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Let 𝐴 be a commutative ring and 𝑀 be an 𝐴-module generated by {𝑚1, … , 𝑚𝑛}.
Note that 𝑀 is naturally an End(𝑀)-module and for all 𝑓 ∈ End(𝑀), write
[𝑓] ∈ ℳ𝑛(𝐴) for its representation with respect to the generators above, i.e.
𝑓(𝑚𝑖) = ∑𝑗[𝑓]𝑖𝑗𝑚𝑗. In particular, there is a ring homomorphism 𝜇 ∶ 𝐴 →
End(𝑀), 𝑎 ↦ 𝑎⋅− sending an element to its multiplication action. Let 𝐴′ = 𝜇(𝐴).

There is a technical remark to make: later we will use determinant of matrices
over End(𝑀), which is non-commutative. However, throughout the discussion
we are concerned with only one endomorphism 𝜑 (besides multiplication, of
course) so we can restrict the scalars to 𝐴′[𝜑], a subring contained in the centre
of End(𝑀).

Given a module endomorphism 𝜑 ∶ 𝑀 → 𝑀, its characteristic polynomial is
defined to be

𝜒[𝜑](𝑥) = det(𝑥 ⋅ 𝐼 − [𝜑]) ∈ 𝐴[𝑥]
where 𝐼 is the 𝑛 × 𝑛 identity matrix and the product 𝑥 ⋅ 𝐼 is multiplication of a
matrix by a scalar. We have

Theorem 0.1 (Cayley-Hamilton).

𝜒[𝜑](𝜑) = 0.

This is a slight generalisation of the result one might be familiar with from linear
algebra. Note that this is a relation of endomorphisms with coefficients in 𝐴.

Proof. Let [𝜑]𝑖𝑗 = 𝑎𝑖𝑗 and view 𝑀 as an 𝐴′[𝜑]-module. Since

𝜑𝑚𝑖 = ∑
𝑗

𝑎𝑖𝑗𝑚𝑗,

we have
∑

𝑗
(𝜑𝛿𝑖𝑗 − 𝑎𝑖𝑗)⏟⏟⏟⏟⏟

Δ𝑖𝑗

𝑚𝑗 = 0 (∗)

with
Δ = 𝜑 ⋅ 𝐼 − 𝑁 ∈ ℳ𝑛(𝐴′[𝜑]).

Again, the multiplication is by scalar 𝜑, viewed as an element of the ring End(𝑀).
Claim that if det Δ = 0 ∈ End(𝑀) then we are done: consider the ring

homomorphism

𝐴[𝑥] → End(𝑀)
𝑥 ↦ 𝜑
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which maps 𝜒[𝜑](𝑡) ↦ 𝜒[𝜑](𝜑) = det Δ since det is a polynomial function. So
done.

To show this, recall that

(adj Δ) ⋅ Δ = det Δ ⋅ 𝐼 ∈ ℳ𝑛(𝐴′[𝜑])

where multiplication on the left is between matrices. Let (adj Δ)𝑖𝑗 = 𝑏𝑖𝑗. Then
multiply (∗) by 𝑏𝑘𝑖 and apply the identity,

∑
𝑖,𝑗

(𝑏𝑘𝑖Δ𝑖𝑗)𝑚𝑗 = ∑
𝑗

(det Δ𝛿𝑘𝑗)𝑚𝑗 = (det Δ)𝑚𝑘 = 0.

so det Δ = 0 as required.

We extract the key idea in the proof, which some authors call the determinant
trick, which has many applications in commutative algebra:

Theorem 0.2. Let 𝑀 be an 𝐴-module generated by 𝑛 elements and 𝜑 ∶ 𝑀 →
𝑀 a homomorphism. Suppose 𝐼 is an ideal of 𝐴 such that 𝜑(𝑀) ⊆ 𝐼𝑀, then
there is a relation

𝜑𝑛 + 𝑎1𝜑𝑛−1 + ⋯ + 𝑎𝑛−1𝜑 + 𝑎𝑛 = 0

where 𝑎𝑖 ∈ 𝐼 𝑖 for all 𝑖.

Proof. Let {𝑚1, … , 𝑚𝑛} be a set of generators of 𝑀. Since 𝜑(𝑚𝑖) ∈ 𝐼𝑀, we can
write

𝜑𝑚𝑖 = ∑
𝑗

𝑎𝑖𝑗𝑚𝑗

with 𝑎𝑖𝑗 ∈ 𝐼. Multiply
∑

𝑗
(𝜑𝛿𝑖𝑗 − 𝑎𝑖𝑗)⏟⏟⏟⏟⏟

Δ𝑖𝑗

𝑚𝑗 = 0

by adj Δ, we deduce that (det Δ)𝑚𝑗 = 0 so det Δ = 0 ∈ End(𝑀). Expand.

Corollary 0.3 (Nakayama’s Lemma). If 𝑀 is a finitely generated 𝐴-module
and 𝐼 ⊴ 𝑅 is such that 𝑀 = 𝐼𝑀 then there exists 𝑥 ∈ 𝐴 such that 𝑥 − 1 ∈ 𝐼
and 𝑥𝑀 = 0.

Proof. Apply the trick to id𝑀. Since id𝑖
𝑀 = id𝑀 and 𝑎𝑛 = 𝑎𝑛 id𝑀, we get

(1 +
𝑛

∑
𝑖=1

𝑎𝑖) id𝑀 = 0.

We use the result to prove a rather interesting fact about module homomor-
phism:
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Proposition 0.4. Let 𝑀 be a finitely generated 𝐴-module. Then every
surjective module homomorphism on 𝑀 is also injective.

Proof. Let 𝜑 ∶ 𝑀 → 𝑀 be surjective. Let 𝑀 be an 𝐴′[𝜑] module and 𝐼 = (𝜑) ⊴
𝐴′[𝜑]. Then 𝑀 = 𝐼𝑀 by surjectivity of 𝜑. Thus by Nakayama’s Lemma, there
exists 𝑥 = 1 + 𝜑𝜓, 𝜓 ∈ 𝐴′[𝜑] such that (1 + 𝜑𝜓)𝑀 = 0, i.e. for all 𝑚 ∈ 𝑀,
(1 + 𝜑𝜓)𝑚 = 0. It follows that 𝜑−1 = −𝜓.
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