theorem:
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4 Sheaves and cohomology

Theorem 4.4. Let X be a complex manifold. Suppose U is an open cover
with H?(Uyy.-.a,, O) =0 for all p > 1 and all o, ..., 5. Then

HP(X,0) = HP(U,0).

Remark. By Dolbeault, the hypothesis is satisfied whenever each intersection
is biholomorphic to a polydisk.

Proof. The idea is to manipulate both sides into zeroth cohomology, where both
sheaf and Cech cohomology can be interpreted as global section. We have

H' (Uayass 2°77) = HY'(Ung-a,) = H(Uag 0, O) = 0.
Thus
0 —— 299 Y Uppoa,) —— AXT N Uspoa,) — 2%UUpy.a,) — 0
is exact. It is true for all intersections so we have a short exact sequence
0 —— CP(U, 2% 1) —— CP(U, AL —— CPU,2%9) —— 0
In the induced long exact sequence, HP(Z/I, A%4) =0so forallp>1,q>1
HP (U, 2%9) = grtiy, 209,
Argue as before,

HP(U,0) = H"(U, 2°°)
~ g U, 20

=~ H'(U,Z"1)
" H' (U, 2071 = _2Y) HYP(X) = HP(X,0).
7 O(A”P=1(X)) 0 ’
O
Remark. It also shows that under the same hypothesis,
HY(X,0P) = HY(U,QP).
Example.
HY(C",0) = H(C") =0
for all ¢ > 0.
Remark.
1. One can show if H?(U,, Q) = 0 for all U, € U (no higher intersections)
then

HP(X,0) = HP(U,O).

See Voisin Section 4. So if X is projective then one can take U to be a
cover by affine subvarieties. When X is not projective, one can take a
cover by Stein manifolds, which are the complex manifold version of affine
subvariety.
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4 Sheaves and cohomology

2. HP(X,Z7) = HF

sing

(X;2).

3. One usually cares about H°(X,F), the global sections, and the H'’s are
viewed as obstructions. For example, in short exact sequence, Mittag-
Leffler problem. Another reason to care about H® is the Fuler character-
istic

X(X, F) = (~1)"dim H'(X, F)
K3
which is additive in short exact sequences and satisfies good properties.
For example it is usually constant in families so can be computed geomet-
rically, while H? is not. Lastly, H! is also “geometric”.
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5 Holomorphic vector bundles

5 Holomorphic vector bundles

Definition (holomorphic vector bundle). Let X be a complex manifold.
A holomorphic vector bundle on X is a complex manifold F with a (holo-
moprhic surjective) map 7 : E — X and the structure of an r dimensional
complex vector space on every fibre 77! (z) = E, satisfying: there is an open
cover {U,} of X and holomorphic isomorphisms ¢, : 771 (U,) — Uy x C”
commuting with projections to Uy, such that the induced map E|, = C" is
C-linear.

Definition (line bundle). A (holomorphic) line bundle is a holomorphic
vector bundle of rank 1.

Any holomorphic vector bundle induces a complex vector bundle but not
vice versa.

Definition (morphism of vector bundles). Let g : E — X,7np : F — X
be holomorphic vector bundles. A morphism f : E — F is a holomorphic
map such that

1. tpof=fomg.
2. the induced map f, : E, — F} is linear.

3. rank(f,) is constant.

A morphism is an ¢somorphism if f, is an isomorphism for all z € X.

Remark. In differential geometry one usually does not required 3. We include
it to take kernel and cokernel bundles.

Next up is a review of differential geometry. For a holomorphic vector bundle
E, its transition functions

Pap = Pa 0@y : (UaNUg) x C" = (Usy NUp) x C"
can be seen as holomorphic maps
Yap : Ua NUg = GL,(C).
They satisfy the cocycle conditions
Yoo = id
Pap = @,E;
PapPpyPra = id
which should remind us of cocycle conditions in Cech cohomology.
Proposition 5.1. Given any open cover X = |J U, and holomorphic maps

Yap : Us NUg — GL,(C) satisfying the cocycle conditions, there is a holo-
morphic vector bundle with these transition function.
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5 Holomorphic vector bundles

Proof. Same as in III Differential Geometry. O

Given E and a cover U = {U,} with trivialisations ¢, : Fly, — U, x C",
the transition functions

{vap =aops'} € C*(U,GL,(C))

satisfy the cocycle conditions, i.e.

({pas}) =0

so we obtain an element [p¥] € H'(X,GL,(C)) (viewing GL,(C) as a group
under multiplication)!. We now specialise to line bundles so GL,(C) = C* so
they are abelian. In particular we have

H'(X,GL,(C)) = H'(X,0").

Proposition 5.2. There is a canonical bijection
{holomorphic line bundles up to isomorphism} <+ H' (X, O*).

Proof. We have already constructed maps in each direction. Suppose L = F are
isomorphic line bundles. Choose a cover U = {U,} trivialising both by taking
their common refinement. We have isomorphisms

Yo : Ly, = Uy xC

0u: Fly, 5 Uy xC

giving @ag,00s as before. We have an isomorphism f : L — F, giving f, :
L|U(y — F|Ua~ Define

hazaafago;l Uy xC— U, xC,
which can alternatively be seen as a section of O*. Moreover
(0h)ap = hahyz'
= 0afapa'sls o5’
= aafa@ﬁafﬁ_lo'ﬁ_l
= Ua@ﬂafaff;logl
= O’agtp;é as J”aj”[;1 =id

as multiplication in C* is commutative. Thus [o] =
Conversely, let L and F be line bundles with [¢]
means that there is h = {h,} € C°(U, O*) with

[r] € H'(X,0%).
= [0] € HY(X,0*). This

(6h)ap = CapPmp-

INote that GL,(C) is not abelian for » > 1, and it is not immediately clear what the cor-
responding Cech cohomology should be. However, we’ll restrict our attention to line bundles
in this course.
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5 Holomorphic vector bundles

Let
fa =03 hatpa : Llu, — Flu.,.
We claim the f,’s induce an isomorphism f : L — F| i.e. fafg1 =idon U,NUg.
Indeed
fafﬁ_l = Uczlha@agpglhglaﬁ =id

as before. ]

Note that we did not use any properties of holomorphicity so analogous
results hold in smooth/analytic categories.

Remark. A similar result is true for vector bundles of all ranks, with the right
definition of Cech coholomogy for sheaves of (non-abelian) groups. See course
website.

Definition (Picard group). We define the Picard group Pic(X) to be the
set of line bundles on X up to isomorphism.

Proposition 5.3. Pic(X) is a group under tensor product of line bundles
and

Pic(X) = H'(X,0%).

Proof. Easiest proof is using transition functions. The transition functions for
L ® F are
Paf Q@ Oap € O*(Ua n Uﬁ)

so L@ L*2Q0Oand L O = L. O
Example. Any linear algebra operation gives an operation on vector bundles:
1. E® F: transition functions are p,3 @ 0o € GL,+,(C).
2. E® F: transition functions pas ® 0. € GL(C" @ C").

3. AFE: transition functions A*¢as. If k = r we write A"E = det E.
If

0 E F G 0

is a short exact sequence of holomorphic vector bundles then

det F' =2 det F ® det G.

Example. If f : Y — X is a morphism, £ — X is a holomorphic vector bundle
then one obtains the pullback bundle f*E — Y by simply pulling back transition
functions. We write Ely if Y C X for the pullback under the inclusion map.

Definition (section). A (holomorphic) section s of a vector bundle 7 : E —
X over U C X is a holomorphic map s : U — E with m o s = id. We write
O(E) for the sheaf of holomorphic sections of E.

Note that the sheaf of holomorphic functions O can be seen as the sheaf of
sections of X x C, which we have implicitly used in the proof above.
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5 Holomorphic vector bundles

Definition (subsheaf). If F is a sheaf on X and U C X open then the
subsheaf of F on U is F|y(V) = F(V) for all V C U open.

Definition (locally free sheaf). A sheaf F is locally free of rank r if for all
x € X there is an open set x € U C X open with

Flu 2 0% |y.

Proposition 5.4. Associating to a holomorphic vector bundle its sheaf of
sections gives a canonical bijection between

{wector bundles up to isomorphism} > {locally free sheaves up to isomorphism}.

Proof. Clearly the sheaf of sections of F is locally free as E is locally isomorphic
to U, x C" by definition. Conversely, if we have trivialisations

Po ]:|Ua - O®T|Ua
then the transition maps
= a0yt 0% (U, NUs) — O (U, NUp)
Pap = Pa Py - a B a B)s

which are isomorphisms by definition, are given by a matrix of holomorphic
functions on U, N Usg, giving a cocycle and hence a holomorphic vector bundle.
Checking these maps are inverses to each other is straightforward. O

Thus for a holomorphic vector bundle E, we define its cohomology to be the
cohomology of its sheaf of sections

HY(X,E)=H'(X,0(F)).

Example (holomorphic tangent bundle). Recall TX!? the holomorphic tan-
gent bundle. We show this indeed is a holomorphic vector bundle.
Let X = JU, be an open covering by chart neighbourhoods (U,, ¢.). The
Jacobian of a transition map is
vs <z>> s

Then by example sheet 1 Q1, TX° has transition functions

o Y
T(as)(z) = ( el

wa,@ = J(@aﬁ) € GLn((C)(Ua N Uﬂ)

Definition (canonical line bundle). The canonical line bundle of X is de-
fined to be
Kx =detT* X"
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5 Holomorphic vector bundles

Example (tautological line bundle). We construct line bundles on P". Each
point ¢ € P" corresponds to a line through 0 in C"*!. Consider the set

O(=1) = {(£,2) € P" x C™+' : 2 € ().

We claim that this is a holomorphic line bundle O(—1) — P™. Let P* =
Ui _o Ua be the standard cover. A trivialisation of O(—1) over U, is given by
VYo : T HUy) = Uy x C

(4, 2) = (4,24)

The transition functions are

Yap(l) :C—C

itl=1[0: - : 4]
Need to check O(—1) is a complex manifold. If (U,,¢s) is a chart on P”,
define chart
Pa = (pa x id) 01hy : 7 H({Uy) — C x C™.

O(-1) is called the tautological line bundle. O(1) = O(—1)* is the hyperplane
line bundle. Finally define
O(k) = O(1)%k
O(—k) = O(=1)®*
00)=0
We will show Pic(P") & Z with generator O(1).

Example. If X is projective, X C P™, then X has a natural line bundle

We now relate sections of line bundles, codimension 1 submanifolds and
meromorphic functions.

By implicit function theorem, a subset Y C X is a closed complex manifold
if and only if for all p € X there exists a chart neighbourhood (U, ¢) of p and
holomorphic functions fi,...,fr : U — C such that 0 is a regular value of

(fiop™, ..., frop™) and

k
YU =()#40.

i=1
Recall that if U C C" is open, f : U — CF holomorphic then

J(f)(z) = (Sf;m) 1<a<k’

1<B<n

z € U is regular if J(f)(z) is surjective. If every point z € f~!(w) is regular, w
is a called a regular value.
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5 Holomorphic vector bundles

Definition (analytic subvariety). Let X be a complex manifold. An ana-
lytic subvariety of X is a closed subset Y C X such that for all p € Y, there
is a neighbourhood U of p in X and holomorphic functions fi,..., fx with

k
YU =()f0).

