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0 Introduction

0 Introduction
What is complex dynamics? Iteration of holomorphic self-maps of Riemann
surfaces

long term behaviour under iteration
origin: iterative root finding algorithm, e.g. Newton’s method. When and

why does this work? Algebraically, the problem is to ask the convergence of the
iteration of the map

f(z) = z − p(z)

p′(z)
: Ĉ → Ĉ

where Ĉ is the Riemann sphere.
Goals:

• equidistribution theorem

Theorem 0.1 (Friere-Lopez-Mañe, 1983). Let f : Ĉ → Ĉ with degree
d ≥ 2 holomorphic. Then there exists a unique f -invariant probability
measure µf supported on the unstable locus of f , such that for almost
all α ∈ Ĉ, 1

dn

∑
fn(z)=α δz → µf in weak-* topology.

• universality of the Mandelbrot set: fix d ≥ 2, define for c ∈ C, fc(z) : zd+c.
The d-Mandelbrot set is

Md = {c ∈ C : |fnc (0)| 9 ∞}.

Theorem 0.2 (McMullen 1997). The Mandelbrot set is universal for
bifurcations, i.e. in any bifurcation locus we see (slightly distorted)
copics of some Md.
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1 Riemann surfaces

1 Riemann surfaces
Recall at the end of IID Riemann Surfaces

Theorem 1.1 (uniformisation). Every Riemann surface R is conformally
isomorphic to R̃/G where R̃ is one of the three simply connected Riemann
surfaces (Ĉ,C,D) and G ⊆ Aut(R̃) acts freely and properly discontinuously.

Three cases:

1. Ĉ: as Aut(Ĉ) are precisely the Möbius transformations and all Möbius
transformations have fixed points, G = 1 so R = Ĉ.

2. C: Aut(C) = {p(z) = az + b, a 6= 0} so G only contains translations, so
can be identified by a subgroup of C. Can show that G is one of {0},Zω1

or Λ = Zω1 ⊕ Zω2, a lattice. Then R is one of C,C∗ or C/Λ, a complex
torus.

3. D: Aut(D) = {λ · z−a
1−az : λ ∈ S1, a ∈ D}, which has a lot of elements with

no fixed point. This is called hyperbolic.

Recall D is equipped with metric ds = 2|dz|
1−|z|2 , i.e. the distance between

x, y ∈ D is

ρ(x, y) = inf
γ

∫ b

a

2|γ′(t)|
1− |γ(t)|2

dt

where γ : [a, b] → D is a smooth curve from x to y. One can use the origin to
show that

ρ(x, y) =
log(1 +R)

log(1−R)

where R = | y−x
1−xy |. Elements of Aut(D) are isometries of this metric so it

descends to a hyperbolic metric on any hyperbolic Riemann surface, such that
the covering map R̃→ R is a local isometry.

Exercise. Let R = D/G, f : R→ R holomorphic. Then f lifts to a holomorphic
f̃ : D → D, unique up to a composition with an element of G, and induces a
group homomorphism γ 7→ γ′ such that f̃ ◦ γ = γ′ ◦ f̃ .

Theorem 1.2 (Pick). Let f : S → T be hyperbolic Riemann surfaces with
Poincaré metric ρS , ρT respectively. Then for all x, y ∈ S,

ρT (f(x), f(y)) ≤ ρS(x, y).

Proof. By lifting (of f ◦ πS : D → T ) it suffices to show this for S = T = D. By
computation this is the same as showing

log(1 +R′)

log(1−R′)
≤ log(1 +R)

log(1−R)

where R = | y−x
1−yx |, R

′ = | f(y)−f(x)

1−f(y)f(x)
|. Note log(1+x)

log(1−x) is strictly increasing, so

suffices to show R′ ≤ R. Let µ1(z) =
y−z
1−yz , µ2(z) =

f(y)−z

1−f(y)z
. Let g = µ2 ◦ f ◦

µ−1
1 : D → D. By Schwarz’s lemma |g(z)| ≤ |z|, i.e. |µ2(f(w))| ≤ |µ1(w)|, so
R′ ≤ R.

3



1 Riemann surfaces

Remark. It follows from the “strict inequality” bit of Schwarz’s lemma that
exists x, y such that ρT (f(x), f(y)) = ρS(x, y) if and only if f lifts to a disk
automorphism.

Example. Contracting holomorphic maps is a very strong requirement. Com-
pre to, for example, f(z) = z + 1 on Ĉ (drawing of different behaviour on two
hemispheres).

