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0 Introduction

0 Introduction
Analytic number theory is the study of numbers using analysis. In particular
it answers quantitative questions. “Numbers” means natural numbers in this
course, which excludes 0.

Example.

1. How many primes are there? We know there are infinitely many but
can we have a more precise answer? Let 𝜋(𝑥) be the number of primes
smaller than or equal to 𝑥. Then by the famous prime number theorem,
𝜋(𝑥) ∼ 𝑥

log 𝑥 .

2. How may twin primes are there? It is not known whethere there are in-
finitely many. From 2014 Zhang, Maynard, Polymath, there are infinitely
many primes at most 246 apart. It’s been conjectured that the asymptotic
bound is ∼ 𝑥

(log 𝑥)2 .

3. How many primes are there congruent to 𝑎 mod 𝑞 where (𝑎, 𝑞) = 1? There
are infinitely many by Dirichlet’s theorem. The guess is 1

𝜑(𝑞)
𝑥

log 𝑥 . This is
known for small 𝑞.

The course is divided into four parts:

1. elementary techniques (using real analysis),

2. sieve methods,

3. Riemann zeta function/Prime number theorem (using complex analysis),

4. primes in arithmetic progression.
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1 Elementary techniques

1 Elementary techniques
Review of asymptotic notations:

• Landau notation: 𝑓(𝑥) = 𝑂(𝑔(𝑥)) if there is 𝐶 > 0 such that |𝑓(𝑥)| ≤
𝐶|𝑔(𝑥)| for all large enough 𝑥.

• Vinogradov notation: 𝑓 ≪ 𝑔 is the same as 𝑓 = 𝑂(𝑔).

• 𝑓 ∼ 𝑔 if lim𝑥→∞
𝑓(𝑥)
𝑔(𝑥) = 1, i.e. 𝑓 = (1 + 𝑜(1))𝑔.

• 𝑓 = 𝑜(𝑔) if lim𝑥→∞
𝑓(𝑥)
𝑔(𝑥) = 0.

1.1 Arithmetic functions
These are just functions 𝑓 ∶ N → C. An important operation for multiplicative
number theory is multiplicative convolution

𝑓 ∗ 𝑔(𝑛) = ∑
𝑎𝑏=𝑛

𝑓(𝑎)𝑔(𝑏)

Example.

1. 1(𝑛) = 1 for all 𝑛. Caution: this is not identity on N.

2. Möbius function

𝜇(𝑛) = {(−1)𝑘 if 𝑛 = 𝑝1 … 𝑝𝑘
0 if 𝑛 is divisible by a square

3. Liouville function
𝜆(𝑛) = (−1)𝑘

if 𝑛 = 𝑝1 … 𝑝𝑘 where 𝑝𝑖’s are not necessarily distinct.

4. divisor function

𝜏(𝑛) = #𝑑 such that 𝑑 ∣ 𝑛 = ∑
𝑎𝑏=𝑛

1 = 1 ∗ 1(𝑛).

This is sometimes also denoted by 𝑑(𝑛).

Definition (multiplicative function). An arithmetic function 𝑓 is multi-
plicative if

𝑓(𝑛𝑚) = 𝑓(𝑛)𝑓(𝑚)

whenever (𝑛, 𝑚) = 1.

In particular a multiplicative function is determined by its values on prime
powers 𝑓(𝑝𝑘).

Fact. If 𝑓 and 𝑔 are multiplicative then so is 𝑓 ∗ 𝑔.

Example. 1, 𝜇, 𝜆, 𝜏 are multiplicative. log𝑛 is not multiplicative.
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1 Elementary techniques

Fact (Möbius inversion). 1 ∗ 𝑓 = 𝑔 if and only if 𝜇 ∗ 𝑔 = 𝑓. That is,

∑
𝑑∣𝑛

𝑓(𝑑) = 𝑔(𝑛)

if and only if
∑
𝑑∣𝑛

𝑔(𝑑)𝜇(𝑛
𝑑

) = 𝑓(𝑛).

For example

∑
𝑑∣𝑛

𝜇(𝑑) = {1 𝑛 = 1
0 otherwise

= 1 ∗ 𝜇(𝑛)

is multiplicative so enough to check the identity for prime powers. If 𝑛 = 𝑝𝑘

then {𝑑 ∶ 𝑑 ∣ 𝑛} = {1, 𝑝, … , 𝑝𝑘} so LHS equals to 1 − 1 + 0 + ⋯ = 0 unless 𝑘 = 1
when LHS equals to 𝜇(1) = 1.

Our goal is to study primes. Our first might be that we shall work with

1𝑝(𝑛) = {1 𝑛 prime
0 otherwise

as then 𝜋(𝑥) = ∑1≤𝑛≤𝑥 1𝑝(𝑛). But this is very awkward to work with, as to
begin with, this is not multiplicative. Instead, we are going to work almost
exclusively with von Mangoldt function

Λ(𝑛) = {log 𝑝 𝑛 = 𝑝𝑘

0 otherwise

“assign weight log 𝑝 to prime power 𝑛”

Lemma 1.1.
1 ∗ Λ = log .

and
𝜇 ∗ log = Λ.

Proof. The second part follows from Möbius inversion. Thus if 𝑛 = 𝑝𝑘1
1 … 𝑝𝑘𝑟𝑟 ,

1 ∗ Λ(𝑛) = ∑
𝑑∣𝑛

Λ(𝑑) =
𝑟

∑
𝑖=1

𝑘𝑖

∑
𝑗=1

Λ(𝑝𝑗
𝑖 )

=
𝑟

∑
𝑖=1

𝑘𝑖

∑
𝑗=1

log(𝑝𝑖) =
𝑟

∑
𝑖=1

𝑘𝑖 log 𝑝𝑖

=
𝑟

∑
𝑖=1

log(𝑝𝑘𝑖
𝑖 ) = log𝑛
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1 Elementary techniques

Therefore

Λ(𝑛) = ∑
𝑑∣𝑛

𝜇(𝑑) log(𝑛
𝑑

)

= log𝑛 ∑
𝑑∣𝑛

𝜇(𝑑) − ∑
𝑑∣𝑛

𝜇(𝑑) log 𝑑

= − ∑
𝑑∣𝑛

𝜇(𝑑) log 𝑑

For example

∑
1≤𝑛≤𝑥

Λ(𝑛) = − ∑
1≤𝑛≤𝑥

∑
𝑑∣𝑛

𝜇(𝑑) log 𝑑 = − ∑
𝑑≤𝑥

𝜇(𝑑) log 𝑑 ( ∑
1≤𝑛≤𝑥,𝑑∣𝑛

1)

by reversing summation. But now the term in the inner summation is very easy
to understand:

∑
1≤𝑛≤𝑥,𝑑∣𝑛

1 = ⌊𝑥
𝑑

⌋ = 𝑥
𝑑

+ 𝑂(1).

Thus

∑
1≤𝑛≤𝑥

Λ(𝑛) = −𝑥 ∑
𝑑≤𝑥

𝜇(𝑑) log 𝑑
𝑑

+ 𝑂 (∑
𝑑≤𝑥

𝜇(𝑑) log 𝑑) .

We’ll see more of these examples.

1.2 Summation
Given an arithmetic function 𝑓, we can ask for estimates of ∑1≤𝑛≤𝑥 𝑓(𝑛). We
say that 𝑓 has average order 𝑔 if

∑
1≤𝑛≤𝑥

𝑓(𝑛) ∼ 𝑥𝑔(𝑥).

“average size of 𝑓 is 𝑔”.

Example.

1. 𝑓 = 1 then
∑

1≤𝑛≤𝑥
𝑓(𝑥) = ⌊𝑥⌋ = 𝑥 + 𝑂(1) ∼ 𝑥

so average order of 1 is 1.

2. 𝑓(𝑛) = 𝑛:

∑
1≤𝑛≤𝑥

𝑛 ∼ 𝑥2

2

so average of 𝑛 is 𝑛
2 .

Lemma 1.2 (partial summation). If (𝑎𝑛) is a sequence of complex numbers
and 𝑓 is such that 𝑓 ′ is continuous. Then

∑
1≤𝑛≤𝑥

𝑎𝑛𝑓(𝑛) = 𝐴(𝑥)𝑓(𝑥) − ∫
𝑥

1
𝐴(𝑡)𝑓 ′(𝑡)𝑑𝑡
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1 Elementary techniques

where 𝐴(𝑥) = ∑1≤𝑛≤𝑥 𝑎𝑛.

This is the discrete analogus of integration by parts.

Proof. Suppose 𝑥 = 𝑁 is an integer. Note that 𝑎𝑛 = 𝐴(𝑛) − 𝐴(𝑛 − 1), so

∑
1≤𝑛≤𝑁

𝑎𝑛𝑓(𝑛) = ∑
1≤𝑛≤𝑁

𝑓(𝑛)(𝐴(𝑛) − 𝐴(𝑛 − 1))

= 𝐴(𝑁)𝑓(𝑁) −
𝑁−1
∑
𝑛=1

𝐴(𝑛)(𝑓(𝑛 + 1) − 𝑓(𝑛))

Now
𝑓(𝑛 + 1) − 𝑓(𝑛) = ∫

𝑛+1

𝑛
𝑓 ′(𝑡)𝑑𝑡

so

∑
1≤𝑛≤𝑁

𝑎𝑛𝑓(𝑛) = 𝐴(𝑁)𝑓(𝑁) −
𝑁−1
∑
𝑛=1

𝐴(𝑛) ∫
𝑛+1

𝑛
𝑓 ′(𝑡)𝑑𝑡

= 𝐴(𝑁)𝑓(𝑁) − ∫
𝑁

1
𝐴(𝑡)𝑓 ′(𝑡)𝑑𝑡

where the last step is because 𝐴(𝑛) = 𝐴(𝑡) for 𝑡 ∈ [𝑛, 𝑛 + 1).
If 𝑁 = ⌊𝑥⌋ then

𝐴(𝑥)𝑓(𝑥) = 𝐴(𝑁)𝑓(𝑥) = 𝐴(𝑁)𝑓(𝑁) + ∫
𝑥

𝑁
𝑓 ′(𝑡)𝑑𝑡.

As a simple application

Lemma 1.3.
∑

1≤𝑛≤𝑥

1
𝑛

= log𝑥 + 𝛾 + 𝑂( 1
𝑥

).

Proof. Partial summation with 𝑓(𝑥) = 1
𝑥 and 𝑎𝑛 = 1, so 𝐴(𝑥) = ⌊𝑥⌋. Therefore

∑
1≤𝑛≤𝑥

1
𝑛

= ⌊𝑥⌋
𝑥

+ ∫
𝑥

1

⌊𝑡⌋
𝑡2 𝑑𝑡

Write ⌊𝑡⌋ = 𝑡 − {𝑡},

= 1 + 𝑂( 1
𝑥

) + ∫
𝑥

1

1
𝑡
𝑑𝑡 − ∫

𝑥

1

{𝑡}
𝑡2 𝑑𝑡

= 1 + 𝑂( 1
𝑥

) + log𝑥 − ∫
∞

1

{𝑡}
𝑡2 𝑑𝑡 + ∫

∞

𝑥

{𝑡}
𝑡2 𝑑𝑡

⏟⏟⏟⏟⏟
≤∫∞

𝑥
1

𝑡2 𝑑𝑡≤ 1
𝑥

= 𝛾 + 𝑂( 1
𝑥

) + log𝑥 + 𝑂( 1
𝑥

)

= log𝑥 + 𝛾 + 𝑂( 1
𝑥

)
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1 Elementary techniques

This is an amazing result and the only thing we did is to replace the discrete
summation by the continuous analogue to it. In essence this is the whole reason
analytic number theory works.

𝛾 can be seen as a measure of the difference between between log and its
discrete approximation. It is called Euler-Mascheroni constant. Surprisingly
little is known about 𝛾. It is approximately 0.577 …. We don’t even know if 𝛾
is rational or not.

Lemma 1.4.
∑

1≤𝑛≤𝑥
log𝑛 = 𝑥 log𝑥 − 𝑥 + 𝑂(log𝑥).

Proof. Partial summation with 𝑓(𝑥) = log𝑥, 𝑎𝑛 = 1 so 𝐴(𝑥) = ⌊𝑥⌋. As a side
note, in the previous example, most error comes from the integral term (the
mass is evenly distributed). By constrast in this example most error comes
from the “sum” term.

∑
1≤𝑛≤𝑥

log𝑛 = ⌊𝑥⌋ log𝑥 − ∫
𝑥

1

⌊𝑡⌋
𝑡

𝑑𝑡

= 𝑥 log𝑥 + 𝑂(log𝑥) − ∫
𝑥

1
𝑑𝑡 + 𝑂(∫

𝑥

1

1
𝑡
𝑑𝑡)

= 𝑥 log𝑥 + 𝑂(log𝑥) − 𝑥 + 𝑂(log𝑥)

1.3 Divisor function
Recall that

𝜏(𝑛) = 1 ∗ 1(𝑛) = ∑
𝑎𝑏=𝑛

1 = ∑
𝑑∣𝑛

1.

Theorem 1.5.

∑
1≤𝑛≤𝑥

𝜏(𝑛) = 𝑥 log𝑥 + (2𝛾 − 1)𝑥 + 𝑂(𝑥1/2)

so in particular average order of 𝜏 is log.

Proof. First attempt:

∑
1≤𝑛≤𝑥

𝜏(𝑛) = ∑
1≤𝑛≤𝑥

∑
𝑑∣𝑛

1 = ∑
1≤𝑑≤𝑥

∑
1≤𝑛≤𝑥,𝑑∣𝑛

1

= ∑
1≤𝑑≤𝑥

⌊𝑥
𝑑

⌋

= ∑
1≤𝑑≤𝑥

𝑥
𝑑

+ 𝑂(𝑥) = 𝑥 ∑
1≤𝑑≤𝑥

1
𝑑

+ 𝑂(𝑥)

= 𝑥 log𝑥 + 𝛾𝑥 + 𝑂(𝑥)

This is not a very good bound (the error might be as large as one of the terms!)
but shows that at least the first term is correct. The main drawback is we used
the estimate

∑
1≤𝑑≤𝑥

𝑂(1) = 𝑂(𝑥).
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1 Elementary techniques

To reduce the error term, we use (Dirichlet’s) hyperbola trick

∑
1≤𝑛≤𝑥

𝜏(𝑛) = ∑
1≤𝑛≤𝑥

∑
𝑎𝑏=𝑛

1 = ∑
𝑎𝑏≤𝑥

1 = ∑
𝑎≤𝑥

∑
𝑏≤𝑥/𝑎

1

The intuition is like this: ∑1≤𝑛≤𝑥 𝜏(𝑛) counts the number of integral points
below the hyperbola 𝑘1𝑘2 = 𝑥 in the first quadrant. The old methods amounts
to an estimation by integral, while in the new method we count the number
of points lying below the line 𝑘2 = 𝑥1/2, add the number of points to the left
of 𝑘1 = 𝑥1/2, and finally subtract those points in the box [0, 𝑥1/2]2 which are
double counted.

Thus when summing over 𝑎𝑏 ≤ 𝑥, we can sum over 𝑎 ≤ 𝑥1/2 and 𝑏 ≤ 𝑥1/2

respectively, and then minus pairs 𝑎, 𝑏 ≤
√

𝑥. Thus

∑
1≤𝑛≤𝑥

𝜏(𝑛) = ∑
𝑎≤𝑥1/2

∑
𝑏≤𝑥/𝑎

1 + ∑
𝑏≤𝑥1/2

∑
𝑎≤𝑥/𝑏

1 − ∑
𝑎,𝑏≤𝑥1/2

1

= 2 ∑
𝑎≤𝑥1/2

⌊𝑥
𝑎

⌋ − ⌊𝑥1/2⌋2

= 2 ∑
𝑎≤𝑥1/2

𝑥
𝑎

+ 𝑂(𝑥1/2) − 𝑥 + 𝑂(𝑥1/2)

= 2𝑥 log𝑥1/2 + 2𝛾𝑥 − 𝑥 + 𝑂(𝑥1/2)
= 𝑥 log𝑥 + (2𝛾 − 1)𝑥 + 𝑂(𝑥1/2)

Remark. Improving this 𝑂(𝑥1/2) error term is a famous and hard problem.
Probably 𝑂(𝑥1/4+𝜀)? The best result so far is 𝑂(𝑥0.3149).

A note on average order: 𝜏 has average order log does not mean 𝜏(𝑛) ≪ log𝑛,
i.e. average order does not imply individual values.

Theorem 1.6. For all 𝑛

𝜏(𝑛) ≤ 𝑛𝑂( 1
log log 𝑛 ).

In particular 𝜏(𝑛) ≪𝜀 𝑛𝜀 for all 𝜀 > 0 where ≪𝜀 means that |𝜏(𝑛)| ≤ 𝐶𝜀|𝑛𝜀|
eventually where 𝐶𝜀 is a constant depending on 𝜀.

As a side note, asymptotic bounds such as log log𝑛 are quite common in
analytic number theory and here is how to reason with them: as 𝑛 → ∞, log𝑛
grows slower than any polynomial, so log log𝑛 grows slower than log𝑃(𝑛) for
any polynomial. Another way is to write 𝑛 = 𝑒log 𝑛 and then

𝑛𝑂( 1
log log 𝑛 ) = exp(𝑂( log𝑛

log log
)).

Proof. 𝜏 is multiplicative so enough to calculate at prime powers. 𝜏(𝑝𝑘) = 𝑘 + 1
so if 𝑛 = 𝑝𝑘1

1 ⋯ 𝑝𝑘𝑟𝑟 then 𝜏(𝑛) = ∏𝑟
𝑖=1(𝑘𝑖 + 1). Let 𝜀 > 0 to be chosen later and

consider the ratio
𝜏(𝑛)
𝑛𝜀 =

𝑟
∏
𝑖=1

𝑘𝑖 + 1
𝑝𝑘𝑖𝜀 .

8



1 Elementary techniques

Now entering the trick: split into big and small cases. Note as 𝑝 goes large,
𝑘+1
𝑝𝑘𝜀 → 0. In particular if 𝑝 ≥ 21/𝜀 then

𝑘 + 1
𝑝𝑘𝜀 ≤ 𝑘 + 1

2𝑘 ≤ 1.

What about small 𝑝? It is important to remind ourselves that we’re dealing
with primes and 𝑝 can’t run below 2. In this case

𝑘 + 1
𝑝𝑘𝜀 ≤ 𝑘 + 1

2𝑘𝜀 ≤ 1
𝜀

this is because 𝑥 + 1
2 ≤ 2𝑥 for 𝑥 ≥ 0 so 𝜀ℎ + 𝜀 ≤ 2𝑘𝜀 if 𝜀 ≤ 1

2 (the details are not
so important compared to the conclusion that this can be bounded). Therefore

𝜏(𝑛)
𝑛𝜀 ≤

𝑟
∏

𝑖=1,𝑝𝑖<21/𝜀

𝑘𝑖 + 1
𝑝𝑘𝑖𝜀 ≤ (1

𝜀
)

𝜋(21/𝜀)
≤ (1

𝜀
)

21/𝜀

1.

Now we need to choose an optimal 𝜀. Another trick: if we want to minimise
𝑓(𝑥) + 𝑔(𝑥), choose 𝑥 such that 𝑓(𝑥) = 𝑔(𝑥). Have

𝜏(𝑛) ≤ 𝑛𝜀𝜀−21/𝜀 = exp(𝜀 log𝑛 + 21/𝜀 log(1/𝜀)).

Choose 𝜀 such that log𝑛 ≈ 21/𝜀 (again, only a rough guess is needed), i.e.
𝜀 ≈ 1

log log 𝑛 and get

𝜏(𝑛) ≤ 𝑛
1

log log 𝑛 (log log𝑛)2log log 𝑛

= 𝑛
1

log log 𝑛 exp((log𝑛)log 2 log log log𝑛)

≤ 𝑛𝑂( 1
log log 𝑛 ).

1.4 Estimates for the primes
Recall that

𝜋(𝑥) = #{primes ≤ 𝑥} = ∑
1≤𝑛≤𝑥

1𝑝(𝑛)

𝜓(𝑥) = ∑
1≤𝑛≤𝑥

Λ(𝑛)

The second one is sometimes known as Chebyshev’s function. Prime number
theorem asserts that 𝜋(𝑥) ∼ 𝑥

log 𝑥 or equivalently 𝜓(𝑥) ∼ 𝑥 (this equivalence will
be shown later).

Although Euclid’s prove in 300 BC the infinitude of prime, It was 1850 before
the correct magnitude of 𝜋(𝑥) was proved. Chebyshev showed that

𝜋(𝑥) ≍ 𝑥
log𝑥

where 𝑓 ≍ 𝑔 means that 𝑔 ≪ 𝑓 ≪ 𝑔.

1Behold what a wasteful bound we give in the last inequality! But that almost has no
effect in the final result.
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1 Elementary techniques

Theorem 1.7 (Chebyshev).

𝜓(𝑥) ≍ 𝑥.

Proof. First we’ll prove the lower bound, i.e. 𝜓(𝑥) ≫ 𝑥. Recall that 1 ∗ Λ = log.
Here comes in a genuine1 trick: find something that equals 1. Then 𝜓(𝑥) =
∑1≤𝑛≤𝑥 Λ(𝑛) ⋅ 1 can be rearranged. We’ll use the identity

⌊𝑥⌋ = 2⌊𝑥
2

⌋ + 1

for 𝑥 ≥ 0. Either see it directly or a simple verification: if 𝑥
2 = 𝑛 + 𝜃 where

𝜃 ∈ [0, 1) then ⌊ 𝑥
2 ⌋ = 𝑛 and ⌊𝑥⌋ = ⌊2𝑛 + 2𝜃⌋ = 2𝑛 or 2𝑛 + 1. Then

𝜓(𝑥) ≥ ∑
1≤𝑛≤𝑥

Λ(𝑥) (⌊𝑥
𝑛

⌋ − 2⌊ 𝑥
2𝑛

⌋)

Note that ⌊ 𝑥
𝑛 ⌋ = ∑𝑚≤𝑥/𝑛 1,

= ∑
𝑛≤𝑥

Λ(𝑛) ∑
𝑚≤𝑥/𝑛

1 − 2 ∑
𝑛≤𝑥

Λ(𝑛) ∑
𝑚≤𝑥/2𝑛

1

= ∑
𝑛𝑚≤𝑥

Λ(𝑛) − 2 ∑
𝑛𝑚≤𝑥/2

Λ(𝑛)

Write 𝑑 = 𝑛𝑚,

= ∑
𝑑≤𝑥

1 ∗ Λ(𝑑) − 2 ∑
𝑑≤𝑥/2

1 ∗ Λ(𝑑)

= ∑
𝑑≤𝑥

log 𝑑 − 2 ∑
𝑑≤𝑥/2

log 𝑑

= 𝑥 log𝑥 − 𝑥 + 𝑂(log𝑥) − 2 (𝑥
2
log 𝑥

2
− 𝑥

2
+ 𝑂(log𝑥))

= (log 2)𝑥 + 𝑂(log𝑥)
≫ 𝑥

For the upper bound,
⌊𝑥⌋ = 2⌊𝑥

2
⌋ + 1

for 𝑥 ∈ (1, 2) so

𝜓(𝑥) − 𝜓(𝑥
2

) = ∑
𝑥/2<𝑛<𝑥

Λ(𝑛)

≤ ∑
1≤𝑛≤𝑥

Λ(𝑛) (⌊𝑥
𝑛

⌋ − 2⌊ 𝑥
2𝑛

⌋)

≤ (log 2)𝑥 + 𝑂(log𝑥)

Thus

𝜓(𝑥) = (𝜓(𝑥) − 𝜓(𝑥/2)) + (𝜓(𝑥/2) − 𝜓(𝑥/4)) + …
≤ log 2 ⋅ (𝑥 + 𝑥/2 + 𝑥/4 + … )
= 2 log 2 ⋅ 𝑥

1Read unmotivated.