=1

Say y € Y is regular or smooth if one can choose the f;’s such that 0 is
regular.

By implicit function theorem, if Y® denotes the points which are not regular,
then connected components of Y* =Y \ Y*® are naturally complex manifolds.

Definition (irreducible). An analytic subvariety Y is irreducible if it cannot
be written as Y = Y; UY; where Y7,Y5 are analytic subvarieties with Y #
Yia Y 7& Y2-

Definition. For Y an irreducible analytic subvariety, we define

dimY =dimY™.

Similarly if each irreducible compoenent has the same dimension.

If codimY =1 then Y is an analytic hypersurface.
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6 Commutative algebra on complex manifolds

Recall that if F is a sheaf on X and z € X we denote by F, the stalk of F at
x.

On C™ denote by Ocn the sheaf of holomorphic functions and set O, =
Ocn o. Elements of O,, are of the form (U, f) where 0 € U and f € Ocn(U),
and (U, f) = (V, g) if there is an open W C U NV such that flw = g|w.

If X is an n-dimensional complex manifold, Ox is the sheaf of holomorphic
functions. Have Ox , = O,, for any x € X. We call elements of Ox , germs of
holomorphic functions.

O,, is a local ring, in the sense that it has a unique maximal ideal {f : f(0) =
0}: functions not vanishing at 0 are invertible. These are the units of the ring.

We now state several results about O,,, proved using commutative algebra
and complex analysis. We shall not prove them but proofs can be found in
Huybrechts Chapter 1.

| Theorem 6.1. O,, is a UFD.

Theorem 6.2 (weak Nullstellensatz). Let f,g € O,, with f irreducible, U a
neighbourhood on which f,g are defined. Suppose {f =0}NU C {g =0}NU
then f divides g in O, i.e. % is holomorphic near 0.

Definition (thin). Let U C C™ open. Call a set V C U thin if V is locally
contained in the vanishing set of a set of holomorphic functions.

Theorem 6.3.

1. Suppose f € O, is irreducible. Then there is a thin set V of codi-
mension 2 and an open set U such that f € O is irreducible for all

peU\V.

2. If f,g € O, coprime then there are U,V as above such that f,g are
coprime in Op for allp e U\ V.

Remark. Huybrechts Proposition 1.1.35 claims that one can take V = (), but
this is false by counterexample: y? — x2? is irreducible at 0 € C3 but not at
(20,0,0) for xg near 0. Instead the proof shows the statement above.

Definition (local defining equation). Let X be a complex manifold and Y C
X an analytic hypersurface. If p € Y then there is an open neighbourhood
peUCX and f e Ox(U) withYNU = f~10)NU. Such an f is called
a local defining equation for Y.

If f and g are both defining equations for Y and f = f1-- - fn, 9 =91 9m
where f;, g;’s are irreducible then by UFD and weak Nullstellensatz f; = g; and
n=m.
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6 Commutative algebra on complex manifolds

Theorem 6.4. Let Y be an analytic hypersurface. Then Y™* is an open
dense subset of Y. Y™ is connected if and only if Y is irreducible. Y* is
contained in an analytic subvariety (of X ) of codimension at least 2.
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7 Meromorphic functions and divisors

Definition (meromorphic function). Let X be a complex manifold and
U C X open. A meromorphic function on U is a map f : U — HpeU K,
where K, is the field of fractions of O, such that for all p € U, f(p) € K,
and there is a neighbourhood V' C U of p and g,h € Ox (V) with f(q) = £
forall g e V.

We denote by K the corresponding sheaf, and K£* the sheaf of meromor-
phic functions not identically 0.

Exercise. Equivalently, one can specify f|y, = #* where go, ha € O(Ua).

A meromorphic “function” is undefined (even as co) at point p where g(p) =

h(p) = 0.

Definition. Let Y C X be an analytic hypersurface, p € Y regular, f a
local defining function at p. For g € Ox ;,, we define the order of g along Y’
at p to be

ordy,,(g) = Igléxé({a : f divides g in Ox p}.

It is well-defined as Ox ;, is a UFD and is finite.

Lemma 7.1. There is a neighboudhood U of p, a thin set V' of codimension
2 such that if g € (U\V)NY then

OrdY,p (g) = OrdY,q (g) .

Proof. Use Theorem 6.3. O

Definition (order). We define the order of g along Y, Y irreducible to be

ordy (g) = ordy,(g)
for any p € Y* away from the thin set in the lemma.

Here we used Y* is thin and V has codimension 2 in X.
If g, h are holomorphic around p then

ordy (gh) = ordy (g) + ordy (h).

Definition (order). Let X be a complex manifold, f meromorphic not
identically zero. Let Y be an irreducible analytic hypersurface. We define

ordy (f) = ordy (g) — ordy (h)
where f = { at some regular point of Y.

This is well-defined by additivity of ord.
If d = ordy (f) > 0, we say that f has zero of order d along Y and if d < 0,
we say that f has a pole of order d along Y.
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7 Meromorphic functions and divisors

Definition (divisor). A divisor on X is a formal sum

D= Z%Ya

with a, € Z, Y, irreducible analytic hypersurface, such that D is locally
finite (if € X then there is a neighbourhood V of z € X with Y, NV =0
for all but finitely many «).

We say D is effective if a, > 0 for all a.

Example. If dim X = 1 then this is a collection of points with some multiplic-
ities.

Definition. If f € H(X,K*), we set

(f) = ordy(f)Y

summing over all Y C X irreducible analytic hypersurfaces.

This is locally finite as given € X with f = £, there are only finitely many Y
with ordy (g) # 0 (writing ¢ as a product of irreducibles).
Note (f) is effective if and only if f is holomorphic.

Definition (principal divisor). We call a divisor D principal if D = (f) for
some f € HO(X,K*).

We say D, D’ are linearly equivalent if D — D' is principal. We write
D ~ D'. This is transitive because (f) + (g) = (fg).

There is an inclusion of sheaves O* — K* as every holomorphic function is
meromorphic. Thus we obtain K*/O*, the quotient sheaf, by sheafifying the
presheaf U — K*(U)/O*(U).

A global section f € HY(X,K*/O*) thus consists of an open cover {U,} of
X and meromorphic functions f, € K*(U,) with

fa

c 0" (U, NU,
T s ( 5)

when U, NUg # 0.

Proposition 7.2. There is an isomorphism
HY(X,K*/0%) = Div(X).

Proof. Let f € H°(X,K*/O*) be given as above. If Y is an irreducible analytic
hypersurface with Y N U, N Upg # 0, we have

ordy (fa) = ordy (f3)

as ordy(];—‘;) = 0 since ;—Z € O*(U,NUg). Thus we may define

ordy (f) = ordy (fa)
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7 Meromorphic functions and divisors

for any U, with Y NU, # 0. This gives a map
HY(X,K*/O0*) — Div(X)
f) ordy (N)Y

Clearly this is a group homomorphism by additivity of ord.
We next construct an inverse. Suppose D = > a,Y,. Counsider Y,,. Then
there is an open cover {Us} of X and gnp € O(Ug) such that

Yo NUs = g,5(0)

(with, say, gapg = 1 if Y, NUg = 0) Set
fs = HQZ}

a finite product as divisors are locally finite. Since gog and g, define the same
hypersurface on Ug N U, we have

Job e 0" (Us N U,).
Gay

Thus the f5’s glue to a section of H(X,K*/O*).
The maps are clearly mutual inverses. O

We shall say D € Div(X) is given by local data (U, f.) using this construc-
tion.

Theorem 7.3. There exists a natural group homomorphism

Div(X) — Pic(X)
D~ O(D)

defined as below, whose kernel is percisely the principal divisors.
Proof. Let D € Div(X) given by local data (U,, fa). Let

fa s
gﬁagiTGO (UO,QUB)
B

These then satisfy the cocycle condition (¢ag@sy¥Pya = 1), so gives an element
of Pic(X) = HY(X,0*). We check this is well-defined: if (U,, f/,) is alternative
local data then f, = s, f} with s, € O*(U,). The new transition functions are

)
90:1[3 = Pap -
Sa

Then (U,, z—i) satisfy the cocycle conditions, giving a line bundle L with a
nowhere vanishing section s induced by s,’s. The line bundles defined by
(Uas pap) and (U, ¢,,5) are H and H' and

HH ®L
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7 Meromorphic functions and divisors

as go’aB = apagz—" and transition functions for tensor products are products of
transition functions.
That this is a group homomorphism is clear: if D, D’ given by local data
(Ua, fa), (Uas, f5,) then D + D' is given by (Ua, fa f/,) s0
O(D+D')=20O(D)®O(D").

To prove the statement about kernel, suppose D = (f) where f € H°(X,K*)
then we can take (U,, fo) to be the local data. Then

fa .
Pa ==id
"7 Ts

on Uy NUg, so O(D) has trivial transition functions and hence

O(D) = 0.

Conversely suppose O(D) = O. let s be a global nowhere holomorphic
section. Suppose O(D) has transition functions {(Uy, ¢as)}, so D is given by

{(Uaafa)}' such that Papf = % Set S|Ua = Sq, SO

Sa = PapSp

(this is elaborated upon in example sheet 3) then

58 _ pag = 12

ag " fs
Thus ¢ defined by g|y, = g—a is a well-defined global meromorphic function
on X, as g—“ = i% on U, NUg. Then D = (g) since the s,’s are nowhere
vanishing. O

Exercise. Show that there is a short exact sequence

0 0* K K*/OF —— 0

and use the long exact sequence in cohomology to give another proof of the
above. See example sheet 3.

Proposition 7.4. To any 0 # s € H°(X, L) there is an associated Z(s) €
Div(X).

Proof. Fix a trivialisation {(U,, ¢a)} for m: L — X, 50 g : 71 (Uy) — Uy x C
is an isomorphism with cocycles {(Uq, vag)}. Set

fa = ¢a(slv.) € O(Ua)
not identically zero. We thus have
fafit = ealslu)es(slu,) ™" = pap € O (Ua NUp).
Thus one obtains Z(s) € Div(X) as {(Ua, fa)}- O
In addition Z(s1 + s2) = Z(s1) + Z(s2).
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7 Meromorphic functions and divisors

Proposition 7.5.
1. Let 0 # s € H(X,L). Then

2. If D is effective then exists 0 # s € HY(X, O(D)) with Z(s) = D.
Proof.

1. Let L have trivialisations {(Ua, ¢o)}. Then Z(s) is given by f € H°(X,K*/O*)
where

fo = flu. = palslu,)-
Then O(Z(s)) is associated to its cocycle {(Us,, fafﬂ_l)}. But

faf5' = alslu,)es(slus) ™! = ¢ap

as above.

