University of CAMBRIDGE

MATHEMATICS TRIPOS

Part III

Complex Dynamics

Lent, 2020

Lectures by H. KRIEGER

Notes by QIANGRU KUANG

Contents

0	Introduction	2
1	Riemann surfaces	3
	1.1 Holomorphic Lefschetz fixed point formula	9
	1.2 Attracting (and repelling) cycles	11
2	Polynomial dynamics	15
In	ndex	18

0 Introduction

What is complex dynamics? Iteration of holomorphic self-maps of Riemann surfaces

long term behaviour under iteration

origin: iterative root finding algorithm, e.g. Newton's method. When and why does this work? Algebraically, the problem is to ask the convergence of the iteration of the map

$$f(z) = z - \frac{p(z)}{p'(z)} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$

where $\hat{\mathbb{C}}$ is the Riemann sphere.

Goals:

• equidistribution theorem

Theorem 0.1 (Friere-Lopez-Mañe, 1983). Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ with degree $d \geq 2$ holomorphic. Then there exists a unique f-invariant probability measure μ_f supported on the unstable locus of f, such that for almost all $\alpha \in \hat{\mathbb{C}}$, $\frac{1}{d^n} \sum_{f^n(z)=\alpha} \delta_z \to \mu_f$ in weak-* topology.

• universality of the Mandelbrot set: fix $d \ge 2$, define for $c \in \mathbb{C}$, $f_c(z) : z^d + c$. The *d*-Mandelbrot set is

$$M_d = \{ c \in \mathbb{C} : |f_c^n(0)| \not\to \infty \}.$$

Theorem 0.2 (McMullen 1997). The Mandelbrot set is universal for bifurcations, i.e. in any bifurcation locus we see (slightly distorted) copies of some M_d .

1 Riemann surfaces

Recall at the end of IID Riemann Surfaces

Theorem 1.1 (uniformisation). Every Riemann surface R is conformally isomorphic to \tilde{R}/G where \tilde{R} is one of the three simply connected Riemann surfaces $(\hat{\mathbb{C}}, \mathbb{C}, \mathbb{D})$ and $G \subseteq \operatorname{Aut}(\tilde{R})$ acts freely and properly discontinuously.

Three cases:

- 1. $\hat{\mathbb{C}}$: as Aut $(\hat{\mathbb{C}})$ are precisely the Möbius transformations and all Möbius transformations have fixed points, G = 1 so $R = \hat{\mathbb{C}}$.
- 2. \mathbb{C} : Aut(\mathbb{C}) = { $p(z) = az + b, a \neq 0$ } so G only contains translations, so can be identified by a subgroup of \mathbb{C} . Can show that G is one of {0}, $\mathbb{Z}\omega_1$ or $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$, a lattice. Then R is one of \mathbb{C}, \mathbb{C}^* or \mathbb{C}/Λ , a complex torus.
- 3. \mathbb{D} : Aut $(\mathbb{D}) = \{\lambda \cdot \frac{z-a}{1-\overline{a}z} : \lambda \in S^1, a \in \mathbb{D}\}$, which has a lot of elements with no fixed point. This is called *hyperbolic*.

Recall $\mathbb D$ is equipped with metric $ds=\frac{2|dz|}{1-|z|^2},$ i.e. the distance between $x,y\in\mathbb D$ is

$$\rho(x,y) = \inf_{\gamma} \int_a^b \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt$$

where $\gamma : [a, b] \to \mathbb{D}$ is a smooth curve from x to y. One can use the origin to show that

$$\rho(x,y) = \frac{\log(1+R)}{\log(1-R)}$$

where $R = \lfloor \frac{y-x}{1-\overline{x}y} \rfloor$. Elements of $\operatorname{Aut}(\mathbb{D})$ are isometries of this metric so it descends to a hyperbolic metric on any hyperbolic Riemann surface, such that the covering map $\tilde{R} \to R$ is a local isometry.

Exercise. Let $R = \mathbb{D}/G$, $f : R \to R$ holomorphic. Then f lifts to a holomorphic $\tilde{f} : \mathbb{D} \to \mathbb{D}$, unique up to a composition with an element of G, and induces a group homomorphism $\gamma \mapsto \gamma'$ such that $\tilde{f} \circ \gamma = \gamma' \circ \tilde{f}$.

Theorem 1.2 (Pick). Let $f : S \to T$ be hyperbolic Riemann surfaces with Poincaré metric ρ_S, ρ_T respectively. Then for all $x, y \in S$,

$$\rho_T(f(x), f(y)) \le \rho_S(x, y).$$

Proof. By lifting (of $f \circ \pi_S : \mathbb{D} \to T$) it suffices to show this for $S = T = \mathbb{D}$. By computation this is the same as showing

$$\frac{\log(1+R')}{\log(1-R')} \le \frac{\log(1+R)}{\log(1-R)}$$

where $R = \left|\frac{y-x}{1-\overline{y}x}\right|, R' = \left|\frac{f(y)-f(x)}{1-\overline{f(y)}f(x)}\right|$. Note $\frac{\log(1+x)}{\log(1-x)}$ is strictly increasing, so suffices to show $R' \leq R$. Let $\mu_1(z) = \frac{y-z}{1-\overline{y}z}, \mu_2(z) = \frac{f(y)-z}{1-\overline{f(y)}z}$. Let $g = \mu_2 \circ f \circ \mu_1^{-1} : \mathbb{D} \to \mathbb{D}$. By Schwarz's lemma $|g(z)| \leq |z|$, i.e. $|\mu_2(f(w))| \leq |\mu_1(w)|$, so $R' \leq R$.

