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0 Introduction

0 Introduction
In IA Analysis I, the primary space we are interested in is R and we studied
notions such as continuity, convergence, differentiation, integration and solving
equaiton through, for example, Intermediate Value Theorem. In Analysis II, we
moved to the study general function space.

R𝑚 Function space
Convergence &
continuity

✓ ✓

Differentiation ✓ Calculus of variations
Integration Probability and measure ??? (ask physicists)
Solving equa-
tions

inverse function theorem existence of solutions for
ODEs

Table 1: Comparison of Euclidean space and function space
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1 Normed Vector Spaces

1 Normed Vector Spaces

1.1 Definitions
A motivating example: if (𝑎𝑛) is a sequence of real numbers, then (𝑎𝑛) → 𝑎 if

∀𝜀 > 0, ∃𝑁𝑠.𝑡.∀𝑛 > 𝑁, |𝑎𝑛 − 𝑎| < 𝜀.

Now if I replace R by a real vector space 𝑉, what do I replace | ⋅ | with?

Definition (Norm). If 𝑉 is a real vector space, a norm on 𝑉 is a function
‖⋅‖ ∶ 𝑉 → R satisfying

1. ∀𝐯 ∈ 𝑉 , ‖𝐯‖ ≥ 0 with equality if and only if 𝐯 = 𝟎.

2. ∀𝐯, ∀𝜆 ∈ R, ‖𝜆𝐯‖ = |𝜆|‖𝐯‖

3. ∀𝐯, 𝐰 ∈ 𝑉 , ‖𝐯 + 𝐰‖ ≤ ‖𝐯‖ + ‖𝐰‖ (triangle inequality).

Example.

1. 𝑉 = R𝑚, 𝐯 = (𝑣1, … , 𝑣𝑚),

(a) ‖𝐯‖ = (∑𝑚
𝑖=1 𝑣2

𝑖 )1/2, the Euclidean norm,
(b) ‖𝐯‖∞ = max |𝑣𝑖|, the max norm,
(c) ‖𝐯‖1 = ∑𝑚

𝑖=1 |𝑣𝑖|.

2. 𝑉 = 𝐶[0, 1],

(a) ‖𝑓‖∞ = max𝑥∈[0,1] |𝑓(𝑥)|,

(b) ‖𝑓‖2 = (∫1
0

𝑓(𝑥)2𝑑𝑥)1/2, which comes from ⟨𝑓, 𝑔⟩ = ∫1
0

𝑓(𝑥)𝑔(𝑥)𝑑𝑥,

(c) ‖𝑓‖1 = ∫1
0

|𝑓(𝑥)|𝑑𝑥, the 𝐿1 norm.

Definition (Convergence). Suppose (𝑉 , ‖ ⋅ ‖) is a normed vector space and
(𝐯𝑛) is a sequence of elements of 𝑉. We say (𝐯𝑛) converges to 𝐯 ∈ 𝑉, denoted
(𝐯𝑛) → 𝐯, if ∀𝜀 > 0, ∃𝑁𝑠.𝑡.∀𝑛 > 𝑁, ‖𝐯𝑛 − 𝐯‖ < 𝜀. Equivalently, (𝐯𝑛) → 𝐯 if
(‖𝐯𝑛 − 𝐯‖) → 0.

Exercise. Suppose 𝑉 = R𝑚, (𝐯𝑛) = (𝑣𝑛,1, … , 𝑣𝑛,𝑚). Then (𝐯𝑛) → 𝐯 with
respect to ‖ ⋅ ‖∞ means

( max
1≤𝑖≤𝑚

|𝑣𝑛,𝑖 − 𝑣𝑖|) → 0

⟺(|𝑣𝑛,𝑖 − 𝑣𝑖|) → 0 for all 1 ≤ 𝑖 ≤ 𝑚
⟺(𝑣𝑛,𝑖) → 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑚

The convergence with respect to ‖ ⋅ ‖1 means

(
𝑚

∑
𝑖=1

|𝑣𝑛,𝑖 − 𝑣𝑖|) → 0

⟺ (|𝑣𝑛,𝑖 − 𝑣𝑖|) → 0 for all 1 ≤ 𝑖 ≤ 𝑚
⟺(𝑣𝑛,𝑖) → 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.
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1 Normed Vector Spaces

Remark. Two different norms, same notion of convergence.

Convention. If I say (𝐯𝑛) → 𝐯 where (𝐯𝑛) is a sequence in R𝑚 without
specifying the norm, I mean w.r.t. ‖ ⋅ ‖1, ‖ ⋅ ‖2, ‖ ⋅ ‖∞. (all give the same notion
for convergence).

Example. 𝑉 = 𝐶[0, 1],

𝑓𝑛(𝑥) = {1 − 𝑛𝑥 𝑥 ∈ [0, 1/𝑛]
0 𝑥 ≥ 1/𝑛

Then ‖𝑓𝑛‖1 = ∫1
0

|𝑓𝑛(𝑥)|𝑑𝑥 = 1
2𝑛 → 0 so (𝑓𝑛) → 0 w.r.t. ‖ ⋅ ‖1.

But ‖𝑓𝑛‖∞ = 1 so (‖𝑓𝑛‖∞) ↛ 0 i.e. (𝑓𝑛) ↛ 0 w.r.t. ‖ ⋅ ‖∞.

Remark. Two different norms, two different notions of convergence.

1.2 Continuity

Definition (Continuity). Suppose 𝑉 and 𝑊 are normed vector spaces. We
say a function 𝑓 ∶ 𝑉 → 𝑊 is continuous if

(𝑓(𝐯𝑛)) → 𝑓(𝐯) in 𝑊 whenever (𝐯𝑛) → 𝐯 in 𝑉 .

Example.

1. 𝑓 ∶ 𝑉 → R𝑚, 𝑓(𝐯) = (𝑓1(𝐯), … , 𝑓𝑚(𝐯)) is continuous if and only if 𝑓𝑖 ∶
𝑉 → R is continuous for all 1 ≤ 𝑖 ≤ 𝑚.

2. 𝜌𝑖 ∶ R𝑚 → R, 𝜌𝑖(𝐯) = 𝑣𝑖 is continuous.

3. 𝐹 ∶ 𝐶[0, 1] → R, 𝐹 (𝑓) = 𝑓(0),

(a) If (𝑓𝑛) is the sequence from the example on page 4, then 𝐹(𝑓𝑛) = 1.
Now (𝑓𝑛) → 𝟎 w.r.t. ‖ ⋅ ‖1. But (𝐹(𝑓𝑛)) ↛ 0 = 𝐹(𝟎). So 𝐹 is not
continuous w.r.t. ‖ ⋅ ‖1.

(b) If (𝑔𝑛) → 𝑔 w.r.t. ‖ ⋅ ‖∞, then (max |𝑔𝑛(𝑥) − 𝑔(𝑥)|) → 0 so (|𝑔𝑛(0) −
𝑔(0))| → 0, (|𝐹 (𝑔𝑛) − 𝐹(𝑔)|) → 0, so 𝐹(𝑔𝑛) → 𝐹(𝑔).

𝐹 is continuous w.r.t. ‖ ⋅ ‖∞ but not w.r.t. ‖ ⋅ ‖1.

4. If 𝑓 ∶ 𝑉1 → 𝑉2 and 𝑔 ∶ 𝑉2 → 𝑉3 are continuous then 𝑔 ∘ 𝑓 ∶ 𝑉1 → 𝑉3 are
continuous.

Proof. If (𝐯𝑛) → (𝐯) in 𝑉1 , then as 𝑓 is continuous, (𝑓(𝐯𝑛)) → (𝑓(𝐯)),
then as 𝑔 is continuous, (𝑔(𝑓(𝐯𝑛))) → (𝑔(𝑓(𝐯))) in 𝑉3.

5. ‖ ⋅ ‖ ∶ 𝑉 → R is continuous.

Proof. If (𝐯𝑛) → 𝐯, then (‖𝐯𝑛 − 𝐯‖) → 0. Now

0 ≤ |‖𝐯𝑛‖ − ‖𝐯‖| ≤ ‖𝐯𝑛 − 𝐯‖

by Reverse triangle inequality. So (|‖𝐯𝑛 − 𝐯‖|) → 0 by squeeze rule, i.e.
‖𝐯𝑛‖ → ‖𝐯‖.
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1 Normed Vector Spaces

Lemma 1.1 (Reverse triangle inequality). ‖𝐯 − 𝐰‖ ≥ |‖𝐯‖ − ‖𝐰‖| for all
𝐯, 𝐰 ∈ 𝑉.

Proof. By triangle inequality, ‖𝐯 − 𝐰‖ + ‖𝐰‖ ≥ ‖𝐯‖ so ‖𝐯 − 𝐰‖ ≥ ‖𝐯‖ − ‖𝐰‖ and
‖𝐯 − 𝐰‖ ≥ −‖𝐯‖ + ‖𝐰‖

More generally, if 𝑋 ⊆ 𝑉 is a subset, we say 𝑓 ∶ 𝑋 → 𝑊 is continuous if

(𝑓(𝐱𝑛)) → 𝑓(𝐱)

in 𝑊 whenever (𝐱𝑛) → 𝐱 in 𝑉 for 𝐱 and all 𝐱𝑛 ∈ 𝑋.

Example. 𝑓 ∶ R \ {0} → R, 𝑥 ↦ 1
𝑥 is continuous.

1.3 Open and Closed Subsets
Let (𝑉 , ‖ ⋅ ‖) be a normed vector space.

Definition (Open and closed ball). If 𝐯0 ∈ 𝑉 and 𝑟 ∈ R,

𝐵𝑟(𝐯0) = {𝐯 ∈ 𝑉 ∶ ‖𝐯 − 𝐯0‖ < 𝑟}

is the open ball of radius 𝑟 centred at 𝐯0, and

𝐵𝑟(𝐯0) = {𝐯 ∈ 𝑉 ∶ ‖𝐯 − 𝐯0‖ ≤ 𝑟}

is the closed ball of radius 𝑟 centred at 𝐯0.

Example.

1. (𝑉 , ‖ ⋅ ‖) = (R, | ⋅ |), then

𝐵𝑟(𝑎) = (𝑎 − 𝑟, 𝑎 + 𝑟)
𝐵𝑟(𝑎) = [𝑎 − 𝑟, 𝑎 + 𝑟]

2. 𝑉 = R2, then 𝐵1(𝟎) with respect to to be filled in.

3. 𝑉 = R3, ‖ ⋅ ‖2 is the “three-dimensional ball”.

4. (𝑉 , ‖ ⋅ ‖) = (𝐶[0, 1], ‖ ⋅ ‖∞),

𝐵𝑟(𝑓) = {𝑔 ∈ 𝐶[0, 1] ∶ 𝑓(𝑥) − 𝑟 ≤ 𝑔(𝑥) ≤ 𝑓(𝑥) + 𝑟 ∀𝑥 ∈ [0, 1]}.

Proposition 1.2 (Alternate characterisation of continuity). 𝑓 ∶ 𝑉 → 𝑊 is
continuous if and only if

∀𝐯0 ∈ 𝑉 , ∀𝜀 > 0, ∃𝛿 > 0𝑠.𝑡.‖𝐯 − 𝐯0‖ < 𝛿 ⇒ ‖𝑓(𝐯) − 𝑓(𝐯0)‖ < 𝜀 (∗)

i.e.
𝑓(𝐵𝛿(𝐯0)) ⊆ 𝐵𝜀(𝑓(𝐯0)).
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1 Normed Vector Spaces

Proof. Suppose (∗) holds. Given (𝑣𝑛) → 𝑣, must show (𝑓(𝑣𝑛)) → 𝑓(𝑣). Given
𝜀 > 0, pick 𝛿 such that (𝑓(𝐵𝛿(𝑣)) ⊆ 𝐵𝜖(𝑓(𝑣)). Since (𝑣𝑛) → (𝑣), exists 𝑁 such
that whenever 𝑛 > 𝑁, ‖𝑣𝑛 − 𝑣‖ < 𝛿, i.e. 𝑣𝑛 ∈ 𝐵𝛿(𝑣), so 𝑓(𝑣𝑛) ∈ 𝐵𝜖(𝑓(𝑣)). In
other words, whenever 𝑛 > 𝑁, ‖𝑓(𝑣𝑛) − 𝑓(𝑣)‖ < 𝜀.

Suppose (∗) does not hold. Then exists some 𝑣 ∈ 𝑉 and 𝜀 > 0 such that there
is no 𝛿 > 0 with 𝑓(𝐵𝛿(𝑣)) ⊆ 𝐵𝜀(𝑓(𝑣)). In particular 𝑓(𝐵1/𝑛(𝑣)) ⊈ 𝐵𝜀(𝑓(𝑣))
for all 𝑛. Pick 𝑣𝑛 ∈ 𝐵1/𝑛(𝑣) with 𝑓(𝑣𝑛) ∉ 𝐵𝜀(𝑓(𝑣)). Then (𝑣𝑛) → 𝑣, but
(𝑓(𝑣𝑛)) ↛ 𝑓(𝑣), since ‖𝑓(𝑣𝑛) − 𝑓(𝑣)‖ ≥ 𝜀 for all 𝑛. 𝑓 is not continuous.

Definition (Open subset). 𝑈 ⊆ 𝑉 is an open subset of 𝑉 if for every 𝑢 ∈ 𝑈
there is some 𝜀 > 0 with 𝐵𝜀(𝑢) ⊆ 𝑈.

Proposition 1.3. If 𝑓 ∶ 𝑉 → 𝑊 is continuous and 𝑈 ⊆ 𝑊 is open then

𝑓−1(𝑈) = {𝑣 ∈ 𝑉 ∶ 𝑓(𝑣) ∈ 𝑉 }

is an open subset of 𝑉.

Proof. If 𝑣 ∈ 𝑓−1(𝑈), then 𝑓(𝑣) ∈ 𝑈. 𝑈 is open in 𝑊 so exists 𝜀 > 0 such that
𝐵𝜀(𝑓(𝑣)) ⊆ 𝑈. 𝐹 is continuous so exist 𝛿 > 0 such that 𝑓(𝐵𝛿(𝑣)) ⊆ 𝐵𝜀(𝑓(𝑣)) ⊆ 𝑈.
So 𝐵𝛿(𝑣) ⊆ 𝑓−1(𝑈). 𝑓−1(𝑈) is open.

Remark. The converse statement is also true: if for any 𝑈 ⊆ 𝑊 open 𝑓−1(𝑈)
open in 𝑉, then 𝑓 is continuous.

Example.

1. (0, 1) is open in R.

2. The function ℎ(𝑣) = ‖𝑣 − 𝑣0‖ is continuous: ℎ(𝑣) = 𝑔 ∘ 𝑓(𝑣) where 𝑓(𝑣) =
𝑣 − 𝑣0, and 𝑔(𝑣) = ‖𝑣‖. so 𝐵𝑟(𝑟) = ℎ−1((−𝑟, 𝑟)) is open in 𝑉.

Definition (Closed subset). 𝐶 ⊆ 𝑉 is a closed subset of 𝑉 if 𝑉 \ 𝐶 is open
in 𝑉.

Corollary 1.4. If 𝑓 ∶ 𝑉 → 𝑊 is continuous and 𝐶 ⊆ 𝑊 is closed, then
𝑓−1(𝐶) is closed in 𝑉.

Proof.
𝑓−1(𝑊 \ 𝐶) = 𝑉 \ 𝑓−1(𝐶)

so if 𝐶 ⊆ 𝑊 is closed, 𝑊 \ 𝐶 is open, so 𝑓−1(𝑊 \ 𝐶) = 𝑉 \ 𝑓−1(𝐶) is open. Thus
𝑓−1(𝐶) ⊆ 𝑉 is closed.

Example.

1. [𝑎, 𝑏] is closed in R.

2. ℎ(𝑣) = ‖𝑣 − 𝑣0‖, 𝐵𝑟(𝑣0) = ℎ−1([0, 𝑟]) so closed ball is closed.

3. 𝑉 , ∅ are both open and closed in 𝑉.

4. Q ⊆ R is neither open nor closed.
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1 Normed Vector Spaces

Proposition 1.5. 𝐶 ⊆ 𝑉 is closed if and only if for every sequence (𝑣𝑛) → 𝑣
with all 𝑣𝑛 ∈ 𝐶, 𝑣 ∈ 𝐶.