2. Let D € Div(X) be given by {(Uq, fo)} where fo, € K*(U,). As D is
effective, the f,’s are holomorphic. The line bundle O(D) is associated to

the cocycle {(Uy, pup = ;—;)} The f, € O(U,) glue to a global section
s € HY(X,0(D)) as fo = papfs-
Moreover

Z(s)lv, = Z(slv,) = Z(fo) = DN V.
O

Note that s is not unique: if A € H°(X,0*) (for example A € C*) then
Z(As) = Z(s).

Corollary 7.6. If0# s € H°(X,L),0 # s’ € H(X, L") then
Z(s) ~ Z(s")
if and only if L= L',
Proof. Follows as O(Z(s)) =2 L and O(D) = O if and only if D is principal. [

We conclude this chapter by a few remarks that will be useful for the follow-
ing chapter on Kéahler geometry. Recall the exponential short exact sequence

exp

0 7 X2 0 O~ 0

which induces a long exact sequence in sheaf cohomology. In particular, as
Pic(X) = H' (X, 0*), we have a map

c1 : Pic(X) — H*(X,Z).
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7 Meromorphic functions and divisors

Definition (first Chern class). For L € Pic(X), we call ¢;(L) € H*(X,Z)
the first Chern class of L.

We'll return to Chern classes later.
Recall that X is projective if it is biholomorphic to a closed submanifold of
P™ for some m.

Definition (ample line bundle). We say that a line bundle L on X is ample
if there is an embedding ¢ : X < P™ for some m and k € Z~( such that

L®% = *(0(1))
where O(1) is the hyperplane line bundle on P™.

Ampleness is a central property in algebraic geometry. Much of the rest
of the course will aim to characterise ampleness in terms of complex differen-
tial geometricaly, specifically through Kéahler metrics, which give a differential
geometric interpretation of ampleness.
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8 Kdhler manifolds

8 Kahler manifolds

Our goal is to put Riemannian metrics on complex manifolds which interact well
with the complex structure. Just as complex structure, we begin by exploring
the interaction of inner product and complex structure on a vector space.

Let V be a real vector space. Let J: V — V be a complex structure and let
(-,-) be an inner product on V.

Definition (fundamental form). We say (-, -) is compatible with J if
(Ju, Jv) = (u,v)

for all u,v € V. In this case the fundamental form w is

w(u,v) = (Ju,v).
Note that w is antisymmetric:
w(u,v) = (Ju,v) = (—u, Jv) = —w(v,u).

We now extend to the complexification Ve = V ®g C. The inner product
extends to a Hermitian inner product

(i, ) = N, )
where \,u € C,u,v € V and using that any o € V¢ can be written as a =
a1 +iag where ap, s € V. w extend to an element w (by abuse of notation) of
A2V,
Lemma 8.1.

1. The decomposition
VC _ Vl,O e VO,I

is orthogonal with respect to (-, )c.

2. we AV
Proof.
1. Take u € V10, v € V%1 so Ju = iu, Jv = —iv so
(u,v)c = (Ju, Jv)c = (iu, —iv)c = i*(u, v)c = —(u, v)c
so must be 0.
2. Take u,v € V1.0, Then
w(u,v) = w(Ju, Jv) = w(iu,iv) = —w(u,v)

so is 0. Similar for Vo1,

O

It is easy to see that this generalises in case of manifolds. Recall from III
Differential Geometry
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8 Kdhler manifolds

Definition (Riemannian metric). A Riemannian metric g on X is a section
of T* X ® T*X such that for all x € X,

0o ToX x T,X - R

is an inner product.

Definition (fundamental form). A Riemannian metric g is called compatible
with an almost complex structure J if for all z € X, the inner product g,
on T, X is compactible with J, : T, X — T, X. In this case one define the
fundamental form w by

w(u,v) = g(Ju,v).

w extends C-linearly to w € A1T*X. The extension gc of ¢ gives a hermitian
metric on (TX)c and hence on TX 0.

Suppose on X we have holomorphic coordinates z1, ..., z,. Thendz,...,dz,
form a local holomorphic frame for T* X0, Let

9 9
0z Oz,

hjr = 2gc( )-

Exercise. Show that (h;;) is a Hermitian matrix and

{ _
w = 3 Z];hjdej A dZg.
s

Definition (Kéahler form, Kéhler class). We say that w is a Kdhler form or
Kihler metric if dw = 0. We say [w] € H?>(X;R) is a Kdihler class.

Example.

1. On C™ with coordinates z1,..., z,,
i n

W = 5 Zl de A dfj
=

is a Kahler metric.

2. By a standard partition of unity argument, any complex manifold admits
a hermitian metric. Alternatively, if g is any Riemannian metric then
define

9(u,v) = g(u,v) + g(Ju, Jv)

which is compatible with J, giving a hermitian metric. The only obstacle
to being Kahler form is closedness. If dim X = 1 then every (1, 1)-form is
closed, giving lots of Kéahler forms.

Note that any two of g, J,w determine the third.

Remark. For those taking III Symplectic Topology, any Kéhler metric induces
a symplectic form. Thus Kéahler geometry lies in the intersection of complex
geometry, Riemannian geometry and symplectic geometry.
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8 Kdhler manifolds

So far the requirement of closedness seems quite arbitrary, but we’ll soon
prove that all projective manifolds are Kéhler.

Example (Fubini-Study metric on P"). Let U C P" be open and m : C*1\
{0} — P" be the natural projection. Suppose s : U — C"*! is a holomorphic

section of 7, i.e. m(s(z)) = z for all z € U. Let U; = {[z0 : -+~ : 2] : z; # 0}.
Then on Uy,
20 Zj—1 Zn
e zp)=(—, .., 1,0, —).
R
Let

i
wrsly = 0D log]|s|1

where ||-|| is the Euclidean norm on C"!. We need to check this is well-defined,
closed and positive definite.

Choose another s’ defined on U’. Then s’ = fs for some f € O*(UNU’),
by the same argument as in the construction of line bundle and

i 5 nme _ L 5 211612
500 log|s'[|* = —0dlog(|f|*[s[|*)

1 —
= 5-00(log || +log]s]|*)
™

= wrslu
as B B
i00(log f +1log f) = 0.
Next, note
Zups = 5 (0+ D)0 — 0) log]|s||* = 5 (@ — ) log]|s|
s 27
SO

~d(d(m— 2y _
dwps—4wd(d(8 0)log]|s||*) = 0.

The tricky part is to show positive definiteness, which is a local condition.
We locally write

{ _
Wrs = 5 Z hjdej A dZg

and need to show (h;i) is a positive definite Hermitian matrix. We work on Uy
(proof for Uj is identical). Set w; = z—é Then

7 —
wrs|t, = 5-00log(1+ > Jw;l?)

- 50 (775
i (Zdwj A dw, (ijdwj)A(Zwkdwk)>

2w \ L+ fwy? (14> [wy[?)?
i (1+ 3 [wel*) 85 — Wjwi _
[ dw; AN d
|\ % el

= ihjkdwj A diw,
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8 Kdhler manifolds

If 0 # u € C™ then (ignoring the positive denominator)

u (hjp)a = (u,u) + (w,w)(u,u) — u’ ww' 7
= (u,u) + (w, w){u, u) — (u, w){w, u)
= <uﬂu> + <waw><u7u> - |<wﬂu>|2
>0

By Cauchy-Schwarz.

Proposition 8.2. Let (X,w) be a Kdhler manifold. Then any complex
submanifold v : U — X is Kahler.

Proof.
d(t*w) = ¢*dw = 0.

Positive definiteness is clear. O

| Corollary 8.3. Any projective manifold is Kdhler.

This is also precisely the intuition we should have when dealing with Kéhler
manifold: that is, they are the closest thing to projective manifold (the class
of Kédhler manifolds is strictly larger, but they share many similarities with
projective manifolds).

Using the hermitian metric » = gc on TX'? choose a unitary frame
{p1,. ., pn} of T* X0 on a neighbourhood U of z € X, so that

h:Z¢j®¢j-

Let n; = Rep;,&; = Im ;. One checks

g=Re(d (0 +1i&) @ (n; — i) =Y _nj @n; +& @
with volume form
dVol=m A& A A A&y
On the other hand
) . . 1
= 5. 2. +i&g) Ay — i) = EZﬂjAﬁj

SO
n

Y avol
n!

/w">0
X

when this is defined, for example when X is compact.

(up to 27). Thus

Proposition 8.4. If X is compact Kahler then

dim H3%(X;R) > 0.
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8 Kdhler manifolds

Proof. Let w be a Kéhler metric and 7 = w?. Then d7 = 0 as dw = 0 so
[7] € H3% (X;R). Suppose 7 = do where o € A29"'(X). Then

/w”:/w"*q/\T:/d(a/\w’“q):O
X X X

by Stokes’ theorem, a contradiction. O

Thus there is a topological obstruction for compact complex manifolds to be
Kéhler. For example Hopf surface on example sheet 3.

Remark. We saw that every (smooth) projective manifold is Kahler. Recall
that for L € Pic(X) we defined the first Chern class

ci(L) € H*(X;Z) C H*(X;R).

Kodaira embedding theorem states that on a compact complex manifold, a class
o € H?(X;Z) is a Kihler class (i.e. there is a Kihler metric w € «) if and only
if o =c¢1(L) for L € Pic(X) ample. This gives a complex differential geometric
interpretation of ampleness and characterises which compact Kéhler manifolds
are projective.

Proposition 8.5. Let w be a (1,1)-form associated to a hermitian metric
h on X. Then dw = 0 if and only if for all x € X there exist holomorphic
coordinates z1, ..., z, around x such that locally

1 _
w= 3 Z hjrdz; A dzy,

with

hjk = djx + O(I2/*).
Thus w is Kdhler if and only if w = wo+O(|2|?) where wy is the usual Kdihler
form on C™.

This is analogous to the Riemannian geometric statement that we can choose a
normal coordinates with respect to a Riemannian metric of this form.

Proof. Let .
i _
w = 5 E hjdej A dzp.

Then

i Ohjk B ) Ohji _ =
dw = 52 D2 ng/\dzj/\dszr52 07, dze Ndzj A dzg

Thus if hj, = 65 + O(|z]?) then

Ohj , . Ohjy

Oz (x 0%y (3;‘) =0

so dw = 0.
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8 Kdhler manifolds

Conversely, suppose dw = 0 and write

i _
w= 3 Z hjrdz; A dzg.
By a linear change of coordinates, we may assume
hjk(x) = djk.
The Taylor series expansion looks like

hjk = 5jk + Za]’k@Z@ + ijkgfg + O(‘Z|2)
14 V4

As h is Hermitian, hj;, = Ekj. Thus bjre = arje. As dw =0,

0= ajredzy Adz; AdZx + Y bjkedZy A dzj A dZg.

gk, gk,
Thus
ke = Qekj
bike = bjex
Now let

§e = 2k + %Z Ajke 2520,
a valid change of coordinates in a neighbourhood of z. Then
dé, = dz + % > ajne(zdz + zdz;)
dé, = dzp, + % > @ne(Zd%, + 20dZ;)
Now we compute their wedge product
g A d€y =) dzp Adz
+ % > @jne(Zidz A dZg + Zedzg A dZ))
+ % Z ajre(zjdze A dZy, + zedz; A dZy) + O(]2]?)

