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1 Definitions and examples

1 Definitions and examples

Definition (category). A category C consists of

1. a collection obC of objects A,B,C, . . .,

2. a collection morC of morphisms f, g, h, . . .,

3. two operations dom and cod assigning to each f ∈ morC a pair of
objects, its domain and codomain. We write A

f−→ B to mean f is a
morphism and dom f = A, cod f = B,

4. an operation assigning to each A ∈ obC a morhpism A
1A−−→ A,

5. a partial binary operation (f, g) 7→ fg on morphisms, such that fg is
defined if and only if dom f = cod g and let dom fg = dom g, cod fg =
cod f if fg is defined

satisfying

1. f1A = f = 1Bf for any A
f−→ B,

2. (fg)h = f(gh) whenever fg and gh are defined.

Remark.

1. This definition is independent of any model of set theory. If we’re given a
particuar model of set theory, we call C small if obC and morC are sets.

2. Some texts say fg means f followed by g (we are not).

3. Note that a morphism f is an identity if and only if fg = g and hf = h
whenever the compositions are defined so we could formulate the defini-
tions entirely in terms of morphisms.

Example.

1. The category Set has all sets as objects and all functions between sets as
morphisms (strictly, morphisms A → B are pairs (f,B) where f is a set
theoretic function).

2. The category Gp where objects are groups, morphisms are group homo-
morphisms. Similarly Ring is the category of rings and ModR is the
category of R-modules.

3. The category Top has all topological spaces as objects and continuous
functions as morphisms. Similarly Unif the category of uniform spaces
with uniformly continuous functions and Mf the category of manifolds
with smooth maps.

4. The cateogryHtpy has same objects asTop but morphisms are homotopy
classes of continuous functions.
More generally, given C we call an equivalence relation ' on morC a
congruence if f ' g implies dom f = dom g, cod f = cod g and fh ' gh
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1 Definitions and examples

and vice versa. Then we have a set C/ ' with the same objects as C but
congruence classes as morphisms.

5. Given C, the opposite category Cop has the same objects and morphisms
as C, but domain and codomain interchanged and fg in Cop is gf in C.
This leads to duality principle: if P is a valid statement about categories
so is P ∗ attained by reversing all the arrows.

6. A small category with one object is a monoid, i.e. a semigroup with 1.
In particular, a group is a small category with one object, in which every
morphism is an isomorphism (i.e. for all f there exists g such that fg and
gf are identities).

7. A groupoid is a category in which every morphism is an isomorphism. For
example, for a topological space X, the fundamental groupoid π(X) has
all points of X as objects and morphisms x → y as homotopy classes rel
0, 1 of paths γ : [0, 1] → X with γ(1) = y.

8. A discrete category is one whose only morphisms are identities. A preorder
is a category C in which for any pair (A,B) there exists at most one mor-
phism A → B. A small preorder is a set equipped with a binary relation
which is reflexive and transitive. In particular a partially ordered set is a
partially ordered set is a small preorder in which the only isomorphisms
are identities.

9. The category Rel has the same objects as Set but morphisms A → B are
arbitrary relations. Given R ⊆ A×B,S ⊆ B × C, we define

S ◦R = {(a, c) ∈ A× C : ∃b ∈ B s.t. (a, b) ∈ R, (b, c) ∈ S}.

The identity 1A : A → A is {(a, a) : a ∈ A}. Similarly, the category Part
of sets and partial functions (i.e. relations such that for all (a, b), (a, b′) ∈
R, b = b′) can be defined.

10. Let K be a field. The category MatK has natural numbers as objects and
morphisms n → p are (p× n) matrices with entries from K. Composition
is matrix multiplication.

Definition (functor). Let C,D be categories. A functor F : C → D
consists of

1. a mapping A 7→ F (A) from obC to obD,

2. a mapping f 7→ F (f) from morC to morD such that

dom(F (f)) = F (dom f), cod(Ff) = F cod(f)

1F (A) = F (1A), (F (f))(F (g)) = F (fg)

wherever fg is defined.

Example. We write Cat for the category whose objects are all small categories
and whose morphisms are functors between them.
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Example.
1. We have forgetful functors U : Gp → Set,Ring → Set,Top → Set . . .

and Ring → AbGp (forget multiplication), Ring → Mon (forget addi-
tion).

2. Given A, the free group F (A) has the property given any group G, any

A
f−→ UG, there is a unique homomorphism FA

f̃−→ G extending f .

F is a functor Set → Gp: given any A
f−→ B, we define F (f) to be

the unique homomorphism extending A
f−→ B ↪→ UFB. Functoriality

follows from uniqueness: given B
g−→ C, F (gf) and (Fg)(Ff) are both

homomorphisms extending

A
f−→ B

g−→ C ↪→ UFC.

3. Given a set A, we write PA for the set of all subsets of A. We can make
P into a functor Set → Set: given A

f−→ B, we define

Pf(A′) = {f(a) : a ∈ A′}

for A′ ⊆ A.
But we also have a functor P ∗ : Set → Setop defined by

P ∗f(B′) = {a ∈ A : f(a) ∈ B′}

for B′ ⊆ B.

4. By a contravariant functor C → D we mean a functor C → Dop (or
Cop → D. (A covariant functor is one that doesn’t reverse arrows)
Let K be a field. We have a functor ·∗ : ModK → Modop

K defined by

V ∗ = {linear maps V → K}

and if V f−→ W , f∗(θ) = θf .

5. We have a functor ·op : Cat → Cat which is the identity on morphisms.
(note that this is covariant)

6. A functor between monoids is a monoid homomorphism.

7. A functor between posets is an order-preserving map.

8. Let G be a group. A functor F : G → Set consists of a ast A = F∗
together with an action of G on A, i.e. permutation representation of G.
Similarly a functor G → ModK is a K-linear representation of G.

9. The construction of the fundamental gropu π1(X,x) of a space X with
basepoint x is a functor

Top∗ → Gp

where Top∗ is the category of spaces with a chosen basepoint.
Similarly, the fundamental groupoid is a functor

Top → Gpd

where Gpd is the category of groupoids and functors between them.
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1 Definitions and examples

Definition (natural transformation). Let C,D be categories and F,G :
C → D be two functors. A natural transformation α : F → G consists of an
assignment A 7→ αA from obC to morD such that domαA = FA, codαA =

GA for all A, and for all A f−→ B in C, the square

FA FB

GA GB

Ff

αA αB

Gf

commutes, i.e. αB(Ff) = (Gf)αA.

Example.

1. Given categories C,D, we write [C,D] for the category whose objects are
functors C → D and whose morphisms are natural transformations.

2. Let K be a field and V a vector space over K. There is a linear map
αV : V → V ∗∗ given by

αV (v)(θ) = θ(v)

for θ ∈ V ∗. This is the V -component of a natural transformation

1ModK
→ ·∗∗ : ModK → ModK .

3. For any set A, we have a mapping σA : A → PA sending a to {a}. If
f : A → B then Pf({a}) = {f(a)}. So σ is a natural transformation
1Set → P .

4. Let F : Set → Gp be the free group functor and U : Gp → Set the
forgetful functor. The inclusions A → UFA is a natural transformation
1Set → UF .

5. Let G,H be groups and f, g : G → H be two homomorphisms. Then a
natural tranformation α : f → g corresponds to an element h = α∗ such
that hf(x) = g(x)h for all x ∈ G, or equivalently f(x) = h−1g(x)h, i.e. f
and g are conjugate group homomorphisms.

6. Let A and B be two G-sets, regarded as functors G → Set. A natural
transformation A → B is a function f satisfying f(g.a) = g.f(a) for all
a ∈ A, i.e. a G-equivariant map.

When we say “natural isomorphism”, it is ambiguous and can formally mean
two different things: one could mean there is a natural transformation going
the other way which when composed produces identity, or each component is
an isomorphism. It turns out they coincide:

Lemma 1.1. Let F,G : C → D be two functors and α : F → G a natural
transformation. Then α is an isomorphism in [C,D] if and only if each αA

is an isomorphism in D.
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Proof. Only if is trivial. For if, suppose each αA has an inverse βA. We need to
prove the β’s satisfy the naturality condition: give f : A → B in C, we need to
show that

GA GB

FA FB

Gf

βA βB

Ff

commutes. But

(Ff)βA = βBαB(Ff)βA = βB(GF )αAβA = βB(Gf)

by naturality of α.

In study of algebraic theories (for example), we are interested in isomor-
phisms of objects and investigate the properties of objects “up to isomorphism”.
However, in category theory a weaker notion of isomorphism is often more use-
ful:

Definition (equivalence). Let C and D be categories. By an equivalence
between C and D we mean a pair of functors F : C → D, G : D → C
together with natural isomorphisms α : 1C → GF, β : FG → 1D. We write
C ' D if C and D are equivalent.

We say a property P of categories is a category propery if whenever C
has P and C ' D then D has P .

For example, being a groupoid or a preorder are categorical properies, but
being a group or a partial order are not.

Example.

1. The category Part is equivalent to the category Set∗ of pointed sets (and
basepoint preserving functions). We define

F : Set∗ → Part

(A, a) 7→ A \ {a}

and if f : (A, a) → (B, b) then Ff(x) = f(x) if f(x) 6= b and undefined
otherwise, and

G : Part → Set∗

A 7→ A+ = (A ∪ {A}, A)

and if f : A → B is a partial function , we define

x 7→

{
f(x) if x ∈ A and f(x) defined
B otherwise

Then FG is the identity on Part but GF is not. However there is an
isomorphism

(A, a) → ((A \ {a})+, A \ {a})
sending a to A \ {a} and everything else to itself. This is natural.
Note that there can be no isomorphism Set∗ → Part since Part has a
1-element isomorphism class {∅} and Set∗ doesn’t.
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2. The category fdModK of finite-dimensional vector spaces overK is equiv-
alent to fdModop

K : the functors in both directions are ·∗ and both isomor-
phisms are the natural transformations given by double dual.

3. fdModK is also equivalent to MatK : we write F : MatK → fdModK

by F (n) = Kn, and F (A) is the map represented by A with respect to
the standard basis. To define functor G the other way, choose a basis for
each finite-dimensional vector space and define

G(V ) = dimV

G(V
f−→ W ) = matrix representing f w.r.t. chosen bases

GF is the identity, provided we choose the standard bases for the space
Kn. FG 6= 1 but the chosen bases give isomorphisms FG(V ) = KdimV →
V for each V , which form a natural isomorphism.

Example 3 illustrates a general principle: when constructing a pair of func-
tors between equivalent categories, ususally one is “canonical” and the other
requires some choice, and a clever choice results in a particularly simple form
for one way of composition. The next theorem abstracts away the “choice” and
tells us when a functor is part of an equivalence purely by its properties.

The criterion is stated in term of “bijectivity” of functors, informally. It is
generally a bad idea to look at sur/injectivity of functors on objects. Instead
the correct way is to look at their behaviour on morphisms.

Definition (faithful, full, essentially surjective). Let C F−→ D be a functor.

1. F is faithful if given f, f ′ ∈ morC with dom f = dom f ′, cod f = cod f ′

and Ff = Ff ′ then f = f ′.

2. F is full if given FA
g−→ FB in D then there exists A f−→ B in C with

Ff = g.

3. F is essentially surjective if for every B ∈ obD there exists A ∈ obC
and an isomorphism FA → B in D.

Definition. A subcategory C′ ⊆ C is full if the inclusion C′ → C is a full
functor.

Example. Gp is a full subcategory of Mon but Mon is not a full subcategory
of the category SGp of semigroups.

Lemma 1.2. Assuming the axiom of choice. A functor F : C → D is
part of an equivalence C ' D if and only if it’s full, faithful and essentially
surjective.

Proof. Suppose given G,α, β as in the definition of equivalence of categories.
Then for each B ∈ obD, βB is an isomorphism FGB → B so F is essentially
surjective.
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1 Definitions and examples

Given A
f−→ B in C, we can recover f from Ff as the via conjugation by α:

GFA GFB

A B

GFf

αA

f

αB

Hence if A f ′

−→ B satisfies Ff = Ff ′ then f = f ′.
Similarly there is a natural preimage given a morphism in D. Given FA

g−→
FB, define f to be the composite

GFA GFB

A B

Gg

αA αB

Then GFf = αBfα
−1
A = Gg. As G is faithful for the same reasons as F ,

Ff = g.
Conversely, for each B ∈ obD, choose GB ∈ obC and an isomorphism

βB : FGB → B in D. Given B
g−→ B′, define Gg : GB → GB′ to be the unique

morphism whose image under F is the composition

B B′

FGB FGA

f

βB βB′

Faithfulness implies functoriality: given B′ g′

−→ B′′, (Gg′)(Gg) and G(g′g) have
the same image under F so they are equal.

By construction, β is a natural transformation FG → 1D.
Given A ∈ obC, define αA : A → GFA to be the unique morphism whose

image under F is

FA
β−1
FA−−−→ FGFA.

αA is an isomorphism since βFA also has a unique preimage under F . Finally
α is a natural transformation, since any naturality square for α is mapped by
F to a commutative square (corresponding to naturality square for β) and F is
faithful.

Note that axiom of choice is only used in the if part. The lemma is useful
as it saves us from making explicit choices when showing an equivalence by
exhibiting inverses. However note that the choice is always required.

Definition (skeleton). By a skeleton of a category C we mean a full sub-
category C0 containing one object from each isomorphism class. We say C
is skeletal if it’s a skeleton of itself.

Example. MatK is skeletal and the image of F : MatK → fdModK is a
skeleton of fdModK (essentially because F is full and faithful).
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1 Definitions and examples

Remark. Almost any assertion about skeletons is equivalent to the axiom of
choice. See example sheet 1 Q2. This is one reason why we should not restrict
out attention to skeletal categories.

Definition (monomorphism, epimorphism). Let A f−→ B be a morphism in
C.