Case of Ĉ:

Proposition 1.3. Let f : Ĉ → Ĉ be a holomorphic nonconstant map. Then
f is a rational map, i.e. exists a1, . . . , am, b1, . . . , bn, c ∈ C such that

f(z) = c · (z − a1) · · · (z − am)

(z − b1) · · · (z − bn)
.

Proof. wlog f(∞) ∈ C (if not, replace with 1
f ). Then exist a finite collection

f−1(∞) = {b1, . . . , bn} ⊆ C. About any bi have locally

f(z) =

∞∑
j=−k

aij(z − bi)
j .

Set Qi =
∑−1

j=−k aij(z − bi)
j . Then g − f −Q1 − · · · −Qn has no pole so must

be constant.

Universal cover C: just a remark. Yes there are interesting dynamics. For
example z 7→ ez belongs to the realm of transcendental dynamics. C/Λ also
admits nonconstant holomorphic maps. See example sheet 1.

stable and unstable locus Motivating example: z 7→ z2 on Ĉ. We can
restrict f to the unit disk and we see f |nD → 0 uniformly on compact subsets of
D. Similarly on Ĉ \ D, f |nĈ\D → ∞. On the other hand for |z0| = 1, there is no
neighbourhoood z0 ∈ U such that f |nU (z) converging to a holomorphic function,
as such a limit would have a discontinuity.

Definition (locally uniform convergence/divergence). Let S, T be metric
spaces, fn : S → T a sequence of continuous maps. We say (fn) converges
locally uniformly if for all compact K ⊆ S, for all ε > 0 exists N ∈ N such
that for all m,n > N , supx∈K dT (fm(x), fn(x)) < ε.

We say (fn) diverges locally uniformly if for all compact K ⊆ S and all
compact K ′ ⊆ T , exists N ∈ N such that for all n > N , fn(K) ∩K ′ = ∅.

Recall that if holomorphic fn’s converge locally uniformly on S then it has
a holomorphic limit function.

Remark. If T is compact then we never have locally uniform divergence.

Definition (normal family). We say a family F = {f : S → T} of continu-
ous functions is normal if every sequence (fn) ⊆ F has a subsequence which
either converges locally uniformly or diverges locally uniformly.
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1 Riemann surfaces

Exercise.

1. Show normality depends only on the topology, not the metric, of the
spaces.

2. Normality is local: if F is a family of continuous maps, S =
⋃

α Uα, then
if F|Uα

is normal for all α then F is normal for S.

A word of caution: in some texts (such as Ahlfors) the definition of normality
excludes divergence.

Definition (equicontinuity). A family F of continuous maps on a domain
U ⊆ C with values in a metric space T is equicontinuous if for all ε > 0,
exists δ > 0 such that for all z, w ∈ U and for all f ∈ F , if |z −w| < δ then
dT (f(z), f(w)) < ε.

Theorem 1.4 (Arzela-Ascoli). Let F be a family of continuous maps U → T
with U ⊆ C a domain and T a metric space. Then F has the property that
any sequence has a locally uniformly convergent subsequence if and only if

1. F is equicontinuous on every compact K ⊆ U ,

2. for every z ∈ U , {f(z) : f ∈ F} lies in a compact subset of T .

Corollary 1.5. If T is compact then F is normal if and only if it is equicon-
tinuous on compact subsets of U .

Proof. Only if is easy. For if, we use separability of C. Let {zk} be a countable
dense subset of U and fix {fn} ⊆ F . Can find a set of indices n11 < n12 < · · ·
such that fn1i(z1) converges, and a subsequence of these n21 < n22 < · · · such
that fn2i

(z2) converges. Let gk = fnkk
. Then for all zi the limit limk→∞ gk(zi)

exists in T . Now given K ⊆ U compact, by equicontinuity for any ε > 0 exists
δ > 0 such that for all z, w ∈ U with |z − w| < δ, we have for all f ∈ F ,
dT (f(z), f(w)) < ε. Cover K by δ-balls, extract a finite subcover, and choose
some zi in each, say z1, . . . , z`. For each zi, 1 ≤ i ≤ `, exists Ni such that for
all n,m ≥ Ni, dT (gn(zi), gm(zi)) < ε. Let N = maxiNi. Then for all z ∈ K,

dT (gn(z), gm(z)) ≤ dT (gn(z), gn(zi)) + dT (gn(zi), gm(zi)) + dT (gn(zi), gm(z))

< 3ε

Theorem 1.6 (Montel). Suppose S, T are Riemann surfaces and T is hy-
perbolic. Then all families of holomorphic maps S → T are normal.