Remark. It follows from the "strict inequality" bit of Schwarz's lemma that exists x, y such that $\rho_T(f(x), f(y)) = \rho_S(x, y)$ if and only if f lifts to a disk automorphism.

Example. Contracting holomorphic maps is a very strong requirement. Compret o, for example, f(z) = z + 1 on $\hat{\mathbb{C}}$ (drawing of different behaviour on two hemispheres).

Case of $\hat{\mathbb{C}}$:

Proposition 1.3. Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a holomorphic nonconstant map. Then f is a rational map, i.e. exists $a_1, \ldots, a_m, b_1, \ldots, b_n, c \in \mathbb{C}$ such that

$$f(z) = c \cdot \frac{(z - a_1) \cdots (z - a_m)}{(z - b_1) \cdots (z - b_n)}$$

Proof. wlog $f(\infty) \in \mathbb{C}$ (if not, replace with $\frac{1}{f}$). Then exist a finite collection $f^{-1}(\infty) = \{b_1, \ldots, b_n\} \subseteq \mathbb{C}$. About any b_i have locally

$$f(z) = \sum_{j=-k}^{\infty} a_{ij}(z-b_i)^j.$$

Set $Q_i = \sum_{j=-k}^{-1} a_{ij}(z-b_i)^j$. Then $g - f - Q_1 - \cdots - Q_n$ has no pole so must be constant.

Universal cover \mathbb{C} : just a remark. Yes there are interesting dynamics. For example $z \mapsto e^z$ belongs to the realm of transcendental dynamics. \mathbb{C}/Λ also admits nonconstant holomorphic maps. See example sheet 1.

stable and unstable locus Motivating example: $z \mapsto z^2$ on $\hat{\mathbb{C}}$. We can restrict f to the unit disk and we see $f|_{\mathbb{D}}^n \to 0$ uniformly on compact subsets of \mathbb{D} . Similarly on $\hat{\mathbb{C}} \setminus \overline{\mathbb{D}}$, $f|_{\hat{\mathbb{C}} \setminus \overline{\mathbb{D}}}^n \to \infty$. On the other hand for $|z_0| = 1$, there is no neighbourhood $z_0 \in U$ such that $f|_U^n(z)$ converging to a holomorphic function, as such a limit would have a discontinuity.

Definition (locally uniform convergence/divergence). Let S, T be metric spaces, $f_n : S \to T$ a sequence of continuous maps. We say (f_n) converges locally uniformly if for all compact $K \subseteq S$, for all $\varepsilon > 0$ exists $N \in \mathbb{N}$ such that for all m, n > N, $\sup_{x \in K} d_T(f_m(x), f_n(x)) < \varepsilon$.

We say (f_n) diverges locally uniformly if for all compact $K \subseteq S$ and all compact $K' \subseteq T$, exists $N \in \mathbb{N}$ such that for all n > N, $f_n(K) \cap K' = \emptyset$.

Recall that if holomorphic f_n 's converge locally uniformly on S then it has a holomorphic limit function.

Remark. If T is compact then we never have locally uniform divergence.

Definition (normal family). We say a family $\mathcal{F} = \{f : S \to T\}$ of continuous functions is *normal* if every sequence $(f_n) \subseteq \mathcal{F}$ has a subsequence which either converges locally uniformly or diverges locally uniformly.

Exercise.

- 1. Show normality depends only on the topology, not the metric, of the spaces.
- 2. Normality is local: if \mathcal{F} is a family of continuous maps, $S = \bigcup_{\alpha} U_{\alpha}$, then if $\mathcal{F}|_{U_{\alpha}}$ is normal for all α then \mathcal{F} is normal for S.

A word of caution: in some texts (such as Ahlfors) the definition of normality excludes divergence.

Definition (equicontinuity). A family \mathcal{F} of continuous maps on a domain $U \subseteq \mathbb{C}$ with values in a metric space T is *equicontinuous* if for all $\varepsilon > 0$, exists $\delta > 0$ such that for all $z, w \in U$ and for all $f \in \mathcal{F}$, if $|z - w| < \delta$ then $d_T(f(z), f(w)) < \varepsilon$.

Theorem 1.4 (Arzela-Ascoli). Let \mathcal{F} be a family of continuous maps $U \to T$ with $U \subseteq \mathbb{C}$ a domain and T a metric space. Then \mathcal{F} has the property that any sequence has a locally uniformly convergent subsequence if and only if

- 1. \mathcal{F} is equicontinuous on every compact $K \subseteq U$,
- 2. for every $z \in U$, $\{f(z) : f \in \mathcal{F}\}$ lies in a compact subset of T.

Corollary 1.5. If T is compact then \mathcal{F} is normal if and only if it is equicontinuous on compact subsets of U.

Proof. Only if is easy. For if, we use separability of \mathbb{C} . Let $\{z_k\}$ be a countable dense subset of U and fix $\{f_n\} \subseteq \mathcal{F}$. Can find a set of indices $n_{11} < n_{12} < \cdots$ such that $f_{n_{1i}}(z_1)$ converges, and a subsequence of these $n_{21} < n_{22} < \cdots$ such that $f_{n_{2i}}(z_2)$ converges. Let $g_k = f_{n_{kk}}$. Then for all z_i the limit $\lim_{k\to\infty} g_k(z_i)$ exists in T. Now given $K \subseteq U$ compact, by equicontinuity for any $\varepsilon > 0$ exists $\delta > 0$ such that for all $z, w \in U$ with $|z - w| < \delta$, we have for all $f \in \mathcal{F}$, $d_T(f(z), f(w)) < \varepsilon$. Cover K by δ -balls, extract a finite subcover, and choose some z_i in each, say z_1, \ldots, z_ℓ . For each $z_i, 1 \leq i \leq \ell$, exists N_i such that for all $n, m \geq N_i, d_T(g_n(z_i), g_m(z_i)) < \varepsilon$. Let $N = \max_i N_i$. Then for all $z \in K$,

$$d_T(g_n(z), g_m(z)) \le d_T(g_n(z), g_n(z_i)) + d_T(g_n(z_i), g_m(z_i)) + d_T(g_n(z_i), g_m(z)) < 3\varepsilon$$

Theorem 1.6 (Montel). Suppose S, T are Riemann surfaces and T is hyperbolic. Then all families of holomorphic maps $S \to T$ are normal.