1. We say f is a monomorphism or monic if given any pair g, h : C → A,
fg = fh implies g = h.

2. We say f is a epimorphism or epic if it is a monomorphism in Cop,
i.e. given any pair g, h : B → C, gf = hf implies g = h.

We denote monomorphisms by f : A � B and epimorphisms by f : A �
B.

Any isomorphism is monic and epic. More generally if f has a left inverse
then it’s monic. We call such monomorphisms split.

Definition (balanced). We say C is a balanced category if any morphism
which is both monic and epic is an isomorphism.

Example.

1. In Set, monomorphism is precisely an injection (one direction is easy and
for the other direction take C = 1 = {∗}) and epimorphism is precisely a
surjection (use morphisms B → 2 = {0, 1}). Thus Set is balanced.

2. In Gp, monomorphism is precisely an injection (use homomorphism from
the free group with one generator, i.e. Z → A) and epimorphism is pre-
cisely a surjection (use free product with amalgamation). Thus Gp is
balanced.

3. In Rng, monomorphism is precisely an injection (similarly to free group)
but the inclusion Z → Q is an epimorphism, since if f, g : Q → R agree
on all integers they agree everywhere. So Rng is not balanced.

4. In Top, monomorphism is precisely an injection and epimorphism is pre-
cisely a precisely surjection (same argument as Set) but Top is not bal-
anced since a continuous bijection need not to have a continuous inverse.
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2 The Yoneda lemma

2 The Yoneda lemma
It may seem weird to devote an entire chapter to a lemma. However, although
the Yoneda lemma is indeed a lemma, with a simple statement and straight-
forward proof, it is much more than a normal lemma and underlies the entire
category theory.

Here is a little story about Yoneda lemma. It is named after Nobuo Yoneda,
who is better known as a computer scientist than a mathematician. The result
is likely not due to him and he wasn’t the first person to write it down. In fact,
he never actually wrote down the lemma, as opposed to some books claiming the
lemma was first to be found in one of Yoneda’s papers. The story, according
to Saunders Mac Lane, is that after a conference he met Yoneda on a train
platform. While exchanging conversations Yoneda told him the result, which
Mac Lane was not aware of at that moment but immediately recognised its
importance. Mac Lane later attributed the lemma to Yoneda and because of
his standing in category theory, the name retains. Perhaps this is the first and
only result in mathematics to be enunciated on a train platform!

Definition (locally small category). We say a category C is locally small if,
for any two objects A,B, the morphisms A → B in C form a set C(A,B).

If we fix A and let B vary, the assignment B 7→ C(A,B) becomes a functor
C(A,−) : C → Set: given B

f−→ C, C(A, f) is the mapping g 7→ fg. Similarly,
A 7→ C(A,B) defines a functor C(−, B) : Cop → Set.

Lemma 2.1 (Yoneda lemma). Let C be a locally small category, A ∈ obC
and F : C → Set is a functor. Then natural transformations C(A,−) → F
are in bijection with elements of FA.

Moreover, this bijection is natural in both A and F .

Proof. We prove the first part now. The second part follows very easily once we
have gained some intuitions so we’ll come back to it later. Given α : C(A,−) →
F , we define

Φ(α) = αA(1A) ∈ FA.

Conversely, given x ∈ FA, we define Ψ(x) : C(A,−) → F by

Ψ(x)B(A
f−→ B) = Ff(x) ∈ FB

which is natural: given g : B → C, we have

Ψ(x)CC(A, g)(f) = Ψ(x)C(gf) = F (gf)(x)

(Fg)Ψ(x)B(f) = (Fg)(Ff)(x) = F (gf)(x)

10



2 The Yoneda lemma

C(A,B) C(A,C)

f gf

Ff(x) F (gf)(x)

FB FC

C(A,g)

Ψ(x)B Ψ(x)C

Fg

by functoriality of F . Now left to show they are inverses to each other.

ΦΨ(x) = Ψ(x)A(1A) = F (1A)(x) = x

ΨΦ(α)B(f) = Ψ(αA(1A))B(f) = Ff(αA(1A)) = αBC(A, f)(1A) = αB(f)

so ΨΦ(α) = α.

Corollary 2.2 (Yoneda embedding). The assignment A 7→ C(A,−) defines
a full faithful functor Cop → [C,Set].

Proof. Put F = C(B,−) in the above proof, we get a bijection between C(B,A)
and morphisms C(A,−) → C(B,−) in [C,Set]. We need to verify that this is
functorial. But it sends f : B → A to the natural transformation g 7→ gf . So
functoriality follows from associativity.

We call this functor (or the functor C → [Cop,Set] sending A to C(−, A))
the Yoneda embedding of C and typically denote it by Y . At first glance,
[C,Set] seems like a much more complicated entity and is much more unwieldy.
However, it stands out as being more concrete and thus easier to deal with. It is
in analogy with group representation: instead of an abstract group, we consider
its action on a set, which is more explicit and concrete. We’ll come back to this
point in a minute.

Now return to the second part of the lemma. Suppose for the moment
that C is small, so that [C,Set] is locally small. Then we have two functors
C× [C,Set] → Set: one sends (A,F ) to FA, and the other is the composite

C× [C,Set]
Y×1−−−→ [C,Set]op × [C,Set]

[C,Set](−,−)−−−−−−−−→ Set

where the last map maps a pair of functors to the set of natural transformations
between them, and the naturality in the statement of Yoneda lemma says that
these are naturally isomorphic. We can translate this into an elementary state-
ment, making sense even when C isn’t small: given A

f−→ B and F
α−→ G, there

are two ways of producing an element of GB from the natural transformation.
For example, given β : C(A,−) → F , the two ways give the same result, namely

αB(Ff)βA(1A) = (Gf)αAβA(1A)
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2 The Yoneda lemma

which is equal to αBβB(f).

[C,Set](C(A,−), F ) [C,Set](C(B,−), F )

FA FB

GB GB

[C,Set](C(A,−), G) [C,Set](C(B,−), G)

ΦA,F

ΦB,F
Ff

αA αB

Gf

ΦA,G

ΦB,G

Definition (representable functor, representation). We say a functor F :
C → Set is representable if it’s isomorphic to C(A,−) for some A.

By a representation of F , we mean a pair (A, x) where x ∈ FA is such
that Ψ(x) is an isomorphism. We also call x a universal element of F .

Corollary 2.3. If (A, x) and (B, y) are both representations of F , then
there is a unique isomorphism f : A → B such that (Ff)(x) = y.

Proof. Consider the composite

C(B,−)
Ψ(y)−−−→ F

Ψ(x)−1

−−−−−→ C(A,−),

By Yoneda embedding, this is of the form Y (f) for a unique isomorphism f :
A → B and the diagram

C(B,−) C(A,−)

F

Y (f)

Ψ(y) Ψ(x)

commutes if and only if (Ff)(x) = y.

Example.

1. The forgetful functor Gp → Set is representable by (Z, 1). Similarly the
forgetful functor Rng → Set is representable by (Z[x], x). The forgetful
functor Top → Set is representable by ({∗}, ∗).

2. The functor P ∗ : Setop → Set is representable by ({0, 1}, {1}). This is
the bijection between subsets and characteristic functions.

3. Let G be a group. The unique (up to isomorphism) representable functor
G(∗,−) : G → Set is the Cayley representation of G, i.e. the set UG with
G acting by left multiplication.

12



2 The Yoneda lemma

4. Let A and B be two objects of a locally small category C. Then we have
a functor Cop → Set sending C to C(C,A) ×C(C,B) (note that it is a
purely categorical product and require only cartesian product of the mor-
phism sets). A representation of this, if it exists, is called a (categorical)
product of A and B, and denoted

A×B

A B

π1 π2

This pair has the property that, for any pair (C f−→ A,C
g−→ B), there is a

unique C
h−→ A×B with π1h = f and π2h = g.

A×B

A C B

π1 π2

f

g

h

Products exist in many categories of interest: in Set,Gp,Rng,Top, . . .
they are “just” cartesian products. In posets they are binary meets.
Dually, we have the notion of coproduct

A+B

A B

ν1 ν2

These also exist in many categories of interest.

5. Let f, g : A → B be morphisms in a locally small category C. We have a
functor F : Cop → Set defined by

F (C) = {h ∈ C(C,A) : fh = gh},

which is a subfunctor of C(−, A). A representation of F , if it exists, is
called an equaliser of (f, g). It consists of an object E and a morphism
E

e−→ A such that fe = ge and every h with fh = gh factors uniquely
through e. In Set, we take E = {x ∈ A : f(x) = g(x)} and e to be
inclusion. Similar constructions work in Gp,Rng,Top, . . .

E A B

C

e
f

g
h

Dually we have the notion of coequaliser .
Remark. If e occurs as an equaliser then it is a monomorphism, since any h
factors through it in at most one way. We say a monomorphism is regular if it
occurs as an equaliser.

Split monomorphisms are regular (see example sheet 1 Q6 (i)). Note that a
regular mono that is also epic implies isomorphism: if the equaliser e of (f, g)
is epic then f = g so e ∼= 1cod e.

13



2 The Yoneda lemma

Definition (separating/detecting family, seperator, detector). Let C be a
category, G a class of objects of C.

1. We say G is a separating family for C if, given f, g : A → B such that
fh = gh for all G h−→ A with G ∈ G then f = g. (i.e. the functor
C(G,−) where G ∈ G are collectively faithful)

2. We say G is a detecting family for C if, given A
f−→ B such that

every G
h−→ B with G ∈ G factors uniquely through f , then f is an

isomorphism.

If G = {G} then we call G a separator or detector.

Lemma 2.4.

1. If C is a balanced category then any separating family is detecting.

2. If C has equalisers (i.e. every pair has an equaliser) then any detecting
family is separating.

Proof.

1. Suppose G is separating and A
f−→ B satisfies condition in definition 2. If

g, h : B → C satisfy gf = hf , then gx = hx for every G
x−→ B, so g = h,

i.e. f is epic.
Similarly if k, ` : D → A satisfy fk = f` then ky = `y for any G

y−→ D,
since both are factorisations of fky through f . So k = `, i.e. f is monic.

2. Suppose G is detecting and f, g : A → B satisfy definition 1. Then the
equaliser E e−→ A of (f, g) is isomorphism so f = g.

Example.

1. In [C,Set] the family {C(A,−) : A ∈ obC} is both separating and de-
tecting. This is just a restatement of Yoneda lemma.

2. In Set, 1 = {∗} is both a separator and a detector since it represents the
identity functor Set → Set. Similarly Z is both in Gp since it represents
the forgetful functor Gp → Set.
Dually, 2 = {0, 1} is a coseparator and a codetector in Set since it repre-
sents P ∗ : Setop → Set.

3. In Top, 1 = {∗} is a separator since it represents the forgetful functor
Top → Set, but not a detector. In fact Top has no detecting set of ob-
jects: for any infinite cardinality κ, let X be a discrete space of cardinality
κ, and Y the same set with “co-κ” topology, i.e. F ⊆ Y closed if and only
if F = Y or F has cardinality smaller κ. The identity map X → Y is
continuous but not a homomorphism. So if {Gi : i ∈ I} is any set of
spaces, taking κ larger than cardinality of Gi for all i yields an exmaple
to show that the set is not detecting.

14



2 The Yoneda lemma

4. LetC be the category of pointed conntected CW-complexes and homotopy
classes of (basepoint-preserving) continuous maps. J. H. C. Whitehead
proved that if X f−→ Y in this category induces isomorphisms πn(X) →
πn(Y ) for all n then it is an isomorphism inC. This says that {Sn : n ≥ 1}
is a detecting set for C. But P. J. Freyd showed there is no faithful functor
C → Set, so no separating set: if {Gi : i ∈ I} were separating then

X 7→
∐
i∈I

C(Gi, X)

would be faithful.

Note that any functor of the form C(A,−) preserves monos, but they don’t
preserve epis. We give a name to those special functors.

Definition (projective, injective). We say an object P is projective if given

P

A B

f
g

e

there exists P
g−→ A with eg = f . If C is locally small, this says C(P,−)

preserves epimorphisms.
Dually an injective object of C is a projective object of Cop.
Given a class E of epimorphisms, we say P is E-projective if it satisfies

the condition for all e ∈ E .

Lemma 2.5. Representable functors are (pointwise) projectives in [C,Set].

Proof. Suppose given
C(A,−)

F G

β
γ

α

where α is pointwise surjective. By Yoneda, β corresponds to some y ∈ GA and
we can find x ∈ FA with αA(x) = y. Now if γ : C(A,−) → F corresponds to
x, then naturality of the Yoneda bijection yields αγ = β.

15
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3 Adjunctions

Definition (adjunction). Let C and D be two categories and F : C →
D, G : D → C be two functors. By an adjunction between F and G we
mean a bijection between morphisms f̂ : FA → B in D and f : A → GB in
C, which is natural in A and B, i.e. given A′ g−→ A and B

h−→ B′, hf̂(Fg) =
̂(Gh)fg : FA′ → B′

FA B

FA′ B′

f̂

hFg

A GB

A′ GB′

f

Ghg

We say F is left adjoint to G and write F a G.

Example.

1. The functor F : Set → Gp is left adjoint to the forgetful functor U :
Gp → Set since any function f : A → UB extends uniquely to a group
homomorphism f̂ : FA → B and any homomorphism induces a set func-
tion. Naturality in B is easy and naturality in A follows from the definition
of F as a functor. Similar for Rng,ModK , . . .

2. The forgetful functor U : Top → Set has a left adjoint D which equips
any set with the discrete topology and a right adjoint I which equips any
set with the indiscrete topology so D a U a I.

3. The functor ob : Cat → Set (recall that Cat is the category of small
categories) has a left adjoint D sending A to the discrete category with
ob(DA) = A and only identity morphisms, and a right adjoint I sending
A to the category with ob(IA) = A and one morphism x → y for each
(x, y) ∈ A×A. In this case D in turn has a left adjoint π0 sending a small
category C to its set of connected components, i.e. the quotient of obC
by the smallest equivalence relation identifying dom f with cod f for all
f ∈ morC. So π0 a D a ob a I.

