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0 Introduction

0 Introduction

Analytic number theory is the study of numbers using analysis. In particular
it answers quantitative questions. “Numbers” means natural numbers in this
course, which excludes 0.

Example.

1.

How many primes are there? We know there are infinitely many but
can we have a more precise answer? Let m(x) be the number of primes
smaller than or equal to z. Then by the famous prime number theorem,
m(x) ~

X
logx*

How may twin primes are there? It is not known whethere there are in-
finitely many. From 2014 Zhang, Maynard, Polymath, there are infinitely
many primes at most 246 apart. It’s been conjectured that the asymptotic

3 xT
bound is ~ Tog a2

How many primes are there congruent to a mod ¢ where (a,q) = 1?7 There
are infinitely many by Dirichlet’s theorem. The guess is ﬁ%. This is

known for small q.

The course is divided into four parts:

1. elementary techniques (using real analysis),

2. sieve methods,

3. Riemann zeta function/Prime number theorem (using complex analysis),

4. primes in arithmetic progression.
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1 Elementary techniques

Review of asymptotic notations:

o Landau notation: f(z) = O(g(x)) if there is C' > 0 such that |f(x)] <
Clg(z)| for all large enough x.

e Vinogradov notation: f < g is the same as f = O(g).
o frgiflim, % =1,ie f=(1+0(1))g.

o f=o(g) iflim, % =0.

N

1.1 Arithmetic functions

These are just functions f: N — C. An important operation for multiplicative
number theory is multiplicative convolution

Frgn)=">" fla)g(b)

ab=n
Example.
1. 1(n) =1 for all n. Caution: this is not identity on N.
2. Mobius function

(n) = {(1)k ifn=mp..p

0 if n is divisible by a square
3. Liouville function
A(n) = (=1)*F
if n = p; ... p,, where p,’s are not necessarily distinct.

4. divisor function

7(n) = #d such that d | n = Z 1=1x%1(n).

ab=n

This is sometimes also denoted by d(n).

Definition (multiplicative function). An arithmetic function f is multi-
plicative if

flnm) = f(n)f(m)

whenever (n,m) = 1.

In particular a multiplicative function is determined by its values on prime
powers f(p").

Fact. If f and g are multiplicative then so is f * g.

Example. 1, u, A\, 7 are multiplicative. logn is not multiplicative.
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Fact (Mobius inversion). 1x* f = g if and only if u* g = f. That is,

S 7(d) = g(n)

d|n

if and only if
n
S g%y = fn)
dln
For example

Zu(d)={1 AR Y

p 0 otherwise
In

is multiplicative so enough to check the identity for prime powers. If n = p*
then {d :d | n} = {1,p,...,p"} so LHS equals to 1 — 1+ 0+ = 0 unless k = 1
when LHS equals to u(1) = 1.

Our goal is to study primes. Our first might be that we shall work with

1 n prime
1,(n) = {

0 otherwise

as then m(z) = 3> _ _ 1,(n). But this is very awkward to work with, as to
begin with, this is not multiplicative. Instead, we are going to work almost

exclusively with von Mangoldt function

Aln) = {logp n=p

0 otherwise

k

“assign weight logp to prime power n”

Lemma 1.1.
1xA =log.

and
wxlog = A.

Proof. The second part follows from Mo6bius inversion. Thus if n = p’fl pfr,

1xA(n) =S Ad) =Y Ap))

din i=1 j=1
r Kk T

= logp) = kilogy,
i=1 j=1 =1

= log(p;") =logn
i=1
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Therefore

=> p(d log

d|n
= lognZu(d) =D _n(d)logd
d|n d|n
=— Z wu(d)logd
dln

For example

Z Aln) =— Z Z,u(d)logdz—ZMd)logd( Z 1)

1<n<z 1<n<z d|n d<z 1<n<z,d|n

by reversing summation. But now the term in the inner summation is very easy

to understand: " "
> 1=[3]|=3+o.

1<n<z,dn
Thus
1 d
S Al) — -0 Y pla) 2 +0<ZM logd>.
1<n<zx d<x d<x

We’ll see more of these examples.

1.2 Summation

Given an arithmetic function f, we can ask for estimates of >° _ _ f(n). We
say that f has average order g if o

> f(n) ~ag(a).
1<n<z
“average size of fis g”.
Example.

1. f =1 then
Y J@)=lz]=2+001)~

1<n<x

so average order of 1 is 1.

2. f(n) =

s n
so average of n is 5.

Lemma 1.2 (partial summation). If (a,,) is a sequence of complex numbers
and [ is such that [’ is continuous. Then

> ) = A@)f@) - [ A0r O

1<n<x
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| where A(x) =

This is the discrete analogus of integration by parts.

1<n<z A -

Proof. Suppose x = N is an integer. Note that a,, = A(n) — A(n — 1), so

Y. aufn)= Y f(n)(An) - A(n —1))

1<n<N 1<n<N

=2

= AN)F(N) =Y An)(f(n+1)— f(n))

n

Il
—

Now
n+1
fn+ 1) — fn) = / F (bt
> N—-1 n+1
S, f(n) = AN)FN) = 3 An) / F ()t
1<n<N n=1 n
N
AN — [ Awf

1

where the last step is because A(n) = A(t) for t € [n,n + 1).
If N = |z] then

As a simple application

Lemma 1.3. ) )
Z — =logz+v+O(-).
n T

1<n<zx

Proof. Partial summation with f(z) = 1 and a,, = 1, so A(z) = |z]. Therefore

1 x
—_ = m +/ %dt
1<n<z n €T 1 t

Write |t] =t — {t},

=1+0(

)Jr/m%dt—/z%dt

< {t < {t
)+ logz — 1 {tz}dt—k/ {t—z}dt

Bl—= 8|~

=1+0(
<[ pdi<y
1 1
=7+ 0(=)+logz +0(-)
T T

1
=logz +~+0(-)
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This is an amazing result and the only thing we did is to replace the discrete
summation by the continuous analogue to it. In essence this is the whole reason
analytic number theory works.

v can be seen as a measure of the difference between between log and its
discrete approximation. It is called Fuler-Mascheroni constant. Surprisingly
little is known about ~. It is approximately 0.577.... We don’t even know if ~
is rational or not.

Lemma 1.4.
Z logn = zlogx — x + O(log ).

1<n<z

Proof. Partial summation with f(z) = logz,a, = 1 so A(x) = |z]|. As a side
note, in the previous example, most error comes from the integral term (the
mass is evenly distributed). By constrast in this example most error comes
from the “sum” term.

Z logn = |z logx—/m %dt

1<n<z
:xlongrO(log:v)—/ dt+0(/ %dt)
1 1

zlogz + O(logz) — x + O(log x)

1.3 Divisor function

Recall that

Theorem 1.5.

Z 7(n) = zlogx + (2y — 1)z + O(x/?)

1<n<z
so in particular average order of T is log.

Proof. First attempt:

D orm=> > 1=2 > 1

1<n<z 1<n<z dln 1<d<z 1<n<z,d|n
_ ZFJ
1<d<=z d
=Y 20w =2 Y 10
1<d<z d 1<d<z d

=zlogz + vz + O(x)

This is not a very good bound (the error might be as large as one of the terms!)
but shows that at least the first term is correct. The main drawback is we used
the estimate

1<d<z
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To reduce the error term, we use (Dirichlet’s) hyperbola trick

D =3 D 1=> 1=> > 1

1<n<zx 1<n<z ab=n ab<zx a<z b<z/a

The intuition is like this: > Len<s 7(n) counts the number of integral points
below the hyperbola k;ky, = z in the first quadrant. The old methods amounts
to an estimation by integral, while in the new method we count the number
of points lying below the line ky, = /2, add the number of points to the left
of k;, = x/?, and finally subtract those points in the box [0,2!/?]? which are
double counted.

Thus when summing over ab < z, we can sum over a < x'/? and b < z!/?
respectively, and then minus pairs a,b < y/z. Thus

ZT(n):Z 214—2 Zl— Z 1

l<n<z a<zl/?2 b<z/a b<zl/2 a<z/b a,b<zl/?
—9 Z LEJ — 22
a§x1/2 a
2 3 L4 0?) — 2+ O@'?)
a§z1/2

=2zlogz'/? 4 2y — x + O(2'/?)
=zlogz + (2y — 1)z + O(z'/?)
O

Remark. Improving this O(z'/?) error term is a famous and hard problem.
Probably O(z'/4+%)? The best result so far is O(z%3149).

A note on average order: T has average order log does not mean 7(n) < logn,
i.e. average order does not imply individual values.

Theorem 1.6. For alln
7(n) < nOlegiosn)

In particular T(n) <, n® for all € > 0 where <, means that |7(n)| < C_|n°]
eventually where C, is a constant depending on ¢.

As a side note, asymptotic bounds such as loglogn are quite common in
analytic number theory and here is how to reason with them: as n — oo, logn
grows slower than any polynomial, so loglogn grows slower than log P(n) for
any polynomial. Another way is to write n = €!°2™ and then

o( logn

nO(mgtegm) — exp(O( )-

loglog
Proof. T is multiplicative so enough to calculate at prime powers. 7(p¥) = k+1
soif n = p]fl «-pF" then 7(n) = H;l(ki +1). Let € > 0 to be chosen later and
consider the ratio

nE

7(n) ﬁ k, +1

P pki’f
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Now entering the trick: split into big and small cases. Note as p goes large,

];?:51 — 0. In particular if p > 2/¢ then
kbl R+l
pka 2k;

What about small p? It is important to remind ourselves that we're dealing
with primes and p can’t run below 2. In this case

k—|—1<k:+1<1
pks - 2ke -

this is because x + % < 2% forx > 0s0ch+e <2 ife < % (the details are not
so important compared to the conclusion that this can be bounded). Therefore

T(n) < ﬁ k1+1 < (1)7"(21/5) - (1)21/51
ne - pkie — \e ~ \e '

i=1,p,<21/¢

3

Now we need to choose an optimal €. Another trick: if we want to minimise
f(x) + g(x), choose x such that f(x) = g(z). Have

7(n) < nfe 2" = exp(elogn + 2Y/¢ log(1/¢)).
Choose ¢ such that logn ~ 2'/¢ (again, only a rough guess is needed), i.e.
£~ m and get

)210g10gn

7(n) < n Togtosn (loglogn
— pTeglesn exp((logn)'°82 logloglogn)

< no(ilogllog )

1.4 Estimates for the primes

Recall that
m(z) = #{primes <z} = Z L,(n)

b = 3 Am) o

1<n<zx

The second one is sometimes known as Chebyshev’s function. Prime number

theorem asserts that 7(x) ~ == or equivalently ¢ (x) ~ x (this equivalence will

be shown later).
Although Euclid’s prove in 300 BC the infinitude of prime, It was 1850 before
the correct magnitude of 7(x) was proved. Chebyshev showed that

m(x) =

T

log x
where f =< g means that ¢ < f < g.

IBehold what a wasteful bound we give in the last inequality! But that almost has no
effect in the final result.
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Theorem 1.7 (Chebyshev).

Y(x) < x.

Proof. First we’ll prove the lower bound, i.e. ¢)(x) > x. Recall that 1x A = log.
Here comes in a genuine! trick: find something that equals 1. Then ¢(z) =
> 1<, An) - 1 can be rearranged. We'll use the identity

o) = 2|5 ] +1

for z > 0. Either see it directly or a simple verification: if § = n + 6 where

0 €[0,1) then |£| =n and |z] = [2n +20] = 2n or 2n + 1. Then

vz 3 aw (7] -2(5])

1<n<z

Note that L%J = Zm<ﬁc/” 1

STAMm) Y 1-2> An) > 1

n<x m<z/n n<x m<z/2n

S Am) =2 > An)

nm<z nm<x/2

Y%

Write d = nm,

=3 1xAd)—2 Y 1xA(d)

d<z d<z/2

=> logd—2 > logd

d<z d<z/2

z log I 24 O(log z)

:xlogx—x+0(logx)—2<2 5 5 )

= (log2)z 4+ O(log x)
> T

For the upper bound,

for z € (1,2) so

ba)—w(z) = Y. A

z/2<n<wz

< 2 Ao ([z]=2[5])

1<n<x

< (log2)x 4+ O(log x)
Thus
P(z) = (P(z) = P(z/2)) + (Y(2/2) = (z/4)) + ...