Proof. Suppose 𝐶 is closed and (𝑣𝑛) → 𝑣 ∉ 𝐶. Then 𝑣 ∈ 𝑉 \𝐶 is open, so ∃𝜀 > 0
with 𝐵𝜀(𝑣) ⊆ 𝑉 \ 𝐶, i.e. 𝐵𝜀(𝑣) ∩ 𝐶 = ∅. (𝑣𝑛) → 𝑣 so ∃𝑁 such that 𝑣𝑛 ∈ 𝐵𝜀(𝑣)
for all 𝑛 > 𝑁. Thus 𝑣𝑛 ∉ 𝐶 for all 𝑛 > 𝑁. In other word, if (𝑣𝑛) → 𝑣, all but
finitely many of 𝑣𝑛 ∉ 𝐶.

Conversely, suppose 𝐶 is not closed. Then 𝑉 \ 𝐶 is not open so ∃𝑐 ∈ 𝑉 \ 𝐶
such that there is no 𝜀 > 0 with 𝐵𝜀(𝑣) ⊆ 𝑉 \ 𝐶. In other words, 𝐵𝜀(𝑣) ∩ 𝐶 ≠ ∅
for all 𝜀 > 0. Pick 𝑣𝑛 ∈ 𝐵1/𝑛(𝑣) ∩ 𝐶 for all 𝑛 > 0. Then ‖𝑣𝑛 − 𝑣‖ < 1/𝑛 so
(𝑣𝑛) → 𝑣. All 𝑣𝑛 ∈ 𝐶 but 𝑣 ∈ 𝑉 \ 𝐶.

Example. The set 𝑋 = {𝑓 ∈ 𝐶[0, 1] ∶ ∀𝑥, 𝑓(𝑥) > 0} is not closed with respect
to ‖ ⋅ ‖1 or ‖ ⋅ ‖∞ since 𝑓𝑛(𝑥) = 1

𝑛 ∈ 𝑋, (𝑓𝑛) → 0 with respect to either norm but
0 ∉ 𝑋.

For future use, suppose for all 𝛼 ∈ 𝐴, 𝑈𝛼 ⊆ 𝑉 is open. Given 𝑈 = ⋃𝛼∈𝐴 𝑈𝛼
and 𝑓 ∶ 𝑈 → 𝑊,

Proposition 1.6. If 𝑓|𝑈𝛼
∶ 𝑈𝛼 → 𝑊 is continuous for all 𝛼 ∈ 𝐴, then

𝑓 ∶ 𝑈 → 𝑊 is continuous.

Note. The hypothesis that 𝑈𝛼 is open is important. For example, let 𝑓 ∶ R →
R, 𝑓(𝑥) = 1 if 𝑥 ∈ Q, 𝑓(𝑥) = 0 otherwise, then 𝑓|Q and 𝑓|R\Q are both continuous
but 𝑓 is not.

Proof. Suppose 𝑣𝑛, 𝑣 ∈ 𝑈 with (𝑣𝑛) → 𝑣. Must show (𝑓(𝑣𝑛)) → 𝑓(𝑣). 𝑣 ∈ 𝑈 so
𝑣 ∈ 𝑈𝛼 for some 𝛼. 𝑈𝛼 is open so ∃𝜀 > 0 with 𝐵𝜀(𝑣) ⊆ 𝑈𝛼, (𝑣𝑛) → 𝑣 so ∃𝑁 with
𝑣𝑛 ∈ 𝐵𝜀(𝑣) for all 𝑛 > 𝑁. Let 𝑢𝑖 = 𝑣𝑁+1, then 𝑢𝑖 ∈ 𝑈𝛼 and (𝑢𝑖) → 𝑣. Since
𝑓|𝑈𝛼

is continuous, (𝑓(𝑢𝑖)) → 𝑓(𝑣) which implies that (𝑓(𝑣𝑛)) → 𝑓(𝑣).

1.4 Lipschitz Equivalence
Recall from the introduction of norms that ‖ ⋅ ‖1, ‖ ⋅ ‖2, ‖ ⋅ ‖∞ on R𝑛 all induce
the same notion of convergence. We want to generalise this idea.

Suppose ‖ ⋅ ‖ and ‖ ⋅ ‖′ are two norms on 𝑉. Consider

id𝑉 ∶ (𝑉 , ‖ ⋅ ‖) → (𝑉 , ‖ ⋅ ‖′)
𝑣 ↦ 𝑣

Proposition 1.7. id𝑉 as above is continuous if and only if ∃𝐶 ∈ R with
‖𝑣‖′ ≤ 𝐶‖𝑣‖ for all 𝑣 ∈ 𝑉.

Proof. Suppose ‖𝑣‖′ ≤ 𝐶‖𝑣‖ for all 𝑣. To show id𝑉 is continuous, must show
(𝑣𝑛) → 𝑣 with respect to ‖ ⋅ ‖′ whenever (𝑣𝑛) → 𝑣 with respect to ‖ ⋅ ‖.

If (𝑣𝑛) → 𝑣 with respect ot ‖ ⋅ ‖, then (‖𝑣𝑛 − 𝑣‖) → 0 so (𝐶‖𝑣𝑛 − 𝑣‖) → 0. We
know

0 ≤ ‖𝑣𝑛 − 𝑣‖′ ≤ 𝐶‖𝑣𝑛 − 𝑣‖,

so by squeeze rule ‖𝑣𝑛 − 𝑣‖ → 0. Thus (𝑣𝑛) → 𝑣 with respect to ‖ ⋅ ‖′.
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1 Normed Vector Spaces

Conversely, suppose id𝑉 is continuous. There exist 𝛿 > 0 such that

id𝑉(𝐵𝛿(0, ‖ ⋅ ‖) ⊆ 𝐵1(0, ‖ ⋅ ‖′)

Given 𝑣 ∈ 𝑉 , 𝑣 ≠ 0, exists 𝐾 ∈ R with ‖𝐾𝑣‖ = 𝛿/2 (take 𝐾 = 𝛿
2‖𝑣‖ ). Then

𝐾𝑣 ∈ 𝐵𝛿(0, ‖ ⋅ ‖) ⇒ 𝐾𝑣 ∈ 𝐵1(0, ‖ ⋅ ‖′), i.e. ‖𝐾𝑣‖ = 𝛿/2, ‖𝐾𝑣‖′ < 1, so ‖𝐾𝑣‖′ ≤
2
𝛿 ‖𝐾𝑣‖ ⇒ 𝐾‖𝑣‖′ ≤ 2

𝛿 𝐾‖𝑣‖. Let 𝐶 = 2
𝛿 .

Joke. The joke about a mathematician going for a firefighter
interview... Well you should know it by now if you are a
mathematician.

Definition (Lipschitz equivalence). If ‖ ⋅ ‖ and ‖ ⋅ ‖′ are two norms on 𝑉,
they are said to be Lipschitz equivalent if

∃𝐶 > 0𝑠.𝑡.∀𝑣 ∈ 𝑉 , 1
𝐶

‖𝑣‖ ≤ ‖𝑣‖′ ≤ 𝐶‖𝑣‖

⟺∃𝐶1, 𝐶2𝑠.𝑡.‖𝑣‖′ ≤ 𝐶1‖𝑣‖, ‖𝑣‖ ≤ 𝐶2‖𝑣‖′

⟺ id𝑉 ∶ (𝑉 , ‖ ⋅ ‖) → (𝑉 , ‖ ⋅ ‖′) and id𝑉 ∶ (𝑉 , ‖ ⋅ ‖′) → (𝑉 , ‖ ⋅ ‖)
are both continuous.

Corollary 1.8. If (𝑉 , ‖ ⋅ ‖) and (𝑉 , ‖ ⋅ ‖′) are Lipschitz equivalent, then

1. (𝑣𝑛) → 𝑣 with respect to ‖ ⋅ ‖ if and only if with respect to ‖ ⋅ ‖′,

2. 𝑓 ∶ 𝑉 → 𝑊 is continuous with respect to ‖ ⋅ ‖ if and only if with respect
to ‖ ⋅ ‖′,

3. 𝐹 ∶ 𝑊 → 𝑉 is continuous with respect to ‖ ⋅ ‖ if and only if with respect
to ‖ ⋅ ‖′.

Proof. Example proof: if 𝑓 ∶ (𝑉 , ‖⋅‖) → 𝑊 is continuous, then 𝑓 ′ ∶ (𝑉 , ‖⋅‖′) → 𝑊
is the composition

(𝑉 , ‖ ⋅ ‖′) (𝑉 , ‖ ⋅ ‖) 𝑊id𝑉 𝑓

so continuous.

Example.

1. 𝑉 = R𝑛, ‖𝑣‖∞ ≤ ‖𝑣‖2 ≤ ‖𝑣‖1 ≤ 𝑛‖𝑣‖∞ so all three are Lipschitz equivalent.

2. 𝑉 = 𝐶[0, 1], id𝑉 ∶ (𝑉 , ‖⋅‖∞) → (𝑉 , ‖⋅‖1) is continuous but id𝑉 ∶ (𝑉 , ‖⋅‖1) →
(𝑉 , ‖ ⋅ ‖∞) is not so not Lipschitz equivalent.
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2 Uniform Convergence

2 Uniform Convergence

2.1 Notions of Convergence
Suppose 𝐴 ⊆ R, 𝑓, 𝑓𝑛 ∶ 𝐴 → R. We say 𝑓 is continuous if given 𝑥 ∈ 𝐴 and 𝜀 > 0,
∃𝛿 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 whenever 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿. We say 𝑓 is
bounded if exists 𝑀 such that |𝑓(𝑥)| ≤ 𝑀 for all 𝑥 ∈ 𝐴. Define

• 𝐶(𝐴) = {𝑓 ∶ 𝐴 → R ∶ 𝑓 is continuous},

• 𝐵(𝐴) = {𝑓 ∶ 𝐴 → R ∶ 𝑓 is bounded},

which are both vector space.

Example. 𝐶[0, 1] ⊆ 𝐵[0, 1] by Maximum Value Theorem. 𝑔(𝑥) = 1
𝑥 ∈ 𝐶(0, 1]

so 𝐶(0, 1] ⊈ 𝐵(0, 1].

Definition (Pointwise Convergence). (𝑓𝑛) → 𝑓 pointwise if

(𝑓𝑛(𝑥)) → 𝑓(𝑥) for all 𝑥 ∈ R.

Definition (Uniform norm). The uniform norm on 𝐵(𝐴) is given by

‖𝑓‖∞ = sup
𝑥∈𝐴

|𝑓(𝑥)|.

Definition (Uniform convergence). If 𝑓, 𝑓𝑛 ∶ 𝐴 → R, we say 𝑓(𝑥) → 𝑓
uniformly on 𝐴 if (𝑓𝑛 − 𝑓) ∈ 𝐵(𝐴) for all 𝑛 and (‖𝑓𝑛 − 𝑓‖∞) → 0.

In other words,

• (𝑓𝑛) → 𝑓 pointwise means: you give me 𝑥 ∈ 𝐴 and 𝜀 > 0, I have to find 𝑁
such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 whenever 𝑛 > 𝑁. This 𝑁 only has to work
for that particular value of 𝑥.

• (𝑓𝑛) → 𝑓 uniformly means: you give me 𝜀 > 0, I have to find 𝑁 such that
|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 for all 𝑥 ∈ 𝐴 and 𝑛 > 𝑁. Same 𝑁 works for all 𝑥 ∈ 𝐴.

Exercise. If (𝑓𝑛) → 𝑓 uniformly, then (𝑓𝑛) → 𝑓 pointwise. The converse is
false.

Example.

• Suppose 𝐴 = R, 𝑓𝑛(𝑥) = 𝑥 + 1
𝑛 , 𝑓(𝑥) = 𝑥. Then 𝑓𝑛(𝑥) − 𝑓(𝑥) = 1

𝑛 so
(𝑓𝑛) → 𝑓 uniformly.

• Let 𝑔𝑛(𝑥) = (𝑥 + 1
𝑛 )2, 𝑔(𝑥) = 𝑥2. Then (𝑔𝑛) → 𝑔 pointwise but 𝑔𝑛(𝑥) −

𝑔(𝑥) = 2𝑥
𝑛 + 1

𝑛2 is not even bounded. So (𝑔𝑛) ↛ 𝑔 uniformly on R.
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2 Uniform Convergence

Theorem 2.1. Suppose 𝑓𝑛 ∈ 𝐶(𝐴) for all 𝑛 and (𝑓𝑛) → 𝑓 uniformly on 𝐴.
Then 𝑓 ∈ 𝐶(𝐴) as well.

Slogan. The uniform limit of continuous functions is continuous.

Proof. Suppose 𝑓𝑛 are continuous and (𝑓𝑛) → 𝑓 uniformly. Given 𝑥 ∈ 𝐴 and
𝜀 > 0, must find 𝛿 > 0 such that |𝑓(𝑥)−𝑓(𝑦)| < 𝜀 whenever 𝑦 ∈ 𝐴 and |𝑥−𝑦| < 𝛿.

Since (𝑓𝑛) → 𝑓 uniformly, there exists 𝑁 such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀/4
for all 𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁. Since 𝑓𝑁 is continuous, exists 𝛿 > 0 such that
|𝑓𝑁(𝑥) − 𝑓𝑛(𝑦)| < 𝜀/2 whenever 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿. Then if |𝑥 − 𝑦| < 𝛿,

|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓𝑁(𝑦)| + |𝑓𝑁(𝑦) − 𝑓(𝑦)|
≤ 𝜀/4 + 𝜀/2 + 𝜀/4
= 𝜀

Example. Take 𝐴 = [0, 1],

• 𝑓𝑛(𝑥) = 𝑥𝑛, 𝑓(𝑥) = 1 if 𝑥 = 1, 𝑓(𝑥) = 0 if 𝑥 ≠ 1. Then (𝑓𝑛) → 𝑓 pointwise
on [0, 1] but 𝑓𝑛 ∈ 𝐶[0, 1], 𝑓 ∉ 𝐶[0, 1] so (𝑓𝑛) ↛ 𝑓 uniformly on [0, 1].

• 𝑔𝑛(𝑥) = 𝑥𝑛(1 − 𝑥), 𝑔(𝑥) = 0. Then (𝑔𝑛) → 𝑔 uniformly.

Proof. Given 𝜀 > 0, 1−𝜀 < 1 so (1−𝜀)𝑛 → 0. Pick 𝑁 such that (1−𝜀)𝑛 < 𝜀
for all 𝑛 > 𝑁. Then |𝑓𝑛(𝑥)| = |(1−𝑥)𝑥𝑛| ≤ 1⋅(1−𝜀)𝑛 < 𝜀 for 𝑥 ∈ [0, 1−𝜀]
and |𝑓𝑛(𝑥)| = |(1 − 𝑥)𝑥𝑛| < 𝜀 ⋅ 1𝑛 = 𝜀 for 𝑥 ∈ (1 − 𝜀, 1]. Thus |𝑓𝑛(𝑥)| < 𝜀
for all 𝑥 ∈ [0, 1].

Note. The converse, at least when taken literally, is false. See example sheet 1
Q11.

Remark. Everything I have said so far works fine for 𝐴 ⊆ 𝑉 , 𝑓 ∶ 𝐴 → 𝑊, where
𝑉 , 𝑊 are normed vector spaces.

Joke. A mathematician named Cliff measured his room for painting. His wife
went off to the paint store and told the counter how much paint she needed.
The counter said: “Thats a lot of paint. Are you sure you want that much?” To
which the wife answered: “Well my husband is a mathematician. I’m sure he
gets the numbers correct.”

She arrived back home with really a lot of paint. Cliff moved all the paint in
the house and suddenly said:

“Oh, damn! I measured the volumn instead of the area!”

Recall that if 𝑓 ∈ 𝐶[𝑎, 𝑏] then ‖𝑓‖1 = ∫𝑏
𝑎

|𝑓(𝑥)|𝑑𝑥.

Definition (Convergence in measure). 𝑓𝑛 converges in measure to 𝑓 if
(𝑓𝑛) → 𝑓 with respect to ‖ ⋅ ‖1,
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2 Uniform Convergence

Lemma 2.2. If (𝑓𝑛) ∈ 𝐶[𝑎, 𝑏] and (𝑓𝑛) → 𝑓 uniformly then (𝑓𝑛) → 𝑓 in
measure.

Proof. Given 𝜀 > 0, pick 𝑁 such that |𝑓𝑛(𝑥)−𝑓(𝑥)| < 𝜀/2(𝑏−𝑎) for all 𝑥 ∈ [𝑎, 𝑏].
Then

‖𝑓𝑛 − 𝑓‖ = ∫
𝑏

𝑎
|𝑓𝑛(𝑥) − 𝑓(𝑥)|𝑑𝑥

≤ ∫
𝑏

𝑎
𝜀/2(𝑏 − 𝑎)𝑑𝑥

= (𝜀/2(𝑏 − 𝑎))(𝑏 − 𝑎)
= 𝜀/2.