4. Let M be the monoid {1, e} with e2 = e. An object of [M,Set] is a
pair (A, e) where e : A → A satisfying e2 = e. We have a functor G :
[M,Set] → Set sending (A, e) to

{x ∈ A : e(x) = x} = {e(x) : x ∈ A}

and a functor F : Set → [M,Set] sending A to (A, 1A). Claim that

F a G a F.

Given f : (A, 1A) → (B, e), it must take values in G(B, e) and any g :
(B, e) → (A, 1A) is determined by its values on the image of e. In some
way this is due to the two ways in which the fixed point of e can be written.

5. Let 1 be the discrete category with one object ∗. For any C, there is a
unique functor C → 1. A left adjoint for this picks out an initial object
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3 Adjunctions

of C, i.e. an object I such that there exists a unique I → A for each
A ∈ obC. Dually a right adjoint for C → 1 corresponds to a terminal
object of C.

6. Let A f−→ B be a morphism in Set. We can regard PA and PB as posets,
and we have functors Pf : PA → PB and P ∗f : PB → PA. Claim
Pf a P ∗f : we have Pf(A′) ⊆ B′ if and only if f(x) ∈ B′ for all x ∈ A′,
if and only if A′ ⊆ P ∗f(B′).

7. Galois connection: suppose givens sets A and B and a relation R ⊆ A×B.
We define mappings ·`, ·r between PA and PB by

Sr = {y ∈ B : ∀x ∈ S, (x, y) ∈ R}, S ⊆ A

T ` = {x ∈ A : ∀y ∈ T, (x, y) ∈ R}, T ⊆ B

These mappings are order-reversing, i.e. contravariant functors, and T ⊆
Sr if and only if S × T ⊆ R, so by symmetry if and only if S ⊆ T `. We
say ·r and ·` are adjoint on the right.

8. The functor P ∗ : Setop → Set is self-adjoint on the right since a func-
tion A → PB corresponds bijectively to subsets of A × B, and hence by
symmetry to functions B → PA.

Theorem 3.1. Let G : D → C be a functor. Then specifying a left adjoint
functor for G is equivalent to specifying an initial object of (A ↓ G) for
each A ∈ obC where (A ↓ G) has objects pairs (B, f) with A

f−→ GB and
morphisms (B, f) → (B′, f ′) are morphisms B

g−→ B′ such that the following
diagram commutes

A GB

GB′

f

f ′ Gg

Proof. Suppose given F a G. Consider the morphism ηA : A → GFA corre-
sponding to FA

1−→ FA. Then (FA, ηA) is an object of (A ↓ G). Moreover,
given g : FA → B and f : A → GB, the diagram

A GFA

GB

ηA

f
Gg

commutes if and only if
FA FA

B

1A

f̂

g

commutes by naturality condition in adjunction, i.e. g = f̂ . So (FA, ηA) is
initial to (A ↓ G).

17
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Conversely, suppose given an initial object (FA, ηA) for each (A ↓ G). Given
f : A → A′, we define Ff : FA → FA′ to be the unique morphism making

A GFA

A′ GFA′

ηA

f GFf

ηA′

commutes. Functoriality follows from uniqueness: given f ′ : A′ → A′′, both
F (f ′f) and (Ff ′)(Ff) are both morphisms (FA, ηA) → (FA′′, ηA′′f ′f) in (A ↓
G). To show F a G: given A

f−→ GB, we define f̂ : FA → B to be the unique
morphism (FA, ηA) → (B, f) in (A ↓ G). This is a bijection with inverse

(FA
g−→ B) 7→ (A

ηA−−→ GFA
Gg−−→ GB).

The latter mapping is natural in B since G is a functor, and in A since by
construction η is a natural transformation 1C → GF .

Corollary 3.2. If F and F ′ are both left adjoint to G : D → C then they
are naturally isomorphic.

Proof. It basically follows from the fact that initial object in any category, if
exists, is unique up to isomorphism. For any A, (FA, ηA) and (F ′A, η′A) are
both initial in (A ↓ G) so there is a unique isomorphism

αA : (FA, ηA) → (F ′A, η′A).

In any naturality square for α, the two ways round are both morphisms in
(A ↓ G) whose domain is initial, so they’re equal.

Lemma 3.3. Given
C D E

F

G

H

K

with F a G and H a K, we have

HF a GK.

Proof. We have bijections between morphisms A → GKC, morphisms FA →
KC and morphisms HFA → C, which are both natural in A and C.

Corollary 3.4. Given a commutative square

C D

E F

of categories and functors, if the functors all have left adjoints, then the
diagram of left adjoints commutes up to natural isomorphsms.

18
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Proof. By Lemma 3.3, both ways round the diagram of left adjoints are left
adjoint to the composite C → F, so by Theorem 3.1 they are isomorphic.

Actually, we didn’t use the full strength of Lemma 3.3: if we require merely
instead that the original commutative diagram is only up to natural isomor-
phism, then we’ll get the same conclusion. In practice, however, the weaker
version stated above will usually suffice.

Definition (unit, counit). Given an adjunction F a G, the natural trans-
formation η : 1C → GF emerging in the proof of Theorem 3.1 is called the
unit of the adjunction.

Dually we have a natural transformation ε : FG → 1D such that εB :

FGB → B corresponds to GB
1GB−−−→ GB, is called the counit.

Theorem 3.5. Given F : C → D, G : D → C, specifying an adjunction
F a G is equivalent to specifying two natural transformations

η : 1C → GF

ε : FG → 1D

satisfying the commutative diagrams

F FGF

F

Fη

1F
εF

G GFG

G

ηG

1G
Gε

which are called the triangular identities.

Proof. First suppose given F a G. Define η and ε as in Theorem 3.1 and its
dual. Now consider the composite

FA
FηA−−−→ FGFA

εFA−−→ FA.

Under the adjunction this corresponds to

A
ηA−−→ GFA

1GFA−−−→ GFA

but this also corresponds to 1FA so εFAFηA = 1FA. The other identity is dual.
Conversely, suppose η and ε satisfying the trianglular identities. Given A

f−→
GB, let Φ(f) be the composite

FA
Ff−−→ FGB

εB−−→ B

and given FA
g−→ B, let Ψ(g) be

A
ηA−−→ GFA

Gg−−→ GB.
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3 Adjunctions

Then both Φ and Ψ are both natural. Need to show that ΦΨ and ΨΦ are
identity mappings. But

ΨΦ(A
f−→ GB)

=A
ηA−−→ GFA

GFf−−−→ GFGB
GεB−−−→ GB

=A
f−→ GB

ηGB−−−→ GFGB
GεB−−−→ GB

=A
f−→ GB

where the second equality is naturality of η and the third equality is triangular
equation. Dually ΦΨ(g) = g.

Sometimes this is taken to be the definition of adjunction.
Obviously two inverse functors form an adjunction. We have seen before a

weaker notion of inverse, namely a pair of functors forming an equivalence of
categories. The question is, do they always from an adjunction? The answer is
yes, but sometimes we can’t see it since we’ve chosen the wrong isomorphism.

Lemma 3.6. Given functors F : C → D, G : D → C and natural isomor-
phisms

α : 1C → GF

β : FG → 1D

there are isomorphism

α′ : 1C → GF

β′ : FG → 1D

which satisfy the triangular identities so F a G and G a F .

This is often summarised as “every equivalence is an adjoint equivalence”.

Proof. We fix α′ = α and modify β. We have to change the domain and
codomain of β by conjugation.

Let β′ be the composite

FG
(FGβ)−1

−−−−−−→ FGFG
(FαG)−1

−−−−−−→ FG
β−→ 1D.

Note that FGβ = βFG since

FGFG FG

FG 1D

FGβ

βFG β

β

commmutes by naturality of β and β is monic.
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3 Adjunctions

Now (β′
F )(Fα′) is the composite

F
Fα−−→ FGF

(βFGF )−1

−−−−−−→ FGFGF
(FαGF )−1

−−−−−−−→ FGF
βF−−→ F

=F
(βF )−1

−−−−→ FGF
FGFα−−−−→ FGFGF

(FαGF )−1

−−−−−−−→ FGF
βF−−→ F

=F
(βF )−1

−−−−→ FGF
βF−−→ F

=1F

since GFα = αGF . Similarly (Gβ′)(α′
G) is

G
αG−−→ GFG

(GFGβ)−1

−−−−−−−→ GFGFG
(GFαG)−1

−−−−−−−→ GFG
Gβ−−→ G

=G
(Gβ)−1

−−−−−→ GFG
αGFG−−−−→ GFGFG

(GFαG)−1

−−−−−−−→ GFG
Gβ−−→ G

=G
(Gβ)−1

−−−−−→ GFG
Gβ−−→ G

=1G

Lemma 3.7. Suppose G : D → C has a left adjoint F with counit ε : FG →
1D, then

1. G is faithful if and only if ε is pointwise epic,

2. G is full and faithful if and only if ε is an isomorphism.

Proof.

1. Given B
g−→ B′, Gg corresponds under the adjunction to the composite

FGB
εB−−→ B

g−→ B′.

Hence the mapping g 7→ Gg is injective on morphisms with domain B
(and specified codomain) if and only if g 7→ gεB is injective, if and only if
εB is epic.

2. Similarly, G is full and faithful if and only if g 7→ gεB is bijective. If
α : B → FGB is such that αεB = 1FGB , i.e. α is left inverse of εB , then

εBαεB = εB ,

whence εBα = 1B . So εB is an isomophism. Thus ε is an isomorphism.

Definition (reflection, reflective subcategory). By a reflection we mean an
adjunction in which the right adjoint is full and faithful (equivalently the
counit is an isomorphism).

We say a full subcategory C′ ⊆ C is reflective if the inclusion C′ → C
has a left adjoint.
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Example.

1. The category AbGp of abelian groups is reflective in Gp: the left adjoint
sends a group G to its abelianization G/G′, where G′ is the subgroup
generated by all commutators [x, y] = xyx−1y−1 for x, y ∈ G. (The unit
of the adjunction is the quotient map G → G/G′)
This is where the name “reflecting subcategory” comes from: mirror is 2D
so reflection in a mirror cannot create a copy of a 3D object. However,
it keeps every 2D detail fully and faithfully. Similarly abelianization does
not tell you everything about G but as much as an abelian group can. c.f.
universal property.

2. Given an abelian group, let AT denote the torsion subgroup, i.e. the sub-
group of elements of finite orders. The assigment A 7→ A/AT gives a left
adjoint to the inclusion tfAbGp → AbGp, where tfAbGp is the full
subcategory of torsion-free abelian groups.
On the other hand A 7→ AT is the right adjoint to the inclusion tAbGp →
AbGp from torsion abelian groups to abelain groups, so this subcate-
gory is coreflective. There are many many examples in algebra involving
(co)reflective subcategories, and the constructions all give rise to impor-
tant universal properries.

3. Let KHaus ⊆ Top be the full subcategory of compact Hausdorff spaces.
The inclusion KHaus → Top has a left adjoint β, the Stone-Čech com-
pactification. It is a reflective subcategory. We’ll revisit this example later
in the course.

4. Let X be a topological space. We say A ⊆ X is sequentially closed if
xn → x∞ and xn ∈ A for all n implies x∞ ∈ A. Note that closed
implies sequentially closed but not vice versa. We say X is sequential
if all sequentially closed sets are closed, e.g. a metric space. Given a
non-sequential space X, let Xs be the same set with topology given by
the sequentially open sets (complements of sequentially closed sets) in X.
Certainly the identity Xs → X is continuous, and defines the counit of
an adjunction between the inclusion Seq → Top and its right adjoint
X 7→ Xs.

5. IfX is a topological space, the poset CX of closed subsets ofX is reflective
in PX with reflector given by closure and the poset OX of open subsets
is coreflective with coreflector given by interior.
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4 Limits

Definition (diagram, cone, limit).

1. Let J be a category (almost always small, often finite). By a diagram
of shape J in C we mean a functor D : J → C. The objects D(j) for
j ∈ obJ are called vertices of the diagram and the morphisms D(α)
α ∈ morJ are called edges of D.

2. Given D : J → C, a cone over D consists of an object A of C, called
the apex of the cone, together with morphisms A

λj−→ D(j) for each
j ∈ obJ, called the legs of the cone, such that

A

D(j) D(j′)

λj λj′

D(α)

commutes for all j α−→ j′ in morJ.
Given cones (A, (λj)j∈obJ) and (B, (µj)j∈obJ), a morphism of cones
between them is a morphism A

f−→ B such that

A B

D(j)

λj

f

µj

commutes for all j.
We write Cone(D) for the category of all cones over D.

3. A limit for D is a terminal object of Cone(D), if this exists.
Dually we have the notion of cone under a diagram (sometime called
cocone) and of colimit (i.e. initial cone under D).

For example, if J is the category

· ·

· ·

with 4 objects and 5 non-identity morphisms, a diagram of shape J is a com-
mutative square

A B

C D

f

g h

k

On the other hand, to express a not-necessarily-commutative square, we use
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4 Limits

the shape
· ·

· ·
An alternative way to understand limits is that, if C is locally small and J

is small, we have a functor Cop → Set sending A to the set of cones with apex
A. A limit for D is a representation of this functor.

A thrid way to visualise cones: if ∆A denotes the constant diagram of shape
J with all vertices A and all edges 1A, then a cone over D with apex A is the
same thing as a natural transformation ∆A → D. ∆ is a functor C → [J,C]
and Cone(D) is the arrow category (∆ ↓ D). So to say that every diagram of
shape J in C has a limit is equivalent to saying that ∆ has a right adjoint. (We
say C has limits of shape J)

Dually C has colimits of shape J if and only if ∆ : C → [J,C] has a left
adjoint.