<log2-(z+z/2+z/4+...)
=2log2-x

IRead unmotivated.

10
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Thus we have shown
(log2)x < ¢(x) < (log4)x.

Lemma 1.8.

1
Z in =logz + O(1).

p<z

Proof. Recall that log = 1% A so

Zlognz Z A(a) :ZA(a) Z 1

n<z ab<z a<x b<z/a
Sy
— Z: Ai“) + O(())
= xg # + O(x)

Note where we used Chebyshev’s bound. Since

Zlogaj =zlogx —x + O(log z),

n<x

have

A 1
Z % =logx — 1+ O( Oix) +0(1) =logz + O(1)
n<x

Remain to note the contribution from prime powers > 2 are “small”:

SO S ogn)
n=2

p<x n=2 p" p<zx
logp
= 2 _
p<z D D
=1
Syes
p=2
=0(1)
SO A |
Z n) :Z ng+0(1>
n<x n p<z p
Lemma 1.9. ¥(a)
T T
m(z) = log x O((logm)2)'

11
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T
logx

and prime number theorem m(x) ~ 5= is equiv-
ogx

In particular w(x) =
alent to ¥(x) ~ x.

Proof. Idea is to use partial summation: let

O(x) = Zlogp =7(z)logx — /w @dt.
1

Pz t

First problem: 1(x) sums over not only primes but also prime powers. We can
use a previous trick to remove contributions from prime powers:

)~ 6 =3 3 logp =30
k=2

k=2 pk<x
logz logz
<Y )y < S ek
k=2 k=2
< 2'2loga
Therefore
T o(t
Y(z) = m(x)logz + O(x'/? log ) _/ #dt
1
As 7T(t> < lofgtv
1
= (@) logz + O(c'/log) + 0</1 logt ™"
=7(z)logz + O(%)
For 7(t) < L7, note the trivial bound 7(t) <t so

Y(z) = w(x)logz + O(x'/?log z) + O(x)

so m(x)logx = O(z). Thus we used the trivial bound to get a better bound and
use that to do actual work. O

Lemma 1.10.

1 1
Z — =loglogz + b+ O(—)
e log
where b is some constant.

1
1<n<x n’

Compare to Y

Proof. Partial summation. Let

Az) =3 loip — logz + R(z)

p<z

where R(z) = O(1). Then (summing from 2 to prevent logt = 0)

1 Ax) A
Z p  logz +/2 t(logt)zdt

2<p<a P

1 v T OR(t)
=140 —
+ (logx)+/ tlogtdt+/ t(logt 2dt
2 2

12
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Note that f >dt exists, say C. Then

1 gt
1 - 1

3 7_1+C+O( )+1oglogx—10g10g2+0( Aozt
Py t(logt)

1

It turns out b can be expressed in terms of ~. O

Theorem 1.11 (Chebyshev). If w(z) ~ c=

logx

then ¢ = 1.

Note that this does not prove prime number theorem. Historically this is a
surprise: a following corollary says that if m(z) ~ m then A ~ 1. But

Legendre and Gauss et al have conjectured that A ~ 1.08 ..., just by looking up
the prime table.

Proof. Partial summation on Zp<

l.
L_nla) | [Ta),
Z T +/1 12

p<z p

If m(x) = (¢ + o(1)) 555 then
c o1
~ logx 0(10g:1:) + (c+0(1>)/1 tlogt
1
= O(@) + (¢ +0(1))loglogx
But 1
Z —=(1+0(1))loglogx
PSmp
soc=1. O

Lemma 1.12.

H (1 — 11)>_1 =clogz + O(1)

Pz

where ¢ is some constant.

Proof. We have only dealt with summations so far so take log,

logH (177> :—Zlog 177

p<x p<x
—ZZ
p<;c
-3 ZZ
p<w k>2p<w
=loglogx + ¢’ —1—0(103;1:).

13
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using log(1 —t) = —3_, %
To undo the log, note that e =14 O(z) for |z| <1 so

H (1 — ]1)_1 = clogxexp(O(@))

p<w
1
= clogz(1 + O(@))
=clogz + O(1)

It turns out that c = e ~ 1.78 ... O

1.4.1 Aside: Why is prime number theorem so hard?

It seems that we’ve made quite a progress without too much effort. But how
far are we from prime number theorem and if the answer is “quite far”, what
makes it so resistant to elementary methods?

Probabilistic heuristic: fix p prime, “probability” that a random n satisfies
p|nis %. What is the “probability” that n is prime then? n is a prime if and
only if n has no prime divisors p < n'/2. Guess that the events “divisble by p”
are independent, then “probability” that n is prime is roughly

(11>~ 1 21
p) " clogn'/2  clogn’

p<nl/2

Thus use some questionable squiggles,

9 1 2 z x
=5 "1 prime ~ - N logz 22
71'(:6) n prime c 7; log n c 10g T € log x

n<x

This constant is approximately 1.122 ..., which contradicts Chebyshev’s theorem.
Therefore somehow the heuristics is wrong: it gives 12% more prime than should.

One reason is that the error terms are so close to the main term that when we
do ~ they accummulate and excees the main term. Another reason is of course
that the “independence” of primes are completely false. From an analytic point
of view, this can be seen as saying that the “interference terms” are not so small
that they can be ignored.

This may explain why heuristics don’t work. But can we bound 7 by ele-
mentary methods? Recall that pu *log = A so

G(x) =Y An)

n<x

= Z wu(a)logh

ab<z

Zu(a) ( Z log b)
a<lzx b<z/a

Recall that
Z logm = zlogz — z + O(log x),

m<x

14
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but if we just plug this in we will get a trouble. Instead use another trick:
consider

Z 7(m) = zlogz + (20 — 1)z + O(z1/?).

m<x

Thus
/2

d(a) = Y ula) ( > ) —2y- + 0<jl/2>> .

b<z/a
The first term is (essentially px 7 = 1)

Y ula)r) =Y ula)

ab<z abc<Lz

=> > pla)

b<z ac<z/b

:Z Z wx 1(d)

b<z d<z/b
= |=]
=x+4+0(1)

and the first error term is

R GLTEEy pac

a<lz a<lz a

so still need to show that

xZ@ =0(1).

a<zx

Well it turns out that this is equivalent to prime number theorem! This constant
can be shown to be 1/¢(1). As ¢ has a pole at z = 1, this is indeed true.

1.5 Selberg’s identity and on elementary proof of prime
number theorem

Define Selberg’s function

Ay(n) = px (log)2(n) = 3 p(a)(logh)®.

ab=n

The idea is to prove “prime number theorem for A,” with elementary methods.
The intuition is that A, is like A multiplied by log and if we do the same
expansion as before, hopefully we can get

Z Ay (n) = main term + O(z),

n<x

but now this is now an acceptable error!

Lemma 1.13.
1. Ay(n) = A(n)logn+ A xA(n).
2. 0 < Ay(n) < (logn)?.

15



1 Elementary techniques

| 3 IfAy(n) # 0 then n has at most 2 distinct prime divisors.
Proof.

1. Use Mobius inversion suffices to show

> (A(d)logd + A+ A(d)) = (logn)?.

d|n

Start by expanding out,

> (A(d)logd + A = A(d)) =Y A(d)logd + > A(a)A(b)

d|n d|n abln
= Zlogd + ZA(@) ZA(b)
d|n aln b| %
Ziogin/a)
n
= Zlogd + ZA(d) log 3
d|n dln
= logn Z A(d)
d|n
= (logn)?

2. Ay(n) > 0 since both terms on RHS in 1 are nonnegative. Since

D" Ay(d) = (logn)?,

d|n
Ay(n) < (logn)*.
3. Note that if n is divisible by 2 distinct primes then A(n) = 0, and

AxA(n) = Z A(a)A(b) =0
abln

since at least one of @ or b has > 2 distinct prime divisors.

O

As such while A can be thought as the indicator function for numbers with
exactly 1 prime divisor, weighted by log, A, can be thought as the indicator
function for numbers with a pair of prime divisors, weighted by (log)?.

Theorem 1.14 (Selberg).

Z Ay(n) = 2zlogx 4+ O(x).

Proof.
D Ay(n) = px (log)*(n)
— 3" wla)(ogh)?
ab<z

I
(]
=
&
T~
g
5
=
[\v]
~—

16
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By partial summation,

Z (logm)? = z(logx)? — 2z logx + 2x + O((log x)?).

m<x

We want to use the same trick and substitute sum of divisor function for the
leading term. First we have to manufacture a x(logz)? term. By partial sum-
mation with

A(t) =Y 7(n) = tlogt + Ct + O(t'/?),

n<t
have
o rlm) _ A / AW,
= m T | t

*logt 1 T
=loga:+0+0<x*1/2)+/ %dmc/ gdt+0(/ ——dt)
1 1

1

1 2
- @ +Cyloga + Cy + Oz~ 1/?)

Since we dislike log, we replace it by qu 7(m) to get

z(log z)?

5 = Z T(m)% +Cy Z 7(m) + Chx + O(a:l/Q).

m<x m<x
Substituting back,
3 (logm)2=23%" T(m% +Cy Y r(m) + Cyz + O(z'?)

m<x m<x m<x

SO

S e =23 ul@ Y 0 S ) Y

n<x a<x b<z/a a<x b<z/a
T x1/2
+Cs ZM(G)* + O(Z —7z)-
a<lzx a a<lx a

We analyse the error terms one by one, starting from the back. First note that

1
x1/2 Z W = O(l‘).

a<z

Secondly
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Thirdly, (again essentially pu* 7 =1)

Youla) Y T)=Y pla) Y 1

a<zx b<z/a a<x b<z/a cd=b

= ula) Y 1
a<lx cd<z/a

= > wa)=>_ > ua)
acd<z d<z ac<z/d

= Z Z wx1(e)
d<z e<z/d

- Z 1
d<z

= O(z)

Collecting what we’ve done,

S M =2 @ Y T o)

n<z a<lz b<z/a
1
= QZCZ Tk 7(d) + O(x)
d<z

Recall that T=1%x1so px7=p*x1x1=1,

:21:254—0(@

d<z

=2zlogx + O(z)
O
1.5.1 *A 14-point plan to prove prime number theorem from Sel-
berg’s identity
Let

Y(x)
== —1
(o) = 2
Then prime number theorem is the statement that
lim [r(z)] = 0.

We will demonstrate how to count from 1 to 14 below. When you finished
counting, you will get prime number theorem as a byproduct.

1 Show that Selberg’s identity implies

r(z)logr = — Z #r(%) +0(1).

n<x

2 Consider 1 with x replaced by -, summing over m, show

r)log)? < 322 b )| 4 Oogan),

n<x

18



1 Elementary techniques

=]
Z Ay(n) = 2/ logtdt + O(zx).
1

n<x

S22y =2 [ s ofoga).

n tlogt

n<x

7 Let V(u) = r(e*). Show that
u?|V(u)] < 2/ / |V (t)|dtdv + O(u).
0o Yo

8 Show L
a = limsup |r(z)| < limsupf/ |V (t)|dt = B.
U
0

T—00 U— 00

9 - 14 If & > 0 then can show from 7 that 5 < «, contradiction. So & = 0. Prime
number theorem.
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2 Sieve methods

2 Sieve methods

Sieve of Eratosthenes: given natural numbers below 20, let’s cross out all mul-
tiples of 2 to get

1 2 3 A 5 6 7 8 9 W
11 ¥ 13 M 15 W 17 8 19 24

Next we cross out all multiples of 3 to get

1 2 3 A 5 K 7 F 8 M
11){13}41\&,}6’17}&19%

As v/20 < 5, we know that the numbers left on the list are prime (with the
exception of 1). Our interest is in using the sieve to count things: we can find
how many numbers are left, which by definition are those primes below 20 that
are not used as sieves, by inclusion-exclusion principle:

o= 2] (2] 2
=20—10—6+3

=7

By the way if there are more sieves then we naturally include more terms in the
inclusion-exclusion expansion. Note that the coefficient/sign in front of each
term is precisely the Mobius function of the denominator.

