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1 Set systems

1 Set systems

Definition (set system). Let 𝑋 be a set. A set system on 𝑋 (or family of
subsets) of 𝑋 is a family 𝒜 ⊆ 𝒫(𝑋).

Example. We write 𝑋(𝑟) = {𝐴 ⊆ 𝑋 ∶ |𝐴| = 𝑟}
In this course we almost deal exclusively with finite setss so unless otherwise

stated, in this course we assume all sets are finite and 𝑋 = [𝑛] = {1, 2, … , 𝑛}.
For example, |𝑋(𝑟)| = (𝑛

𝑟). More concretely, for example,

[4][2] = {12, 13, 14, 23, 24, 34}

where 12 denotes {1, 2} to avoid heavy notation. Therefore |[4][2]| = 6.
What is the mental picture for power set? Often we make 𝒫(𝑋) into a graph,

called 𝑄𝑛, by joining 𝐴 to 𝐵 if |𝐴Δ𝐵| = 1 where Δ is the symmetric difference,
i.e. if 𝐴 = 𝐵 ∪ {𝑖} for some 𝑖 ∉ 𝐵 (or vice verse).
Example. 𝑄3

Example. General picture for 𝑄𝑛 where 𝑛 is even:
and when 𝑛 is odd:
If we identify a set 𝐴 ⊆ 𝑋 with a {0, 1} sequence of length 𝑛 (e.g. 134 ↔

1011000 ⋯ 0), via 𝐴 ↔ 1𝐴 or 𝜒𝐴. In this way, we can represent 𝑄𝑛 as a 𝑛-
dimensional cube:

For this reason, 𝑄𝑛 is often called the hypercube or discrete cube or 𝑛-cube.
In this way, the study of a set system become the study of a graph.

1.1 Chains & Antichains

Definition (chain). A family 𝒜 ⊆ 𝒫(𝑋) is a chain if for all 𝐴, 𝐵 ∈ 𝒜, 𝐴 ⊆
𝐵 or 𝐵 ⊆ 𝐴.

Example. {12, 125, 123589}.
On the other hand, we have

Definition (antichain). A family 𝒜 ⊆ 𝒫(𝑋) is an antichain if for all
𝐴, 𝐵 ∈ 𝒜 with 𝐴 ≠ 𝐵, 𝐴 ⊈ 𝐵.

Example. {1, 467, 2456}.
A natural question is: how large can a chain be? Obviously we can achieve

|𝒜| = 𝑛 + 1. We also cannot exceed 𝑛 + 1 since a chain must meet each “level”
𝑋(𝑟) for 0 ≤ 𝑟 ≤ 𝑛 in at most one place.

A less trivial question is how large an antichain can be. We could achieve
|𝒜| = 𝑛 by enumerating all the singletons. It is maximal since adjoining any
nonempty set to the family will result in an inclusion. However, it is not the
largest antichain. Indeed, we could take 𝒜 = 𝑋(𝑟) for any 𝑟. Thus we can
achieve |𝒜| = ( 𝑛

⌊𝑛/2⌋). Can we beat it?
Pause for a moment and consider the longest chain problem. Why can a

chain meet each level at only one place? One way to see this is that each level is
an antichain: as we can decompose 𝑄𝑛 into 𝑛 + 1 antichains, we cannot have a
chain longer than that. Inspired by this, we try to decompose 𝑄𝑛 into chains.
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1 Set systems

Theorem 1.1 (Sperner’s lemma). Let 𝒜 ⊆ 𝒫(𝑋) where |𝑋| = 𝑛 be an
antichain. Then

|𝒜| ≤ ( 𝑛
⌊𝑛/2⌋

).

Proof. Sufficient to partition 𝒫(𝑋) into ( 𝑛
⌊𝑛/2⌋) chains. For this sufficient to

show:

1. for all 𝑟 < 𝑛
2 , there exist matchings from 𝑋(𝑟) to 𝑋(𝑟+1) where a matching

is just a set of non-adjacent edges,

2. for all 𝑟 > 𝑛
2 , there exist matchings from 𝑋(𝑟) to 𝑋(𝑟−1).

Then put these matchings together to form chains. Each passes through 𝑋(𝑛/2)

so there are ( 𝑛
⌊𝑛/2⌋) of them.

By taking complements, sufficient to prove 1. Consider the subgraph of 𝑄𝑛
spanned by 𝑋(𝑟) ∪ 𝑋(𝑟+1) which is bipartite. For any ℬ ⊆ 𝑋(𝑟), let Γ(ℬ) be the
neighbourhood (in 𝑋(𝑟+1)) of ℬ. Then we have

#(ℬ − Γ(ℬ) edges) = |ℬ|(𝑛 − 𝑟)
as each point in 𝑋(𝑟) has degree 𝑛 − 𝑟. Meanwhile

#(ℬ − Γ(ℬ) edges) ≤ |Γ(ℬ)|(𝑟 + 1)

as each point in 𝑋(𝑟+1) has degree 𝑟 + 1. Thus

|Γ(ℬ)| ≥ |ℬ|𝑛 − 𝑟
𝑟 + 1

≥ |ℬ|

as 𝑟 < 𝑛
2 . Hence by Hall’s theorem there exist matchings.

Remark.

1. ( 𝑛
⌊𝑛/2⌋) is achieveable, e.g. 𝒜 = 𝑋(⌊𝑛/2⌋).

2. Note that the theorem says nothing about extremal cases — which antin-
chain have this size?

The aim is to show that for 𝒜 an antichain,
𝑛

∑
𝑟=0

𝒜 ∩ 𝑋(𝑟)

(𝑛
𝑟)

≤ 1.

Note that this trivially implies Sperner’s lemma. We will use the same setup
but bound the numbers more carefully. To justify the following definition, we
will write 𝑋(𝑟) above 𝑋(𝑟−1) in 𝑄𝑛.

Definition. Let 𝒜 ⊆ 𝑋(𝑟) for some 1 ≤ 𝑟 ≤ 𝑛. The shadow or lower shadow
of 𝒜 is

𝜕𝐴 = 𝜕−𝐴 = {𝐴 − {𝑖} ∶ 𝐴 ∈ 𝒜, 𝑖 ∈ 𝐴}.

so 𝜕𝐴 ⊆ 𝑋(𝑟−1).

Example. Let 𝒜 = {123, 124, 134, 135} ⊆ 𝑋(3). Then

𝜕𝐴 = {12, 13, 23, 14, 24, 34, 15, 35} ⊆ 𝑋(2).
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1 Set systems

Lemma 1.2 (Local LYM). Let 𝒜 ⊆ 𝑋(𝑟) where 1 ≤ 𝑟 ≤ 𝑛. Then

|𝜕𝒜|
( 𝑛

𝑟−1)
≥ |𝒜|

(𝑛
𝑟)

.