Proof. If S is not hyperbolic, lifting plus Liouville's theorem imply that all maps are constant. Given a family \mathcal{F} of constant maps, let $\{f_n\} \subseteq \mathcal{F}$ be a sequence. Then if $\{f_n(S)\}$ lies in a compact set in T, then exists a convergent subsequence; if not, exists a subsequence which leaves any compact set, so diverges locally uniformly.

Suppose S is hyperbolic, $\{f_n\} \subseteq \mathcal{F}$. If exists $x \in S$ such that $\{f_n(x)\}$ lies in a compact subset of T, the same is true for all $y \in S$. Pick's therom implies equicontinuity so by Arzela-Ascoli $\{f_n\}$ has a convergent subsequence. Otherwise fix $x \in S$ and $y \in T$ and exists a subsequence $\{f_{n_k}\}$ such that $d_T(f_{n_k}(x), y) \to \infty$. Given $K \subseteq S, K' \subseteq T$ compact, by Pick's theorem $d_T(f_{n_k}(z), y) \to \infty$ for all $z \in K$ and so $f_{n_k}(K) \cap K' = \emptyset$ for $k \gg 1$. Thus the sequence diverges locally uniformly.

Example. If $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a rational map and $D \subseteq \hat{\mathbb{C}}$, then the family of iterates $\mathcal{F} = \{f^n\}_{n \in \mathbb{N}}$ is normal if $\bigcup_{n \in \mathbb{N}} f^n(D)$ omits 3 or more points of $\hat{\mathbb{C}}$, as any domain of $\hat{\mathbb{C}}$ with complement of cardinality ≥ 3 is hyperbolic.

Definition (proper map). Suppose U, V are open subsets of Riemann surfaces and $f: U \to V$. f is proper if for every $K \subseteq V$ compact, $f^{-1}(K)$ is compact in U.

Proper maps have well-defined degrees and satisfies the Riemann-Hurwitz formula. The proofs are similar to the compact case.

Proposition 1.7. Suppose U, V are open in $\hat{\mathbb{C}}$. If $f : U \to V$ is proper holomorphic nonconstant then f has a well-defined degree, i.e. for all $x \in V$, $|f^{-1}(x)|$ is independent of x, counting multiplicity.

Theorem 1.8 (Riemann-Hurwitz). With same assumptions as above, the Euler characteristic $\chi(U)$, $\chi(V)$ satisfy

$$\chi(U) = (\deg f)\chi(V) - \sum_{p \in U} (e_p - 1)$$

where e_p is the local degree/ramification index of f at p.

Note that one strategy is to observe that for $U \subseteq \mathbb{C}$, we can cover by δ -grid, let $\delta \to 0$, we obtain a covering of U by open balls with compact closures and smooth boundaries.

Corollary 1.9. If $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is holomorphic of degree d, then f has 2d - 2 critical points, counting multiplicity.

Corollary 1.10. If $\chi(U) = \chi(V) = 0$ then $f: U \to V$ proper holomorphic nonconstant is unramified.

Definition (Fatou set, Julia set). Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a holomorphic nonconstant map. The *Fatou set* of f is

 $F(f) = \{ z \in \hat{\mathbb{C}} : \text{ on some nbhd } z \in U, f^n \text{ forms a normal family} \}.$

The Julia set of f is $J(f) = \hat{\mathbb{C}} \setminus F(f)$.

Example. For $z \mapsto z^2$, we have normality on $(\widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}) \cup \mathbb{D}$, and normality fails on any open neighbourhood which intersects S^1 . Thus $J(z^2) = S^1$. This example might be slightly misleading, as we'll see that the Julia set of a rational map is almost never smooth.

Lemma 1.11. F(f) and J(f) are totally *f*-invariant, i.e. $f^{-1}(F(f)) = F(f), f^{-1}(J(f)) = J(f)$.

Proof. Suffices to show that if $U \subseteq \hat{\mathbb{C}}$ then $\{f^n|_U\}$ is normal on U if and only if $\{f^{n+1}|_{f^{-1}(U)}\}$ is normal on $f^{-1}(U)$. If $K \subseteq f^{-1}(U)$ compact then

$$\sup_{z \in K} d(f^n(z), f^m(z)) = \sup_{w \in f(K)} d(f^{n-1}(z), f^{m-1}(z)).$$

Since f is proper (continuous map from compact space to Hausdorff space is proper) and continuous, compactness is preserved by both f and f^{-1} .

Lemma 1.12. $J(f) = J(f^n)$ and $F(f) = F(f^n)$ for all *n*.

Proof. Exercise.

Remark. The Julia set of f is the smallest (?) closed subset of $\hat{\mathbb{C}}$ which is totally f-invariant and contains at least 3 points (for the moment assume $|J(f)| \ge 3$), since the complement of any such set has $\{f^n\}$ normal by Montel.

For the rest of the course, we consider only rational maps with deg $f \ge 2$. See example sheet 1 for a description of $J(\mu)$ for μ a Möbius transformation.