2.1 Setup

Consider A C N finite, which is the set to be sifted. Let P be a set of primes,
which are those we sift out by. Usually P is the set of all primes. Let z be a
sifting limit: we sift all primes in P that are smaller than z. A sifting function

S(A, P;z) = Z Lin, (2))=1

neA
where P(z) = Hpep,pqp. The goal is to estimate S(A, P; z).
For d, let
AdZ{TLEAId|TL}.
Write

d
|Ayl = %XJFRCZ

where fis completely multiplicative (f(mn) = f(m)f(n) for all m,n) and f(d) >
0 for all d. Note that

1
|M:ﬁ%X+&:X+&
Think of R, as the remainder term, X is roughly the size of A. Extending this
analogy, for general d, R, is the “error” term and % measures the number of

elements in the 0 residue class of d, assuming they are distributed uniformly.
Then f(d) is a factor that says how the residue class is actually distributed.

20



2 Sieve methods

We choose fso that f(p) =0if p & P(so R, =|A,]). Finally let

wite) =T (1- 77}

peP
p<z

the probability that it is not divisible by any of the p.
Example.

1. Sieve of Eratosthenes: A = (z,z + y] NN and P is the set of all primes.
Then

Ad = | 2| - [5] = 222 -2 om) = Y+ oq)

so f(d) =1and R; = O(1). Have
S(A,Piz)=#{z<n<z+y:p|n = p>=z}.
For example if z ~ (z + y)'/? then
S(A,P;z) = m(x +y) —n(z) + O((x +y)/?).
2. Let A={1<n<y:n=a mod q}. Then

Ad:{lgmgz:dm:a mod ¢}

The congruence has solutions if and only if (d, q) | a. Thus

1A = {(Zﬁ)y +0((d,q)) (d.q)|a

0((d,q)) otherwise

So here X = % and

0 otherwise

f(d):{w,q) (d.q)|a

3. Count twin primes: let A = {n(n+2):1 <n <z} and let Pbe all primes
except 2. So p | n(n + 2) if and only if n =0 or 2 mod p. Thus

2x
|Ap\ = ; + O(1).

Thus f(p) = 2. By complete multiplicity, f(d) = 2<4) if 2 } d. Have

S(A,P;z'/?) = #{1 < p <z :p,p+ 2 both primes} + O(z/?)
() + O(a'/?)

We would expect my(x) & (10#)2' We’ll prove upper bound using sieves.
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2 Sieve methods

Theorem 2.1 (sieve of Eratosthenes-Legendre).

S(A, P;z) = XWp(2) 4+ O( Z IRy)).
d|P(z

Proof.

S(A, P;z) = Z Lin,P(2)=1

neA

> >

neAd|(n,P(z))

> )

neA dn
d|lP(2)

d|P(z) neA

Y uld)Ay

d|P(z)

=X Z MDLD S pia)r,

d|P(z d|P(z)

o (1 fif) (3

pEP,p<z

Corollary 2.2.
Y

loglogy

r(@ +y) — m(2) <

By taking x = 0 we see this is much worse bound in y than Chebyshev. On the
other hand, however, we get a uniform bound independent of x!

Proof. In example 1, X =y, f =1 and |R,| < 1. Thus

Wp(z) = H (1 — %) < (log )™t

p<z

and

IR < > 1<2f

d|P(z) d| P(z)
SO y y

— LK — 4+ 2P K

@ +y) — (@) log 2z * loglogy

by letting z = log y. O
2.2 Selberg’s sieve
Usmg sieve of Eratosthenes-Legendre, we only get —-— 1nstead of the expected

logy What prevents us from getting the result is that we can’t take z =y —
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2 Sieve methods

otherwise the error term will be O(2%) = O(2¥), which is much bigger than the
main term.

The problem is that we have to consider 2% many divisors of P(z) so get 27
many error terms. However, we can design a different sieve, and only consider
those divisors which are small, say < D. The key part of Eratosthenes-Legendre

sieve is
Lin,Plz)=1 = Z w(d).
d|(n,P(z))

However, for an upper bound, it is enough to use any function F such that

F(n)>{1 n=1

0 otherwise

Selberg’s observation was that if (\;) is any sequence of reals with A\; =1 then

F(n) = (Z )\d> 2

d|n

works.

We assume that 0 < f(p) < p for p € P, which is a reasonable assumption
for the sieve to be “nontrivial” (if f(p) = 0 then the sieve does nothing and we
may well just remove p from P. If f(p) = p then it sifts out everything!) The
let us define a new multiplicative function g such that

g(p)=<1_f;p)>l_1:pf(m

Theorem 2.3 (Selberg’s sieve). For all t,

X
+ Z 3R,
G(t,2) i
d<t?

S(A,P;z) <

where

Q
-
N
S~—
[
Q
~—
ISH
S~—

d|P(2)
d<t

Recall that Wp = [[pep(l — %) so expected size of S(A, P;z) is XWp.

p<z
Note that as t — oo,

f\ ' 1
Gtz d) = 1 = 1——= E——
3= 3 gt =TT+ o) H( ) -

Let’s apply our new machinery:

Corollary 2.4. For all z,y,

Y

m(x+y) —7n(z) K gy
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2 Sieve methods

Proof. Let A = {x < n < z+y},f(p) = 1,R; = O(1) and X = y. As
g(p)=p%=ﬁsog(d)=ﬁ,

=2 Ilw-1"

d|P(z) pld
d<z
T2 q

:ZHZk

d=p;-p,.<zi=1 k= 1 Pi
> 1
kq k

piPp<zk,=1 D1 " Dr’
1<i<r

1
= Z — square-free part of n < z

=
d<z
> log 2z

so the main term < ->-. Note that
39 < 1,(d) <, d®

from example sheet 1 so the error term is

D BUIR < 15 1 1 = e

d|P(t) d<t?
d<t?

by setting t = z. Thus

S(A,P;z) « —L— 4 224 « L
log z logy

by taking z = y*/3. O

Proof of Selberg’s sieve. Let (A;) be a sequence of reals with A; = 1, to be
chosen later. Then

S(A,P;2) =Y 1 paye

neA

2
33 )
neA \d|(n,P(z))

Z >‘d/\ Zldm eln

d,e|P(z) neA
= Z Ad/\e|"4[d,e]|
d,e|P(z)
f([de])
=X > M dd Z AaAeRig
d,e|P(z) ’ d,e|P(z

We'll choose A such that [A;] <1 and A; =0 if d > ¢. Then

ST AR < D IRyl < Z IR, |Zlde]

d,e|P(z) d,e<t n|P(z
d,e|P(z) n<t2
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2 Sieve methods

and since n is square-free,
> Lo =37
d,e

so the error term is settled.
Now to the main term. Let

([d
Z A\, Ei .€))
d,e|P(z) ’ 6]
Write [d, e] = acb where d = ac,e = be and (a,b) = (b,¢) = (a,c¢) = 1. We also
require A\; = 0 if d is not square-free so the last two conditions are automatically
satisfied, leaving the notations a bit clearer.

V= Z Z f ab )‘ac )‘bc

c|P(z ab|P(z)
(ab)
-3 I 3 TRIR S
- b H ac”be
c|P(z ab|P(z) dla,d|b

|
=

=
S—

2
Z f(n))\n) write ac =n
) on

|
=
&
kﬁ
S o
\./
<
QN
U

d|P(z) c|P(z
— d _c 2

The term in the brackets is a convolution so we want to simply it. Note that
both functions are multiplicative so suffice to work out the primes. For prime

D,
R S
2 5 = 0 = )

and thus for all k | P(z)

c 1
Z M(@m = m

Note that if £ > ¢ then y,, = 0. Thus

Z yl%

v= S Y

Kpc 9(R)
k<t

We want to choose V as small as possible. The idea is to find a lower bound for
V and use Cauchy-Schwarz to find the condition on the summands.
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2 Sieve methods

Note that we have now expressed V in terms of y,,, which is determined by
)\d:

n-

f(n)

ve= 2 A
kln|P(2)

We would like to invert the relation, so that we can directly control y,. Use a

Mobius inversion heuristics, for a fixed d,

> =Y wm) Y 10,

d|k|P(z) k|P(2) n|P(z)

(=)

d|kln

For the last summation, note that k = de is square-free so

S k) = u(d) S ple) = {’0‘(‘” "

dlkln e
by multiplicativity. Thus

> utky, = ),

dlk| P(z)

Thus instead of choosing \;, we can choose y, to make V small.
Recall that A\; = 1 so must have

Z u(k)y, = 1.

k| P(z)
Thus
2
1
1= p(k)ypg (k)2 - —~
k;(z) ’ g(k)1/2
k<t
y2
Sy
kP (2) kP I
k<t k<t

=GV

where G = G(t, z) by Cauchy-Schwarz, with equaility if and only if there exists
¢ such that for all k,

i.e.
Yp = cp(k)g(k)
for k < t. To find ¢, use the normalisation condition
1=¢ 3 ulk)?g(k) = G
k|P(z)

k<t

so choose ¢ = é Check that
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2 Sieve methods

2. Ay =0ifd >t

3. Ay = 0 if d is square-free (lecturer said this condition is actually not
necessary).

4. |My4] < 1. Can be checked as follow:

d
Ag = p(d) Z (k) yp
f(d) d|k|P(2)
d 1
s 9(k).
fd) G d|k|P(2)
Note that
G= Y gle
e|P(z)
e<t
= Z Z (e) for fixed d
k|d e\P
<t
(d7e):
=Y gk) > g(m)
k|d m|P(z)
(m,d)=1
m<t/k
>N glk) Y g(m)
k|d m|P(z)
(m,d)=1
m<t/d
Note that for prime p,
f(p) p p
k)=1+ =
kzlpg( ) p—fp)  p—fp) f(p)g(p>
SO p d
G>——g(d)( Y gm Z = |AlG
(m,d)=1
m<t/d
so [Agq] < 1.

Theorem 2.5 (Brun). Let my(z) = #{1 < n < z : n,n + 2 are prime}.

Then
T

(logz)?’

my(x) K

Proof. Let A={n(n+2):1<n <a}, Pbe the the set of all primes except 2.
Have

A = #{l<n<a:d|nn+2)}
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2 Sieve methods

If d = py -+ p, is odd and square-free then d | n(n+2) if and only if p, | n(n+1)
for all 4, if and only if n = 0 or —2 mod p, for all ¢, and Chinese remainder
theorem, if and only if n lies in one of 2¢(9) many residue classes mod d. Thus

9w(d)

[Aal = X +0(29)

so f(d) = 2¢4) and R, <« 2@ for d odd square-free. By Selberg’s sieve, with

t=z=a'4

my(z) <#{1<n<z:p|nn+2) = p=2orp>z"/*} + 0
= S(A, P;z'/*) + O(z'/4)

T
< T Lo(Y geld
C(2) (d\;@ )

d<z?