Example.

1. Suppose J = ∅. There is a unique diagram of shape J in C; a cone over
it is just an object, and a morphism of cones is a morphism of C. So a
limit for the empty diagram is a terminal object of C. We defined limits
in terms of terminal object but now the terminal object is also a special
limit. Dually a colimit for it is an initial object.

2. Let J be the category
· ·

A diagram of shape J is a pair of objects A,B; a cone over it is a span

C

A B

and a limit for it is a product

A×B

A B

π1 π2

as defined in example 4 on page 12. Dually a colimit for it is a coproduct.
More generally, if J is a small discrete category, a diagram of shape J is an
indexed family (Aj : j ∈ J), and a limit for it is a product (

∏
j∈J Aj

πj−→
Aj : j ∈ J). Dually, (Aj

νj−→
∑

j∈J Aj : j ∈ J), sometimes also written as∐
j∈J Aj .

3. Let J be the category
· ·

A diagram of shape J is a parallel pair

A B
f

g
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a cone over it is
C

A B

h k

satisfying fh = k = gh, or equivalently a morphism h : C → A satisfying
fh = gh. A (co)limit for the diagram is a (co)equaliser as defined in
example 5 on page 12.

4. Let J be the category
·

· ·
A diagram of shape J is a cospan

A

B C

f

g

a cone over it is
D A

B C

p

q r

satisfying fp = r = gq, or equivalently a span (p, q) completing the dia-
gram to a commutative square. A limit for the diagram is called a pullback
of (f, g). In Set, the apex of the pullback is the “fibre product”

A×C B = {(x, y) : A×B : f(x) = g(y)}.

Dually, colimits of shape Jop are pushouts. Given

A B

C

f

g

we “push g along f” to get the RHS of the colimt square.

5. Let J be the poset of natural numbers. A diagram of shape J is a directed
system

A0
f0−→ A1

f1−→ A2
f2−→ A3

f3−→ . . .

A colimit for this is called a direct limit: it consists of A∞ equipped with
morphisms An

gn−→ A∞ satisfying gn = gn+1fn for all n and universal
among such. Dually we have inverse system and inverse limit.

Theorem 4.1.

1. Suppose C has equalisers and all finite (respectively small) products.
Then C has all finite (respectively small) limits.
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2. Suppose C has pullbacks and a terminal object, then C has all finite
limts.

Proof.
1. Suppose given D : J → C. Form the industrial strength products

P =
∏

j∈obJ

D(j), Q =
∏

α∈morJ

D(codα).

We have morphisms f, g : P → Q defined by

παf = πcodα, παg = D(α)πdomα

for all α. Let e : E → P be an equaliser of (f, g). The composites

λj = πje : E → D(j)

form a cone over D: given α : j → j′ in J,

D(α)λj = D(α)πje = παge = παfe = πj′e = λj′ .

Given any cone (A, (µj : j ∈ obJ)) over D, there is a unique µ : A → P
with πjµ = µj for each j and

παfµ = µcodα = D(α)µdomα = παgµ

for all α, and hence fµ = gµ, so exists unique ν : A → E with eν = µ. So
(E, (λj : j ∈ obJ)) is a limit cone.

2. It is enough to construct finite products and equalisers. But if 1 is the
terminal object, then a pullback for

A

B 1

has the universal property of a product A× B and we can form
∏n

i=1 Ai

inductively as

A1 × (A2 × (A3 × · · · (An−1 ×An)) · · · ).

Now to form the equalisers of f, g : A → B, consider the cospan

A

A A×B

(1A,f)

(1A,g)

A cone over this consists of

P A

A

h

k

satisfying (1A, f)h = (1A, g)k or equivalently 1Ah = 1Ak and fh = gk, or
equivalently a morphism h : P → A satisfying fh = gh. So a pullback for
(1A, f) and (1A, g) is an equaliser of (f, g).
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Definition (complete, cocomplete). We say a category C is complete if it
has all small limits. Dually, C is cocomplete if has all small colimts.

For example, Set is both complete and cocomplete: products are cartesian
products and coproducts are disjoint unions. SimilarlyGp,AbGp,Rng,ModK

are all complete and cocomplete.1 Top is also complete and cocomplete, with
both product and coproduct given by the underlying set.

Definition (preserve limit, reflect limit, create limit). Let F : C → D be a
functor.

1. We say F preserves limits of shape J if, given D : J → C and a limit
cone (L, (λj : j ∈ obJ)) in C, (FL, (Fλj : j ∈ obJ)) is a limit for FD.

2. We say F reflects limits of shape J if, given D : J → C and a cone
(L, (λj : j ∈ obJ)) such that (FL, (Fλj : j ∈ obJ)) is a limit for FD
then (L, (λj : j ∈ obJ)) for D.

3. We say F creates limts of shape J if, given D : J → C and a limit
(M, (µj : j ∈ obJ)) for FD, there exists a cone (L, (λj : j ∈ obJ))
over D whose image under F is isomorphic to the limit cone, and any
such cone is a limit for D.

Remark.

1. If C has limits of shape J and F : C → D preserves them and reflects
isomorphisms then F reflects limits of shape J.

2. F reflects limits of shape 1 if and only if F reflects isomorphism.

3. If D has limits of shape J and F : C → D creates them, then F both
preserves and reflects them.

4. In any of the statement of Theorem 4.1, we may replace both instances
of “C has” by either “C has and F : C → D preserves” or “D has and
F : C → D creates”.

Example.

1. U : Gp → Set creates all small limits: given a family (Gi : i ∈ I)
of groups, there is a unique group structure on

∏
i∈I UGi making the

projections homomorphisms, and this makes it a product in Gp. Similarly
for equalisers.
But U doesn’t preserve coproducts: U(G ∗H) � UGq UH.

2. U : Top → Set preserves all small limits and colimits but doesn’t reflect
them: if L is a limit for D : J → Top and L is not discrete, there is
another cone with apex Ld, which is the same underlying space as L with
discrete topology, mapped to the same limit in Set.

1Note that the products have underlying set the cartesian products of those of each com-
ponent, but coproducts tend to be different. We’ll discuss this later.
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3. The inclusion functor I : AbGp → Gp reflects coproducts, but doesn’t
preserve them. The direct sum A ⊕ B (coproduct in AbGp) is not nor-
mally isomorphic to the free product A ∗ B, which is not abelian unless
either A or B is trivial, but if A ∼= {e} then A×B ∼= A⊕B ∼= B.

The following lemma tells us how to construct limit in functor categories:

Lemma 4.2. If D has limits of shape J then so does the functor category
[C,D] for any C, and the forgetful functor [C,D] → DobC creates them.

Proof. Suppose given a diagram of shape J in [C,D]. Think of it as a functor
D : J×C → D. For each A ∈ obC, let (LA, (λj,A : j ∈ obJ)) be a limit cone
for the diagram D(−, A) : J → D.

Given A
f−→ B in C, the composition

LA
λj,A−−−→ D(j, A)

D(j,f)−−−−→ D(j, B)

form a cone over D(−, B), since the square

D(j, A) D(j, B)

D(j′, A) D(j′, B)

D(j,f)

D(α,A) D(α,B)

D(j′,f)

commutes. So there is a unique Lf : LA → LB making

LA D(j, A)

LB D(j, B)

λj,A

Lf D(j,f)

λj,B

commute for all j. Uniqueness follows from functoriality: given g : B → C,
L(gf) and L(g)L(f) are factorisations of the same cone through the limit LC.
And this is the unique functor structure on A 7→ LA making the λj,− into
natural transformations.

The cone (L, (λj,− : j ∈ obJ)) is a limit: suppose given another cone
(M, (µj,− : j ∈ obJ)), then for each A, (MA, (µj,A : j ∈ obJ)) is a cone
over D(−, A), so induces a unique αA : MA → LA. Naturality of α follows
from uniqueness of factorisation through a limit. So (M, (µJ)) factors uniquely
through (L, (λj)). (This is creation is the strict sense, i.e. equality instead of
isomorphism)

Remark. In any category, a morphism A
f−→ B is monic if and only if

A A

A B

1A

1A f

f

is a pullback. Hence any functor which preserves pullbacks preserves monomor-
phisms. In particular if D has pullbacks momomorphisms in [C,D] are just
pointwise monos. See example sheet 1 for a counterexample for the necces-
sity of the pullback condition. Now we can delete the word “pointwise” in the
statement of Lemma 2.5.
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4 Limits

Theorem 4.3 (right adjoint preserves limits). Suppose G : D → C has a
left adjoint. Then G preserves all limits which exist in D.

Proof 1 with additional assumption. SupposeC andD both have limits of shape
J. We have a commutative diagram

C D

[J,C] [J,D]

F

∆ ∆

[J,F ]

where ∆ sends an object to its constant diagram and [J, F ] is composition with
F . All functors in it have right adjoints (in particular, [J, F ] a [J, G]). So by
Corollary 3.4 the diagram of right adjoints

D C

[J,D] [J,C]

G

limJ

[J,G]

limJ

commutes up to isomorphism, i.e. G preserves limits of shape J.

Proof 2. Suppose given D : J → D and a limit cone (L, (λj : L → D(j) : j ∈
obJ)). Given a cone (A, (αj : A → GD(j) : j ∈ obJ)) over GD, the morphisms

FA
α̂j−→ D(j) form a cone over D, so they induce a unique FA

β̂−→ L such
that λj β̂ = α̂j for all j. Then A

β−→ GL is the unique morphism satisfying
(Gλj)β = αj for all j. So (GL, (Gλj : j ∈ obJ)) is a limit cone in C.

The last major theorem in this chapter is adjoint functor theorem. It says
that morally the converse of the above theorem is also true, i.e. a functor pre-
serving all limits ought to have a left adjoint. It may only fail so if some limits
do not exist. The “primeval” adjoint functor theorem is exactly this: if D has
and G : D → C preserves all limits, then G has a left adjoint. However, this is
too strong a condition as the categories having all limits can be shown to be pre-
orders. Thus there are two more versions cut down on the all limits requirement
and use some set theory to replace part of it.

Lemma 4.4. Suppose D has and G : D → C preserves limits of shape J.
Then for any A ∈ obC the arrow category (A ↓ G) has limits of shape J,
and the forgetful functor U : (A ↓ G) → D creates them.

Proof. Suppose given D : J → (A ↓ G). Write D(j) as (UD(j), fj). Let
(L, (λj : L → UD(j))j∈obJ) be a limit for UD. Then (GL, (λj)j∈obJ) is a limit
for GUD. Since the edges of UD are morphisms in (A ↓ G), the fj form a cone
over GUD so there is a unique h : A → GL such that (Gλj)h = fj for all j, i.e.
there’s a unique h such that the λj ’s are all morphisms in (L, h) → (UD(j), fj)
in (A ↓ G). We need to show that ((L, h), (λj)j∈obJ) is a limit cone in (A ↓ G).
If (C, (µj)j∈obJ) is any cone over D then (C, (µj)j∈obJ) is a cone over UD so
ther is a unique ` : C → L with λj` = µj for all j. We need to show (G`)k = h.
But

(Gλj)(G`)k = (Gµj)k = fj = (Gλj)h

for all j so (G`)k = h by uniqueness of factorisations through limits.

29
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Recall that we have seen a limit for the empty diagram is a terminal object.
We can also consider dually the diagram of “maximal size”, namely that of a
category over itself, to realise inital object as a limit. Think for example posets,
in which limit for an empty diagram is maximimum while limit for the

Lemma 4.5. A category C has an initial object if and only if 1C : C → C,
regarded as a diagram of shape C in C, has a limit.

Note that this is an exception to J being small.

Proof. First suppose C has an initial object I. Then the unique morphisms
(I → A : A ∈ obC) form a cone over 1C and given any cone (λA : C → A : A ∈
obC), for any A the triangle

C I

A

λI

λA

commutes so λI is the unique factorisation of (λA : A ∈ obC) through (I →
A : A ∈ obC).

Conversely, suppose (I, (λA : I → A)A∈obC) is a limit. Then for any f :
I → A the diagram

I I

A

λI

λA

f

commutes. I is weakly initial as we don’t know if it is unique, i.e. if λI = 1I .
In particular, putting f = λA, we see that λI is a factorisation of the limit cone
through itself so λI = 1I . Hence every f : I → A satisfies f = λA.

The primeval adjoint functor theorem follows immediately from the previous
two lemmas and 3.3. However, it only applies to functors between preorders.
See example sheet 2 Q6.

Theorem 4.6 (general adjoint functor theorem). Suppose D is locally small
and complete. Then G : D → C has a left adjoint if and only if G preserves
all small limits and satisfies the solution set condition, which says that for
each A ∈ obC, there exists a set of morphisms {fi : A → GBi : i ∈ I} such
that every h : A → GC factors as

A
fi−→ GBi

Gg−−→ GC

for some i and some g : Bi → C.

Proof. If F a G then G preserves limits. To obtain the solution set, note that
{ηA : A → GFA} is a singleton solution set by 3.3 since it is initial.

Conversely, by 4.10 (A ↓ G) is complete and it inherits local smallness from
D. We need to show that if A is complete and locally small and has a weakly
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initial set of objects {Bi : i ∈ I} then A has an initial object. First form
P =

∏
i∈I Bi; then P is weakly initial. Now form the limit of

P P...

where edges are all the endomorphisms of P . Denote it i : I → P . I is also
weakly initial in A. Suppose given f, g : I → C. Form the equaliser e : E → I
of (f, g). Then there exists h : P → E since P is weakly initial. ieh : P → P
and 1P are edegs of the diagram so i = iehi. But i is monic so ehi = 1I so e is
split epic so f = g. Thus I is initial.

Example.