= dz Adz
+ Z ajrezedz; A dZy
+ Z bikeZedze Adz; + O(|2]%)
= 20 +0(zP)
O

Thus any identity only involving the metric h and its first derivative, if true
on C™ with its usual Kéhler metric, is true on any Kéhler manifold. We’ll use
this several times.
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8 Kdhler manifolds

8.1 Kahler identities

Recall some operators from differential geometry. Let (X, g) be an oriented
Riemannian manifold of dimension 2n. The exterior derivative d : A*¥ — AF+1
satisfies d2 = 0. Let dVol be the volume form associated to g. The Hodge star
operator x : A¥ — A?"~F is defined in such a way that

a Axf = (a, B)ysdVol

for o, B € A*.
Set
d* = —xdx: AF - AR

The Laplacian is
Ag =d*d+dd*: A — AR

Now suppose X is a complex manifold of dimension n, with Riemannian metric
g compatible with J. Then the Hodge star operator extends naturally to

* A{é — .A(%n_k

in such a way that
a AxB = ge(a, B)dVol.

Write d = 9 + 9 with

o))

1,9
.AP7Q_>A;IJ+7
*C C

. APs4 p,q+1
AR = AR

Ql

We define
0 = — x O«

[ —_—
and subsequently two more Laplacians
Ay = 0%0+ 00"
Ay=9d+00
If w is Kéahler, set
L: ART 5 APFhat

a— aANw
This is the Lefschetz operator. Finally set
A =x""Lk: ARY 5 gpm 1t
= S Ac C
the inverse Lefschetz operator or sometimes the contraction operator.

Remark. For o € Af,
*xa = (=1)kEn=Rq

SO
*—1 _ (_1)k(27L—k) %,
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8 Kdhler manifolds

The operators 9* and 9" are adjoint to 0,0 respectively with respect to L2
inner product when X is compact, which is defined as

(v, B) 2 :/Xa/\*ﬁz/xgc(a,ﬁ)d\/bl.

Lemma 8.6. Suppose o € AX9, B € AL then
(Oa, BY 2 = {a, 0" B) 2.
Similarly if « € A%9, B € AR then
(Ba, B2 = (0,0 )12

Proof. We prove the first identity. By Stokes’ theorem

O:/Xd(a/\*ﬁ):/xﬁ(a/\*ﬁ)

because (1)) ()
+(n—(p+ ,q+(n— -1,
o Axf € ABFO-EHD) at(ia) _ gn-tin

so O(a AxfB) = 0. Thus
0:/ O(a AxpB) :/ da A+B+ (—=1)*and* B
X X
where k = p + ¢, thus
(0a, B) 2 = / da A %3
X
= (fl)kﬂ/ aNdxf
X
= (71)k+1+k(2”*k)/ a A *(x0x) 3
X
= (@, 0"B) >
since k(2n — k + 1) is even. O
We now prove the Kdhler identities:
[0, L] =i0,[0*, L] = —id
[A, 0] = —id*, [\, 8] = iD
We begin with C™ equipped with the standard Kéhler metric. We have
{ _
w=g Z dz; A dz;
1 _
9=735 Z dz; ® dz;

We introduce some notations
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8 Kdhler manifolds

Definition. For a € A%, ¢ € AL. Define £ Va € A(’E_l by
ge(€V a, B) = gc(a, N B)
for all B € AE™".

It is an exercise in linear algebra to check this exists and is well-defined, as g¢
is nondegenerate. For example in holomorphic coordinates,

dz Va= a(a%, -).
1

For today we write gc(a, 8) = (o, B).

Definition. If o € A(’é, using multiindex notation, write

a = Z argdzr ANdzy
[I|+|J|=k

Define

0
3ja: Z aIJdZ[/\dEJ

z
[+ |=k

gjoz = 6aIJ

dzy ANdzZy

z
[+J=k 7

Lemma 8.7.

dzj Vdzp =0
de Vdz, = 5jk

Proof.

dz; Vdz = (dzj,dzk) =0
de Vdz, = <d2’j, dzk> = 0k

Lemma 8.8.
1. 50[ = Zj dfj /\gja,
2. 6j<0é,ﬁ> = (83»04,6) + <Oé,5jﬁ>.
3. 0;(dz, V a) = dzi, V 0;a.

Proof.

1. Follows from definition of 9.
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8 Kdhler manifolds

2. Follows as the metric is the standard one so has no dependency on coor-
dinate:

050, B) = 0; > arsBry = > _((0j01)Bry + ars0;B1;)-

3. Follows as 0; commutes with (dzj V —), since it commutes with (dzx A —).
Explicitly,
(0;(dzp, v @), B) = 9;{dzk V @, ) — (dzx V v, 0;B)
= 8j <Oé, dzi A 6> - (a, dzi A gjﬂ>
= <8j0¢, dzi A B)
= (dz V 050, B)

Lemma 8.9.

da=— Zdzj V 0o
J

Proof. Let a € AL, B € AL have compact support. Then

0;(dz; V o, f)dVol = 0
CTL

by Stokes’ theorem, with dVol being the stardard volume form so exact, and (8
having compact support. Thus

0= 0;(dz; V a, f)dVol
Cn

= <aj(dZJ V Oé),5>L2 + <dZJ V a75j6>L2
= <d2’j vV 8j04,ﬁ>L2 =+ <dZ] \ Oé,gj,@>L2

SO
@*a,ﬁ)B = (a,0B) 12 adjoint relation
= (a,dz; A D;B) 1>
= Z(dzj Va,d;B) e
==Y (dz VB
This gives the result as it holds for all such . O

Lemma 8.10. On C" with the standard metric,

[@°,L] =id.
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8 Kdhler manifolds

Proof. Give a form «,
[0, La=0La—L a=08 (wha)—wAd a.

The first term is

—*

0 (wAha)=— Z dz; V 0j(w A ) by the previous lemma
== dz V((QjwAa) +wA da)

As w is the standard Kéhler form, d;w = 0.
= —% Zdzj Y (Z dzp A dZg A Oja)
k

{ _
=-3 Z (dz; V dzg) AdZg A Oja

[

+£§:daJquvdagA@a
2 & —_———
Ik =26,
7
—§§:d%Ad@Jw¢gv@a)
Jk

=—wA}>;dz; VO
=0+ida+wAd a

so indeed . _ .
[0, Lja=i0a+wAd a—wA0 a=1ida.

The local result on C™ can be generalised to Kéhler manifolds.

Theorem 8.11 (Ké&hler identities). Let (X,w) be a Kihler manifold. Then
1. [0, L] =id.
2. (0%, L] = —id.
3. [A, 9] = —i0*.
4. [N, 0] =i .
Proof.
1. Asw is Kéhler around any « € X there are coordinates 21, . .., z; in which

w = 1wy +0(2)

where wy is the standard metric on C". As [5*, L] only involves the metric

and the first derivative of its coefficients, this follows from the result for
Ccn.

2. Conjugate 1 and notice that w is real.
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8 Kdhler manifolds

3. Adjoint of 1.
4. Adjoint of 2.

A being adjoint to L is formally justified by

Lemma 8.12. Let a € A2Y(X),5 € ALY (X). Then
ge(o, LB) = ge(Aa, B).
So L is the adjoint of A.
Proof.

gc (Lo, B)dVol = Lo A xf
=wAaA*xf
=aAwA*xS
= ge(a,*x 'L % B)dVol
= gc(a, AB)dVol

as A =« 1L«

Theorem 8.13. On a Kdhler manifold (X,w), we have
Aq =205 = 2A5.
Remark. This is not true on arbitrary complex manifolds.

Proof. First we claim

9°90+80 =0

90+ 00" =0
Kéhler identities give .

0 = —i[A, 0]

then

9°90+00" = —i[A,0)0 — id[A, I
= —iADD + iOND — iDAD + iDON

=0
as 02 = 0. Next we show
Aq = Ay + Ag.
This is because
Aq =d*d 4+ dd*
= (@ +0)O0+d)+(0+0)(0*+0)
= A+ Ag

53



8 Kdhler manifolds

as the cross terms cancel. Finally we show
Ay = Ay
This is because
Ay =090" + 070
=id[A, 0] +i[A, 9]0
= iOND — iDON + iADD — iOND
and similarly
Ay =00 +3°D
= —id[A, 8] — i[A, 9]0

O

This theorem shows that no matter which (co)differential we choose, there
is no “weird” Hodge theory on Kéahler manifold as all three Laplacians coincide.

Theorem 8.14 (Kéhler identities IT). Let (X,w) be a Kaihler manifold. Let
7+ A — AE be the projection and define the counting operator

where 2n is the real dimension of X. Then

1. H,A, L commute with Aq.

2.
AL =H
[H,L] = —2L
[H,A] = 2A

Proof. We first consider commutators with H. By linearity, it suffices to prove
these results for some o € A%? where p 4+ ¢ = k. Then

[H, Agla = (n — k)Agqa — Aq(n — k)a = 0.
Also

[H,LjJo = HLa — LH«
=n—-(k+2)La—L(n—k)x
= 2L«

Taking adjoints and using H = H* as

gc(Ha, B) = ge(a, HB)
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8 Kdhler manifolds

gives
[H,A] = 2A.

Showing [L, Ag] = 0 is equivalent to asking Aqw = 0 (i.e. w is harmonic)
and this is on example sheet 3. As Ag = A},

(A, Aq] = 0.

We show lastly that
[A,L] = H.

That is, if @ € A%? where p + ¢ = k then
[A, Lla = (n — k)a.

This identity has no derivatives, so holds for (X,w) if it holds for C™ with respect
to the standard Kéahler metric. We check this explicitly. When n = 1 we have

Al59(2)d= 1 d2) = g(2)
so the identity holds. In general, write
L=)1I;
Lja = %dzj ANdZ; Ao

and A =} A, where A; = L} removes dz; A dz; if o has a dz; A dZ; term and
Aja = 0 otherwise (up to an appropriate dimensional constant). Then

[Lj,Ae] =0

if j # £, so this reduces to (a small variant of) the one dimensional case. By
linearity one reduces to

o= %dzj ANdz; AN b
where & € A1 then
[Aj,Lila=(n—p—q
as in the one dimensional case. O

Remark. See Huybrechts Proposition 1.2.26 for a proof which carefully keeps
track of the constants.
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9 Hodge Theory

We wish to understand the Dolbeault cohomology groups Hg’q(X ), and how

they compare with the sheaf cohomology H*(X,C) where p + q = k. We begin
by picking canonical representatives of cohomology.
Recall that

Definition (harmonic form). Given an oriented Riemannian manifold (X, g),
we define the space of harmonic forms of degree k to be

H* (X, g) = {a € A*(X),Aqa = 0}.
Remark. On R" with the Euclidean metric, if f € C°°(R"™) then
Aaf =Af,
the usual Laplacian. Thus Aqf = 0 if and only if f is harmonic in the classical

sense.