As before
Z 6(d) < ,2+0(1) — 21/2+0(1)

d<z?
To finish the proof need to show G(z,z2) > (logz)?. Note that g(2) = 2 and

f(p) 2 2

T p—flp) p-2 2p—l’

so if d is odd and square-free then

9(p)

() 9w(d)
>
= o)
SO
2w(d)
G(z,2) > —_—
&2) 2 W

d odd, square-free
- ¥ 2w<d>ﬁ <1+1+...>
= ‘ 5
d=py-p,.<z i=1 \Di D;

2w(d)

zzd

d<z

By partial summation, it’s enough to show Zd<z 2¢(d) > zlog z. Recall that to
show

Z 7(d) > zlog z

d<z

we used 7 = 1% 1. So we need to write 2¢(™) as a convolution of multiplicative
functions. Suppose

200 = 3" f(d)g(%)

dln
where f, g are multiplicative. We can actually write down values of f at prime
powers:
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2 Sieve methods

p:2=f(p)+gp)
p? :2=g(p") + f®*) + f(p)g(p).
Let’s say try f =7, so g(p) = 0, g(p?) = —1, g(p*) = 0 for k > 3. Therefore

0 n not a square
g9(n) =

p(d) n=d?
and n
240 = 3™ (d)g(2).
d|n
Therefore
D 2D =Y "g(a) > 7(b)
d<z a<z b<z/a
z z z
= “log=4+(2v—1)=+0
> 9(@) (Zlog g + (2= 17 +0(/3/a))
z z z 1
=) gla)=log=+C» gla)=+0(z1/2) —)
az;z a a ; a GZ:Z al/?
<Lz
z z
= Z u(d)ﬁ logz —2 Z ,u(d)ﬁ logd4+0(z)
d<z1/2 d<z1/2
<zY, 1) %«z
Note
p(d) o~ pld) p(d)
2 Z a2z Z d2
d<z1/2 d=1 d>2z1/2
>+ !
= C 5
d>z1/2 d2
= C + O( 21/2 )
SO

Z 2¢ld) = czlog z + O(z) > zlog 2.

d<z

Remains to show ¢ > 0. Either note LHS can’t be O(z), or calculate the first
couple of terms in the series, or note that ¢ = % > 0. O

2.3 Combinatorial sieve

Selberg’s sieve is an upper bound sieve, while sieve of Eratosthenes uses the
inclusion-exclusion principle

S(A,Pi2) = A= > A+ Al — ..
P P#q

to get a precise number. However this requires us to keep track of every term,
thus resulting in an accummulation of error. The idea of a combinatorial sieve
is to “truncate” the sieve process.
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2 Sieve methods

Lemma 2.6 (Buchstab formula).
S(A, Pi2) = |A] = 3 S(A,, Pip).
p|P(2)

Proof. Rearrange, required to show

A= S(A,P;2)+ Y S(4,,Pip) =S+ 3 S,

p|P(z) p|P(z)
where
Si=#{neA:p|npeP = p>=z}
Sp:#{neA:n:mp,q|n,qu:> q>p}

Every n € A is either in the set counted by S; or has some prime divisors
from P(z). If p is the least such prime divisor then n € S§,. The S,’s are

disjoint. O
Similarly,
Lemma 2.7. o)
p
1= > My
P P
where recall that
Wiz =[] (1f<p)>.
plP(2) P
Proof. Exercise. ]

Corollary 2.8. For anyr > 1,

S(AP;2) = 3 pld) Ay + (— Z (Ag, P €(d))

d|P(z)
w(d)<r

”N

where £(d) is the least prime divisor of d.

Proof. Induction on r = 1. When r = 1 this is just Buchstab’s formula. For
inductive step, use

S(Ag, Pi€(d)) = |Agl = > S(Agy, Pip)
peP
p<{(d)

SO

(=D > | 14dl = > S(4,4,Pip)

d|P(z) peP
w(d)=r p<t(d)
= > u@] Ay + (=D Y S(A,, Pil(e)
d|P(z) e|P(z)
w(d)=r w(e)=r+1
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2 Sieve methods

In particular, if r is even then

S(A,P;z) = Y u(d)|A]
d|P(2)
w(d)<r

and similarly if r is odd we get an upper bound.

Theorem 2.9 (Brun’s pure sieve). If r > 6log W( then

S(A,P;z) = XW(2) + 027X + Y |R,).

d|P(z)
d<z"

Brun’s pure sieve has the same main term as sieve of Erathosthenes, but the
error term is split into the fixed bit 277X and an accummulation part truncated
at 2".

Proof. Recall that from iterating Buchstab’s formula

S(A,Piz) = Y p(d)| A+ (1) Y S(Ay Pié(d))

d|P(2) d|P(z)
w(d)<r w(d)=r
d
=X Y pd) ==+ > pd)Ry+(=1)" Y S(Ay, Pié(d))
d|P(z) d|P(z) d|P(z)
w(d)<r w(d)<r w(d)=r

By the trivial bounds
0<S(A4, P;L(d) <|A,
have
f(d)
S(A,P;z) =X Z T+O< SRS+ D 1Al
d|P(z d|P(z) d|P(z)
(d)<7" w(d)<r w(d)=r

By Buchstab again, applied to W(z2),

wie = Y w@ @y i S w ! Pwieay

d|P(z) d|P(z)
w(d)<r w(d)=r
SO d
S(A,P;z) = 2) + O( Z Ryl + > 1Agl+X Z
d|P(z d|P(z) d|P(z
(d)<"" w(d)=r w(d)=
The error term is
f f(d)
Z [Ral + Z [Ad + X >
d|P(z d|P(z d|P(2)
w(d)<7‘ w(d):r w(d)=r
<X Z f—+ Z IRy
d|P(z d|P(z
w(d):r w(d)<r
f(d)
<X > 0 +Z|Rd| asd|P(z) =[] P
d|P(z) d|P(z peP
w(d)=r d<z p<z
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2 Sieve methods

Remains to show

d
ZM

d|P(z)
w(d)=r

We need the condition on r. Note that

K27

d :
Z %: Z f(py) - f(p,)

d|P(2) prp, P17 Pr
w(d)=r gt‘i};
< l' ( Z f(P))
" \pipx) P
< (6 Z f(P))
"pip) P

Furthermore

Z @S Z —log(l—%)Z—logW(z)

d|P(z)
w(d)=r

Finally note that 2e < 6. O

Recall that Selberg’s sieve shows that 7, (z) < 1 In the twin prime

T _
logz)? "

seive setting, W(z) < m. So in Brun’s sieve, need to take r > 2loglog z. If

r = Cloglog z for C large enough then

X
(1og Z) 100 °

The main term is > 102;. As |R,| « 2¢@ = g°V) Thus

Z <« Lr+o(1) <« 42loglog z+o(1)

d|P(z)
d<z"

so we need to choose a z. For this to be o ( need to choose z ~ exp((log z)'/4).

T
log z)2?
So far so good. Now we need to establish the relation between m,(z) and

S(A,P;z)={1<n<z:p|nn+2) = p>=z}

so p > z'/2, so this counts only “large” primes
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2 Sieve methods

Corollary 2.10. For any z < exp(o(lolgof)zgﬂ)),

X

#{l1<n<z:p|ln = p>z}~e? .
log z

Remark.

1. In particular, z = (logx)* is allowed for any A, but z = x¢ for any ¢ > 0
is not allowed.

2. In particular, we can’t count primes like this as z = 2/2. Recall heuristic
from before says if this asymptotic were correct for primes, then

~ 2e 7
m(x) e log s

which contradicts prime number theorem.

This is telling us that for primes, the error term is genuinely large, not
because of the estimates. Or in other words, W(z) is not a very good
bound, intrinsic

Proof. Again use A={1<n <z} so f(d) =1,|R;| < 1. Then

1 e 7 1
+ o

)

B log z log 2z

SO

S(A,P;z)=#{1<n<z:p|n = p>=z}

X X
=e 7 o2 R
¢ iogs T liggs TOC T+ > IR,
da\li@

if r > 6|log W(z)|, so r > 1001loglog z is fine. Have

27"z < (log z) (10821005, — o( ’

)

log z
and, choose r = [1001og log z],

Z |Rd‘ < Z 1«2 < 9500(loglog z) log =
d|P(z) d<z"
d<z"

Remains to note that if

log x logx
1 = = F
08 % 0(log logac) loglog x (z)

then this is

1
log zloglog z = o(ﬂ loglogz) = o(log )
loglog x
SO
2500(10glogz) logz l.l/lO _ 0( r )
- log z
if « is large enough. O
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8 The Riemann zeta function

3 The Riemann zeta function

As a tradition, in analytic number theory we write s = o + it for a complex
number s where o and t are the real and imaginary part respectively. First, a
trivial remark: if n € N then

ns = eslogn =no . eitlogn.

The Riemann zeta function is defined for o > 1 by

3.1 Dirichlet series

For any arithmetic f : N — C, we have a Dirichlet series

L) = 31

s
=1 n

at least formally.

Lemma 3.1. For any f there is an abscissa of convergence o, such that
1. if o <o, then L(s) diverges,

2. if 0 > o, then Lf(s) converges uniformly in some neighbourhood of s.
In particular L(s) is holomorphic at s.

Proof. Tt is enough to show that if L ,(s) converges at s, and o = o, then there
is a neighbourhood of s on which L converges uniformly, as then we can take

0. =inf{o : L(s) converges}.
Let
R(u) = _ f(n)n"*o.

n>u

By partial summation

N
>t = RODMY — RN —(sg—s) [ Rluuto=du
M<n<N M

If |[R(u)| < e for all w > M then

N

s —o— |so — 5|
Z f(n)n=* 325+€|50—8\/ w0 oy < (2 4+ ———)e.
M<n<N M |0 — o
Note that there is a neighbourhood of s in which “23:2“ <g1s03 @ converges
uniformly here. O

34



8 The Riemann zeta function

Lemma 3.2. If

3 fT(;L) _ N y(n)

nS

for all s in some half plane 0 > o4 € R then f(n) = g(n) for all n.

Proof. Enough to consider ) % = 0 for all ¢ > 0,. Suppose exists n such
that f(n) # 0. Let N be the least such that f(N) # 0. Since >  _ ) —

have "
0= e 9

n>N

so |f(n)| « n? and so the series

> S

n>N
is absolutely convergent. So since ffﬂ) — 0 as 0 — oo, RHS also converges to 0
so f(N) =0. O

Lemma 3.3. If Ly(s) and L,(s) are both absolutely convergent at s then

Lpig(s) = i Lxot)

s
n=1 n

is also absolutely convergent at s and equals to L(s)L,(s).

Proof. Because of absolute convergence we can simply multiply them term-by-
term:

(Z féz)) ( 97(173)
n=1 n=1

=y Jmslm) S LS g )
(nm) —~k

n,m=1 1 nm=~k

O

Lemma 3.4 (Euler product). If f is multiplicative and L (s) is absolutely
convergent at s then

Lf(s):H<1+J;Ef)+J¥3+...>.

P

Proof. Informally we just multiply everything and apply fundamental theorem
of arithmetics. However, we have to be more careful when dealing with this
infinite product. Let y be arbitrary,

}:[y <1+ f;f) +> = Vp%q fT(;‘).
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8 The Riemann zeta function

Then
H<1+J;£f)+...>—ifr(§> < ¥ |f$>‘ SZUT(LZ)'—W
p<y n=t ﬂplnrfpz.u n=y
as n — oo. O
For o > 1,
=1
C(s) = 2 s

defines a holomorphic function and converges absolutely for o > 1. A word
of caution: this series is only define for ¢ > 1. We'll in later part of the
course analytically extend ¢ beyond the line. Also note that for general Dirichlet
series, uniform convergence and absolute convergence near a point do not imply
each other, although for this particular series they do. Because of uniform
convergence this function has derivative

= -3

nS

Since 1 is completely multiplicative, we may apply Euler product

11 1 1\!
1+7s+ 2s+.“: 7s:<1_7s)
A L—p p
S0
1 71
(s) = H (1 - j)
) p
Thus
1 ( 1 ) wu(n)
EE— ]_ —_ — =
¢(s) 1;[ p* ; n*
1 A(n) 1
I =—>» log(l——)= = —
0g C(s) Z og(1— —) Z; = 2 logn
) _ 5~ Am)
¢(s) ne
We can write many functions and identities in terms of ((s). For example
¢'(s) /
=('(s
Fy G =)
corresponds to
A x1 =log,
and the equivalence
1
Lf.CZLg <~ Lf:E'Lg

corresponds to Mobius inversion.
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8 The Riemann zeta function

A callback to a previous discussion on elementary proof of prime number
theorem: recall on page 15, if we can show

- 0-5) =258

converges to 0 at s = 1 then we can prove prime number theorem. We can show
that if it converges at 0 then it does converge to 0, but the difficulty is to show
it converges at all!

Lemma 3.5. Foro > 1,

C(s) =1+ — —s/ B
1

> wme

1<n<z

xs ts+1
— Ll’J [t75+1]z _ ‘ {t} dt
s s—1 ! |ttt
oo
t
5 {t} dt asx — oo
s—1 ts+1

The integral converges absolutely for ¢ > 0, so this gives

1

() = — + F(s)

where F'(s) is holomorphic in o > 0. Thus we define
1 = A{t}
s—1 —s‘[ t”ldt
for o > 0.

¢(s) is meromorphic in ¢ > 0, with only a simple pole at s = 1. It is possible
to analytically continue ( to the entire complex plane, with only a single pole
at 1. But for the purpose of this course our definition suffices as all interesting
things we study happen on this half plane.