10
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Thus we have shown
(log 2)𝑥 ≤ 𝜓(𝑥) ≤ (log 4)𝑥.

Lemma 1.8.
∑
𝑝≤𝑥

log 𝑝
𝑝

= log𝑥 + 𝑂(1).

Proof. Recall that log = 1 ∗ Λ so

∑
𝑛≤𝑥

log𝑛 = ∑
𝑎𝑏≤𝑥

Λ(𝑎) = ∑
𝑎≤𝑥

Λ(𝑎) ∑
𝑏≤𝑥/𝑎

1

= ∑
𝑎≤𝑥

Λ(𝑎)⌊𝑥
𝑎

⌋

= 𝑥 ∑
𝑎≤𝑥

Λ(𝑎)
𝑎

+ 𝑂(𝜓(𝑥))

= 𝑥 ∑
𝑎≤𝑥

Λ(𝑎)
𝑎

+ 𝑂(𝑥)

Note where we used Chebyshev’s bound. Since

∑
𝑛≤𝑥

log𝑥 = 𝑥 log𝑥 − 𝑥 + 𝑂(log𝑥),

have
∑
𝑛≤𝑥

Λ(𝑛)
𝑛

= log𝑥 − 1 + 𝑂( log𝑥
𝑥

) + 𝑂(1) = log𝑥 + 𝑂(1)

Remain to note the contribution from prime powers ≥ 2 are “small”:

∑
𝑝≤𝑥

∞
∑
𝑛=2

log 𝑝
𝑝𝑛 = ∑

𝑝≤𝑥
log 𝑝

∞
∑
𝑛=2

1
𝑝𝑛

= ∑
𝑝≤𝑥

log 𝑝
𝑝2 − 𝑝

≤
∞

∑
𝑝=2

1
𝑝3/2

= 𝑂(1)

so
∑
𝑛≤𝑥

Λ(𝑛)
𝑛

= ∑
𝑝≤𝑥

log 𝑝
𝑝

+ 𝑂(1).

Lemma 1.9.
𝜋(𝑥) = 𝜓(𝑥)

log𝑥
+ 𝑂( 𝑥

(log𝑥)2 ).
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In particular 𝜋(𝑥) ≍ 𝑥
log 𝑥 and prime number theorem 𝜋(𝑥) ∼ 𝑥

log 𝑥 is equiv-
alent to 𝜓(𝑥) ∼ 𝑥.

Proof. Idea is to use partial summation: let

𝜃(𝑥) = ∑
𝑝≤𝑥

log 𝑝 = 𝜋(𝑥) log𝑥 − ∫
𝑥

1

𝜋(𝑡)
𝑡

𝑑𝑡.

First problem: 𝜓(𝑥) sums over not only primes but also prime powers. We can
use a previous trick to remove contributions from prime powers:

𝜓(𝑥) − 𝜃(𝑥) =
∞

∑
𝑘=2

∑
𝑝𝑘≤𝑥

log 𝑝 =
∞

∑
𝑘=2

𝜃(𝑥1/𝑘)

≤
log 𝑥

∑
𝑘=2

𝜓(𝑥1/𝑘) ≤
log 𝑥

∑
𝑘=2

𝑥1/𝑘

≤ 𝑥1/2 log𝑥

Therefore

𝜓(𝑥) = 𝜋(𝑥) log𝑥 + 𝑂(𝑥1/2 log𝑥) − ∫
𝑥

1

𝜋(𝑡)
𝑡

𝑑𝑡

As 𝜋(𝑡) ≤ 𝑡
log 𝑡 ,

= 𝜋(𝑥) log𝑥 + 𝑂(𝑥1/2 log𝑥) + 𝑂(∫
𝑥

1

1
log 𝑡

𝑑𝑡)

= 𝜋(𝑥) log𝑥 + 𝑂( 𝑥
log𝑥

)

For 𝜋(𝑡) < 𝑡
log 𝑡 , note the trivial bound 𝜋(𝑡) ≤ 𝑡 so

𝜓(𝑥) = 𝜋(𝑥) log𝑥 + 𝑂(𝑥1/2 log𝑥) + 𝑂(𝑥)

so 𝜋(𝑥) log𝑥 = 𝑂(𝑥). Thus we used the trivial bound to get a better bound and
use that to do actual work.

Lemma 1.10.
∑
𝑝≤𝑥

1
𝑝

= log log𝑥 + 𝑏 + 𝑂( 1
log𝑥

)

where 𝑏 is some constant.

Compare to ∑1≤𝑛≤𝑥
1
𝑛 .

Proof. Partial summation. Let

𝐴(𝑥) = ∑
𝑝≤𝑥

log 𝑝
𝑝

= log𝑥 + 𝑅(𝑥)

where 𝑅(𝑥) = 𝑂(1). Then (summing from 2 to prevent log 𝑡 = 0)

∑
2≤𝑝≤𝑥

1
𝑝

= 𝐴(𝑥)
log𝑥

+ ∫
𝑥

2

𝐴(𝑡)
𝑡(log 𝑡)2 𝑑𝑡

= 1 + 𝑂( 1
log𝑥

) + ∫
𝑥

2

1
𝑡 log 𝑡

𝑑𝑡 + ∫
𝑥

2

𝑅(𝑡)
𝑡(log 𝑡)2 𝑑𝑡

12
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Note that ∫∞
2

𝑅(𝑡)
𝑡(log 𝑡)2 𝑑𝑡 exists, say 𝐶. Then

∑
2≤𝑝≤𝑥

1
𝑝

= 1 + 𝐶 + 𝑂( 1
log𝑥

) + log log𝑥 − log log 2 + 𝑂(∫
∞

𝑥

1
𝑡(log 𝑡)2 𝑑𝑡)

= log log𝑥 + 𝑏 + 𝑂( 1
log𝑥

)

It turns out 𝑏 can be expressed in terms of 𝛾.

Theorem 1.11 (Chebyshev). If 𝜋(𝑥) ∼ 𝑐 𝑥
log 𝑥 then 𝑐 = 1.

Note that this does not prove prime number theorem. Historically this is a
surprise: a following corollary says that if 𝜋(𝑥) ∼ 𝑥

log 𝑥−𝐴(𝑥) then 𝐴 ∼ 1. But
Legendre and Gauss et al have conjectured that 𝐴 ≈ 1.08 …, just by looking up
the prime table.

Proof. Partial summation on ∑𝑝≤𝑥
1
𝑝 :

∑
𝑝≤𝑥

1
𝑝

= 𝜋(𝑥)
𝑥

+ ∫
𝑥

1

𝜋(𝑡)
𝑡2 𝑑𝑡

If 𝜋(𝑥) = (𝑐 + 𝑜(1)) 𝑥
log 𝑥 then

= 𝑐
log𝑥

+ 𝑜( 1
log𝑥

) + (𝑐 + 𝑜(1)) ∫
𝑥

1

1
𝑡 log 𝑡

𝑑𝑡

= 𝑂( 1
log𝑥

) + (𝑐 + 𝑜(1)) log log𝑥

But
∑
𝑝≤𝑥

1
𝑝

= (1 + 𝑜(1)) log log𝑥

so 𝑐 = 1.

Lemma 1.12.
∏
𝑝≤𝑥

(1 − 1
𝑝

)
−1

= 𝑐 log𝑥 + 𝑂(1)

where 𝑐 is some constant.

Proof. We have only dealt with summations so far so take log,

log ∏
𝑝≤𝑥

(1 − 1
𝑝

)
−1

= − ∑
𝑝≤𝑥

log(1 − 1
𝑝

)

= ∑
𝑝≤𝑥

∑
𝑘

1
𝑘𝑝𝑘

= ∑
𝑝≤𝑥

1
𝑝

+ ∑
𝑘≥2

∑
𝑝≤𝑥

1
𝑘𝑝𝑘

= log log𝑥 + 𝑐′ + 𝑂( 1
log𝑥

).
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using log(1 − 𝑡) = − ∑𝑘
𝑡𝑘

𝑘 .
To undo the log, note that 𝑒𝑥 = 1 + 𝑂(𝑥) for |𝑥| ≤ 1 so

∏
𝑝≤𝑥

(1 − 1
𝑝

)
−1

= 𝑐 log𝑥 exp(𝑂( 1
log𝑥

))

= 𝑐 log𝑥(1 + 𝑂( 1
log𝑥

))

= 𝑐 log𝑥 + 𝑂(1)

It turns out that 𝑐 = 𝑒𝛾 ≈ 1.78 ….

1.4.1 Aside: Why is prime number theorem so hard?

It seems that we’ve made quite a progress without too much effort. But how
far are we from prime number theorem and if the answer is “quite far”, what
makes it so resistant to elementary methods?

Probabilistic heuristic: fix 𝑝 prime, “probability” that a random 𝑛 satisfies
𝑝 ∣ 𝑛 is 1

𝑝 . What is the “probability” that 𝑛 is prime then? 𝑛 is a prime if and
only if 𝑛 has no prime divisors 𝑝 ≤ 𝑛1/2. Guess that the events “divisble by 𝑝”
are independent, then “probability” that 𝑛 is prime is roughly

∏
𝑝≤𝑛1/2

(1 − 1
𝑝

) ≈ 1
𝑐 log𝑛1/2 = 2

𝑐
1

log𝑛
.

Thus use some questionable squiggles,

𝜋(𝑥) = ∑
𝑛≤𝑥

1𝑛 prime ≈ 2
𝑐

∑
𝑛≤𝑥

1
log𝑛

≈ 2
𝑐

𝑥
log𝑥

≈ 2𝑒−𝛾 𝑥
log𝑥

This constant is approximately 1.122 …, which contradicts Chebyshev’s theorem.
Therefore somehow the heuristics is wrong: it gives 12%more prime than should.

One reason is that the error terms are so close to the main term that when we
do ≈ they accummulate and excees the main term. Another reason is of course
that the “independence” of primes are completely false. From an analytic point
of view, this can be seen as saying that the “interference terms” are not so small
that they can be ignored.

This may explain why heuristics don’t work. But can we bound 𝜋 by ele-
mentary methods? Recall that 𝜇 ∗ log = Λ so

𝜓(𝑥) = ∑
𝑛≤𝑥

Λ(𝑛)

= ∑
𝑎𝑏≤𝑥

𝜇(𝑎) log 𝑏

= ∑
𝑎≤𝑥

𝜇(𝑎) ( ∑
𝑏≤𝑥/𝑎

log 𝑏)

Recall that
∑
𝑚≤𝑥

log𝑚 = 𝑥 log𝑥 − 𝑥 + 𝑂(log𝑥),
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but if we just plug this in we will get a trouble. Instead use another trick:
consider

∑
𝑚≤𝑥

𝜏(𝑚) = 𝑥 log𝑥 + (2𝜓 − 1)𝑥 + 𝑂(𝑥1/2).

Thus

𝜓(𝑥) = ∑
𝑎≤𝑥

𝜇(𝑎) ( ∑
𝑏≤𝑥/𝑎

𝜏(𝑏) − 2𝛾𝑥
𝑎

+ 𝑂(𝑥1/2

𝑎1/2 )) .

The first term is (essentially 𝜇 ∗ 𝜏 = 1)

∑
𝑎𝑏≤𝑥

𝜇(𝑎)𝜏(𝑏) = ∑
𝑎𝑏𝑐≤𝑥

𝜇(𝑎)

= ∑
𝑏≤𝑥

∑
𝑎𝑐≤𝑥/𝑏

𝜇(𝑎)

= ∑
𝑏≤𝑥

∑
𝑑≤𝑥/𝑏

𝜇 ∗ 1(𝑑)

= ⌊𝑥⌋
= 𝑥 + 𝑂(1)

and the first error term is

−2𝛾 ∑
𝑎≤𝑥

𝜇(𝑎)𝑥
𝑎

= 𝑂(𝑥 ∑
𝑎≤𝑥

𝜇(𝑎)
𝑎

)

so still need to show that
𝑥 ∑

𝑎≤𝑥

𝜇(𝑎)
𝑎

= 𝑂(1).

Well it turns out that this is equivalent to prime number theorem! This constant
can be shown to be 1/𝜁(1). As 𝜁 has a pole at 𝑧 = 1, this is indeed true.

1.5 Selberg’s identity and on elementary proof of prime
number theorem

Define Selberg’s function

Λ2(𝑛) = 𝜇 ∗ (log)2(𝑛) = ∑
𝑎𝑏=𝑛

𝜇(𝑎)(log 𝑏)2.

The idea is to prove “prime number theorem for Λ2” with elementary methods.
The intuition is that Λ2 is like Λ multiplied by log and if we do the same
expansion as before, hopefully we can get

∑
𝑛≤𝑥

Λ2(𝑛) = main term + 𝑂(𝑥),

but now this is now an acceptable error!

Lemma 1.13.

1. Λ2(𝑛) = Λ(𝑛) log𝑛 + Λ ∗ Λ(𝑛).

2. 0 ≤ Λ2(𝑛) ≤ (log𝑛)2.
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3. If Λ2(𝑛) ≠ 0 then 𝑛 has at most 2 distinct prime divisors.
Proof.

1. Use Möbius inversion suffices to show

∑
𝑑∣𝑛

(Λ(𝑑) log 𝑑 + Λ ∗ Λ(𝑑)) = (log𝑛)2.

Start by expanding out,

∑
𝑑∣𝑛

(Λ(𝑑) log 𝑑 + Λ ∗ Λ(𝑑)) = ∑
𝑑∣𝑛

Λ(𝑑) log 𝑑 + ∑
𝑎𝑏∣𝑛

Λ(𝑎)Λ(𝑏)

= ∑
𝑑∣𝑛

log 𝑑 + ∑
𝑎∣𝑛

Λ(𝑎) ∑
𝑏∣ 𝑛

𝑎

Λ(𝑏)
⏟
=log(𝑛/𝑎)

= ∑
𝑑∣𝑛

log 𝑑 + ∑
𝑑∣𝑛

Λ(𝑑) log 𝑛
𝑑

= log𝑛 ∑
𝑑∣𝑛

Λ(𝑑)

= (log𝑛)2

2. Λ2(𝑛) ≥ 0 since both terms on RHS in 1 are nonnegative. Since

∑
𝑑∣𝑛

Λ2(𝑑) = (log𝑛)2,

Λ2(𝑛) ≤ (log𝑛)2.

3. Note that if 𝑛 is divisible by 2 distinct primes then Λ(𝑛) = 0, and

Λ ∗ Λ(𝑛) = ∑
𝑎𝑏∣𝑛

Λ(𝑎)Λ(𝑏) = 0

since at least one of 𝑎 or 𝑏 has ≥ 2 distinct prime divisors.

As such while Λ can be thought as the indicator function for numbers with
exactly 1 prime divisor, weighted by log, Λ2 can be thought as the indicator
function for numbers with a pair of prime divisors, weighted by (log)2.

Theorem 1.14 (Selberg).

∑
𝑛≤𝑥

Λ2(𝑛) = 2𝑥 log𝑥 + 𝑂(𝑥).

Proof.

∑
𝑛≤𝑥

Λ2(𝑛) = ∑
𝑛≤𝑥

𝜇 ∗ (log)2(𝑛)

= ∑
𝑎𝑏≤𝑥

𝜇(𝑎)(log 𝑏)2

= ∑
𝑎≤𝑥

𝜇(𝑎) ( ∑
𝑏≤𝑥/𝑎

(log 𝑏)2)
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By partial summation,

∑
𝑚≤𝑥

(log𝑚)2 = 𝑥(log𝑥)2 − 2𝑥 log𝑥 + 2𝑥 + 𝑂((log𝑥)2).

We want to use the same trick and substitute sum of divisor function for the
leading term. First we have to manufacture a 𝑥(log𝑥)2 term. By partial sum-
mation with

𝐴(𝑡) = ∑
𝑛≤𝑡

𝜏(𝑛) = 𝑡 log 𝑡 + 𝐶𝑡 + 𝑂(𝑡1/2),

have

∑
𝑚≤𝑥

𝜏(𝑚)
𝑚

= 𝐴(𝑥)
𝑥

+ ∫
𝑥

1

𝐴(𝑡)
𝑡2 𝑑𝑡

= log𝑥 + 𝐶 + 𝑂(𝑥−1/2) + ∫
𝑥

1

log 𝑡
𝑡

𝑑𝑡 + 𝐶 ∫
𝑥

1

1
𝑡
𝑑𝑡 + 𝑂(∫

𝑥

1

1
𝑡3/2 𝑑𝑡)

= (log𝑥)2

2
+ 𝐶1 log𝑥 + 𝐶2 + 𝑂(𝑥−1/2)

Since we dislike log, we replace it by ∑𝑚≤𝑥 𝜏(𝑚) to get

𝑥(log𝑥)2

2
= ∑

𝑚≤𝑥
𝜏(𝑚) 𝑥

𝑚
+ 𝐶′

1 ∑
𝑚≤𝑥

𝜏(𝑚) + 𝐶′
2𝑥 + 𝑂(𝑥1/2).

Substituting back,

∑
𝑚≤𝑥

(log𝑚)2 = 2 ∑
𝑚≤𝑥

𝜏(𝑚) 𝑥
𝑚

+ 𝐶3 ∑
𝑚≤𝑥

𝜏(𝑚) + 𝐶4𝑥 + 𝑂(𝑥1/2)

so

∑
𝑛≤𝑥

Λ2(𝑛) = 2 ∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑏≤𝑥/𝑎

𝜏(𝑏)𝑥
𝑎𝑏

+ 𝐶5 ∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑏≤𝑥/𝑎

𝜏(𝑏)

+ 𝐶6 ∑
𝑎≤𝑥

𝜇(𝑎)𝑥
𝑎

+ 𝑂(∑
𝑎≤𝑥

𝑥1/2

𝑎1/2 ).

We analyse the error terms one by one, starting from the back. First note that

𝑥1/2 ∑
𝑎≤𝑥

1
𝑎1/2 = 𝑂(𝑥).

Secondly

𝑥 ∑
𝑎≤𝑥

𝜇(𝑎)
𝑎

= ∑
𝑎≤𝑥

𝜇(𝑎)⌊𝑥
𝑎

⌋ + 𝑂(𝑥)

= ∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑏≤𝑥/𝑎

1 + 𝑂(𝑥)

= ∑
𝑑≤𝑥

𝜇 ∗ 1(𝑑) + 𝑂(𝑥)

= 1 + 𝑂(𝑥)
= 𝑂(𝑥)
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1 Elementary techniques

Thirdly, (again essentially 𝜇 ∗ 𝜏 = 1)

∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑏≤𝑥/𝑎

𝜏(𝑏) = ∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑏≤𝑥/𝑎

∑
𝑐𝑑=𝑏

1

= ∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑐𝑑≤𝑥/𝑎

1

= ∑
𝑎𝑐𝑑≤𝑥

𝜇(𝑎) = ∑
𝑑≤𝑥

∑
𝑎𝑐≤𝑥/𝑑

𝜇(𝑎)

= ∑
𝑑≤𝑥

∑
𝑒≤𝑥/𝑑

𝜇 ∗ 1(𝑒)

= ∑
𝑑≤𝑥

1

= 𝑂(𝑥)

Collecting what we’ve done,

∑
𝑛≤𝑥

Λ2(𝑛) = 2 ∑
𝑎≤𝑥

𝜇(𝑎) ∑
𝑏≤𝑥/𝑎

𝜏(𝑏)𝑥
𝑎𝑏

+ 𝑂(𝑥)

= 2𝑥 ∑
𝑑≤𝑥

1
𝑑

𝜇 ∗ 𝜏(𝑑) + 𝑂(𝑥)

Recall that 𝜏 = 1 ∗ 1 so 𝜇 ∗ 𝜏 = 𝜇 ∗ 1 ∗ 1 = 1,

= 2𝑥 ∑
𝑑≤𝑥

1
𝑑

+ 𝑂(𝑥)

= 2𝑥 log𝑥 + 𝑂(𝑥)

1.5.1 *A 14-point plan to prove prime number theorem from Sel-
berg’s identity

Let
𝑟(𝑥) = 𝜓(𝑥)

𝑥
− 1.

Then prime number theorem is the statement that

lim
𝑥→∞

|𝑟(𝑥)| = 0.

We will demonstrate how to count from 1 to 14 below. When you finished
counting, you will get prime number theorem as a byproduct.

1 Show that Selberg’s identity implies

𝑟(𝑥) log𝑥 = − ∑
𝑛≤𝑥

Λ(𝑛)
𝑛

𝑟(𝑥
𝑛

) + 𝑂(1).

2 Consider 1 with 𝑥 replaced by 𝑥
𝑚 , summing over 𝑚, show

|𝑟(𝑥)|(log𝑥)2 ≤ ∑
𝑛≤𝑥

Λ2(𝑛)
𝑛

∣𝑟(𝑥
𝑛

)∣ + 𝑂(log𝑥).
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1 Elementary techniques

3

∑
𝑛≤𝑥

Λ2(𝑛) = 2 ∫
⌊𝑥⌋

1
log 𝑡𝑑𝑡 + 𝑂(𝑥).

4 - 6
∑
𝑛≤𝑥

Λ2(𝑛)
𝑛

|𝑟(𝑥
𝑛

)| = 2 ∫
𝑥

1

𝑟(𝑥/2)
𝑡 log 𝑡

𝑑𝑡 + 𝑂(log𝑥).

7 Let 𝑉 (𝑢) = 𝑟(𝑒𝑢). Show that

𝑢2|𝑉 (𝑢)| ≤ 2 ∫
𝑢

0
∫

𝑣

0
|𝑉 (𝑡)|𝑑𝑡𝑑𝑣 + 𝑂(𝑢).

8 Show
𝛼 = lim sup

𝑥→∞
|𝑟(𝑥)| ≤ lim sup

𝑢→∞

1
𝑢

∫
𝑢

0
|𝑉 (𝑡)|𝑑𝑡 = 𝛽.

9 - 14 If 𝛼 > 0 then can show from 7 that 𝛽 < 𝛼, contradiction. So 𝛼 = 0. Prime
number theorem.
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2 Sieve methods

2 Sieve methods
Sieve of Eratosthenes: given natural numbers below 20, let’s cross out all mul-
tiples of 2 to get

1 �2 3 �4 5 �6 7 �8 9 ��10
11 ��12 13 ��14 15 ��16 17 ��18 19 ��20

Next we cross out all multiples of 3 to get

1 �2 A3 �4 5 �A6 7 �8 A9 ��10
11 ��ZZ12 13 ��14 ZZ15 ��16 17 ��ZZ18 19 ��20

As
√

20 < 5, we know that the numbers left on the list are prime (with the
exception of 1). Our interest is in using the sieve to count things: we can find
how many numbers are left, which by definition are those primes below 20 that
are not used as sieves, by inclusion-exclusion principle:

𝜋(20) + 1 − 𝜋(
√

20) = 20 − ⌊20
2

⌋ − ⌊20
3

⌋ + ⌊20
6

⌋

= 20 − 10 − 6 + 3
= 7

By the way if there are more sieves then we naturally include more terms in the
inclusion-exclusion expansion. Note that the coefficient/sign in front of each
term is precisely the Möbius function of the denominator.

2.1 Setup
Consider 𝐴 ⊆ N finite, which is the set to be sifted. Let 𝑃 be a set of primes,
which are those we sift out by. Usually 𝑃 is the set of all primes. Let 𝑧 be a
sifting limit: we sift all primes in 𝑃 that are smaller than 𝑧. A sifting function

𝑆(𝐴, 𝑃 ; 𝑧) = ∑
𝑛∈𝐴

1(𝑛,𝑃(𝑧))=1

where 𝑃(𝑧) = ∏𝑝∈𝑃,𝑝<𝑧 𝑝. The goal is to estimate 𝑆(𝐴, 𝑃 ; 𝑧).
For 𝑑, let

𝐴𝑑 = {𝑛 ∈ 𝐴 ∶ 𝑑 ∣ 𝑛}.