Proof. If S is not hyperbolic, lifting plus Liouville’s theorem imply that all maps
are constant. Given a family F of constant maps, let {fn} ⊆ F be a sequence.
Then if {fn(S)} lies in a compact set in T , then exists a convergent subsequence;
if not, exists a subsequence which leaves any compact set, so diverges locally
uniformly.
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1 Riemann surfaces

Suppose S is hyperbolic, {fn} ⊆ F . If exists x ∈ S such that {fn(x)}
lies in a compact subset of T , the same is true for all y ∈ S. Pick’s therom
implies equicontinuity so by Arzela-Ascoli {fn} has a convergent subsequence.
Otherwise fix x ∈ S and y ∈ T and exists a subsequence {fnk

} such that
dT (fnk

(x), y) → ∞. Given K ⊆ S,K ′ ⊆ T compact, by Pick’s theorem
dT (fnk

(z), y) → ∞ for all z ∈ K and so fnk
(K) ∩ K ′ = ∅ for k � 1. Thus

the sequence diverges locally uniformly.

Example. If f : Ĉ → Ĉ is a rational map and D ⊆ Ĉ, then the family of
iterates F = {fn}n∈N is normal if

⋃
n∈N f

n(D) omits 3 or more points of Ĉ, as
any domain of Ĉ with complement of cardinality ≥ 3 is hyperbolic.

Definition (proper map). Suppose U, V are open subsets of Riemann sur-
faces and f : U → V . f is proper if for every K ⊆ V compact, f−1(K) is
compact in U .

Proper maps have well-defined degrees and satisfies the Riemann-Hurwitz
formula. The proofs are similar to the compact case.

Proposition 1.7. Suppose U, V are open in Ĉ. If f : U → V is proper
holomorphic nonconstant then f has a well-defined degree, i.e. for all x ∈ V ,
|f−1(x)| is independent of x, counting multiplicity.

Theorem 1.8 (Riemann-Hurwitz). With same assumptions as above, the
Euler characteristic χ(U), χ(V ) satisfy

χ(U) = (deg f)χ(V )−
∑
p∈U

(ep − 1)

where ep is the local degree/ramification index of f at p.

Note that one strategy is to observe that for U ⊆ C, we can cover by δ-grid,
let δ → 0, we obtain a covering of U by open balls with compact closures and
smooth boundaries.

Corollary 1.9. If f : Ĉ → Ĉ is holomorphic of degree d, then f has 2d− 2
critical points, counting multiplicity.

Corollary 1.10. If χ(U) = χ(V ) = 0 then f : U → V proper holomorphic
nonconstant is unramified.

Definition (Fatou set, Julia set). Let f : Ĉ → Ĉ be a holomorphic noncon-
stant map. The Fatou set of f is

F (f) = {z ∈ Ĉ : on some nbhd z ∈ U, fn forms a normal family}.

The Julia set of f is J(f) = Ĉ \ F (f).
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1 Riemann surfaces

Example. For z 7→ z2, we have normality on (Ĉ\D)∪D, and normality fails on
any open neighbourhood which intersects S1. Thus J(z2) = S1. This example
might be slightly misleading, as we’ll see that the Julia set of a rational map is
almost never smooth.

Lemma 1.11. F (f) and J(f) are totally f -invariant, i.e. f−1(F (f)) =
F (f), f−1(J(f)) = J(f).

Proof. Suffices to show that if U ⊆ Ĉ then {fn|U} is normal on U if and only if
{fn+1|f−1(U)} is normal on f−1(U). If K ⊆ f−1(U) compact then

sup
z∈K

d(fn(z), fm(z)) = sup
w∈f(K)

d(fn−1(z), fm−1(z)).

Since f is proper (continuous map from compact space to Hausdorff space is
proper) and continuous, compactness is preserved by both f and f−1.

Lemma 1.12. J(f) = J(fn) and F (f) = F (fn) for all n.

Proof. Exercise.

Remark. The Julia set of f is the smallest (?) closed subset of Ĉ which is totally
f -invariant and contains at least 3 points (for the moment assume |J(f)| ≥ 3),
since the complement of any such set has {fn} normal by Montel.

For the rest of the course, we consider only rational maps with deg f ≥ 2.
See example sheet 1 for a description of J(µ) for µ a Möbius transformation.

Theorem 1.13. Let z ∈ U ⊆ J(f) be open. Then the union V =
⋃

n∈N f
n(U)

contains all but at most 2 points of Ĉ. Any point w /∈ V is a critical point
of the Fatou set.