Informally, the fraction of the later occupied increases when we take the
shadow.

Proof.
#(𝒜 − 𝜕𝒜 edges in 𝑄𝑛) = 𝑟|𝒜|

by counting from above and

#(𝒜 − 𝜕𝒜 edges in 𝑄𝑛) ≤ (𝑛 − 𝑟 + 1)|𝜕𝒜|

counting from below so
|𝜕𝒜|
|𝒜|

≥ 𝑟
𝑛 − 𝑟 + 1

but
( 𝑟

𝑟−1)
(𝑛

𝑟)
= 𝑟

𝑛 − 𝑟 + 1
.

When does equality hold in local LYM? We’ll need

(𝐴 − {𝑖}) ∪ {𝑗} ∈ 𝒜

for all 𝑎 ∈ 𝒜, 𝑖 ∈ 𝐴, 𝑗 ∉ 𝐴. Hence 𝒜 = 𝑋(𝑟) or ∅.

Theorem 1.3 (LYM inequality). Let 𝒜 ⊆ 𝒫(𝑋) be an antichain. Then

𝑛
∑
𝑟=0

𝒜 ∩ 𝑋(𝑟)

(𝑛
𝑟)

≤ 1.

Proof. The whole idea of the proof can be summarised by “bubble down with
local LYM”. Let 𝒜𝑟 = 𝒜 ∩ 𝑋(𝑟). Obviously

|𝒜𝑛|
(𝑛

𝑛)
≤ 1.

Also 𝜕𝒜𝑛 and 𝒜𝑛−1 are distinct as 𝒜 is an antichain. Thus

|𝜕𝒜𝑛|
( 𝑛

𝑛−1)
+ |𝒜𝑛−1|

( 𝑛
𝑛−1)

= |𝜕𝒜𝑛 ∪ 𝒜𝑛−1|
( 𝑛

𝑛−1)
≤ 1

so
|𝒜𝑛|
(𝑛

𝑛)
+ |𝒜𝑛−1|

( 𝑛
𝑛−1)

≤ 1

by local LYM.
Also 𝜕(𝜕𝒜𝑛 ∪ 𝒜𝑛−1) is distint from 𝒜𝑛−2, again since 𝒜 is an antichain.

Thus
|𝜕(𝜕𝒜𝑛 ∪ 𝒜𝑛−1)|

( 𝑛
𝑛−2)

+ |𝒜𝑛−2|
( 𝑛

𝑛−2)
≤ 1,
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1 Set systems

so
|𝜕𝒜𝑛 ∪ 𝒜𝑛−1|

( 𝑛
𝑛−1)

+ |𝒜𝑛−1|
( 𝑛

𝑛−2)
≤ 1,

so
|𝒜𝑛|
(𝑛

𝑛)
+ |𝒜𝑛−1|

( 𝑛
𝑛−1)

+ |𝒜𝑛−2|
( 𝑛

𝑛−2)
≤ 1

Keep going we have the result desired.

Again we can ask when we have equality in LYM inequality. This happens if
and only if we have equality in each use of local LYM, so the “first” (greatest)
𝑟 with 𝒜𝑟 ≠ ∅ must have 𝒜𝑟 = 𝑋(𝑟) so 𝒜 = 𝑋(𝑟). Thus we know equality in
Sperner’s lemma (𝒜 = 𝑋(𝑛/2) for 𝑛 even, similar for 𝑛 odd)

Proof 2. Choose uniformly at random a maximal chain 𝒞 (i.e. 𝐶0 ⊆ 𝐶1 ⊆ ⋯ ⊆ 𝐶𝑛
with |𝐶𝑖| = 𝑖). For a given 𝑟-set 𝐴, P(𝐴 ∈ 𝒞) = (𝑛

𝑟)−1 as all 𝑟-sets are equally
likely. Therefore

P(𝒜𝑟 meets 𝒞) = |𝒜𝑟|
(𝑛

𝑟)

since the events are disjoint. Furthermore for different 𝑟 the events that 𝒜 meets
𝑋𝑟 are also disjoint so

P(𝒜 meets 𝒞) =
𝑛

∑
𝑟=0

|𝒜𝑟|
(𝑛

𝑟)

and of course it is less than 1.

Remark. Equivalently, the number of maximal chains is 𝑛! and the number of
them containing a given 𝑟-set is 𝑟!(𝑛 − 𝑟)!, so

𝑛
∑
𝑟=0

|𝒜𝑟|𝑟!(𝑛 − 𝑟)! ≤ 𝑛!

so this is probability in disguise

1.2 Shadows
For 𝒜 ⊆ 𝑋(𝑟), we know |𝜕𝐴| ≥ |𝐴| 𝑟

𝑛−𝑟+1 — but equality is rare (only for 𝒜 = ∅
or 𝒜 = 𝑋(𝑟)). The natural question is: given |𝒜|, how should we choose 𝒜 ⊆ 𝑋(𝑟)

to minimise |𝜕𝐴|? Informally, this asks how “tightly” can we pack some 𝑟-sets.
If |𝐴| = (𝑘

𝑟), it is believable that we would take 𝐴 = [𝑘](𝑟), which gives [𝑘](𝑟−1).
What if (𝑘

𝑟) < |𝒜| < (𝑘+1
𝑟 ), it is believable that we’d take [𝑘](𝑟) and some other

𝑟-sets from [𝑘 + 1](𝑟). For example if 𝒜 ⊆ 𝑋(3) with |𝒜| = (7
3) + (4

2), we would
take

𝒜 = [7](3) ∪ {𝐴 ∪ {8} ∶ 𝐴 ∈ [4](2)},

i.e. take those in [7] of size 3 so that they are as tightly packed as possible and
then choose some other stuff.

If we increment the size of 𝒜 by 1, it is believable that we should take the
above 𝒜 and adjoin another element from [4]. Thus it seems that there is a total
order on subsets of 𝑋 of a given size, and we just take the first |𝒜|.
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1 Set systems

1.2.1 Two total orderings on 𝑋(𝑟)

Definition (lexicographic order). Given 𝐴, 𝐵 ∈ 𝑋(𝑟), say 𝐴 = 𝑎1, … , 𝑎𝑟, 𝐵 =
𝑏1, … , 𝑏𝑟, where we use the notation to mean 𝑎1 < ⋯ < 𝑎𝑟, say 𝐴 < 𝐵 in the
lexicographic or lex order if for some 𝑖 have 𝑎𝑖 < 𝑏𝑖 and 𝑎𝑗 = 𝑏𝑗 for all 𝑗 < 𝑖.