Equivalently, the map id ∶ (𝐶[𝑎, 𝑏], ‖ ⋅ ‖∞) → (𝐶[𝑎, 𝑏], ‖ ⋅ ‖1) is continuous.

Example. Let 𝐴 = [0, 1],

1. 𝑓(𝑥) =
⎧{
⎨{⎩

𝑛𝑥 𝑥 ∈ [0, 1/𝑛]
2 − 𝑛𝑥 𝑥 ∈ [1/𝑛, 2/𝑛]
0 𝑥 ≥ 2/𝑛

Then (𝑓𝑛) → 0 pointwise and in measure

but not uniformly.

2. 𝑔𝑛(𝑥) =
⎧{
⎨{⎩

𝑛2𝑥 𝑥 ∈ [0, 1/𝑛]
2𝑛 − 𝑛2𝑥 𝑥 ∈ [1/𝑛, 2/𝑛]
0 𝑥 ≥ 2/𝑛

Then (𝑔𝑛) → 0 pointwise but (𝑔𝑛) ↛

0 in measure or uniformly.

2.2 Power Series
Question. Given

𝑓(𝑥) =
∞

∑
𝑖=0

𝑥𝑖

𝑖!
,

how do I know if 𝑓(𝑥) is continuous or differentiable?

Recall some facts about series from IA Analysis I:

1. The series ∑∞
𝑖=0 𝑐𝑖 = 𝑐 ∈ C means that (∑∞

𝑖=0) → 𝑐, as real vector space
(C, ‖ ⋅ ‖) ≅ (R2, ‖ ⋅ ‖).

2. ∑∞
𝑖=0 𝑐𝑖 converges if and only if there exists 𝑁 ∈ N such that ∑∞

𝑖=𝑁 𝑐𝑖
converges.

3. Geometric series: ∑∞
𝑖=𝑘 𝛼𝑖 = 𝛼𝑘

1−𝛼 for |𝛼| < 1.

4. If ∑∞
𝑖=0 𝑐𝑖 converges then (𝑐𝑖) → 0.

5. Comparison test: if 0 ≤ 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 and ∑∞
𝑖=0 𝑏𝑖 converges then

∑∞
𝑖=0 𝑎𝑖 converges and ∑∞

𝑖=0 𝑎𝑖 ≤ ∑∞
𝑖=0 𝑏𝑖.

11
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6. Absolute convergence: if ∑∞
𝑖=0 |𝑐𝑖| converges then ∑∞

𝑖=0 𝑐𝑖 converges and
| ∑∞

𝑖=0 𝑐𝑖| ≤ ∑∞
𝑖=0 |𝑐𝑖|.

Lemma 2.3. If 0 ≤ |𝑐𝑖| ≤ 𝑏𝑖 for all 𝑖 and ∑∞
𝑖=0 𝑏𝑖 converges then ∑∞

𝑖=0 𝑐𝑖
converges.

Proof. Combine property 5 and 6.

Definition (Power series). A series of the form
∞

∑
𝑖=0

𝑎𝑖(𝑧 − 𝑐)𝑖,

where 𝑎𝑖, 𝑧, 𝑐 ∈ 𝐶 is called a power series. 𝐶 is the centre.

Proposition 2.4. If
∞

∑
𝑖=0

𝑎𝑖(𝑧0 − 𝑐)𝑖

converges then
∞

∑
𝑖=0

𝑎𝑖(𝑧 − 𝑐)𝑖

converges whenever
|𝑧 − 𝑐| < |𝑧0 − 𝑐|.

Proof. By property 4 (𝑎𝑖(𝑧0 − 𝑐)𝑖) → 0. Pick 𝑁 such that |𝑎𝑖(𝑧0 − 𝑐)𝑖| < 1 for
all 𝑖 ≥ 𝑁. By Property 2 it suffices to show that

∞
∑
𝑖=𝑁

𝑎𝑖(𝑧 − 𝑐)𝑖

converges. Now for 𝑖 ≥ 𝑁,

|𝑎𝑖(𝑧 − 𝑐)𝑖| = |𝑎𝑖(𝑧0 − 𝑐)𝑖| ⋅ ∣ 𝑧 − 𝑐
𝑧0 − 𝑐

∣
𝑖

< 1 ⋅ 𝛼𝑖

Fundamental Estimate for Power Series
where 𝛼 = | 𝑧−𝑐

𝑧0−𝑐 |. So if |𝑧 − 𝑐| < |𝑧0 − 𝑐|, 𝛼 < 1, ∑∞
𝑖=𝑁 𝛼𝑖 converges by property

3.
In summary, we have

|𝑎𝑖(𝑧 − 𝑐)𝑖| < 𝛼𝑖

for all 𝑖 ≥ 𝑁 and ∑∞
𝑖=𝑁 𝛼𝑖 converges. By the lemma ∑∞

𝑖=𝑁 𝑎𝑖(𝑧 − 𝑐)𝑖 converges.

Definition (Radius of convergence).

𝑅 ∶= sup{|𝑧 − 𝑐| ∶
∞

∑
𝑖=0

𝑎𝑖(𝑧 − 𝑐)𝑖 converges}
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is the radius of convergence of ∑∞
𝑖=0 𝑎𝑖(𝑧 − 𝑐)𝑖.

Proposition 2.4 implies that if 𝑧 ∈ 𝐵𝑅(𝑐) then ∑∞
𝑖=0 𝑎𝑖(𝑧 − 𝑐)𝑖 converges. In

other words, if we define

𝑓 ∶ 𝐵𝑅(𝑐) → C

𝑧 ↦
∞

∑
𝑖=0

𝑎𝑖(𝑧 − 𝑐)𝑖

𝑃𝑛 ∶ 𝐵𝑅(𝑐) → C

𝑧 ↦
𝑛

∑
𝑖=0

𝑎𝑖(𝑧 − 𝑐)𝑖

Proposition 2.4 says that (𝑃𝑛) → 𝑓 pointwise on 𝐵𝑅(𝑐). As 𝑃𝑛 are polyno-
mials so they are continuous. A natural question is, is 𝑓 continuous as well? We
know this answer will be yes if we can prove that the convergence is uniform.

Theorem 2.5. With notations as above,

(𝑃𝑛) → 𝑓

uniformly on 𝐵𝑟(𝑐) whenever 𝑟 < 𝑅.

Note. Equivalently, we can say (𝑃𝑛) → 𝑓 uniformly on 𝐵𝑟(𝑐) for 𝑟 < 𝑅. The
closed ball 𝐵𝑟(𝑐) is just a convention when talking about uniform convergence
on a compact set.

Proof. Define

𝐸𝑛(𝑧) = 𝑓(𝑧) − 𝑃𝑛(𝑧) =
∞

∑
𝑖=𝑛+1

𝑎𝑖(𝑧 − 𝑐)𝑖.

Fix 𝑟 < 𝑅. Given 𝜀 > 0, need to find 𝑁 such that |𝐸𝑛(𝑧)| < 𝜀 whenever 𝑛 ≥ 𝑁
and 𝑧 ∈ 𝐵𝑟(𝑐).

Choose 𝑧0 with 𝑟 < |𝑧0 − 𝑐| < 𝑅 as in the proof of Proposition 2.4, pick 𝑁0
such that |𝑎𝑖(𝑧0 − 𝑐)|𝑖 < 1 for 𝑖 ≥ 𝑁0. Now we use Fundamental Estimate for
Power Series. For 𝑖 ≥ 𝑁0, we have |𝑎𝑖(𝑧 − 𝑐)𝑖| < 𝛼(𝑧)𝑖 where 𝛼(𝑧) = | 𝑧−𝑐

𝑧0−𝑐 |. For
𝑧 ∈ 𝐵𝑟(𝑐),

𝛼(𝑧) = ∣ 𝑧 − 𝑐
𝑧0 − 𝑐

∣ ≤ 𝑟
|𝑧0 − 𝑐|

= 𝛼0 < 1

since 𝑟 < |𝑧0 − 𝑐|. Hence for 𝑛 > 𝑁0,

|𝐸𝑛(𝑧)| ≤
∞

∑
𝑖=𝑛+1

|𝑎𝑖(𝑧 − 𝑐)𝑖| ≤
∞

∑
𝑖=𝑛+1

𝛼𝑖
0 =

𝛼𝑛+1
0

1 − 𝛼0
.

As 𝛼0 < 1, (𝛼𝑖
0) → 0. Pick 𝑁 ≥ 𝑁0 such that

𝛼𝑖
0 < 𝜀(1 − 𝛼0)

for 𝑖 ≥ 𝑁. So for 𝑛 > 𝑁,

|𝐸𝑛(𝑧)| < 𝜀(1 − 𝛼0)
1 − 𝛼0

= 𝜀

for all 𝑧 ∈ 𝐵𝑟(𝑐). This is what we wanted.

13



2 Uniform Convergence

Note. It need not be true that (𝑃𝑛) → 𝑓 uniformly on 𝐵𝑅(𝑐). For example,
∞

∑
𝑖=0

𝑧𝑖

does not converge uniformly on 𝐵1(0).

Corollary 2.6. 𝑓 as above is continuous on 𝐵𝑅(𝑐).

Proof. Let 𝑈𝑟 = 𝐵𝑟(𝑐), 𝑟 < 𝑅. Then 𝑈𝑟 is open in C. (𝑃𝑛) → 𝑓 uniformly on
𝑈𝑟 for 𝑟 < 𝑅. Since the 𝑃𝑛 are continuous 𝑓|𝑈𝑟

is continuous. By gluing lemma
𝑓 is continuous on

𝑈 = ⋃
𝑟<𝑅

𝑈𝑟 = 𝐵𝑅(𝑐).

To summarise, power series are locally uniformly convergent and thus contin-
uous on its domain of convergence 𝐵𝑅(𝑐).

2.3 Integration & Differentiation
Recall from IA Analysis I that

Theorem 2.7 (Fundamental Theorem of Calculus). Suppose 𝑓 ∈ 𝐶[𝑎, 𝑏],
𝑐 ∈ [𝑎, 𝑏], then

𝐹(𝑥) = ∫
𝑥

𝑐
𝑓(𝑦)𝑑𝑦

is well-defined for 𝑥 ∈ [𝑎, 𝑏] and

𝐹 ′(𝑥) = 𝑓(𝑥).

and the following properties of (Riemann) integral:

1. If 𝑓(𝑥) ≤ 𝑔(𝑥) for 𝑥 ∈ [𝑎, 𝑏], ∫𝑏
𝑎

𝑓(𝑥)𝑑𝑥 ≤ ∫𝑏
𝑎

𝑔(𝑥)𝑑𝑥.

2. ∣ ∫𝑏
𝑎

𝑓(𝑥)𝑑𝑥∣ ≤ ∫𝑏
𝑎

|𝑓(𝑥)|𝑑𝑥.

3. If 𝑏 < 𝑎, ∫𝑏
𝑎

𝑓(𝑥)𝑑𝑥 = − ∫𝑎
𝑏

𝑓(𝑥)𝑑𝑥.

Lemma 2.8. If |𝑓(𝑥)| ≤ 𝐶 for all 𝑥 ∈ [𝑎, 𝑏] then

∣ ∫
𝑥

𝑐
𝑓(𝑡)𝑑𝑡∣ ≤ 𝐶|𝑥 − 𝑐|.

Proof. If 𝑥 ≥ 𝑐 then

∣ ∫
𝑥

𝑐
𝑓(𝑡)𝑑𝑡∣ ≤ ∫

𝑥

𝑐
|𝑓(𝑡)|𝑑𝑡 ≤ ∫

𝑥

𝑐
𝐶𝑑𝑡 = 𝐶(𝑥 − 𝑐).

If 𝑥 ≤ 𝑐 then
∣ ∫

𝑥

𝑐
𝑓(𝑡)𝑑𝑡∣ ≤ ∫

𝑥

𝑐
| − 𝑓(𝑡)|𝑑𝑡 ≤ 𝐶|𝑥 − 𝑐|.
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2 Uniform Convergence

Now suppose 𝑓𝑛 ∈ 𝐶[𝑎, 𝑏] and (𝑓𝑛) → 𝑓 uniformly on [𝑎, 𝑏] so 𝑓 ∈ 𝐶[𝑎, 𝑏].
Define

𝐹𝑛(𝑥) = ∫
𝑥

𝑐
𝑓𝑛(𝑡)𝑑𝑡

𝐹(𝑥) = ∫
𝑥

𝑐
𝑓(𝑡)𝑑𝑡

Proposition 2.9. With notations above,

(𝐹𝑛) → 𝐹

uniformly on [𝑎, 𝑏].

Proof. Given 𝜀 > 0, there exists 𝑁 such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀/(𝑏 − 𝑎) for all
𝑛 ≥ 𝑁 and 𝑥 ∈ [𝑎, 𝑏]. Then

|𝐹𝑛(𝑥) − 𝐹(𝑥)| = ∣ ∫
𝑥

𝑐
𝑓𝑛(𝑡)𝑑𝑡 − ∫

𝑥

𝑐
𝑓(𝑡)𝑑𝑡∣

≤ ∣ ∫
𝑥

𝑐
(𝑓𝑛(𝑡) − 𝑓(𝑡))𝑑𝑡∣

≤ |𝑥 − 𝑐| ⋅ 𝜀
𝑏 − 𝑎

by lemma

≤ 𝜀

since 𝑥, 𝑐 ∈ [𝑎, 𝑏], |𝑥 − 𝑐| ≤ 𝑏 − 𝑎. Thus (𝐹𝑛) → 𝐹 uniformly on [𝑎, 𝑏].

Now suppose 𝑓(𝑥) = ∑∞
𝑖=0 𝑎𝑖(𝑥 − 𝑐)𝑖 is a real power series with radius of

convergence 𝑅. Then for 𝑟 < 𝑅 and 𝑃𝑛(𝑥) = ∑𝑛
𝑖=0 𝑎𝑖(𝑥−𝑐)𝑖, (𝑃𝑛) → 𝑓 uniformly

on 𝐵𝑟(𝑐) = [𝑐 − 𝑟, 𝑐 + 𝑟].

Corollary 2.10.

∫
𝑥

𝑐
𝑓(𝑡)𝑑𝑡 =

∞
∑
𝑖=0

𝑎𝑖
𝑖 + 1

(𝑥 − 𝑐)𝑖+1

for 𝑥 ∈ (𝑐 − 𝑅, 𝑐 + 𝑅).

Proof. Given 𝑥, choose 𝑟 with |𝑥 − 𝑐| < 𝑟 < 𝑅. Then (𝑃𝑛) → 𝑓 on [𝑐 − 𝑟, 𝑐 + 𝑟]
so by Proposition 2.9

(P𝑛) → ∫
𝑥

𝑐
𝑓(𝑡)𝑑𝑡

uniformly on [𝑐 − 𝑟, 𝑐 + 𝑟] where

P𝑛(𝑥) = ∫
𝑥

𝑐

𝑛
∑
𝑖=0

𝑎𝑖(𝑡 − 𝑐)𝑖𝑑𝑡 =
𝑛

∑
𝑖=0

𝑎𝑖
𝑖 + 1

(𝑥 − 𝑐)𝑖+1

Since uniform convergence implies pointwise convergence,
∞

∑
𝑖=0

𝑎𝑖
𝑖 + 1

(𝑥 − 𝑐)𝑖+1 = ∫
𝑥

𝑐
𝑓(𝑡)𝑑𝑡.
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2 Uniform Convergence

Question. If (𝑓𝑛) → 𝑓 uniformly on [𝑎, 𝑏] and 𝑓𝑛 are differentiable, what can
we say about (𝑓 ′

𝑛)?

The answer is, surprisingly, absolutely nothing.

Example. Let 𝑓(𝑥) = 1
𝑛 sin 𝑛𝑥. Then (𝑓𝑛) → 𝟎 uniformly on [0, 𝜋]. But

𝑓 ′
𝑛(𝑥) = cos 𝑛𝑥 does not even converge for any 𝑥 ≠ 0.

Nevertheless, if 𝑓(𝑥) = ∑∞
𝑖=0 𝑎𝑖(𝑥 − 𝑐)𝑖 has radius of convergence 𝑅, we still

have

Proposition 2.11. 𝑓 is differentiable on (𝑐 − 𝑅, 𝑐 + 𝑅) and

𝑓 ′(𝑥) =
∞

∑
𝑖=1

𝑖𝑎𝑖(𝑥 − 𝑐)𝑖−1.