Lemma 9.1. Suppose (X,w) is compact. Aga = 0 if and only if

da=0 a=0.

Proof. Similar to that in Riemannian geometry. If dor = 9 a = 0 then Aza =0
by definition of A.
Conversely, if Aza = 0 then

0= (Aga, o) 12
= (@9 +00)a, )
= [9ali: + [0 a3
s00a=0 a=0. O
Recall that if (X,w) is Kéhler then
Aga =0 <= Aza=0 <= Apja=0
so we can define harmonic forms on X with respect to any of the Laplacian
HE! (X, g) = {a € AYI(X) : Aga =0}

Recall from IIT Differential Geometry

Theorem 9.2 (Hodge decomposition for Riemannian manifolds). If (X, g)
is a compact Riemannian manifold then there is an L*-orthogonal decompo-
sition
AR (X) 2 HE(X) @ dAPH(X) @ & AFTH(X)
= HH(X) © Aq(A"(X))

The space H*(X) of harmonic forms is finite-dimensional.
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9 Hodge Theory

The second isomorphism is because
AgAF(X) = dd* AF(X) @ d*dA*(X) = dAP1(X) @ d* AT X).
For example if a = d3 € dA*~1(X),3 = B1 + B2 + B3 then
df =dfs =dd™y

for some ~.

Theorem 9.3 (Hodge deomposition for Kéhler manifolds). If (X,w) is a
compact Kéihler manifold then there is an L?-orthogonal decomposition

ALI(X) = HEY(X) © AR (X) @ 0 AR (X)
= HEN(X) @ 0AL(X) @ 0" ARTHI(X)
Note that
My (X) = Hg*(X) = Hg"(X)

as
Aq =205 = 20,

Remark. Just as in IIT Differential Geometry, we shall not prove this result.
The proof uses techniques from elliptic PDE theory. See Griffiths-Harris chapter
0.6.

Corollary 9.4. The map
p.q p.q
7{5 (X)— H5 (X)
sending « to its class is an isomorphism. That is, each class in Hg’q(X) is
represented by a unique harmonic form.

Proof. The map is well-defined: if Aga = 0 then Oa = 0.
We first show surjectivity. Let o € ARY(X) satisfy da = 0. By Hodge
decomposition we may write

a=P01+0B+0 P

with 8 harmonic. Thus B o
0 =0a =00 ps.

But then . o .
0=(00 Bs,Bs)12 = (0 B3,0 B3)r2 = |0 Bsl|7-
SO 5*63 =0. So a = f; + 95, and
o] = [81] € HZ*(X)

with 8 harmonic.
Now we show injectivity. Suppose a € HZ*(X) is harmonic with 0 = [a] €

Hg’q(X). Then a = 9. As « is harmonic,
0=0a=009p
so B = 0 by an L? argument. Thus o = 0. O
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Corollary 9.5. The map
H5(X) = Hip(X;C)

is an isomorphism. That is each cohomology class is represented by a unique
harmonic form.

Proof. Same as before. O

Remark. The vector spaces HP?(X) (= HE“(X)) admits the following oper-
ations:

1. conjugation « — @ sends harmonic forms to harmonic forms (since 0o =
Oar), hence inducing an isomorphism

HPI(X) 2 HIP(X).

We used Kahler identities (Apa = 0 if and only if Ao = 0) and this is
not true for arbitrary compact complex manifolds.

2. Hodge star operator a — xa sends harmonic forms to harmonic forms
(since 0* x @« = — x da), hence inducing an isomorphism

HPUX) 2 HPPTUX).
3. another way to see this is Serre duality: consider the pairing
HPUX) x HPPTYX) = C
(@p)e [ ans
b'e
if a # 0 then
(o, %) r—)/ ahxa >0
X
giving an isomorphism
HPUX) 2 HPPTUX).
4. Lefschetz operator

L: AZY(X) — ARTHIH (X))
a— wAo

It satisfies [L, Az] = 0, giving a map
L:HPY(X) — HPHhIH(X).
We will revisit this shortly.

These induce symmetries and pairings on Dolbeault cohomology groups using
the canonical isomorphism

HEN(X) = HY(X).
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9 Hodge Theory

Denote h?¢ = dim HZ'?(X). This is finite as X is compact. The Hodge
diamond is the array

hO’O
hO,l hl,o
h0’2 hl’l h2’0
O .. R .. 70
hn,nf2 hnfl,nfl hn72,n
hn,n—l hn—l,n
hm

The rows are symmetric by conjugation and the columns are symmetric by the
Hodge star operator.

Theorem 9.6. Let (X, w) be compact Kihler. Then there is a decomposition
Hip(X;C) = H'(X,C) = (P HE'(X)
p+q=k

independent of the chosen Kdhler metric.

Proof. The decomposition is induced by the Hodge decomposition
Hip(X;C) = HE(X) = P H2UX)= @ HEYX).
p+q=k p+q=Fk

We must show that this decomposition is independent of chosen w. It suffices
to show that if

a1 € 'H%Q(X,wl)
Qo € H%Q(X,LUQ)
with [on] = [ao] € HZ(X) then [an] = [a2] € Hk. (X;C). Write aq = ag + 9y

for some . As oy, ag are Ag-harmonic, they are d-closed (which is independent
of the Kéhler metric) so

d(9y) = d(a; — az) = 0.

Then O~ is L?-orthogonal to 'H%’q(X, w) by Kéhler Hodge decomposition. As
'H%(X, w) = HE(X,w), 0y is orthogonal to HE (X, w).

Since B
(07, d"p) =0
for all ¢, so 0y € dA**!. Thus by Riemannian Hodge decomposition 9y €
dA*H(X). Thus [a1] = [az2] € HSR (X;C). O
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10 Hermitian vector bundles

Let F — X be a complex vector bundle over a complex manifold X.

Definition. We define
AL(B)(U) = AE(U) ® C=(E)(U),
where C°(E)(U) denotes the smooth sections of E.

We have a splitting
ALE)= D ALU(E)

ptg=k

arising from the splitting AL (U) = @ ARI(U) as (p, q)-forms.

Definition (hermitian metric). A hermitian metric h on E is a smooth
varying hermitian metric h, on the fibre FE, over x € X.

Ifeq,..., e isalocal frame for E (of rank ), then [h;i = h(e;, ex)] is a hermitian
matrix for each x whose coefficients vary smoothly in . As in the smooth case,
a partition of unity argument produces hermitian metrics on any complex vector
bundle.

Exercise. If E, F are given hermitian metrics then E @ F,E® F, E*, AJE all
admit natural hermitian metrics.

Proposition 10.1. Suppose E is a holomorphic vector bundle. Then there
is a natural C-linear operator

g+ ALIE) — AZTTH(E)

satisfying 7 7 7
Op(a®s) = (0a)®s+a®dgs

for all o« € ALY (U),s € C*(E)(U).

Proof. In a local holomorphic frame ey, ..., e, we define
Ip(a®e;j) =0a®e;.

To see this is well-defined, let € = >7)_; @jee; be another local holomorphic
frame so that the ¢;; are local holomorphic functions. Then

Ip(a® Z jeer) = Z ©je0a @ ey
L ¢
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10 Hermitian vector bundles

Definition (connection). A connection on a complex vector bundle is a
sheaf morphism
D: A2(E) = AL(E)

such that
D(fs)=df ®s+ fDs

where f € C®(U),s € AL(E)(U).

If e1,..., e, is a local frame for F, this gives a connection matrix

Dej = Z @jgeg

where © = (0,¢) is a matrix of 1-forms.

A connection may be compatible with holomorphic structure or with hermi-
tian structure. We will then prove that there is a unique connection compatible
with both.

Definition (connection compatible with holomorphic structure). Let E be
a holomorphic vector bundle. We define

D' AAE) — ALY(E)
D" : AA(E) — AY'(E)
by D = D' + D"”. We say D is compatible with the holomorphic structure if
D" =3 : ALE) — AY(E).
Proposition 10.2. A connection D on E is compatible with the holomorphic

structure if and only if for all local holomorphic frames, the connection
matriz (©,¢) is given by (1,0)-forms.

This gives a local characterisation of compatibility.

Proof. Suppose D is compatible. Then the (0, 1)-part of (©;,) vanishes as

Dej = Z @jgeg

and ey’s are holomorphic.
Conversely, if e1,..., e, is a local frame and o; € C*°(U) then

D(Z aje;j) = Zdaj ® ej + o De;

and projecting to the (0, 1)-part,

D”(Z ozjej) = Zgaj X ej.

But this is our local expression for 0. O
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10 Hermitian vector bundles

Definition (connection compactible with hermitian structure). Let (E,h)
be a hermitian vector bundle. We say D is compatible with h if

d(OZ?ﬁ)h = (Daaﬁ)h + (a7Dﬁ)h
where o, 3 € AL(E).
Proposition 10.3. A connection D on (E,h) is compatible with h if and

only if for every unitary frame eq,...,e,, the connection matrix is skew-
Hermitian, i.e.

0,0 = —0y,.
Proof. If eq, ..., e, is an unitary frame, then (e;, e;), = 0j¢. Then
0 = d(ej, eg)h

= (Dej, ee)n + (ej, Deg)n
= () Ojkereoln+ (e, > Omer)n
= @je +@7€j

Conversely, suppose (0;,) is skew-Hermitian in any unitary frame. It suffices
to show

d(ev, B)n = (Dev, B)n + (o, DB)n,
locally. This holds by above when «, 5 € {e1,...,e.}. Thus it suffices to show
d(fa,B)n = (D(fa), B)n + (fa, DB)n.
LHS is
d(fOé, /B)h = df by (O‘7B)h + fd(aaﬁ)h
=df @ (o, B)n + f((Da, B)n + (o, DB)n)

RHS is

(D(fa)76)h + (fOé,D,B)h = (df®a7ﬁ)h + (fDaaﬂ)h =+ (fa7Dﬂ)h
=df @ (o, B)n + f(Dev, B)n + f(a, DB)n,

Proposition 10.4. Let (E,h) be a hermitian and holomorphic vector bun-
dle. Then there is a unique connection compatible with both structures.

Definition (Chern connection). This connection is called the Chern con-
nection.

Remark. In practice, one typically has a hermitian holomorphic vector bundle,
and the Chern connection can be seen as the “canonical” extra information.
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10 Hermitian vector bundles

Proof. We begin with uniqueness. Let ey, ..., e, be a local holomorphic frame
(not necessarily unitary) and let

]’Lij = h(ei, 6]‘).

Define the connection matrix by
Dej = Z @jkek.
k

Then
dhjk = dh(ej, ek)
= (Z Ojeer, ex)n + (€5, Z Oreer)n
? ?

= Z @jgh(gk + Z@hjz

As D is compatible with the holomorphic structure, (0;,) is a matrix of (1,0)-
forms. So

Ohji, = Z S
Ohjr = Orehje

thus © = dh - h=1. This gives uniqueness.
This also constructs such a connection on each trivialisation. By uniqueness,
these local connections glue to a connection on (E, h). O

Lemma 10.5. If D1, Dy are two connections on a complex vector bundle,
then Dy — Dy is AL-linear, hence gives an element of AL(End E). If D is
a connection on E and a € AL(End E) then D + a is a connection.