C(s) =1+

Corollary 3.6. For 0 <o <1,

1 o

o1 <o

In particular, ((o) <0 for 0 < o <1 (in particular nonzero).
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3 The Riemann zeta function

Proof. Write

> {t}
(o) =1+ — +a/1 ot
and note o (4 )
0< / th < —.
A ta+1 o

Corollary 3.7. For 0 <6 <o <2, |t| <1,

1
((s) = == + O4(1)
uniformly.
Proof.
1 = {t}
C(S)_S—l_l_sl ts+1dt

— o)+ 05(/0o —r

= 0(1) + 04(1)

I Lemma 3.8. ( #0 foro > 1.

Proof. For o > 1,

o=T(-2)"

S
» p
and the infinite product converges, and no factors are zero.

Again we stress that the Euler product is only valid for o > 1.

Conjecture (Riemann hypothesis). If ((s) = 0 and o > 0 then ¢ = 3.

A~

N[ =
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8 The Riemann zeta function

3.2 Prime number theorem

Let a(s) = > %=, Partial summation lets us write a(s) in terms of A(z) =
> ey Gn- I 0 >max(0,0,) then

a(s) = 5/0C igl)dt

This is Mellin transform.

What about the converse? As a particular case, if a(s) = _CC/((;; then a,, =

A(n) so

Alz) =) An) = ().
n<x
The point of analytic number theory is to study Dirichlet series using analytic
methods and convert them back to statements about arithmetic functions.
The converse is given by Perron’s formula, which roughly says that

Alz) = - /mooa(s)xsds

T omi ) 5
T—100
for o > max(0, o,).
Before we prove the formula, we see how this leads to prime number theorem.
By Perron’s formula,

Pla) =

o+ico ’ s
i) ‘Ca(;)xs o
g—100
for o > 1.
We see that the integrand has two poles, on at the origin and the other at 1.
Our first attempt would be to integrate to the right of the critical line as there
is no singularity.

1

|
|
|
|
!
!
|
|
|
|
ZOS
|
|
|
|
!
!
|
|
|
|

However we quickly run into problems. As the integrand is holomorphic in
this region, by Cauchy’s theorem v (z) equals to the contribution of the other
segments (up to a sign). The best we can do is 1(z) = O(x'*¢), which, in view
of what we have done, totally trivial. Thus we can’t simply consider a contour
ino > 1.

Instead we have to cross the critial line, whih gives O(z!~¢), which is what
we need. But now we need to understand ¢ on/to the left of the critial line.
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8 The Riemann zeta function

We can summarise this intuition with the slogan “prime number theorem is
equivalent to the statment that there is no zeroes on ¢ = 1.

Lemma 3.9. If o, > 0 then

1 oo+iT y® 1 y>1 Y7o

— —ds = )
2mi roiT

Note that we omit the case y = 1.

Proof. Use a rectangular contour that lies either to the left or to the right of
the line ¢ = 0, depending on y, which then determines whether the residue at
0 is picked up. The details are left as an exercise. O

This gives a way to express indicator function in integral form.

Theorem 3.10 (Perron’s formula). Suppose a(s) = . %= is absolutely
convergent for o > o,. If 0y > max(0,0,) and x is not an integer then

1 UO+’LT xs

n<x m og—tT §
2901 la,,| 270 N ay, |
9] n s n
o e
5 <n<2z n=1

Proof. Since oy > 0 we can write

b= g [T oI

T omi ), T|log £|
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8 The Riemann zeta function

SO

: a’TL = : a’TL n<x
n<x
UOJrzT
27 Z /
[os)

g ==
— n%|log &

E
1 09— 7,T
=— — Z —ds+ E absolute convergence
2mi oo +iT §
JO+iT S
= L a(s)x—ds +E
2mi ro—iT s

For the error term E, there is

1. contribution from n < § or n > 2z, where |log £| > 1, is

n”o '

2. contribution from § <n < 2z, we write

—x

X n
\logﬁl = |log(1 + )l

and |log(1 + d)| < |6] uniformly for —1 < < 1. So

90

x |a.,] z7 |a, | 20 |a, |
=— e e
T Z no|log £| T Z no|x — n| T |z —n|

F<n<2w 5 <n<2z F<n<2w

O

We will now prove a strong form of the prime number theorem, assuming

1. there exists ¢ > 0 such that if 0 > 1 — iy and |t| > £ then ((s) # 0
and ¢(s)
s
< log([t| +4).
o < log([ +4)

2. ((s)¢0for§§o§1,|t|gg.

3. Whenever [t| < I and

C
gt +4) =7 =2
have ¢(s) )
S
(s) = — +0(1)
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8 The Riemann zeta function

Theorem 3.11 (prime number theorem). There exists ¢ > 0 such that

xT

Y Tl

In particular (x) ~ x.

This error is better than -Z— but worse than x17¢ for any e > 0, which is
precisely because we can’t find an absolute bound on the zero-free region near
the critical line.

Proof. Assume that x = N —I— for some N. By Perron’s formula, for any
1<oy <2,

w(x) =Y An)
_ i oo+iT </<S> xids
2mi Jy ¢(s) s
x A(n) o~ An)
+O(?£<;<2z |.’17—’I’L| + T n=1 nao )
2 = —RZ_/

In the error term,

1
R, < log - T > T |<<10g17 T > —<< T(logx)

F<n<2z 1<m<49c
and using assumption 3,
z0

1
R, €« —
? T ‘Uo_1|

log z

. _ 1
1f UO = 1 + Togz "
Let C be the rectangular contour with vertices {o, 4+ iT, 0y &+ iT'} where

o, < 1is to be chosen later. Then
1 ¢(s)z

2 ds —
o e

e Cls) s
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8 The Riemann zeta function

by residue theorem and assumption 1 and 2.
Remains to bound the other components of the integral.

ot r(s) g 1 g logT T
— —ds < 1o T/ —du K —2% (0, —0y) < =
/UOHT C(s) s © oy L T =0l T

where the last step is because we assumed oy =1 — &7 (7)
For the other term,

o, +iT ’ s o—iT o +iT 1
/ —C () L ds < logT/ T du —|—/ 0 —
o, —iT C(S) s |01 - 1‘

o,—iT o, —iT
91

< z% logT + °
1—0y

<K %1 1logT
Thus
(@) = 2+ O(Z(logx)* + "7 (log 1))

=+ O(W) if T = exp(cy/logz)

If you are curious how we chose 7, it is the same trick as in chapter 1: want to
have 7 ~ 1T g0

log x

logT”

i.e. logT =~ +/logx. O

logT ~

3.3 Zero-free region

Firstly, near s = 1, things are easy because of the pole.

Theorem 3.12. If o > # then ¢(s) # 0. In particular, ((s) # 0. If
S<o<1t| <t

Also
1
¢(s) = P o)
_CC'((;) _ %1 +o(1)

SO
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8 The Riemann zeta function

soif o > |s—1|, {(s) #0, i.e. ifo<%. Also
\<>——|<1+||/ L au—o()

so same holds for —= by general theory of holomorphic functions. O

For |t| large, we need a different idea. How do we show that there aren’t
zeros on ¢ = 17 Suppose there is a zero, of order m, at 1 + i¢. Then

—CC/(l-i-(S—H't) ~

A(n) m
Z pltoric 5"

m
§

SO

Absolute value of LHS

A ’
<Y =0~

so this shows m < 1. If there is a zero, it is a simple zero.

This also tells us 1 )
OgPD 11 ogp
> P L - RS
P

o
cos(tlogp) ~ —1

for almost all p, so p** ~ —1,p%* ~ 1 for almost all p, so there exists a pole at
1 + 2it, which is a contradiction.

We now present a rigorous proof. Before that we need to take a detour in
complex analysis.

Lemma 3.13 (Borel-Carathéodory lemma). If f is holomorphic on |z| < R
and f(0) =0. If Re f(z) < M for all |z| < R, then for any r < R,

sup(|f(2)], | (2)]) <, g M.

[t|<r

If we replace Re f(z) by |f(2)| then this is just maximum value principle.

Proof. Let

f(2)
2(2M — f(2))
This is holomorphic in |z| < R. If |z| = R then

2M — f(2)] = [f(2)]

9(z) =

and so

&1

9) < B0 < 7
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8 The Riemann zeta function

So for all |z| < r < R, by maximum modules,

__ 1) 1
9= ifom — 511 < R
S0
R|f(2)] < r[2M — f(2)] < 2Mr +7|f(2)]
o o1f
-
@) s g < M.
For f’(z), we use Cauchy’s formula
oy L f(w)
)=~ /w el
for r <’ < R. (coefficient 27) O

Lemma 3.14. If f is holomorphic on a domain including |z| <1, |f(2)| < M
in that disc, and f(0) #0. If 0 <r < R <1 then for|z| <r

f/ K

where z;, ranges over all zeros of f in |z| < R.

c.f. fundamental theorem of algebra, and holomorphicity. This depends cru-
cially on C being algebraically closed.

Proof. Suppose wlog f(0) = 1. Say first there are no zeros. Consider h(z) =
log f(2) and
Reh(z) =log|f(2)| < log M

so by Borel-Carathéodory lemma,
W (2)] = || < log M
f(2)

so done.
In general, we define an auxillary function g with no zeros. Let

BRTE) | fi
g(z) = — .
s (2= 2R
The kth factor has a pole at z = z;, and on |z| = R, has modulus 1 so on |z| < R,

lg(z)] < M. In particular, |g(0)| = Hszl % < M. Now let

and
Re h(z) = log|g(z)| —log|g(0)| < log M
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8 The Riemann zeta function

for |z| < R. By Borel-Carathéodory lemma,

K K 1
n _7 log M
W (2)] | ;z—zk ;z—m/zk« og
o
f—/(z)*i ! ,i ! + O(log M)
f Sroa AR
and if |z| < r,
R? R?
|z——|>——|z|>R—r>>1
%k

and K < log M.

Corollary 3.15. If |t| > % and % <o <2 then

¢ 1
=(s) = —— + O(log|t
() = 2 5=, + Olloglt)
where p is over all zeros in
3 5
— (24t < 2.
=G+l <g

| Theorem 3.16. There exists ¢ > 0 such that ((s) # 0 if o > 1 — 5.

Proof. Assume ((p) = 0 where p = o +it. Let 6 > 0 be chosen later.

¢ 1 1
1464it) = —— 4 O(logt
T o+it) = Jr;;‘p1+6+it—p/+o(og>

(assuming that o is sufficiently close to 1). Then

¢ . 1 1
(140 t) = - _— logt
ReC( + 6+ 1it) Rel+6+it—p+Rep%:p1+6+it—p’+O<Og)

1
= m + O(logt) + (> 0)

since Rep’ <1, Re m > 0. Thus

ReS (146 +it) >

c + O(logt)

1+6—0
Similarly

/7

Re %(1 + d + 2it) > O(logt).
Also ¢ )
Z<1 +0) = -3 +0(1).
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8 The Riemann zeta function

Here comes the clever bit:

¢ ¢
Re(—3=>(1+6) — 4=
( R (1+9) R

NS 3 4
(L0 it) = S (14 8+ 2if)) < 5 = e

c + O(logt)

()

As § — 0, T is going to be negative. On the other hand, it is a a Dirichlet series

A A A
t= Re(3z nfi? + 42 n1+(?+>it + Z %)

n

= Z A(n) (3 + 4 cos(tlogn) + cos(2tlogn))

PSRN
Note
3+ 4cosf + cos(20) = 2(1 + cos6)? > 0
so T > 0.
So 5 A
- > ———+ O(logt).
0 o 1+5—0+ (log )
Choose ¢ = & for large enough C, so get a contradiction if 0 > 1 — lo‘; ; for
some ¢ > 0.( so
4 < 10
1+40—0 0
soozl—locgt.) O

It’s essentially what we are able to do nowadays. Best known to date is

1/3
> 1 c(loglogt)
(logt)2/?
Lemma 3.17. If 0 > 1 — 5155 and [t| > % then

|<</(s) < logt.

Proof. Let s; =1+ @ + 1t = oy +it. Here

¢ < A(n) 1
|<(sl)| < ; o < —— <logt.