1. This example comes from Mac Lane. He asked the question that, if we are
not given the free group functor, how can we to construct the left adjoint
of forgetful functor? Consider the forgetful functor U : Gp → Set. By
4.6a U creates all small limits so Gp has them and U preserves them. Gp
is locally smal, given a set A, any f : A → UG factors as

A → UG′ → UG

where G′ is the subgroup generated by {f(x) : x ∈ A} and cardG′ ≤
max{ℵ0, cardA}. Let B be a set of this cardinality. Consider all subsets
B′ ⊆ B, all group structures on B′ and all mappings A → B′. These give
us a solution set at A.

2. Consider the category CLat of complete lattices (posets with arbitrary
meets and joints). Again the forgetful functor U : CLat → Set creates all
small limits. But A. W. Hales showed in 1964 that for any cardinal κ there
exists complete lattices of cardinality ≥ κ generated by three elements. So
the solution set condition fails at A = {x, y, z} as we cannot bound the
cartinality of the solution set, and U doesn’t have a left adjoint.

The general adjoint functor theorem is general in the sense that it applies
to all categories, although it imposes solution set condition, which is a rather
strong condition on the functor. Special adjoint functor theorem aims to get rid
of the condition on the functor.

Definition (subobject, quotient object). By a subobject of an object A of
C we mean a monomorphism A′ � A. The subobjects of A are preordered
by A′′ ≤ A′ if there is a factorisation

A′′ A′

A

Dually we have quotient objects.
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4 Limits

Definition (well-powered). We say C is well-powered if each A ∈ obC has
a set of subobjects {Ai � A : i ∈ I} such that every subobject of A is
isomorphic to some Ai.

Dually if Cop is well-powered, we say C is well-copowered. (not cowell-
powered, as it implies badly powered. It also sounds like something being
powered by Simon Cowell, which is not quite what we study in this course)

For example in Set we can take inclusions {A′ ↪→ A : A′ ∈ PA}. This is
also where the name “well-powered” comes from as in the Set case it simply
means power set exists.

Before stating and proving the special functor theorem we point out a simple
yet powerful observation about pullback square.

Lemma 4.7. Given a pullback square

P A

B C

h

k f

g

with f monic. Then k is monic.

Proof. Suppose x, y : D → P satisfy kx = ky. Then

fhx = gkx = gky = fhy.

By f is monic so hx = hy. So x, y are factorisations of the same cone through
the limit cone (h, k).

Theorem 4.8 (special adjoint functor theorem). Suppose C and D are both
locally small, and that D is complete and well-powered and has a coseparating
set. Then a functor G : D → C has a left adjoint if and only if it preserves
all small limits.

Proof. The only if is given by right adjoint preserves limits. For the other direc-
tion, for any A ∈ obC, (A ↓ G) is locally complete by 4.10, locally small, and
well-powered since the subobjects of (B, f) in (A ↓ G) are just those subobjects
B′ � B in D for which f factors through GB′ � GB. Also if {Si : i ∈ I} is a
coseparating set for D then the set

{(Si, f) : i ∈ I, f ∈ C(A,GSi)}

is coseparating in (A ↓ G): given g, h : (B, f) → (B′, f ′) in (A ↓ G) with g 6= h,
there exists k : B′ → Si for some i with kg 6= kh, and then k is also a morphism
(B′, f ′) → (Si, (Gk)f ′) in (A ↓ G).

So we need to show that if A is complete, locally small and well-powered
and has a coseparating set {Si : i ∈ I} then A has an initial object. Form the
product P =

∏
i ∈ Si. We have the industrial stength product and now we need
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the industrial strength pullback. Consider the diagram

Pj Pi

...

P ′ P

whose edges are representative set of subobjects of P and form its limit

I Pi

Pj

. . .

P ′

By the argument in the previous lemma, the legs of the cones are all monic;
in particular I � P is monic, and it’s a least subobject of P . Hence I has no
proper subobjects. So given f, g : I → A their equaliser is an isomorphism and
hence f = g.

We get uniqueness for free but need to work harder to show existence. Now
let A be any object of A. Form the product Q =

∏
i∈I,f∈A(A,Si)

Si. There is
an obvious h : A → Q defined by πi,Fh = f ; and h is monic, since the Si’s are
a coseparating set. We also have a morphism k : P → Q defined by πi,fk = πi.
Now form the pullback

B A

P Q

h

k

by lemma P is monic so B is a subobject of P . Hence there exists

I B

P

and hence a morphism I → B → A.

This result is due to Freyd, who first published it in a book as an exercise
to the readers (!).

Example. Consider the inclusion I : KHaus → Top, where KHaus is the
full subcategory of compact Hausdorff spaces. KHaus has and I preserves
small products (by Tychonoff’s theorem) and equalisers (since equalisers of pairs
f, g : X → Y with Y Hausdorff are closed subspaces). Both cateogories are
locally small and KHaus is well-powered (subobjects of X are isomorphic to
closed subspaces). The closed interval [0, 1] is a coseparateor in KHaus by
Urysohn’s lemma. So by special adjoint functor theorem I has a left adjoint β,
the Stone-Čech compactification.
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Remark.

1. Čech’s construction of β is as follow: given X, form

P =
∏

f :X→[0,1]

[0, 1]

and define h : X → P by πfh = f . Define βX to be the closure of the
image of h
Čech’s proof that this works is essentially the same as SAFT.

2. We could have used GAFT to construct β by a cardinality argument: we
get a solution set at X by considering all continuous f : X → Y with
Y compact Hausdorff and f(X) dense in Y and such Y have cardinality
≤ 22

cardX .
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5 Monad

5 Monad
The idea of a monad is what is left in an adjunction when you cannot see one of
the categories. Suppose given f : C → D, g : D → C with F a G. How much
of this structure can we describe without mentioning D? We have

1. the functor T = GF : C → C,

2. the unit η : 1C → T = GF ,

3. and “shadow” of counit as a natural transformation µ = GεF : TT =
GFGF → GF = T

satisfying the commutative diagrams 1, 2

T TT T

T

Tη

1T
µ

ηT

1T

by the triangle inequalities, and 3

TTT TT

TT T

Tµ

µT µ

µ

by naturality of ε.

Definition (monad). A monad T = (T, η, µ) on a category C consists of a
functor T : C → C and natural transofrmations η : 1C → T, µ : TT → T
satisfying commutative diagrams 1 - 3.

η and µ are called the unit and multiplication of T.

The name “monad” was used because of the similarity of axioms of monad
with those of monoid. Before that, although being well-known to mathemati-
cians, monad didn’t really have an identifier. It goes by the name “standard
construction”, then “triple”, thereby the letter T. But both are confessions
of failure to come up with a meaningful name! Someone invented the name
“monad” and Mac Lane popularised it.

Example.

1. Any adjunction F a G induces a monad (GF, η,GεF ) onC and a comonad
(FG, ε, FηG) on D.

2. Let M be a monoid. The functor (M×−) : Set → Set has a monad struc-
ture with unit given by ηA(a) = (aM , a) and multiplication µA(m,m′, a) =
(mm′, a). The monad identities follow from the monoid ones.

3. Let C be any category with finite products and A ∈ obC. The functor
(A × −) : C → C has a comonad structure with counit εB : A × B → B
given by π2 and comultiplication δB : A × B → A × A × B given by
(π1, π1, π2).

35
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Does every monad comes from an adjunction? The answer is yes and is given
independently in 1965 by Eilenberg, Moore and Kleisli. We will cover both.

In example 2 above we have the cateogry [M,Set]. Its forgetful functor to
Set has a left adjoint, sending A to M ×A with M acting by multiplication on
the left factor. This adjunction gives rise to the monad.

Definition (Eilenberg-Moore algebra). Let T be a monad on C. A T-
algebra is a pair (A,α) with A ∈ obC and α : TA → A satisfying commu-
tative diagrams 4, 5

A TA

A

ηA

1A
α

TTA TA

TA A

Tα

µA α

α

A homomorphism f : (A,α) → (B, β) is a morphism f : A → B such
that diagram 6

TA TB

A B

Tf

α β

f

commutes.
The category of T-algebras is denoted CT.

Lemma 5.1. The forgetful functor GT : CT → C has a left-adjoint FT and
the adjunction induces T.

Proof. We define a “free” T-algebra functor, mimicking that in monoid case.
Define FTA = (TA, µA) (an algebra by 2, 3) and FT(A

f−→ B) = Tf (a homo-
morphism by naturality of µ). Clearly GTFT = T , the unit of the adjunction is
η. We define the counit ε(A,α) = α : (TA, µA) → (A,α) (a homomorphism by
5) and is natural by 6. The triangle identities

εFA(FηA) = 1FA

Gε(A,α)ηA = 1A

are given by 1 and 4. Finally, the monad induced by FT a GT has functor T
and unit η, and

GTεF TA = µA

by definition of FTA.

Kleisli took a “minimalist” approach: if F : C → D, G : D → C induces T
then so does F : C → D′, G1D′ : D′ → C where D′ is the full subcategory of
D on objects FA. So in trying to construct D, we may assume F is surjective
(or indeed bijective) on objects. But then morphisms FA → FB correspond
bijectively to morphisms A → GFB = TB in C. This leads us half way through
as we sitll have to specify how to compose morphisms (in general domains and
codomains don’t match up).
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Definition (Kleisli category). Given a monad T on C, the Kleisli cat-
egory CT has obCT = obC and morphisms A B (we use blue
arrow to signify morphism in CT) are A → TB in C. The composite
A B C

f g is

A TB TTC C
f Tg µC

and the identity A A is A ηA−−→ TA.

To verify associativity, suppose given A B C D
f g h then

A TB TTC TTTD TTD

TC TTD TD

f Tg TTh

µC

TµD

µTD µD

Th µD

commutes: the upper way monad is (hg)f and the lower is h(gf). (used diagram
3 in rightmost square)

The unit laws similarly follow from

A TB TTB

TB

f TηB

1TB

µB

A TB

TA TTB TB

f

ηA
1TB

1TB

Tf µB

(used diagram 1 and 2 respecitively in the triangles)

Lemma 5.2. There exists an adjunction FT : C → CT, GT : CT → C
inducing the monad T.

Proof. We define FTA = A,FT(A
f−→ B) = A

f−→ B
ηB−−→ TB. FT preserves

identities by definition. For composites, consider A f−→ B
g−→ C, we get

A B TB

C TC TTC

TC

f ηB

g Tg

ηC TηC

1TC

µC

(used diagram 1 in the triangle)
We define

GTA = TA

GT(A
f−→B) = TA

Tf−−→ TTB
µB−−→ TB
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GT preserves identities by diagram 1. For composite, consider A B C
f g

, we get
TA TTB TTTC TTC

TB TTC TC

Tf TTg

µB

TµC

µTC µC

Tg µC

(used diagram 3 is last square)
Have

GTFTA = TA

GTTTf = µB(TηB)Tf = TF

so we take η : 1C → T as the unit of FT a GT. The counit TA A
εA is

1TA. To verify naturality consider the square

TA TB

A B

FTGTf

εA εB

f

This expands to

TA TTB TB TTB

TB

Tf µB ηTB

1TB

µB

(used diagram 2 in triangle) so ε is natural.
Finally, GT(TA

εA−−→A) = µA so

GT(εA)ηGTA = µAηTA = 1TA

and (εFTA)(FTηA) is
A TA TTA

TA

ηA ηTA

1TA

µA

(used diagram 1 in triangle) which is (1FTA). Also GT(εFTA) = µA so FT a GT
induces T.

Theorem 5.3. Given a monad T on C, let Adj(T) be the category whose
objects are the adjunctions F : C → D, G : D → D inducing T, and whose
morphisms

(C D) (C D′)
F

G

F ′

G′

are functors H : D → D′ satisfying HF = F ′ and G′H = G. Then
the Kleisli adjunction is an initial object of Adj(T) and Eilenberg-Moore
adjunction is terminal.
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Proof. Let FG be an object of Adj(T). We define the Eilenberg-Moore com-
parison functor K : D → CT by KB = (GB,GεB) where ε is the counit of
F a G. Note this is an algebra by one of the triangular identities for F a G and
naturality of ε, and K(B

g−→ B′) = Gg, a homomorphism by naturality of ε.
Clearly GTK = G and

KFA = (GFA,GεFA) = (TA, µA) = FTA

KF (A
f−→ A′) = Tf = FTf

so K is a morphism of Adj(T).
Suppose K ′ : D → CT is another such, then since GTK ′ = G we know

K ′B = (GB, βB) where β is a natural transformation GFG → G. Also since
K ′F = FT, we have

βFA = µA = GεFA.

Now given any B ∈ obD, consider the diagram.
Also since K ′F = FT we have βFA = µA = GεFA.
Now given any B ∈ obD, consider the diagram

GFGFGB GFGB

GFGB GB

GFGεB

GεFGB =βFGB GεB βB

GεB

Both squares commute so GεB and βB have the same composite with GFGεB .
But this is split epic with splitting GFηGB so β = Gε. Hence K ′ = K.

We now define the Kleisli comparison functor L : CT → D by LA = FA,

L(A
f−→B) = FA

Ff−−→ FGFB
εFB−−−→ FB.

L preserves identities by one of the triangular identities for F a G. Given
A

f−→B
g−→C, we have

FA FGFB FGFGFC FGFC

FB FGFC FC

Ff FGFg

εFB

FGεFC

εFGFC εFC

Fg εFC

Also

GLA = TA = GTA

GL(A
f−→B) = (GεFB)(FGf) = µB(Tf) = GTf

GFTA = FA

LFT(A
f−→ B) = (εFB)(FηB)(Ff) = Ff

For future reference, note that L is full and faithful: its effect on morphisms
(with blue domains and codmains) is that of transposition across F a G.

Finally for uniqueness, suppose L′ : CT → D is a morphism of Adj(T). We
must have L′A = FA and L′ maps the counit TA→A to the counit FGFA

εFA−−→
FA. For any A

f−→B, we have

f = 1TA(FTf)

so L′(f) = εFA(Ff) = Lf .
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If C has coproducts then so does CT since FT preserves them. But in general
it has few other limits or colimits. In contrast, we have

Theorem 5.4.