Equivalently, 𝑎𝑖 < 𝑏𝑖, where 𝑖 = min{𝑗 ∶ 𝑎𝑗 ≠ 𝑏𝑖}. The slogan is “use small
number”.

Example. Lex on [4](2):
12, 13, 14, 23, 24, 34.

Lex on [6](3):

123, 124, 125, 126, 134, 135, 136, 145, 146, 156,
234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

However, in the shadow minimisation problem we want to avoid large numbers
as much as possible, i.e. keep the largest number as small as possible.

Definition (colexicographic order). Say 𝐴 < 𝐵 isn the colexicographic or
colex order if for some 𝑖 have 𝑎𝑖 < 𝑏𝑖 and 𝑎𝑗 = 𝑏𝑗 for all 𝑗 > 𝑖.

Equivalently, 𝑎𝑖 < 𝑏𝑖 where 𝑖 = max{𝑗 ∶ 𝑎𝑗 ≠ 𝑏𝑗}. The slogan is “avoid large
number”. Equivalently, 𝐴 < 𝐵 if ∑𝑖∈𝐴 2𝑖 < ∑𝑖∈𝐵 2𝑖.

Example. Colex on [4](2):

12, 13, 23, 14, 24, 34.

Colex on [6](2):

123, 124, 134, 234, 125, 135, 235, 145, 245, 345,
126, 136, 236, 146, 246, 346, 156, 256, 356, 456.

Note. In colex, [𝑘](𝑟) is an initial segment of [𝑘 + 1](𝑟), meaning that it is the
first 𝑡 elements for some 𝑡. Therefore we could view colex as an enumeration of
N(𝑟). Try this with lex and see what happens!

Following our heuristics just now, the aim is to show initial segments of cloex
minimise 𝜕, i.e. if 𝒜 ⊆ 𝑋(𝑟) and 𝒞 ⊆ 𝑋(𝑟) is the first |𝒜| 𝑟-sets in colex then
|𝜕𝒜| ≥ |𝜕𝒞|, This is Kruskal-Katona theorem, the first theorem in combinatorics.
In particular, |𝒜| = (𝑘

𝑟) implies |𝜕𝒜| ≥ ( 𝑘
𝑟−1). However, unless 𝒜 is written in

very nice form, it is very difficult to estimate 𝜕𝒜.

1.2.2 Compressions

The idea is to “replace” 𝒜 ⊆ 𝑋(𝑟) with some 𝒜′ ⊆ 𝑋(𝑟) such that

1. |𝒜′| = |𝒜|,

2. |𝜕𝒜′| ≤ |𝜕𝒜|,

6



1 Set systems

3. 𝒜′ “looks more like 𝒞” than 𝒜 did.

Ideally, we would compress

𝒜 → 𝒜′ → 𝒜″ → … → ℬ

where either ℬ = 𝒞, or ℬ is so similar to 𝒞 that we can see directly that
|𝜕ℬ| ≥ |𝜕𝒞|.

Colex prefers 1 to 2

Definition (𝑖𝑗-compression). For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, the 𝑖𝑗-compression 𝐶𝑖𝑗 is
defined by for 𝐴 ⊆ 𝑋,

𝐶𝑖𝑗(𝐴) = {𝐴 − 𝑗 + 𝑖 if 𝑗 ∈ 𝐴, 𝑖 ∉ 𝐴
𝐴 otherwise

and for 𝒜 ⊆ 𝒫(𝑋),

𝐶𝑖𝑗(𝒜) = {𝐶𝑖𝑗(𝐴) ∶ 𝐴 ∈ 𝒜} ∪ {𝐴 ∈ 𝒜 ∶ 𝐶𝑖𝑗(𝐴) ∈ 𝒜}.

Example. If 𝒜 = {123, 134, 234, 235, 247}, then

𝐶12(𝒜) = {123, 134, 234, 135, 147}.

|𝐶𝑖𝑗(𝒜)| = |𝒜| and after the compression it looks “more” like colex than lex.
Say 𝒜 is 𝑖𝑗-compressed if 𝐶𝑖𝑗(𝒜) = 𝒜. It is also intuitively obvious that the
operation is indeed a compression in the sense that it decreases the shadow.

Proposition 1.4. Let 𝒜 ⊆ 𝑋(𝑟), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 then

|𝜕𝐶𝑖𝑗(𝒜)| ≤ |𝜕𝒜|.

Proof. Write 𝒜′ for 𝐶𝑖𝑗(𝒜). We’ll show that if 𝐵 ∈ 𝜕𝒜′ − 𝜕𝒜 then 𝑖 ∈ 𝐵, 𝑗 ≠ 𝐵
and 𝐵 ∪ 𝑗 − 𝑖 ∈ 𝜕𝒜 − 𝜕𝒜′ (so 𝐵 has a preimage under 𝐶𝑖𝑗). Then done.

We have 𝐵∪𝑥 ∈ 𝒜′ for some 𝑥 ∉ 𝐵 and 𝐵∪𝑥 ∉ 𝒜. Hence 𝑖 ∈ 𝐵∪𝑥, 𝑗 ∉ 𝐵∪𝑥
and (𝐵 ∪ 𝑥) ∪ 𝑗 − 𝑖 ∈ 𝒜 (so 𝐵 ∪ 𝑥 is the set that has been compressed). Note
that 𝑥 ≠ 𝑖 else 𝐵 ∪ 𝑗 ∈ 𝒜, contradicting 𝐵 ∉ 𝜕𝒜.

Certainly 𝐵 ∪ 𝑗 − 𝑖 ∈ 𝜕𝒜. Claim that 𝐵 ∪ 𝑗 − 𝑖 ∉ 𝜕𝒜′, thereby completing
the proof: suppose (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦 ∈ 𝒜′. We cannot have 𝑦 = 𝑖, else 𝐵 ∪ 𝑗 ∈ 𝒜′,
whence 𝐵 ∪ 𝑗 ∈ 𝒜, contradiction. Thus 𝑗 ∈ (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦 and 𝑖 ∉ (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦,
so (𝐵 ∪ 𝑗 − 𝑖) ∪ 𝑦 ∈ 𝒜 and 𝐵 ∪ 𝑦 ∈ 𝒜 by definition of 𝐶𝑖𝑗. Contradiction.

Remark. We have actually showed that

𝜕𝐶𝑖𝑗(𝒜) ⊆ 𝐶𝑖𝑗(𝜕𝒜),

“shadow of compression lives inside compression of shadow”.
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1 Set systems

Definition (left-compressed). Say 𝒜 ⊆ 𝑋(𝑟) is left-compressed if 𝐶𝑖𝑗(𝒜) =
𝒜 for all 𝑖 < 𝑗.