11—

Use the corollary

so therefore

1
Rez P < logt.
o 51

Nowifs=a+it,wherea>1—ﬁcgtthen

¢ ¢ 11 .
Z(S>_Z(Sl)_;(s—p sl—p)+o(l gt)
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8 The Riemann zeta function

Also |s — p| < |s; — p| so

1 1
| — | « 3 < Re———
s—p sp—p sy —pl*logt S1—p

as Re% = Rez Then

|=]
1 1 1
E | - | « Rez < logt.
o STpP  S1—p o S1— P

Assuming the Riemann hypothesis, we can show
U(x) =2+ O(z'?(logz)?).
See example sheet. Using partial summation, we can deduce that

m(w) = Li(w) + O (a'/2+9)

Li(x):/m L T ot

logt - log x (log z)?

where

Thus if we write m(x) = 2= + E(x) then

~ logx
x

E(’l}) > m

just because of Li.

3.4 Error terms

Indeed if we assume Riemann hypothesis then we could get the error term as
above. Can we do better? In this section we will show that

() — 2] > at/e

“often”. Thus apart from the factor (logz)? we are getting the best possible
error term. The reason is basically that there are many zeros of ¢ on the critical
line. Actually, we will show that

P(z) =z +Q, (a'?),

i.e.

P(z) —a

11211;.)15p pYE >0
() —
i = <0

For contradiction, suppose that ¥(z) —z < cxz'/? for all large z, so cx'/? —

Y(x) = x > 0. Take Mellin transform of this,
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8 The Riemann zeta function

Lemma 3.18 (Landau). Let A(z) be intergrable and boundedon any finite
interval and A(x) >0 for all x > X. Let

o, =inf{o: / A(x)z~7%dx < co}.
p'e

Then if
F(s)= [ A@)a—d
(s) / (z)z~*dz

then F' is analytic for Res > o, and not at s = o,.

General fact about poles of Dirichlet series with positive coefficients.

Proof. Divide integrand into [1, X] and [X, 00) , corresponding partition of F' =
F, + F,. F) is entire. If Res > o, the integral converges absolutely so F, is
analytic.

By contradiction, suppose F, is analytic at s = o,. Write F}, as a Taylor

series around o, + 2
o0

Fy(s) =) s —o — 1)

k=0

where i
FMo,+1) 1

¢, = o = ﬁ/ A(z)(—logz)kx—7-"1dux.
xT

This power series has a radius of convergence, which must be 1 + § for some
0 >0. So

—o.—g)k [o°
Fy(s) = Z (1];)/9: A(z)(log x)kz=1"%dx

k=0

Evaluate the series at s = ac—g, we can intercahnge the integral and summation
o

Fy(o,— g) = / A(z)z 17 exp((1 + o, — s) log z)dx = / A(z)s *dx

so the integral converges at o, — 3 contradicting the definition of O,- O

29

Theorem 3.19 (Landau). If o is the supremum of the real parts of
{p:¢(p) =0}
then

1. for any o < oy,
P(x) —z =0, (27),

2. if there is zero p with 0 = o, then

P(x) —z = Q, (x7).
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8 The Riemann zeta function

Corollary 3.20. (Assuming there is a zero with o = %, which is indeed
true)

d(z) =z =Q (a).
Proof by splitting into cases Riemann hypothesis is true/false.

Corollary 3.21. Riemann hypothesis is equivalent to

Y(x) = x + O(x1/2+o),

Proof. Let ¢ > 0 be chosen later and suppose that (z) —x < ¢z for all x > X.
Consider

F(s) = /Oo(c:c" —(z) + x)z5 L.

Recall that by partial summation, for Res > 1,

g — > —s—1
C<8) s/1 Y(z)z dz
. 1

/1 x(:s—l

c o’ (s) 1

s—aJr sC(s) + s—1°
This has a pole at s = ¢ and is analytic for Res > ¢. By Landau’s lemma, in
fact this integral converges for all s with Res > o. This proves 1 because if
o < 0, then there is a zero of ( with 0 < Rep < 0, and at p F has a singularity
since p ¢ R.

Suppose there is p = oy + it,. Repeat the above with ¢ = o,. Consider
instead

F(s) =

eF (s +ity) + e F(s —ity)
2
where 6 € R is to be chosen later. G(s) is still analytic for Res > o, and has

a pole at s = 0,. From F(s), have residue. From F(s + ity), have residue ™

G(s) = F(s) +

where m is the order of p. From F(s —it,) have residue 2. So G(s) has a pole

P
at s = o with residue

em e ¥m m
+

—FV— =C— 7
2p 2p 4
by choosing appropriate 6. In particular if ¢ < ‘mﬂ then this residue is negative.
As s — o, from right along R, G(s) = —oo. But for Re s > oy,

¢+

oo 10 —it —10 it
G(s) :/ (ex0 —p(a) = )= (14 2 4 T
1

1+cos(f—tylogx)>0
so splitting the integral into [1, X] and [X, 00), G(s) = G(s) + G4(s) where G,
is entire and G,(s) > 0 as s € R,Res > g,. Absurd. This proves
P(x) —x=Q (27).
Q_ is the same. O
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8 The Riemann zeta function

3.5 Functional equation

Recall that for o > 0, we defined

1 > {4
C(s)=1+ s/1 t{s+}1dt.

s—1
How does it behave in the negative half plane?

First define f(t) = 3 — {t}, so

N a0
s—1 277 pa

¢(s) = dt

which actually converges when o > —1. To see this, let

SO

VI, FO YE®)
/X s+l dt = ts+1 ‘X + (S + 1)/)( ts+1 dt

and note that F(t) is bounded (as seen from the graph of f). Therefore
< f(t
.,

s+l

converges when o > —1. We can take this as the definition of ((s) for o > —1.
At this point, we can do (perfectly sensible) things such as

1
()= —5=1+1+1+-

It is evident that we by iterating the process we may extend ((s) to arbitrary
o < 0, but there is a more elegant way to do this. First let’s simplify the
integral. Note that for —1 < o <0,

1 1 1
t 1 1 1 1
s f():f/ dt —s —dt = -+
ts+1 2
0 0 0

so in the strip —1 < o < 0, have
< @)
C(S) = S/O' ts+1 dt.

By Fourier analysis, f(¢) has a Fourier seires

() = i sin(2nmt)

oy} nm

which converges whenver ¢ ¢ Z. In the region —1 < o < 0, we get (by a standard
argument exchanging summation and integration)

_ e >~ sin(2nrt)
C(s)-s/o ts+1; v dt

o~ 1 [ sin(2nwt
:sZ— sin( mr)dt

—~ nw b ts+1
o0 2 S (o o

=s Z (2nm) / Slsnffdy y = 2nmnt
n=1 nmw 0 Y

o1



8 The Riemann zeta function

Here

F(s):/ tsle~tdt
0

for o > 0 is the gamma function. We do a sanity check that the Dirichlet series
and gamma function makes sense in the region.
Let’s have a digression about gamma function. The first identity is

I(s+1)= / tsetdt = —tse’t|go + 5/ tsle7tdt = sI'(s).
0 0

In particular, since T'(1) = 1,
I'(n) =(n—1)!
which generalises factorial'. Also note I'(s+1) = sI'(s) allows us to extend I'(s)

to C with poles at s =0,—1,—2,---.
Back to the zeta function. This mean that for —1 < o < 0,

((s) = 825771 (1 — s)(—sin (%) I'(—s))
— 2575 Lsin (%) D(1—s)C(1—s)
RHS is defined for all o < 0, so we define
¢(s) =257 Lsin %F(l —35)¢C(1—ys)
for 0 < 0. This gives an analytic continuation of {(s) to the negative half plane.
Together with the integral expression for o > —1, this gives a meromorphic zeta

function on C.

Theorem 3.22 (functional equation). For all s € C,
¢(s) = 2575 L sin (g) T(1—s)¢(1—s).

We can poke around the equation and do some reality check:

e At s=1,
¢(1) = 27(0)¢(0)

and as ((0) = —1, I" has a pole at 0, this makes sense.

LAs a side remark, really we should have t* in the integrand in the definition of gamma
function so it is more consistent and things look nicer on the whole, at least from a num-
ber theory point of view. There were people in the 19th century using this notation but
unfortunately a huge literature war ensued and obviously it didn’t catch up.

52



8 The Riemann zeta function

o Does ((s) have any other poles? Since

¢(s) = 25w~ sin (%) I'(1—s)¢(1—2s)

. entire for 0<0
entire

¢(s) is analytic everywhere in C except for a simple pole at s = 1.

e At s =2,
€(2) =4m-0-T(=1)¢(-1).
The zero and pole of I" at —1 cancels and we get a constant %2.
o At s=-1,

()= 5 5 (-1) TE)CER) =35

Of course to physicists, this implies that

1
e —=142434+..
D +2+3+

What about zeros of zeta function? At a zero we have
0 = {(s) = nonzero term - sin (%) (1 —s)¢(1—s).

Ifo<1,¢1—s)#0,T(1—35s)+# 0 except s =—2n where n € N. This is a
necessary and sufficient condition so ((s) has zeros at —2, —4,---. We knew that
¢(s) has no zeros for o > 1 and 0 = 0. Thus except for the trivial zeros, {(s)
only has zeros in the critical strip 0 < o < 1.
In the region 0 < o < 1,
0 = {(s) = nonzero term - I'(1 — s) {(1 — s)
£0

so ((1 —s) = 0. Also because ((5) = ((s), zeros appear in quadruples. The
dream that they actually come in pairs leads to, of course, the Riemann hy-
pothesis.

Now we can fully justify corollary 3.21, which states that Riemann hypothesis

is equivalent to
w(x) =4+ O(x1/2+0<1>).

Proof.
e = : contour integration
o <« we know if oy = sup{Rep: {(p) = 0} then
P(x) =z +Q, (29)
for all o < 0y. If Riemann hypothesis is false then there exists a zero p

with0 <o < 1,0 # % By symmetry, we have

oy > max(o,1 —o) >

N

Y(x) =x+ Qi(a:"/)

where £ < ¢’ < 0.
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4 Primes in arithmetic progressions

4 Primes in arithmetic progressions

In this last chapter we will introduce Dirchlet characters and use them to prove
Dirichlet’s theorem, which says that any arithmetic progression satisfying obvi-
ously necessary conditions contains infinitely many primes.

4.1 Dirichlet characters and L-functions

Definition (Dirichlet character). Fix ¢ € N. A Dirichlet character of mod-
ulus ¢ is a group homomorphism x : (Z/¢Z)* — C*.

(Z/qZ)* is a finite abelian group of order ¢(q), so the set of Dirichlet char-
acters of modulus ¢ forms a finite abelian group of order ¢(q).
We can also think of x as defining a function x : Z — C, given by

0 otherwise

(@) = {x(a mod ) (a,q) =1

Note that this x is periodic with period ¢ and is totally multiplicative.
If x is the trivial homomorphism on (Z/qZ)*, we call it the principal Dirichlet
character modulus ¢ and usually denote it as x,.

Lemma 4.1.

1. Let x be a Dirichlet character of modulus q. Then

> =Y x<a>={§(q> X

a€(Z/qZ)* 1<a<q X # Xo

2. Leta € (Z/qZ)*. Then
_Jo(@) g=1modg
gX(a)_{O a # 1 mod ¢

For those of you familiar with representation theory, this is the row and column
orthogonality for character table of the abelian group (Z/¢Z)*.

Proof. We treat 2. If a = 1 mod ¢ then x(a) = 1 for all x so
D oxa) =Y 1=¢(q).
X X

If ¢ # 1 mod ¢ then there exists ¢ : (Z/qZ)* — C* such that ¢(a) # 1. The
map x — x¥ is a permutation of the set of Dirichlet characters mod g. Hence

Y x(a) = (x¥)(a) =(a) ) x(a)

X

SO Zx x(a) = 0. O
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Let a € Z,(a,q) = 1. Consider 1 : Z — C. The the lemma says that

r=a mod q *

1
lx:a mod q(z) = Wq) Z X(a)71X(z)'
X
It follows that

Yo 1= lemoayp) = @ D> x(@)x(p).

p<z p<z p<z
p=a mod ¢q

Estimating this is closely related to estimating

1 - _ v xla)”

n<r X

1

> x(mA(n).

n<x

The strategy to prove Dirichlet’s theorem is to consider the contribution of each
character y separately. We will do this using the Dirichlet L-function

L(s,x) = > _ x(n)n*.
n>1
This series converges absolutely in the region ¢ > 1 and defines an analytic
function there.

| Lemma 4.2. If x # X, then 3  _ x(n)n"* converges in o > 0.