Write
|𝐴𝑑| = 𝑓(𝑑)

𝑑
𝑋 + 𝑅𝑑

where 𝑓 is completely multiplicative (𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) for all 𝑚, 𝑛) and 𝑓(𝑑) ≥
0 for all 𝑑. Note that

|𝐴| = 𝑓(1)
1

𝑋 + 𝑅1 = 𝑋 + 𝑅1

Think of 𝑅1 as the remainder term, 𝑋 is roughly the size of 𝐴. Extending this
analogy, for general 𝑑, 𝑅𝑑 is the “error” term and 𝑋

𝑑 measures the number of
elements in the 0 residue class of 𝑑, assuming they are distributed uniformly.
Then 𝑓(𝑑) is a factor that says how the residue class is actually distributed.
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2 Sieve methods

We choose 𝑓 so that 𝑓(𝑝) = 0 if 𝑝 ∉ 𝑃 (so 𝑅𝑝 = |𝐴𝑝|). Finally let

𝑊𝑃(𝑧) = ∏
𝑝∈𝑃
𝑝<𝑧

(1 − 𝑓(𝑝)
𝑝

) ,

the probability that it is not divisible by any of the 𝑝.

Example.

1. Sieve of Eratosthenes: 𝐴 = (𝑥, 𝑥 + 𝑦] ∩ N and 𝑃 is the set of all primes.
Then

|𝐴𝑑| = ⌊𝑥 + 𝑦
𝑑

⌋ − ⌊𝑥
𝑑

⌋ = 𝑥 + 𝑦
𝑑

− 𝑥
𝑑

+ 𝑂(1) = 𝑦
𝑑

+ 𝑂(1)

so 𝑓(𝑑) = 1 and 𝑅𝑑 = 𝑂(1). Have

𝑆(𝐴, 𝑃 ; 𝑧) = #{𝑥 < 𝑛 ≤ 𝑥 + 𝑦 ∶ 𝑝 ∣ 𝑛 ⟹ 𝑝 ≥ 𝑧}.

For example if 𝑧 ≈ (𝑥 + 𝑦)1/2 then

𝑆(𝐴, 𝑃 ; 𝑧) = 𝜋(𝑥 + 𝑦) − 𝜋(𝑥) + 𝑂((𝑥 + 𝑦)1/2).

2. Let 𝐴 = {1 ≤ 𝑛 ≤ 𝑦 ∶ 𝑛 = 𝑎 mod 𝑞}. Then

𝐴𝑑 = {1 ≤ 𝑚 ≤ 𝑦
𝑑

∶ 𝑑𝑚 = 𝑎 mod 𝑞}.

The congruence has solutions if and only if (𝑑, 𝑞) ∣ 𝑎. Thus

|𝐴𝑑| = {
(𝑑,𝑞)

𝑑𝑞 𝑦 + 𝑂((𝑑, 𝑞)) (𝑑, 𝑞) ∣ 𝑎
𝑂((𝑑, 𝑞)) otherwise

So here 𝑋 = 𝑦
𝑞 and

𝑓(𝑑) = {(𝑑, 𝑞) (𝑑, 𝑞) ∣ 𝑎
0 otherwise

3. Count twin primes: let 𝐴 = {𝑛(𝑛+2) ∶ 1 ≤ 𝑛 ≤ 𝑥} and let 𝑃 be all primes
except 2. So 𝑝 ∣ 𝑛(𝑛 + 2) if and only if 𝑛 = 0 or 2 mod 𝑝. Thus

|𝐴𝑝| = 2𝑥
𝑝

+ 𝑂(1).

Thus 𝑓(𝑝) = 2. By complete multiplicity, 𝑓(𝑑) = 2𝜔(𝑑) if 2 ∤ 𝑑. Have

𝑆(𝐴, 𝑃 ; 𝑥1/2) = #{1 ≤ 𝑝 ≤ 𝑥 ∶ 𝑝, 𝑝 + 2 both primes} + 𝑂(𝑥1/2)
= 𝜋2(𝑥) + 𝑂(𝑥1/2)

We would expect 𝜋2(𝑥) ≈ 𝑥
(log 𝑥)2 . We’ll prove upper bound using sieves.
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2 Sieve methods

Theorem 2.1 (sieve of Eratosthenes-Legendre).

𝑆(𝐴, 𝑃 ; 𝑧) = 𝑋𝑊𝑃(𝑧) + 𝑂( ∑
𝑑∣𝑃(𝑧)

|𝑅𝑑|).

Proof.

𝑆(𝐴, 𝑃 ; 𝑧) = ∑
𝑛∈𝐴

1(𝑛,𝑃(𝑧))=1

= ∑
𝑛∈𝐴

∑
𝑑∣(𝑛,𝑃(𝑧))

𝜇(𝑑)

= ∑
𝑛∈𝐴

∑
𝑑∣𝑛

𝑑∣𝑃(𝑧)

𝜇(𝑑)

= ∑
𝑑∣𝑃(𝑧)

𝜇(𝑑) ∑
𝑛∈𝐴

1𝑑∣𝑛

= ∑
𝑑∣𝑃(𝑧)

𝜇(𝑑)|𝐴𝑑|

= 𝑋 ∑
𝑑∣𝑃(𝑧)

𝜇(𝑑)𝑓(𝑑)
𝑑

+ ∑
𝑑∣𝑃(𝑧)

𝜇(𝑑)𝑅𝑑

= 𝑋 ∏
𝑝∈𝑃,𝑝<𝑧

(1 − 𝑓(𝑝)
𝑝

) + 𝑂( ∑
𝑑∣𝑃(𝑧)

|𝑅𝑑|)

Corollary 2.2.
𝜋(𝑥 + 𝑦) − 𝜋(𝑥) ≪ 𝑦

log log 𝑦
.

By taking 𝑥 = 0 we see this is much worse bound in 𝑦 than Chebyshev. On the
other hand, however, we get a uniform bound independent of 𝑥!

Proof. In example 1, 𝑋 = 𝑦, 𝑓 = 1 and |𝑅𝑑| ≪ 1. Thus

𝑊𝑃(𝑧) = ∏
𝑝<𝑧

(1 − 1
𝑝

) ≪ (log 𝑧)−1

and
∑

𝑑∣𝑃(𝑧)
|𝑅𝑑| ≪ ∑

𝑑∣𝑃(𝑧)
1 ≤ 2𝑧

so
𝜋(𝑥 + 𝑦) − 𝜋(𝑥) ≪ 𝑦

log 𝑧
+ 2𝑧 ≪ 𝑦

log log 𝑦
by letting 𝑧 = log 𝑦.

2.2 Selberg’s sieve
Using sieve of Eratosthenes-Legendre, we only get 𝑦

log log 𝑦 instead of the expected
𝑦

log 𝑦 . What prevents us from getting the result is that we can’t take 𝑧 = 𝑦 —
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2 Sieve methods

otherwise the error term will be 𝑂(2𝑧) = 𝑂(2𝑦), which is much bigger than the
main term.

The problem is that we have to consider 2𝑧 many divisors of 𝑃(𝑧) so get 2𝑧

many error terms. However, we can design a different sieve, and only consider
those divisors which are small, say ≤ 𝐷. The key part of Eratosthenes-Legendre
sieve is

1(𝑛,𝑃(𝑧))=1 = ∑
𝑑∣(𝑛,𝑃(𝑧))

𝜇(𝑑).

However, for an upper bound, it is enough to use any function 𝐹 such that

𝐹(𝑛) ≥ {1 𝑛 = 1
0 otherwise

Selberg’s observation was that if (𝜆𝑖) is any sequence of reals with 𝜆1 = 1 then

𝐹(𝑛) = (∑
𝑑∣𝑛

𝜆𝑑)
2

works.
We assume that 0 < 𝑓(𝑝) < 𝑝 for 𝑝 ∈ 𝑃, which is a reasonable assumption

for the sieve to be “nontrivial” (if 𝑓(𝑝) = 0 then the sieve does nothing and we
may well just remove 𝑝 from 𝑃. If 𝑓(𝑝) = 𝑝 then it sifts out everything!) The
let us define a new multiplicative function 𝑔 such that

𝑔(𝑝) = (1 − 𝑓(𝑝)
𝑝

)
−1

− 1 = 𝑓(𝑝)
𝑝 − 𝑓(𝑝)

.

Theorem 2.3 (Selberg’s sieve). For all 𝑡,

𝑆(𝐴, 𝑃 ; 𝑧) ≤ 𝑋
𝐺(𝑡, 𝑧)

+ ∑
𝑑∣𝑃(𝑡)
𝑑<𝑡2

3𝜔(𝑑)|𝑅𝑑|

where
𝐺(𝑡, 𝑧) = ∑

𝑑∣𝑃(𝑧)
𝑑<𝑡

𝑔(𝑑).

Recall that 𝑊𝑃 = ∏𝑝∈𝑃
𝑝<𝑧

(1 − 𝑓(𝑝)
𝑝 ) so expected size of 𝑆(𝐴, 𝑃 ; 𝑧) is 𝑋𝑊𝑃.

Note that as 𝑡 → ∞,

𝐺(𝑡, 𝑧) → ∑
𝑑∣𝑃(𝑧)

𝑔(𝑑) = ∏
𝑝<𝑧

(1 + 𝑔(𝑝)) = ∏
𝑝<𝑧

(1 − 𝑓(𝑝)
𝑝

)
−1

= 1
𝑊𝑃

.

Let’s apply our new machinery:

Corollary 2.4. For all 𝑥, 𝑦,

𝜋(𝑥 + 𝑦) − 𝜋(𝑥) ≪ 𝑦
log 𝑦

.
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2 Sieve methods

Proof. Let 𝐴 = {𝑥 < 𝑛 ≤ 𝑥 + 𝑦}, 𝑓(𝑝) = 1, 𝑅𝑑 = 𝑂(1) and 𝑋 = 𝑦. As
𝑔(𝑝) = 1

𝑝−1 = 1
𝜑(𝑝) so 𝑔(𝑑) = 1

𝜑(𝑑) ,

𝐺(𝑧, 𝑧) = ∑
𝑑∣𝑃(𝑧)

𝑑<𝑧

∏
𝑝∣𝑑

(𝑝 − 1)−1

= ∑
𝑑=𝑝1⋯𝑝𝑟<𝑧

𝑟
∏
𝑖=1

∞
∑
𝑘=1

1
𝑝𝑘

𝑖

= ∑
𝑝1⋯𝑝𝑟<𝑧

1≤𝑖≤𝑟

∞
∑
𝑘𝑖=1

1
𝑝𝑘1

1 ⋯ 𝑝𝑘𝑟𝑟

= ∑ 1
𝑛

square-free part of 𝑛 < 𝑧

≥ ∑
𝑑<𝑧

1
𝑑

≫ log 𝑧

so the main term ≪ 𝑦
log 𝑧 . Note that

3𝜔(𝑑) ≤ 𝜏3(𝑑) ≪𝜀 𝑑𝜀

from example sheet 1 so the error term is

∑
𝑑∣𝑃(𝑡)
𝑑<𝑡2

3𝜔(𝑑)|𝑅𝑑| ≪𝜀 𝑡𝜀 ∑
𝑑<𝑡2

1 ≪ 𝑡2+𝜀 = 𝑧2+𝜀

by setting 𝑡 = 𝑧. Thus

𝑆(𝐴, 𝑃 ; 𝑧) ≪ 𝑦
log 𝑧

+ 𝑧2+𝜀 ≪ 𝑦
log 𝑦

by taking 𝑧 = 𝑦1/3.

Proof of Selberg’s sieve. Let (𝜆𝑖) be a sequence of reals with 𝜆1 = 1, to be
chosen later. Then

𝑆(𝐴, 𝑃 ; 𝑧) = ∑
𝑛∈𝐴

1(𝑛,𝑃(𝑧))=1

≤ ∑
𝑛∈𝐴

( ∑
𝑑∣(𝑛,𝑃(𝑧))

𝜆𝑑)
2

= ∑
𝑑,𝑒∣𝑃(𝑧)

𝜆𝑑𝜆𝑒 ∑
𝑛∈𝐴

1𝑑∣𝑛,𝑒∣𝑛

= ∑
𝑑,𝑒∣𝑃(𝑧)

𝜆𝑑𝜆𝑒|𝐴[𝑑,𝑒]|

= 𝑋 ∑
𝑑,𝑒∣𝑃(𝑧)

𝜆𝑑𝜆𝑒
𝑓([𝑑, 𝑒])

[𝑑, 𝑒]
+ ∑

𝑑,𝑒∣𝑃(𝑧)
𝜆𝑑𝜆𝑒𝑅[𝑑,𝑒]

We’ll choose 𝜆𝑑 such that |𝜆𝑑| ≤ 1 and 𝜆𝑑 = 0 if 𝑑 ≥ 𝑡. Then

∣ ∑
𝑑,𝑒∣𝑃(𝑧)

𝜆𝑑𝜆𝑒𝑅[𝑑,𝑒]∣ ≤ ∑
𝑑,𝑒<𝑡

𝑑,𝑒∣𝑃(𝑧)

|𝑅[𝑑,𝑒]| ≤ ∑
𝑛∣𝑃(𝑧)
𝑛<𝑡2

|𝑅𝑛| ∑
𝑑,𝑒

1[𝑑,𝑒]=𝑛
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and since 𝑛 is square-free,

∑
𝑑,𝑒

1[𝑑,𝑒]=𝑛 = 3𝜔(𝑛)

so the error term is settled.
Now to the main term. Let

𝑉 = ∑
𝑑,𝑒∣𝑃(𝑧)

𝜆𝑑𝜆𝑒
𝑓([𝑑, 𝑒])

[𝑑, 𝑒]
.

Write [𝑑, 𝑒] = 𝑎𝑐𝑏 where 𝑑 = 𝑎𝑐, 𝑒 = 𝑏𝑐 and (𝑎, 𝑏) = (𝑏, 𝑐) = (𝑎, 𝑐) = 1. We also
require 𝜆𝑑 = 0 if 𝑑 is not square-free so the last two conditions are automatically
satisfied, leaving the notations a bit clearer.

𝑉 = ∑
𝑐∣𝑃(𝑧)

𝑓(𝑐)
𝑐

∑
𝑎𝑏∣𝑃(𝑧)
(𝑎,𝑏)=1

𝑓(𝑎)𝑓(𝑏)
𝑎𝑏

𝜆𝑎𝑐𝜆𝑏𝑐

= ∑
𝑐∣𝑃(𝑧)

𝑓(𝑐)
𝑐

∑
𝑎𝑏∣𝑃(𝑧)

𝑓(𝑎)
𝑎

𝑓(𝑏)
𝑏

∑
𝑑∣𝑎,𝑑∣𝑏

𝜇(𝑑)𝜆𝑎𝑐𝜆𝑏𝑐

= ∑
𝑐∣𝑃(𝑧)

𝑓(𝑐)
𝑐

∑
𝑑∣𝑃(𝑧)

𝜇(𝑑) ( ∑
𝑑∣𝑎∣𝑃(𝑧)

𝑓(𝑎)
𝑎

𝜆𝑎𝑐)
2

= ∑
𝑑∣𝑃(𝑧)

𝜇(𝑑) ∑
𝑐∣𝑃(𝑧)

𝑐
𝑓(𝑐)

( ∑
𝑐𝑑∣𝑛∣𝑃(𝑧)

𝑓(𝑛)
𝑛

𝜆𝑛)
2

write 𝑎𝑐 = 𝑛

= ∑
𝑑∣𝑃(𝑧)

𝜇(𝑑) ∑
𝑐∣𝑃(𝑧)

𝑐
𝑓(𝑐)

𝑦2
𝑐𝑑

= ∑
𝑘∣𝑃(𝑧)

( ∑
𝑐𝑑=𝑘

𝜇(𝑑) 𝑐
𝑓(𝑐)

) 𝑦2
𝑘

The term in the brackets is a convolution so we want to simply it. Note that
both functions are multiplicative so suffice to work out the primes. For prime
𝑝,

∑
𝑐𝑑=𝑝

𝜇(𝑑) 𝑐
𝑓(𝑐)

= −1 + 𝑝
𝑓(𝑝)

= 1
𝑔(𝑝)

and thus for all 𝑘 ∣ 𝑃 (𝑧),

∑
𝑐𝑑=𝑘

𝜇(𝑑) 𝑐
𝑓(𝑐)

= 1
𝑔(𝑘)

.

Note that if 𝑘 ≥ 𝑡 then 𝑦𝑘 = 0. Thus

𝑉 = ∑
𝑘∣𝑃(𝑧)

𝑘<𝑡

𝑦2
𝑘

𝑔(𝑘)
.

We want to choose 𝑉 as small as possible. The idea is to find a lower bound for
𝑉 and use Cauchy-Schwarz to find the condition on the summands.
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2 Sieve methods

Note that we have now expressed 𝑉 in terms of 𝑦𝑘, which is determined by
𝜆𝑑:

𝑦𝑘 = ∑
𝑘∣𝑛∣𝑃(𝑧)

𝑓(𝑛)
𝑛

𝜆𝑛.

We would like to invert the relation, so that we can directly control 𝑦𝑘. Use a
Möbius inversion heuristics, for a fixed 𝑑,

∑
𝑑∣𝑘∣𝑃(𝑧)

𝜇(𝑘)𝑦𝑘 = ∑
𝑘∣𝑃(𝑧)

𝜇(𝑘) ∑
𝑛∣𝑃(𝑧)

𝑓(𝑛)
𝑛

𝜆𝑛1𝑑∣𝑘1𝑘∣𝑛

= ∑
𝑛∣𝑃(𝑧)

𝑓(𝑛)
𝑛

𝜆𝑛1𝑑∣𝑛 ∑
𝑑∣𝑘∣𝑛

𝜇(𝑘)

For the last summation, note that 𝑘 = 𝑑𝑒 is square-free so

∑
𝑑∣𝑘∣𝑛

𝜇(𝑘) = 𝜇(𝑑) ∑
𝑒∣ 𝑛

𝑑

𝜇(𝑒) = {𝜇(𝑑) 𝑛 = 𝑑
0 𝑛 > 𝑑

by multiplicativity. Thus

∑
𝑑∣𝑘∣𝑃(𝑧)

𝜇(𝑘)𝑦𝑘 = 𝜇(𝑑)𝑓(𝑑)
𝑑

𝜆𝑑

Thus instead of choosing 𝜆𝑑, we can choose 𝑦𝑘 to make 𝑉 small.
Recall that 𝜆1 = 1 so must have

∑
𝑘∣𝑃(𝑧)

𝜇(𝑘)𝑦𝑘 = 1.

Thus

1 =
⎛⎜⎜
⎝

∑
𝑘∣𝑃(𝑧)

𝑘<𝑡

𝜇(𝑘)𝑦𝑘𝑔(𝑘)1/2 ⋅ 1
𝑔(𝑘)1/2

⎞⎟⎟
⎠

2

≤
⎛⎜⎜
⎝

∑
𝑘∣𝑃(𝑧)

𝑘<𝑡

𝑔(𝑘)
⎞⎟⎟
⎠

⎛⎜⎜
⎝

∑
𝑘∣𝑃(𝑧)

𝑘<𝑡

𝑦2
𝑘

𝑔(𝑘)
⎞⎟⎟
⎠

= 𝐺𝑉

where 𝐺 = 𝐺(𝑡, 𝑧) by Cauchy-Schwarz, with equaility if and only if there exists
𝑐 such that for all 𝑘,

𝜇(𝑘)𝑦𝑘
𝑔(𝑘)1/2 = 𝑐𝑔(𝑘)1/2

i.e.
𝑦𝑘 = 𝑐𝜇(𝑘)𝑔(𝑘)

for 𝑘 < 𝑡. To find 𝑐, use the normalisation condition

1 = 𝑐 ∑
𝑘∣𝑃(𝑧)

𝑘<𝑡

𝜇(𝑘)2𝑔(𝑘) = 𝑐𝐺

so choose 𝑐 = 1
𝐺 . Check that
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2 Sieve methods

1. 𝜆1 = 1,

2. 𝜆𝑑 = 0 if 𝑑 ≥ 𝑡,

3. 𝜆𝑑 = 0 if 𝑑 is square-free (lecturer said this condition is actually not
necessary).

4. |𝜆𝑑| ≤ 1. Can be checked as follow:

𝜆𝑑 = 𝜇(𝑑) 𝑑
𝑓(𝑑)

∑
𝑑∣𝑘∣𝑃(𝑧)

𝜇(𝑘)𝑦𝑘

= 𝑑
𝑓(𝑑)

1
𝐺

∑
𝑑∣𝑘∣𝑃(𝑧)

𝑔(𝑘).

Note that

𝐺 = ∑
𝑒∣𝑃(𝑧)

𝑒<𝑡

𝑔(𝑒)

= ∑
𝑘∣𝑑

∑
𝑒∣𝑃(𝑧)

𝑒<𝑡
(𝑑,𝑒)=𝑘

𝑔(𝑒) for fixed 𝑑

= ∑
𝑘∣𝑑

𝑔(𝑘) ∑
𝑚∣𝑃(𝑧)

(𝑚,𝑑)=1
𝑚<𝑡/𝑘

𝑔(𝑚)

≥ ∑
𝑘∣𝑑

𝑔(𝑘) ∑
𝑚∣𝑃(𝑧)

(𝑚,𝑑)=1
𝑚<𝑡/𝑑

𝑔(𝑚)

Note that for prime 𝑝,

∑
𝑘∣𝑝

𝑔(𝑘) = 1 + 𝑓(𝑝)
𝑝 − 𝑓(𝑝)

= 𝑝
𝑝 − 𝑓(𝑝)

= 𝑝
𝑓(𝑝)

𝑔(𝑝)

so
𝐺 ≥ 𝑑

𝑓(𝑑)
𝑔(𝑑)( ∑

𝑚∣𝑃(𝑧)
(𝑚,𝑑)=1
𝑚<𝑡/𝑑

𝑔(𝑚)) = 𝑑
𝑓(𝑑)

∑
𝑑∣𝑘∣𝑃(𝑧)

𝑔(𝑘) = |𝜆𝑑|𝐺

so |𝜆𝑑| ≤ 1.

Theorem 2.5 (Brun). Let 𝜋2(𝑥) = #{1 ≤ 𝑛 ≤ 𝑥 ∶ 𝑛, 𝑛 + 2 are prime}.
Then

𝜋2(𝑥) ≪ 𝑥
(log𝑥)2 .

Proof. Let 𝐴 = {𝑛(𝑛 + 2) ∶ 1 ≤ 𝑛 ≤ 𝑥}, 𝑃 be the the set of all primes except 2.
Have

|𝐴𝑑| = #{1 ≤ 𝑛 ≤ 𝑥 ∶ 𝑑 ∣ 𝑛(𝑛 + 2)}
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2 Sieve methods

If 𝑑 = 𝑝1 ⋯ 𝑝𝑟 is odd and square-free then 𝑑 ∣ 𝑛(𝑛 + 2) if and only if 𝑝𝑖 ∣ 𝑛(𝑛 + 1)
for all 𝑖, if and only if 𝑛 = 0 or − 2 mod 𝑝𝑖 for all 𝑖, and Chinese remainder
theorem, if and only if 𝑛 lies in one of 2𝜔(𝑑) many residue classes mod 𝑑. Thus

|𝐴𝑑| = 2𝜔(𝑑)

𝑑
𝑋 + 𝑂(2𝜔(𝑑))

so 𝑓(𝑑) = 2𝜔(𝑑) and 𝑅𝑑 ≪ 2𝜔(𝑑) for 𝑑 odd square-free. By Selberg’s sieve, with
𝑡 = 𝑧 = 𝑥1/4,

𝜋2(𝑥) ≤ #{1 ≤ 𝑛 ≤ 𝑥 ∶ 𝑝 ∣ 𝑛(𝑛 + 2) ⟹ 𝑝 = 2 or 𝑝 ≥ 𝑥1/4} + 𝑂(𝑥1/4)
= 𝑆(𝐴, 𝑃 ; 𝑥1/4) + 𝑂(𝑥1/4)

≤ 𝑥
𝐺(𝑧, 𝑧)

+ 𝑂( ∑
𝑑∣𝑃(𝑧)
𝑑<𝑧2

6𝜔(𝑑))

As before
∑
𝑑<𝑧2

6𝜔(𝑑) ≤ 𝑧2+𝑂(1) = 𝑥1/2+𝑂(1).