1. The forgetful functor G : CT → C creates all limits which exists in C.

2. If C has colimits of shape J then G : CT → C creates them if and only
if T preserves them.

Proof.

1. Suppose given D : J → CT. Write D(j) = (GD(j), δj) and suppose
(L, (µj : L → GD(j) : j ∈ obJ)) is a limit cone for GD. Then the
composites

TL
Tµj−−→ TGD(j)

δj−→ GD(j)

form a cone over GD since the edges of GD are homomorphisms, so they
induce a unique λ : TL → L such that µjλ = δj(Tµ) for all j. The fact
that λ is a T-algebra structure on L follows from the fact that the δj
are algebra structure and uniqueness of factorisations through limits. So
((L, λ), (µj : j ∈ obJ)) is the unique lifting of the limit cone over GD
to a cone over D, and it’s a limit, since given a conve over D with apex
(A,α), we get a unique factorisation A

f−→ L in C, and F is an algebra
homomorphism by uniqueness of factorisation through L.
For ⇐= direction, suppose given D : J → CT as in 1, and a colimit cone
(GD(j)

µj−→ L : j ∈ obJ) in C, then (TGD(j)
Tµj−−→ TL : j ∈ obC) is also

a colimit cone, so the composite

TGD(j)
fj−→ GD(j)

µj−→ L

induces a unique λ : TL → L. The rest of the argument is like 1.

Definition (monadicity). Given an adjunctin F a G, we say the adjunction
(or the functor G) is monadic if the comparison functor K : D → CT is part
of an equivalence of categories.

Note that since the Kleisi comparison CT → D is full and faithful, it’s part
of an equivalence if and only if it (equivalently, F ) is essentially surjective on
objects.

Remark. Given any adjunction F a G, for each object B of D we have a
diagram

FGFGB FGB B
FGεB

εFGB

εB

with equal composites. The “primeval” monadicity theorem asserts that CT is
characterised in Adj(T) by the fact that these diagrams are all coequalisers.
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Definition (reflexivity, split coequaliser).

1. We say a parallel pair f, g : A → B is reflexive if their exists B
r−→ A

such that fr = gr = 1B .
We say C has reflexive coequalisers if it has coequalisers of all reflexive
pairs. Equivalently, colimits of shape

· ·

2. By a split coequaliser diagram we mean a diagram

A B C
f

g

t

h

s

satisfying hf = hg, hs = 1C , gt = 1B and ft = sh.
These equalisers imply that h is a coequaliser of (f, g), if B

x−→ D
satisfies xf = xg then

x = xgt = xfg = xsh

so x factors through h and the factorisation is unique since its split
monic.
Note that split coequalisers are preserved by all functors.

3. Given a functor G : D → C, a parallel pair A B
f

g
is called

G-split if there exists a split coequaliser diagram

GA GB C
Gf

Gg

t

h

s

in C.

Note that FGFGB FGB
FGεB

εFGB

is G-split, since

GFGFGB GFGB C
GFGεB

GεFGB

ηGFGB

GεB

ηGB

Note that the aforementioned pair

FGFGB FGB
FGεB

εFGB

is reflexive with r = FηGB′ .
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Lemma 5.5. Suppose given an adjunction C D
F

G
where F a G,

inducing a monad T on C. Then K : D → CT has a left adjoint provided,

for every T-algebra (A,α), the pair FGFA FA
Fα

εFA

has a coequaliser in
D.

Proof. We define L : CT → D by taking FA → L(A,α) to be a coequaliser
for (Fα, εFA). Note that this is a functor CT → D. Recall that K is defined
by KB = (GB,GεB). For any B, morphisms LA → B correspond bijectively
to morphisms FA

f−→ B satisfying f(Fα) = f(εFA). These correspond to
morphisms A f̌−→ GB satisfying

f̌α = Gf = G(εB(F f̌)) = (GεB)(T f̌)

i.e. to algebra homomorphisms (A,α) → KB. And these bijections are natural
in (A,α) and in B.

Theorem 5.6 (precise monadicity theorem). G : D → C is monadic if and
only if G has a left adjoint and creates coequalisers of G-split pairs.

Theorem 5.7 (refined/reflexive monadicity theorem). Suppose D has and
G : D → C preserves reflexive coequalisers, and that G reflects isomorphisms
and has a left adjoint. Then G is monadic.

Proof. Theorem 5.6 =⇒ : sufficient to show that GT : CT → C creates co-
equalisers of GT-split pairs. But this follows from the argument of 5.4 (2), since

if f, g : (A,α) → (B, β) is a GT-split pairs, the coequalisers of A B
f

g
is

preserved by T and TT .
Theorem 5.6 ⇐= and Theorem 5.7: Let T denote the monad induced by

F a G. For any T-algebra (A,α), the pair FGFA A
Fα

εFA

is both reflexive

and G-split, so has a coequaliser in D and hence by Lemma 5.5, K : D → CT

has a left adjoint L. Then unit of L a K at an algebra (A,α), the coequaliser
defining L(A,α) is mapped by K to the diagram

FTTA FTA KL(A,α)

(A,α)

F Tα

µA
α

ι(A,α)

and ι(A,α) is the factorisation of this through the GT-split coequaliser α. But
either set of hypothesis implies thatG preserves the coequaliser defining L(A,α),
so ι(A,α) is an isomorphism. For the counit ξ : LKB → B, we have a coequaliser

FGFGB FGB LKB

B

FGεB

εFGB
εB ξB
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5 Monad

Again, either set of hypothesis implies that εB is a coequaliser of (FGεB , εFGB)
so ξB is an isomorphism.

Example.

1. The forgetful functors Gp → Set,Rng → Set,ModR → Set . . . all
satisfy the hypothesis of refined monadicity theorem, for the relexive co-
equalisers, use example sheet 4 Q3 which shows that if

A B C
f

g

h

is a reflexive coequaliser diagram in Set then so is

An Bn Cn.
fn

gn

hn

2. Any reflection is monadic: this follows from example sheet 3 Q3, but can
also be proved using precise monadicity theorem. Let D be a relfecitve
(full) subcategory of C, and suppose a pair f, g : A → B in D fits into a
split coequaliser diagram

A B C
f

g

t

h

s

in C. Then t and ft = sh belongs to D since D is full and hence s is
in D since it’s an equaliser of (1B , sh) and D is closed under limits in C.
Hence also h ∈ morD.

3. Consider the composite adjunction

Set AbGp tfAbGp
F

U

L

I

These two factors are monadic by the above two examples respectively,
but the composite isn’t, since the monad it induces on Set is isomorphic
to that induced by F a U .

4. Consider the forgetful functor U : Top → Set. This is faithful and has
both left and right adjoint (so preserves all coequalisers), but the monad
induced on Set is (1, 1, 1) and the category of algebras is Set.

5. One may get the impression that monadicty is something only shared by
algebraic construction but not topological constructions. Consider the
composite adjunction

Set Top KHaus
D

U

β

I

We shall show that this satisfies the hypothesis of precise monadicity the-
orem. Let

X Y Z
f

g

t

h

s
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5 Monad

be a split coequaliser in Set where X and Y have compact Hausdorff
topologies and f, g are continuous. Note that the quotient topology on
Z ∼= Y/R is compact, so it’s the only possible candidate for a compact
Hausdorff topology making h continuous.
We use the lemma from general topology: if Y is compact Hausdorff, then
a quotient Y/R is Hausdorff if and only if R ⊆ Y × Y is closed. We note

R = {(y, y′) : h(y) = h(y′)}
= {(y, y′) : sh(y) = sh(y′)}
= {(y, y′) : ft(y) = ft(y′)}

so if we define S = {(x, x′) : f(x) = f(x′)} ⊆ X ×X then R ⊆ (g× g)(S),
but this reverse inclusion also holds. But

S X ×X Y
fπ1

fπ2

is an equaliser, Y is Hausdorff, so S is closed on X×X and hence compact.
So R = (g × g)(S) is compact and hence closed in Y × Y .
Morally, a category that is monadic over Set can be thought as an alge-
braic object, in the sense that it is defined by algebraic equations. This
applies to KHaus by including “infinitary equations”.

Definition (monadic tower). Let C D
F

G
be an adjunction and sup-

pose D has reflexive coequalisers. The monadic tower of F a G is the
diagram

...

D (CT)S

CT

C

K′

K

G

L

L

F

where T is the monad induced by F a G, K is as in 5.7, L as in 5.11
(comparison?) S is the moand induced by L a K and so on.

We say F a G has monadic length n if we reach an equlvalence after n
steps.

Monadic length 0: already equivalence. Monadic length 1: monad
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5 Monad

For example, the adjunction of 5.14c has monadic length 1. The adjunction
of 5.14d has monadic length ∞.

We will need one more result for topos theory, which we state without proof.
(lifting of left adjoint in categorical algebra)

Theorem 5.8. Suppose given an adjunction C D
L

R
and monads T,S

on C,D respectively, and a functor R : DS → CT such that

DS CT

D C

R

GS GT

R

commutes up to isomorphism. Suppose also DS has reflexive coequalisers.
Then R has a left adjoint L.

Proof. Note that if L exists we must have LFT ∼= F SL by 3.6. So we’d expect

L(A,α) to be a coequaliser of two morphisms F SLTA F SLA.
F SLα

?
To con-

struct the second morphism, note first that we assume wlog GTR = RGG, by
transporting T-algebra structurs along the isomorphism GTR(B, β) → RB.

We obtain φ : TR → RS by starting from

R
Rι−→ RS = RGSF S = GTRF S,

conjugate by F to get
FTR → RF S,

and finally (?)

TR = GTFTR
φ−→ GTRF S = RGSF S = RS.

Convert it into ϕ : LT → SL by

LT
LTγ−−−→ LTRL

LθL−−→ LRSL
δSL−−→ SL

where γ and δ are the unit and counit of L a R. Transposing across F S a GS,
we get ϕ : F SLT

F S

−−→ L. The pair (F SLα,ϕA) is relexive, with common splitting
F SLη. (ϕ is the question mark in the diagram)

It can be verified (albeit extremely tedious) that the coequaliser of this pair
has the unviersal property we require for L(A,α).
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6 Cartesian closed categories

6 Cartesian closed categories

Definition (exponentiable object, cartesian closed category). Let C be a
category with finite products. We say A ∈ obC is exponentiable if the
functor (−)×A : C → C has a right adjoint (−)A.

If every object of C is exponentiable, we say C is cartesian closed.

Intuitively, exponential object “lifts” morphisms to an object, instead of a
set. “internalisation”

Example.

1. Set is cartesian closed, with BA = Set(A,B). A function f : C ×A → B
corresponds to f : C → BA.

2. Cat is cartesian closed with DC = [C,D]. In fact we have implicitly used
this idea when discussing limits in functor categories.

3. In Top, if an exponential Y X exists, its points must be the continuous
mapsX → Y . The compact-open topology onTop(X,Y ) has the universal
property of an exponential if and only if X is locally compact.
Note that finite products of exponential objects are exponentiable: since

(−)× (A×B) ∼= (−×A)×B,

we have (−)A×B ∼= ((−)B)A. However, even if X and Y are locally com-
pact, Y X needn’t be. So the exponentiable objects don’t form a cartesian
closed full subcategory.

4. A cartesian closed poset is called a Heyting semilattice: it’s a poset with
finite meet ∧ and a binary operation =⇒ satisfying

a ≤ (b =⇒ c) if and only if a ∧ b ≤ c.

For example, a complete poset is a Heyting semilattice if and only if it
satisfies the infinite distributive law

a ∧
∨
i∈I

{bi} =
∨
i∈I

{a ∧ bi}.

For any topological space, the lattice O(X) of open sets satisfies this
condition, since ∧ and ∨ conincide with ∩ an ∪. (However it does not
satisfy the dual condition: arbitrary intersection needs to take interior).

Recall from example sheet 2 that, if B ∈ obC, we define the slice category
C/B to have objects which are morphisms A → B in C and morphisms are
commutative triangles

A A′

B
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6 Cartesian closed categories

The forgetful functor C/B → C will be denoted ΣB . If C has finite products,
ΣB has a right adjoint B∗ which sends A to

A×B
π2−→ B

since morphisms
C A×B

B

(f,g)

g
π2

correspond to morphisms f : ΣBg = C → A.

Lemma 6.1. If C has all finite limits then an object B is exponentiable if
and only if B∗ : C → C/B has a right adjoint ΠB.

Proof.

1. ⇐= : The composite ΣBB
∗ is equal to (−) × B so we take (−)B to be

ΣBB
∗.

2. =⇒ : If B is exponentiable, for any f : A → B we define ΠB9f) to be
the pullback

ΠB(f) AB

1 BB

FB

π2

where π2 is the transpose of the projection (?). Then morphisms C →
ΠB(f) corresponding to morphisms C → AB making

C AB

1 BB

fB

π2

commute, i.e. to morhpisms C ×B → A making

C ×B A

B

π2

f

commute.

Lemma 6.2. Suppose C has finite limits. If A is exponentiable in C then
B∗A is exponentiable in C/B for any B. Moreover B∗ preserves exponen-
tials.
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6 Cartesian closed categories

Proof. Given an object
C

B

f , form the pullback

P CA

B BA

fB∗A fA

π1

Then for any
D

B

g , morphisms g → fB∗A in C/B correspond to morphisms

D
h−→ CA making

D CA

B BA

h

g fA

π1

commute, and hence to morphisms D ×A
h−→ C making

D ×A C

B

h

gπ1 f

commmute. But
D ×A B ×A

D B

g×1A

π1 π1

g

is a pullback in C, i.e. a product in C/B.
For the second assertion, note that if C f−→ B is of the form B × E

π1−→ B
then the pullback defining fB∗A becomes

B × EA BA × EA

B BA

π1×1EA

π1 π1

π1

so fB∗A ∼= B∗(EA).