Proof. Use partial summmation,

> (= A~ [ A war
1

n<x

where A(z) = 3> _ x(n). Note that by the lemma Zl<n<q x(n) =0as x # Xo-
Hence A(n) is periodic and |A(z)| < ¢(q) for all . Thus |A(z)z ™| < ¢(¢)z~7
and the integral is absolutely convergent. O

Thus L(s, x) is analytic in the same region and in particular does not have
a pole at s = 1.
Since x(n) is multiplicative, we have an Euler product identity

L(s,x) = [[(1 = x(p)p~)~*

P
valid in the region ¢ > 1. This implies that when x = x,,
L(s,xo) = ¢(s) [JA =)
plg

so L(s, xo) has a meromorphic continuation to all s € C and a simple pole at
s = 1. We can show that

log L(s,x) = > _ > _x(p)*p*/k

p k>1
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and hence

60 = X ) (- logplp = — 3 x(m)Amn~

p k>1 n>1

valid in o > 1.
Fix a € N, (a,q) = 1. We combine this with the identity valid for any n € N

L mod o) = @ S x(a )x(n)

we get

n)A(n)n=% = 1 a! L's,%)
nzﬂln:amodq( )A( ) ¢(q>ZX( )

again valid in o > 1.

4.2 Dirichlet’s theorem

Theorem 4.3. Given q € N, (a,q) = 1, there are infinitely many primes p
such that p = a mod q.

As L(s, x,) has a simple pole at s = 1, we can write

N 1 L.
D oo (AT = o= O = o X;OM ) .

Assume the unknown term is convergent, so RHS has a pole at s = 1 so diverges
there. If there were finitely many prime p = a mod ¢, LHS would be bounded
as s — 1, absurd. Thus to show Dirichlet’s theorem it is enough to show that
for all x # xo, %(5, X) is analytic at s = 1. This is equivalent to show that if

X # Xo then L(1,x) # 0.

| Theorem 4.4. If x # x, then L(1,x) # 0.

Proof. In o > 1, by choosing a branch of logarithm

HL(S,X) = epologL $,X)
epoZZX p sk

p k>1

We have

_Jo (g,n) >1or (¢g,n) =1and n # 1 mod ¢q
2 x(m = {¢><q> n=1mod g
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so
n*A(n)
HL(&X) = exp Z W(MQ)
X n>1
n=1 mod ¢q

valid in ¢ > 1. For s real, s > 1, the exponent is a non-negative real numbur.
Thus for s € (1,00),

HL(&X) € [1,00).

X

Note that L(s, x,) has a simple pole at s = 1. If there are at least two distinct
characters 1,v" of modulus ¢ such that L(1,4) = L(1,4’) = 0 then Hx L(s,x)
would be analytic in a neighbourhood of s = 1, and vanish at s = 1. This
cannot happen so there is at most one character 1 such that L(1,v) = 0.

Note also that for any Y,

L(LY) = L(LX)'

If L(1,x) = 0 then L(1,%) = 0. Hence if L(1,x) = 0 then x = X. In other
words, y takes values in {£1}. We call such characters quadratic,

Suppose for contradiction there exists a non-principal quadratic character 1 :
(Z/qZ)* — {£1} such that L(1,%) = 0. We consider the product L(s,1)((s).
This function is analytic in ¢ > 0. In ¢ > 1 we have the expressoin

L(s, $)¢(s) = (an)w) (Zn> =3 rmn

n>1 n>1 n>1

where r(n) = Zd‘n 1(d). Note that r(n) is multiplicative and r(n) > 0:

k+1 o(p) =1
r(p*) = ¢(1) + ¥(p) + - +v*) =< 1 ¥(p) =0 or ¥(p) = —1,k is even
0 ¥(p) = —1,k is odd

Note also that 7(n?) > 1 by the same argument.
We now use Landau’s lemma
Lemma 4.5. Let f(s) = anl a,n~° where a,, are non-negative real num-
bers. Suppose given o, € R such that f(s) is convergent in o > o,. Suppose
that f(s) admits an analytic continuation to the disk {|s — oy| < €}. Then
f(s) is convergent in o > o, — €.

Let
f(s) = L(t,9)¢(s) = > r(n)n~,

n>1

valid in ¢ > 1. Then we can use Landau’s lemma, together with the fact that
f(s) is analytic in o > 0, to conclude that f(s) is convergent in o > 0. But

F(5) =X rm = Yotz Y

n>1 n>1 n>1

and this series diverges, absurd. Thus L(1,1) # 0. O
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4.3 Zero-free region

We have proved there are infinitely many primes congruent to a mod ¢ if (a, q) =
1, using

e =y M),

n

We want to prove a prime number theorem for such primes. To do this, we’ll
use Perron’s formula just as the case for Riemann zeta function. We need
more information about the zeros of L(s, x). (roughly speaking L(1,x) # 0 is
the statement there are infinitely many primes. Specialising to x = 1 (Riemann
zeta function) we get a pole so it is particularly easy to prove there are infinitely
many primes).

Similarities to zero-free region for ((s), but important difference: {(s) has a
pole at s = 1, while L(s, x) has no poles for ¢ > 0 for x # x,-

Some shorthands: let 7 = [t| + 4. Recall

Lemma 4.6. If f(z) is analytic on a region containing |z| < 1 and f(0) # 0
and |f(2)| < M for |z| <1, then for 0 <r < R <1, for |z| <r,

o 1 e M
TO =2+ Olee )

where z;, ranges over zeros of f in |z| < R.

Lemma 4.7. If x # x, and 3 < 0 <2 then

L 1
f(&X) = Xp: P + O(log qt)

over p with |p— (3 +it)] < 3.

Proof. Follows from the lemma with f(z) = L(z + % +it,x), R = %,r = %
Verify that

x(p)

1- p3/2+it

FO)1=12G +it 0l =]

p

1 —1
2H<1+p—3/2> > 1.
p

By partial summation, if FI(t) =3 x(n) for o > 0 then

1<n<t

< F(t
L(s,x) = 8/1 tsgl)dt

SO

1
|L(s, x)| <« |s|q/ tcr+1dt K qT.
1
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Theorem 4.8. Let x be a non-quadratic character. Then there is an abso-

lute constant ¢ > 0 such that L(s,x) #0if o > 1— m

Proof. Since
Lis, xo) = ¢() [J1 = p),
plg
in this region o > 0, zeroes of L(s, x,) are the same as those of ((s) so done.
Suppose x is non-principal. Let p = o + it be such that L(p,x) = 0. The
idea is to compare

’ /7 /

L L L
f(1 +5+it,x),f(1 + 8 + 2it, x?), f(l +3,%0)

as 0 — 0. Note that
L L L

Re(—3f(1 +3,x0) — 4f(1 +0+it,x) — f(l + 8 + 2it, x?))
A(n . )
— ; nf+3 Re(3 + 4x(n)n~% + x(n)?n2)
(n7(;)_1

and for all 6,
3+ 4cosf+ cos20 = Re(3 + 4e? + e2%) > 0.

By the lemma,

/

L 1
—Re f<1 +3,X0) = 5 + O(logq)

L 1

_Re ; < -
Re L(l—l—é—&-zt,x)f 1+5?U+O(logq7)

/

L
Re f(l + 6 + 2it, x?) < log(qr)

Note that the last step depends crucially on x being non-quadratic so that
x? # xo- Thus

3 4
-——+0( >0
5 135_g " Ologar) 20,
contradiction if § ~ loqu and o >1— longT. O

Theorem 4.9. If x is a quadratic character, there exists ¢ > 0 such that
L(SaX)#O Zf0>1_@ (mdt#()

In other words, we cannot rule out a zero p of L(s,x) with p € R close to 1.
However,

Theorem 4.10. Let x be a quadratic character. Then there is an absolute
constant ¢ > 0 such that L(s,x) has at most one zero p € (0,1) such that
p=>1—

C
loggq "

These are called ezceptional zeroes or Siegel zeroes.
First we need a lemma for L(s, x)-
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Lemma 4.11. If% <o <2 then

L 1 1
= — E + O(1
[ (s,Xx0) s_1 s —p (logqr)

over zeroes p with |p — (3 +it)] < 3.

Proof. Follows from

—%(s) = —Z sip + O(logT) + S_%

p

since
1. o > 0, zeroes of ((s) is the same as zeroes of L(s,x,), and

2. by the Euler product,

L ¢ logp
Tlx0) = F()+ le " <w(e) < logg

Quick sketch of proof:

1. theorem 1: for ¢ large, same as previous proof (x? = x, but no pole). For

t small, 0 < || < 10§q7. Instead of comparing x,, X, x> We compare p and
7.

2. theorem 2: compare two such real zeroes.

Proof of Theorem 4.9. As before let p = o + it be a zero of L(s, x). Let 6 > 0.
Then by lemma 1 (expansion of L-function for non-principal character)

L . 1
SO
RL—/(1+6+'t ) < ;4-0(1 )
°L XN =TT, osar
1
. o 1!
1+5—U+O<qu7-)

Also by lemma 2 (expansion of L-function for principal character)

/

L 1
—Re f(l +3,x0) < 5 + O(log g7).

First suppose 7 > C(1 — o). Here

/7 /

—ReLf(l + 6+ 2it,x*) = —Re Lf(l +0 + 2it, x¢)

<R

_— I
< 66+2it+0(0gq7)

5
P —
< 5oz T OUogar)
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As before,
L r L
Re(—3=—(1+d,x0) —4=—(1+ 6 +it,x) — — (1 + 6 + 2it, x?))
L L L
But 5 4 5
LHS < - — + + O(log qT).

0 1+0—0 62+4t2
If 0 = 1 then contradiction as § — 0.
For o # 1, if we chhose 6 = 1 — o, then thisis (7> 1 — 0 > J)
3 4 c

0= c(1—0) (c+1)(1—o0) + 170+0(10gq7).

[

Can choose ¢, C, hence ¢’ such that this is < —é + O(loggr) and so o <
1— locg qT”’
For small 7 we need a distinct argument. Since L(p,x = L(p,x) = 0, it

follows that

r ! x
Re —(1+d+it,x) < Rel+5_p Rel+6—ﬁ

+ O(logqr)

(assuming that |t| < ¢(1 — o), in particular |¢| < ¢’ for some small constant, so
both p and p’ are both picked up) RHS is

—2(14+0—o0)
1 .
As before
L 1
——(1+3,x0) £ < +O(loggr).
L )
Now

/ /

L L

> 204 Re(y(mpn)
n=z1 |2|]=1

so putting these together,

1 21+6-0)
- > 0.
5 (1+o—op+p Ol 20

4

If we choose § = ¢(1 — ), LHS is < —3%- + O(loggr) so o < 1 — @. O

Proof of Theorem 4.10. Suppose p, < p; < 1 are zeroes of L(s,x). Then for
o€ (0,1)
)% 1 1 »
—Re—(0,x) < —Re —Re + O(loggq) foro>1—107°, say
L 0= Po 0—"M
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SO
1 2 L L
— O(l > —Re— —Re — > 0.
iy (logq) = —Re —(a,x0) —Re (0. x) =
Hence py <1 — 555 O

Lemma 4.12. If x # xo and 0 > 1 — 57— (some absolute ¢ > 0) then

e either x has no exceptional zero,

1

e or x has an exceptional zero at B. But |s — 3| > Toeq 50
L/
f(s,x) « logqr.
Proof. If o > 1, note
L A 1
< > ) « .
L(s,x) ~ n7 o—1
(n7q_):1
In particular, if s=oc + it and s; =1+ log%ﬂ + it,
L/
—(s1,x)| < loggqr.
L
By lemma 1,
(50 =3~ + 0togar)
—(s,x) = og qT
L0 =25 g4q
for all zeroes p. |s — p| < |s; — p| so
L L 1 1
— - — —_— O(l
7 (5:X) = (0| < zp:s_p o (logg)

1
< Rez P + O(log gT)
p 1

< loggr

Theorem 4.13. If x,,xy are distinct quadratic characters modulo q then

L(s,x1)L(s,X2) has at most one real zero B with 1 — o= < B < 1.

This justifies “the exceptional zero of ¢”.