Theorem 1.13. Let $z \in U \subseteq J(f)$ be open. Then the union $V = \bigcup_{n \in \mathbb{N}} f^n(U)$ contains all but at most 2 points of $\hat{\mathbb{C}}$. Any point $w \notin V$ is a critical point of the Fatou set.

Proof. The first statement follows from Montel. If $w \notin V$, since $f(V) \subseteq V$, then for all $n \in \mathbb{N}$, $f^{-n}(w) \cap V = \emptyset$. Suppose there are two points $\{z_0, z_1\}$. Then examining possible ramification for these two points which are fixed under f^{-1} , the only possibilities are $z_i \mapsto z_i$ with degree d, or $z_1 \mapsto z_2, z_2 \mapsto z_1$ with degree d. The case for a single point is similar.

Replacing f by f^2 if needed, it sufficies to show that if f(z) = z and f'(z) = 0then $z \in F(f)$. Note that if $\mu \in \operatorname{Aut}(\hat{\mathbb{C}})$, $g = \mu^{-1} \circ f \circ \mu$, then $g^n = \mu^{-1} \circ f^n \circ \mu$, and so $\mu(J(g)) = J(f)$. Thus wlog f(0) = 0, f'(0) = 0. Locally we have $f(z) = a_2 z^2 + a_3 z^3 + \cdots = z^2 (a_2 + O(z))$ about 0, so |f(z)| < |z| for z sufficiently close to 0, so on a neighbourhood of 0, $f^n \to 0$ so form a normal family. \Box

The three cases do happen: $z \mapsto z^d, z \mapsto z^{-d}, z \mapsto p(z)$ for p a polynomial with nonzero constant term.

Remark. If $f^n(z_0) = z_0$ for some $n \in \mathbb{N}$ and $(f^n)'(z_0) = \prod_{i=0}^{n-1} f'(f^i(z_0)) = 0$ then $z_0 \in F(f)$.

Corollary 1.14. If J(f) contains an interior point then $J(f) = \hat{\mathbb{C}}$.

Proof. If U is open in J(f), $V = \bigcup f^n(U)$ contains all but at most 2 points on $\hat{\mathbb{C}}$. Since J(f) is closed by definition, $J(f) = \hat{\mathbb{C}}$.

This does happen: let $E_t : y^2 = x(x-1)(x-t)$ for $t \in \mathbb{C} \setminus \{0,1\}$ be an elliptic curve.

$$\begin{array}{ccc} E_t & \stackrel{[2]}{\longrightarrow} & E_t \\ \downarrow & & \downarrow \\ \hat{\mathbb{C}} & \stackrel{f_t}{\longrightarrow} & \hat{\mathbb{C}} \end{array}$$

where the vertical maps are quotient by ?, i.e. $(x, y) \mapsto x$. Then

$$f_t(z) = \frac{(z^2 - t)^2}{4z(z - 1)(z - t)}$$

We can show $J(f_t)$ is dense in $\hat{\mathbb{C}}$ by showing the Julia set of [2] is dense, and thus $J(f_t) = \hat{\mathbb{C}}$.

Definition (period, multiplier). Let $z_0 \in \hat{\mathbb{C}}$. We say z_0 is *periodic* for a rational f if exists $m \in \mathbb{N}$ such that $f^m(z_0) = z_0$. The minimal such m is the period of the cycle containing z_0 . If m = 1 we also call it a fixed point.

If z_0 has period m, the *multiplier* of the cycle is

$$(f^m)'(z_0) = \prod_{i=0}^{m-1} f'(f^i(z_0)).$$

Let λ be the multiplier of z_0 . We say z_0 is

- 1. superattracting if $\lambda = 0$,
- attracting if 0 ≤ |λ| < 1,
 indifferent if |λ| = 1,
- 4. repelling if $|\lambda| > 1$.

Recall that we might have to use the chart at infinity to compute the derivative. For example if $z_0 = \infty$, $f(\infty) = \infty$ then

$$\lambda = \lim_{z \to \infty} \frac{1}{f'(z)}.$$

Definition (basin of attraction). Suppose $C = \{z_0, f(z_0), \dots, f^{m-1}(z_0)\}$ is an attracting cycle. The basin of attraction for C is

$$A = \{ z \in \widehat{\mathbb{C}} : \lim_{n \to \infty} f^{nm}(z) = f^i(z_0) \text{ for some } 0 \le i \le m - 1 \}$$

Theorem 1.15. If $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ has an attracting cycle then the basin of attraction is in F(f). On the other hand all repelling cycles are contained in J(f).

Example. The theorem completely describes the Fatou and Julia set of $z \mapsto z^2$. z_0 is periodic if and only if exists n such that $z_0^{2^n} = z_0$, so z_0 is $0, \infty$ or some root of unity (which forms a dense subset of S^1). $A_0 = \mathbb{D}, A_\infty = \mathbb{C} \setminus \overline{\mathbb{D}}$. All other cycles are repelling and so $J(f) = S^1$.

Proof. Since $J(f^m) = J(f)$, wlog assume z_0 is a fixed point. Suppose that $\lambda = f'(z_0)$ is such that $|\lambda| < 1$. By Taylor expansion $|f(z) - z_0| \le c|z - z_0|$ for some constant c < 1 for z sufficiently close to z_0 . So on a neighbourhood of $_0$, $f^n(z)$ converges uniformly on compact subsets to the constant function z_0 . So $z_0 \in F(f)$.

On the other hand if z_0 is repelling so $|\lambda| > 1$, suppose for contradiction that $z_0 \in F(f)$, so exists open neighbourhood U of z_0 on which f^n has a subsequence converging to a holomorphic limit. Since $(f^n)'(z_0) = \lambda^n$, absurd.