In other words, power series can be differentiated term-by-term.

Lemma 2.12. 𝑔(𝑥) = ∑∞
𝑖=1 𝑖𝑎𝑖(𝑥−𝑐)𝑖−1 converges for all 𝑦 ∈ (𝑐−𝑅, 𝑐+𝑅).

Proof. Given 𝑥 ∈ (𝑐 − 𝑅, 𝑐 + 𝑅), pick 𝑥0 with |𝑥 − 𝑐| < |𝑥0 − 𝑐| < 𝑅. Then
∑∞

𝑖=0 𝑎𝑖(𝑥0 − 𝑐)𝑖 converges, so by Fundamental Estimate for Power Series, there
exists 𝑁 such that

|𝑎𝑖(𝑥 − 𝑐)𝑖| ≤ 𝛼𝑖

for all 𝑖 ≥ 𝑁, where 𝛼 = |𝑥−𝑐|
|𝑥0−𝑐| < 1. Then

𝑏𝑖 ∶= |𝑖𝑎𝑖(𝑥 − 𝑐)𝑖−1| ≤ ∣ 𝑖𝑎𝑖
𝑥 − 𝑐

⋅ (𝑥 − 𝑐)𝑖∣ ≤ 𝑖
|𝑥 − 𝑐|

𝛼𝑖

where we assume 𝑦 ≠ 𝑐. Now

lim
𝑖→∞

𝑖 + 1
𝑖

⋅ 𝛼 = 𝛼 < 1

so ∑∞
𝑖=1

𝑖
|𝑥−𝑐| 𝛼

𝑖 converges by ratio test. Since

|𝑖𝑎𝑖(𝑥 − 𝑐)𝑖−1| ≤ 𝑖
|𝑥 − 𝑐|

𝛼𝑖,

∑∞
𝑖=1 𝑖𝑎𝑖(𝑥 − 𝑐)𝑖−1 converges by comparison test. If 𝑥 = 𝑐 then the convergence

is obvious.

Proof of proposition. 𝑔(𝑥) = ∑∞
𝑖=1 𝑖𝑎𝑖(𝑥 − 𝑐)𝑖−1 converges on (𝑐 − 𝑅, 𝑐 + 𝑅), so

by term-by-term integration

∫
𝑥

𝑐
𝑔(𝑡)𝑑𝑡 =

∞
∑
𝑖=1

𝑎𝑖(𝑥 − 𝑐)𝑖 = 𝑓(𝑥) − 𝑓(𝑐).

Now 𝑔(𝑥) is continuous on (𝑐 − 𝑅, 𝑐 + 𝑅) so we can apply Fundamental Theorem
of Calculus so 𝑓 ′(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ (𝑐 − 𝑅, 𝑐 + 𝑅).

Application. Power series solutions of ODEs are legit as long as you check the
radius of convergence.
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3 Compactness & Completeness

3 Compactness & Completeness

3.1 Compact subsets of R𝑛

Let (𝑉 , ‖⋅‖) be a normed vector space. If (𝑣𝑛) is a sequence in 𝑉 and (𝑛𝑗)
is an increasing sequence of positive integers (i.e. 𝑛𝑗+1 > 𝑛𝑗) then (𝑣𝑛𝑗

) is a
subsequence of (𝑣𝑛).

Exercise. if (𝑣𝑛) → 𝑣 in 𝑣 then any subsequence (𝑣𝑛𝑗
) converges to 𝑣 as well.

Definition (Boundedness). 𝐴 ⊆ 𝑉 is bounded if there exists 𝑚 such that
‖𝑣‖ ≤ 𝑚 for all 𝑣 ∈ 𝐴.

Remark. If ‖⋅‖ and ‖⋅‖′ are Lipschitz equivalent then 𝐴 is bounded with respect
to ‖⋅‖ if and only if with respect to ‖⋅‖′. It follows that boundedness in R𝑛 means
with respect to any one of ‖⋅‖1, ‖⋅‖2, ‖⋅‖∞.

Recall from IA Analysis I:

Theorem 3.1 (Bolzano-Weierstrass). A bounded sequence in R has a con-
vergent subsequence.

Corollary 3.2 (Bolzano-Weierstrass for R𝑚). A bounded sequence in R𝑚

has a convergent subsequence.

Proof. Inducton on 𝑚: if 𝑚 = 1 then done by Bolzano-Weierstrass. Suppose
it holds for R𝑚−1 and let (𝑣𝑛) be a bounded sequence in R𝑚. Write 𝑣𝑛 =
(𝑣𝑛,1, … , 𝑣𝑛,𝑛) = (𝑤𝑛, 𝑣𝑛,𝑚) for some 𝑤𝑛 ∈ R𝑚−1. ‖𝑤𝑛‖ and |𝑣𝑛,𝑚| ≤ ‖𝑣𝑛‖ so
(𝑣𝑛) is bounded implies that (𝑤𝑛) and (𝑣𝑛,𝑚) are bounded. By induction (𝑤𝑛)
has a subsequence (𝑤𝑛𝑗

) → 𝑤 ∈ R𝑚−1. Now consider (𝑣𝑛𝑗,𝑚). This is a bounded
sequence in R so by Bolzano-Weierstrass there is a subsequence (𝑣𝑛𝑗𝑘

,𝑚) → 𝑣 ∈ R.
By Exercise (𝑤𝑛𝑗𝑘

) → 𝑤 so

(𝑣𝑛𝑗𝑘
) = ((𝑤𝑛𝑗𝑘

, 𝑣𝑛𝑗𝑘
,𝑚)) → (𝑤, 𝑣) ∈ R𝑚.

Definition (Sequential compactness). 𝐶 ⊆ 𝑉 is sequentially compact if any
sequence (𝑣𝑛) in 𝐶 has a convergent subsequence (𝑣𝑛𝑗

) → 𝑣 ∈ 𝐶.

Remark. There is another (topological) definition of compactness using open
covers. For metric spaces, in particular subspaces of normed spaces, these two
are equivalent.

Example.

1. R is not compact as (𝑛) has no convergent subsequence.

2. (0, 1] is not compact as (1/𝑛) → 0 but 0 ∉ 𝐴.
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3 Compactness & Completeness

Theorem 3.3 (Heine-Borel). 𝐴 ⊆ R𝑚 is compact if and only if 𝐴 is closed
and bounded.

Proof.
• ⇐: Suppose 𝐴 is closed and bounded. Given a sequence (𝑣𝑛) with 𝑣𝑛 ∈ 𝐴,

must find a convergent subsequence. Since 𝐴 is bounded, (𝑣𝑛) is bounded so
by Bolzano-Weierstrass there is a convergent subsequence (𝑣𝑛𝑗

) → 𝑣 ∈ R𝑚.
As 𝐴 is closed and 𝑣𝑛𝑗

∈ 𝐴, (𝑣𝑛𝑗
) → 𝑣 implies that 𝑣 ∈ 𝐴.

• ⇒: If 𝐴 is not closed or not bounded, we will find a sequence (𝑣𝑛) with
𝑣𝑛 ∈ 𝐴 with no convergent subsequence:

– if 𝐴 is not closed, there is a sequence (𝑣𝑛) → 𝑣 with 𝑣𝑛 ∈ 𝐴 but 𝑣 ∉ 𝐴.
Suppose (𝑣𝑛𝑗

) → 𝑤 is a convergent subsequence. Then by Exercise
(𝑣𝑛𝑗

) → 𝑣. By uniqueness of limits 𝑣 = 𝑤 ∉ 𝐴.
– if 𝐴 is not bounded, then for each 𝑛 > 0 there exists 𝑣𝑛 ∈ 𝐴 with

‖𝑣𝑛‖ ≥ 𝑛. Consider the sequence (𝑣𝑛). Suppose there is a subsequence
(𝑣𝑛𝑗

) → 𝑣. Then we can find 𝐽 such that ‖𝑣𝑛𝑗
− 𝑣‖ < 1 for all 𝑗 ≥ 𝐽.

Pick 𝐾 ≥ max(𝐽, ‖𝑣‖ + 1). Then for 𝑗 ≥ 𝐾,

‖𝑣𝑛𝑗
‖ ≤ ‖𝑣𝑛𝑗

− 𝑣‖ + ‖𝑣‖ ≤ 1 + ‖𝑣‖ ≤ 𝐾 ≤ 𝑛𝑗

since 𝑛𝑗 ≥ 𝑗 ≥ 𝐾. So ‖𝑣𝑛𝑗
‖ < 𝑛𝑗 for 𝑗 ≥ 𝐾, contradiction.

Example. (𝑉 , ‖⋅‖) = (𝐶[0, 1], ‖⋅‖∞). Consider 𝑓𝑛(𝑥) = {1 − 𝑛𝑥 𝑥 ∈ [0, 1/𝑛]
0 𝑥 ≥ 1/𝑛

.

Note if 𝑓(𝑥) = {1 𝑥 = 0
0 𝑥 > 0

then (𝑓𝑛) → 𝑓 pointwise. Claim (𝑓𝑛) has no conver-

gent subsequence with respect to ‖⋅‖∞.

Proof. Suppose (𝑓𝑛𝑗
) → 𝑔 uniformly. Then (𝑓𝑛𝑗

) → 𝑔 pointwise. But we know
from Exercise (𝑓𝑛𝑗

) → 𝑓 pointwise so 𝑓 = 𝑔. But 𝑓𝑛 is continuous so 𝑔 is
continuous. Contradition.

Note. 𝑓𝑛 ∈ 𝐵1(0) ⊆ 𝑉.

Corollary 3.4. 𝐵1(0) is closed and bounded in (𝐶[0, 1], ‖⋅‖∞) but is not
compact.

Proposition 3.5 (Continuous image of compact set). Suppose 𝐶 ⊆ 𝑉 is
compact and 𝑓 ∶ 𝐶 → 𝑊 is continuous then 𝑓(𝐶) is also compact.

Proof. Suppose (𝑤𝑛) is a sequence in 𝑓(𝐶). Pick 𝑣𝑛 ∈ 𝐶 with 𝑓(𝑣𝑛) = 𝑤𝑛. 𝐶 is
compact so (𝑣𝑛) has a convergent subsequence (𝑣𝑛𝑗

) → 𝑣 ∈ 𝐶. 𝑓 is continuous so

(𝑤𝑛𝑗
) = (𝑓(𝑣𝑛𝑗

)) → 𝑓(𝑣) ∈ 𝑓(𝐶).

Joke. There is no joke today.
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3 Compactness & Completeness

3.1.1 Application I: Maximum Value Theorem

Lemma 3.6. If ∅ ≠ 𝐴 ⊆ R is compact then sup 𝐴 ∈ 𝐴.

Proof. 𝐴 is closed and bounded so 𝛼 = sup 𝐴 ∈ R. For each 𝑛 > 0, exists 𝑎𝑛 ∈ 𝐴
such that 𝛼 − 1/𝑛 ≤ 𝑎𝑛 ≤ 𝛼. Then (𝑎𝑛) → 𝛼. Since 𝐴 is closed and 𝑎𝑛 ∈ 𝐴,
𝛼 ∈ 𝐴 as well.

Theorem 3.7. Suppose 𝑓 ∶ 𝐶 → R is continuous and 𝐶 is compact and
nonempty. Then exists 𝑣 ∈ 𝐶 such that 𝑓(𝑣) ≥ 𝑓(𝑣′) for all 𝑣′ ∈ 𝐶.

Proof. 𝑓(𝐶) is compact and nonempty by the Proposition, so Lemma implies
that 𝛼 = sup 𝑓(𝐶) exists and 𝛼 ∈ 𝑓(𝐶). Pick 𝑣 ∈ 𝐶 with 𝑓(𝑣) = 𝛼. If 𝑣′ ∈ 𝐶
then 𝑓(𝑣′) ∈ 𝑓(𝐶) so 𝑓(𝑣′) ≤ 𝛼 = 𝑓(𝑣).

Corollary 3.8. Let 𝑓 and 𝐶 be as above. Then there exists 𝑣− ∈ 𝐶 with
𝑓(𝑣−) ≤ 𝑓(𝑣′) for all 𝑣′ ∈ 𝐶.

Proof. Apply Theorem to −𝑓.

3.1.2 Application II: Equivalence of Norms on R𝑛

Let ‖⋅‖ be some norm on R𝑚.

Lemma 3.9. The map id ∶ (R𝑚, ‖⋅‖1) → (R𝑚, ‖⋅‖) is continuous.

Proof. By the criterion in Proposition 1.7 it suffices to show that there is a
constant 𝐶 such that ‖𝑣‖ ≤ 𝐶‖𝑣‖1 for all 𝑣 ∈ R𝑚. Let 𝑣 = (𝑣1, … , 𝑣𝑚) =
∑𝑚

𝑖=1 𝑣𝑖𝑒𝑖 where 𝑒𝑖 is the standard basis vector. Take 𝐶 = max1≤𝑖≤𝑚‖𝑒𝑖‖. Then

‖𝑣‖ ≤
𝑚

∑
𝑖=1

‖𝑣𝑖𝑒𝑖‖ =
𝑚

∑
𝑖=1

|𝑣𝑖|‖𝑒𝑖‖ ≤ 𝐶
𝑚

∑
𝑖=1

|𝑣𝑖| = 𝐶‖𝑣‖1

Corollary 3.10. The map 𝑓 ∶ (R𝑚, ‖⋅‖1) → (R, | ⋅ |) given by 𝑓(𝑣) = ‖𝑣‖ is
continuous.

Proof. 𝑓 = 𝑔 ∘ id where 𝑔 is the continuous map from R𝑚 to R in Example 5 on
page 4.

Recall that two norms ‖⋅‖ and ‖⋅‖′ on 𝑉 are Lipschitz equivalent if there exists
𝐶 such that

1
𝐶

‖𝑣‖ ≤ ‖𝑣‖′ ≤ 𝐶‖𝑣‖

for all 𝑣 ∈ 𝑉.

Remark. This is trivially true if 𝑣 = 0 so suffices to check for 𝑣 ≠ 0.
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3 Compactness & Completeness

Theorem 3.11. If ‖⋅‖ is a norm on R𝑚 then it is Lipschitz equivalent to
‖⋅‖1.

Proof. Let 𝑆 = {𝑣 ∈ R𝑚 ∶ ‖𝑣‖1 = 1}. Claim 𝑆 is compact with respect to ‖⋅‖1: 𝑆
is clearly bounded. Consider 𝑔 ∶ (R𝑚, ‖⋅‖1) → (R, | ⋅ |), 𝑣 ↦ ‖𝑣‖1. 𝑔 is continuous
and 𝑆 = 𝑔−1({1}). As {1} ⊂ R is closed 𝑆 is closed. So by Heine-Borel 𝑆 is
compact.

By Corollary 𝑓 ∶ (𝑆, ‖⋅‖1) → (R, | ⋅ |) given by 𝑓(𝑣) = ‖𝑣‖ is continuous. By
the Maximum Value Theorem there exists 𝑣± ∈ 𝑆 with

𝑓(𝑣−) ≤ 𝑓(𝑣′) ≤ 𝑓(𝑣+)

for all 𝑣′ ∈ 𝑆. Let 𝐶± = 𝑓(𝑣±). Notice that

𝑣± ∈ 𝑆 ⇒ ‖𝑣±‖1 = 1 ⇒ 𝑣± ≠ 0 ⇒ 𝐶− = ‖𝑣±‖ ≠ 0.

Let 𝐶 = max(𝐶+, 1/𝐶−). Then

1
𝐶

≤ 𝐶− ≤ 𝑓(𝑣) = ‖𝑣‖ ≤ 𝐶+ ≤ 𝐶

for all 𝑣 ∈ 𝑆.
Finally, if 𝑣 ∈ R𝑚 \ {0} then 𝑣/‖𝑣‖1 ∈ 𝑆 so

1
𝐶

≤ ∥ 𝑣
‖𝑣‖1

∥ ≤ 𝐶

and Lipschitz equivalence condition follows.

Corollary 3.12. Any two norms on R𝑚 are Lipschitz equivalent.

Proof. Lipschitz equivalence is an equivalence relation.

3.2 Completeness
Let 𝑉 be a normed vector space.

Definition (Cauchy sequence). A sequence (𝑣𝑛) in 𝑉 is Cauchy if for any
𝜀 > 0, there exists 𝑁 such that for all 𝑛, 𝑚 ≥ 𝑁, ‖𝑣𝑛 − 𝑣𝑚‖ < 𝜀.