Proposition 1.5. Let 𝒜 ⊆ 𝑋(𝑟). Then there exists left-compressed ℬ ⊆ 𝑋(𝑟)

with |ℬ| = |𝒜| and |𝜕ℬ| ≤ |𝜕𝒜|.

Proof. Morally we only have to show that any sequence of compression terminate.
Among all ℬ ⊆ 𝑋(𝑟) with |ℬ| = |𝒜| and |𝜕ℬ| ≤ |𝜕𝒜|, choose one with

∑
𝐴∈ℬ

∑
𝑥∈𝐴

𝑥

minimal. Then ℬ is left compressed, as if 𝐶𝑖𝑗(ℬ) ≠ ℬ then we contradict
minimality.

Note.

1. Alternatively, we may apply one 𝐶𝑖𝑗 then another and so on — it must
terminate.

2. In fact we can apply each 𝐶𝑖𝑗 at most once if we choose a sensible order.

Certainly initial segments of colex are left-compressed. The converse is
blatantly false, e.g. 𝐴 = {123, 124, 125, 126, 127}. We need to do more.

colex prefers 23 to 14 We can compress not only singletons but also sets of
larger sizes:

Definition (𝑈𝑉-compression). For 𝑈, 𝑉 ⊆ 𝑋 with |𝑈| = |𝑉 | and 𝑈 ∩ 𝑉 = ∅,
the 𝑈𝑉-compression 𝐶𝑈𝑉 is defined by for 𝐴 ⊆ 𝑋,

𝐶𝑈𝑉(𝐴) = {𝐴 ∪ 𝑈 − 𝑉 if 𝑉 ⊆ 𝐴, 𝑈 ∩ 𝐴 = ∅
𝐴 otherwise

and for 𝒜 ⊆ 𝑋(𝑟),

𝐶𝑈𝑉(𝒜) = {𝐶𝑈𝑉(𝐴) ∶ 𝐴 ∈ 𝒜} ∪ {𝐴 ∈ 𝒜 ∶ 𝐶𝑈𝑉(𝐴) ∈ 𝒜}.

Example. If 𝒜 = {123, 134, 235, 145, 146, 157}, then

𝐶23,14(𝒜) = {123, 134, 235, 145, 236, 157}.

Similar observation: |𝐶𝑈𝑉(𝒜)| = |𝒜|. Say 𝒜 is 𝑈𝑉-compressed if 𝐶𝑈𝑉(𝒜) =
𝒜. Sadly, 𝐶𝑈𝑉 need not decrease shadow — e.g. 𝒜 = {146, 467} then 𝐶23,14(𝒜) =
{236, 467} so |𝜕𝒜| = 5, |𝜕𝐶23,14(𝒜)| = 6. Intuitively, removing one elements and
adding another sends a set to a “close neighbour” which shares largely the same
shadow, but once we start doing 𝑈𝑉-compression, some things are “moved a
long way”.

However, note that 𝒜 in the above example is not left-compressed. It turns
out once you have done the “smaller” compressions, doing a larger compression
always decrease the shadow. Formally,

8
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Proposition 1.6. Let 𝒜 ⊆ 𝑋(𝑟) and 𝑈, 𝑉 ⊆ 𝑋 with |𝑈| = |𝑉 | and 𝑈∩𝑉 = ∅.
Suppose that for all 𝑥 ∈ 𝑈 exists 𝑦 ∈ 𝑉 such that 𝒜 is (𝑈−𝑥, 𝑉 −𝑦)-compressed
then

|𝜕𝐶𝑈𝑉(𝒜)| ≤ |𝜕𝒜|.

Proof. Write 𝒜′ for 𝐶𝑈𝑉(𝒜). Given 𝐵 ∈ 𝜕𝒜′ − 𝜕𝒜, we’ll show that 𝑈 ⊆
𝐵, 𝑉 ∩ 𝐵 = ∅ and 𝐵 ∪ 𝑉 − 𝑈 ∈ 𝜕𝒜 − 𝜕𝒜′.

We have 𝐵 ∪ 𝑥 ∈ 𝒜′ for some 𝑥 ∉ 𝐵, with 𝐵 ∪ 𝑥 ∉ 𝒜. So 𝑈 ⊆ 𝐵 ∪ 𝑥, 𝑉 ∩
(𝐵 ∪ 𝑥) = ∅ and (𝐵 ∪ 𝑥) ∪ 𝑉 − 𝑈 ∈ 𝒜. Thus certainly 𝑉 ∩ 𝐵 = ∅.

If 𝑥 ∈ 𝑈, have 𝒜 is (𝑈 − 𝑥, 𝑉 − 𝑦)-compressed for some 𝑦 ∈ 𝑉 so from
(𝐵 ∪ 𝑥) ∪ 𝑉 − 𝑈 ∈ 𝒜 we obtain 𝐵 ∪ 𝑦 ∈ 𝒜, contradicting 𝐵 ∉ 𝜕𝒜. Hence 𝑥 ∉ 𝑈
and so 𝑈 ⊆ 𝐵. Also 𝐵 ∪ 𝑉 − 𝑈 ∈ 𝜕𝒜 (as (𝐵 ∪ 𝑥) ∪ 𝑉 − 𝑈 ∈ 𝒜).

Suppose 𝐵 ∪ 𝑉 − 𝑈 ∈ 𝜕𝒜′ then (𝐵 ∪ 𝑉 − 𝑈) ∪ 𝑤 ∈ 𝒜′ for some 𝑤.

1. if 𝑤 ∉ 𝑈, then 𝑉 ⊆ (𝐵 ∪ 𝑉 − 𝑈) ∪ 𝑤 and 𝑈 ∩ ((𝐵 ∪ 𝑉 − 𝑈) ∪ 𝑤) = ∅ so
from (𝐵 ∪ 𝑉 − 𝑈) ∪ 𝑤 ∈ 𝒜′ we conclude that both (𝐵 ∪ 𝑉 − 𝑈) ∪ 𝑤 ∈ 𝒜
and 𝐵 ∪ 𝑤 ∈ 𝒜, contradicting 𝐵 ∉ 𝜕𝒜.

2. if 𝑤 ∈ 𝑈, we have 𝒜 is (𝑈 − 𝑤, 𝑉 − 𝑧)-compressed for some 𝑧 ∈ 𝑉. From
(𝐵 ∪ 𝑉 − 𝑈) ∪ 𝑤 ∈ 𝒜 (as it is in 𝒜′ and contains 𝑉, so could not have
moved), we deduce 𝐵 ∪ 𝑧 ∈ 𝒜, contradicting 𝐵 ∉ 𝜕𝒜.