Remark. We will classify later when indifferent points are Julia.

1.1 Holomorphic Lefschetz fixed point formula

Definition (residue index). Let z_0 be a fixed point of a rational map f. The *residue index* of f at z_0 is

$$i_f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - f(z)}$$

where γ is a small, positively oriented circle about z_0 .

Lemma 1.16. Let z_0 have multiplier $\neq 1$. Then $i_f(z_0) = \frac{1}{1-\lambda}$.

Proof. It is an exercise to check the multiplier is coordinate-independent. By definition the resude index is translation/conjugation independent, so wlog $z_0 = 0$. Then on a neighbourhood of 0, $f(z) = \lambda z + a_2 z^2 + \ldots$ so

$$\frac{1}{z - f(z)} = \frac{1}{(1 - \lambda)z(1 + O(z))} = \frac{1}{(1 - \lambda)z} + g(z)$$

with g holomorphic on a neighbourhood of 0. Integrate.

Theorem 1.17 (holomorphic Lefschetz on $\hat{\mathbb{C}}$). Say $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of degree ≥ 2 . Then the fixed points of f satisfy

$$\sum_{z=f(z)} i_f(z) = 1.$$

Proof. Conjugation if necessary (exercise: use the above lemma to show the residue index is coordinate-independent), wlog $f(\infty) \neq \infty$. Choose $R \gg 0$ so that all fixed points of f are in D(0, R). Call the positively oriented boundary C_R . By residue theorem

$$\sum_{z=f(z)} i_f(z) = \frac{1}{2\pi i} \int_{C_R} \frac{dz}{z - f(z)}$$
$$= \frac{1}{2\pi i} \int_{-C_{1/R}} \frac{-dw}{w^2(\frac{1}{w} - f(\frac{1}{w}))}$$
$$= \frac{1}{2\pi i} \int_{C_{1/R}} \frac{dw}{w(1 - wf(\frac{1}{w}))}$$
$$= \operatorname{Res}_{w=0} \frac{1}{w(1 - wf(\frac{1}{w}))}$$
$$= 1$$

Corollary 1.18. Suppose deg $f \ge 2$. Then $J(f) \neq \emptyset$.

Proof. Consider the fixed points of f. Assume first no fixed point multiplier is 1. Then $\lambda \mapsto \frac{1}{1-\lambda}$ sends the unit circle to the line $\operatorname{Re} = \frac{1}{2}$, and \mathbb{D} to $\operatorname{Re} > \frac{1}{2}$. Thus if $|\lambda| \leq 1$ for all fixed point multipliers, and not equal to 1, (there is no multiplicity), there are $d+1 \geq 3$ distinct fixed points (?), so $\operatorname{Re}(\sum_{z=f(z)} i_f(z)) \geq \frac{3}{2}$, absurd. If exists a repelling point then done. So suppose z_0 is fixed with $\lambda = 1$. Then in local coordinates $f(z) = z + a_k z^k + \ldots$ where $a_k \neq 0$. Inductively $f(z) = z + na_k z^k + \ldots$ so the kth derivative of $f^n(z_0)$ is $k!na_k \to \infty$ as $n \to \infty$, so the iterates cannot form a normal family on a neighbourhood of z_0 .

Remark.

- 1. Suppose z_0 is a indifferent fixed point, λ a root of unity. If $\lambda^k = 1$ then $(f^k)'(z_0) = \prod_{i=0}^{k-1} f'(f(z_0)) = \lambda^k = 1$. Thus the preceding argument shows that $z_0 \in J(f^k) = J(f)$.
- 2. It is possible for a rational map to have non repelling fixed point. For example $z \mapsto z^2 + \frac{1}{4}$. The fixed points are ∞ and $\frac{1}{2}$ which is a double fixed point.
- 3. Any finite grand orbit (the set $\{z \in \hat{\mathbb{C}} : f^m(z) = f^n(z_0) \text{ for some } m, n\}$) is necessarily Fatou (exercise), so $|J(f)| = \infty$.

Recall: suppose $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a rational map of degree $d \ge 2$.

- 1. If U is open, $U \cap J(f) \neq \emptyset$ then $\bigcup_{n \ge 1} f^n(U)$ contains all but at most 2 points and contains J(f).
- 2. J(f) contains all repelling cycles and all indifferent cycles with roots of unity multipliers.
- 3. $J(f) \neq \emptyset$ and $|J(f)| = \infty$.

Proposition 1.19. Suppose f has a periodic cycle which is attracting, with attracting basin A. Then $J(f) = \partial A$.

Proof. Given U an open neighbourhood such that $U \cap J(f) \neq \emptyset$, exists n such that $f^n(U) \cap A = \emptyset$. As A is closed under preimages, $U \cap A \neq \emptyset$. Thus $J(f) \subseteq \overline{A}$. Since $A \subseteq F(f)$, $J(f) \subseteq \partial A$.

Conversely suppose $z_0 \in \partial A$ and U is a neighbourhood of z_0 . Suppose $\{f^n\}$ forms a normal family on U. On $U \cap A$, any holomorphic limit g of iterates of f must take finitely many constant values, but g cannot be locally constant as U contains points not in the basin, absurd. Thus $z_0 \in J(f)$.

Example. Any *polynomial* f has J(f) the boundary of basin at ∞ . Note that it might also be the boundary of another basin, for example $z \mapsto z^2, z \mapsto z^2 - 1$.

Corollary 1.20. Fix $z_0 \in J(f)$. Then the full preimage $\{z : f^n(z) = z_0 \text{ for some } n \ge 0\}$ forms a dense subset of J(f).