Example.

1. If (𝑣𝑛) → 𝑣 then (𝑣𝑛) is Cauchy.

Proof. Given 𝜀 > 0, pick 𝑁 such that ‖𝑣𝑛 − 𝑣‖ < 𝜀/2 for 𝑛 ≥ 𝑁. Then for
𝑛, 𝑚 ≥ 𝑁,

‖𝑣𝑛 − 𝑣𝑚‖ ≤ ‖𝑣𝑛 − 𝑣‖ + ‖𝑣 − 𝑣𝑚‖ < 𝜀.

2. If (∑𝑛
𝑖=1 1/𝑖) is not Cauchy since for any fixed 𝑁, ∑𝑚

𝑖=𝑁 1/𝑖 → ∞ as
𝑚 → ∞.
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3 Compactness & Completeness

Informally, a Cauchy sequence wants to converge: given 𝜀 > 0, pick 𝑁 such
that ‖𝑣𝑛 − 𝑣𝑚‖ < 𝜀 for all 𝑛, 𝑚 ≥ 𝑁. Then ‖𝑣𝑛 − 𝑣𝑁‖ < 𝜀 for all 𝑛 ≥ 𝑁 so
𝑣𝑛 ∈ 𝐵𝜀(𝑣𝑁).

But there may not be anything for it to converge to!

Example. 𝑉 = 𝐶[0, 1] with ‖⋅‖1. Let 𝑓𝑛(𝑥) =
⎧{
⎨{⎩

0 𝑥 ∈ [0, 1/2]
𝑛(𝑥 − 1/2) 𝑥 ∈ [1/2, 1/2 + 1/𝑛]
1 𝑥 ≥ 1/2 + 1/𝑛

Then (𝑓𝑛) is Cauchy but does not converge to any 𝑓 ∈ 𝐶[0, 1].

𝑥

𝑓𝑛(𝑥)

Example ((Not quite an) Example). Let (𝑉 , ‖⋅‖) = (Q, ‖⋅‖), let 𝑣𝑛 be the first
𝑛-decimal place expansion of 𝜋. Then (𝑣𝑛) is Cauchy but does not converge to
any 𝑣 ∈ Q.

Definition (Completeness). A normed vector space (𝑉 , ‖⋅‖) is complete if
whenever (𝑣𝑛) is a Cauchy sequence in 𝑉, there exists 𝑣 ∈ 𝑉 such that
(𝑣𝑛) → 𝑣.

Example. (𝐶[0, 1], ‖⋅‖1) is not complete.

Theorem 3.13 (Completeness of Euclidean Space). R𝑚 is complete.

The proof uses two lemmas about Cauchy sequences: suppose 𝑉 is a normed
vector space and (𝑣𝑛) is Cauchy, then

Lemma 3.14 (Boundedness of Cauchy sequence). (𝑣𝑛) is bounded.

Proof. Example sheet.

Lemma 3.15. If there exists a subsequence (𝑣𝑛𝑗
) → 𝑣 ∈ 𝑉 then (𝑣𝑛) → 𝑣.
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3 Compactness & Completeness

Proof. Given 𝜀 > 0, pick 𝑁 such that for all 𝑛, 𝑚 ≥ 𝑁, ‖𝑣𝑛 − 𝑣𝑚‖ < 𝜀/2. Since
(𝑣𝑛𝑗

) → 𝑣, exists 𝐽 such that whenever 𝑗 ≥ 𝐽, ‖𝑣𝑛𝑗
− 𝑣‖ < 𝜀/2. Pick 𝑗 ≥ 𝐽 such

that 𝑛𝑗 ≥ 𝑁. Then for all 𝑛 ≥ 𝑁,

‖𝑣𝑛 − 𝑣‖ ≤ ‖𝑣𝑛 − 𝑣𝑛𝑗
‖ + ‖𝑣𝑛𝑗

− 𝑣‖ < 𝜀/2 + 𝜀/2 = 𝜀.

Proof of Theorem 3.13. Suppose (𝑣𝑛) is a Cauchy sequence in R𝑛. By Lemma 3.14,
(𝑣𝑛) is bounded. By Bolzano-Weierstrass, it has a convergent subsequence
(𝑣𝑛𝑗

) → 𝑣 ∈ R𝑛. By Lemma 3.15 (𝑣𝑛) → 𝑣 ∈ R𝑛. So any Cauchy sequence in
R𝑛 converges to 𝑣 ∈ R𝑛. R𝑛 is complete.

We saw before that (𝐶[0, 1], ‖⋅‖∞) does not have Bolzano-Weierstrass property.
Nevertheless, it is complete:

Theorem 3.16. Let [𝑎, 𝑏] be a bounded interval in R, then 𝐶[𝑎, 𝑏] is complete
with respect to ‖⋅‖∞.

Proof. Suppose (𝑓𝑛) is Cauchy in 𝐶[𝑎, 𝑏]. We must find 𝑓 ∈ 𝐶[𝑎, 𝑏] such that
(𝑓𝑛) → 𝑓 uniformly on [𝑎, 𝑏].

Give 𝜀 > 0, pick 𝑁 such that whenever 𝑛, 𝑚 ≥ 𝑁,

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ max
𝑥∈[𝑎,𝑏]

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| = ‖𝑓𝑛 − 𝑓𝑚‖∞ < 𝜀/2 (∗)

i.e. for all 𝑥 ∈ [𝑎, 𝑏], the sequence (𝑓𝑛(𝑥)) is Cauchy in R. Since R is complete,
lim𝑛→∞ 𝑓𝑛(𝑥) exists. Now define 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥). Claim (𝑓𝑛) → 𝑓 uni-
formly on [𝑎, 𝑏]: given 𝜀 > 0, choose 𝑁 as in (∗). Given 𝑥, choose 𝑀 such that
|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀/2 for 𝑛 ≥ 𝑀. Let 𝑚′ = max{𝑀, 𝑁}. Then for 𝑛 ≥ 𝑁,

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓𝑚′(𝑥)| + |𝑓𝑚′(𝑥) − 𝑓(𝑥)| < 𝜀/2 + 𝜀/2 = 𝜀.

Since the uniform limit of continuous functions is continuous, (𝑓𝑛) → 𝑓 ∈ 𝐶[𝑎, 𝑏].
(𝐶[𝑎, 𝑏], ‖⋅‖∞) is complete.

Definition (Normed subspace). Let (𝑉 , ‖⋅‖) and (𝑉 ′, ‖⋅‖′) be two normed
vector spaces. We say 𝑉 is a normed vector subspace of 𝑉 ′ if

1. 𝑉 ≤ 𝑉 ′ as a vector space,

2. ‖𝑣‖ = ‖𝑣‖′ for all 𝑣 ∈ 𝑉.

Remark.

1. If 𝑉 ⊆ 𝑉 ′, 𝑉 is complete then 𝑉 is a closed subset of 𝑉 ′.

Proof. Suppose (𝑣𝑛) is a sequence in 𝑉 and (𝑣𝑛) → 𝑣′ ∈ 𝑉 ′. Then (𝑣𝑛) is
Cauchy in 𝑉 so (𝑣𝑛) → 𝑣 ∈ 𝑉. By uniqueness of limits 𝑣 = 𝑣′ ∈ 𝑉 so 𝑉 ⊆ 𝑉
is closed.
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2. If (𝑉 , ‖⋅‖) is a normed space then there exists a complete normed space
(𝑉, ‖⋅‖) which contains 𝑉 as a dense subspace (dense means that any 𝑣 ∈ 𝑉
is a limit of sequence in 𝑉). This 𝑉 is the completion of 𝑉 and is unique up
to isomorphism of normed space.

Example.

1. R is the completion of Q with | ⋅ |.

2. The completion of (𝐶[0, 1], ‖⋅‖1) is the space of Lebesgue integrable func-
tions on [0, 1].

3.3 Uniform Continuity
Suppose 𝑉 and 𝑊 are normed spaces and 𝑋 ⊆ 𝑉,

Definition (Uniform continuity). 𝑓 ∶ 𝑋 → 𝑊 is uniformly continuous if

∀𝜀 > 0, ∃𝛿 > 0 ∀𝑣, 𝑤 ∈ 𝑋, ‖𝑣 − 𝑤‖ < 𝛿 ⇒ ‖𝑓(𝑣) − 𝑓(𝑤)‖ < 𝜀.

Note.

• 𝑓 is continuous means that if I give you 𝜀 > 0 and 𝑣 ∈ 𝑋, you find 𝛿 > 0
such that ‖𝑓(𝑣) − 𝑓(𝑤)‖ < 𝜀 whenever ‖𝑣 − 𝑤‖ < 𝛿.

• 𝑓 is uniformly means that if I give you 𝜀 > 0, you find 𝛿 > 0 which works
for all 𝑣 ∈ 𝑋.

Clearly uniform convergence imples convergence but the converse is false.

Example.

1. 𝑓 ∶ R → R, 𝑓(𝑥) = 𝑥2 is not uniformly continuous since 𝑓(𝑥+𝛿/2)−𝑓(𝑥) =
𝑥𝛿 + 𝛿2/4 > 1 if 𝑥 > 1/𝛿.

2. Suppose 𝑎, 𝑏 ∈ R, 𝑓 ∶ (𝑎, 𝑏) → R is uniformly continuous, then 𝑓 is bounded
on (𝑎, 𝑏):

Proof. Suppose |𝑓(𝑥) − 𝑓(𝑦)| < 1 whenever |𝑥 − 𝑦| < 2𝛿, then

|𝑓(𝑥) − 𝑓(𝑦)| ≤ ∣𝑓(𝑥) − 𝑓(𝑥 + 𝑦
2

)∣ + ∣𝑓(𝑥 + 𝑦
2

) − 𝑓(𝑦)∣ < 1 + 1 = 2

Similarly |𝑥 − 𝑦| < 𝑛𝛿 implies that |𝑓(𝑥) − 𝑓(𝑦)| < 𝑛 so 𝑓 is bounded on
(𝑎, 𝑏).

3. 𝑓 ∶ (0, 1) → R, 𝑓(𝑥) = 1/𝑥 is continuous but not bounded so not uniformly
continuous.

4. 𝑓 ∶ (0, 1) → R, 𝑓(𝑥) = sin(1/𝑥) is not unifornly continuous since for any
𝛿 > 0, there exists 𝑥, 𝑥′ ∈ (0, 𝛿) with 𝑓(𝑥) = 1, 𝑓(𝑥′) = −1.
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Theorem 3.17. If 𝐶 ⊆ 𝑉 is compact and 𝑓 ∶ 𝐶 → 𝑊 is continuous then 𝑓
is uniformly continuous.

Proof. By contradiction. Suppose 𝑓 satisfies the hypotheses but is not uniformly
continuous, i.e. ∃𝑎 > 0 such that there is no 𝛿 > 0 with ‖𝑓(𝑣) − 𝑓(𝑤)‖ < 𝑎
whenever ‖𝑣 − 𝑤‖ < 𝛿. Thus ∀𝑛 > 0, ∃𝑣𝑛, 𝑤𝑛 such that ‖𝑣𝑛 − 𝑤𝑛‖ < 1/𝑛 but
‖𝑓(𝑣𝑛) − 𝑓(𝑤𝑛)‖ ≥ 𝑎. Since 𝐶 is compact, (𝑣𝑛) has a convergent subsequence
(𝑣𝑛𝑗

) → 𝑣 ∈ 𝐶. Claim (𝑤𝑛𝑗
) → 𝑣:

Proof. (𝑣𝑛𝑗
) → 𝑣 so lim𝑗→∞‖𝑣𝑛𝑗

− 𝑣‖ = 0. ‖𝑣𝑛 − 𝑤𝑛‖ < 1/𝑛 so lim𝑗→∞‖𝑣𝑛𝑗
−

𝑤𝑛𝑗
‖ = 0. Then

0 ≤ ‖𝑤𝑛𝑗
− 𝑣‖ ≤ ‖𝑤𝑛𝑗

− 𝑣𝑛𝑗
‖ + ‖𝑣𝑛𝑗

− 𝑣‖

so by squeeze rule lim𝑗→∞‖𝑤𝑛𝑗
− 𝑣‖ = 0.

Now we claim lim𝑗→∞‖𝑓(𝑣𝑛𝑗
) − 𝑓(𝑤𝑛𝑗

)‖ = 0:

Proof. (𝑣𝑛𝑗
) → 𝑣, 𝑓 is continuous so (𝑓(𝑣𝑛𝑗

)) → 𝑓(𝑣). Similarly (𝑤𝑛𝑗
) → 𝑣, so

(𝑓(𝑤𝑛𝑗
)) → 𝑓(𝑣) as well. Then

0 ≤ ‖𝑓(𝑣𝑛𝑗
) − 𝑓(𝑤𝑛𝑗

)‖ ≤ ‖𝑓(𝑣𝑛𝑗
) − 𝑓(𝑣)‖ + ‖𝑓(𝑤𝑛𝑗

) − 𝑓(𝑣)‖

and the result follows by squeeze rule.

Now choose 𝐽 such that ‖𝑓(𝑣𝑛𝑗
) − 𝑓(𝑤𝑛𝑗

)‖ < 𝑎 whenver 𝑗 ≥ 𝐽. Then let
𝑁 = 𝑛𝐽, ‖𝑓(𝑣𝑛) − 𝑓(𝑤𝑛)‖ < 𝑎 whenever 𝑛 ≥ 𝑁. However, this contradicts the
fact that ‖𝑓(𝑣𝑛) − 𝑓(𝑤𝑛)‖ ≥ 𝑎 > 0 for all 𝑛.

3.3.1 Application: Riemann Integral

Recall from IA Analysis I: 𝑔 ∶ [𝑎, 𝑏] → R is piecewise constant if ∃𝑎 = 𝑎0 < 𝑎1 <
⋯ < 𝑎𝑛 = 𝑏 such that 𝑔(𝑥) = 𝑐𝑖 for all 𝑥 ∈ (𝑎𝑖−1, 𝑎𝑖). Let

𝑃 [𝑎, 𝑏] = {𝑔 ∶ [𝑎, 𝑏] → R ∶ 𝑔 is piecewise constant}

Notation. 𝑓 ≤ 𝑔 means for all 𝑥 ∈ [𝑎, 𝑏], 𝑓(𝑥) ≤ 𝑔(𝑥).

If 𝑔 ∈ 𝑃 [𝑎, 𝑏], define

𝐼(𝑔) =
𝑛

∑
𝑖=1

𝑐𝑖(𝑎𝑖 − 𝑎𝑖−1)

to be the signed area under the graph of 𝑔.

Lemma 3.18. If 𝑓, 𝑔 ∈ 𝑃 [𝑎, 𝑏], then

1. 𝑓 + 𝜆𝑔 ∈ 𝑃 [𝑎, 𝑏] and 𝐼(𝑓 + 𝜆𝑔) = 𝐼(𝑓) + 𝜆𝐼(𝑔).

2. If 𝑓 ≥ 0 then 𝐼(𝑓) ≥ 0.

3. If 𝑓 ≥ 𝑔 then 𝐼(𝑓) ≥ 𝐼(𝑔).
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If 𝑓 ∈ 𝐵[𝑎, 𝑏], define

𝒰(𝑓) = {𝑔 ∈ 𝑃 [𝑎, 𝑏] ∶ 𝑔 ≥ 𝑓}
ℒ(𝑓) = {𝑔 ∈ 𝑃 [𝑎, 𝑏] ∶ 𝑔 ≤ 𝑓}

Now define

𝑈(𝑓) = {𝐼(𝑔) ∶ 𝑔 ∈ 𝒰(𝑓)}
𝐿(𝑓) = {𝐼(𝑔) ∶ 𝑔 ∈ ℒ(𝑓)}

so given 𝑔+ ∈ 𝒰(𝑓), 𝑔− ∈ ℒ(𝑓), 𝑔− ≤ 𝑓 ≤ 𝑔+ so 𝐼(𝑔−) ≤ 𝐼(𝑔+). Now define

𝑢(𝑓) = inf 𝑈(𝑓)
𝑙(𝑓) = sup 𝐿(𝑓)

Definition (Riemann integral). 𝑓 is Riemann integrable if 𝑢(𝑓) = 𝑙(𝑓). In
this case define

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝑢(𝑓) = 𝑙(𝑓).

Theorem 3.19. If 𝑓 ∈ 𝐶[𝑎, 𝑏] then 𝑓 is Riemann integrable.