Remark. We have actually showed that

𝜕𝐶𝑈𝑉(𝒜) ⊆ 𝐶𝑈𝑉(𝜕𝒜).

Theorem 1.7 (Krustal-Katona). Let 𝒜 ⊆ 𝑋(𝑟) where 1 ≤ 𝑟 ≤ 𝑛 and let 𝒞
be the initial segment of colex on 𝑋(𝑟) with |𝒞| = |𝒜|, then

|𝜕𝒜| ≥ |𝜕𝒞|.

In particular if |𝒜| = (𝑘
𝑟) then

|𝜕𝒜| ≥ ( 𝑘
𝑟 − 1

).

Proof. Let

Γ = {(𝑈, 𝑉 ) ∶ 𝑈, 𝑉 ⊆ 𝑋, |𝑈| = |𝑉 | > 0, 𝑈 ∩ 𝑉 = ∅, max 𝑈 < max 𝑉 }

which are the ordered pairs (𝑈, 𝑉 ) with 𝑈 < 𝑉 in colex, which are exactly the
sensible pairs to do 𝑈𝑉 compression on in order to decrease shadow. Define a
sequence of set systems 𝒜0, 𝒜1, … in 𝑋(𝑟) as follow:

1. 𝒜0 = 𝒜.

2. If 𝒜𝑘 is (𝑈, 𝑉 )-compressed for all (𝑈, 𝑉 ) ∈ Γ, then stop the sequence with
𝒜𝑘.

9
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3. If not, choose (𝑈, 𝑉 ) ∈ Γ such that 𝒜𝑘 is not (𝑈, 𝑉 )-compressed with
𝑈 minimal. Set 𝒜𝑘+1 = 𝐶𝑈𝑉(𝒜𝐾). Note that for all 𝑥 ∈ 𝑈, we have
(𝑈 − 𝑥, 𝑉 − 𝑦) ∈ Γ ∪ {(∅, ∅)} for 𝑦 = min 𝑉 so by Proposition 1.6 have
|𝜕𝒜𝑘+1| ≤ |𝜕𝒜𝑘|.

The sequence must terminate, for example because as ∑𝐴∈𝒜𝑘
∑𝑖∈𝐴 2𝑖 is

decreasing in 𝑘.
The final system ℬ = 𝒜𝑘 satisfies |ℬ| = |𝒜| and |𝜕𝐵| ≤ |𝜕𝒜|. Moreover, ℬ

is (𝑈, 𝑉 )-compressed for all (𝑈, 𝑉 ) ∈ Γ. Claim that ℬ = 𝒞:

Proof. Suppose ℬ is not an initial segment of colex. Then there exists 𝐴 < 𝐵
in colex with 𝐴 ∉ ℬ and 𝐵 ∈ ℬ. But then 𝑈 = 𝐴 − 𝐵 and 𝑉 = 𝐵 − 𝐴 have
(𝑈, 𝑉 ) ∈ Γ and 𝐶𝑈𝑉(𝐵) = 𝐴. Absurd.

Remark.

1. Equivalently, we may state the theorem in numerical form by translating
initial segments of colex into the size of its constituent “lex” parts: if
𝒜 ⊆ 𝑋(𝑟) with

|𝒜| = (𝑘𝑟
𝑟

) + ( 𝑘𝑟−1
𝑟 − 1

) + ⋯ + (𝑘𝑠
𝑠

)

where 𝑘𝑟 > 𝑘𝑟−1 > ⋯ > 𝑘𝑠 and 𝑠 > 0, then

|𝜕𝒜| ≥ ( 𝑘𝑟
𝑘 − 1

) + ( 𝑘𝑟−1
𝑟 − 2

) + ⋯ + ( 𝑘𝑠
𝑠 − 1

).

2. In proof of Krustal-Katona we used only Proposition 1.6, but neither
Proposition 1.4 nor Proposition 1.5. However, deriving simpler results for
𝑖𝑗-compression provides motivation and intuition for the further full-fledged
proof.

3. Can we ask for uniqueness? We can check that if |𝜕𝒜| = |𝜕𝒞| and |𝒜| = (𝑘
𝑟)

then 𝒜 = 𝑌 (𝑟) for some 𝑘-set 𝑌. Thus this is unique up to isomorphism.
But in general it is not true that |𝜕𝒜| = |𝜕𝒞| implies 𝒜 is isomorphic to 𝒞
(𝒜 ⊆ 𝒫(𝑋), ℬ ⊆ 𝒫(𝑌 ) are isomorphic if there exists a bijection between
𝑋 and 𝑌 sending 𝒜 to ℬ).

What about upper shadow?

Definition (upper shadow). For 𝒜 ⊆ 𝑋(𝑟) where 0 ≤ 𝑟 ≤ 𝑛 − 1, the upper
shadow of 𝒜 is

𝜕+𝒜 = {𝐴 ∪ 𝑥 ∶ 𝐴 ∈ 𝒜, 𝑥 ∉ 𝐴}.

Note that 𝐴 < 𝐵 in colex if and only if 𝐴𝑐 < 𝐵𝑐 in lex with ground-set order
reversed. You can mess around with complement and other set operations, but
think about it until it becomes clear!

10



1 Set systems

Corollary 1.8. Let 𝒜 ⊆ 𝑋(𝑟) wher 0 ≤ 𝑟 ≤ 𝑛 − 1 and let 𝒞 be the initial
segment of lex with |𝜕𝐶| = |𝒜|. Then

|𝜕+𝒜| ≥ |𝜕+𝒞|.

Proof. Take complements.

Also the shadow of an initial segment of colex is again an initial segment of
colex. Indeed, if

𝒞 = {𝐴 ⊆ 𝑋(𝑟) ∶ 𝐴 ≤ 𝑎1, 𝑎2, … , 𝑎𝑟}

then
𝜕𝒞 = {𝐵 ⊆ 𝑋(𝑟−1) ∶ 𝐵 ≤ 𝑎2, … , 𝑎𝑟}.

Krustal-Katona also proves a generalised version of itself:

Corollary 1.9. Let 𝒜 ⊆ 𝑋(𝑟) and let 𝒞 ⊆ 𝑋(𝑟) be the initial segment of
colex with |𝒞| = |𝒜|. Then

|𝜕𝑡𝒜| ≥ |𝜕𝑡𝒞|

for all 1 ≤ 𝑡 ≤ 𝑟. In particular if |𝒜| = (𝑘
𝑟) then

|𝜕𝑡𝒜| ≥ ( 𝑘
𝑟 − 𝑡

).