Remark. C/B is isomorphic to the category of coalgebra for the monad struc-
ture on (−) × B (5.2c). So the first part of the lemma could be proved using
lift of adjoint (last theorem of chapter 5).

Definition (locally cartesian closed). We say C is locally cartesian closed
if it has all finite limits and each C/B is cartesian closed.
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6 Cartesian closed categories

Note that this includes the fact that C ∼= C/1 is cartesian closed. So the
usuage is to the contrary of normal usage of “locally” as it imposes a stricter
condition.

Example.

1. Set is locally cartesian closed since Set/B ' SetB for any B.

2. For any small category C, [C,Set] is cartesian closed: by Yoneda

GF (A) ∼= [C,Set](C(A,−), GF ) ∼= [C,Set](C(A,−)× F,G)

so we take RHS as a definition of GF (A) and define GF on morphisms
A

f−→ B by composition with C(f,−)× 1F . Note that the class of funtors
H for which we have

[C,Set](H,GF ) ∼= [C,Set](H × F,G)

is closed under colimits. But every functor C → Set is a colimit of
representables.
In fact [C,Set] is locally cartesian closed since all its slice categories
[C,Set]/F are of the same form. See example sheet 4 Q6.

3. Any Heyting semilattice H is locally cartesian closed since H/b ∼=↓ (b),
the poset of elements ≤ b, and b∗ = (−) ∧ b is surjective.

4. Cat is not locally cartesian closed, since not all strong epis are regular.
c.f. example sheet 3 Q6.

Note that given
A

B

f in C/B, the iterated slice (C/B)/f is isomorphic to

C/A, and this identifies f∗ : C/B → (C/B)/f with the operation of pulling
back morphisms along f . So by 6.3 C is locally cartesian closed if and only if it
has finite limits and f∗ : C/B → C/A has a right adjoint Πf for every A

f−→ B
in C. This can be taken as the definition of locally cartesian closed category.

Theorem 6.3. Suppose C is locally cartesian closed and has reflexive co-
equalisers. Then every morphism A

f−→ B factors as

A
q
� I

m
� B

where q is regular epic and m is monic.

Proof. First form the pullback

R A

A B

a

b f

f
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6 Cartesian closed categories

and then form the coequaliser

R A I.
a

b

q

Since fa = fb, f factors as

A I B.
q m

Suppose given D I
g

h
with mg = mh, form the pullback

E D

A×A I × I

n

(k,`) (g,h)

q×q

Since q × q factors as (q × 1I)(1A × q) and both factors are pullbacks of q, it is
an epimorphism and so is n. Now

fk = mqk = mgn = mhn = mg` = f`

so there exists E p−→ R with ap = k, bp = `.
Now

qk = qap = qbp = q`,

i.e. gn = hn. But n is epic so g = h. Hence m is monic.

Note that this implies any strong epi A f−→ B is regular since the monic part
of its image factorisation is an isomorphism. In particular, regular epimorphisms
are stable under composition.

Definition. If C and D are cartesian closed categories and F : C → D
preserves products then for each pair of objects (A,B) of C, we get a natural
morphism θ : F (BA) → FBFA, namely the transpose of

F (BA)× FA ∼= F (BA ×A)
F (ev)−−−→ FB

where ev is the counit of ((−)×A a (−)A).
We say F is a cartesian closed functor if θ is an isomorphism for every

pair (A,B). Note that the second part of 6.4 syas that if C is locally
cartesian closed then f∗ : C/B → C/A is a continuous cartesian functor for
any A

f−→ B.

Theorem 6.4. Let C and D be cartesian closed categories and F : C → D
a functor having a left adjoint L. Then F is cartesian closed if and only if
the canonical morphism ϕA,B

L(B × FA) LB × LFA LB ×A
(Lπ1,Lπ2) 1LA×εB

is an isomorphism for all A ∈ obC, B ∈ obD. This condition is called
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6 Cartesian closed categories

Frobenius reciprocity.

Note that if C is locally cartesian closed then f∗ : C/B → C/A has a left
adjoint Σf given by composition with f , and it’s easy to verify that

Σf (g × f∗h) ∼= Σfg × h.

Proof.

• =⇒ : Given an inverse for θ : F (CA) → FAFA, we define ϕ−1
A,B to be the

composite

LB ×B L((B × FA)FA)×A L(FL(B × FA)FA)×B

L(B × FA) L(B × FA)A ×A LF (L(B × FA)A)×A

Lλ×1 L(ηFA)×1

Lθ−1×1

ev ε×1

The verification is a tedious exercise.

• ⇐= : Given an inverse for ϕ, we define θ−1 to be

F ((L(FCFA ×A))A) FL(FCFA) FCFA

F ((L(FCFA × FA))A) F ((LFC)A) F (CA).

F (ϕ−1A)

Fλ η

F ((L(ev))A) F (εA)

Corollary 6.5. Suppose C and D are cartesian closed, and F : C → D has
a left adjoint L which preserves finite products. Then F is cartesian closed
if and only if F is full and faithful.

Proof.

• =⇒ : L preserves 1 so if we substitute B in the definition of ϕ above,
we get LFA

εA−−→ A. But ε is an isomorphism if and only if F is full and
faithful.

• ⇐= : If L preserves binary products and ε is an isomorphism. Then both
factors in the definition of ϕ are isomorphisms.

Definition (exponential ideal). Let C be a cartesian closed category. By
an exponential ideal of C we mean a class of objects (or a full subcategory)
E such that B ∈ E implies BA ∈ E for all A ∈ obC.

Example.
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6 Cartesian closed categories

1. We say A is subterminal if A → 1 is monic. In any cartesian closed cate-
gory C, the class SubC(1) is an exponential ideal since A is subterminal if
and only if there exists at most 1 morphisms B → A for any B, if and only
if at most 1 morphism C × B → A for any B and C, so by adjunction if
and only if at most 1 morphism C → AB , if and only if AB is subterminal.
More generally, if C is locally cartesian closed then SubC(A) is an expo-
nential ideal in C/A for any A. if C also satisfies the hypotheses of 6.7
then SubC(A) is reflexive in C/A.

2. Let X be a topological space. By a presheaf of X we mean a functor
F : O(X)op → Set where O(X) is the partial order of open subsets of X.
So F has sets F (U) for each open U and restriction maps F (U) → F (V ) :
x 7→ x|V whenever V ⊆ U .
We say F is a sheaf if whenever U =

⋃
i∈I Ui and we’re given xi ∈ F (Ui)

for each i, such that
xi|Ui∩Uj = xj |Ui∩Uj

for all (i, j), then exists a unique x ∈ F (U) such that x|Ui
= xi for all i.

We write Sh(X) ⊆ [O(X)op,Set] for the full subcategory of sheaves. We’ll
show Sh(X) is an exponential ideal: given presheaves F,G, GF (U) is the
set of natural transofrmations F ×O(X)(−, U) → G or equivalently, the
set of natural transformations F |U → G|U where F |U : O(X)op → Set is
the presheaf obtained by restricting F to open sets in U . Now suppose G
is a sheaf. Suppose U =

⋃
i∈I Ui and suppose given αi : F |Ui → G|Ui for

each i such that
αi|Ui∩Uj

= αj |Ui∩Uj

for all i, j. Given x ∈ F (V ) where V ⊆ U , write Vi = V ∩ Ui, then V =⋃
i∈I Vi. The elements x|Vi , i ∈ I, satisfying the compatibility condition

and hence so do the elements (αi)Vi
(x|Vi

) ∈ G(Vi) . So there’s a unique
y ∈ G(V ) such that

y|Vi
= (αi)Vi

(x|Vi
)

for all i and we define this to be αV (x). This defines natural transforma-
tions α : F |U → G|U and it’s the unique transformation whose restriction
to Ui is αi for each i.
Note that since Sh(X) is closed under finite products (and in fact all
limits) in [O(X)op,Set], it is itself cartesian closed.

Lemma 6.6. Suppose C is cartesian closed and D ⊆ C is a (full) reflective
subcategory, with reflector L : C → D. Then D is an exponential ideal if
and only if L preserves binary products.

Proof.
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6 Cartesian closed categories

• =⇒ : Suppose A,B ∈ obC, C ∈ obD. Then we have bijections

A×B → C

A → CB

LA → CB

LA×B → C

B → CLA

LB → CLA

LA× LA → C

so LA× LB has the universal property of L(A×B).

• ⇐= : Suppose B ∈ obD, A, C ∈ obC. We have bijections

C → BA

C ×A → B

LC × LA ∼= L(C ×A) → B

L(LC ×A) → B

LC ×A → B

LC → BA

so every C → BA factors throu C → LC, hence BA ∈ obD.
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7 Toposes
Topos has it orgin in the French school of algebraic geometry. In 1963, when
studing cohomologies in gemoetry, Grothendieck studied toposes as categories
of “generalised sheaves”. As sheaves can be seen as representation of spaces and
properties of the space can be detected from sheaves, toposes become generalised
spaces. Thus the name topos: something more fundamental than topology.

J. Giraud gave a characterisation of such categories by (set-theoretic) cate-
gorical properties. F. W. Lawvere and M. Tierney (1969 - 1970) investigated the
elementary categorical properties of these categories and come up with the ele-
mentary definition. In fact a Grothendieck topos is exactly a Lawvere-Tierney
topos which is (co)complete and locally small, and has a separating set of ob-
jects (which is what Grothendieck should, but didn’t, come up with, by the
way).

Definition (subobject classifier, topos, logical functor).

1. Let E be a category with finite limits. A subobject classifier for E is a
monomorphism > : Ω′ � Ω such that for every mono m : A′ � A in
E , there is a unique χm : A → Ω for which there is a pullback square

A′ Ω′

A Ω

m >
χm

Note that, for any A, there is a unique A → Ω which factors through
> : Ω′ � Ω, so the domain of > is actually a terminal object.
If E is well-powered, we have a functor SubE : E → Set sending A
to the set of (isomorphism classes) of subobjects of A and acting on
morphisms by pullback, and an subobject classifier is a representation
of this functor.

2. A topos is a category which has finite limits, is cartesian closed and
has a subobject classifier.

3. If E and F are toposes, a logical functor F : E → F is one which
preserves finite limits, exponentiables and the subobject classifier.

Example.
1. Set is a topos, with Ω = {0, 1} and > = 1 : 1 7→ {0, 1}. Have

χ(a) =

{
1 a ∈ A

0 a /∈ A

So also is the category Setf of finite set, or the category Setκ of sets of
cardinality < κ, where κ is an infinite cardinal such that if λ < κ then
2λ < κ.

2. For any small category C, [Cop,Set] is a topos: we’ve seen that it’s carte-
sian, and Ω is determined by Yoneda:

Ω(A) ∼= [Cop,Set](C(−, A),Ω) ∼= {subfunctors of C(−, A)}.
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So we define Ω(A) to be the set of sieves on A, i.e. sets R of morphisms
with codomain A such that if f ∈ R then fg ∈ R for any g.
Given f : B → A and a sieve R on A, we define f∗R to be the set of g with
codomain B such that fg ∈ R. This makes Ω into a functor Cop → Set:
> : 1 → Ω is defined by

>A(∗) = {all morphisms with codomain A}.

Given a subfunctor m : F ′ � F , we define χm : F → Ω by

(χm)A(x) = {f : B → A : Ff(x) ∈ F ′(B)}.

This is the unique natural transformation making

F ′ 1

F Ω

m >
χm

a pullback.

3. For any spaceX, Sh(X) is a topos. It’s cartesian closed. For the subobject
classifier we take

Ω(U) = {V ∈ O(X) : V ⊆ U}
and Ω(U ′ → U) is the map V 7→ V ⊆ U ′. Ω is a sheaf since if we have
U =

⋃
i∈I Ui and Ui ⊆ Ui such that Vi ∩ Uj = Vj ∩ Ui for each i, j then

V =
⋃

i∈I Vi is the unique open subset of U with V ∩ Ui = Vi for each i.
If m : F ′ � F is a subsheaf then for any x ∈ F (U) the sieve

{V ⊆ U : x|V ∈ F ′(V )}

has a greatest element since F ′ is a sheaf. So we define χm : F → Ω to
send x to this object.

4. LetC be a group G. The topos structure on [G,Set] is particularly simple:
BA is the set of all G-equivariant maps f : A × G → B but such an f
is determined by its values at elements of the form (a, 1) since f(a, g) =
g.f(g−1.a, 1), and this restriction can be any mapping A × {1} → B. So
we can take BA to be the set of functions A → B with G acting by

(g.f)(a) = g(f(g−1.a))

and Ω = {0, 1} with trivial G-action. So the forgetful functor [G,Set] →
Set is logical, as is the functor which equips a set A with trivial G-action.
Moreover, even if G is infinite, [G,Set] is a topos and this inclusion
[G,Setf ] → [G,Set] is logical. Similarly if G is a large group (i.e. the
underlying space may not be a set), then [G,Set] is a topos.

5. Let C be a category such that every C/A is equivalent to a finite category.
Then [Cop,Setf ] is a topos. Similarly if C is large but all C/A are small,
then [Cop,Set] is a topos. In partciular [On,Set] is a topos, but it’s not
locally small.
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Lemma 7.1. Suppose E has finite limits and a subobject classifier. Then
every monomorphism in E is regular. In particular E is balanced.

Proof. The universal monomorphism > : 1 � Ω is split and hence regular. But
any pullback of a regular mono is regular: if f is an equaliser of (g, h) then
K∗(f) is an equaliser of (gk, hk). The second assertion follows since a regular
mono that is also epic is an isomorphism.

Given an object A in a topos E , we write PA for the exponential ΩA. and
3A� PA × A for the subobject corresponding to ev : PA × A → Ω. This
has the property that, for any B and any m : R � B × A, there is a unique
pmq : B → PA such that

R 3A

B ×A PA×A

m

pmq×1∆

is a pullback.