To finish the proof need to show 𝐺(𝑧, 𝑧) ≫ (log 𝑧)2. Note that 𝑔(2) = 2 and

𝑔(𝑝) = 𝑓(𝑝)
𝑝 − 𝑓(𝑝)

= 2
𝑝 − 2

≥ 2
𝑝 − 1

,

so if 𝑑 is odd and square-free then

𝑔(𝑑) ≥ 2𝜔(𝑑)

𝜑(𝑑)
.

so

𝐺(𝑧, 𝑧) ≥ ∑
𝑑<𝑧

𝑑 odd, square-free

2𝜔(𝑑)

𝜑(𝑑)

= ∑
𝑑=𝑝1⋯𝑝𝑟<𝑧

2𝜔(𝑑)
𝑟

∏
𝑖=1

( 1
𝑝𝑖

+ 1
𝑝2

𝑖
+ ⋯)

≥ ∑
𝑑<𝑧

2𝜔(𝑑)

𝑑

By partial summation, it’s enough to show ∑𝑑<𝑧 2𝜔(𝑑) ≫ 𝑧 log 𝑧. Recall that to
show

∑
𝑑<𝑧

𝜏(𝑑) ≫ 𝑧 log 𝑧

we used 𝜏 = 1 ∗ 1. So we need to write 2𝜔(𝑛) as a convolution of multiplicative
functions. Suppose

2𝜔(𝑛) = ∑
𝑑∣𝑛

𝑓(𝑑)𝑔(𝑛
𝑑

)

where 𝑓, 𝑔 are multiplicative. We can actually write down values of 𝑓 at prime
powers:

1 : 𝑓(1) = 𝑔(1) = 1
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2 Sieve methods

𝑝 : 2 = 𝑓(𝑝) + 𝑔(𝑝)

𝑝2 : 2 = 𝑔(𝑝2) + 𝑓(𝑝2) + 𝑓(𝑝)𝑔(𝑝).

Let’s say try 𝑓 = 𝜏, so 𝑔(𝑝) = 0, 𝑔(𝑝2) = −1, 𝑔(𝑝𝑘) = 0 for 𝑘 ≥ 3. Therefore

𝑔(𝑛) = {0 𝑛 not a square
𝜇(𝑑) 𝑛 = 𝑑2

and
2𝜔(𝑛) = ∑

𝑑∣𝑛
𝜏(𝑑)𝑔(𝑛

𝑑
).

Therefore

∑
𝑑<𝑧

2𝜔(𝑑) = ∑
𝑎<𝑧

𝑔(𝑎) ∑
𝑏≤𝑧/𝑎

𝜏(𝑏)

= ∑
𝑎<𝑧

𝑔(𝑎) ( 𝑧
𝑎
log 𝑧

𝑎
+ (2𝛾 − 1) 𝑧

𝑎
+ 𝑂(√𝑧/𝑎))

= ∑
𝑎<𝑧

𝑔(𝑎) 𝑧
𝑎
log 𝑧

𝑎
+ 𝐶 ∑

𝑎<𝑧
𝑔(𝑎) 𝑧

𝑎
+ 𝑂(𝑧1/2 ∑

𝑎<𝑧

1
𝑎1/2⏟⏟⏟⏟⏟

≪𝑧

)

= ∑
𝑑<𝑧1/2

𝜇(𝑑) 𝑧
𝑑2 log 𝑧 − 2 ∑

𝑑<𝑧1/2

𝜇(𝑑) 𝑧
𝑑2 log 𝑑

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≪𝑧 ∑𝑑<𝑧1/2

log 𝑑
𝑑2 ≪𝑧

+𝑂(𝑧)

Note

∑
𝑑<𝑧1/2

𝜇(𝑑)
𝑑2 =

∞
∑
𝑑=1

𝜇(𝑑)
𝑑2 − ∑

𝑑≥𝑧1/2

𝜇(𝑑)
𝑑2

≥ 𝑐 + ∑
𝑑≥𝑧1/2

1
𝑑2

= 𝑐 + 𝑂( 1
𝑧1/2 )

so
∑
𝑑<𝑧

2𝜔(𝑑) = 𝑐𝑧 log 𝑧 + 𝑂(𝑧) ≫ 𝑧 log 𝑧.

Remains to show 𝑐 > 0. Either note LHS can’t be 𝑂(𝑧), or calculate the first
couple of terms in the series, or note that 𝑐 = 6

𝜋2 > 0.

2.3 Combinatorial sieve
Selberg’s sieve is an upper bound sieve, while sieve of Eratosthenes uses the
inclusion-exclusion principle

𝑆(𝐴, 𝑃 ; 𝑧) = |𝐴| − ∑
𝑝

|𝐴𝑝| + ∑
𝑝≠𝑞

|𝐴𝑝𝑞| − …

to get a precise number. However this requires us to keep track of every term,
thus resulting in an accummulation of error. The idea of a combinatorial sieve
is to “truncate” the sieve process.
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2 Sieve methods

Lemma 2.6 (Buchstab formula).

𝑆(𝐴, 𝑃 ; 𝑧) = |𝐴| − ∑
𝑝∣𝑃(𝑧)

𝑆(𝐴𝑝, 𝑃 ; 𝑝).

Proof. Rearrange, required to show

|𝐴| = 𝑆(𝐴, 𝑃 ; 𝑧) + ∑
𝑝∣𝑃(𝑧)

𝑆(𝐴𝑝, 𝑃 ; 𝑝) = 𝑆1 + ∑
𝑝∣𝑃(𝑧)

𝑆𝑝

where

𝑆1 = #{𝑛 ∈ 𝐴 ∶ 𝑝 ∣ 𝑛, 𝑝 ∈ 𝑃 ⟹ 𝑝 ≥ 𝑧}
𝑆𝑝 = #{𝑛 ∈ 𝐴 ∶ 𝑛 = 𝑚𝑝, 𝑞 ∣ 𝑛, 𝑞 ∈ 𝑃 ⟹ 𝑞 ≥ 𝑝}

Every 𝑛 ∈ 𝐴 is either in the set counted by 𝑆1 or has some prime divisors
from 𝑃(𝑧). If 𝑝 is the least such prime divisor then 𝑛 ∈ 𝑆𝑝. The 𝑆𝑝’s are
disjoint.

Similarly,

Lemma 2.7.
𝑊(𝑧) = 1 − ∑

𝑝∣𝑃(𝑧)

𝑓(𝑝)
𝑝

𝑊(𝑝)

where recall that
𝑊(𝑧) = ∏

𝑝∣𝑃(𝑧)
(1 − 𝑓(𝑝)

𝑝
) .

Proof. Exercise.

Corollary 2.8. For any 𝑟 ≥ 1,

𝑆(𝐴, 𝑃 ; 𝑧) = ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)|𝐴𝑑| + (−1)𝑟 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑆(𝐴𝑑, 𝑃 ; ℓ(𝑑))

where ℓ(𝑑) is the least prime divisor of 𝑑.

Proof. Induction on 𝑟 = 1. When 𝑟 = 1 this is just Buchstab’s formula. For
inductive step, use

𝑆(𝐴𝑑, 𝑃 ; ℓ(𝑑)) = |𝐴𝑑| − ∑
𝑝∈𝑃

𝑝<ℓ(𝑑)

𝑆(𝐴𝑑𝑝, 𝑃 ; 𝑝)

so

(−1)𝑟 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

⎛⎜⎜⎜
⎝

|𝐴𝑑| − ∑
𝑝∈𝑃

𝑝<ℓ(𝑑)

𝑆(𝐴𝑝𝑑, 𝑃 ; 𝑝)
⎞⎟⎟⎟
⎠

= ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝜇(𝑑)|𝐴𝑑| + (−1)𝑟+1 ∑
𝑒∣𝑃(𝑧)

𝜔(𝑒)=𝑟+1

𝑆(𝐴𝑒, 𝑃 ; ℓ(𝑒))
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2 Sieve methods

In particular, if 𝑟 is even then

𝑆(𝐴, 𝑃 ; 𝑧) ≥ ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)|𝐴𝑑|

and similarly if 𝑟 is odd we get an upper bound.

Theorem 2.9 (Brun’s pure sieve). If 𝑟 ≥ 6 log 1
𝑊(𝑧) then

𝑆(𝐴, 𝑃 ; 𝑧) = 𝑋𝑊(𝑧) + 𝑂(2−𝑟𝑋 + ∑
𝑑∣𝑃(𝑧)
𝑑≤𝑧𝑟

|𝑅𝑑|).

Brun’s pure sieve has the same main term as sieve of Erathosthenes, but the
error term is split into the fixed bit 2−𝑟𝑋 and an accummulation part truncated
at 2𝑟.

Proof. Recall that from iterating Buchstab’s formula

𝑆(𝐴, 𝑃 ; 𝑧) = ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)|𝐴𝑑| + (−1)𝑟 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑆(𝐴𝑑, 𝑃 ; ℓ(𝑑))

= 𝑋 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑓(𝑑)
𝑑

+ ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑅𝑑 + (−1)𝑟 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑆(𝐴𝑑, 𝑃 ; ℓ(𝑑))

By the trivial bounds
0 ≤ 𝑆(𝐴𝑑, 𝑃 ; ℓ(𝑑)) ≤ |𝐴𝑑|

have

𝑆(𝐴, 𝑃 ; 𝑧) = 𝑋 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑓(𝑑)
𝑑

+ 𝑂( ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

|𝑅𝑑| + ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

|𝐴𝑑|)

By Buchstab again, applied to 𝑊(𝑧),

𝑊(𝑧) = ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

𝜇(𝑑)𝑓(𝑑)
𝑑

+ (−1)𝑟 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝜇(𝑑)𝑓(𝑑)
𝑑

𝑊(ℓ(𝑑))

so
𝑆(𝐴, 𝑃 ; 𝑧) = 𝑋𝑊(𝑧) + 𝑂( ∑

𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

|𝑅𝑑| + ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

|𝐴𝑑| + 𝑋 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

)

The error term is

∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)<𝑟

|𝑅𝑑| + ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

|𝐴𝑑| + 𝑋 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

≪ 𝑋 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

+ ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)≤𝑟

|𝑅𝑑|

≤ 𝑋 ∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

+ ∑
𝑑∣𝑃(𝑧)
𝑑≤𝑧𝑟

|𝑅𝑑| as 𝑑 ∣ 𝑃 (𝑧) = ∏
𝑝∈𝑃
𝑝<𝑧

𝑃
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Remains to show
∑

𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

≪ 2−𝑟

We need the condition on 𝑟. Note that

∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

= ∑
𝑝1⋯𝑝𝑟
𝑝𝑖∈𝑃
𝑝𝑖<𝑧

𝑓(𝑝1) ⋯ 𝑓(𝑝𝑟)
𝑝1 ⋯ 𝑝𝑟

≤ 1
𝑟!

( ∑
𝑝∣𝑃(𝑧)

𝑓(𝑝)
𝑝

)
𝑟

≤ (𝑒
𝑟

∑
𝑝∣𝑃(𝑧)

𝑓(𝑝)
𝑝

)
𝑟

Furthermore

∑
𝑝∣𝑃(𝑧)

𝑓(𝑝)
𝑝

≤ ∑
𝑝∣𝑃(𝑧)

− log(1 − 𝑓(𝑝)
𝑝

) = − log𝑊(𝑧)

so if 𝑟 ≥ 2𝑒| log𝑊(𝑧)| then

∑
𝑑∣𝑃(𝑧)
𝜔(𝑑)=𝑟

𝑓(𝑑)
𝑑

≤ (𝑒
𝑟

| log𝑊(𝑧)|)
𝑟

≤ 2−𝑟

Finally note that 2𝑒 < 6.

Recall that Selberg’s sieve shows that 𝜋2(𝑥) ≪ 𝑥
(log 𝑥)2 . In the twin prime

seive setting, 𝑊(𝑧) ≍ 1
(log 𝑧)2 . So in Brun’s sieve, need to take 𝑟 ≫ 2 log log 𝑧. If

𝑟 = 𝐶 log log 𝑧 for 𝐶 large enough then

𝑋
(log 𝑧)100 .

The main term is ≫ 𝑥
log 𝑧

2. As |𝑅𝑑| ≪ 2𝜔(𝑑) = 𝑑𝑜(1). Thus

∑
𝑑∣𝑃(𝑧)
𝑑≤𝑧𝑟

≪ 𝑧𝑟+𝑜(1) ≪ 𝑧2 log log 𝑧+𝑜(1)

so we need to choose a 𝑧. For this to be 𝑜( 𝑥
(log 𝑧)2 , need to choose 𝑧 ≈ exp((log𝑥)1/4).

So far so good. Now we need to establish the relation between 𝜋2(𝑥) and

𝑆(𝐴, 𝑃 ; 𝑧) = {1 ≤ 𝑛 ≤ 𝑥 ∶ 𝑝 ∣ 𝑛(𝑛 + 2) ⟹ 𝑝 > 𝑧}

so 𝑝 ≫ 𝑥1/2, so this counts only “large” primes
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Corollary 2.10. For any 𝑧 ≤ exp(𝑜( log 𝑥
log log 𝑥 )),

#{1 ≤ 𝑛 ≤ 𝑥 ∶ 𝑝 ∣ 𝑛 ⟹ 𝑝 ≥ 𝑧} ∼ 𝑒−𝛾 𝑥
log 𝑧

.

Remark.

1. In particular, 𝑧 = (log𝑥)𝐴 is allowed for any 𝐴, but 𝑧 = 𝑥𝑐 for any 𝑐 > 0
is not allowed.

2. In particular, we can’t count primes like this as 𝑧 = 𝑥1/2. Recall heuristic
from before says if this asymptotic were correct for primes, then

𝜋(𝑥) ∼ 2𝑒−𝛾 𝑥
log𝑥

which contradicts prime number theorem.
This is telling us that for primes, the error term is genuinely large, not
because of the estimates. Or in other words, 𝑊(𝑧) is not a very good
bound, intrinsic

Proof. Again use 𝐴 = {1 ≤ 𝑛 ≤ 𝑥} so 𝑓(𝑑) = 1, |𝑅𝑑| ≪ 1. Then

𝑊(𝑧) = ∏
𝑝<𝑧

(1 − 1
𝑝

) = 𝑒−𝛾

log 𝑧
+ 𝑜( 1

log 𝑧
)

so

𝑆(𝐴, 𝑃 ; 𝑧) = #{1 ≤ 𝑛 ≤ 𝑥 ∶ 𝑝 ∣ 𝑛 ⟹ 𝑝 ≥ 𝑧}

= 𝑒−𝛾 𝑥
log 𝑧

+ 𝑜( 𝑥
log 𝑧

+ 𝑂(2−𝑟𝑥 + ∑
𝑑∣𝑃(𝑧)
𝑑<𝑧𝑟

|𝑅𝑑|)

if 𝑟 ≥ 6| log𝑊(𝑧)|, so 𝑟 ≥ 100 log log 𝑧 is fine. Have

2−𝑟𝑥 ≤ (log 𝑧)−(log 2)100𝑥 = 𝑜( 𝑥
log 𝑧

)

and, choose 𝑟 = ⌈100 log log 𝑧⌉,

∑
𝑑∣𝑃(𝑧)
𝑑<𝑧𝑟

|𝑅𝑑| ≪ ∑
𝑑≤𝑧𝑟

1 ≪ 2𝑟 ≤ 2500(log log 𝑧) log 𝑧

Remains to note that if

log 𝑧 = 𝑜( log𝑥
log log𝑥

) = log𝑥
log log𝑥

𝐹(𝑥)

then this is

log 𝑧 log log 𝑧 = 𝑜( log𝑥
log log𝑥

log log𝑥) = 𝑜(log𝑥)

so
2500(log log 𝑧) log 𝑧 ≤ 𝑥1/10 = 𝑜( 𝑥

log 𝑧
)

if 𝑥 is large enough.
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3 The Riemann zeta function

3 The Riemann zeta function
As a tradition, in analytic number theory we write 𝑠 = 𝜎 + 𝑖𝑡 for a complex
number 𝑠 where 𝜎 and 𝑡 are the real and imaginary part respectively. First, a
trivial remark: if 𝑛 ∈ N then

𝑛𝑠 = 𝑒𝑠 log 𝑛 = 𝑛𝜎 ⋅ 𝑒𝑖𝑡 log 𝑛.

The Riemann zeta function is defined for 𝜎 > 1 by

𝜁(𝑠) =
∞

∑
𝑛=1

1
𝑛𝑠 .

3.1 Dirichlet series
For any arithmetic 𝑓 ∶ N → C, we have a Dirichlet series

𝐿𝑓(𝑠) =
∞

∑
𝑖=1

𝑓(𝑛)
𝑛𝑠 ,

at least formally.

Lemma 3.1. For any 𝑓 there is an abscissa of convergence 𝜎𝑐 such that

1. if 𝜎 < 𝜎𝑐 then 𝐿𝑓(𝑠) diverges,

2. if 𝜎 > 𝜎𝑐 then 𝐿𝑓(𝑠) converges uniformly in some neighbourhood of 𝑠.
In particular 𝐿𝑓(𝑠) is holomorphic at 𝑠.

Proof. It is enough to show that if 𝐿𝑓(𝑠) converges at 𝑠0 and 𝜎 = 𝜎0 then there
is a neighbourhood of 𝑠 on which 𝐿𝑓 converges uniformly, as then we can take

𝜎𝑐 = inf{𝜎 ∶ 𝐿𝑓(𝑠) converges}.

Let
𝑅(𝑢) = ∑

𝑛>𝑢
𝑓(𝑛)𝑛−𝑠0 .

By partial summation

∑
𝑀<𝑛≤𝑁

𝑓(𝑛)𝑛−𝑠 = 𝑅(𝑀)𝑀𝑠0−𝑠 − 𝑅(𝑁)𝑁𝑠0−𝑠 − (𝑠0 − 𝑠) ∫
𝑁

𝑀
𝑅(𝑢)𝑢𝑠0−𝑠−1𝑑𝑢.

If |𝑅(𝑢)| ≤ 𝜀 for all 𝑢 ≥ 𝑀 then

∣ ∑
𝑀<𝑛≤𝑁

𝑓(𝑛)𝑛−𝑠∣ ≤ 2𝜀 + 𝜀|𝑠0 − 𝑠| ∫
𝑁

𝑀
𝑢𝜎0−𝜎−1𝑑𝑢 ≤ (2 + |𝑠0 − 𝑠|

|𝜎0 − 𝜎|
)𝜀.

Note that there is a neighbourhood of 𝑠 in which |𝑠0−𝑠|
|𝜎0−𝜎| ≪𝑠 1 so ∑ 𝑓(𝑛)

𝑛𝑠 converges
uniformly here.
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3 The Riemann zeta function

Lemma 3.2. If

∑ 𝑓(𝑛)
𝑛𝑠 = ∑ 𝑔(𝑛)

𝑛𝑠

for all 𝑠 in some half plane 𝜎 > 𝜎0 ∈ R then 𝑓(𝑛) = 𝑔(𝑛) for all 𝑛.

Proof. Enough to consider ∑ 𝑓(𝑛)
𝑛𝑠 = 0 for all 𝜎 > 𝜎0. Suppose exists 𝑛 such

that 𝑓(𝑛) ≠ 0. Let 𝑁 be the least such that 𝑓(𝑁) ≠ 0. Since ∑𝑛≥𝑁
𝑓(𝑛)
𝑛𝜎 = 0,

have
𝑓(𝑁) = −𝑁𝜎 ∑

𝑛>𝑁

𝑓(𝑛)
𝑛𝜎

so |𝑓(𝑛)| ≪ 𝑛𝜎 and so the series

∑
𝑛>𝑁

𝑓(𝑛)
𝑛𝜎+1+𝜀

is absolutely convergent. So since 𝑓(𝑛)
𝑛𝜎 → 0 as 𝜎 → ∞, RHS also converges to 0

so 𝑓(𝑁) = 0.

Lemma 3.3. If 𝐿𝑓(𝑠) and 𝐿𝑔(𝑠) are both absolutely convergent at 𝑠 then

𝐿𝑓∗𝑔(𝑠) =
∞

∑
𝑛=1

𝑓 ∗ 𝑔(𝑛)
𝑛𝑠

is also absolutely convergent at 𝑠 and equals to 𝐿𝑓(𝑠)𝐿𝑔(𝑠).

Proof. Because of absolute convergence we can simply multiply them term-by-
term:

(
∞

∑
𝑛=1

𝑓(𝑛)
𝑛𝑠 ) (

∞
∑
𝑛=1

𝑔(𝑛)
𝑛𝑠 ) =

∞
∑

𝑛,𝑚=1

𝑓(𝑛)𝑔(𝑚)
(𝑛𝑚)𝑠 =

∞
∑
𝑘=1

1
𝑘𝑠 ( ∑

𝑛𝑚=𝑘
𝑓(𝑛)𝑔(𝑚)) .

Lemma 3.4 (Euler product). If 𝑓 is multiplicative and 𝐿𝑓(𝑠) is absolutely
convergent at 𝑠 then

𝐿𝑓(𝑠) = ∏
𝑝

(1 + 𝑓(𝑝)
𝑝𝑠 + 𝑓(𝑝2)

𝑝2𝑠 + … ) .

Proof. Informally we just multiply everything and apply fundamental theorem
of arithmetics. However, we have to be more careful when dealing with this
infinite product. Let 𝑦 be arbitrary,

∏
𝑝<𝑦

(1 + 𝑓(𝑝)
𝑝𝑠 + … ) = ∑

𝑛
∀𝑝∣𝑛,𝑝<𝑦

𝑓(𝑛)
𝑛𝑠 .
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3 The Riemann zeta function

Then

∣∏
𝑝<𝑦

(1 + 𝑓(𝑝)
𝑝𝑠 + … ) −

∞
∑
𝑛=1

𝑓(𝑛)
𝑛𝑠 ∣ ≤ ∑

𝑛
∃𝑝∣𝑛,𝑝≥𝑦

|𝑓(𝑛)|
𝑛𝜎 ≤ ∑

𝑛≥𝑦

|𝑓(𝑛)|
𝑛𝜎 → 0

as 𝑛 → ∞.

For 𝜎 > 1,

𝜁(𝑠) =
∞

∑
𝑛=1

1
𝑛𝑠

defines a holomorphic function and converges absolutely for 𝜎 > 1. A word
of caution: this series is only define for 𝜎 > 1. We’ll in later part of the
course analytically extend 𝜁 beyond the line. Also note that for general Dirichlet
series, uniform convergence and absolute convergence near a point do not imply
each other, although for this particular series they do. Because of uniform
convergence this function has derivative

𝜁′(𝑠) = − ∑ log𝑛
𝑛𝑠 .

Since 1 is completely multiplicative, we may apply Euler product

1 + 1
𝑝𝑠 + 1

𝑝2𝑠 + ⋯ = 1
1 − 𝑝−𝑠 = (1 − 1

𝑝𝑠 )
−1

so
𝜁(𝑠) = ∏

𝑝
(1 − 1

𝑝𝑠 )
−1

.