Proof. Using that df ® s cancel in the definition, we have
(D1 — Dg)(fs) = fD18 — fDQS

a € AL (End E) acts on A% (F) by multiplication in the form part and evaluation
in the E component (E x End F — E). Then

(D +a)(fs) = D(fs) +al(fs) = df @ s + fDs + fas = df @ s + f(D +a)s

so D + a is a connection. O

Corollary 10.6. The set of all connections on a complex vector bundle E
is in a natural way an affine space modelled on AL(End E).

A connection extends to
D: AL(E) — AZTH(E)

by
Da®s)=da®s+ (-1)Pa A Ds

for € AZ(U),s € C=(E)(U).
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10 Hermitian vector bundles

Definition (curvature). The curvature of D is the map

Fp=DoD: ALE) - AL(E).

| Lemma 10.7. Fp is AL-linear.
Proof. For f € AL(U),s € AL(E)(U),

Fp(fs)=D(df ® s+ fDs)
=d’f@s—df @ Ds+df ® Ds+ fD?s

= fD?s
= fFp(s)
O
| Corollary 10.8. Fp is induced by an element of AZ(End E).
Let e1,...,e, be a local frame. Let © be the connection matrix defined by

\ . .
De; =" Oje, where Oj;’s are 1-forms. Given a local section s =) sje;, we

have
Ds = stj ®ej + ZSJij€k~

We write this as
D=d+6.

In this notation we can also write down the expression for curvature. Have

Fps = D?s
=(d+0)(d+0)s
= d%s + (dO)s — O(ds) + O(ds) + O A Os
=(dO+OAN0)s

Lemma 10.9.

1. If (E,h) is hermitian and D is compatible with h then

h(FDSj, Sk) + h(Sj, FDSk) =0.

2. If E is holomorphic and D is compatible with the holomorphic structure
then Fp has no (0,2)-component, i.e.

Fp € AZ2°(End E) ® AL (End B).

3. If D is the Chern connection then Fp is a skew-Hermitian form in
A (End E).

Proof.
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1. The statement is local so let eq, .. ., e, be a local unitary frame, D = d+ 0
with ©* = —0. We have

F} = (d© + © A ©)F
= (dO)* — ©* A O

=dO* -0 A0
=-dO-0AN0
= _Fp

2. D : AL(E) — AEYY(E) splits as D = D' + D". Then D" = dp by
hypothesis. Thus

DoD= (D' +3g)o (D +3p)=D oD +D 0dp+dgoD + dr
~—
=0
so the (0, 2)-component vanishes.
3. Follows from 1 and 2.
O

From now on we focus on line bundles. Let (L, h) be a hermitian holomorphic
line bundle and D be the Chern connection. Then Fp € Aé’l(End L) is skew-
Hermitian, so Fp is a real (1,1)-form. In this case

© =0dlogh=h"10n
Fp =00logh

We can interpret Fubini-Study metric now. If X = P and L = O(1), there is
a natural hermitian metric on O(—1) arising from the usual hermitian metric
on C"*!. This induces a hermitian metric on L = O(1). Then on Uy = {[z0 :

e zp] iz # 0} _
wis = i@glog(l +3 1512

(z0 = 1) which is ﬁF '» where Fp is the curvature of the natural hermitian
metric on O(1).

Definition (positive). We say that L is positive if there is a hermitian

metric A on L such that 5=Fp, where Fp is the curvature of the Chern
connection, is a Kahler metric on X.

Exercise. Show that [;=Fp] € H?(X,C) is equal ¢;(L), the first Chern class
of L.

One can show that this is equivalent to c;(L) € H?(X,Z) being a Kihler
class, i.e. there is an w € ¢; (L) Kéhler.

On a projective space, O(1) — P™ admits a hermitian metric hps with
curvature wps = 5= Fp which is Kéhler. Thus O(1) is positive.

If ¢ : X — Y is a morphism of complex manifolds and (E,h) — Y a
hermitian holomorphic vector bundle, then we can pullback to get (¢*E,¢©*h)
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10 Hermitian vector bundles

a hermitian holomorphic vector bundle on X. If £ = L is a line bundle then
Fp = 0dlogh and ¢*Fp = ¢*(001log h) = 00 log(¢*h).

If « : X — P" is projective, we obtain t*O(1) = O(1)|x on X. If hpg is
the Fubini-Study hermitian metric then +*hpg has curvature t*wrs = wrs (up
to 5=). But we showed wps|x is a Kéhler metric on X. Thus O(1)|x — X is
positive.

We now turn to the algebro-geometric analogue.

10.1 Ampleness

If X is a compact complex manifold, one cannot embed X in C™ for any n as
X admits no nonconstant holomorphic functions. Instead we use (holomorphic)
sections of line bundles to embed X in P™.

Let L — X be a holomorphic line bundle.

Definition (trivialisation). A trivialisation of L over U C X is a £ €
O*(L)(U), a nowhere vanishing section.

Let sq,...,5, € H°(X, L) be global sections and suppose for all x € X there
is an s; with s;(z) # 0. Let £ be a trivialisation over U C X so s; = &f; for
some f; € O(U). Then [fo(z) : --- : fu(z)] € P™ as not all s;(z) = 0. We
claim this is independent of £. if é is another trivialisation then é = g€ for some
g € O*(U). Then

[fo(z) =2 ful)] = [g(2) folx) = - - 2 g(2) ful@)].

We denote this by [so(z) : -+ - : sp(x)] € P™.

Definition (basepoint-free). We say L is basepoint-free if for all x € X,
there is s € HY(X, L) with s(z) # 0.

If L is basepoint-free, after choosing a basis of H(X, L), we obtain a map

pr: X > P"

x> [so(x) it sp()]

Definition (very ample). We say that L is very ample if ¢, is an embedding
(for some basis). We say L is ample if L®* is very ample for some k € Z>.

This is independent of basis: any two bases are related by an element v €
GL(n + 1). v induces a biholomorphism of P* and X — v*X using the two
bases.

Suppose L is very ample, using the embedding ¢y, we have o3 O(1) = L (if
2o is viewed as a global section of O(1) — P™, then ¢ zp is a global section of
L). Hence L is very ample if and only if there is an embedding ¢ : X — P™ with
1*O(1) = L. This is how ampleness was mentioned earlier.

Thus L is ample if L®* has enough global sections such that (k > 0)

1. L®F is basepoint-free.
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10 Hermitian vector bundles

2. prex is injective: if z # y € X, there is an s € HO(X, L®*) with s(z) #
s(y)-

3. dyrer is injective.

By inverse function theorem this is equivalent to X being biholomorphic to a
submanifold of P™.
We want to relate ampleness to positivity.

| Lemma 10.10. If L — X is ample then L is positive.

Proof. L®* is very ample for some k > 0 so L®* = ¢ ., O(1) with ¢rer : X <
P" an embedding. Hence L®* is positive, i.e. it has a hermitian metric h with
curvature iF 'n» Kéhler.

Let & be a trivialisation of L over U C X. Then ¢®F is a trivialisation of

L® . Define a metric on L by
[€ln = /1% n-

This characterises h as £ is a trivialisation. The curvature ﬁF D = igﬁ log h
for h is related to the curvature ﬁF 1 of h'/* we constructed above by

)
— I
2wk

_'3 yk_ 15
= 2ﬂ_6810gh kzwﬁalogh

seen clearly in a trivialisation. Lastly %%FD is Kahler. O

Conversely,

| Theorem 10.11 (Kodaira embedding theorem). Let X be a compact com-
plex manifold. If L — X is positive then L is ample.

Corollary 10.12. A compact complex manifold is projective if and only if
it admits a line bundle L with ¢1(L) a Kahler class.

To prove this we return to the cohomology of line bundles via Hodge theory.
Let (X, w) be a compact Kéhler manifold and (E, h) a hermitian holomorphic
vector bundle. We obtain a hermitian metric on AP97*X through w and hence
on AP9T* X ® E. We denote this by (-, ).
h gives a conjugate linear map h : E — E* (which is not an isomorphism of
complex vector bundles in the strict sense).

Definition. Define *g : APIT*X @ E — AP9T*X ® E* by
*5(p ®s) =%p @ h(s) =P @ h(s).

We can define
(ar, B)dVol = a A xS

where A here means wedge product on the form part, and evaluation FQ E* — C
on the bundle part.
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Definition. 9y, : AZY(E) — AZ7 ' (E) is defined by
0y = —*E0p¥Eg.

Note that when E = O is trivial, x(¢) = *p = * so

*

Do(p) = —*I%(p)
= —%0(*p)
= —%(0x)
=—*x0x(p)

as desired.

Definition. Define o o
Ap = BEE)E + 8E8E
then a € ARY(E) is harmonic if

AEOZ = 0

We write

HPUX,E) ={ac ALYE): Aga = 0}.

ALY(E) admits an L?-inner product

(o, B)pe = /X (o, B)AVol.

Lemma 10.13. 5}; is the L?-adjoint of O, and Ay is self-adjoint. More-
over Aga = 0 if and only if

Opa = E*Ea =0.

Proof. Similar to the case E is trivial. O

Theorem 10.14 (Hodge decomposition for bundles). There is an L?-orthogonal
decomposition

ALI(E) = HPU(X, E) ® 0p AL (E) © Op ALT (E)
and HPY(X, E) is finite-dimensional.
The natural thing to do is to relate this to Dolbeault cohomology.

Definition (Dolbeault cohomology for bundle). The Dolbeault cohomology
for the bundle F is

ker(9p : AXY(E) — ARTY(E))
im(0p : ART(E) » AZY(E))

p,q —
H2(X,E) =
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Theorem 10.15 (Dolbeault theorem for bundles). We have isomorphisms
between Dolbeault cohomology and Cech cohomology

Hg’q(X, E)HI(X QP QF)
where QP is the sheaf of holomorphic p-forms.

Proof. Similar to the case E trivial. O

Lemma 10.16. There is a natural map
P.q Pyq
H (X,E)—>H5 (X, E)

which is an isomorphism. Thus

HP(X, E) = HYY(X, B) = H(X, 0 © E).

Proof. Similar to the case E trivial. O

Now let D be the Chern connection associated to (E,h). Then in a local
holomorphic frame D = d + © where © is a matrix of (1,0)-forms.

Recall that the key ingredient in proving Ké&hler identities is that we can
find a normal frame.

Proposition 10.17. Given x € X, there is a holomorphic frame e; and
coordinates zy such that

(e;(2), en(2))n = 0k + O(|2[%).

The e;’s are called a normal frame. Thus for the Chern connection, one can
find a holomorphic frame which is orthonormal to first order.