Proof. If |𝜕𝑡𝒜| ≥ |𝜕𝑡𝒞| then |𝜕𝑡+1𝒜| ≥ |𝜕𝑡+1𝒞| by Krustal-Katona.

1.3 Intersecting families

Definition (intersecting family). A family 𝒜 ⊆ 𝒫(𝑋) is intersecting if
𝐴 ∩ 𝐵 ≠ ∅ for all 𝐴, 𝐵 ∈ 𝒜.

How large can |𝒜| can be? We can achieve |𝒜| = 2𝑛−1 by fixing an element,
e.g. 𝒜 = {𝐴 ⊆ 𝑋 ∶ 1 ∈ 𝒜}. We can’t beat it either.

Proposition 1.10. Let 𝒜 ⊆ 𝒫(𝑋) be intersecting. Then |𝒜| ≤ 2𝑛−1.

Proof. For each 𝐴 ⊆ 𝑋, we have at most one of 𝐴 or 𝐴𝑐 in 𝒜.

Note. There are many examples with |𝒜| = 2𝑛−1. In the discrete cube, we
can take the “top” layer along any element. In the blob graph, we can take
{𝐴 ⊆ 𝑋 ∶ |𝐴| > 𝑛

2 }.

Now consider the same problem restricted to one level. How larger can |𝒜|
be if 𝒜 ⊆ 𝑋(𝑟) is intersecting? If 𝑟 > 𝑛

2 , it is trivial as we can take 𝒜 = 𝑋(𝑟).
If 𝑟 = 𝑛

2 , the maximum is 1
2 (𝑛

𝑟) — just choose one of 𝐴, 𝐴𝑐 for each 𝐴 ∈ 𝑋(𝑟).
Thus from now on assume 𝑟 < 𝑛

2 .
Take

𝒜 = {𝐴 ∈ 𝑋(𝑟) ∶ 1 ∈ 𝐴},

11
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we have

|𝒜| = (𝑛 − 1
𝑟 − 1

) = 𝑟
𝑛

(𝑛
𝑟
),

where the second equality comes from the probability an element of 𝑋(𝑟) con-
taining 1. We may also take another family, say

ℬ = {𝐴 ∈ 𝑋(𝑟) ∶ |𝐴 ∩ {1, 2, 3}| ≥ 2}.

For example, in case of [8](3),

|𝒜| = (3
2
) = 2, |ℬ| = 1 + 3

2
(5

1
) = 16 < 21

so 𝒜 beats ℬ.

Theorem 1.11 (Erdős-Ko-Rado). Let 𝑟 < 𝑛
2 and let 𝒜 ⊆ 𝑋(𝑟) be intersect-

ing. Then
|𝒜| ≤ 𝑛 − 1

𝑟 − 1
.

Proof 1. “Bubble down with Krustal-Katona”
For 𝐴, 𝐵 ∈ 𝒜 have 𝐴 ∩ 𝐵 ≠ ∅, i.e. 𝐴 ⊈ 𝐵𝑐. Write

𝒜 = {𝐴𝑐 ∶ 𝐴 ∈ 𝒜} ⊆ 𝑋(𝑛−𝑟).

This says that 𝜕𝑛−2𝑟𝒜 is disjoint from 𝐴. Suppose |𝒜| > (𝑛−1
𝑟−1). Then |𝒜| =

(𝑛−1
𝑟−1) = (𝑛−1

𝑛−𝑟) so by iterated Krustal-Katona, have

|𝜕𝑛−2𝑟𝒜| ≥ (𝑛 − 1
𝑟

).

But (𝑛−1
𝑟−1) + (𝑛−1

𝑟 ) = (𝑛
𝑟), i.e.

|𝜕𝑛−2𝑟𝒜| + |𝒜| > |𝑋(𝑟)|,

absurd.

Remark. Note that in the proof we “happen” to have |𝒜| = (𝑛−1
𝑛−𝑟). In fact, the

numbers have to work as we get equality for 𝒜 = {𝐴 ∈ 𝑋(𝑟) ∶ 1 ∈ 𝐴}.

Proof 2. Consider a cyclic ordering 𝑐 of [𝑛], i.e. a bijection 𝑐 ∶ [𝑛] → Z/(𝑛Z). How
many 𝐴 ∈ 𝒜 are intervals (sets of 𝑟 consecutive elements) in our ordering? The
answer is at most 𝑟. Indeed, suppose 𝑐1, … , 𝑐𝑟 ∈ 𝐴. Then for each 1 ≤ 𝑖 ≤ 𝑟 − 1,
at most one of the two intervals … , 𝑐𝑖−1𝑐𝑖 and 𝑐𝑖+1, 𝑐𝑖+2 … can belong to 𝒜 so
that 𝒜 is intersecting. Also a given 𝑟-set 𝐴 is an interval in exactly 𝑛 ⋅ 𝑟! ⋅ (𝑛 − 𝑟)!
of the 𝑛! cyclic orderings. Therefore

|𝒜|𝑛 ⋅ 𝑟!(𝑛 − 𝑟)! ≤ 𝑛!𝑟

i.e.

|𝒜| ≤ (𝑛 − 1)!
(𝑟 − 1)!(𝑛 − 𝑟)!

= (𝑛 − 1
𝑟 − 1

).

12
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Remark.

1. Equivalently, we are double-counting the edges in the bipartite graph with
vertex classes 𝒜 and all cyclic orderings, in which 𝐴 ∈ 𝒜 is joined to 𝑐 if
𝐴 is an interval in 𝑐.

2. This method, by construcint an clever auxillary object and counting a
parameter of it in two ways, is called averaging or Katona’s method.

We may ask when we have equality in Erdős-Ko-Rado. We can check that
equality holds if and only if 𝒜 = {𝐴 ∈ 𝑋(𝑟) ∶ 𝑖 ∈ 𝐴} for some 𝑖. This follows
(proof 1) from equality case of Krustal-Katona (when size is nice), or (proof 2)
by considering changing the cyclic ordering bit by bit.

13
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2 Isoperimetric inequalities
The general theme in this chapter is the question “how tightly can we pack a
subset of given size in a space”. Many results in combinatorics follow from this
chapter, and Krustal-Katona is almost one of the cases.

To motivate the name “isoperimetric”, observe the basic fact in geometry
that among subsets of R2 of given area, a disc has smallest perimeter. Similarly
among subsets of R3 of given volume, a ball has smallest sufrace area. Among
subsets of 𝑆2 of given area, the cap has the smallest perimeter. What are the
corresponding notions in discrete settings, say subgraphs of a graph? Obviously
the “volume” should be the number of vertices. What about the “surface area”
and more generally, its boundary?