Thus

1
𝜁(𝑠)

= ∏
𝑝

(1 − 1
𝑝𝑠 ) = ∑

𝑛

𝜇(𝑛)
𝑛𝑠

log 𝜁(𝑠) = − ∑
𝑝

log(1 − 1
𝑝𝑠 ) = ∑

𝑝
∑

𝑘

1
𝑘𝑝𝑘𝑠 = ∑ Λ(𝑛)

log𝑛
1
𝑛𝑠

𝜁′(𝑠)
𝜁(𝑠)

= − ∑ Λ(𝑛)
𝑛𝑠

We can write many functions and identities in terms of 𝜁(𝑠). For example

𝜁′(𝑠)
𝜁(𝑠)

⋅ 𝜁(𝑠) = 𝜁′(𝑠)

corresponds to
Λ ∗ 1 = log,

and the equivalence
𝐿𝑓 ⋅ 𝜁 = 𝐿𝑔 ⟺ 𝐿𝑓 = 1

𝜁
⋅ 𝐿𝑔

corresponds to Möbius inversion.
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A callback to a previous discussion on elementary proof of prime number
theorem: recall on page 15, if we can show

1
𝜁(𝑠)

= ∏
𝑝

(1 − 1
𝑝𝑠 ) = ∑

𝑛

𝜇(𝑛)
𝑛𝑠

converges to 0 at 𝑠 = 1 then we can prove prime number theorem. We can show
that if it converges at 0 then it does converge to 0, but the difficulty is to show
it converges at all!

Lemma 3.5. For 𝜎 > 1,

𝜁(𝑠) = 1 + 1
𝑠 − 1

− 𝑠 ∫
∞

1

{𝑡}
𝑡𝑠+1 𝑑𝑡.

Proof. By partial summation,

∑
1≤𝑛≤𝑥

1
𝑛𝑠 = ⌊𝑥⌋

𝑥𝑠 + 𝑠 ∫
𝑥

1

⌊𝑡⌋
𝑡𝑠+1 𝑑𝑡

= ⌊𝑥⌋
𝑥𝑠 + 𝑠 ∫

𝑥

1

1
𝑡𝑠 𝑑𝑡 − 𝑠 ∫

𝑥

1

{𝑡}
𝑡𝑠+1 𝑑𝑡

= ⌊𝑥⌋
𝑥𝑠 + 𝑠

𝑠 − 1
[𝑡−𝑠+1]𝑥1 − 𝑠 ∫

𝑥

1

{𝑡}
𝑡𝑠+1 𝑑𝑡

→ 𝑠
𝑠 − 1

− 𝑠 ∫
∞

1

{𝑡}
𝑡𝑠+1 𝑑𝑡 as 𝑥 → ∞

The integral converges absolutely for 𝜎 > 0, so this gives

𝜁(𝑠) = 1
𝑠 − 1

+ 𝐹(𝑠)

where 𝐹(𝑠) is holomorphic in 𝜎 > 0. Thus we define

𝜁(𝑠) = 1 + 1
𝑠 − 1

− 𝑠 ∫
∞

1

{𝑡}
𝑡𝑠+1 𝑑𝑡

for 𝜎 > 0.
𝜁(𝑠) is meromorphic in 𝜎 > 0, with only a simple pole at 𝑠 = 1. It is possible

to analytically continue 𝜁 to the entire complex plane, with only a single pole
at 1. But for the purpose of this course our definition suffices as all interesting
things we study happen on this half plane.

Corollary 3.6. For 0 < 𝜎 < 1,

1
𝜎 − 1

< 𝜁(𝜎) < 𝜎
𝜎 − 1

.

In particular, 𝜁(𝜎) < 0 for 0 < 𝜎 < 1 (in particular nonzero).
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Proof. Write

𝜁(𝜎) = 1 + 1
𝜎 − 1

+ 𝜎 ∫
∞

1

{𝑡}
𝑡𝜎+1 𝑑𝑡

and note
0 < ∫

∞

1

{𝑡}
𝑡𝜎+1 𝑑𝑡 < 1

𝜎
.

Corollary 3.7. For 0 < 𝛿 ≤ 𝜎 ≤ 2, |𝑡| ≤ 1,

𝜁(𝑠) = 1
𝑠 − 1

+ 𝑂𝛿(1)

uniformly.

Proof.

𝜁(𝑠) − 1
𝑠 − 1

= 1 − 𝑠 ∫
∞

1

{𝑡}
𝑡𝑠+1 𝑑𝑡

= 𝑂(1) + 𝑂𝛿(∫
∞

1

1
𝑡𝜎+1 𝑑𝑡)

= 𝑂(1) + 𝑂𝛿(1)

Lemma 3.8. 𝜁 ≠ 0 for 𝜎 > 1.

Proof. For 𝜎 > 1,

𝜁(𝑠) = ∏
𝑝

(1 − 1
𝑝𝑠 )

−1

and the infinite product converges, and no factors are zero.

Again we stress that the Euler product is only valid for 𝜎 > 1.

Conjecture (Riemann hypothesis). If 𝜁(𝑠) = 0 and 𝜎 > 0 then 𝜎 = 1
2 .

×
1

𝜎 = 1
2
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3.2 Prime number theorem
Let 𝛼(𝑠) = ∑ 𝑎𝑛

𝑛𝑠 . Partial summation lets us write 𝛼(𝑠) in terms of 𝐴(𝑥) =
∑𝑛≤𝑥 𝑎𝑛. If 𝜎 > max(0, 𝜎𝑐) then

𝛼(𝑠) = 𝑠 ∫
∞

1

𝐴(𝑡)
𝑡𝑠+1 𝑑𝑡

This is Mellin transform.
What about the converse? As a particular case, if 𝛼(𝑠) = − 𝜁′(𝑠)

𝜁(𝑠) then 𝑎𝑛 =
Λ(𝑛) so

𝐴(𝑥) = ∑
𝑛≤𝑥

Λ(𝑛) = 𝜓(𝑥).

The point of analytic number theory is to study Dirichlet series using analytic
methods and convert them back to statements about arithmetic functions.

The converse is given by Perron’s formula, which roughly says that

𝐴(𝑥) = 1
2𝜋𝑖

∫
𝜎+𝑖∞

𝜎−𝑖∞
𝛼(𝑠)𝑥𝑠

𝑠
𝑑𝑠

for 𝜎 > max(0, 𝜎𝑐).
Before we prove the formula, we see how this leads to prime number theorem.

By Perron’s formula,

𝜓(𝑥) = 1
2𝜋𝑖

∫
𝜎+𝑖∞

𝜎−𝑖∞
−𝜁′(𝑠)

𝜁(𝑠)
𝑥𝑠

𝑠
𝑑𝑠

for 𝜎 > 1.
We see that the integrand has two poles, on at the origin and the other at 1.

Our first attempt would be to integrate to the right of the critical line as there
is no singularity.

× ×
1

However we quickly run into problems. As the integrand is holomorphic in
this region, by Cauchy’s theorem 𝜓(𝑥) equals to the contribution of the other
segments (up to a sign). The best we can do is 𝜓(𝑥) = 𝑂(𝑥1+𝜀), which, in view
of what we have done, totally trivial. Thus we can’t simply consider a contour
in 𝜎 > 1.

Instead we have to cross the critial line, whih gives 𝑂(𝑥1−𝜀), which is what
we need. But now we need to understand 𝜁 on/to the left of the critial line.
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× ×
1

We can summarise this intuition with the slogan “prime number theorem is
equivalent to the statment that there is no zeroes on 𝜎 = 1”.

Lemma 3.9. If 𝜎0 > 0 then

1
2𝜋𝑖

∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇

𝑦𝑠

𝑠
𝑑𝑠 = {1 𝑦 > 1

0 𝑦 < 1
+ 𝑂( 𝑦𝜎0

𝑇 | log 𝑦|
)

Note that we omit the case 𝑦 = 1.

Proof. Use a rectangular contour that lies either to the left or to the right of
the line 𝜎 = 𝜎0 depending on 𝑦, which then determines whether the residue at
0 is picked up. The details are left as an exercise.

This gives a way to express indicator function in integral form.

Theorem 3.10 (Perron’s formula). Suppose 𝛼(𝑠) = ∑ 𝑎𝑛
𝑛𝑠 is absolutely

convergent for 𝜎 > 𝜎𝑎. If 𝜎0 > max(0, 𝜎𝑎) and 𝑥 is not an integer then

∑
𝑛<𝑥

𝑎𝑛 = 1
2𝜋𝑖

∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇
𝛼(𝑠)𝑥𝑠

𝑠
𝑑𝑠

+ 𝑂(2𝜎0𝑥
𝑇

∑
𝑥
2 <𝑛<2𝑥

|𝑎𝑛|
|𝑥 − 𝑛|

+ 𝑥𝜎0

𝑇

∞
∑
𝑛=1

|𝑎𝑛|
𝑛𝜎0

).

Proof. Since 𝜎0 > 0 we can write

1𝑛<𝑥 = 1
2𝜋𝑖

∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇

(𝑥/𝑛)𝑠

𝑠
𝑑𝑠 + 𝑂( (𝑥/𝑛)𝜎0

𝑇 | log 𝑥
𝑛 |

)
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so

∑
𝑛<𝑥

𝑎𝑛 = ∑
𝑛

𝑎𝑛1𝑛<𝑥

= 1
2𝜋𝑖

∑
𝑛

𝑎𝑛 ∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇

(𝑥/𝑛)𝑠

𝑠
𝑑𝑠 + 𝑂(𝑥𝜎0

𝑇
∑

𝑛

|𝑎𝑛|
𝑛𝜎0 | log 𝑥

𝑛 |
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸

= 1
2𝜋𝑖

∫
𝜎0−𝑖𝑇

𝜎0+𝑖𝑇

𝑥𝑠

𝑠
∑

𝑛

𝑎𝑛
𝑛𝑠 𝑑𝑠 + 𝐸 absolute convergence

= 1
2𝜋𝑖

∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇
𝛼(𝑠)𝑥𝑠

𝑠
𝑑𝑠 + 𝐸

For the error term 𝐸, there is

1. contribution from 𝑛 ≤ 𝑥
2 or 𝑛 ≥ 2𝑥, where | log 𝑥

𝑛 | ≫ 1, is

≪ 𝑥𝜎0

𝑇
∑

𝑛

|𝑎𝑛|
𝑛𝜎0

.

2. contribution from 𝑥
2 < 𝑛 < 2𝑥, we write

| log 𝑥
𝑛

| = | log(1 + 𝑛 − 𝑥
𝑥

)|

and | log(1 + 𝛿)| ≍ |𝛿| uniformly for − 1
2 ≤ 𝛿 ≤ 1. So

𝑥𝜎0

𝑇
∑

𝑥
2 <𝑛<2𝑥

|𝑎𝑛|
𝑛𝜎0 | log 𝑥

𝑛 |
≪ 𝑥𝜎0

𝑇
∑

𝑥
2 <𝑛<2𝑥

|𝑎𝑛|𝑥
𝑛𝜎0 |𝑥 − 𝑛|

≪ 2𝜎0

𝑇
∑

𝑥
2 <𝑛<2𝑥

|𝑎𝑛|𝑥
|𝑥 − 𝑛|

We will now prove a strong form of the prime number theorem, assuming

1. there exists 𝑐 > 0 such that if 𝜎 > 1 − 𝑐
log(|𝑡|+4) and |𝑡| ≥ 7

8 then 𝜁(𝑠) ≠ 0
and

𝜁′(𝑠)
𝜁(𝑠)

≪ log(|𝑡| + 4).

2. 𝜁(𝑠) ≠ 0 for 8
9 ≤ 𝜎 ≤ 1, |𝑡| ≤ 7

8 .

3. Whenever |𝑡| ≤ 7
8 and

1 − 𝑐
log(|𝑡| + 4)

< 𝜎 ≤ 2

have
𝜁′(𝑠)
𝜁(𝑠)

= − 1
𝑠 − 1

+ 𝑂(1).
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× ×
1

𝜎0 − 𝑖𝑇𝜎1 − 𝑖𝑇

𝜎0 + 𝑖𝑇𝜎1 + 𝑖𝑇

Theorem 3.11 (prime number theorem). There exists 𝑐 > 0 such that

𝜓(𝑥) = 𝑥 + 𝑂( 𝑥
exp(𝑐

√
log𝑥)

).

In particular 𝜓(𝑥) ∼ 𝑥.

This error is better than 𝑥
log 𝑥 but worse than 𝑥1−𝜀 for any 𝜀 > 0, which is

precisely because we can’t find an absolute bound on the zero-free region near
the critical line.

Proof. Assume that 𝑥 = 𝑁 + 1
2 for some 𝑁. By Perron’s formula, for any

1 < 𝜎0 ≤ 2,

𝜓(𝑥) = ∑
𝑛≤𝑥

Λ(𝑛)

= 1
2𝜋𝑖

∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇
−𝜁′(𝑠)

𝜁(𝑠)
𝑥𝑠

𝑠
𝑑𝑠

+ 𝑂(𝑥
𝑇

∑
𝑥
2 <𝑛<2𝑥

Λ(𝑛)
|𝑥 − 𝑛|⏟⏟⏟⏟⏟⏟⏟

𝑅1

+ 𝑥𝜎0

𝑇

∞
∑
𝑛=1

Λ(𝑛)
𝑛𝜎0⏟⏟⏟⏟⏟

𝑅2

)

In the error term,

𝑅1 ≪ log𝑥 ⋅ 𝑥
𝑇

∑
𝑥
2 <𝑛<2𝑥

1
|𝑥 − 𝑛|

≪ log𝑥 ⋅ 𝑥
𝑇

∑
1≤𝑚≤4𝑥

1
𝑚

≪ 𝑥
𝑇

(log𝑥)2

and using assumption 3,

𝑅2 ≪ 𝑥𝜎0

𝑇
1

|𝜎0 − 1|
≪ 𝑥

𝑇
log𝑥

if 𝜎0 = 1 + 1
log 𝑥 .

Let 𝐶 be the rectangular contour with vertices {𝜎0 ± 𝑖𝑇 , 𝜎1 ± 𝑖𝑇 } where
𝜎1 < 1 is to be chosen later. Then

1
2𝜋𝑖

∫
𝐶

−𝜁′(𝑠)
𝜁(𝑠)

𝑥𝑠

𝑠
𝑑𝑠 = 𝑥
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by residue theorem and assumption 1 and 2.
Remains to bound the other components of the integral.

∫
𝜎1+𝑖𝑇

𝜎0+𝑖𝑇
−𝜁′(𝑠)

𝜁(𝑠)
𝑥𝑠

𝑠
𝑑𝑠 ≪ log𝑇 ∫

𝜎1

𝜎0

𝑥𝑢

𝑇
𝑑𝑢 ≪ log𝑇

𝑇
𝑥𝜎1(𝜎1 − 𝜎0) ≪ 𝑥

𝑇

where the last step is because we assumed 𝜎1 = 1 − 𝑐
log 𝑇 (?)

For the other term,

∫
𝜎1+𝑖𝑇

𝜎1−𝑖𝑇
−𝜁′(𝑠)

𝜁(𝑠)
𝑥𝑠

𝑠
𝑑𝑠 ≪ log𝑇 ∫

𝜎1−𝑖𝑇

𝜎1−𝑖𝑇

𝑥𝑢

𝑢
𝑑𝑢 + ∫

𝜎1+𝑖𝑇

𝜎1−𝑖𝑇
𝑥𝜎1

1
|𝜎1 − 1|

≪ 𝑥𝜎1 log𝑇 + 𝑥𝜎1

1 − 𝜎1

≪ 𝑥𝜎1 log𝑇

Thus

𝜓(𝑥) = 𝑥 + 𝑂(𝑥
𝑇

(log𝑥)2 + 𝑥1− 𝑐
log 𝑇 (log𝑇 ))

= 𝑥 + 𝑂( 𝑥
exp(𝑐

√
log𝑥)

) if 𝑇 = exp(𝑐√log𝑥)

If you are curious how we chose 𝑇, it is the same trick as in chapter 1: want to
have 𝑥

𝑇 ≈ 𝑥1− 𝑐
log 𝑇 so

log𝑇 ≈ log𝑥
log𝑇

,

i.e. log𝑇 ≈
√
log𝑥.

3.3 Zero-free region
Firstly, near 𝑠 = 1, things are easy because of the pole.

Theorem 3.12. If 𝜎 > 1+𝑡2

2 then 𝜁(𝑠) ≠ 0. In particular, 𝜁(𝑠) ≠ 0. If
8
9 ≤ 𝜎 ≤ 1, |𝑡| ≤ 7

8 .
Also

𝜁(𝑠) = 1
𝑠 − 1

+ 𝑂(1)

−𝜁′(𝑠)
𝜁(𝑠)

= 1
𝑠 − 1

+ 𝑂(1)

uniformly in 8
9 ≤ 𝜎 ≤ 1, |𝑡| ≤ 7

8 .

Proof. Recall that

𝜁(𝑠) = 𝑠
𝑠 − 1

+ 𝑠 ∫
∞

1

{𝑢}
𝑢𝑠+1 𝑑𝑢

so
∣𝜁(𝑠) − 𝑠

𝑠 − 1
∣ ≤ |𝑠| ∫

∞

1

1
𝑢𝜎+1 𝑑𝑢 ≤ |𝑠|

𝜎
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so if 𝜎 > |𝑠 − 1|, 𝜁(𝑠) ≠ 0, i.e. if 𝜎 < 1+𝑡2

2 . Also

|𝜁(𝑠) − 1
𝑠 − 1

| ≤ 1 + |𝑠| ∫
∞

1

1
𝑢𝜎+1 𝑑𝑢 = 𝑂(1)

so same holds for − 𝜁′

𝜁 , by general theory of holomorphic functions.

For |𝑡| large, we need a different idea. How do we show that there aren’t
zeros on 𝜎 = 1? Suppose there is a zero, of order 𝑚, at 1 + 𝑖𝑡. Then

−𝜁′

𝜁
(1 + 𝛿 + 𝑖𝑡) ∼ 𝑚

𝛿

so
∑ Λ(𝑛)

𝑛1+𝛿+𝑖𝑡 ∼ −𝑚
𝛿

.

Absolute value of LHS

≤ ∑ Λ(𝑛)
𝑛1+𝛿 = −𝜁′

𝜁
(1 + 𝛿) ∼ 1

𝛿

so this shows 𝑚 ≤ 1. If there is a zero, it is a simple zero.
This also tells us

∑
𝑝

log 𝑝
𝑝1+𝛿 𝑒𝑖𝑡 log 𝑝 ∼ − ∑ log 𝑝

𝑝1+𝛿

so
cos(𝑡 log 𝑝) ≈ −1

for almost all 𝑝, so 𝑝𝑖𝑡 ≈ −1, 𝑝2𝑖𝑡 ≈ 1 for almost all 𝑝, so there exists a pole at
1 + 2𝑖𝑡, which is a contradiction.

We now present a rigorous proof. Before that we need to take a detour in
complex analysis.

Lemma 3.13 (Borel-Carathéodory lemma). If 𝑓 is holomorphic on |𝑧| ≤ 𝑅
and 𝑓(0) = 0. If Re 𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅, then for any 𝑟 < 𝑅,

sup
|𝑡|≤𝑟

(|𝑓(𝑧)|, |𝑓 ′(𝑧)|) ≪𝑟,𝑅 𝑀.

If we replace Re 𝑓(𝑧) by |𝑓(𝑧)| then this is just maximum value principle.

Proof. Let

𝑔(𝑧) = 𝑓(𝑧)
𝑧(2𝑀 − 𝑓(𝑧))

.

This is holomorphic in |𝑧| ≤ 𝑅. If |𝑧| = 𝑅 then

|2𝑀 − 𝑓(𝑧)| ≥ |𝑓(𝑧)|

and so
|𝑔(𝑧)| ≤ |𝑓(𝑧)|

𝑅|𝑓(𝑧)|
≤ 1

𝑅
.
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So for all |𝑧| ≤ 𝑟 < 𝑅, by maximum modules,

|𝑔(𝑧)| = |𝑓(𝑧)|
|𝑧||2𝑚 − 𝑓(𝑧)|

< 1
𝑅

so
𝑅|𝑓(𝑧)| ≤ 𝑟|2𝑀 − 𝑓(𝑧)| ≤ 2𝑀𝑟 + 𝑟|𝑓(𝑧)|

so
|𝑓(𝑧)| ≤ 2𝑀𝑟

𝑅 − 𝑟
≪ 𝑀.

For 𝑓 ′(𝑧), we use Cauchy’s formula

𝑓 ′(𝑧) = 1
𝜋𝑖

∫
|𝑤|=𝑟′

𝑓(𝑤)
(𝑧 − 𝑤)2 𝑑𝑤

for 𝑟 < 𝑟′ < 𝑅. (coefficient 2?)

Lemma 3.14. If 𝑓 is holomorphic on a domain including |𝑧| ≤ 1, |𝑓(𝑧)| ≤ 𝑀
in that disc, and 𝑓(0) ≠ 0. If 0 < 𝑟 < 𝑅 < 1 then for |𝑧| ≤ 𝑟

𝑓 ′

𝑓
(𝑧) =

𝐾
∑
𝑘=1

1
𝑧 − 𝑧𝑘

+ 𝑂𝑟,𝑅(log 𝑀
|𝑓(0)|

)

where 𝑧𝑘 ranges over all zeros of 𝑓 in |𝑧| ≤ 𝑅.

c.f. fundamental theorem of algebra, and holomorphicity. This depends cru-
cially on C being algebraically closed.

Proof. Suppose wlog 𝑓(0) = 1. Say first there are no zeros. Consider ℎ(𝑧) =
log 𝑓(𝑧) and

Reℎ(𝑧) = log |𝑓(𝑧)| ≤ log𝑀

so by Borel-Carathéodory lemma,

|ℎ′(𝑧)| = | 𝑓 ′

𝑓(𝑧)
| ≪ log𝑀

so done.
In general, we define an auxillary function 𝑔 with no zeros. Let

𝑔(𝑧) = 𝑓(𝑧)
𝐾

∏
𝑘=1

𝑅2 − 𝑧𝑧𝑘
(𝑧 − 𝑧𝑘)𝑅

.

The 𝑘th factor has a pole at 𝑧 = 𝑧𝑘 and on |𝑧| = 𝑅, has modulus 1 so on |𝑧| ≤ 𝑅,
|𝑔(𝑧)| ≤ 𝑀. In particular, |𝑔(0)| = ∏𝐾

𝑘=1
𝑅

|𝑧𝑘| ≤ 𝑀. Now let

ℎ(𝑧) = log 𝑔(𝑧)
𝑔(0)

and
Reℎ(𝑧) = log |𝑔(𝑧)| − log |𝑔(0)| ≤ log𝑀
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for |𝑧| ≤ 𝑅. By Borel-Carathéodory lemma,

|ℎ′(𝑧)| = |𝑓
′

𝑓
(𝑧) −

𝐾
∑
𝑘=1

1
𝑧 − 𝑧𝑘

+
𝐾

∑
𝑘=1

1
𝑧 − 𝑅2/𝑧𝑘

≪ log𝑀

so
𝑓 ′

𝑓
(𝑧) =

𝐾
∑
𝑘=1

1
𝑧 − 𝑧𝑘

−
𝐾

∑
𝑘=1

1
𝑧 − 𝑅2/𝑧𝑘

+ 𝑂(log𝑀)

and if |𝑧| ≤ 𝑟,

|𝑧 − 𝑅2

𝑧𝑘
| ≥ 𝑅2

𝑧𝑘
− |𝑧| ≥ 𝑅 − 𝑟 ≫ 1

and 𝐾 ≪ log𝑀.

Corollary 3.15. If |𝑡| ≥ 7
8 and 5

6 ≤ 𝜎 ≤ 2 then

𝜁′

𝜁
(𝑠) = ∑

𝜌

1
𝑠 − 𝜌

+ 𝑂(log |𝑡|)

where 𝜌 is over all zeros in

|𝜌 − (3
2

+ 𝑖𝑡)| ≤ 5
6

.

Theorem 3.16. There exists 𝑐 > 0 such that 𝜁(𝑠) ≠ 0 if 𝜎 ≥ 1 − 𝑐
log 𝑡 .

Proof. Assume 𝜁(𝜌) = 0 where 𝜌 = 𝜎 + 𝑖𝑡. Let 𝛿 > 0 be chosen later.