Proof. Fix $z_1 \in J(f)$ and a neighbourhood $U \ni z_1$. If it contains no preimage of z_0 then $\bigcup f^n(U) \notin z_0$, absurd.

Topological preimage equidistribution

1.2 Attracting (and repelling) cycles

Definition (topologically attracting). A fixed point p of f is topologically attracting if there exists a neighbourhood $U \ni p$ such that $\{f^n\}$ converges locally uniformly to p on U.

Lemma 1.21. A fixed point p of f is attracting if and only if it is topologically attracting.

Proof. Exercise. Taylor's theorem in one direction, and Schwarz lemma in the other. \Box

Theorem 1.22. Suppose f has a fixed point p with multiplier λ , $|\lambda| \neq 0, 1$. Then exists local holomorphic change of coordinates ϕ such that $\phi(p) = 0$ and $\phi \circ f \circ f^{-1}(w) = \lambda w$. Thus coordinate is unique up to multiplication by a constant. ϕ is known as the Kaenig linearising map.

Proof. wlog p = 0 and first suppose $0 < |\lambda| < 1$. Choose a constant c such that $c^2 < |\lambda| < c$. Find r > 0 such that for all $z \in D(0, r)$, $|f(z)| \le c|z|$, so $|f^n(z)| \le c^n r$. We can find B > 0 such that for all $z \in D(0, r)$, $|f(z) - \lambda z| \le B|z|^2$. Thus for all $z \in D(0, r)$,

$$|f^{n+1}(z) - \lambda f^n(z)| \le B|f^n(z)|^2 \le Br^2 c^{2n}.$$

Let $w_n = \frac{f^n(z)}{\lambda^n}$. Then

$$|w_{n+1}(z) - w_n(z)| = \left|\frac{f^{n+1}(z)}{\lambda^{n+1}} - \frac{f^n(z)}{\lambda^n}\right| \le \frac{1}{|\lambda|^{n+1}} Br^2 c^{2n} = \frac{Br^2}{\lambda} \left|\frac{c^2}{\lambda}\right|^n$$

so w_n converges locally uniformly on D(0,r). Set $\phi(z) = \lim w_n(z)$. As $z \mapsto w_n(z)$ has derivative 1 at 0, so does ϕ so it has a holomorphic inverse.

For uniqueness suppose ψ is another such coordinate, then for $w \in \psi(U)$ have $\lambda \phi(\psi^{-1}(w)) = \phi(\psi^{-1}(\lambda w))$. Done by comparing local power series.

For $|\lambda| > 1$ apply the same argument to a branch of f^{-1} .

Corollary 1.23. Suppose p is an attracting fixed point of f with multiplier $\lambda \neq 0$ and basin A. Then exists a holomorphic $\phi : A \to \mathbb{C}$ such that the following diagram commutes

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & A \\ \downarrow \phi & & \downarrow \phi \\ \mathbb{C} & \stackrel{\lambda}{\longrightarrow} & \mathbb{C} \end{array}$$

Proof. Define $\phi(z) = \lim_{n \to \infty} \frac{\phi_0(f^n(z))}{\lambda^n}$ where ϕ_0 is the linearlising coordinates on a neighbourhood of p. Check the details.

Definition (immediate basin). The *immediate basin* of an attracting cycle is the union of the Fatou components containing the cycle elements.

 $\frac{\cdots}{z^2-1} \frac{1}{z^2-c}$ attracting 5-cycle $\infty \mapsto 1 \mapsto 0 \mapsto \frac{1}{c}$

Proposition 1.24. Let f be a rational map with f(p) = p an attracting fixed point. Then the immediate basin of p contains a critical point of f.

Proof. wlog p = 0. The component U of F(f) is hyperbolic as $|J(f)| = \infty$. Thus we have

If f has no critical points in U then $f \circ \pi$ is a covering map $\mathbb{D} \to U$ so exists $G : \mathbb{D} \to \mathbb{D}$ covering it. If π, F, G fix 0, G is inverse to F. Thus $F \in \operatorname{Aut}(\mathbb{D})$ so F, f are hyperbolic local isometries, contradicting 0 an attracting fixed point. \Box

Corollary 1.25. f has at most 2d - 2 attracting cycles.

Corollary 1.26. f has at most 4d - 4 non-repelling cycles.

Proof. Holomorphic perturbation. Let $f_t(z) = (1-t)f(z) + tz^d$. Note $f_0 = f(z), f_1 = z^d$. Suppose $f^n(\alpha) = \alpha$ with multiplier $\lambda \in S^1$. If α is not a repeated root of $f^n(z) - z$ there is a neighbourhood of 0 and holomorphic $t \mapsto \alpha(t)$ such that $\alpha(0) = \alpha$ and $f^n(\alpha(t)) = \alpha(t)$ for all t, i.e. if $\lambda \neq 1$ (?). But if $\lambda = 1$ we can base change $t \mapsto t^k$. We then have $t \mapsto \lambda(t)$ homomorphic in $t, \lambda(0) = \lambda$ and $(f^n)'(\alpha(t)) = \lambda(t)$. Either $\lambda(t)$ is the constant 1 (more argument needed),

or another constant λ , or nonconstant. The first two cases contradict z^d having no indifferent cycles at t = 1.

By conformality of holomorphic maps, the measure

$$\mu(\{\theta \in S^1 : |\lambda(\varepsilon e^{i\theta})|\}) \to \frac{1}{2}$$

as $\varepsilon \to 0$. Repeating this process for all indifferent cycles, exists a direction θ such that perturbation in the θ -direction makes half of these cycles attracting. For sufficiently small choice of $\varepsilon e^{i\theta}$, attracting cycles remain attracting. Let N be the number of indifferent cycles of f, M the number of attracting cycles of f, then the number of non-repelling cycles of f is $N + M = 2(M/2 + N/2) \leq 2(2d-2)$.