Proof. Nonexaminable. Similar to the proof of being able to pick z; with
w=wy +O(|2])

where wq is the standard metric on C". See Demailly “Complex Analytic and
Differential Geometry”, Proposition 12.10 Chapter VI. O

Definition (Lefschetz operator, inverse Lefschetz operator). Define Lef-
schetz operator

L: AZY(E) — AZTHIY(R)
PRs—HLopRs=wAp®s

and inverse Lefschetz operator

A ALI(E) —» AL HTH(E)
pPRsHHAp®s
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where ¢ € ARY(X),s € A°(E).
Recall the Kéhler identities

AL} =(n—(p+q))id

[A, 0] = —i0*
The first extends directly to bundles. For the second one, we have
Lemma 10.18 (Nakano identity). Let D be the Chern connection. Then
[A,0E] = i(D")*

where by definition
(DY) =xgDpY%E.

Proof. Let 7 € AZ?(E) be given in a normal frame as

T:Zgﬁj®€j

where ¢; € AZ?(U). Then one checks

Dr =) dg; ®e;+O0(|z))

0
Ops = D%'s = 25% ®e+j+ O(|z])

and
(DY) 7= 9%p; @e; + O(|2])
as g = * + O(|z|) using that the frame is normal. The result follows from

(A, 3] = —id".

Remark. Huybrechts’ proof (Lemma 5.2.3) seems to be incorrect.

Lemma 10.19. (D'%)* is L%-adjoint to D*°, i.e.
(DY a, B) 12 = (a, D0B) 1.

Proof. Follows from the definition of (D1?)* and similar to the case E trivial.
O

Following is a technical lemma for harmonic forms:

Lemma 10.20. Let o € HP4(X, E) be harmonic. Then
1. i{FpAa, )2 <0,

2. i<AFD()[,()[>L2 > 0.
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10 Hermitian vector bundles

Proof. Ao € AX"H9Y(E) so FpAa € A%Y(X, E) so the statement makes sense.
Here Fp acts on o by wedge in the form part and evaluation End E x E — E

in the bundle part.
As D is the Chern connection,

Fp=D"Y00g+0goD".
As « is harmonic, _ _
8E0l = (“)Ea =0
SO

i(FpAa,a) 2 = (D" 0gAa, a)r: +i(0pD " Aa, o) >
= —(@pAa,i(DY0)*a) 2 + (DA, Dpa) e
=7
= (pgAa, [A,dp]a)r: Nakano
= —|[dpAal

<0

Similarly

(iANFpa,a)r2 = i(AOp D", )2
= Z<[Aa EE}DLOO@ O‘>L2
= i(—i(D"0)* D", a) 12 + i(AD O, D) 12
=0
= |ID*0alz,

>0

Finally we have

Theorem 10.21 (Kodaira vanishing theorem). Let L be positive. Then
HI(X,Q*®L)=0

forp+q>n.
Proof. Let L be positive, i.e. ﬁFD Kahler. Thus

(4

Lo =
@ 21

FD/\Oé.

Let o € HP9(X,L). Then [A, L] = —H, the counting operator. Thus

o
= (A, L]a, &) 2

= (n—(p+q))llalz:

0

IA

[Aa FD]a7 O[>L2
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10 Hermitian vector bundles

so a =0 as p+ g > n. Finally

HPU(X,L) = HI(X, Q" ® L).

Another useful vanishing theorem is

Theorem 10.22 (Serre vanishing theorem). If E — X is a holomorphic
vector bundle, L — X positive. Then

HI(X,F® L®) =0
for all k> 0.

Thus positive (i.e. ample) line bundles are those that kill all higher cohomologies
of a holomorphic vector bundle tensored with a high enough power.

Proof. Omitted. Similar techniques to Kodaira vanishing. O
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11 Blow-ups

The blow-up of a complex manifold X at a point p € X is a complex manifold
m:Bl, X — X with 771(p) 2 P"~! = F, a divisor and 7 : Bl, X \ E — X \ {p}
an isomorphism.

Let A be the unit disk in C"”. Let z1,...,2, be coordinates on C". and
¢ =1y :---:,] homogeneous coordinates on P"~!. Define

Blo A = {(2,€) : zjli, = zil; for all j,k} C A x Pt

This consists of pairs (z,£) with z € ¢, i.e. if and only if zA¢ = 0 (wedge product
of vectors in C™).

If one replaces A with C", this is how we constructed O(—1) — P"~1. As
O(-1) is a complex manifold, Bly A is also a complex manifold.

7 : Blg A — A is given by (z,£) — z. A non-zero point z is contained in a
unique line. Thus 7 : Blg A\ {7~1(0)} — A\ {0} is an isomorphism. Moreover
71(0) consists of all lines, so is isomorphic to P"~1.

In general, let X be a complex manifold and p € X. Let z: U - A C X
be (biholomorphic to) a disk. The restriction 7 : Bl, A\ E — A\ {p} gives an
isomorphism between a neighbourhood of E in Bl, A and of p in X. So we can
construct Bl, X as

(X \{p}) Ux B, A,

i.e. obtained by replacing A with Bl, A. One obtains 7 : Bl, X — X with the
desired properties. We call E = 7~ 1(p) = P"~! the exceptional divisor.

We claim this is independent of choice of coordinates on A. Let {z} = f;z}
be another choice of coordinates with f;(0) = 0 and let Bly A" be the blow-up
in these coordinates. Then the isomorphism

fiBLA\E = BLA\E

extends to an isomorphism f : Bl, A — Bl, A’ by setting f(0,¢) = (0, ¢') where

0 = Z afk(o)gk.

7 aZj

It is an exercise that this indeed gives the claim.
Similarly the identification

E - P(T,X*°)
)

is independent of coordinate choice. Thus blow-up is the process of replacing a
point with (the projectivisation of) the tangent space at that point.

Let O(E) be the line bundle associate to the divisor E. Then O(FE) can
be identified with [, ,, ¢ — Bl, A as this admits a section ¢(z,{) = ((£, 2),2)
which vanishes along F with multiplicity 1. Thus O(F) = p*O(—1) where
p: Bl, A — P"~! is the projection from Bl, A C C" x P"~1. It follows that
O(E)|g = O(—1), which is then true for any complex manifold.

The dual bundle O(E) = O(—FE) has fibre over (z,¢) € Bl, A the space of
linear functionals on the line £ C C™ so O(—E)|g is the hyperplane bundle O(1)
on P71,
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11  Blow-ups

As E 2 P(T,X"Y), we get an isomorphism
H(E,O(-E)|g) =2 Ty X"°.

If f € O(A) vanishes at p (= 0), the function 7* f vanishes along F, so can
be considered a section of O(—F) — Bl, A. The isomorphism above is

H°(E,O(-E)|g) —» Ty X"°
" f —dfp

Thus the diagram

H°(Bl, A, O(—E)|g) — H°(E,O(~E)]g)

pullbackT =T

HY(A,T,) —— 5 Tr X0

commutes. Here Z,, is the ideal sheaf of p given by

L,(U) ={f € OWU) : f(p) = 0}

Proposition 11.1. Let F' be any line bundle on X and L — X positive.
Then for any integers di,...,dy > 0, the line bundle

T (L@ F)@ O(= Y d;E))
is positive on Bly,, . p, X for k> 0. Here E;’s are the exceptional divisors.

For example when F' = O is trivial, which is the most important application.

Proof. In a neighbourhood p; € U; C X, the blow-up is Bl,, U; € U; x P"~1,
O(E;) = p;(O(-1)). We give O(E;) the pullback of the Fubini-Study met-
ric. Using a partition of unity, this produces metrics (by tensor product) on
O(>_ —d;E;). Locally near Ej, the curvature is

—d;(2mi)pjwrs.

Thus this metric is strictly positive on E; (on vectors tangent to E;) and semi-

positive locally. Let iFD be the curvature, and let w € ¢;(L) be the curvature

of a positive metric on L (w Kéhler). Let o be the curvature of a metric on F'.
m*w is trivial along F, positive everywhere else. Thus

™ (kw + a) + LFD
2m

is Kahler for k > 0 (maybe also need X compact), and is the curvature of a
metric on the desired line bundle. O

Exercise. Set Kx = A"T*X"0, then
Kp, x =1 Kx ® (O(-n+1)E).

One analytic tool we need to prove Kodaira embedding theorem is
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11  Blow-ups

Theorem 11.2 (Hartogs’ extension theorem). Let U C C™ be open with
n>2 Let f:U\{z =2 =0} — C be holomorphic. Then there is a
unique holomorphic extension f: U — C of f.

Proof. Non-examinable and omitted. See Huybrechts Proposition 2.16. O

Exercise. Let L € Pic(X) and ¥ C X a submanifold of codimension > 2.
Then the restriction
HY(X,L) — H°(X\Y,L)

is an isomorphism.

We state again

Theorem 11.3 (Kodaira embedding theorem). If X is a compact complex
manifold. If L — X is positive then L is ample.

Proof. In this proof we write L¥ for L®*. Let Ny +1 = dim H°(X, L*). We
need to show that there is k > 0 such that

1. basepoint-free: for all x € X, there is an s € H°(X, L¥) with s(z) # 0.

2. injectivity: for all x,y € X, there are sections s € H°(X, L*) with s(z) #
s(y).

3. embedding: for all z € X, dopr , : T X — T¢Lk(I)PNk is injective where
opr X — PNk
x> [so(x) - i sy, ()]
after choosing some s, ..., sy, € H°(X, L¥).

In the sheaf cohomology language, let LX be the fibre of L* at z € X. Then 1
asks for ¢ : H°(X, L¥) — L* to be surjective. There is a short exact sequence

0 —— LFeT, Lk Lk 0

where L* ® T, denotes the sehaf of sections of L vanishing at x. 1 is surjective
it HY(X, Lk ®T,) =0.
Similarly

0 — L"®ZL,, — LF — L@ LF —— 0

is related to 2.

We prove 2 and 1 is similar. We do not have theorems for points, but we do
have lots of vanishing theorems for line bundles. We thus pass from points to
divisors (hence line bundles) by blowing-up.

Let X be the blow-up of X at z,y with exceptional divisors E., E,. Set
FE = E, + Ey. Let L = 7*L where 7 : X — X is the natural map. (If
dim X =1, we set 7 = id and X = X))

Consider the pullback

o HO(X,LF) - H°(X, L¥)
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11  Blow-ups

which is injective. Any & € H° (X, L*) induces a section o € HO(X \ {z,y}, L)
as X \ {z,y} = X \ E, inducing 0 € H°(X, L¥) by Hartogs’ theorem. Thus 7*
is an isomorphism. By construction LF is trivial along E,, Ey, ie.
L¥|p, 2 E, x L*
PRl o k
L |Ey = Ey X Ly
so
0/ Fhi o Tk k
H(E,L"|g) = L; @ Ly.

If rg is the restruction then the diagram

HO(X,LF) 25 HO(E,L*|p)
HO(X,LF) - Lr oLk

commutes. Thus it suffices to show rg is surjective to prove 2. Choose k such
that
I'=IF@ K, ®O(-E) 27" (L" ® K%) ® O(—nkE)

is positive. Then by Kodaira vanishing theorem
H' (X, [*®@O(-E)=H' (X, ' 2Kz) =0
so considering

0 — LF® O(-E) LF 2, [F|g 0

we see rp : HO(X, L*) — H(E, L*|g) is surjective, proving 2 near z,7.