Definition (boundary). For a set 𝐴 of vertices in a graph 𝐺, the boundary
of 𝐴 is

𝑏(𝐴) = {𝑥 ∈ 𝑉 (𝐺) ∶ 𝑥 ∉ 𝐴, 𝑥𝑦 ∈ 𝐸 for some 𝑦 ∈ 𝐴}.

Example. In the followin graph if 𝐴 = {1, 2, 3} then 𝑏(𝐴) = {4, 5}.

1 2

3 4

5 6

7 8

An isopertimetric inequality of 𝐺 is an inequality of the form

𝑏(𝐴) ≥ 𝑓(|𝐴|)

for 𝐴 ⊆ 𝑉 (𝐺). This should be a “good” (at least nontrivial) inequality, which
warrants that such an inequality should decribe a fixed graph, and not applicable
to graphs in general.

To minimise the size 𝑏(𝐴) is equivalently to (and usually easier to) the size of

Definition (neighbourhood). A neighbourhood of 𝐴

𝑁(𝐴) = 𝐴 ∪ 𝑏(𝐴) = {𝑥 ∈ 𝐺 ∶ 𝑑(𝑥, 𝐴) ≤ 1}

where 𝑑 the usual graph distance.

A natural guess for boundary minimising 𝐴 is often

𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝐺 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟}.

Let’s test it. Take |𝐴| = 4 in 𝑄3. Then in the discrete 𝐴 is either a hyperplane or a
ball. We have |𝑏(𝐴)| = 3 for ball and |𝑏(𝐴)| = 4 for hyperplane. This works so we
conjecture that “balls are the best”, i.e. if |𝐴| = |𝑋(≤𝑟)| then |𝑁(𝐴)| ≥ |𝑋(≤𝑟+1)|.
When |𝐴| is strictly between ∑𝑟

𝑖=0 (𝑛
𝑖) and ∑𝑟+1

𝑖=0 (𝑟
𝑖), conjecture that 𝑏(𝐴) is

minimised if 𝐴 = 𝑋(≤𝑟) ∪ 𝐵 for some 𝐵 ⊆ 𝑋(𝑟+1). This is a Hamming ball. Note
that if we assume this result then

𝑁(𝐴) = 𝑋(≤𝑟+1) ∪ 𝜕+𝐵,

14
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so by Krustal-Katona, we’d take 𝐵 to be an initial segment of lex on 𝑋(𝑟+1). This
strongly suggests that there is a ordering on 𝒫(𝑋), where subsets are ordered
by sizes and lex is used to decide order amongs subsets of equal size, such that
the boundary minimising sets are the initial segments of this order.

Definition (simplicial order). The simplicial order on 𝑄𝑛 is defined by
𝑥 < 𝑦 if either |𝑥| ≤ |𝑦| or |𝑥| = |𝑦| and 𝑥 < 𝑦 in lex.

Notation. In this chapter we use roman instead of curly upper case letters such
as 𝐴, 𝐵 to denote a family of subsets of 𝑋, and lower case letters such as 𝑥, 𝑦 to
denote element of 𝑋. This is compatible with the vertex convention in graph
theory.

Our aim is to show that initial segments of simplicial are the best. As we
have Krustal Katona at disposal, we would like to do similar “compressions”
to move a set “closer” to Hamming ball. In the proof of Krustal Katona the
compressions 𝐶𝑈𝑉 can be seen as operations of dimension |𝑈| in the discrete
cube. Here we consider “codimension 1” compression.

Definition (section). Given 𝐴 ⊆ 𝑄𝑛 and 1 ≤ 𝑖 ≤ 𝑛, the 𝑖-sections are the
set systems 𝐴(𝑖)

+ , 𝐴(𝑖)
− ⊆ 𝒫(𝑋 − 𝑖), thought as 𝑄𝑛−1, given by

𝐴(𝑖)
+ = {𝑥 ∈ 𝐴 ∶ 𝑖 ∉ 𝑥}

𝐴(𝑖)
− = {𝑥 − {𝑖} ∶ 𝑥 ∈ 𝐴, 𝑖 ∈ 𝑥}

If it is clear which 𝑖 is being considered we may omit the superscripts for
simplicity.

Definition (𝑖-compression). Define the 𝑖-compression 𝐶𝑖(𝐴) of 𝐴 by com-
pression on its 𝑖-sections, i.e. 𝐶𝑖(𝐴)(𝑖)

+ is initial segment of 𝑄𝑛−1 of size |𝐴(𝑖)
+ |

and 𝐶𝑖(𝐴)(𝑖)
− is initial segment of 𝑄𝑛−1 of size |𝐴(𝑖)

− |.

Example. (graph)

Certainly |𝐶𝑖(𝐴)| = |𝐴|. Moreover, 𝐶𝑖(𝐴) “looks more like” the initial
segment of simplicial than 𝐴 did.

Say 𝐴 is 𝑖-compresses if 𝐶𝑖(𝐴) = 𝐴.

Theorem 2.1 (Harper). Let 𝐴 ⊆ 𝑄𝑛 and 𝐶 be the inital segment of simplicial
order with |𝐶| = |𝐴|. Then

|𝑁(𝐴)| ≥ |𝑁(𝐶)|.

Same as in Krustal Katona, what we are really interested in is the “nice” size,
i.e. if |𝐴| ≥ ∑𝑟

𝑖=0 (𝑛
𝑖) then

|𝑁(𝐴)| ≥
𝑟+1

∑
𝑖=0

(𝑛
𝑖
).
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Remark. If 𝐴 is a Hamming ball then done by Krustal Katona. Conversely,
Harper implies Krustal-Katona. Indeed, given 𝐵 ⊆ 𝑋(𝑟), apply Harper to
𝐴 = 𝐵 ∪ 𝑋(≤𝑟−1).

Proof. Induction on 𝑛: 𝑛 = 1 is trivial. Given 𝐴 ⊆ 𝑄𝑛 where 𝑛 > 1, fix
1 ≤ 𝑖 ≤ 𝑛. Claim that

|𝑁(𝐶𝑖(𝐴))| ≤ |𝑁(𝐴)|.

Proof. Write 𝐵 = 𝐶𝑖(𝐴). Given an element in the neighbourhood of 𝐴, it is
either in the downstairs part 𝐴− or the upstairs part 𝐴+ so

|𝑁(𝐴)| = |𝐴+ ∪ 𝑁(𝐴−)| + |𝐴− ∪ 𝑁(𝐴+)|

Similarly
|𝑁(𝐵)| = |𝐵+ ∪ 𝑁(𝐵−)| + |𝐵− ∪ 𝑁(𝐵+)|.