Proof. The first statement follows from Montel. If w /∈ V , since f(V ) ⊆ V , then
for all n ∈ N, f−n(w) ∩ V = ∅. Suppose there are two points {z0, z1}. Then
examining possible ramification for these two points which are fixed under f−1,
the only possiblities are zi 7→ zi with degree d, or z1 7→ z2, z2 7→ z1 with degree
d. The case for a single point is similiar.

Replacing f by f2 if needed, it suffcies to show that if f(z) = z and f ′(z) = 0

then z ∈ F (f). Note that if µ ∈ Aut(Ĉ), g = µ−1 ◦f ◦µ, then gn = µ−1 ◦fn ◦µ,
and so µ(J(g)) = J(f). Thus wlog f(0) = 0, f ′(0) = 0. Locally we have
f(z) = a2z

2+a3z
3+ · · · = z2(a2+O(z)) about 0, so |f(z)| < |z| for z sufficiently

close to 0, so on a neighbourhood of 0, fn → 0 so form a normal family.

The three cases do happen: z 7→ zd, z 7→ z−d, z 7→ p(z) for p a polynomial
with nonzero constatnt term.

Remark. If fn(z0) = z0 for some n ∈ N and (fn)′(z0) =
∏n−1

i=0 f
′(f i(z0)) = 0

then z0 ∈ F (f).

7



1 Riemann surfaces

Corollary 1.14. If J(f) contains an interior point then J(f) = Ĉ.

Proof. If U is open in J(f), V =
⋃
fn(U) contains all but at most 2 points on

Ĉ. Since J(f) is closed by definition, J(f) = Ĉ.

This does happen: let Et : y2 = x(x − 1)(x − t) for t ∈ C \ {0, 1} be an
elliptic curve.

Et Et

Ĉ Ĉ

[2]

ft

where the vertical maps are quotient by ?, i.e. (x, y) 7→ x. Then

ft(z) =
(z2 − t)2

4z(z − 1)(z − t)
.

We can show J(ft) is dense in Ĉ by showing the Julia set of [2] is dense, and
thus J(ft) = Ĉ.

Definition (period, multiplier). Let z0 ∈ Ĉ. We say z0 is periodic for a
rational f if exists m ∈ N such that fm(z0) = z0. The minimal such m is
the period of the cycle containing z0. If m = 1 we also call it a fixed point.

If z0 has period m, the multiplier of the cycle is

(fm)′(z0) =

m−1∏
i=0

f ′(f i(z0)).

Let λ be the multiplier of z0. We say z0 is

1. superattracting if λ = 0,

2. attracting if 0 ≤ |λ| < 1,

3. indifferent if |λ| = 1,

4. repelling if |λ| > 1.

Recall that we might have to use the chart at infinity to compute the derivative.
For example if z0 = ∞, f(∞) = ∞ then

λ = lim
z→∞

1

f ′(z)
.

Definition (basin of attraction). Suppose C = {z0, f(z0), . . . , fm−1(z0)} is
an attracting cycle. The basin of attraction for C is

A = {z ∈ Ĉ : lim
n→∞

fnm(z) = f i(z0) for some 0 ≤ i ≤ m− 1}.

8



1 Riemann surfaces

Theorem 1.15. If f : Ĉ → Ĉ has an attracting cycle then the basin of
attraction is in F (f). On the other hand all repelling cycles are contained
in J(f).

Example. The theorem completely describes the Fatou and Julia set of z 7→ z2.
z0 is periodic if and only if exists n such that z2n0 = z0, so z0 is 0,∞ or some
root of unity (which forms a dense subset of S1). A0 = D, A∞ = Ĉ \ D. All
other cycles are repelling and so J(f) = S1.

Proof. Since J(fm) = J(f), wlog assume z0 is a fixed point. Suppose that
λ = f ′(z0) is such that |λ| < 1. By Taylor expansion |f(z)− z0| ≤ c|z − z0| for
some constant c < 1 for z sufficiently close to z0. So on a neighbourhood of 0,
fn(z) converges uniformly on compact subsets to the constant function z0. So
z0 ∈ F (f).

On the other hand if z0 is repelling so |λ| > 1, suppose for contradiction that
z0 ∈ F (f), so exists open neighbourhood U of z0 on which fn has a subsequence
converging to a holomorphic limit. Since (fn)′(z0) = λn, absurd.

Remark. We will classify later when indifferent points are Julia.

1.1 Holomorphic Lefschetz fixed point formula

Definition (residue index). Let z0 be a fixed point of a rational map f .
The residue index of f at z0 is

if (z0) =
1

2πi

∫
γ

dz

z − f(z)

where γ is a small, positively oriented circle about z0.