Remark. $f^n(z) = z$ has $z^n + 1$ roots counting multiplicity, so must have a repelling cycle.

Note we can be more precise, see example sheet.

Theorem 1.27. If f(0) = 0 is attracting with multiplier $\lambda \neq 0$. Let ϕ be a linearising coordinate with local inverse $\psi : \mathbb{D}(0, \varepsilon) \to A_0$, where A_0 is the immediate basin of 0. ψ extends to a holomorphic map on a disk $\mathbb{D}(0,r)$ of some maximal radius r, extending homeomorphically to $\partial \mathbb{D}(0,r)$ and $\psi(\partial \mathbb{D}(0,r))$ contains a critical point of f.

Remark. Actually detecting whether f has an attractor is harder. Open problem: does $z \mapsto z^2 - \frac{3}{2}$ has an attractor?

Caution: linearising map need not continuously extend to J(f).

Theorem 1.28. If f rational has J(f) disconnected then J(f) has uncountably many connected components.

Proof. If $J(f) = J_0 \cup J_1$ where J_0, J_1 are disjoint compact nonempty. Given $z \in J$, define a sequnce $\beta(z) = (\beta_n(z))$ where $\beta_n(z) = i$ if $f^n(z) \in J_i$. If z, w are in the same connected component of J(f) then $\beta(z) = \beta(w)$. It suffices to show that for any initial $\beta_1(z), \ldots, \beta_k(z)$, exists n > k such that exists $z' \in J(f)$ such that $\beta_i(z') = \beta_i(z)$ for all $1 \le i \le k$ but $\beta_n(z') \ne \beta_n(z)$. Define

$$U_{z,k} = \{ w \in \mathbb{C} : f^i(w) \notin J_{1-\beta_i(z)} \text{ for all } 1 \le i \le k \}.$$

This is open and contains F(f). Some subsequence $(\beta_{n_j}(z))$ is constant, say the constant 0. If $\beta_i(z') = \beta_i(z)$ for all $1 \le i \le k$ then $\beta_i(z') = \beta_i(z)$ for all i, then

$$f^{n_j}(U_{z,k}) \subseteq \mathbb{C} \setminus J_1.$$

The maps $f^{nj}: U_{z,k} \to \mathbb{C} \setminus J_1$ form a normal family, contradiction. Thus $\{\beta(z): z \in J(f)\}$ is uncountable.

Superattractor

Theorem 1.29. Suppose f(0) = 0 is with local expansion $f(z) = a_m z^m + a_{m+1} z^{m+1} + \ldots, m \ge 2$. Then there exists a holomorphic change of coordinates ϕ on a neighbourhood of 0 such that $\phi(0) = 0, \phi(f(z)) = \phi(z)^m$. ϕ is unique up to multiplication by an (m-1)th root of unity. ϕ is called the Böttcher coordinate.

Proof. We sketch the proof only. The details are the same as Kaenig's. Write locally $f(z) = z^m(1+h(z))$, where $h(z) \to 0$ as $z \to 0$ is holomorphic, where $a_m = 1$ (otherwise conjugate by $\alpha f(z/\alpha)$). Write $1 + h(z) = \exp(k(z))$ for some holomorphic h(z) on a neighbourhood of 0. Then there exists holomorphic $k_n(z)$ on this neighbourhood so that $f^n(z) = z^{m^n} \exp(k_n(z))$. Choose the branch $\phi_n(z)$ of the m^n th root of $f^n(z)$ such that $\phi_n(z) = z(1+O(z))$. Then ϕ_n converges uniformly to some holomorphic ϕ on this neighbourhood which satisfies the statement. Uniqueness follows from identification of Taylor expansion, a la Kaenig.

Corollary 1.30. Let f(0) = 0 be superattracting, with basin A and Böttcher coordinate ϕ on a neighbourhood of 0. Then $z \mapsto |\phi(z)|$ extends to a continuous map $|\phi| : A \to [0, 1)$ satisfying $|\phi(f(z))| = |\phi(z)|^m$ for $z \in A$.

Proof. Given $z \in A$, set $|\phi|(z) = |\phi(f^n(z))|^{1/m^n}$, where $n \gg 1$ such that $f^n(z)$ is in the neighbourhood domain of ϕ . The desired equality is immediate. \Box

$\mathbf{2}$ **Polynomial dynamics**

Definition (filled Julia set). Let $p(z) = a_d z^d + a_{d-1} z^{d-1} + \cdots + a_0, d \ge d$ $2, a_d \neq 0$. The filled Julia set of p is

$$K(p) = \{ z \in \mathbb{C} : |f^n(z)| \not\to \infty \text{ as } n \to \infty \}.$$

Note this is the complement of the basin of infinity.

From our results on boundaries of basins, $\partial K(p) = J(p)$. We know we have a Böttcher coordinate on a neighbourhood of ∞ : choose this (i.e. $\phi(1/z)^{-1}$) such that $\phi(\infty) = \infty$.

Definition (Green's function). Suppose p(z) is a degree d polynomial. The *Green's function* associated to p is

$$G_p(z) = \lim_{n \to \infty} \frac{\log^+ |p^n(z)|}{d^n}$$

where $\log^+ x = \max\{\log x, 0\}$ for $x \ge 0$.