Proof. By Maximum Value Theorem 𝑓 ∈ 𝐵[𝑎, 𝑏]. Claim given 𝜀 > 0, ∃𝑔+ ∈
𝒰(𝑓), 𝑔− ∈ ℒ(𝑓) such that 𝐼(𝑔+) − 𝐼(𝑔−) < 𝜀:

Proof. Since [𝑎, 𝑏] is compact, 𝑓 is uniformly continuous. Choose 𝛿 > 0 such that
|𝑓(𝑥) − 𝑓(𝑦)| < 𝜀/(𝑏 − 𝑎) whenever |𝑥 − 𝑦| < 𝛿.

Choose 𝑎 = 𝑎0 < ⋯ < 𝑎𝑛 = 𝑏 such that 𝑎𝑖 − 𝑎𝑖−1 < 𝛿 for all 𝑖. Define

𝑐+
𝑖 = max

𝑥∈[𝑎𝑖−1,𝑎𝑖]
𝑓(𝑥)

𝑐−
𝑖 = min

𝑥∈[𝑎𝑖−1,𝑎𝑖]
𝑓(𝑥)

If 𝑥, 𝑦 ∈ [𝑎𝑖−1, 𝑎𝑖], |𝑥 − 𝑦| < 𝛿 so 𝑐+
𝑖 − 𝑐−

𝑖 < 𝜀/(𝑎𝑖−1, 𝑎𝑖). Now take 𝑔±(𝑥) = 𝑐±
𝑖 if

𝑥 ∈ [𝑎𝑖−1, 𝑎𝑖]. By construction for 𝑥 ∈ [𝑎𝑖−1, 𝑎𝑖],

𝑔+(𝑥) ≥ 𝑐+
𝑖 = max

𝑥∈[𝑎𝑖−1,𝑎𝑖]
𝑓(𝑥) ≥ 𝑓(𝑥)

so 𝑔+ ≥ 𝑓. Similar for 𝑔−. It follows that 𝐼(𝑔+) − 𝐼(𝑔−) < 𝜀.

With this result, the proof of the theorem is almost apparent: since

𝐼(𝑔−) ≤ 𝑙(𝑓) ≤ 𝑢(𝑓) ≤ 𝐼(𝑔+),

0 ≤ 𝑢(𝑓) − 𝑙(𝑓) ≤ 𝐼(𝑔+) − 𝐼(𝑔−) ≤ 𝜀 for all 𝜀 > 0. Thus 𝑢(𝑓) = 𝑙(𝑓) and 𝑓 is
Riemann integrable.
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4 Differential Calculus on R𝑛

4.1 Derivative, First Attempt
It is natural to ask what is the generalisation of differentiation on R to higher
dimension. More specifically,

Question.

1. What does it mean for 𝐹 ∶ R2 → R to be differentiable?

2. If 𝐹 is differentiable, what is its derivative?

Recall from multivariate calculus the partial derivative

𝜕𝐹
𝜕𝑥1

∣
(𝑎1,𝑎2)

= 𝒟1𝐹|(𝑎1,𝑎2)

= ( 𝑑
𝑑𝑡

𝐹(𝑎1 + 𝑡, 𝑎2)) ∣
𝑡=0

= lim
ℎ→0

𝐹(𝑎1 + ℎ, 𝑎2) − 𝐹(𝑎1, 𝑎2)
ℎ

Similar for 𝜕𝐹
𝜕𝑥2

.

Note. Just becuase 𝜕𝐹
𝜕𝑥𝑖

exists does not mean that 𝐹 is differentiable at 𝑎 =
(𝑎1, 𝑎2):

Example.

• Let

𝐹(𝑥1, 𝑥2) = {0 if 𝑥1 = 0 or 𝑥2 = 0
1 otherwise

Then 𝜕𝐹
𝜕𝑥1

= 𝜕𝐹
𝜕𝑥2

= 0 at (0, 0) but 𝐹 is not even continuous. Heuristically,
a good definition of differentiability should not allow this as this is not
compatible with the definition of differentiability on R.

• If one insists that differentiability does not imply continuity (by whatever
means) and declare 𝐹 as differentiable whenever 𝜕𝐹

𝜕𝑥𝑖
exists, then consider

𝐺(𝑥1, 𝑥2) = 𝐹(𝑥1 + 𝑥2, 𝑥1 − 𝑥2), whose derivative 𝜕𝐺
𝜕𝑥1

does not even exist.
This reveals a bigger problem with this definition of “differentiability”: the
composition of differentiable functions is not differentiable!

The failure in the above attempt to define differentiability is because the
existence of partial derivatives is not strong enough as 𝜕𝐹

𝜕𝑥𝑖
merely tells us about

the behaviour of when 𝐹 is restricted to coordinate axes.
To answer Q1, recall that 𝑓 ∶ R → R, 𝑓 ′(𝑎) = 𝑐 means that

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

= 𝑐.

26
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Graphically, 𝑦 = 𝑇 (𝑥) is the tangent line to 𝑦 = 𝑓(𝑥) at (𝑎, 𝑓(𝑎)) where 𝑇 (𝑥) =
𝑓(𝑎) + 𝑐(𝑥 − 𝑎). In other words,

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑇 (𝑎 + ℎ)
ℎ

= lim
ℎ→0

(𝑓(𝑎 + ℎ) − 𝑓(𝑎)
ℎ

− 𝑐ℎ
ℎ

)

= 𝑓 ′(𝑎) − 𝑐
= 𝑐 − 𝑐
= 0

so 𝑓 is differentiable at 𝑎 if and only if 𝑓 is well-approximately by its tangent
line near 𝑎 in the sense that

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑇 (𝑎 + ℎ)
ℎ

= 0.

Answer (Answer to Q1). 𝐹 ∶ R2 → R is differentiable at 𝑎 if it is well-
approximated by its tangent plane 𝑧 = 𝑇 (𝑥1, 𝑥2) at (𝑎, 𝐹(𝑎)) in the sense
that

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝑇 (𝑎 + ℎ)
‖ℎ‖

= 0 (∗)

where the limit will be made rigorous later.

Now we have to ask: what is the tangent plane? It is the equation

𝑧 = 𝑇 (𝑥1, 𝑥2)
= 𝐹(𝑎1, 𝑎2) + 𝑐1(𝑥1 − 𝑎1) + 𝑐2(𝑥2 − 𝑎2)

for some 𝑐1 and 𝑐2 so

𝑇 (𝑎 + ℎ) = 𝐹(𝑎1, 𝑎2) + 𝑐1ℎ1 + 𝑐2ℎ2 = 𝐹(𝑎1, 𝑎2) + 𝐿(ℎ)

where ℎ = (ℎ1, ℎ2) and 𝐿 ∶ R2 → R is a linear map.

Answer (Answer to Q2). The derivative 𝒟𝐹|𝑎 is the linear map 𝐿.

What should 𝑐1 and 𝑐2 that we used to parameterise 𝑇 be? Equation (∗) says
that

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎1, 𝑎2) − 𝑐1ℎ1 − 𝑐2ℎ2
‖ℎ‖

= 0

Taking ℎ = (ℎ1, 0) gives

0 = lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎1, 𝑎2) − 𝑐1ℎ1
ℎ1

= lim
ℎ1→0

(𝐹(𝑎1 + ℎ, 𝑎2) − 𝐹(𝑎1, 𝑎2)
ℎ1

− 𝑐1)

= 𝜕𝐹
𝜕𝑥

∣
(𝑎1,𝑎2)

so 𝑐1 = 𝜕𝐹
𝜕𝑥1

|(𝑎1,𝑎2). Similar for 𝑐2. So

𝒟𝐹|𝑎 = 𝜕𝐹
𝜕𝑥1

ℎ1 + 𝜕𝐹
𝜕𝑥2

ℎ2

= ( 𝜕𝐹
𝜕𝑥1

𝜕𝐹
𝜕𝑥2

) (ℎ1
ℎ2

)
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i.e. as a map 𝒟𝐹|𝑎 is given by the matrix

(𝒟1𝐹|𝑎 𝒟2𝐹|𝑎).

Example. Let 𝐹 be the same as in the previous example. 𝜕𝐹
𝜕𝑥𝑖

= 0 so if there
were a tangent plane at 0 it would be given by

𝑧 = 𝑇 (𝑥1, 𝑥2) = 0 + 0 ⋅ 𝑥1 + 0 ⋅ 𝑥2 = 0

which is, to say the least, a terrible approximation of 𝐹.

More generally,

Definition (Differentiability). Given 𝐹 ∶ R𝑛 → R𝑚, 𝐹 is differentiable at 𝑎 if
there is a linear function 𝐿 ∶ R𝑛 → R𝑚 such that

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎) − 𝐿(ℎ)
‖ℎ‖

= 0. (∗)

If so, say 𝒟𝐹|𝑎 = 𝐿 is the derivative of 𝐹 at 𝑎.

If 𝐹 = (𝐹1, … , 𝐹𝑚) is differentiable at 𝑎, the derivative is given by the matrix

𝒟𝐹|𝑎 = ⎛⎜
⎝

𝒟1𝐹1|𝑎 ⋯ 𝒟𝑛𝐹1|𝑎
⋮ ⋱ ⋮

𝒟1𝐹𝑚|𝑎 ⋯ 𝒟𝑛𝐹𝑚|𝑎

⎞⎟
⎠

Example. If 𝛾 ∶ R → R𝑛,

𝒟𝛾|𝑡 = ⎛⎜
⎝

𝛾′
1(𝑡)
⋮

𝛾′
𝑚(𝑡)

⎞⎟
⎠

Recall the chain rule: given 𝐹 ∶ R𝑚 → R,

𝑑
𝑑𝑡

𝐹(𝛾(𝑡)) =
𝑚

∑
𝑖=1

𝜕𝐹
𝜕𝑥𝑖

∣
𝛾(𝑡)

𝛾′
𝑖(𝑡)

= ( 𝜕𝐹
𝜕𝑥1

⋯ 𝜕𝐹
𝜕𝑥𝑚

) ⎛⎜
⎝

𝛾′
1(𝑡)
⋮

𝛾′
𝑚(𝑡)

⎞⎟
⎠

= [𝐶]

As matrix multiplication is composition of linear maps

𝒟(𝐹 ∘ 𝛾)|𝑡 = 𝒟𝐹|𝛾(𝑡) ∘ 𝒟𝛾|𝑡.

Similarly for 𝐹 ∶ R𝑛 → R𝑚, 𝐺 ∶ R𝑚 → R𝑙 differentiable, we will show that

𝒟(𝐹 ∘ 𝐺) = 𝒟𝐹 ∘ 𝒟𝐺.

4.2 Limits
Suppose 𝑉 and 𝑊 are normed spaces, 𝑈 ⊆ 𝑉 open, and 𝑣0 ∈ 𝑈, 𝑓 ∶ 𝑈 \{𝑣0} → 𝑊.
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Definition (Limit). We say the limit of 𝑓 at 𝑣0 is 𝑤, denoted by

lim
𝑣→𝑣0

𝑓(𝑣) = 𝑤,

if for every 𝜀 > 0, exists 𝛿 > 0 such that ‖𝑓(𝑣) − 𝑤‖ < 𝜀 whenever 0 <
‖𝑣 − 𝑣0‖ < 𝛿 and 𝑣 ∈ 𝑈.

Note.

1. lim𝑣→𝑣0
𝑓(𝑣) = 𝑤 if and only if lim𝑣→𝑣0

‖𝑓(𝑣) − 𝑤‖ = 0.

2. lim𝑣→𝑣0
𝑓(𝑣) = 𝑤 if and only if for every sequence (𝑥𝑖) in 𝑈 \ {𝑣0} which

converges to 𝑣0, the sequence (𝑓(𝑥𝑖)) → 𝑤.

3. If ‖⋅‖𝑉 and ‖⋅‖′
𝑉 are Lipschitz equivalent on 𝑉 and ‖⋅‖𝑊 and ‖⋅‖′

𝑊 are Lipschitz
equivalent on 𝑊 then lim𝑣→𝑣0

𝑓(𝑣) = 𝑤 with respect to ‖⋅‖𝑉 and ‖⋅‖𝑊 if and
only if with respect to ‖⋅‖′

𝑉 and ‖⋅‖′
𝑊. In particular if 𝑉 = R𝑛, 𝑊 = R𝑚

then the limit is unambiguously defined without specifying any norms.

Proposition 4.1 (Properties of limits).

1. lim𝑣→𝑣0
(𝑓(𝑣) + 𝜆𝑔(𝑣)) = lim𝑣→𝑣0

𝑓(𝑣) + 𝜆 lim𝑣→𝑣0
𝑔(𝑣).

2. If 𝜆 ∶ 𝑈 \ {𝑣0} → R then

lim
𝑣→𝑣0

𝜆(𝑣)𝑓(𝑣) = lim
𝑣→𝑣0

𝜆(𝑣) lim
𝑣→𝑣0

𝑓(𝑣)

if both limits on RHS exist.

3. Squeeze rule: if ‖𝑓(𝑣) − 𝑤‖ ≤ ‖𝑔(𝑣) − 𝑤‖ and lim𝑣→𝑤𝑜
𝑔(𝑣) = 𝑤 then

lim𝑣→𝑣0
𝑓(𝑣) = 𝑤.

4. If 𝑓 ∶ 𝑈 \ {𝑣0} → R𝑚, 𝑓(𝑣) = (𝑓1(𝑣), … , 𝑓𝑚(𝑣)), 𝑤 = (𝑤1, … , 𝑤𝑚) then
lim𝑣→𝑣0

𝑓(𝑣) = 𝑤 if and only if lim𝑣→𝑣0
𝑓𝑖(𝑣) = 𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.

5. If lim𝑣→0 𝑓(𝑣) = 𝑤 and 𝑥 ∈ 𝑈 \ {0} then lim𝑡→0 𝑓(𝑡𝑥) = 𝑤.

Proof. The first three are the same as the one dimensional case in IA Analysis I.
For (4), (𝑓(𝑥)) → 𝑤 if and only if (𝑓𝑖(𝑥𝑛)) → 𝑤𝑖 for all 𝑖 so the result follows

from sequential characterisation of convergence.
For (5), given 𝜀 > 0, exists 𝛿 > 0 such that ‖𝑓(𝑣) − 𝑤‖ < 𝜀 whenever

0 < ‖𝑣‖ < 𝛿. Then for 0 < |𝑡| < 𝛿/‖𝑥‖, 0 < ‖𝑡𝑥‖ < 𝛿 so ‖𝑓(𝑡𝑥) − 𝑤‖ < 𝜀 so
lim𝑡→0 𝑓(𝑡𝑥) = 𝑤.

Note. lim𝑡→0 𝑓(𝑡𝑥) = 𝑤 for all 𝑥 ∈ 𝑈 \ {0} does not imply that lim𝑣→0 𝑓(𝑣) =
𝑤. This is similar to the case the existence of 𝜕𝑓

𝜕𝑥𝑖
for all 𝑖 does not imply

differentiability of 𝑓.

Example. Let

𝑓 ∶ R2 \ {0} → R

𝑓(𝑥1, 𝑥2) = {
𝑥2

1
𝑥2

2
(𝑥2

1 + 𝑥2
2) 𝑥2 ≠ 0

0 𝑥2 = 0
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Then if 𝑥 = (𝑥1, 𝑥2) with 𝑥2 ≠ 0,

lim
𝑡→0

𝑓(𝑡𝑥) = lim
𝑡→0

𝑥2
1

𝑥2
2

(𝑥2
1 + 𝑥2

2)𝑡2 = 0

If 𝑥 = (𝑥1, 0) with 𝑥1 ≠ 0 then lim𝑡→0 𝑓(𝑡𝑥) = lim𝑡→0 0 = 0. But

𝑓(𝑡, 𝑡2) = 𝑡2

𝑡4 (𝑡2 + 𝑡4) = 1 + 𝑡2 ≥ 1

for 𝑡 ≠ 0 so taking 𝑡 = 1
𝑛 , we find points (1/𝑛, 1/𝑛2) arbitrarily close to (0, 0)

with 𝑓(1/𝑛, 1/𝑛2) ≥ 1 so lim𝑣→0 𝑓(𝑣) ≠ 0.

Definition (Continuity). 𝑓 ∶ 𝑈 → 𝑊 is continuous at 𝑣0 if

lim
𝑣→𝑣0

𝑓(𝑣) = 𝑓(𝑣0).

Lemma 4.2. 𝑓 is continuous at 𝑣0 if and only if (𝑓(𝑥𝑖)) → 𝑓(𝑣0) whenever
(𝑥𝑖) is a sequence in 𝑈 converging to 𝑣0.