𝜁′

𝜁
(1 + 𝛿 + 𝑖𝑡) = 1

1 + 𝛿 + 𝑖𝑡 − 𝜌
+ ∑

𝜌′≠𝜌

1
1 + 𝛿 + 𝑖𝑡 − 𝜌′ + 𝑂(log 𝑡)

(assuming that 𝜎 is sufficiently close to 1). Then

Re 𝜁′

𝜁
(1 + 𝛿 + 𝑖𝑡) = Re 1

1 + 𝛿 + 𝑖𝑡 − 𝜌
+ Re ∑

𝜌′≠𝜌

1
1 + 𝛿 + 𝑖𝑡 − 𝜌′ + 𝑂(log 𝑡)

= 1
1 + 𝛿 − 𝜎

+ 𝑂(log 𝑡) + (> 0)

since Re 𝜌′ ≤ 1, Re 1
1+𝛿+𝑖𝑡−𝜌′ > 0. Thus

Re 𝜁′

𝜁
(1 + 𝛿 + 𝑖𝑡) > 1

1 + 𝛿 − 𝜎
+ 𝑂(log 𝑡)

Similarly

Re 𝜁′

𝜁
(1 + 𝛿 + 2𝑖𝑡) > 𝑂(log 𝑡).

Also
𝜁′

𝜁
(1 + 𝛿) = −1

𝛿
+ 𝑂(1).
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Here comes the clever bit:

Re(−3𝜁′

𝜁
(1 + 𝛿) − 4𝜁′

𝜁
(1 + 𝛿 + 𝑖𝑡) − 𝜁′

𝜁
(1 + 𝛿 + 2𝑖𝑡)) < 3

𝛿
− 4

1 + 𝛿 − 𝜎
+ 𝑂(log 𝑡)

(†)

As 𝛿 → 0, † is going to be negative. On the other hand, it is a a Dirichlet series

† = Re(3 ∑
𝑛

Λ(𝑛)
𝑛1+𝛿 + 4 ∑

𝑛

Λ(𝑛)
𝑛1+𝛿+𝑖𝑡 + ∑

𝑛

Λ(𝑛)
𝑛1+𝛿+2𝑖𝑡 )

= ∑
𝑛

Λ(𝑛)
𝑛1+𝛿 (3 + 4 cos(𝑡 log𝑛) + cos(2𝑡 log𝑛))

Note
3 + 4 cos 𝜃 + cos(2𝜃) = 2(1 + cos 𝜃)2 ≥ 0

so † ≥ 0.
So

3
𝛿

> 4
1 + 𝛿 − 𝜎

+ 𝑂(log 𝑡).

Choose 𝛿 = 𝐶
log 𝑡 for large enough 𝐶, so get a contradiction if 𝜎 ≥ 1 − 𝑐

log 𝑡 for
some 𝑐 > 0.( so

4
1 + 𝛿 − 𝜎

< 10
𝛿

so 𝜎 ≥ 1 − 𝑐
log 𝑡 .)

It’s essentially what we are able to do nowadays. Best known to date is

𝜎 ≥ 1 − 𝑐(log log 𝑡)1/3

(log 𝑡)2/3 .

Lemma 3.17. If 𝜎 > 1 − 𝑐
2 log 𝑡 and |𝑡| ≥ 7

8 then

| 𝜁
′

𝜁
(𝑠)| ≪ log 𝑡.

Proof. Let 𝑠1 = 1 + 1
log 𝑡 + 𝑖𝑡 = 𝜎1 + 𝑖𝑡. Here

| 𝜁
′

𝜁
(𝑠1)| ≪

∞
∑
𝑛=1

Λ(𝑛)
𝑛𝜎1

≪ 1
𝜎1 − 1

≪ log 𝑡.

Use the corollary
𝜁′

𝜁
(𝑠1) = ∑

𝜌

1
𝑠1 − 𝜌

+ 𝑂(log 𝑡)

so therefore
Re∑

𝜌

1
𝑠1 − 𝜌

≪ log 𝑡.

Now if 𝑠 = 𝜎 + 𝑖𝑡, where 𝜎 > 1 − 𝑐
2 log 𝑡 then

𝜁′

𝜁
(𝑠) − 𝜁′

𝜁
(𝑠1) = ∑

𝜌
( 1
𝑠 − 𝜌

− 1
𝑠1 − 𝜌

) + 𝑂(log 𝑡)
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Also |𝑠 − 𝜌| ≍ |𝑠1 − 𝜌| so

| 1
𝑠 − 𝜌

− 1
𝑠1 − 𝜌

| ≪ 1
|𝑠1 − 𝜌|2 log 𝑡

≪ Re 1
𝑠1 − 𝜌

as Re 1
𝑧 = Re 𝑧

|𝑧|2 . Then

∑
𝜌

| 1
𝑠 − 𝜌

− 1
𝑠1 − 𝜌

| ≪ Re∑
𝜌

1
𝑠1 − 𝜌

≪ log 𝑡.

Assuming the Riemann hypothesis, we can show

𝜓(𝑥) = 𝑥 + 𝑂(𝑥1/2(log𝑥)2).

See example sheet. Using partial summation, we can deduce that

𝜋(𝑥) = Li(𝑥) + 𝑂𝜀(𝑥1/2+𝜀)

where
Li(𝑥) = ∫

𝑥

2

1
log 𝑡

𝑑𝑡 = 𝑥
log𝑥

+ 𝑂( 𝑥
(log𝑥)2 ).

Thus if we write 𝜋(𝑥) = 𝑥
log 𝑥 + 𝐸(𝑥) then

𝐸(𝑥) ≫ 𝑥
(log𝑥)2

just because of Li.

3.4 Error terms
Indeed if we assume Riemann hypothesis then we could get the error term as
above. Can we do better? In this section we will show that

|𝜓(𝑥) − 𝑥| ≫ 𝑥1/𝑥

“often”. Thus apart from the factor (log𝑥)2 we are getting the best possible
error term. The reason is basically that there are many zeros of 𝜁 on the critical
line. Actually, we will show that

𝜓(𝑥) = 𝑥 + Ω±(𝑥1/2),

i.e.

lim sup
𝑥→∞

𝜓(𝑥) − 𝑥
𝑥1/2 > 0

lim inf
𝑥→∞

𝜓(𝑥) − 𝑥
𝑥1/2 < 0

For contradiction, suppose that 𝜓(𝑥) − 𝑥 ≤ 𝑐𝑥1/2 for all large 𝑥, so 𝑐𝑥1/2 −
𝜓(𝑥) = 𝑥 ≥ 0. Take Mellin transform of this,
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3 The Riemann zeta function

Lemma 3.18 (Landau). Let 𝐴(𝑥) be intergrable and boundedon any finite
interval and 𝐴(𝑥) ≥ 0 for all 𝑥 ≥ 𝑋. Let

𝜎𝑐 = inf{𝜎 ∶ ∫
∞

𝑋
𝐴(𝑥)𝑥−𝜎𝑑𝑥 < ∞}.

Then if

𝐹(𝑠) = ∫
∞

1
𝐴(𝑥)𝑥−𝑠𝑑𝑥

then 𝐹 is analytic for Re 𝑠 > 𝜎𝑐 and not at 𝑠 = 𝜎𝑐.

General fact about poles of Dirichlet series with positive coefficients.

Proof. Divide integrand into [1, 𝑋] and [𝑋, ∞) , corresponding partition of 𝐹 =
𝐹1 + 𝐹2. 𝐹1 is entire. If Re 𝑠 > 𝜎𝑐, the integral converges absolutely so 𝐹2 is
analytic.

By contradiction, suppose 𝐹2 is analytic at 𝑠 = 𝜎𝑐. Write 𝐹2 as a Taylor
series around 𝜎𝑐 + 2

𝐹2(𝑠) =
∞

∑
𝑘=0

𝑐𝑘(𝑠 − 𝜎𝑐 − 1)𝑘

where

𝑐𝑘 = 𝐹 (𝑘)
2 (𝜎𝑐 + 1)

𝑘!
= 1

𝑘!
∫

∞

𝑥
𝐴(𝑥)(− log𝑥)𝑘𝑥−𝜎𝑐−1𝑑𝑥.

This power series has a radius of convergence, which must be 1 + 𝛿 for some
𝛿 > 0. So

𝐹2(𝑠) =
∞

∑
𝑘=0

(1 − 𝜎𝑐 − 𝑠)𝑘

𝑘!
∫

∞

𝑥
𝐴(𝑥)(log𝑥)𝑘𝑥−1−𝜎𝑐𝑑𝑥

Evaluate the series at 𝑠 = 𝜎𝑐− 𝛿
2 , we can intercahnge the integral and summation

so

𝐹2(𝜎𝑐 − 𝛿
2

) = ∫
∞

𝑥
𝐴(𝑥)𝑥−1−𝜎𝑐 exp((1 + 𝜎𝑐 − 𝑠) log𝑥)𝑑𝑥 = ∫

∞

𝑥
𝐴(𝑥)𝑠−𝑠𝑑𝑥

so the integral converges at 𝜎𝑐 − 𝛿
2 , contradicting the definition of 𝜎𝑐.

Theorem 3.19 (Landau). If 𝜎0 is the supremum of the real parts of

{𝜌 ∶ 𝜁(𝜌) = 0}

then

1. for any 𝜎 < 𝜎0,
𝜓(𝑥) − 𝑥 = Ω±(𝑥𝜎),

2. if there is zero 𝜌 with 𝜎 = 𝜎0 then

𝜓(𝑥) − 𝑥 = Ω±(𝑥𝜎0).
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3 The Riemann zeta function

Corollary 3.20. (Assuming there is a zero with 𝜎 = 1
2 , which is indeed

true)
𝜓(𝑥) − 𝑥 = Ω±(𝑥1/2).

Proof by splitting into cases Riemann hypothesis is true/false.

Corollary 3.21. Riemann hypothesis is equivalent to

𝜓(𝑥) = 𝑥 + 𝑂(𝑥1/2+𝑜(1)).

Proof. Let 𝑐 > 0 be chosen later and suppose that 𝜓(𝑥)−𝑥 ≤ 𝑐𝑥𝜎 for all 𝑥 ≥ 𝑋.
Consider

𝐹(𝑠) = ∫
∞

1
(𝑐𝑥𝜎 − 𝜓(𝑥) + 𝑥)𝑥−𝑠−1𝑑𝑥.

Recall that by partial summation, for Re 𝑠 > 1,

𝜁′

𝜁
(𝑠) = −𝑠 ∫

∞

1
𝜓(𝑥)𝑥−𝑠−1𝑑𝑥

∫
∞

1
𝑥−𝑠 = 1

𝑠 − 1
so

𝐹(𝑠) = 𝑐
𝑠 − 𝜎

+ 𝜎′(𝑠)
𝑠𝜁(𝑠)

+ 1
𝑠 − 1

.

This has a pole at 𝑠 = 𝜎 and is analytic for Re 𝑠 > 𝜎. By Landau’s lemma, in
fact this integral converges for all 𝑠 with Re 𝑠 > 𝜎. This proves 1 because if
𝜎 < 𝜎0 then there is a zero of 𝜁 with 0 < Re 𝜌 < 𝜎0 and at 𝜌 𝐹 has a singularity
since 𝜌 ∉ R.

Suppose there is 𝜌 = 𝜎0 + 𝑖𝑡0. Repeat the above with 𝜎 = 𝜎0. Consider
instead

𝐺(𝑠) = 𝐹(𝑠) + 𝑒𝑖𝜃𝐹(𝑠 + 𝑖𝑡0) + 𝑒−𝑖𝜃𝐹(𝑠 − 𝑖𝑡0)
2

where 𝜃 ∈ R is to be chosen later. 𝐺(𝑠) is still analytic for Re 𝑠 > 𝜎, and has
a pole at 𝑠 = 𝜎0. From 𝐹(𝑠), have residue. From 𝐹(𝑠 + 𝑖𝑡0), have residue 𝑚

𝜌
where 𝑚 is the order of 𝜌. From 𝐹(𝑠 − 𝑖𝑡0) have residue 𝑚

𝜌 . So 𝐺(𝑠) has a pole
at 𝑠 = 𝜎0 with residue

𝑐 + 𝑒𝑖𝜃𝑚
2𝜌

+ 𝑒−𝑖𝜃𝑚
2𝜌

= 𝑐 − 𝑚
|𝜌|

by choosing appropriate 𝜃. In particular if 𝑐 < 𝑚
|𝜌| then this residue is negative.

As 𝑠 → 𝜎0 from right along R, 𝐺(𝑠) → −∞. But for Re 𝑠 > 𝜎0,

𝐺(𝑠) = ∫
∞

1
(𝑐𝑥𝜎0 − 𝜓(𝑥) = 𝑥)𝑥−𝑠−1 (1 + 𝑒𝑖𝜃𝑥−𝑖𝑡0

2
+ 𝑒−𝑖𝜃𝑥𝑖𝑡0

2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1+cos(𝜃−𝑡0 log 𝑥)≥0

𝑑𝑥

so splitting the integral into [1, 𝑋] and [𝑋, ∞), 𝐺(𝑠) = 𝐺1(𝑠) + 𝐺2(𝑠) where 𝐺1
is entire and 𝐺2(𝑠) ≥ 0 as 𝑠 ∈ R,Re 𝑠 > 𝜎0. Absurd. This proves

𝜓(𝑥) − 𝑥 = Ω+(𝑥𝜎).

Ω− is the same.
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3.5 Functional equation
Recall that for 𝜎 > 0, we defined

𝜁(𝑠) = 1 + 1
𝑠 − 1

− 𝑠 ∫
∞

1

{𝑡}
𝑡𝑠+1 𝑑𝑡.

How does it behave in the negative half plane?
First define 𝑓(𝑡) = 1

2 − {𝑡}, so

𝜁(𝑠) = 1
𝑠 − 1

+ 1
2

+ 𝑠 ∫
∞

1

𝑓(𝑡)
𝑡𝑠+1 𝑑𝑡

which actually converges when 𝜎 > −1. To see this, let

𝐹(𝑥) = ∫
𝑥

0
𝑓(𝑡)𝑑𝑡

so
∫

𝑌

𝑋

𝑓(𝑡)
𝑡𝑠+1 𝑑𝑡 = 𝐹(𝑡)

𝑡𝑠+1 ∣
𝑌

𝑋
+ (𝑠 + 1) ∫

𝑌

𝑋

𝐹(𝑡)
𝑡𝑠+1 𝑑𝑡

and note that 𝐹(𝑡) is bounded (as seen from the graph of 𝑓). Therefore

∫
∞

1

𝑓(𝑡)
𝑡𝑠+1 𝑑𝑡

converges when 𝜎 > −1. We can take this as the definition of 𝜁(𝑠) for 𝜎 > −1.
At this point, we can do (perfectly sensible) things such as

𝜁(0) = −1
2

= 1 + 1 + 1 + ⋯

It is evident that we by iterating the process we may extend 𝜁(𝑠) to arbitrary
𝜎 < 0, but there is a more elegant way to do this. First let’s simplify the
integral. Note that for −1 < 𝜎 < 0,

𝑠 ∫
1

0

𝑓(𝑡)
𝑡𝑠+1 = 𝑠

2
∫

1

0

1
𝑡𝑠+1 𝑑𝑡 − 𝑠 ∫

1

0

1
𝑡𝑠 𝑑𝑡 = 1

2
+ 1

𝑠 − 1

so in the strip −1 < 𝜎 < 0, have

𝜁(𝑠) = 𝑠 ∫
∞

0

𝑓(𝑡)
𝑡𝑠+1 𝑑𝑡.

By Fourier analysis, 𝑓(𝑡) has a Fourier seires

𝑓(𝑡) =
∞

∑
𝑛=1

sin(2𝑛𝜋𝑡)
𝑛𝜋

which converges whenver 𝑡 ∉ Z. In the region −1 < 𝜎 < 0, we get (by a standard
argument exchanging summation and integration)

𝜁(𝑠) = 𝑠 ∫
∞

0

1
𝑡𝑠+1

∞
∑
𝑛=1

sin(2𝑛𝜋𝑡)
𝑛𝜋

𝑑𝑡

= 𝑠
∞

∑
𝑛=1

1
𝑛𝜋

∫
∞

0

sin(2𝑛𝜋𝑡)
𝑡𝑠+1 𝑑𝑡

= 𝑠
∞

∑
𝑛=1

(2𝑛𝜋)𝑠

𝑛𝜋
∫

∞

0

sin 𝑦
𝑦𝑠+1 𝑑𝑦 𝑦 = 2𝑛𝜋𝑡

51



3 The Riemann zeta function

Here ∞
∑
𝑛=1

(2𝑛𝜋)𝑠

𝑛𝜋
= 2𝑠𝜋𝑠−1𝜁(1 − 𝑠)

and

∫
∞

0

sin 𝑦
𝑦𝑠+1 𝑑𝑦 = 1

2𝑖
(∫

∞

0

𝑒𝑖𝑦

𝑦𝑠+1 𝑑𝑦 − ∫
∞

0

𝑒−𝑖𝑦

𝑦𝑠+1 𝑑𝑦) = − sin(𝑠𝜋
2

) Γ(−𝑠)

where
Γ(𝑠) = ∫

∞

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡

for 𝜎 > 0 is the gamma function. We do a sanity check that the Dirichlet series
and gamma function makes sense in the region.

Let’s have a digression about gamma function. The first identity is

Γ(𝑠 + 1) = ∫
∞

0
𝑡𝑠𝑒−𝑡𝑑𝑡 = −𝑡𝑠𝑒−𝑡∣∞

0
+ 𝑠 ∫

∞

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡 = 𝑠Γ(𝑠).

In particular, since Γ(1) = 1,

Γ(𝑛) = (𝑛 − 1)!

which generalises factorial1. Also note Γ(𝑠+1) = 𝑠Γ(𝑠) allows us to extend Γ(𝑠)
to C with poles at 𝑠 = 0, −1, −2, ⋯.

Back to the zeta function. This mean that for −1 < 𝜎 < 0,

𝜁(𝑠) = 𝑠2𝑠𝜋𝑠−1𝜁(1 − 𝑠)(− sin(𝜋𝑠
2

) Γ(−𝑠))

= 2𝑠𝜋𝑠−1 sin(𝑠𝜋
2

) Γ(1 − 𝑠)𝜁(1 − 𝑠)

RHS is defined for all 𝜎 < 0, so we define

𝜁(𝑠) = 2𝑠𝜋𝑠−1 sin 𝑠𝜋
2

Γ(1 − 𝑠)𝜁(1 − 𝑠)

for 𝜎 < 0. This gives an analytic continuation of 𝜁(𝑠) to the negative half plane.
Together with the integral expression for 𝜎 > −1, this gives a meromorphic zeta
function on C.

Theorem 3.22 (functional equation). For all 𝑠 ∈ C,

𝜁(𝑠) = 2𝑠𝜋𝑠−1 sin(𝜋𝑠
2

) Γ(1 − 𝑠)𝜁(1 − 𝑠).

We can poke around the equation and do some reality check:

• At 𝑠 = 1,
𝜁(1) = 2𝛾(0)𝜁(0)

and as 𝜁(0) = − 1
2 , Γ has a pole at 0, this makes sense.

1As a side remark, really we should have 𝑡𝑠 in the integrand in the definition of gamma
function so it is more consistent and things look nicer on the whole, at least from a num-
ber theory point of view. There were people in the 19th century using this notation but
unfortunately a huge literature war ensued and obviously it didn’t catch up.
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3 The Riemann zeta function

• Does 𝜁(𝑠) have any other poles? Since

𝜁(𝑠) = 2𝑠𝜋𝑠−1 sin(𝜋𝑠
2

)
⏟⏟⏟⏟⏟⏟⏟

entire

Γ(1 − 𝑠)𝜁(1 − 𝑠)⏟⏟⏟⏟⏟⏟⏟
entire for 𝜎<0

𝜁(𝑠) is analytic everywhere in C except for a simple pole at 𝑠 = 1.

• At 𝑠 = 2,
𝜁(2) = 4𝜋 ⋅ 0 ⋅ Γ(−1)𝜁(−1).

The zero and pole of Γ at −1 cancels and we get a constant 𝜋2

6 .

• At 𝑠 = −1,
𝜁(−1) = 1

2
⋅ 1

𝜋2 ⋅ (−1) ⋅ Γ(2)𝜁(2) = − 1
12

.

Of course to physicists, this implies that

− 1
12

= 1 + 2 + 3 + ⋯

What about zeros of zeta function? At a zero we have

0 = 𝜁(𝑠) = nonzero term ⋅ sin(𝜋𝑠
2

) Γ(1 − 𝑠)𝜁(1 − 𝑠).

If 𝜎 < 1, 𝜁(1 − 𝑠) ≠ 0, Γ(1 − 𝑠) ≠ 0 except 𝑠 = −2𝑛 where 𝑛 ∈ N. This is a
necessary and sufficient condition so 𝜁(𝑠) has zeros at −2, −4, ⋯. We knew that
𝜁(𝑠) has no zeros for 𝜎 ≥ 1 and 𝜎 = 0. Thus except for the trivial zeros, 𝜁(𝑠)
only has zeros in the critical strip 0 < 𝜎 < 1.

In the region 0 < 𝜎 < 1,

0 = 𝜁(𝑠) = nonzero term ⋅ Γ(1 − 𝑠)⏟
≠0

𝜁(1 − 𝑠)

so 𝜁(1 − 𝑠) = 0. Also because 𝜁(𝑠) = 𝜁(𝑠), zeros appear in quadruples. The
dream that they actually come in pairs leads to, of course, the Riemann hy-
pothesis.

Now we can fully justify corollary 3.21, which states that Riemann hypothesis
is equivalent to

𝜓(𝑥) = 𝑥 + 𝑂(𝑥1/2+𝑜(1)).

Proof.
• ⟹ : contour integration

• ⟸ : we know if 𝜎0 = sup{Re 𝜌 ∶ 𝜁(𝜌) = 0} then

𝜓(𝑥) = 𝑥 + Ω±(𝑥𝜎)

for all 𝜎 < 𝜎0. If Riemann hypothesis is false then there exists a zero 𝜌
with 0 < 𝜎 < 1, 𝜎 ≠ 1

2 . By symmetry, we have

𝜎0 ≥ max(𝜎, 1 − 𝜎) > 1
2

so
𝜓(𝑥) = 𝑥 + Ω±(𝑥𝜎′)

where 1
2 < 𝜎′ < 𝜎.

53



4 Primes in arithmetic progressions

4 Primes in arithmetic progressions
In this last chapter we will introduce Dirchlet characters and use them to prove
Dirichlet’s theorem, which says that any arithmetic progression satisfying obvi-
ously necessary conditions contains infinitely many primes.

4.1 Dirichlet characters and 𝐿-functions

Definition (Dirichlet character). Fix 𝑞 ∈ N. A Dirichlet character of mod-
ulus 𝑞 is a group homomorphism 𝜒 ∶ (Z/𝑞Z)× → C×.

(Z/𝑞Z)× is a finite abelian group of order 𝜙(𝑞), so the set of Dirichlet char-
acters of modulus 𝑞 forms a finite abelian group of order 𝜙(𝑞).

We can also think of 𝜒 as defining a function 𝜒 ∶ Z → C, given by

𝜒(𝑎) = {𝜒(𝑎 mod 𝑞) (𝑎, 𝑞) = 1
0 otherwise

Note that this 𝜒 is periodic with period 𝑞 and is totally multiplicative.
If 𝜒 is the trivial homomorphism on (Z/𝑞Z)×, we call it the principal Dirichlet

character modulus 𝑞 and usually denote it as 𝜒0.

Lemma 4.1.

