Determinant trick, Cayley-Hamilton Theorem and Nakayama's Lemma

Qiangru Kuang

Let A be a commutative ring and M be an A-module generated by $\left\{m_{1}, \ldots, m_{n}\right\}$. Note that M is naturally an $\operatorname{End}(M)$-module and for all $f \in \operatorname{End}(M)$, write $[f] \in \mathcal{M}_{n}(A)$ for its representation with respect to the generators above, i.e. $f\left(m_{i}\right)=\sum_{j}[f]_{i j} m_{j}$. In particular, there is a ring homomorphism $\mu: A \rightarrow$ $\operatorname{End}(M), a \mapsto a \cdot-$ sending an element to its multiplication action. Let $A^{\prime}=\mu(A)$.

There is a technical remark to make: later we will use determinant of matrices over $\operatorname{End}(M)$, which is non-commutative. However, throughout the discussion we are concerned with only one endomorphism φ (besides multiplication, of course) so we can restrict the scalars to $A^{\prime}[\varphi]$, a subring contained in the centre of $\operatorname{End}(M)$.

Given a module endomorphism $\varphi: M \rightarrow M$, its characteristic polynomial is defined to be

$$
\chi_{[\varphi]}(x)=\operatorname{det}(x \cdot I-[\varphi]) \in A[x]
$$

where I is the $n \times n$ identity matrix and the product $x \cdot I$ is multiplication of a matrix by a scalar. We have

Theorem 0.1 (Cayley-Hamilton).

$$
\chi_{[\varphi]}(\varphi)=0
$$

This is a slight generalisation of the result one might be familiar with from linear algebra. Note that this is a relation of endomorphisms with coefficients in A.

Proof. Let $[\varphi]_{i j}=a_{i j}$ and view M as an $A^{\prime}[\varphi]$-module. Since

$$
\varphi m_{i}=\sum_{j} a_{i j} m_{j},
$$

we have

$$
\begin{equation*}
\sum_{j} \underbrace{\left(\varphi \delta_{i j}-a_{i j}\right)}_{\Delta_{i j}} m_{j}=0 \tag{*}
\end{equation*}
$$

with

$$
\Delta=\varphi \cdot I-N \in \mathcal{M}_{n}\left(A^{\prime}[\varphi]\right)
$$

Again, the multiplication is by scalar φ, viewed as an element of the $\operatorname{ring} \operatorname{End}(M)$.
Claim that if $\operatorname{det} \Delta=0 \in \operatorname{End}(M)$ then we are done: consider the ring homomorphism

$$
\begin{aligned}
A[x] & \rightarrow \operatorname{End}(M) \\
x & \mapsto \varphi
\end{aligned}
$$

which maps $\chi_{[\varphi]}(t) \mapsto \chi_{[\varphi]}(\varphi)=\operatorname{det} \Delta$ since det is a polynomial function. So done.

To show this, recall that

$$
(\operatorname{adj} \Delta) \cdot \Delta=\operatorname{det} \Delta \cdot I \in \mathcal{M}_{n}\left(A^{\prime}[\varphi]\right)
$$

where multiplication on the left is between matrices. Let $(\operatorname{adj} \Delta)_{i j}=b_{i j}$. Then multiply ($*$) by $b_{k i}$ and apply the identity,

$$
\sum_{i, j}\left(b_{k i} \Delta_{i j}\right) m_{j}=\sum_{j}\left(\operatorname{det} \Delta \delta_{k j}\right) m_{j}=(\operatorname{det} \Delta) m_{k}=0 .
$$

so $\operatorname{det} \Delta=0$ as required.
We extract the key idea in the proof, which some authors call the determinant trick, which has many applications in commutative algebra:

Theorem 0.2. Let M be an A-module generated by n elements and $\varphi: M \rightarrow$ M a homomorphism. Suppose I is an ideal of A such that $\varphi(M) \subseteq I M$, then there is a relation

$$
\varphi^{n}+a_{1} \varphi^{n-1}+\cdots+a_{n-1} \varphi+a_{n}=0
$$

where $a_{i} \in I^{i}$ for all i.
Proof. Let $\left\{m_{1}, \ldots, m_{n}\right\}$ be a set of generators of M. Since $\varphi\left(m_{i}\right) \in I M$, we can write

$$
\varphi m_{i}=\sum_{j} a_{i j} m_{j}
$$

with $a_{i j} \in I$. Multiply

$$
\sum_{j} \underbrace{\left(\varphi \delta_{i j}-a_{i j}\right)}_{\Delta_{i j}} m_{j}=0
$$

by $\operatorname{adj} \Delta$, we deduce that $(\operatorname{det} \Delta) m_{j}=0$ so $\operatorname{det} \Delta=0 \in \operatorname{End}(M)$. Expand.

Corollary 0.3 (Nakayama's Lemma). If M is a finitely generated A-module and $I \unlhd R$ is such that $M=I M$ then there exists $x \in A$ such that $x-1 \in I$ and $x M=0$.

Proof. Apply the trick to id_{M}. Since $\mathrm{id}_{M}^{i}=\mathrm{id}_{M}$ and $a_{n}=a_{n} \mathrm{id}_{M}$, we get

$$
\left(1+\sum_{i=1}^{n} a_{i}\right) \operatorname{id}_{M}=0
$$

We use the result to prove a rather interesting fact about module homomorphism:

Proposition 0.4. Let M be a finitely generated A-module. Then every surjective module homomorphism on M is also injective.

Proof. Let $\varphi: M \rightarrow M$ be surjective. Let M be an $A^{\prime}[\varphi]$ module and $I=(\varphi) \unlhd$ $A^{\prime}[\varphi]$. Then $M=I M$ by surjectivity of φ. Thus by Nakayama's Lemma, there exists $x=1+\varphi \psi, \psi \in A^{\prime}[\varphi]$ such that $(1+\varphi \psi) M=0$, i.e. for all $m \in M$, $(1+\varphi \psi) m=0$. It follows that $\varphi^{-1}=-\psi$.