Lemma 1.16. Let z0 have multiplier 6= 1. Then if (z0) = 1
1−λ .

Proof. It is an exercise to check the multiplier is coordinate-independent. By
definition the resude index is translation/conjugation independent, so wlog z0 =
0. Then on a neighbourhood of 0, f(z) = λz + a2z

2 + . . . so

1

z − f(z)
=

1

(1− λ)z(1 +O(z))
=

1

(1− λ)z
+ g(z)

with g holomorphic on a neighbourhood of 0. Integrate.

Theorem 1.17 (holomorphic Lefschetz on Ĉ). Say f : Ĉ → Ĉ of degree
≥ 2. Then the fixed points of f satisfy∑

z=f(z)

if (z) = 1.

9



1 Riemann surfaces

Proof. Conjugation if necessary (exercise: use the above lemma to show the
residue index is coordinate-independent), wlog f(∞) 6= ∞. Choose R � 0 so
that all fixed points of f are in D(0, R). Call the positively oriented boundary
CR. By residue theorem∑

z=f(z)

if (z) =
1

2πi

∫
CR

dz

z − f(z)

=
1

2πi

∫
−C1/R

−dw
w2( 1

w − f( 1
w ))

=
1

2πi

∫
C1/R

dw

w(1− wf( 1
w ))

= Resw=0
1

w(1− wf( 1
w ))

= 1

Corollary 1.18. Suppose deg f ≥ 2. Then J(f) 6= ∅.

Proof. Consider the fixed points of f . Assume first no fixed point multiplier is
1. Then λ 7→ 1

1−λ sends the unit circle to the line Re = 1
2 , and D to Re > 1

2 .
Thus if |λ| ≤ 1 for all fixed point multipliers, and not equal to 1, (there is no
multiplicity), there are d+1 ≥ 3 distinct fixed points (?), so Re(

∑
z=f(z) if (z)) ≥

3
2 , absurd. If exists a repelling point then done. So suppose z0 is fixed with
λ = 1. Then in local coordinates f(z) = z+akz

k+. . . where ak 6= 0. Inductively
f(z) = z+nakz

k + . . . so the kth derivative of fn(z0) is k!nak → ∞ as n→ ∞,
so the iterates cannot form a normal family on a neighbourhood of z0.

Remark.

1. Suppose z0 is a indifferent fixed point, λ a root of unity. If λk = 1 then
(fk)′(z0) =

∏k−1
i=0 f

′(f(z0)) = λk = 1. Thus the preceding argument
shows that z0 ∈ J(fk) = J(f).

2. It is possible for a rational map to have non repelling fixed point. For
example z 7→ z2 + 1

4 . The fixed points are ∞ and 1
2 which is a double

fixed point.

3. Any finite grand orbit (the set {z ∈ Ĉ : fm(z) = fn(z0) for some m,n})
is necessarily Fatou (exercise), so |J(f)| = ∞.

Recall: suppose f : Ĉ → Ĉ is a rational map of degree d ≥ 2.

1. If U is open, U ∩ J(f) 6= ∅ then
⋃

n≥1 f
n(U) contains all but at most 2

points and contains J(f).

2. J(f) contains all repelling cycles and all indifferent cycles with roots of
unity multipliers.

3. J(f) 6= ∅ and |J(f)| = ∞.

10



1 Riemann surfaces

Proposition 1.19. Suppose f has a periodic cycle which is attracting, with
attracting basin A. Then J(f) = ∂A.

Proof. Given U an open neighbourhood such that U ∩ J(f) 6= ∅, exists n such
that fn(U)∩A = ∅. As A is closed under preimages, U∩A 6= ∅. Thus J(f) ⊆ A.
Since A ⊆ F (f), J(f) ⊆ ∂A.

Conversely suppose z0 ∈ ∂A and U is a neighbourhood of z0. Suppose {fn}
forms a normal family on U . On U ∩ A, any holomorphic limit g of iterates of
f must take finitely many constant values, but g cannot be locally constant as
U contains points not in the basin, absurd. Thus z0 ∈ J(f).

Example. Any polynomial f has J(f) the boundary of basin at ∞. Note that
it might also be the boundary of another basin, for example z 7→ z2, z 7→ z2−1.

Corollary 1.20. Fix z0 ∈ J(f). Then the full preimage {z : fn(z) =
z0 for some n ≥ 0} forms a dense subset of J(f).

Proof. Fix z1 ∈ J(f) and a neighbourhood U 3 z1. If it contains no preimage
of z0 then

⋃
fn(U) /∈ z0, absurd.