Proof. Say B, is a real zero of L(s, x; for i = 1,2. wlog % < By < By <1 Fix
0> 0.

1. —Re%(l +4,x;) = _ﬁ +O(logq), i =1,2.

2. —Re %(1 +0,x1X2) < O(logq). Here we used x1X5 # Xo-
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3. —%(1 +0) < 34 O(1) (or equivalently using — Re %(1 +3,X0))-

Therefore

5 A0 Re1 + x4 (n) + X () + xaxa(m)

/ ) L L
- _%(1 +0) = 71 +6,x1) = 7 (1+8,x2) = (1 +6,x1X2)
1 2
<-__* Lo
= A ) + O(log q)
Choose § = ¢(1 — ), and therefore 5; <1 — 10§q~ H

4.4 Prime number theorem for arithmetric progressions

Recall that

1 — 1 —
An)= — x(a An)x(n) = — x(a)(z, x
1;:9 (n) (p(q)%: ”19% (n)x(n) ‘P(Q)Zx: (a)¥(z, x)
n=a mod q
Theorem 4.14. If ¢ < exp(O(y/logz)) then
1. Y(z, x9) = =+ O(x exp(—cy/log x)).
2. If x # xo and x has no exceptional zero then

la,x) = O(x exp(—cy/log 2)).

3. If x # xo and x has an exceptional zero at [3 then

B

U, x) = =5 + 0w exp(—ey/log))
Recall that L
1n:a mod q — @ ZX: X(CL)X(TL)

SO

1
x(z;q,a) = ;S; A(n)ZﬁzX:x(aW(x,x)'

n=a mod ¢

Corollary 4.15. If (a,q) =1, g < exp(O(y/logx)) then if ¢ has no excep-
tional zero then

U(x;q,a) = 2 + O(z exp(—cy/logx)),
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and if ¢ has an exceptional zero at B and x, then

T ﬁ
Vo) = ’j;((q)) L+ Ol exp(—cy/oga).

Proof. We give a sketch as the proof is similar to that of zeta function. By
Perron’s formula (given o, > 1, T > 1),

1 ooty z® x A(n)  x~x=An)
Y(,x) = "om | f(&X)?dS"‘O(T Z |z —n] +TZ % )-

o—1T F<n<2x n>1

z(logx)?
T

By the same argument as for {(s), the error term is < (choosing o, =

1+ ). Take C to be the rectangular contour with corners at o, 44T, o, 4T

logx
So +iT +iT
1 o1+ oo+i 1
v =g [rof o[ ] zlogz)’)
™ Jo oy +iT ot+iT oq—iT

Error terms are bound as for ((s), so in total,

1 L x® z(log x)? o
w0 =5 [ F0 st OTERE e

2ms
<exp —cy/log z,T=exp(o(y/ITogx))

as we take 0y = 1— 2750 271 < zexp(—cy/logr) if ¢ < T =~ exp(O(y/logx)).
For the main term, if x = x, then take o, as above, so no zeroes of L(s, x;)
SO % has just a simple pole at s = 1, and the main term is x.
If x # xo and there is no exceptional zero then there is no zero of L(s, x)
with o > o, so no poles of %(s, X), so the main term is 0.

Finally if x has an exceptional zero at (3, then inside C, L/ has a pole at .
Thus f(s X)Z has residue Z ﬂ at this pole, so the main term is ﬂ O

4.5 Siegel-Walfisz theorem

Theorem 4.16 (Siegel-Walfisz). For all A > 0, if (a,q) = 1 and q <
(logx)? then

P(x;q,0) = + Oy (wexp(—cy/logz)).

.
©(q)
This follows from

Theorem 4.17. If ¢ < (logz)? and x is large enough (depending on A)
and if x # X, then

Y(x,x) = O 4(exp(—cy/logr)).
This in turn follows from

Theorem 4.18. For all € > 0, there exists C. such that if x is a quadratic
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character modulo q and (B is a real zero then
B<1—-C.q".
Therefore even if ¢ has an exceptional zero, it is not too close to 1.

Proof. Omitted. O

A curious fact is that the constant C, is ineffective — the proof gives no
way to calculate C(g). It follows that the big O (actually the constatnt ¢) in
the statement of Siegel-Walfisz is also ineffective.

Proof that Theorem /.18 implies Theorem 4.17. If there is an exceptional zero
then 8 < 1—C_¢° for all ¢ > 0. Thus

B
z
U(z, x) = O(E + xz exp(—cy/logx))
= zo(exp(—C.¢° logx) + exp(—cy/logx))
since ¢ < (logx)?, this is O(exp(CZ(v/logz))) by choosing ¢ = ﬁ, say. O

Corollary 4.19. If (a,q) = 1 then

;q,a) = Ll(il?) T expl—cy/logx

and if ¢ < (logz)? (unconditionally) or if ¢ < exp(O(y/logz) (if ¢ has no
exceptional zero)

Note that assuming GRH, the bound on ¢ when ¢ has no exceptional zero can
1
be improved to ¢ < zz°W,

Proof. Let
F(z)= Y logp=1(r;qa)+Ox'?)
<z
p:faodq
and so
m(wiga)= Y, 1
p<x
p=a mod q
_Ee, o
~ logx t(logt)2

1 T x 1

= —— + ———=dt | + O(x exp(—cy/logz

©(q) | logz /2 (logt)? ( exp( g))
J2_VPoU

=Li(x)

Two applications of Siegel-Walfisz:

Application. For fixed (a,q) = 1, how large is the smallest prime congurent
to a modulo ¢? Call this prime P, ;.
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Corollary 4.20. For alle >0,
P, . < exp(q®).

Proof. Let * < P, , so ¥(x;q,a) = 0. Thus if ¢ < (logxz)#, must have by
Siegel-Walfisz

B O 4(z exp(—cy/logz)).

e(q)
Thus

exp(cy/logz) = O4(q)
S0
logz < (logq)* + 04 (1),
contradicting ¢ < (logz)?. Thus if ¢ is large enough, ¢ < (log Payq)A. O
Similarly

Corollary 4.21. If ¢ has no exceptional zero then
P,,< q@loga),
It has been conjectured that
P < q1+o(1).

a,q —

On GRH, we have P, , < ¢?*t°M). Amazingly, we have an unconditional re-
sult

Theorem 4.22. There exists L constant such that
P, ,< qt.
So far the best known result is L = 5, by Xylouris 2011.

Theorem 4.23 (Walfisz). For any n, let r(n) be the number of ways of
writing n as the sum of a prime a square-free natural number. Then

r(n) ~ ¢, Li(n),
where

e =T[0+ —) [0 - ——).

p?—p—1"4; pp—1)

The second term is a constant, which is approximately 0.3739....

Application. Proof. Note that

lsquare—free(m> = Z ,U'(d>7

d?|lm
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easily checked since both sides are multiplicative. Thus

T(TL) = Z 1square—free<n - p)

p<n

=3 > wa
p<n d2|(np)

=y ud > 1
d<yn p:npll<1:)Ld d?

= > wpld)r(n—1;d%n)
d<yn

If (n,d) > 1 then
m(n—1;d?,n) = O(1)

so in total this contributes O(n'/?) to r(n). If (d,n) = 1 and d < (logn)* then

m(n—1;d* n) = ‘IPJEE;% + O(nexp(—cy/logn)).

Thus the contribution is

Z p(d)m(n —1;d?,n) = Li(n) Z () + O(nexp(—cy/logn)).

2
d<(logn)4 d<(logn)4 sD(d )
(d,n)=1 (d,n)=1

Note that p(d?) = dyp(d) so

PGS P
(d,n)=1 de(d) 1;[(1 p(p — 1)> ne

The tail term of this estimation is

p(d) 1 1
RIS S P
3/2 A2
d>(logn)4 d(p(d) d>(logn)4 s/ OOg TL) /
(d,n)=1
as n — oo.
For d > (logn)4, use the trivial bound

x
m(x;q,a) < 14 4
SO

n 1 n

,u(d)ﬂ'(’I’L—L d2,n) < E <1+ﬁ) < n1/2—|—n E ﬁ < W

(logn)A<d<n'/? (logn)A<d<nl/2 d>(logn)4 g
(d,n)=1

where in the first step we simply through away the condition (d,n) = 1 and the
term 7(d).
Thus in conclusion,

Li(n)

r(n) = ¢, Li(n) + O(n'/? + (ogn)A72 + (lognn)"‘ + nexp(—cy/logn))

= (1+o(1))c, Li(n)
as Li(n) = (1 + o(1)) -2 O

logn*
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5.1 Gaps between primes

Note that prime number theory implies that p,, ~ nlogn so
Prg1 — Pp ~ (n+1)log(n + 1) —nlogn ~ logn.

This is the average behaviour and we may ask how small or how big it can get.
Twin prime conjecture says p,.; — p,, = 2 infinitely often. Goldeston-Pintz-
Yildirim (2005) proved that

Prni1 — Pn

liminf ———+ =n
n—oo logn

Zhang (2013) proved that
Pny1 = DPn = O<]‘)
infinitely often. The bound given by Zhang is 70,000,000. Over the next few
months Polymath project managed to improve the bound gradually. Coinci-
dentally, Maynard proved in the same year, six months after ZHang, using a
different method, that p,,,; —p,, < 600 infinitely often. By combining these two
approaches, the current best bound is 246.
As for large gaps, Westzynthius (1931) prove that
pn+1 —DPn

limsup /———= =0
n—o00 10g n

Rankin (1938) used an improved version to prove the quantitative result

loglognloglogloglog n)

— > 1
Pr1 = Pp > 08T ( (logloglogn)?2

infinitely often. Erdos offter a prize of $10,000, the largest ever, that the bound
goes to infinity (?). In 2014, this is cracked by Ford-Green-Konyagin-Maynard-
Tao that

) loglognloglogloglogn
Pr1 = Pp 2> 08T ( logloglogn )

infinitely often. It has been conjectured that p, ; — p, > (logn)? infinitely
often. However this is way out of reach at this moment, even more so than twin
prime conjecture. To have an idea, the best upper bound so far is p,, . ; —p,, <
n%52% for every n. If we assume GRH then the result is < n!/2+to),

5.2 Digits of primes

Mauduit-Rivat looked at sum of binary digits of primes and showed it is even
half the time and odd half the time. Maynard (2016) showed there are infintely
primes without, say, a 1 in base 10. The result would be much harder for smaller
base. For example for base 2 this is equivalent to the statement that there are
infintely many primes of the form 2™ — 1.
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5.3 Arithmetic progressions

In 1930s (Vinogradov, Estermann et al) people proved there are infinitely many
3-APs of primes, e.g. (3,5,7),(11,17,23),.... However, for any k > 4 this is
much more difficult. Green-Tao (2004) showed that for any k, there are infinitely
many k-APs of primes, using tools of additive combinatorics. Another important
theorem is Szemerédi (1975), that if

An{l,.. N
liminf—| {L,..., N}

N—oo N >0

then A has infinitely many k-APs.

5.4 Sieve theorey success

Chen (1973) showed that there are inifinitely many primes p such that p + 2
is either prime or the product of 2 primes. Iwaniec (1978) showed there are
infinitely many n such that n? + 1 is either prime or the product of two primes.

5.5 Number theory without zeta zeros

People have wondered if we can develop analytic number theory without know-
ing the zeros of zeta function. Instead of Perrons’s formula, Halsesz in 1960s
proved that (informally) if }° _ a, behaves randomly then a, behaves like

x(n) or ni. Granville-Soundararajan resurrected this approach to study func-
tions “pretending” to be x(n). The official name of this subject is pretentious
number theory, and fantastic notes can be found on Granville’s website when he
taught the course a few years ago.
5.6 Circle method: additive number theory
Develped by Hardy and Littlewood in 1920s,

1. Golbach conjecture: every even number is the sum of two primes.

2. partition function p(n).

3. Waring’s problesm: all integers are sum of 4 squares, all (large) integers
are sum of 4 cubes (this is still open, best known bound 7.

k

Let G(k) be the minimum s such that every large n is the sum of =¥, ... | z¥.

The only result we know is

G(2) = 4,4 < G(3) < T7,G(4) = 16.

Wooley (1996) proved
G(k) < (14 o0(1))klogk.

It’s been conjectured that G,) < k.
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