Definition (power-object). By a power-object for A in a category E with
finite limits, we mean an object PA equipped with 3A→ PA×A satisfying
th above.

We say E is a weak topos if every A ∈ ob E has a power-object.
Similarly we say F : E → F is weakly logical if F (3A) � F (PA) × FA

is a power-object for FA for every A ∈ ob E .

A power-object for the termimal object is the same as a subobject classifier.
This is an ad hoc defintion and we will soon show that E is cartesian closed

and therefore we can safely drop the adjective “weak”. Consequently this may
be taken as the definition of topos.

Lemma 7.2. P is a functor Eop → E . Moreover it is self-adjoint on the
right.

Compare this with the contravariant power set functor on Set, which is a
special case.

Proof. Given f : A → B, we define Pf : PB → PA to correspond to the
pullback

Ef 3B

PB ×A PB ×B
1×f

For any pmq : c → PB, it’s easy to see that (Pf)pmq corresponds to (1C ×
f)∗(m), hence f 7→ Pf is functorial. For any A and B, we have a bijection
between subobjects of A×B and of B×A given by composition with (π2, π1) :
A×B → B×A. This yields a (natural) bijection between morphisms A → PB
and B → PA.

We write {}A : A → PA (pronounced “singleton”) for the morphism corre-
sponding to (1a, 1a) : A � A×A.
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Lemma 7.3. Given f : A → B, {}Bf corresponds to (1A, f) : A � A×B
and (Pf){}B corresponds to (f, 1A) : A � B ×A.

Proof. The square
A B

A×B B ×B

f

(1,f) (1,1)

f×1

is a pullback. Similarly for the second assertion.

Corollary 7.4.

1. {}A : A → A is monic.

2. P is faithful.

Proof.

1. If {}f = {}g then (1A, f) and (1A, g) are isomorphic as subobjects of
A×B, which forces f = g.

2. Similarly if Pf = Pg then (Pf){} = (Pg){} so we again deduce f = g.

Given a mono f : A � B is E , we define ∃f : PA → PA to correspond to
the composite

3A PA×A PA×B.
1×f

Then for any pmq : C → PA, (∃f)pmq correponds to

R C ×A C ×Bm 1×f

so f 7→ ∃f is a functor Mono(E) → E .

Lemma 7.5 (Beck-Chevalley condition). Suppose

D A

B C

h

k f

g

is a pullback with f monic. Then the diagram

PA PC

PD PB

∃f

Ph Pg

∃k

commutes.
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Proof. Consider the diagram

En 3A

PA×D PA×A

PA×B PA× C

1×h

1×k 1×f

1×g

The lower square is a pullback so the upper square is a pull back. This is
equivalent to the composite is a pullback.

Theorem 7.6 (Paré). The functor P : Eop → E is monadic.

Proof. It has a left adjoint P : E → Eop by 7.5 (the “self-adjoint on the right”
lemma). It’s faithful by 7.7 (ii) and hence reflects isomorphisms by 7.3. Eop has
coequalisers since E has equalisers. Suppose

A B
f

g

r

is a coreflexive pair in E , then f and g are (split) monic and the equaliser
e : E → A makes

E A

A B

e

e g

f

a pullback square. Since any cone over

A

A B

g

f

has both legs equal so by Beck-Chevalley condition we have (Pf)(∃g) = (∃e)(Pe).
But we also have (Pg)(∃g) = 1FA since

A A

A B

1

1 g

g

is a pullback, and similarly (PE)(∃e) = 1PE . So

PB PA PE
Pf

Pg

∃g

Pe

∃e

is a split coequaliser and in particular a coequaliser. Hence by 5.13 P is monadic.
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Corollary 7.7.

1. A weak topos has finite colimits. Moreover if it has any infinite limits
then it has the corresponding colimits. In particular if it is complete
then it is cocomplete.

2. If a weakly logical functor has a left adjoint then it has a right adjoint.

Proof.

1. P creates all limits which exist, by 5.e.

2. By definition if F is weakly logical then

Eop ∃op

E ∃

F

P P

F

commutes up to isomorphism. So this follows from 5.16.

Lemma 7.8. Let E be a category with finite limits and suppose A ∈ ob E
has a power-object PA. Then, for any B, B∗(PA) is a power-object for
B∗A in E/B.

Proof. Given
C

B

g we have a pullback square

C ×A B ×A

C B

g×1

π1 π1

g

so ΣB(g ×B∗A) ∼= C ×A. Hence

SubE/B(g ×B∗A) ∼= SubE(C ×A),

but if h : C → PA corresponds to
R

C ×A

then the upper square of the diagram

R B× 3A

C ×A B × PA×A

B

(g,h)×1A

gπ1 π1
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is a pullback. So
B × PA

B

π1 equipped with B∗(3A) � B∗(PA× A) is a power

object for B∗A.

Theorem 7.9. Suppose E is a weak topos. Then for any B ∈ ob E, E/B is
a weak topos and B∗ : E → E/B is weakly logical.

Proof. The second assertion follows from the previous lemma. For the first,

we need to construct a power object for an arbitrary
A

B

f in E/B. Then the

pullback
ΣB(g × f) A

C B

f

g

is a subobject of C ×A, namely the equaliser of

C ×A B
fπ1

gπ2

Define ∧ : PA × PA → PA to correspond to the intersection of π∗
13(3A�

PA×A) and π∗
23(3A� PA×A) and dfine P1A � PA×PA to be the equaliser of

PA× PA PA.
∧

π1

Then, for any C, C PA× PA
(pmq,pnq) factors through

P1A if and only if m ≤ n in SubE(C ×A). Now form the pullback

Q P1A

PA×B PA× PB PA× PA

(h,k)

1×{} 1×Pf

Given any
C

B

g morphisms g
`−→ k in E/B correspond to morphisms C

h`−→ PA

such that the subobject named by h` is contained in that named by (Pf)({})g.
But the latter is indeed ΣB(g × f) � C × A so k is a power object for f in
E/B.

Corollary 7.10. A weak topos is locally cartesian closed. In particular, it
is a topos.

Proof. For any f : A → B in E , we can define (E/B)/f) with E/A and f∗ :
E/B → E/A with pullback along f . Hence all such functors are weakly logical.

But f∗ has a left adjoint Σf so by 7.7 (2) (in lecture 7.10 (ii)) it has a right
adjoint Πf . Hence by 6.3 E/B is cartesian closed for any B.
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Remark. It can be shown that a weakly logical functor is cartesian closed, and
hence logical.

Corollary 7.11.

1. Any epimorphism in a topos is regular.

2. Any f : A → B in a topos factors uniquely up to isomorphism as

A I B
q m

Proof. E is locally cartesian closed by the above corollary and has coequalisers
by 7.10(i) so by 6.7 every f factors uniquely as regular epi plus mono. If f itself
is epic then the monic part of the factorisation is isomorphism by 7.3, so f is
regular epic.

7.1 Sheaves and local operators*
Recall that Sh(X) ⊆ [O(X)op,Set] is a full subcategory closed under limits. In
fact it’s reflective and the reflector L : [O(X)op,Set] → Sh(X) preserves finite
limits. This suggests considering reflective subcategories D ⊆ E for which the
reflector preserves finite limits (equivalently, pullbacks).

Lemma 7.12. Given such a reflective subcategory and a monomorphism
A′ � A in E, define c(A′) � A by the pullback diagram

c(A′) LA′

A LA
ηA

Then A′ 7→ c(A′) is a closure operation on SubE(A) and commutes with
pullback along a fixed morphism of E.

By “closure” we mean an order-preserving inflationary idempotent operator.

Proof. Since
A LA′

A LA

ηA′

etaA

and A′ ≤ A′′ in Sub(A) implies LA′ ≤ LA′′ in Sub(LA) and hence c(A′) ≤
c(A′′).

Since Lη is an isomorphism,

LA′ LLA′

LA LLA

LηA′

LηA
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is a pullback, and since L preserves pullbacks we deduce Lc(A′) ∼= LA′ in
Sub(LA). Hence c(c(A′)) ∼= c(A′).

For stability under pullback, suppose

A′ B′

A B
f

is a pullback. Then in the cube

c(A′) LA′

c(B′) LB′

A LA

B LB

ηA

f Lf

ηB

the front, back and right faces are pullbacks, whence the left face is too.

Definition (local operator). Let E be a topos. By a local operator in E we
mean a morphism j : Ω → Ω satisfying the commutative diagrams

1 Ω Ω

Ω

>

>
j

j

j

Ω1 Ω1

Ω× Ω Ω× Ω
j×j

where Ω1 is the order relation on Ω define in 7.12.
Given a closure operator on subobjects in the above lemma, define J �

Ω to be the closure of > : 1 � Ω and j : Ω → Ω to be the classifying map
of J � Ω. Then, for any A′ � A with classifying map χm : A → Ω, the
composite jχm classifies c(A′) � A.

Given a pullback-stable cloure operation c on subobjects, we say A′ � A is
dense if c(A′) � A is isomorphism, and closed if A′ � c(A′) is isomorphism.

Lemma 7.13. Suppose given a commutative square

B′ A′

B A

f ′

n m

f

with n dense and m closed. Then there is a unique g : B → A′ with mg = f
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(and gn = f ′).
Proof. We have n ≤ f∗(m) in Sub(B) so

1B ∼= c(n) ≤ f∗(c(m)) ∼= f∗(m)

so we define g as
B f∗(A′) A′∼=

Note that c(A′) may be characterised as the unique (up to isomorphism)
subobject A′′ such that A′ � A′′ is dense and A′′ � A is closed.

Lemma 7.14. Suppose c is induced as in Lemma 7.12 by a reflector L :
E → D preserving finite limits. Then an object A of E belongs to D (up to
isomorphism) if and only if, given any diagram

B′ A

B

f ′

m

with m dense, there exists a unique f : B → A with fm = f ′.

Proof. Note first that m is dense if and only if Lm is an isomorphism: ⇐=
follows from the definition. =⇒ follows since, by the proof of Lemma 7.12, we
know L(B′) and L(c(B′)) are isomorphic in Sub(B).

Given this, if A is in D then the given diagram extends uniquely to

B′ LB′ A

B LB

ηB′

∼=
ηB

Conversely, suppose A satisfies the condition. Let R A
a

b
be the kernel-

pair of ηA : A → LA and d : A � R the factorisation of (1A, 1A) through
(a, b). Since LηA is isomorphism and L preservse pullbacks, Ld is isomorphism
so d is dense. This forces a = b so ηA is monic. And ηA is dense so we get a
unique r : LA → A with rηA = 1A. Now ηArηA = ηA and since LA satisfies the
condition we have ηAr = 1LA.

We say A is a sheaf (for c, or for j) it it satisfies the condition in the previous
lemma. Given a local operator j on E , we write shj(E) for the full subcategory
of j-sheaves in E .

Our aim is to show shj(E) is a topos.

Lemma 7.15. shj(E) is closed under limits in E and an exponential ideal.

Proof. The first assertion follows since the definition involves only morphisms
with codomain A. For the second, note that if m : B′ � B is dense the so is
×1C : B′ ×C � B ×C for any C (since it’s π∗

1(m)) and so if A is a sheaf then
any morphism B′ → AC extends uniquely to a morphism B → AC .
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Lemma 7.16. If A is a sheaf then a subobject m : A′ � A in E is a sheaf
if and only if it is closed.

Proof.

• ⇐= : Immediate from Lemma 7.13.

• =⇒ : Consider
A′ c(A′) A

p q

p is dense so if A is a sheaf we get a unique r : c(A′) → A′ with rp = 1A′ .
But c(A′) is a sheaf so prp = p and thus pr = 1c(A′).

We define Ωj � Ω to be the equaliser of Ω Ω.
j

1Ω
Then for any A,

morphisms A → Ωj corresponding to closed subobjects of A.

Lemma 7.17. Ωj is a j-sheaf.

Proof. We want to show that if m : B � A is a dense mono the pullback along
m yields a bijection from closed subobjects of A to closed subobjects of B. If
n : A′ � A is closed then the pullback

B′ A′

B A

m′

n′ n

m

m′ is dense so A′ � A is the closure of B′ � B � A. It remains to show that
if B′ � B is closed, it is iso up to the pullback of its closure in A. But (writing
A′ � A for the closure) we have a factorisation B′ → f∗A′ which is dense since
B′ → A′ is dense, and closed since B′ → B is closed.

Theorem 7.18. For any local operator j on E, shj(E) is a topos. Moreover
it’s reflective in E and the reflector preserves finite limits.

Proof. shj(E) is cartesian closed and has a subobject classifier Ωj by the lemma.
To construct the reflect, consider the composite

A ΩA ΩA
j

{} jA

this corresponds to the closure (a, b) : A � A × A of the diagonal subobject
(1A, 1A) : A � A × A. I claim (with proof omitted) that A A

a

b
is the

kernel-pair of f . Hence any morphism g : A → B where B is a sheaf satisfies
ga = gb. So if we form the image

A I ΩA
j

q m
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of f any such g factors uniquely through q.
Now ΩA

j is a sheaf by the lemmas so if we form the closure LA � ΩA
j of m,

we get a morphism A → LA through which any morphism from A to a sheaf
factors uniquely. Hence L becomes a functor E → shj(E), left adjoint to the
inclusion.

By 6.13, we know L preserves finite products. In fact it preserves equalisers
as well (can be checked but omitted here).

Finally, we state the relation between topos and the topos Grothendieck was
interested in (i.e. sheaves):

Theorem 7.19. For a category E, TFAE:

1. E is a topos, complete and locally small and has a separating set of
objects.

2. there exists a small category C and a local operators on [Cop,Set]
such that

E ' shj([C
op,Set]).

Sketch of proof.

1. 1 =⇒ 2: since shj([C
op,Set]) has given properties.

2. 1 ⇐= 2: take C to be the full subcategory of E on the separating set
and consider

E [Eop,Set] [Cop,Set].Y
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