Topological preimage equidistribution

1.2 Attracting (and repelling) cycles

Definition (topologically attracting). A fixed point p of f is topologically
attracting if there exists a neighbourhood U 3 p such that {fn} converges
locally uniformly to p on U .

Lemma 1.21. A fixed point p of f is attracting if and only if it is topolog-
ically attracting.

Proof. Exercise. Taylor’s theorem in one direction, and Schwarz lemma in the
other.

Theorem 1.22. Suppose f has a fixed point p with multiplier λ, |λ| 6= 0, 1.
Then exists local holomorphic change of coordinates φ such that φ(p) = 0
and φ ◦ f ◦ f−1(w) = λw. Thus coordinate is unique up to multiplication by
a constant. φ is known as the Kaenig linearising map.

Proof. wlog p = 0 and first suppose 0 < |λ| < 1. Choose a constant c such that
c2 < |λ| < c. Find r > 0 such that for all z ∈ D(0, r), |f(z)| ≤ c|z|, so |fn(z)| ≤
cnr. We can find B > 0 such that for all z ∈ D(0, r), |f(z)− λz| ≤ B|z|2. Thus
for all z ∈ D(0, r),

|fn+1(z)− λfn(z)| ≤ B|fn(z)|2 ≤ Br2c2n.

Let wn = fn(z)
λn . Then

|wn+1(z)− wn(z)| =
∣∣∣∣fn+1(z)

λn+1
− fn(z)

λn

∣∣∣∣ ≤ 1

|λ|n+1
Br2c2n =

Br2

λ

∣∣∣∣c2λ
∣∣∣∣n

11



1 Riemann surfaces

so wn converges locally uniformly on D(0, r). Set φ(z) = limwn(z). As z 7→
wn(z) has derivative 1 at 0, so does φ so it has a holomorphic inverse.

For uniqueness suppose ψ is another such coordinate, then for w ∈ ψ(U)
have λφ(ψ−1(w)) = φ(ψ−1(λw)). Done by comparing local power series.

For |λ| > 1 apply the same argument to a branch of f−1.

Corollary 1.23. Suppose p is an attracting fixed point of f with multiplier
λ 6= 0 and basin A. Then exists a holomorphic φ : A → C such that the
following diagram commutes

A A

C C

f

φ φ

λ

Proof. Define φ(z) = limn→∞
φ0(f

n(z))
λn where φ0 is the linearlising coordinates

on a neighbourhood of p. Check the details.

Definition (immediate basin). The immediate basin of an attracting cycle
is the union of the Fatou components containing the cycle elements.

...
z2−1
z2−c attracting 5-cycle ∞ 7→ 1 7→ 0 7→ 1

c

Proposition 1.24. Let f be a rational map with f(p) = p an attracting
fixed point. Then the immediate basin of p contains a critical point of f .

Proof. wlog p = 0. The component U of F (f) is hyperbolic as |J(f)| = ∞.
Thus we have

D D

U U

F

π π

f

If f has no critical points in U then f ◦π is a covering map D → U so exists G :
D → D covering it. If π, F,G fix 0, G is inverse to F . Thus F ∈ Aut(D) so F, f
are hyperbolic local isometries, contradicting 0 an attracting fixed point.

Corollary 1.25. f has at most 2d− 2 attracting cycles.

Corollary 1.26. f has at most 4d− 4 non-repelling cycles.

Proof. Holomorphic perturbation. Let ft(z) = (1 − t)f(z) + tzd. Note f0 =
f(z), f1 = zd. Suppose fn(α) = α with multiplier λ ∈ S1. If α is not a repeated
root of fn(z)− z there is a neighbourhood of 0 and holomorphic t 7→ α(t) such
that α(0) = α and fn(α(t)) = α(t) for all t, i.e. if λ 6= 1 (?). But if λ = 1 we
can base change t 7→ tk. We then have t 7→ λ(t) homomorphic in t, λ(0) = λ
and (fn)′(α(t)) = λ(t). Either λ(t) is the constant 1 (more argument needed),
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1 Riemann surfaces

or another constant λ, or nonconstant. The first two cases contradict zd having
no indifferent cycles at t = 1.

By conformality of holomorphic maps, the measure

µ({θ ∈ S1 : |λ(εeiθ)|}) → 1

2

as ε → 0. Repeating this process for all indifferent cycles, exists a direction θ
such that perturbation in the θ-direction makes half of these cycles attracting.
For sufficiently small choice of εeiθ, attracting cycles remain attracting. Let N
be the number of indifferent cycles of f , M the number of attracting cycles of
f , then the number of non-repelling cycles of f is N +M = 2(M/2 + N/2) ≤
2(2d− 2).