Now |𝐵+| = |𝐴+| and |𝑁(𝐵−)| ≤ |𝑁(𝐴−)| by induction. But 𝑁(𝐵−) is an initial
segment of simplicial (on 𝑄𝑛−1), as is 𝐵+, so 𝑁(𝐵−) and 𝐵+ are nested. Hence

|𝐵+ ∪ 𝑁(𝐵−)| ≤ |𝐴+ ∪ 𝑁(𝐴−)|

and similarly
|𝐵− ∪ 𝑁(𝐵+)| ≤ |𝐴− ∪ 𝑁(𝐴+)|

thus
|𝑁(𝐵)| ≤ |𝑁(𝐴)|.

Among all 𝐵 ⊆ 𝑄𝑛 with |𝐵| = |𝐴| and |𝑁(𝐵)| ≤ |𝑁(𝐴)|, choose one with
∑𝑥∈𝐵 𝑓(𝑥) minimal, where 𝑓(𝑥) is position of 𝑥 in simplicial ordering of 𝑄𝑛.
Then 𝐵 is 𝑖-compressed for all 𝑖.

Must such 𝐵 be an initial segment of simplicial? Unfortunately, no. For
example 𝐴 = {∅, 1, 2, 12} ⊆ 𝑄3. However, we have

Lemma 2.2. Let 𝐵 ⊆ 𝑄𝑛 be 𝑖-compressed for all 𝑖 but not an initial segment
of simplicial order. Then if 𝑛 is odd, say 𝑛 = 2𝑘 + 1, we have

𝐵 = 𝑋(≤𝑘) − last 𝑘-set⏟⏟⏟⏟⏟
(𝑘+2)(𝑘+3)…(2𝑘)(2𝑘+1)

∪ first (𝑘 + 1)-set⏟⏟⏟⏟⏟⏟⏟
12…𝑘(𝑘+1)

whereas if 𝑛 is even, say 𝑛 = 2𝑘, we have

𝐵 = 𝑋(≤𝑘−1) ∪{𝑥 ∈ 𝑋(𝑘) ∶ 1 ∈ 𝑥}− last 𝑘-set with 1⏟⏟⏟⏟⏟⏟⏟
1(𝑘+2)(𝑘+3)…(2𝑘)

∪ first 𝑘-set without 1⏟⏟⏟⏟⏟⏟⏟⏟⏟
234…𝑘(𝑘+1)

Then done as in each case have |𝑁(𝐵)| ≥ |𝑁(𝐶)|.

Proof. Have 𝑥 ∉ 𝐵, 𝑦 ∈ 𝐵 for some 𝑥 < 𝑦 in simplicial. Cannot have 𝑖 ∈ 𝑋, 𝑖 ∈ 𝑦
as 𝐵 is 𝑖-compressed, and cannot have 𝑖 ∉ 𝑥, 𝑖 ∉ 𝑦, again as 𝐵 is 𝑖compressed.
So for each 𝑖, 𝑖 belongs to exactly one of 𝑥 or 𝑦. Thus 𝑦 = 𝑥𝑐.

Hence for each 𝑦 ∈ 𝐵, at most one of 𝑥 < 𝑦 has 𝑥 ∉ 𝐵 (namely 𝑦𝑐) and for
each 𝑥 ∉ 𝐵, at most one of 𝑦 > 𝑥 has 𝑦 ∈ 𝐵 (namely 𝑥𝑐). Hence

𝐵 = {𝑧 ∶ 𝑧 ≤ 𝑦} − {𝑥}
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2 Isoperimetric inequalities

where 𝑥 is the immediate predecessor of 𝑦 and 𝑥 = 𝑦𝑐.
But then 𝑥 is the last 𝑘-set (if 𝑛 = 2𝑘 + 1) or last 𝑘-set containing 1 (if

𝑛 = 2𝑘), by definition of simplicial ordering.

Remark.

1. It is also possible to prove Harper by 𝑈𝑉-compression.

2. We can also use these “codimension 1” compressions to prove Krustal
Katona directly.

In analysis, we often use isoperimetric inequality in blow-up form, e.g. give a
disk, if we expand it a little bit by 𝜀 > 0 at some point then the resulting shape
has perimeter at least as large as that of the disk.

Definition (𝑡-neighbourhood). For 𝐴 ⊆ 𝑄𝑛, the 𝑡-neighbourhood of 𝐴 is

𝐴(𝑡) = 𝑁 𝑡(𝐴) = {𝑥 ∈ 𝑄𝑛 ∶ 𝑑(𝑥, 𝐴) ≤ 𝑡}

Corollary 2.3. Let 𝐴 ⊆ 𝑄𝑛 with |𝐴| = |𝑋(≤𝑟)|. Then for 1 ≤ 𝑡 ≤ 𝑛 − 𝑟,
have

|𝐴(𝑡)| ≥ |𝑋(≤𝑟+𝑡)|.

Proof. Harper and induction.

To get a better for for what the corollary is saying, we’ll need some estimates
and things like ∑𝑟

𝑖=0 (𝑛
𝑖).

Proposition 2.4. Let 0 < 𝜀 < 1
4 , then

⌊( 1
2 −𝜀)𝑛⌋

∑
𝑖=0

(𝑛
𝑖
) < 1

𝜀
exp(−𝜀2𝑛

2
)2𝑛.

i.e. for fixed 𝜀, the sum is an exponentially small fraction of 2𝑛

In standard deviation language, going ∼ 𝜀 standard deviates from mean

Proof. For 𝑖 ≤ ( 1
2 − 𝜀)𝑛,

( 𝑛
𝑖−1)
(𝑛

𝑖)
= 𝑖

𝑛 − 𝑖 + 1
≤

1
2 − 𝜀
1
2 + 𝜀

= 1 − 2𝜀
1
2 + 𝜀

≤ 1 − 2𝜀.

Hence by comparison with geometric progression

⌊( 1
2 −𝜀)𝑛⌋

∑
𝑖=0

(𝑛
𝑖
) ≤ 1

2𝜀
( 𝑛

⌊( 1
2 − 𝜀)𝑛⌋

).

Similarly

( 𝑛
⌊( 1

2 − 𝜀)𝑛⌋
) ≤ (1−𝜀)𝜀𝑛/2−1( 𝑛

⌊( 1
2 − 𝜀

2 )𝑛⌋
) ≤ 2(1−𝜀)𝜀𝑛/22𝑛 ≤ 2 exp −𝜀𝜀𝑛/2⋅2𝑛
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Therefore
⌊( 1

2 −𝜀)𝑛⌋

∑
𝑖=0

≤ 1
2𝜀

2 exp −𝜀2𝑛/22𝑛.

Missed a lecture on 06/11/18
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