Proof. Sequential characterisation of convergence.

Recall that previously we have defined continuity of a function on a domain.
Here we define continuity of a function at a point. Fortunately, these two notions
of continuity agree:

Corollary 4.3. 𝑓 is continuous if and only if 𝑓 is continuous at every 𝑣 ∈ 𝑈.

Proof. 𝑓 is continuous at every 𝑣 ∈ 𝑈 if and only if (𝑥𝑖) → 𝑣 ∈ 𝑈 ⇒ (𝑓(𝑥𝑖)) →
𝑓(𝑣) if and only if 𝑓 is continuous.

4.3 Derivative, Revisited
Suppose 𝑈 ⊆ R𝑛 is open, 𝑓 ∶ 𝑈 → R𝑚 and 𝑎 ∈ 𝑈. We recall

Definition (Differentiability). Given 𝐹 ∶ R𝑛 → R𝑚, 𝐹 is differentiable at 𝑎 if
there is a linear function 𝐿 ∶ R𝑛 → R𝑚 such that

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎) − 𝐿(ℎ)
‖ℎ‖

= 0. (∗)

If so, say 𝒟𝐹|𝑎 = 𝐿 is the derivative of 𝐹 at 𝑎.

Note.

1. Equivalently, 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐿(ℎ) + ‖ℎ‖𝛼(ℎ) where limℎ→0 𝛼(ℎ) = 0.

2. If (∗) holds for two linear functions 𝐿, 𝐿′ ∶ R𝑛 → R𝑚 then 𝐿 = 𝐿′ so 𝒟𝑓|𝑎
is well-defined.
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Proof. Subtraction gives

lim
ℎ→0

𝐿(ℎ) − 𝐿′(ℎ)
‖ℎ‖

= 0

which implies that for any 𝑣 ∈ R𝑛 \ {0},

0 = lim
𝑡→0+

𝐿(𝑡𝑣) − 𝐿′(𝑡𝑣)
‖𝑡𝑣‖

= lim
𝑡→0+

𝐿(𝑣) − 𝐿′(𝑣)
‖𝑣‖

= 𝐿(𝑣) − 𝐿′(𝑣)
‖𝑣‖

so 0 = 𝐿(𝑣) − 𝐿′(𝑣) = (𝐿 − 𝐿′)(𝑣) for all 𝑣 ≠ 0. They certainly agree at
0.

3. The definition of derivative does not depend on the norm used.

Let 𝑈 ⊆ R𝑛 be open and 𝑓 ∶ 𝑈 → R𝑛.

Notation. 𝐿(R𝑛,R𝑚) is the space of linear maps from R𝑛 to R𝑚, which is
isomorphic to ℳ𝑚,𝑛(R).

Example. If 𝐿 ∈ 𝐿(R𝑛,R𝑚), 𝑦0 ∈ R𝑛, 𝑓(𝑥) = 𝑦0 + 𝐿(𝑥) then

𝑓(𝑎 + ℎ) = 𝑦0 + 𝐿(𝑎 + ℎ)
= 𝑦0 + 𝐿(𝑎) + 𝐿(ℎ)
= 𝑓(𝑎) + 𝐿(ℎ)

so
lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝐿(ℎ)
‖ℎ‖

= lim
ℎ→0

0
‖ℎ‖

= 0

so 𝑓 is differentiable and 𝒟𝑓|𝑎 = 𝐿.

Definition (Differentiability). 𝑓 is differentiable if 𝑓 is differentiable at all
𝑎 ∈ 𝑈.

There are two ways to think about derivatives:

• analyst way: 𝒟𝑓 ∶ 𝑈 → 𝐿(R𝑛,R𝑚), 𝑎 ↦ 𝒟𝑓|𝑎.

• geometer way: define the tangent bundle 𝑇 𝑈 = 𝑈 × R𝑛 if 𝑈 ⊆ R𝑛 is open,
then

𝑑𝑓 ∶ 𝑇 𝑈 → 𝑇R𝑚 ≅ R𝑚 × R𝑚

(𝑎, 𝑣) ↦ (𝑓(𝑣), 𝒟𝑓|𝑎(𝑣))

The analyst way says that given 𝑓 in the previous example, the derivative
𝒟𝑓 ∶ R𝑛 → 𝐿(R𝑛,R𝑚), 𝑎 ↦ 𝐿 is the constant map.

4.4 Directional Derivative
Let 𝐹 ∶ 𝑈 → R𝑛.
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Definition (Directional derivative). If 𝑣 ∈ R𝑛\{0}, the directional derivative
of 𝐹 at 𝑎 in the direction 𝑣 is

𝒟𝑣𝐹|𝑎 = lim
𝑡→0+

𝐹(𝑎 + 𝑡𝑣) − 𝐹(𝑎)
𝑡

if RHS exist.

Example. If 𝑒𝑖 is the standard basis vector of R𝑛 then 𝒟𝑒𝑖
𝐹|𝑎 = 𝒟𝑖𝐹|𝑎 if

𝒟𝑖𝐹|𝑎 exists.

Proposition 4.4. If 𝐹 is differentiable at 𝑎 then

𝒟𝑣𝐹|𝑎 = 𝒟𝐹|𝑎(𝑣).

Proof. Suppose

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎) − 𝐿(ℎ)
‖ℎ‖

= 0.

Then by the property of limits

0 = lim
ℎ→0+

𝐹(𝑎 + 𝑡𝑣) − 𝐹(𝑎) − 𝐿(𝑡𝑣)
‖𝑡𝑣‖

= lim
ℎ→0+

𝐹(𝑎 + 𝑡𝑣) − 𝐹(𝑎) − 𝑡𝐿(𝑣)
𝑡

so
lim

𝑡→0+

𝐹(𝑎 + 𝑡𝑣) − 𝐹(𝑎)
𝑡

= 𝐿(𝑣).

Thus
𝒟𝑣𝐹|𝑎 = 𝒟𝐹|𝑎(𝑣).

Example. In the example above,

𝒟𝐹|𝑎(𝑒𝑖) = 𝒟𝑒𝑖
𝐹|𝑎 = 𝒟𝑖𝐹|𝑎.

If 𝐹 is differentiable, the derivative is representated by the 1 × 𝑛 matrix

(𝒟1𝐹|𝑎 ⋯ 𝒟𝑛𝐹|𝑎).

Corollary 4.5. If 𝐹 is differentiable at 𝑎 then 𝐷𝑣𝐹|𝑎 is a linear function
of 𝑣.

Example. Let

𝐹(𝑥1, 𝑥2) = {
𝑥3

1+𝑥3
2

𝑥2
1+𝑥2

2
(𝑥1, 𝑥2) ≠ (0, 0)

0 (𝑥1, 𝑥2) = (0, 0)
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Then

𝒟𝑣𝐹|0 = lim
𝑡→0+

𝐹(𝑡𝑣) − 𝐹(0)
𝑡

= lim
𝑡→0+

𝑡3(𝑣3
1 + 𝑣3

2)
𝑡2(𝑣2

1 + 𝑣2
2)

⋅ 1
𝑡

= 𝑣3
1 + 𝑣3

2
𝑣2

1 + 𝑣2
2

so 𝐷𝑣𝐹|0 exists for all 𝑣 ≠ 0. But 𝒟(1,0)𝐹|0 = 𝒟(0,1)𝐹|0 = 𝒟(1,1)𝐹|0 = 1,

𝒟(1,0)𝐹|0 + 𝒟(0,1)𝐹|0 ≠ 𝒟(1,1)𝐹|0.

𝐷𝑣𝐹|0 is not a linear function of 𝑣 so 𝐹 is not differentiable at 0.

Remark. If 𝐹 ∶ 𝑈 → R, the gradient is

𝛁𝐹|𝑎 = (𝒟1𝐹|𝑎 ⋯ 𝒟𝑛𝐹|𝑎) ∈ R𝑛

There is a vector space isomorphism

R𝑛 → (R𝑛)∗

𝑤 ↦ 𝑤∗ = 𝑤 ⋅ −

sending a vector to its dual. In particular

𝛁𝐹|𝑎 ↦ 𝒟𝐹|𝑎

so
𝒟𝑣𝐹|𝑎 = 𝒟𝐹|𝑎(𝑣) = 𝛁𝐹|𝑎 ⋅ 𝑣.

Proposition 4.6. 𝑓 = (𝑓1, … , 𝑓𝑚) ∶ 𝑈 → R𝑚 is differentiable at 𝑎 with
derivative 𝐿 = (𝐿1, … 𝐿𝑚) where 𝐿𝑖 ∈ (R𝑛)∗ if and only if 𝑓𝑖’s are differen-
tiable at 𝑎 with derivative 𝐿𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.

Proof. By property of limits,

lim
ℎ→0

= 𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝐿(ℎ)
‖ℎ‖

= 0

if and only if

lim
ℎ→0

= 𝑓𝑖(𝑎 + ℎ) − 𝑓𝑖(𝑎) − 𝐿𝑖(ℎ)
‖ℎ‖

= 0

for all 𝑖.

Corollary 4.7. If 𝑓 is differentiable at 𝑎 then 𝒟𝑓|𝑎 ∈ 𝐿(R𝑛,R𝑚) is given
by multiplication by the 𝑚 × 𝑛 matrix

𝒟𝑓|𝑎 = ⎛⎜
⎝

𝒟1𝑓1|𝑎 ⋯ 𝒟𝑛𝑓1|𝑎
⋮ ⋱ ⋮

𝒟1𝑓𝑚|𝑎 ⋯ 𝒟𝑛𝑓𝑚|𝑎

⎞⎟
⎠
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Sometimes it is better to differentiate by hand:

Example. Let

𝐹 ∶ R × R → R
(𝑎1, 𝑎2) ↦ 𝑎1 ⋅ 𝑎2

Then

𝐹(𝑎 + ℎ) = (𝑎1 + ℎ1) ⋅ (𝑎2 + ℎ2) = 𝑎1 ⋅ 𝑎2⏟
𝐹(𝑎)

+ ℎ1 ⋅ 𝑎2 + 𝑎1 ⋅ ℎ2⏟⏟⏟⏟⏟⏟⏟
𝐿𝑎(ℎ)

+ℎ1 ⋅ ℎ2

Observe that 𝐿𝑎(ℎ) = 𝑎1 ⋅ℎ2 +𝑎2 ⋅ℎ1 is a linear function of ℎ. Claim 𝒟𝐹|𝑎 = 𝐿𝑎:

Proof.

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎) − 𝐿𝑎(ℎ)
‖ℎ‖

= lim
ℎ→0

ℎ1 ⋅ ℎ2
‖ℎ‖

By Cauchy-Schwarz,

0 ≤ |ℎ1 ⋅ ℎ2|
‖ℎ‖

≤ ‖ℎ1‖‖ℎ2‖
(‖ℎ1‖2 + ‖ℎ2‖2)1/2 = ‖ℎ1‖

(‖ℎ1‖2 + ‖ℎ2‖2)1/2 ⋅ ‖ℎ2‖ ≤ ‖ℎ2‖

so by squeeze rule
lim
ℎ→0

ℎ1 ⋅ ℎ2
‖ℎ‖

= 0

and it follows that 𝒟𝐹|𝑎 = 𝐿𝑎.

Recall from IB Linear Algebra that given 𝑉 , 𝑊 vector spaces,

𝐿(𝑉 , 𝑊) = {𝑇 ∶ 𝑉 → 𝑊 ∶ 𝑇 is linear}.

Lemma 4.8. If 𝐿 ∈ 𝐿(R𝑛,R𝑚) then 𝐿 is continuous.

Proof. Suppose 𝐿(𝑥) = (𝐿1(𝑥), … , 𝐿𝑚(𝑥)). Write 𝐿𝑖(𝑥) = ∑𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 and let

𝐴 = (𝑎𝑖𝑗) be the matrix representation of 𝐿. Since 𝜋𝑗 ∶ 𝑥 ↦ 𝑥𝑗 is continuous, 𝐿𝑖
is a linear combination of continuous functions so continuous. All components
of 𝐿 are continuous and so is 𝐿.

Note. The lemma assumes that the domain and codomain are finite-dimensional.
The result does not hold for general normed spaces. For example,

(𝐶[0, 1], ‖⋅‖1) → R
𝑓 ↦ 𝑓(0)

is not continuous.
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Proposition 4.9. If 𝑓 ∶ 𝑈 → R𝑚 is differentiable at 𝑎 then 𝑓 is continuous
at 𝑎.

Proof. Since 𝑓 is differentiable at 𝑎, we may write

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐿(ℎ) + ‖ℎ‖𝛼(ℎ)

where 𝐿(ℎ) = 𝒟𝑓|𝑎 ∈ 𝐿(R𝑛,R𝑚) and limℎ→0 𝛼(ℎ) = 0.
Since 𝐿 is continuous,

lim
ℎ→0

𝑓(𝑎 + ℎ) = lim
ℎ→0

𝑓(𝑎) + lim
ℎ→0

𝐿(ℎ) + lim
ℎ→0

‖ℎ‖𝛼(ℎ)

= 𝑓(𝑎) + 𝐿(0) + lim
ℎ→0

‖ℎ‖ ⋅ lim
ℎ→0

𝛼(ℎ)

= 𝑓(𝑎) + 0 + 0
= 𝑓(𝑎)

Thus 𝑓 is continuous at 𝑎.

Joke. Unfortunately the author missed this lecture and could not
reproduce the joke in its original form.1

Definition (𝐶1 space). 𝐹 ∶ 𝑈 → R is 𝐶1 if all the partial derivatives 𝒟𝑖𝐹
exist and are continuous on 𝑈. Denote

𝐶1(𝑈) = {𝐹 ∶ 𝑈 → R ∶ 𝐹 is 𝐶1}.

Theorem 4.10. If 𝐹 is 𝐶1 then 𝐹 is differentiable on 𝑈.

Joke. Lecturer: I’m not usually superstitious, but last time I lectured this
course I messed up proving this theorem. The next day Trump was elected.

Proof. For the ease of notation we show the 𝑛 = 2 case here. The proof for
𝑛 ≥ 3 is entirely analogous.

We need to show that 𝐹(𝑎 + ℎ) − 𝐹(𝑎) is well-approximated by

𝐿(ℎ) = 𝒟1𝐹|𝑎 ⋅ ℎ1 + 𝒟2𝐹|𝑎 ⋅ ℎ2.

From now on assume ‖ℎ‖ < 𝜀 where 𝐵𝜀(𝑎) ⊆ 𝑈.

𝑥0(ℎ) = 𝑎 𝑦1(ℎ) 𝑥1(ℎ) = (𝑎1 + ℎ, 𝑎2)

𝑦2(ℎ)

𝑥3(ℎ) = 𝑎 + ℎ

1The author would upon request produce a list of references from which an interested
individual could hear the original joke.
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The black dots in the above illustraction show that we can do a two step
approximation

𝐹(𝑎 + ℎ) − 𝐹(𝑎) = 𝐹(𝑥2) − 𝐹(𝑥1) + 𝐹(𝑥1) − 𝐹(𝑥0)

Recall from IA Analysis I

Theorem 4.11 (Mean Value Theorem). If 𝑓 ∶ [𝑎, 𝑏] → R is differentiable
then there exists 𝑐 ∈ [𝑎, 𝑏] such that

𝑓(𝑏) − 𝑓(𝑎) = (𝑏 − 𝑎)𝑓 ′(𝑐).

Now apply this to 𝑓(𝑡) = 𝐹(𝑎1 + 𝑡, 𝑎2), 𝑓 ′(𝑡) = 𝒟1𝐹|(𝑎1+𝑡,𝑎2): there exists
𝑦1(ℎ) = (𝑎1 + 𝑐1(ℎ), 𝑎2) such that 𝑐1(ℎ) ∈ [0, ℎ1] and

𝐹(𝑥1) − 𝐹(𝑥0) = ℎ1 ⋅ 𝒟1𝐹|𝑦1(ℎ).

Similarly apply Mean Value Theorem to 𝑔(𝑡) = 𝐹(𝑎1 + ℎ1, 𝑎2 + 𝑡): there exists
𝑦2(ℎ) = (𝑎1 + ℎ1, 𝑎2 + 𝑐2(ℎ)) such that 𝑐2(ℎ) ∈ [0, ℎ2] and

𝐹(𝑥2) − 𝐹(𝑥1) = ℎ2 ⋅ 𝒟2𝐹|𝑦2(ℎ).