Remark. fn(z) = z has zn + 1 roots counting multiplicity, so must have a
repelling cycle.

Note we can be more precise, see example sheet.

Theorem 1.27. If f(0) = 0 is attracting with multiplier λ 6= 0. Let φ
be a linearising coordinate with local inverse ψ : D(0, ε) → A0, where A0

is the immediate basin of 0. ψ extends to a holomorphic map on a disk
D(0, r) of some maximal radius r, extending homeomorphically to ∂D(0, r)
and ψ(∂D(0, r)) contains a critical point of f .

Remark. Actually detecting whether f has an attractor is harder. Open prob-
lem: does z 7→ z2 − 3

2 has an attractor?

Caution: linearising map need not continuously extend to J(f).

Theorem 1.28. If f rational has J(f) disconnected then J(f) has uncount-
ably many connected components.

Proof. If J(f) = J0 ∪ J1 where J0, J1 are disjoint compact nonempty. Given
z ∈ J , define a seuqnce β(z) = (βn(z)) where βn(z) = i if fn(z) ∈ Ji. If z, w are
in the same connected component of J(f) then β(z) = β(w). It suffices to show
that for any initial β1(z), . . . , βk(z), exists n > k such that exists z′ ∈ J(f) such
that βi(z′) = βi(z) for all 1 ≤ i ≤ k but βn(z′) 6= βn(z). Define

Uz,k = {w ∈ Ĉ : f i(w) /∈ J1−βi(z) for all 1 ≤ i ≤ k}.

This is open and contains F (f). Some subsequence (βnj (z)) is constant, say the
constant 0. If βi(z′) = βi(z) for all 1 ≤ i ≤ k then βi(z

′) = βi(z) for all i, then

fnj (Uz,k) ⊆ C \ J1.

The maps fnj : Uz,k → C \ J1 form a normal family, contradiction. Thus
{β(z) : z ∈ J(f)} is uncountable.

Superattractor
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1 Riemann surfaces

Theorem 1.29. Suppose f(0) = 0 is with local expansion f(z) = amz
m +

am+1z
m+1 + . . . ,m ≥ 2. Then there exists a holomorphic change of coor-

dinates φ on a neighbourhood of 0 such that φ(0) = 0, φ(f(z)) = φ(z)m. φ
is unique up to multiplication by an (m− 1)th root of unity. φ is called the
Böttcher coordinate.

Proof. We sketch the proof only. The details are the same as Kaenig’s. Write
locally f(z) = zm(1 + h(z)), where h(z) → 0 as z → 0 is holomorphic, where
am = 1 (otherwise conjugate by αf(z/α)). Write 1 + h(z) = exp(k(z)) for
some holomorphic h(z) on a neighbourhood of 0. Then there exists holomor-
phic kn(z) on this neighbourhood so that fn(z) = zm

n

exp(kn(z)). Choose the
branch φn(z) of the mnth root of fn(z) such that φn(z) = z(1+O(z)). Then φn
converges uniformly to some holomorphic φ on this neighbourhood which satis-
fies the statement. Uniqueness follows from identification of Taylor expansion,
a la Kaenig.

Corollary 1.30. Let f(0) = 0 be superattracting, with basin A and Böttcher
coordinate φ on a neighbourhood of 0. Then z 7→ |φ(z)| extends to a contin-
uous map |φ| : A→ [0, 1) satisfying |φ(f(z))| = |φ(z)|m for z ∈ A.

Proof. Given z ∈ A, set |φ|(z) = |φ(fn(z))|1/mn , where n � 1 such that fn(z)
is in the neighbourhood domain of φ. The desired equality is immediate.

14



2 Polynomial dynamics

2 Polynomial dynamics

Definition (filled Julia set). Let p(z) = adz
d + ad−1z

d−1 + · · · + a0, d ≥
2, ad 6= 0. The filled Julia set of p is

K(p) = {z ∈ C : |fn(z)| 9 ∞ as n→ ∞}.

Note this is the complement of the basin of infinity.
From our results on boundaries of basins, ∂K(p) = J(p). We know we have

a Böttcher coordinate on a neighbourhood of ∞: choose this (i.e. φ(1/z)−1)
such that φ(∞) = ∞.

Definition (Green’s function). Suppose p(z) is a degree d polynomial. The
Green’s function associated to p is

Gp(z) = lim
n→∞

log+ |pn(z)|
dn

where log+ x = max{log x, 0} for x ≥ 0.