Lemma 2.1. $G_p(z)$ satisfying the following:

- 1. G_p is continuous everywhere and harmonic on $\mathbb{C} \setminus K(p)$.
- G_p is continuous everywhere and he
 G_p(z) = log |z| + O(1) as |z| → ∞.
 G_p(z) → 0 as z → K(p).
 G_p(p(z)) = dG_p(z).

1, 2, 4 uniquely characterises G_p , and $G_p(z) = \log |\phi_p(z)|$, where ϕ_p is a Böttcher coordinate at ∞ on $\hat{\mathbb{C}} \setminus K(p)$.

Remark.

- 1. This is how pictures of filled Julia sets are drawn.
- 2. The Green's function depends only on K(p).

Proof.

1. Consider the function $\log^+ |p(z)| - d \log^+ |z|$ on $\hat{\mathbb{C}}$. It is continuous and takes real values, so is bounded by some $C \in \mathbb{R}$. Then for all n,

$$\left|\frac{\log^+|p^n(z)|}{d^n} - \frac{\log^+|p^{n-1}(z)|}{d^{n-1}}\right| \le \frac{C}{d^n}$$

so for $m \leq n$,

$$\left|\frac{\log^+|p^n(z)|}{d^n} - \frac{\log^+|p^m(z)|}{d^m}\right| \le \sum_{k=m+1}^n \frac{C}{d^k} \le \frac{C}{d^m(d-1)}$$

so G_p is a uniform limit of continuous function so continuous.

Locally, a function is harmonic if and only if it is the real part of a holomophic function, if and only if it equals to $\log |f|$ for some holomorphic f that does not vanish anywhere (since on a simply connected domain we can take logarithm). Given $z \notin K(p)$, find a small disk $D \ni p$ such that $\overline{D} \cap K(p) = \emptyset$. There exists $N \gg 1$ such that $p^n(\overline{D}) \cap \mathbb{D} = \emptyset$ for $n \ge N$. Then $\frac{\log^+ |p^n(z)|}{d^n}$ is harmonic on \overline{D} . Since a uniform limit of harmonics is harmonic, we have $G_p(z)$ is harmonic as well. Note if $K(p)^{int}(p) \neq \emptyset$ then $G_p(z) = 0$ there so is harmonic as well. In other words, $G_p(z)$ fails to be harmonic precisely on the Julia set (for more rigorous argument see later).

2. Set m = 0, then the bound in 1 gives

$$\left|\frac{\log^+|p^n(z)|}{d^n} - \log^+|z|\right| \le \frac{C}{d-1}$$
so as $n \to \infty$, $|G_p(z) - \log|z|| \le \frac{C}{d-1}$ for $|z| \gg 0$.

- 3. $G_p(z) = 0$ on K(p).
- 4. Definition.

Suppose H(z) is a function satisfying 1, 2 and 4 and consider $G(z) = G_p(z) - H(z)$. By 1 and 2 it is continuous and bounded on $\hat{\mathbb{C}}$. By 4, as $n \to \infty$, $G(p^n(z)) = d^n G(z) \to \infty$ unless G(z) = 0. We thus have $G_p(z) = H(z)$. For $G_p(z) = \log |\phi_p(z)|$, check continuity, growth at ∞ and transformation. \Box

Example. For $z \mapsto z^d$,

$$G_p(z) = \lim \frac{\log^+ |z^{d^n}|}{d^n} = \log^+ |z|.$$

 $K(p) = \overline{D}$, where $\log^+ |z| = 0$. The basin of infinity is $\hat{\mathbb{C}} \setminus \mathbb{D}$.

Remark. $G_p(z)$ is also known as the *potential function* associated to K(p).

Now back to superattractors.

Theorem 2.2. Suppose f(0) = 0 is superattracting, with Böttcher coordinate ϕ for f at 0. There there exists a unique open disk $\mathbb{D}(0,r)$ of maximal radius $0 < r \leq 1$ such that the inverse ψ of ϕ extends holomorphically to $\psi : \mathbb{D}(0,r) \to A_0$, the immediate basin of attraction of 0. If r = 1 then $\psi : D(0,t) \cong A_0$ and 0 is the only critical points of f in A_0 . On the other hand if r < 1 there exists a nonzero critical point in A_0 , which lies on $\psi(\mathbb{D}(0,r))$.

Proof. Guided on example sheet 2. Non-examinable.

Example. $f(z) = z^2 + \frac{1}{2}$. ϕ sends a neighbourhood of ∞ to the complement of a large closed disk in $\hat{\mathbb{C}}$ isomorphically. ψ can be extended until it hits the image of a critical point.

In the case $f_c(z) = z^2 + c$, there are two critical points $\infty, 0.\infty$ is mapped to itself with multiplicity 2. We have **Corollary 2.3.** Suppose $0 \notin K(f_c)$, i.e. $f_c^n(0) \to \infty$ as $n \to \infty$. Then the Böttcher coordinate ϕ_c of f_c at ∞ extends to a conformal isomorphism on a neighbourhood of ∞ which contains c.

Proof. 0 is the only critical point that can move around and f(0) = c. Now use extension of Böttcher coordinate.

Proposition 2.4. A closed subset of the sphere is connected if and only if the connected components of its complement are simply connected.

Proof. Beardon, Iteration of Rational Functions and Ahlfors.

Index

basin of attraction, 8 Böttcher coordinate, 14

equicontinuity, 5

Fatou set, 6 filled Julia set, 15

Green's function, 15

immediate basin, 12

Julia set, 6

Ka
enig linearising map, 11

locally uniform convergence, 4 locally uniform divergence, 4

Montel's theorem, 5 multiplier, 8

normal family, 4

period, 8 potential function, 16 proper map, 6

residue index, 9

topologically attracting, 11