If o7 is defined at z,y and ¢rr(z) # @rr(y) then the same is true for
nearby points. As X is compact, cone can find k > 0 with L* basepoint-free
and injective.

For 3, let ¢, : Uy x C — L¥|7. be a trivialisation. Then

d(kaJ T X — Tka(I)PNk

is injective if and only if for all v* € T X10, there is an s € H°(X, L*) with
Sa = ©hSa, s(x) = 0,dsq(x) = v* (here we view rr locally as (if so(x) # 0) a
function

X — CNx
Y= (Sl(y)7"'aSNk(y))

More intrinsically, let L* @ Z,, be as before. If s € L* ® T, (U), ¢a, pp triviali-
sations of L* over U,

Sq = PhS
sg = @Zs
Sa = PapsSp

d(5a) = d(8p)Pap + dpasss = d(sp)Pap
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11  Blow-ups

as sg(x) = 0, giving a sheaf morphism
dp : LF@T, - Ti X" o Lk
where L comes from ¢,5. Then 3 states that
dy : HOX,L* 9 T,) - Ty X0 o Lk
is surjective (or H*(X, L* ® Z2) = 0) for all z € X.
If o € HY(X,L*) then o(x) = 0 if and only if 7*¢ = & vanishes along E
(X =Bl,; X). Thus 7* induces an isomorphism
H(X,L*®1,) — H'(X,L* @ O(-E)).
We can identify
HO(B,(L* ® O(~E))|p) = Ly ® H(E,O(~E)|p) = Ly @ T; X °

as L¥|p is trivial.
Moreover the diagram

HY(X,LF ® O(-E)) — H(E,(L* ® O(-E))|g)

T |-

HO X, L*®T,) — % T*X0 g Lk

commutes so suffices to prove rg is surjective.
Taking k£ > 0 such that

HY(X,L* ® O(-2E)) =0

as before (by positivity and Kodaira vanishing theorem), rg is surjective. One
obtains k which works for all x € X as before. O
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12 Classification of surfaces™®

12 Classification of surfaces®

Recall that a Riemann surface S is a compact complex manifold of dimension
1. As any (1, 1)-form is closed (as dimg S = 2), S is Kéahler. Thus

H*(S,2)=17

so let @ € H?(X,Z) Kéhler then a = ¢;(L) for some L ample by Kodaira
embedding theorem, so S is projective.
By Riemann-Roch, a line bundle L — S is ample if and only if

deng/w:/cl(L)>0
s s
where w € ¢1(L).

Riemann surfaces are classified by their genus:
e g =0: P! unique.

e g = 1: elliptic curves, isomorphic to C/A for some lattice A. They are
classified by the j-invariant j € C.

e g > 2: 3g — 3 dimensional moduli space M.

For P!, O(1) = K}, is ample so ¢1(X) = ¢1(K%) is Kéhler. For elliptic
curve, Kg = Og and ¢;(S) = 0. Finallly for g > 2, Kg is ample so ¢1(S) is
ample.

12.1 Enriques-Kodaira classification of surfaces

Let X be a compact surface. For line bundles L1, Lo, let

Ll.LQZ/ w1 /\UJQZ/ Cl(Ll)vcl(Lg)
X X

where w1 € ¢1(L1),w2 € ¢1(L2). One thing to note that if O(D) = L then
Z(s) = D where s € H%(X, L). Thus

D.LQZ/ w1 /\OJQZ/ Cl(LQ):/OJQ.
X D D

If £ C Bl, X is the exceptional divisor then

E.E:/EO(E)|E: [ O(-1)=-1.

Given X, we can blow-up to get Bl, X to get a new compact complex surface.
Conversely

Theorem 12.1 (Castelnuovo). If P! 2 C C X has C.C = —1 then there is
aY with X = Bl,Y and C the exceptional divisor.
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12 Classification of surfaces™®

In practice, we classify minimal surfaces, which are those with no such C (i.e.
X not a blow-up).

We say ¢ : X — Y is meromorphic if ¢ : X\ Z — Y is holomorphic where Z
is an analytic hypersurface. X,Y are bimeromorphic if there is a meromorphic
¢ : X — Y with meromorphic inverse. It turns out that all bimeromorphic
maps between surfaces are compositions of blow-ups and “blow-downs”.

Define plurigenera to be

P, =dim HY(X,K{").

These are bimeromorphic invariants. Define Kodaira dimension by growth of
P.:

)

e K(X)=—-00if P. =0 for all r.

« K(X)=0if P, €{0,1}.

e K(X)=1if exists C with P. < Crr.
e K(X) =2 otherwise.

Equivalently, this can be formulated as

dim HO(X, K"
K(X) = limsup log m A7(X, Ky )
T—00 logr
e K(X) = —o0: all projective
— rational surfaces P2, P* x P! and ¥,, with 7 : 3,, — P! 7= 1(z) = P!
for all . ¥, hasa P! 2 C C ¥,, with C.C = —n.
Remark. If K% is ample then X is called Fano or del Pezzo surfaces.

For example P2, P! x P!, BL,, . P? for 8 general points.

— ruled surfaces of genus > 0. These have a map 7 : X — S, 7 *(z) =
P! for all 2. S has genus > 1.

e K(X) = 0: not all are projective.

— abelian surfaces (complex tori) C?/A. Projective if and only if Hodge-
Riemann relation holds on A. Kx = Ox and HY(X,Ox) = 1. Can
have no divisors.

— K3 surfaces. Kx = Ox. In general Kx = Ox says X is Calabi-
Yau. They are sometimes non-projective. More precisely, they have
20 dimensional family, 19 dimensional family are projective.

For example V(f) C P? where f has degree 4.

— Enriques surfaces. K}‘?Q >~ Ox but Kx 2 O(X). For example

Y/(Z/(2)) where Y is a K3 surface.

e K(X) = 1: (some) elliptic surfaces. 7 : X — S, 7~ !(z) an ellitpic curve for
x € S\ {p1,...,pr}- The other fibres can be singular (and non-reduced).
Kx . Kx =0.

Note that not all elliptic surfaces have K(X) = 1. For example P! x E
where FE is an elliptic curve.

As an aside, 7 : X — B, F a general fibre, £(X) > K(B) + K(F) is the
Iltaka conjecture.
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e K(X) = 2: surfaces of general type. Kx.Kx > 0. These are wild and
difficult to study. They do have nice moduli space (generalising M)
by Giesecker (Kolldr-Shepherd compactification). We don’t know, for
exmaple, what their topology is (for a general one).

12.2 Non-Kahler surfaces

If by = dim H?(X,R) is even then X is Kihler. THus b; is odd.
o K(X) = 1: can have non-Kahler elliptic surfaces.
e K(X)=0

— primary Kodaira surfaces. Let S be an elliptic curve, L — S with

deg L # 0. Let L* = {complement of zero section}. Let L*/q” where

¢ is an infinite discrete cyclic subgroup of C.

— secondary Kodaira surfaces: they are quotients X,,im/G where G is
a finite group acting on the primary Kodaira surface Xpyim.

e K(X)=—00, by(X)=1.

— If by = 0 then have Hopf surfaces and C2\{0} /discrete group acting freely.
Inoue: C x H/solvable discrete group where H is upper half plane.
No divisors.

— by = 1: classified by Nakamura (1984) and A. Teleman (2005).

— by > 1: still open.
For dim X > 3, we try to reduce to K% or Kx ample, Kx = Ox. This is
known as minimal model program. It is mostly open except Kx ample, done by

Birkar-Cascini-Hacon-Mclernan. “Most” 3-folds are not projective and “most”
complex 3-folds are not Kéhler. Minimal fails for non-Kéhler 3-folds (Wilson).

80



Index

O-Poincaré lemma, 14

almost complex structure, 6
ample, 41, 66
analytic subvariety, 33
irreducible, 33
atlas, 4
equivalent, 4

basepoint-free, 66
biholomorphic, 4
blow-up, 73

canonical line bundle, 31
Cech cohomology, 21
Chern connection, 62
closed submanifold, 5
cocycle condition, 28
complex manifold, 4
complex structure, 4

standard, 6
complexified tangent bundle, 6
connection, 61
contraction operator, 48
counting operator, H4
curvature, 64

de Rham cohomology, 10
del Pezzo surfaces, 79
direct limit, 21
divisor, 37
effective, 37
linearly equivalent, 37
principal, 37
Dolbeault cohomology, 10, 56
bundle, 68
Dolbeault theorem
bundle, 69
Dolbeault’s theorem, 25

Euler characteristic, 27

exceptional divisor, 73

exponential short exact sequence,
18

Fano variety, 79
first Chern class, 41, 46, 65
form, 8

81

Fubini-Study metric, 44, 65
fundamental form, 42, 43

germ, 34

harmonic form, 56

Hartogs’ extension theorem, 75

hermitian metric, 43, 60

Hodge decomposition, 56, 57, 68
bundle, 68

Hodge diamond, 59

Hodge star operator, 48

holomorphic, 3, 4

holomorphic tangent bundle, 7, 31

holomorphic vector bundle, 28
morphism, 28

hyperplane line bundle, 32, 41

identity principle, 3
integrable, 7
inverse Lefschetz operator, 48, 69

kernel, 19

Kodaira embedding theorem, 46,
67, 75

Kahler class, 43

Kéhler form, 43

Kahler identities, 49, 52, 54, 70

Laplacian, 48
Lefschetz operator, 48, 69
line bundle, 28
ample, 41
canonical, 31
tautological, 32
local defining equation, 34

maximum principle, 3
meromorphic function, 36

Mittag-Leffler problem, 11

Nakano identity, 70
normal frame, 69

order, 36

Picard group, 30
plurigenera, 79



Index

presheaf, 17
projective manifold, 5, 41
pullback bundle, 30

refinement, 21
Riemann surface, 78
Riemannian metric, 43

section, 17, 30

Serre duality, 58

Serre vanishing theorem, 72

sheaf, 17
constant, 18
isomorphism, 17
locally free, 31

82

morphism, 17
quotient, 37
short exact sequence, 18
exponential, 18, 40
subseaf, 31
stalk, 18, 34
Stein manifold, 26

tautological line bundle, 32
thin, 34
trivialisation, 66

vector bundle, 28
very ample, 66



	Introduction
	Several complex variables
	Complex manifolds
	Almost complex structures
	Dolbeault cohomology
	-Poincaré lemma

	Sheaves and cohomology
	Definitions
	Čech cohomology
	Short exact sequence of sheaves
	Dolbeault's theorem
	Computation of Čech cohomology

	Holomorphic vector bundles
	Commutative algebra on complex manifolds
	Meromorphic functions and divisors
	Kähler manifolds
	Kähler identities

	Hodge Theory
	Hermitian vector bundles
	Ampleness

	Blow-ups
	Classification of surfaces*
	Enriques-Kodaira classification of surfaces
	Non-Kähler surfaces

	Index