1. Let 𝜒 be a Dirichlet character of modulus 𝑞. Then

∑
𝑎∈(Z/𝑞Z)×

𝜒(𝑎) = ∑
1≤𝑎≤𝑞

𝜒(𝑎) = {𝜙(𝑞) 𝜒 = 𝜒0
0 𝜒 ≠ 𝜒0

2. Let 𝑎 ∈ (Z/𝑞Z)×. Then

∑
𝜒

𝜒(𝑎) = {𝜙(𝑞) 𝑞 = 1 mod 𝑞
0 𝑎 ≠ 1 mod 𝑞

For those of you familiar with representation theory, this is the row and column
orthogonality for character table of the abelian group (Z/𝑞Z)×.

Proof. We treat 2. If 𝑎 = 1 mod 𝑞 then 𝜒(𝑎) = 1 for all 𝜒 so

∑
𝜒

𝜒(𝑎) = ∑
𝜒

1 = 𝜙(𝑞).

If 𝑞 ≠ 1 mod 𝑞 then there exists 𝜓 ∶ (Z/𝑞Z)× → C× such that 𝜓(𝑎) ≠ 1. The
map 𝜒 ↦ 𝜒𝜓 is a permutation of the set of Dirichlet characters mod 𝑞. Hence

∑
𝜒

𝜒(𝑎) = ∑
𝜒

(𝜒𝜓)(𝑎) = 𝜓(𝑎) ∑
𝜒

𝜒(𝑎)

so ∑𝜒 𝜒(𝑎) = 0.
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Let 𝑎 ∈ Z, (𝑎, 𝑞) = 1. Consider 1𝑥=𝑎 mod 𝑞 ∶ Z → C. The the lemma says that

1𝑥=𝑎 mod 𝑞(𝑥) = 1
𝜙(𝑞)

∑
𝜒

𝜒(𝑎)−1𝜒(𝑥).

It follows that

∑
𝑝≤𝑥

𝑝=𝑎 mod 𝑞

1 = ∑
𝑝≤𝑥

1𝑥=𝑎 mod 𝑞(𝑝) = 1
𝜙(𝑞)

∑
𝑝≤𝑥

∑
𝜒

𝜒(𝑎)−1𝜒(𝑝).

Estimating this is closely related to estimating

1
𝜙(𝑞)

∑
𝑛≤𝑥

∑
𝜒

𝜒(𝑎)−1𝜒(𝑛)Λ(𝑛) = ∑
𝜒

𝜒(𝑎)−1

𝜙(𝑞)
∑
𝑛≤𝑥

𝜒(𝑛)Λ(𝑛).

The strategy to prove Dirichlet’s theorem is to consider the contribution of each
character 𝜒 separately. We will do this using the Dirichlet 𝐿-function

𝐿(𝑠, 𝜒) = ∑
𝑛≥1

𝜒(𝑛)𝑛−𝑠.

This series converges absolutely in the region 𝜎 > 1 and defines an analytic
function there.

Lemma 4.2. If 𝜒 ≠ 𝜒0 then ∑𝑛≥1 𝜒(𝑛)𝑛−𝑠 converges in 𝜎 > 0.

Proof. Use partial summmation,

∑
𝑛≤𝑥

𝜒(𝑛)𝑛−𝑠 = 𝐴(𝑥)𝑥−𝑠 − ∫
𝑥

1
𝐴(𝑡)𝑓 ′(𝑡)𝑑𝑡

where 𝐴(𝑥) = ∑𝑛≤𝑥 𝜒(𝑛). Note that by the lemma ∑1≤𝑛≤𝑞 𝜒(𝑛) = 0 as 𝜒 ≠ 𝜒0.
Hence 𝐴(𝑛) is periodic and |𝐴(𝑥)| ≤ 𝜙(𝑞) for all 𝑥. Thus |𝐴(𝑥)𝑥−𝑠| ≤ 𝜙(𝑞)𝑥−𝜎

and the integral is absolutely convergent.

Thus 𝐿(𝑠, 𝜒) is analytic in the same region and in particular does not have
a pole at 𝑠 = 1.

Since 𝜒(𝑛) is multiplicative, we have an Euler product identity

𝐿(𝑠, 𝜒) = ∏
𝑝

(1 − 𝜒(𝑝)𝑝−𝑠)−1

valid in the region 𝜎 > 1. This implies that when 𝜒 = 𝜒0,

𝐿(𝑠, 𝜒0) = 𝜁(𝑠) ∏
𝑝∣𝑞

(1 − 𝑝−𝑠)

so 𝐿(𝑠, 𝜒0) has a meromorphic continuation to all 𝑠 ∈ C and a simple pole at
𝑠 = 1. We can show that

log𝐿(𝑠, 𝜒) = ∑
𝑝

∑
𝑘≥1

𝜒(𝑝)𝑘𝑝−𝑘𝑠/𝑘
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and hence

𝐿′

𝐿
(𝑠, 𝜒) = ∑

𝑝
∑
𝑘≥1

𝜒(𝑝)𝑘(− log 𝑝)𝑝−𝑠 = − ∑
𝑛≥1

𝜒(𝑛)Λ(𝑛)𝑛−𝑠

valid in 𝜎 > 1.
Fix 𝑎 ∈ N, (𝑎, 𝑞) = 1. We combine this with the identity valid for any 𝑛 ∈ N

1𝑛=𝑎 mod 𝑞(𝑛) = 1
𝜙(𝑞)

∑
𝜒

𝜒(𝑎−1)𝜒(𝑛)

we get

∑
𝑛≥1

1𝑛=𝑎 mod 𝑞(𝑛)Λ(𝑛)𝑛−𝑠 = − 1
𝜙(𝑞)

∑
𝜒

𝜒(𝑎−1)𝐿′(𝑠, 𝜒)
𝐿(𝑠, 𝜒)

again valid in 𝜎 > 1.

4.2 Dirichlet’s theorem

Theorem 4.3. Given 𝑞 ∈ N, (𝑎, 𝑞) = 1, there are infinitely many primes 𝑝
such that 𝑝 = 𝑎 mod 𝑞.

As 𝐿(𝑠, 𝜒0) has a simple pole at 𝑠 = 1, we can write

∑
𝑛≥1

1𝑛=𝑎 mod 𝑞(𝑛)Λ(𝑛)𝑛−𝑠 = 1
𝜙(𝑞)

1
𝑠 − 1

+ 𝑂(1) − 1
𝜙(𝑞)

∑
𝜒≠𝜒0

𝜒(𝑎−1)𝐿′(𝑠, 𝜒)
𝐿(𝑠, 𝜒)

.

Assume the unknown term is convergent, so RHS has a pole at 𝑠 = 1 so diverges
there. If there were finitely many prime 𝑝 = 𝑎 mod 𝑞, LHS would be bounded
as 𝑠 → 1, absurd. Thus to show Dirichlet’s theorem it is enough to show that
for all 𝜒 ≠ 𝜒0, 𝐿′

𝐿 (𝑠, 𝜒) is analytic at 𝑠 = 1. This is equivalent to show that if
𝜒 ≠ 𝜒0 then 𝐿(1, 𝜒) ≠ 0.

Theorem 4.4. If 𝜒 ≠ 𝜒0 then 𝐿(1, 𝜒) ≠ 0.

Proof. In 𝜎 > 1, by choosing a branch of logarithm

∏
𝜒

𝐿(𝑠, 𝜒) = exp∑
𝜒

log𝐿(𝑠, 𝜒)

= exp∑
𝜒

∑
𝑝

∑
𝑘≥1

𝜒(𝑝)𝑘𝑝−𝑘𝑠/𝑘

= exp∑
𝜒

∑
𝑛≥1

𝜒(𝑛)𝑛−𝑠Λ(𝑛)
log𝑛

= exp∑
𝑛≥1

𝑛−𝑠Λ(𝑛)
log𝑛

∑
𝜒

𝜒(𝑛) absolute convergence

We have

∑
𝜒

𝜒(𝑛) = {0 (𝑞, 𝑛) > 1 or (𝑞, 𝑛) = 1 and 𝑛 ≠ 1 mod 𝑞
𝜙(𝑞) 𝑛 = 1 mod 𝑞
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so
∏
𝜒

𝐿(𝑠, 𝜒) = exp ∑
𝑛≥1

𝑛=1 mod 𝑞

𝑛−𝑠Λ(𝑛)
log𝑛

𝜙(𝑞)

valid in 𝜎 > 1. For 𝑠 real, 𝑠 > 1, the exponent is a non-negative real numbur.
Thus for 𝑠 ∈ (1, ∞),

∏
𝜒

𝐿(𝑠, 𝜒) ∈ [1, ∞).

Note that 𝐿(𝑠, 𝜒0) has a simple pole at 𝑠 = 1. If there are at least two distinct
characters 𝜓, 𝜓′ of modulus 𝑞 such that 𝐿(1, 𝜓) = 𝐿(1, 𝜓′) = 0 then ∏𝜒 𝐿(𝑠, 𝜒)
would be analytic in a neighbourhood of 𝑠 = 1, and vanish at 𝑠 = 1. This
cannot happen so there is at most one character 𝜓 such that 𝐿(1, 𝜓) = 0.

Note also that for any 𝜒,

𝐿(1, 𝜒) = 𝐿(1, 𝜒).

If 𝐿(1, 𝜒) = 0 then 𝐿(1, 𝜒) = 0. Hence if 𝐿(1, 𝜒) = 0 then 𝜒 = 𝜒. In other
words, 𝜒 takes values in {±1}. We call such characters quadratic,

Suppose for contradiction there exists a non-principal quadratic character 𝜓 ∶
(Z/𝑞Z)× → {±1} such that 𝐿(1, 𝜓) = 0. We consider the product 𝐿(𝑠, 𝜓)𝜁(𝑠).
This function is analytic in 𝜎 > 0. In 𝜎 > 1 we have the expressoin

𝐿(𝑠, 𝜓)𝜁(𝑠) = (∑
𝑛≥1

𝜓(𝑛)𝑛−𝑠) (∑
𝑛≥1

𝑛−𝑠) = ∑
𝑛≥1

𝑟(𝑛)𝑛−𝑠

where 𝑟(𝑛) = ∑𝑑∣𝑛 𝜓(𝑑). Note that 𝑟(𝑛) is multiplicative and 𝑟(𝑛) ≥ 0:

𝑟(𝑝𝑘) = 𝜓(1) + 𝜓(𝑝) + ⋯ + 𝜓(𝑝𝑘) =
⎧{
⎨{⎩

𝑘 + 1 𝜓(𝑝) = 1
1 𝜓(𝑝) = 0 or 𝜓(𝑝) = −1, 𝑘 is even
0 𝜓(𝑝) = −1, 𝑘 is odd

Note also that 𝑟(𝑛2) ≥ 1 by the same argument.
We now use Landau’s lemma

Lemma 4.5. Let 𝑓(𝑠) = ∑𝑛≥1 𝑎𝑛𝑛−𝑠 where 𝑎𝑛 are non-negative real num-
bers. Suppose given 𝜎0 ∈ R such that 𝑓(𝑠) is convergent in 𝜎 > 𝜎0. Suppose
that 𝑓(𝑠) admits an analytic continuation to the disk {|𝑠 − 𝜎0| < 𝜀}. Then
𝑓(𝑠) is convergent in 𝜎 > 𝜎0 − 𝜀.

Let
𝑓(𝑠) = 𝐿(𝜓, 𝑠)𝜁(𝑠) = ∑

𝑛≥1
𝑟(𝑛)𝑛−𝑠,

valid in 𝜎 > 1. Then we can use Landau’s lemma, together with the fact that
𝑓(𝑠) is analytic in 𝜎 > 0, to conclude that 𝑓(𝑠) is convergent in 𝜎 > 0. But

𝑓 (1
2

) = ∑
𝑛≥1

𝑟(𝑛)𝑛−1/2 ≥ ∑
𝑛≥1

𝑟(𝑛2)/𝑛 ≥ ∑
𝑛≥1

1
𝑛

and this series diverges, absurd. Thus 𝐿(1, 𝜓) ≠ 0.
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4.3 Zero-free region
We have proved there are infinitely many primes congruent to 𝑎 mod 𝑞 if (𝑎, 𝑞) =
1, using

−𝐿′

𝐿
(𝑠, 𝜒) = ∑

𝑛

Λ(𝑛)𝜒(𝑛)
𝑛𝑠 .

We want to prove a prime number theorem for such primes. To do this, we’ll
use Perron’s formula just as the case for Riemann zeta function. We need
more information about the zeros of 𝐿(𝑠, 𝜒). (roughly speaking 𝐿(1, 𝜒) ≠ 0 is
the statement there are infinitely many primes. Specialising to 𝜒 = 1 (Riemann
zeta function) we get a pole so it is particularly easy to prove there are infinitely
many primes).

Similarities to zero-free region for 𝜁(𝑠), but important difference: 𝜁(𝑠) has a
pole at 𝑠 = 1, while 𝐿(𝑠, 𝜒) has no poles for 𝜎 > 0 for 𝜒 ≠ 𝜒0.

Some shorthands: let 𝜏 = |𝑡| + 4. Recall

Lemma 4.6. If 𝑓(𝑧) is analytic on a region containing |𝑧| ≤ 1 and 𝑓(0) ≠ 0
and |𝑓(𝑧)| ≤ 𝑀 for |𝑧| ≤ 1, then for 0 < 𝑟 < 𝑅 < 1, for |𝑧| ≤ 𝑟,

𝑓 ′

𝑓
(𝑧) = ∑ 1

𝑧 − 𝑧𝑘
+ 𝑂(log 𝑀

|𝑓(0)|
)

where 𝑧𝑘 ranges over zeros of 𝑓 in |𝑧| ≤ 𝑅.

Lemma 4.7. If 𝜒 ≠ 𝜒0 and 5
6 ≤ 𝜎 ≤ 2 then

𝐿′

𝐿
(𝑠, 𝜒) = ∑

𝜌

1
𝑠 − 𝜌

+ 𝑂(log 𝑞𝑡)

over 𝜌 with |𝜌 − ( 3
2 + 𝑖𝑡)| ≤ 5

6 .

Proof. Follows from the lemma with 𝑓(𝑧) = 𝐿(𝑧 + 3
2 + 𝑖𝑡, 𝜒), 𝑅 = 5

6 , 𝑟 = 2
3 .

Verify that

|𝑓(0)| = |𝐿(3
2

+ 𝑖𝑡, 𝜒)| = ∏
𝑝

∣1 − 𝜒(𝑝)
𝑝3/2+𝑖𝑡 ∣ ≥ ∏

𝑝
(1 + 1

𝑝3/2 )
−1

≫ 1.

By partial summation, if 𝐹(𝑡) = ∑1≤𝑛≤𝑡 𝜒(𝑛) for 𝜎 > 0 then

𝐿(𝑠, 𝜒) = 𝑠 ∫
∞

1

𝐹(𝑡)
𝑡𝑠+1 d𝑡

so
|𝐿(𝑠, 𝜒)| ≪ |𝑠|𝑞 ∫

∞

1

1
𝑡𝜎+1 d𝑡 ≪ 𝑞𝜏.
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Theorem 4.8. Let 𝜒 be a non-quadratic character. Then there is an abso-
lute constant 𝑐 > 0 such that 𝐿(𝑠, 𝜒) ≠ 0 if 𝜎 > 1 − 𝑐

log(𝑞𝜏)

Proof. Since
𝐿(𝑠, 𝜒0) = 𝜁(𝑠) ∏

𝑝∣𝑞
(1 − 𝑝−𝑠),

in this region 𝜎 > 0, zeroes of 𝐿(𝑠, 𝜒0) are the same as those of 𝜁(𝑠) so done.
Suppose 𝜒 is non-principal. Let 𝜌 = 𝜎 + 𝑖𝑡 be such that 𝐿(𝜌, 𝜒) = 0. The

idea is to compare

𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒), 𝐿′

𝐿
(1 + 𝛿 + 2𝑖𝑡, 𝜒2), 𝐿′

𝐿
(1 + 𝛿, 𝜒0)

as 𝛿 → 0. Note that

Re(−3𝐿′

𝐿
(1 + 𝛿, 𝜒0) − 4𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒) − 𝐿′

𝐿
(1 + 𝛿 + 2𝑖𝑡, 𝜒2))

= ∑
𝑛≥1

(𝑛,𝑞)=1

Λ(𝑛)
𝑛1+𝛿 Re(3 + 4𝜒(𝑛)𝑛−𝑖𝑡 + 𝜒(𝑛)2𝑛−2𝑖𝑡)

and for all 𝜃,

3 + 4 cos 𝜃 + cos 2𝜃 = Re(3 + 4𝑒𝑖𝜃 + 𝑒𝑖2𝜃) ≥ 0.

By the lemma,

−Re 𝐿′

𝐿
(1 + 𝛿, 𝜒0) = 1

𝛿
+ 𝑂(log 𝑞)

−Re 𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒) ≤ − 1

1 + 𝛿 − 𝜎
+ 𝑂(log 𝑞𝜏)

Re 𝐿′

𝐿
(1 + 𝛿 + 2𝑖𝑡, 𝜒2) ≪ log(𝑞𝜏)

Note that the last step depends crucially on 𝜒 being non-quadratic so that
𝜒2 ≠ 𝜒0. Thus

3
𝛿

− 4
1 + 𝛿 − 𝜎

+ 𝑂(log 𝑞𝜏) ≥ 0,

contradiction if 𝛿 ≈ 𝑐′

log 𝑞𝜏 and 𝜎 ≥ 1 − 𝑐
log 𝑞𝜏 .

Theorem 4.9. If 𝜒 is a quadratic character, there exists 𝑐 > 0 such that
𝐿(𝑠, 𝜒) ≠ 0 if 𝜎 > 1 − 𝑐

log 𝑞𝜏 and 𝑡 ≠ 0.

In other words, we cannot rule out a zero 𝜌 of 𝐿(𝑠, 𝜒) with 𝜌 ∈ R close to 1.
However,

Theorem 4.10. Let 𝜒 be a quadratic character. Then there is an absolute
constant 𝑐 > 0 such that 𝐿(𝑠, 𝜒) has at most one zero 𝜌 ∈ (0, 1) such that
𝜌 ≥ 1 − 𝑐

log 𝑞 .

These are called exceptional zeroes or Siegel zeroes.
First we need a lemma for 𝐿(𝑠, 𝜒0).
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Lemma 4.11. If 5
6 ≤ 𝜎 ≤ 2 then

−𝐿′

𝐿
(𝑠, 𝜒0) = 1

𝑠 − 1
− ∑

𝜌

1
𝑠 − 𝜌

+ 𝑂(log 𝑞𝜏)

over zeroes 𝜌 with |𝜌 − ( 3
2 + 𝑖𝑡)| ≤ 5

6 .

Proof. Follows from

−𝜁′

𝜁
(𝑠) = − ∑

𝜌

1
𝑠 − 𝜌

+ 𝑂(log 𝜏) + 1
𝑠 − 1

since

1. 𝜎 > 0, zeroes of 𝜁(𝑠) is the same as zeroes of 𝐿(𝑠, 𝜒0), and

2. by the Euler product,

𝐿′

𝐿
(𝑠, 𝜒0) = 𝜁′

𝜁
(𝑠) + ∑

𝑝∣𝑞

log 𝑝
𝑝𝑠 − 1

≪ 𝜔(𝑞) ≪ log 𝑞

Quick sketch of proof:

1. theorem 1: for 𝑡 large, same as previous proof (𝜒2 = 𝜒0 but no pole). For
𝑡 small, 0 < |𝑡| ≪ 1

log 𝑞𝜏 . Instead of comparing 𝜒0, 𝜒, 𝜒2 we compare 𝜌 and
𝜌.

2. theorem 2: compare two such real zeroes.

Proof of Theorem 4.9. As before let 𝜌 = 𝜎 + 𝑖𝑡 be a zero of 𝐿(𝑠, 𝜒). Let 𝛿 > 0.
Then by lemma 1 (expansion of 𝐿-function for non-principal character)

−𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒) = − ∑

𝜌′

1
1 + 𝛿 + 𝑖𝑡 − 𝜌′ + 𝑂(log 𝑞𝜏)

so

−Re 𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒) ≤ − 1

1 + 𝛿 + 𝑖𝑡 − 𝜌
+ 𝑂(log 𝑞𝜏)

= − 1
1 + 𝛿 − 𝜎

+ 𝑂(log 𝑞𝜏)

Also by lemma 2 (expansion of 𝐿-function for principal character)

−Re 𝐿′

𝐿
(1 + 𝛿, 𝜒0) ≤ 1

𝛿
+ 𝑂(log 𝑞𝜏).

First suppose 𝜏 ≥ 𝐶(1 − 𝜎). Here

−𝑅𝑒𝐿′

𝐿
(1 + 𝛿 + 2𝑖𝑡, 𝜒2) = −Re 𝐿′

𝐿
(1 + 𝛿 + 2𝑖𝑡, 𝜒0)

≤ Re 1
𝛿 + 2𝑖𝑡

+ 𝑂(log 𝑞𝜏)

≤ 𝛿
𝛿2 + 4𝑡2 + 𝑂(log 𝑞𝜏)
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As before,

Re(−3𝐿′

𝐿
(1 + 𝛿, 𝜒0) − 4𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒) − 𝐿′

𝐿
(1 + 𝛿 + 2𝑖𝑡, 𝜒2))

But
𝐿𝐻𝑆 ≤ 3

𝛿
− 4

1 + 𝛿 − 𝜎
+ 𝛿

𝛿2 + 4𝑡2 + 𝑂(log 𝑞𝜏).

If 𝜎 = 1 then contradiction as 𝛿 → 0.
For 𝜎 ≠ 1, if we chhose 𝛿 = 1 − 𝜎, then this is (𝜏 ≫ 1 − 𝜎 ≫ 𝛿)

0 ≤ 3
𝑐(1 − 𝜎)

− 4
(𝑐 + 1)(1 − 𝜎)

+ 𝑐′

1 − 𝜎
+ 𝑂(log 𝑞𝜏).

Can choose 𝑐, 𝐶, hence 𝑐′ such that this is ≤ − 𝑐″

1−𝜎 + 𝑂(log 𝑞𝜏) and so 𝜎 ≤
1 − 𝑐‴

log 𝑞𝜏 .
For small 𝜏 we need a distinct argument. Since 𝐿(𝜌, 𝜒 = 𝐿(𝜌, 𝜒) = 0, it

follows that

−Re 𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒) ≤ −Re 1

1 + 𝛿 − 𝜌
− Re 1

1 + 𝛿 − 𝜌
+ 𝑂(log 𝑞𝜏)

(assuming that |𝑡| ≤ 𝑐(1 − 𝜎), in particular |𝑡| ≤ 𝑐′ for some small constant, so
both 𝜌 and 𝜌′ are both picked up) RHS is

−2(1 + 𝛿 − 𝜎)
(1 + 𝛿 − 𝜎)2 + 𝑡2 + 𝑂(log 𝑞𝜏).

As before
−𝐿′

𝐿
(1 + 𝛿, 𝜒0) ≤ 1

𝛿
+ 𝑂(log 𝑞𝜏).

Now

− Re 𝐿′

𝐿
(1 + 𝛿, 𝜒0) − Re 𝐿′

𝐿
(1 + 𝛿 + 𝑖𝑡, 𝜒)

= ∑
𝑛≥1

(𝑛,𝑞)=1

Λ(𝑛)
𝑛1+𝛿 (1 + Re(𝜒(𝑛)𝑛𝑖𝑡⏟

|𝑧|=1

))

≥ 0

so putting these together,

1
𝛿

− 2(1 + 𝛿 − 𝜎)
(1 + 𝛿 − 𝜎)2 + 𝑡2 + 𝑂(log 𝑞𝜏) ≥ 0.

If we choose 𝛿 = 𝑐(1 − 𝜎), LHS is ≤ − 𝑐′

1−𝜎 + 𝑂(log 𝑞𝜏) so 𝜎 ≤ 1 − 𝑐″

log 𝑞𝜏 .