Lemma 2.1. Gp(z) satisfying the following:

1. Gp is continuous everywhere and harmonic on C \K(p).

2. Gp(z) = log |z|+O(1) as |z| → ∞.

3. Gp(z) → 0 as z → K(p).

4. Gp(p(z)) = dGp(z).

1, 2, 4 uniquely characterises Gp, and Gp(z) = log |φp(z)|, where φp is a
Böttcher coordinate at ∞ on Ĉ \K(p).

Remark.

1. This is how pictures of filled Julia sets are drawn.

2. The Green’s function depends only on K(p).

Proof.

1. Consider the function log+ |p(z)| − d log+ |z| on Ĉ. It is continuous and
takes real values, so is bounded by some C ∈ R. Then for all n,∣∣∣∣ log+ |pn(z)|

dn
− log+ |pn−1(z)|

dn−1

∣∣∣∣ ≤ C

dn

so for m ≤ n,∣∣∣∣ log+ |pn(z)|
dn

− log+ |pm(z)|
dm

∣∣∣∣ ≤ n∑
k=m+1

C

dk
≤ C

dm(d− 1)

so Gp is a uniform limit of continuous function so continuous.
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2 Polynomial dynamics

Locally, a function is harmonic if and only if it is the real part of a holo-
mophic function, if and only if it equals to log |f | for some holomorphic f
that does not vanish anywhere (since on a simply connected domain we
can take logarithm). Given z /∈ K(p), find a small disk D 3 p such that
D ∩K(p) = ∅. There exists N � 1 such that pn(D) ∩ D = ∅ for n ≥ N .
Then log+ |pn(z)|

dn is harmonic on D. Since a uniform limit of harmonics is
harmonic, we have Gp(z) is harmonic on D as well. Note if K(p)int(p) 6= ∅
then Gp(z) = 0 there so is harmonic as well. In other words, Gp(z) fails
to be harmonic precisely on the Julia set (for more rigorous argument see
later).

2. Set m = 0, then the bound in 1 gives∣∣∣∣ log+ |pn(z)|
dn

− log+ |z|
∣∣∣∣ ≤ C

d− 1

so as n→ ∞, |Gp(z)− log |z|| ≤ C
d−1 for |z| � 0.

3. Gp(z) = 0 on K(p).

4. Definition.

Suppose H(z) is a function satisfying 1, 2 and 4 and consider G(z) = Gp(z)−
H(z). By 1 and 2 it is continuous and bounded on Ĉ. By 4, as n → ∞,
G(pn(z)) = dnG(z) → ∞ unless G(z) = 0. We thus have Gp(z) = H(z). For
Gp(z) = log |φp(z)|, check continuity, growth at ∞ and transformation.

Example. For z 7→ zd,

Gp(z) = lim
log+ |zdn |

dn
= log+ |z|.

K(p) = D, where log+ |z| = 0. The basin of infinity is Ĉ \ D.

Remark. Gp(z) is also known as the potential function associated to K(p).

Now back to superattractors.

Theorem 2.2. Suppose f(0) = 0 is superattracting, with Böttcher coordi-
nate φ for f at 0. There there exists a unique open disk D(0, r) of maximal
radius 0 < r ≤ 1 such that the inverse ψ of φ extends holomorphically to
ψ : D(0, r) → A0, the immediate basin of attraction of 0. If r = 1 then
ψ : D(0, t) ∼= A0 and 0 is the only critical points of f in A0. On the other
hand if r < 1 there exists a nonzero critical point in A0, which lies on
ψ(D(0, r)).

Proof. Guided on example sheet 2. Non-examinable.

Example. f(z) = z2 + 1
2 . φ sends a neighbourhood of ∞ to the complement

of a large closed disk in Ĉ isomorphically. ψ can be extended until it hits the
image of a critical point.

In the case fc(z) = z2 + c, there are two critical points ∞, 0. ∞ is mapped
to itself with multiplicity 2. We have
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2 Polynomial dynamics

Corollary 2.3. Suppose 0 /∈ K(fc), i.e. fnc (0) → ∞ as n → ∞. Then the
Böttcher coordinate φc of fc at ∞ extends to a conformal isomorphism on
a neighbourhood of ∞ which contains c.

Proof. 0 is the only critical point that can move around and f(0) = c. Now use
extension of Böttcher coordinate.

Proposition 2.4. A closed subset of the sphere is connected if and only if
the connected components of its complement are simply connected.

Proof. Beardon, Iteration of Rational Functions and Ahlfors.
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