Proof of Theorem 4.10. Suppose 𝜌0 < 𝜌1 ≤ 1 are zeroes of 𝐿(𝑠, 𝜒). Then for
𝜎 ∈ (0, 1)

−Re 𝐿′

𝐿
(𝜎, 𝜒) ≤ −Re 1

𝜎 − 𝜌0
− Re 1

𝜎 − 𝜌1
+ 𝑂(log 𝑞) for 𝜎 ≥ 1 − 10−6, say

≤ − 2
𝜎 − 𝜌0

+ 𝑂(log 𝑞)
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so
1

𝜎 − 1
− 2

𝜎 − 𝜌0
+ 𝑂(log 𝑞) ≥ −Re 𝐿′

𝐿
(𝜎, 𝜒0) − Re 𝐿′

𝐿
(𝜎, 𝜒) ≥ 0.

Hence 𝜌0 < 1 − 𝑐
log 𝑞 .

Lemma 4.12. If 𝜒 ≠ 𝜒0 and 𝜎 ≥ 1 − 𝑐
log 𝑞𝜏 (some absolute 𝑐 > 0) then

• either 𝜒 has no exceptional zero,

• or 𝜒 has an exceptional zero at 𝛽. But |𝑠 − 𝛽| ≥ 1
log 𝑞 so

𝐿′

𝐿
(𝑠, 𝜒) ≪ log 𝑞𝜏.

Proof. If 𝜎 > 1, note

∣ 𝐿′

𝐿(𝑠, 𝜒)
∣ ≤ ∑

𝑛≥1
(𝑛,𝑞)=1

Λ(𝑛)
𝑛𝜎 ≪ 1

𝜎 − 1
.

In particular, if 𝑠 = 𝜎 + 𝑖𝑡 and 𝑠1 = 1 + 1
log 𝑞𝜏 + 𝑖𝑡,

∣𝐿
′

𝐿
(𝑠1, 𝜒)∣ ≪ log 𝑞𝜏.

By lemma 1,
𝐿′

𝐿
(𝑠, 𝜒) = ∑

𝜌

1
𝑠 − 𝜌

+ 𝑂(log 𝑞𝜏)

for all zeroes 𝜌. |𝑠 − 𝜌| ≍ |𝑠1 − 𝜌| so

∣𝐿
′

𝐿
(𝑠, 𝜒) − 𝐿′

𝐿
(𝑠, 𝜒)∣ ≪ ∣∑

𝜌

1
𝑠 − 𝜌

− 1
𝑠1 − 𝜌

∣ + 𝑂(log 𝑞𝜏)

≪ Re∑
𝜌

1
𝑠1 − 𝜌

+ 𝑂(log 𝑞𝜏)

≪ log 𝑞𝜏

Theorem 4.13. If 𝜒1, 𝜒2 are distinct quadratic characters modulo 𝑞 then
𝐿(𝑠, 𝜒1)𝐿(𝑠, 𝜒2) has at most one real zero 𝛽 with 1 − 𝑐

log 𝑞 < 𝛽 < 1.

This justifies “the exceptional zero of 𝑞”.

Proof. Say 𝛽𝑖 is a real zero of 𝐿(𝑠, 𝜒𝑖 for 𝑖 = 1, 2. wlog 5
6 ≤ 𝛽1 ≤ 𝛽2 < 1. Fix

𝛿 > 0.

1. −Re 𝐿′

𝐿 (1 + 𝛿, 𝜒𝑖) = − 1
1+𝛿−𝛽𝑖

+ 𝑂(log 𝑞), 𝑖 = 1, 2.

2. −Re 𝐿′

𝐿 (1 + 𝛿, 𝜒1𝜒2) ≤ 𝑂(log 𝑞). Here we used 𝜒1𝜒2 ≠ 𝜒0.
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3. − 𝜁′

𝜁 (1 + 𝛿) ≤ 1
𝛿 + 𝑂(1) (or equivalently using −Re 𝐿′

𝐿 (1 + 𝛿, 𝜒0)).

Therefore

∑ Λ(𝑛)
𝑛1+𝛿 Re(1 + 𝜒1(𝑛) + 𝜒2(𝑛) + 𝜒1𝜒2(𝑛))

= −𝜁′

𝜁
(1 + 𝛿) − 𝐿′

𝐿
(1 + 𝛿, 𝜒1) − 𝐿′

𝐿
(1 + 𝛿, 𝜒2) − 𝐿′

𝐿
(1 + 𝛿, 𝜒1𝜒2)

≤ 1
𝛿

− 2
1 + 𝛿 − 𝛽1

+ 𝑂(log 𝑞)

Choose 𝛿 = 𝑐(1 − 𝛽1), and therefore 𝛽1 ≤ 1 − 𝑐
log 𝑞 .

4.4 Prime number theorem for arithmetric progressions
Recall that

∑
1≤𝑛≤𝑥

𝑛=𝑎 mod 𝑞

Λ(𝑛) = 1
𝜑(𝑞)

∑
𝜒

𝜒(𝑎) ∑
1≤𝑛≤𝑥

Λ(𝑛)𝜒(𝑛) = 1
𝜑(𝑞)

∑
𝜒

𝜒(𝑎)𝜓(𝑥, 𝜒)

Theorem 4.14. If 𝑞 ≤ exp(𝑂(
√
log𝑥)) then

1. 𝜓(𝑥, 𝜒0) = 𝑥 + 𝑂(𝑥 exp(−𝑐
√
log𝑥)).

2. If 𝜒 ≠ 𝜒0 and 𝜒 has no exceptional zero then

𝜓(𝑥, 𝜒) = 𝑂(𝑥 exp(−𝑐√log𝑥)).

3. If 𝜒 ≠ 𝜒0 and 𝜒 has an exceptional zero at 𝛽 then

𝜓(𝑥, 𝜒) = −𝑥𝛽

𝛽
+ 𝑂(𝑥 exp(−𝑐√log𝑥)).

Recall that
1𝑛=𝑎 mod 𝑞 = 1

𝜑(𝑞)
∑

𝜒
𝜒(𝑎)𝜒(𝑛)

so
𝜒(𝑥; 𝑞, 𝑎) = ∑

𝑛≤𝑥
𝑛=𝑎 mod 𝑞

Λ(𝑛) = 1
𝜑(𝑞)

∑
𝜒

𝜒(𝑎)𝜓(𝑥, 𝜒).

Corollary 4.15. If (𝑎, 𝑞) = 1, 𝑞 ≤ exp(𝑂(
√
log𝑥)) then if 𝑞 has no excep-

tional zero then

𝜓(𝑥; 𝑞, 𝑎) = 𝑥
𝜑(𝑞)

+ 𝑂(𝑥 exp(−𝑐√log𝑥)),
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and if 𝑞 has an exceptional zero at 𝛽 and 𝜒1 then

𝜓(𝑥; 𝑞, 𝑎) = 𝑥
𝜑(𝑞)

− 𝜒1(𝑎)
𝜑(𝑞)

𝑥𝛽

𝛽
+ 𝑂(𝑥 exp(−𝑐√log𝑥)).

Proof. We give a sketch as the proof is similar to that of zeta function. By
Perron’s formula (given 𝜎0 > 1, 𝑇 ≥ 1),

𝜓(𝑥, 𝜒) = − 1
2𝜋𝑖

∫
𝜎0+𝑖𝑇

𝜎0−𝑖𝑇

𝐿′

𝐿
(𝑠, 𝜒)𝑥𝑠

𝑠
d𝑠 + 𝑂(𝑥

𝑇
∑

𝑥
2 <𝑛<2𝑥

Λ(𝑛)
|𝑥 − 𝑛|

+ 𝑥
𝑇

∑
𝑛≥1

Λ(𝑛)
𝜎𝜎0

).

By the same argument as for 𝜁(𝑠), the error term is ≪ 𝑥(log 𝑥)2

𝑇 (choosing 𝜎0 =
1+ 1

log 𝑥 ). Take 𝐶 to be the rectangular contour with corners at 𝜎0 ±𝑖𝑇 , 𝜎1 ±𝑖𝑇.
So

𝜓(𝑥, 𝜒) = 1
2𝜋𝑖

∫
𝐶

+𝑂(∫
𝜎1±𝑖𝑇

+ ∫
𝜎1+𝑖𝑇

𝜎0+𝑖𝑇
+ ∫

𝜎0+𝑖𝑇

𝜎0−𝑖𝑇
+𝑥(log𝑥)2

𝑇
)

Error terms are bound as for 𝜁(𝑠), so in total,

𝜓(𝑥, 𝜒) = − 1
2𝜋𝑖

∫
𝐶

𝐿′

𝐿
(𝑠, 𝜒)𝑥𝑠

𝑠
d𝑠 + 𝑂(𝑥(log𝑥)2

𝑇
+ 𝑥1−𝑞𝜎1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≪exp −𝑐

√
log 𝑥,𝑇 =exp(𝑜(

√
log 𝑥))

as we take 𝜎1 = 1− 𝑐
log 𝑞𝑇 so 𝑥𝜎1 ≪ 𝑥 exp(−𝑐

√
log𝑥) if 𝑞 ≪ 𝑇 ≈ exp(𝑂(

√
log𝑥)).

For the main term, if 𝜒 = 𝜒0 then take 𝜎1 as above, so no zeroes of 𝐿(𝑠, 𝜒0)
so 𝐿′

𝐿 has just a simple pole at 𝑠 = 1, and the main term is 𝑥.
If 𝜒 ≠ 𝜒0 and there is no exceptional zero then there is no zero of 𝐿(𝑠, 𝜒)

with 𝜎 ≥ 𝜎1 so no poles of 𝐿′

𝐿 (𝑠, 𝜒), so the main term is 0.
Finally if 𝜒 has an exceptional zero at 𝛽, then inside 𝐶, 𝐿′

𝐿 has a pole at 𝛽.
Thus 𝐿′

𝐿 (𝑠, 𝜒) 𝑥𝑠

𝑠 has residue 𝑥𝛽

𝛽 at this pole, so the main term is 𝑥𝛽

𝛽 .

4.5 Siegel-Walfisz theorem

Theorem 4.16 (Siegel-Walfisz). For all 𝐴 > 0, if (𝑎, 𝑞) = 1 and 𝑞 ≤
(log𝑥)𝐴 then

𝜓(𝑥; 𝑞, 𝑎) = 𝑥
𝜑(𝑞)

+ 𝑂𝐴(𝑥 exp(−𝑐√log𝑥)).

This follows from

Theorem 4.17. If 𝑞 ≤ (log𝑥)𝐴 and 𝑥 is large enough (depending on 𝐴)
and if 𝜒 ≠ 𝜒0 then

𝜓(𝑥, 𝜒) = 𝑂𝐴(exp(−𝑐√log𝑥)).

This in turn follows from

Theorem 4.18. For all 𝜀 > 0, there exists 𝐶𝜀 such that if 𝜒 is a quadratic
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character modulo 𝑞 and 𝛽 is a real zero then

𝛽 < 1 − 𝐶𝜀𝑞−𝜀.
Therefore even if 𝑞 has an exceptional zero, it is not too close to 1.

Proof. Omitted.

A curious fact is that the constant 𝐶𝜀 is ineffective — the proof gives no
way to calculate 𝐶(𝜀). It follows that the big 𝑂 (actually the constatnt 𝑐) in
the statement of Siegel-Walfisz is also ineffective.

Proof that Theorem 4.18 implies Theorem 4.17. If there is an exceptional zero
then 𝛽 < 1 − 𝐶𝜀𝑞𝜀 for all 𝜀 > 0. Thus

𝜓(𝑥, 𝜒) = 𝑂(𝑥𝛽

𝛽
+ 𝑥 exp(−𝑐√log𝑥))

= 𝑥𝑜(exp(−𝐶𝜀𝑞𝜀 log𝑥) + exp(−𝑐√log𝑥))

since 𝑞 ≤ (log𝑥)𝐴, this is 𝑂(exp(𝐶′
𝜀(

√
log𝑥))) by choosing 𝜀 = 1

3𝐴 , say.

Corollary 4.19. If (𝑎, 𝑞) = 1 then

𝜋(𝑥; 𝑞, 𝑎) = Li(𝑥)
𝜑(𝑞)

+ 𝑂(𝑥 exp(−𝑐√log𝑥))

and if 𝑞 ≤ (log𝑥)𝐴 (unconditionally) or if 𝑞 ≤ exp(𝑂(
√
log𝑥) (if 𝑞 has no

exceptional zero)

Note that assuming GRH, the bound on 𝑞 when 𝑞 has no exceptional zero can
be improved to 𝑞 ≤ 𝑥 1

2 −𝑜(1).

Proof. Let
𝐹(𝑥) = ∑

𝑝≤𝑥
𝑝=𝑎 mod 𝑞

log 𝑝 = 𝜓(𝑥; 𝑞, 𝑎) + 𝑂(𝑥1/2)

and so

𝜋(𝑥; 𝑞, 𝑎) = ∑
𝑝≤𝑥

𝑝=𝑎 mod 𝑞

1

= 𝐹(𝑥)
log𝑥

+ ∫
𝑥

𝑥

𝐹(𝑡)
𝑡(log 𝑡)2 d𝑡

= 1
𝜑(𝑞)

⎛⎜⎜⎜⎜
⎝

𝑥
log𝑥

+ ∫
𝑥

2

1
(log 𝑡)2 d𝑡

⏟⏟⏟⏟⏟⏟⏟
=Li(𝑥)

⎞⎟⎟⎟⎟
⎠

+ 𝑂(𝑥 exp(−𝑐√log𝑥))

Two applications of Siegel-Walfisz:

Application. For fixed (𝑎, 𝑞) = 1, how large is the smallest prime congurent
to 𝑎 modulo 𝑞? Call this prime 𝑃𝑎,𝑞.
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Corollary 4.20. For all 𝜀 > 0,

𝑃𝑎,𝑞 ≪𝜀 exp(𝑞𝜀).

Proof. Let 𝑥 < 𝑃𝑞,𝑎 so 𝜓(𝑥; 𝑞, 𝑎) = 0. Thus if 𝑞 ≤ (log𝑥)𝐴, must have by
Siegel-Walfisz

𝑥
𝜑(𝑞)

= 𝑂𝐴(𝑥 exp(−𝑐√log𝑥)).

Thus
exp(𝑐√log𝑥) = 𝑂𝐴(𝑞)

so
log𝑥 ≤ (log 𝑞)2 + 𝑂𝐴(1),

contradicting 𝑞 ≤ (log𝑥)𝐴. Thus if 𝑞 is large enough, 𝑞 ≤ (log𝑃𝑎,𝑞)𝐴.

Similarly

Corollary 4.21. If 𝑞 has no exceptional zero then

𝑃𝑎,𝑞 ≤ 𝑞𝑂(log 𝑞).

It has been conjectured that

𝑃𝑎,𝑞 ≤ 𝑞1+𝑜(1).

On GRH, we have 𝑃𝑎,𝑞 ≤ 𝑞2+𝑜(1). Amazingly, we have an unconditional re-
sult

Theorem 4.22. There exists 𝐿 constant such that

𝑃𝑎,𝑞 ≪ 𝑞𝐿.

So far the best known result is 𝐿 = 5, by Xylouris 2011.

Theorem 4.23 (Walfisz). For any 𝑛, let 𝑟(𝑛) be the number of ways of
writing 𝑛 as the sum of a prime a square-free natural number. Then

𝑟(𝑛) ∼ 𝑐𝑛 Li(𝑛),

where
𝑐𝑛 = ∏

𝑝∣𝑛
(1 + 1

𝑝2 − 𝑝 − 1
) ∏

𝑝
(1 − 1

𝑝(𝑝 − 1)
).

The second term is a constant, which is approximately 0.3739 ….

Application. Proof. Note that

1square-free(𝑚) = ∑
𝑑2∣𝑚

𝜇(𝑑),

66



4 Primes in arithmetic progressions

easily checked since both sides are multiplicative. Thus

𝑟(𝑛) = ∑
𝑝<𝑛

1square-free(𝑛 − 𝑝)

= ∑
𝑝<𝑛

∑
𝑑2∣(𝑛−𝑝)

𝜇(𝑑)

= ∑
𝑑<

√
𝑛

𝜇(𝑑) ∑
𝑝<𝑛

𝑝=𝑛 mod 𝑑2

1

= ∑
𝑑<

√
𝑛

𝜇(𝑑)𝜋(𝑛 − 1; 𝑑2, 𝑛)

If (𝑛, 𝑑) > 1 then
𝜋(𝑛 − 1; 𝑑2, 𝑛) = 𝑂(1)

so in total this contributes 𝑂(𝑛1/2) to 𝑟(𝑛). If (𝑑, 𝑛) = 1 and 𝑑 ≤ (log𝑛)𝐴 then

𝜋(𝑛 − 1; 𝑑2, 𝑛) = Li(𝑥)
𝜑(𝑑2)

+ 𝑂(𝑛 exp(−𝑐√log𝑛)).

Thus the contribution is

∑
𝑑<(log 𝑛)𝐴

(𝑑,𝑛)=1

𝜇(𝑑)𝜋(𝑛 − 1; 𝑑2, 𝑛) = Li(𝑛) ∑
𝑑<(log 𝑛)𝐴

(𝑑,𝑛)=1

𝜇(𝑑)
𝜑(𝑑2)

+ 𝑂(𝑛 exp(−𝑐√log𝑛)).

Note that 𝜑(𝑑2) = 𝑑𝜑(𝑑) so

∑
(𝑑,𝑛)=1

𝜇(𝑑)
𝑑𝜑(𝑑)

= ∏
𝜕∤

(1 − 1
𝑝(𝑝 − 1)

) = 𝑐𝑛.

The tail term of this estimation is

∑
𝑑>(log 𝑛)𝐴

(𝑑,𝑛)=1

𝜇(𝑑)
𝑑𝜑(𝑑)

≤ ∑
𝑑>(log 𝑛)𝐴

1
𝑑3/2 ≪ 1

(log𝑛)𝐴/2 = 𝑜(1)

as 𝑛 → ∞.
For 𝑑 > (log𝑛)𝐴, use the trivial bound

𝜋(𝑥; 𝑞, 𝑎) ≪ 1 + 𝑥
𝑞

so

∑
(log 𝑛)𝐴<𝑑<𝑛1/2

(𝑑,𝑛)=1

𝜇(𝑑)𝜋(𝑛−1; 𝑑2, 𝑛) ≪ ∑
(log 𝑛)𝐴<𝑑<𝑛1/2

(1+ 𝑛
𝑑2 ) ≪ 𝑛1/2+𝑛 ∑

𝑑>(log 𝑛)𝐴

1
𝑑2 ≪ 𝑛

(log𝑛)𝐴

where in the first step we simply through away the condition (𝑑, 𝑛) = 1 and the
term 𝜋(𝑑).

Thus in conclusion,

𝑟(𝑛) = 𝑐𝑛 Li(𝑛) + 𝑂(𝑛1/2 + Li(𝑛)
(log𝑛)𝐴/2 + 𝑛

(log𝑛)𝐴 + 𝑛 exp(−𝑐√log𝑛))

= (1 + 𝑜(1))𝑐𝑛 Li(𝑛)

as Li(𝑛) = (1 + 𝑜(1)) 𝑛
log 𝑛 .
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5.1 Gaps between primes
Note that prime number theory implies that 𝑝𝑛 ∼ 𝑛 log𝑛 so

𝑝𝑛+1 − 𝑝𝑛 ∼ (𝑛 + 1) log(𝑛 + 1) − 𝑛 log𝑛 ∼ log𝑛.

This is the average behaviour and we may ask how small or how big it can get.
Twin prime conjecture says 𝑝𝑛+1 − 𝑝𝑛 = 2 infinitely often. Goldeston-Pintz-
Yildirim (2005) proved that

lim inf
𝑛→∞

𝑝𝑛+1 − 𝑝𝑛
log𝑛

= 𝑛.

Zhang (2013) proved that
𝑝𝑛+1 − 𝑝𝑛 = 𝑂(1)

infinitely often. The bound given by Zhang is 70, 000, 000. Over the next few
months Polymath project managed to improve the bound gradually. Coinci-
dentally, Maynard proved in the same year, six months after ZHang, using a
different method, that 𝑝𝑛+1 −𝑝𝑛 ≤ 600 infinitely often. By combining these two
approaches, the current best bound is 246.

As for large gaps, Westzynthius (1931) prove that

lim sup
𝑛→∞

𝑝𝑛+1 − 𝑝𝑛
log𝑛

= ∞.

Rankin (1938) used an improved version to prove the quantitative result

𝑝𝑛+1 − 𝑝𝑛 ≫ log𝑛 ( log log𝑛 log log log log𝑛
(log log log𝑛)2 )

infinitely often. Erdos offter a prize of $10,000, the largest ever, that the bound
goes to infinity (?). In 2014, this is cracked by Ford-Green-Konyagin-Maynard-
Tao that

𝑝𝑛+1 − 𝑝𝑛 ≫ log𝑛 ( log log𝑛 log log log log𝑛
log log log𝑛

)

infinitely often. It has been conjectured that 𝑝𝑛+1 − 𝑝𝑛 ≫ (log𝑛)2 infinitely
often. However this is way out of reach at this moment, even more so than twin
prime conjecture. To have an idea, the best upper bound so far is 𝑝𝑛+1 − 𝑝𝑛 ≪
𝑛0.525 for every 𝑛. If we assume GRH then the result is ≤ 𝑛1/2+𝑜(1).

5.2 Digits of primes
Mauduit-Rivat looked at sum of binary digits of primes and showed it is even
half the time and odd half the time. Maynard (2016) showed there are infintely
primes without, say, a 1 in base 10. The result would be much harder for smaller
base. For example for base 2 this is equivalent to the statement that there are
infintely many primes of the form 2𝑛 − 1.
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5.3 Arithmetic progressions
In 1930s (Vinogradov, Estermann et al) people proved there are infinitely many
3-APs of primes, e.g. (3, 5, 7), (11, 17, 23), …. However, for any 𝑘 > 4 this is
much more difficult. Green-Tao (2004) showed that for any 𝑘, there are infinitely
many 𝑘-APs of primes, using tools of additive combinatorics. Another important
theorem is Szemerédi (1975), that if

lim inf
𝑁→∞

|𝐴 ∩ {1, … , 𝑁}|
𝑁

> 0

then 𝐴 has infinitely many 𝑘-APs.

5.4 Sieve theorey success
Chen (1973) showed that there are inifinitely many primes 𝑝 such that 𝑝 + 2
is either prime or the product of 2 primes. Iwaniec (1978) showed there are
infinitely many 𝑛 such that 𝑛2 + 1 is either prime or the product of two primes.

5.5 Number theory without zeta zeros
People have wondered if we can develop analytic number theory without know-
ing the zeros of zeta function. Instead of Perrons’s formula, Halsesz in 1960s
proved that (informally) if ∑𝑛≤𝑥 𝑎𝑛 behaves randomly then 𝑎𝑛 behaves like
𝜒(𝑛) or 𝑛𝑖𝑡. Granville-Soundararajan resurrected this approach to study func-
tions “pretending” to be 𝜒(𝑛). The official name of this subject is pretentious
number theory, and fantastic notes can be found on Granville’s website when he
taught the course a few years ago.

5.6 Circle method: additive number theory
Develped by Hardy and Littlewood in 1920s,

1. Golbach conjecture: every even number is the sum of two primes.

2. partition function 𝑝(𝑛).

3. Waring’s problesm: all integers are sum of 4 squares, all (large) integers
are sum of 4 cubes (this is still open, best known bound 7.
Let 𝐺(𝑘) be the minimum 𝑠 such that every large 𝑛 is the sum of 𝑥𝑘

1, … , 𝑥𝑘
𝑠 .

The only result we know is

𝐺(2) = 4, 4 ≤ 𝐺(3) ≤ 7, 𝐺(4) = 16.

Wooley (1996) proved

𝐺(𝑘) ≤ (1 + 𝑜(1))𝑘 log 𝑘.

It’s been conjectured that 𝐺𝑘) ≪ 𝑘.
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