Notice that since 𝑦1(ℎ) = (𝑎1 + 𝑐1(ℎ), 𝑎2) where 𝑐1(ℎ) ∈ [0, ℎ1], we have

‖𝑦1(ℎ) − 𝑎‖ ≤ ‖ℎ1‖ ≤ ‖ℎ‖.

Similarly ‖𝑦2(ℎ) − 𝑎‖ ≤ ‖ℎ‖. Claim that

lim
ℎ→0

𝒟1𝐹|𝑦1(ℎ) − 𝒟1𝐹|𝑎 = 0

Proof. By hypothesis 𝒟1𝐹 is continuous so given 𝜀 > 0, there exists 𝛿 > 0
such that |𝒟1𝐹|𝑧 − 𝒟1𝐹|𝑎| < 𝜀 whenever ‖𝑧 − 𝑎‖ < 𝛿. Then if ‖ℎ‖ < 𝛿,
‖𝑦1(ℎ) − 𝑎‖ ≤ ‖ℎ‖ < 𝛿. Then

|𝒟1𝐹|𝑦1(ℎ) − 𝒟1𝐹|𝑎| < 𝜀.

Similarly we see that

lim
ℎ→0

𝒟2𝐹|𝑦1(ℎ) − 𝒟2𝐹|𝑎 = 0.

Now |ℎ1|
‖ℎ‖ ≤ 1 so by squeeze rule

lim
ℎ→0

(𝒟1𝐹|𝑦1(ℎ) − 𝒟1𝐹|𝑎)ℎ
‖ℎ‖

= 0

and similary for 𝒟2. Then

𝐹(𝑎 + ℎ) − 𝐹(𝑎) = 𝐹(𝑥2) − 𝐹(𝑥1) + 𝐹(𝑥1) − 𝐹(𝑥0)
= ℎ1 ⋅ 𝒟1𝐹|𝑦1(ℎ) + ℎ2 ⋅ 𝒟2𝐹|𝑦2(ℎ)
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Thus

𝐹(𝑎 + ℎ) − 𝐹(𝑎) − 𝐿(ℎ) = ℎ1 ⋅ (𝒟1𝐹|𝑦1(ℎ) − 𝒟1𝐹|𝑎)
+ ℎ2 ⋅ (𝒟2𝐹|𝑦2(ℎ) − 𝒟2𝐹|𝑎)

Divide by ‖ℎ‖ and take limits,

lim
ℎ→0

𝐹(𝑎 + ℎ) − 𝐹(𝑎) − 𝐿(ℎ)
‖ℎ‖

= lim
ℎ→0

ℎ1 ⋅ (𝒟1𝐹|𝑦1(ℎ) − 𝒟1𝐹|𝑎)
‖ℎ‖

+ lim
ℎ→0

ℎ2 ⋅ (𝒟2𝐹|𝑦2(ℎ) − 𝒟2𝐹|𝑎)
‖ℎ‖

= 0 + 0
= 0

Thus 𝐹 is differentiable at 𝑎.

Definition (𝐶1 space). 𝑓 = (𝑓1, … , 𝑓𝑚) ∶ 𝑈 → R𝑛 is 𝐶1 if 𝑓𝑖 is 𝐶1 for all 𝑖.

Corollary 4.12. If 𝑓 ∈ 𝐶1(𝑈) then 𝑓 is differentiable on 𝑈.

Proof. 𝑓 is differentiable if and only if 𝑓𝑖 are differentiable for all 𝑖.

4.5 Chain Rule
4.5.1 Limits and Compositions

Let 𝑉1, 𝑉2, 𝑉3 be normed vector spaces, 𝑈1 ⊆ 𝑉1, 𝑈2 ⊆ 𝑉2 open, 𝑣0 ∈ 𝑈1,
𝑓 ∶ 𝑈1 → 𝑈2, 𝑔 ∶ 𝑈2 → 𝑉3.

Lemma 4.13. If lim𝑣→𝑣0
𝑓(𝑣) = 𝑤 and 𝑔 is continuous at 𝑤 then

lim
𝑣→𝑣0

𝑔(𝑓(𝑣)) = 𝑔(𝑤).

Proof. 𝑔 is continuous at 𝑤 so given 𝜀 > 0, exists 𝛿1 > 0 such that ‖𝑔(𝑤′)−𝑔(𝑤)‖ <
𝜀 whenever ‖𝑤′ − 𝑤‖ < 𝛿1. As lim𝑣→𝑣0

𝑓(𝑣) = 𝑤, exists 𝛿2 > 0 such that
‖𝑓(𝑣) − 𝑤‖ < 𝛿1 whenever 0 < ‖𝑣 − 𝑣0‖ < 𝛿2. Taking 𝑤′ = 𝑓(𝑣), we see that
‖𝑔(𝑓(𝑣)) − 𝑔(𝑤)‖ < 𝜀 whenever 0 < ‖𝑣 − 𝑣0‖ < 𝛿2. Thus

lim
𝑣→𝑣0

𝑔(𝑓(𝑣)) = 𝑔(𝑤).

4.5.2 Derivatives and Compositions

Let 𝑈1 ⊆ R𝑛, 𝑈2 ⊆ R𝑚 open, 𝐹 ∶ 𝑈1 → 𝑈2, 𝑔 ∶ 𝑈2 → Rℓ. If 𝑓 is differentiable
at 𝑎 ∈ 𝑈1, 𝒟𝑓|𝑎 ∈ 𝐿(R𝑛,R𝑚). If 𝑔 is differentiable at 𝑓(𝑎) ∈ 𝑈2, 𝒟𝑔|𝑓(𝑎) ∈
𝐿(R𝑚,Rℓ), so the composition

𝒟𝑔|𝑓(𝑎) ∘ 𝒟𝑓|𝑎 ∈ 𝐿(R𝑛,Rℓ).
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Theorem 4.14 (Chain rule). Suppose 𝑓 and 𝑔 are as above. If 𝑓 is differ-
entiable at 𝑎 and 𝑔 is differentiable at 𝑓(𝑎), then 𝑔 ∘ 𝑓 is differentiable at 𝑎
and

𝒟(𝑔 ∘ 𝑓)|𝑎 = 𝒟𝑔|𝑓(𝑎) ∘ 𝒟𝑓|𝑎.

Proof. We first use alternate characterisation of differentiability to rephrase the
problem. We know that

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐿1(ℎ) + ‖ℎ‖𝛼(ℎ)

where 𝐿1 = 𝒟𝑓|𝑎 ∈ 𝐿(R𝑛,R𝑚) and limℎ→0 𝛼(ℎ) = 0. Similarly

𝑔(𝑓(𝑎) + 𝑟) = 𝑔(𝑓(𝑎)) + 𝐿2(𝑟) + ‖𝑟‖𝛽(𝑟)

where 𝐿2 = 𝒟𝑔|𝑓(𝑎) ∈ 𝐿(R𝑚,Rℓ) and lim𝑟→0 𝐵(𝑟) = 0.

Joke. I had some trouble finding a good name for the infinitesimal variable.
Certainly 𝑓 or 𝑔 can’t be used although they are close to ℎ. In the end I settled
for 𝑟, although it does not have much ℎ-ness.

Note. If I define 𝛽(0) = 0 then 𝛽 is continuous at 0.

The objective is to show that

𝑔(𝑓(𝑎 + ℎ)) = 𝑔(𝑓(𝑎)) + 𝐿2(𝐿1(ℎ)) + ‖ℎ‖𝛾(ℎ)

where limℎ→0 𝛾(ℎ) = 0.
So we want to find 𝛾(ℎ). Using the estimates for 𝑓(𝑎 + ℎ) and 𝑔(𝑓(𝑎) + 𝑟),

we see that

𝑔(𝑓(𝑎 + ℎ)) = 𝑔(𝑓(𝑎) + 𝐿1(ℎ) + ‖ℎ‖𝛼(ℎ)⏟⏟⏟⏟⏟⏟⏟
𝐸(ℎ)

)

= 𝑔(𝑓(𝑎)) + 𝐿2(𝐿1(ℎ) + ‖ℎ‖𝛼(ℎ)) + ‖𝐸(ℎ)‖𝛽(𝐸(ℎ))
= 𝑔(𝑓(𝛼)) + 𝐿2(𝐿1(ℎ)) + ‖ℎ‖𝐿2(𝛼(ℎ)) + ‖𝐸(ℎ)‖𝛽(𝐸(ℎ))

i.e.
𝛾(ℎ) = 𝐿2(𝛼(ℎ)) + ‖𝐸(ℎ)‖

‖ℎ‖
𝛽(𝐸(ℎ)).

Always remember divide and conquer. The first term is easy so we focus on
𝐸(ℎ) for now.

Lemma 4.15. There exists 𝛿 > 0 such that ‖𝐸(ℎ)‖/‖ℎ‖ ≤ 𝑀 whenever
0 < ‖ℎ‖ < 𝛿.

Proof. Recall that
𝐸(ℎ)
‖ℎ‖

= 𝐿1 ( ℎ
‖ℎ‖

) + 𝛼(ℎ)

where
ℎ

‖ℎ‖
∈ 𝑆 = {𝑣 ∈ R𝑛 ∶ ‖𝑣‖ = 1}.

We have seen before in the proof of Theorem 3.11 that 𝑆 is compact. By Max
Value theorem there exists 𝑀 ′ such that ‖𝐿1(𝑣)‖ ≤ 𝑀 ′ for all 𝑣 ∈ 𝑆.
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Choose 𝛿 such that ‖𝛼(ℎ)‖ < 1 whenever 0 < ‖ℎ‖ < 𝛿. Then for 0 < ‖ℎ‖ < 𝛿,

‖𝐸(ℎ)‖
‖ℎ‖

≤ ∥𝐿 ( ℎ
‖ℎ‖

)∥ + ‖𝛼(ℎ)‖ ≤ 𝑀 ′ + 1 = 𝑀

Corollary 4.16.
lim
ℎ→0

𝐸(ℎ) = 0.

Proof.

lim
ℎ→0

𝐸(ℎ) = lim
ℎ→0

𝐸(ℎ)
‖ℎ‖

⋅ ‖ℎ‖ = 0

by squeeze rule.

Finally we are ready to estimate 𝛾(ℎ). 𝐿2 is continuous so

lim
ℎ→0

𝛼(ℎ) = 0 ⇒ lim
ℎ→0

𝐿2(𝛼(ℎ)) = 𝐿2(0) = 0.

𝛽 is continuous so

lim
ℎ→0

𝐸(ℎ) = 0 ⇒ lim
ℎ→0

𝛽(𝐸(ℎ)) = 𝛽(0) = 0.

Applying Lemma, squeeze rule shows that

lim
ℎ→0

𝛾(ℎ) = 0.

Remark.

1. If 𝛾 ∶ R → R𝑛, 𝐹 ∶ R𝑛 → R, let 𝑓 = 𝐹 ∘ 𝛾. Then

𝒟(𝐹 ∘ 𝛾)|𝑡 = 𝑓 ′(𝑡)
= 𝒟𝐹|𝛾(𝑡) ∘ 𝒟𝛾|𝑡

= (𝒟1𝐹|𝛾(𝑡) ⋯ 𝒟𝑛𝐹|𝛾(𝑡)) ⎛⎜
⎝

𝛾′
1(𝑡)
⋮

𝛾′
𝑛(𝑡)

⎞⎟
⎠

= [𝛁𝐹|𝛾(𝑡) ⋅ 𝛾′(𝑡)]

i.e. 𝑓 ′(𝑡) = 𝛁𝐹|𝛾(𝑡) ⋅ 𝛾′(𝑡).

In IA Analysis I, we proved the Mean Value Theorem which is an important
result in differential calculus. The result generalises to higher dimensions.

Definition (Convex set). 𝑈 ⊆ R𝑛 is convex if whenever 𝑥0, 𝑥1 ∈ 𝑈 then

𝑡𝑥1 + (1 − 𝑡)𝑥0 ∈ 𝑈

for 𝑡 ∈ [0, 1].
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Theorem 4.17 (Mean Value Inequality). Suppose 𝑈 ⊆ R𝑛 is open and
convex. If 𝐹 ∶ 𝑈 → R is differentiable and satisfies

‖𝛁𝐹|𝑎‖ ≤ 𝑀

for all 𝑎 ∈ 𝑈 then
|𝐹 (𝑥1) − 𝐹(𝑥0)| ≤ 𝑀‖𝑥1 − 𝑥0‖

for all 𝑥1, 𝑥0 ∈ 𝑈.

Proof. Given what we have so far, it takes more words to state the theorem than
to prove it (well, maybe not).

For 𝑡 ∈ [0, 1] define
𝛾(𝑡) = 𝑡𝑥1 + (1 − 𝑡)𝑥0.

Then
𝛾′(𝑡) = 𝑥1 − 𝑥0

and Im 𝛾 ⊆ 𝑈. Let 𝑓(𝑡) = 𝐹(𝛾(𝑡)), then

|𝑓 ′(𝑡)| = |𝛁𝐹|𝛾(𝑡) ⋅ 𝛾′(𝑡)|

≤ ∥𝐹 |𝛾(𝑡)∥ ⋅ ‖𝛾′(𝑡)‖ by Cauchy-Schwarz

≤ 𝑀‖𝑥1 − 𝑥0‖

Mean Value Theorem applied to 𝑓(𝑡) says that

|𝐹 (𝑥1) − 𝐹(𝑥0)| = |𝑓(1) − 𝑓(0)|
= |𝑓 ′(𝑐)| for some 𝑐 ∈ [0, 1]
≤ 𝑀‖𝑥1 − 𝑥0‖

4.6 Higher Derivatives
Let 𝑈 ⊆ R𝑛 open, 𝑎 ∈ 𝑈 and 𝑓 ∶ 𝑈 → R𝑚 differentiable. Then 𝒟𝑓𝑎 ∈ 𝐿(R𝑛,R𝑚).

Question. How should we define the second derivative at 𝑎?

Given 𝑣 ∈ R𝑛, define

𝛼𝑣 ∶ 𝑈 → R𝑚

𝑥 ↦ 𝒟𝑓|𝑥(𝑣)

Note. 𝛼𝑣 depends on 𝑓.

Example.

1. 𝛼𝑒𝑖
(𝑥) = 𝒟𝑓𝑥(𝑒𝑖) = 𝒟𝑖𝑓(𝑥).

2. 𝛼𝑣1+𝜆𝑣2
(𝑥) = 𝒟𝑓|𝑥(𝑣1 +𝜆𝑣2) = 𝒟𝑓|𝑥(𝑣1)+𝜆𝒟𝑓|𝑥(𝑣2) = 𝛼𝑣1

(𝑥)+𝜆𝛼𝑣2
(𝑥).
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Definition (Twice differentiability). 𝑓 is twice differentiable at 𝑎 ∈ 𝑈 if 𝛼𝑣
is differentiable at 𝑎 for all 𝑣 ∈ R𝑛.

If so define

𝒟2𝑓|𝑎 ∶ R𝑛 × R𝑛 → R𝑚

(𝑣, 𝑤) ↦ 𝒟𝛼𝑣|𝑎(𝑤)

Example.

𝒟2𝑓|𝑎(𝑒𝑖, 𝑒𝑗) = 𝒟𝛼𝑒𝑖
|𝑎(𝑒𝑗)

= 𝒟(𝒟𝑖𝑓)|𝑎(𝑒𝑗)
= 𝒟𝑗(𝒟𝑖𝑓)|𝑎

Notation. Let
𝒟𝑖𝑗𝑓|𝑎 ∶= 𝒟𝑗(𝒟𝑖𝑓) = 𝜕

𝜕𝑥𝑗

𝜕𝑓
𝜕𝑥𝑖

∣
𝑎
.

Lemma 4.18. If 𝑓 is twice differentiable at 𝑎 then

𝒟2𝑓|𝑎 ∶ R𝑛 × R𝑛 → R𝑚

is bilinear, i.e.

1. 𝒟2𝑓|𝑎(𝑣1 + 𝜆𝑣2, 𝑤) = 𝒟2𝑓|𝑎(𝑣1, 𝑤) + 𝜆𝒟2𝑓|𝑎(𝑣2, 𝑤),

2. 𝒟2𝑓|𝑎(𝑣, 𝑤1 + 𝜆𝑤2) = 𝒟2𝑓|𝑎(𝑣, 𝑤1) + 𝜆𝒟2𝑓|𝑎(𝑣, 𝑤2).

Proof.
1.

𝒟2𝑓|𝑎(𝑣1 + 𝜆𝑣2, 𝑤) = 𝒟𝛼𝑣1+𝜆𝑣2
|𝑎(𝑤)

= 𝒟(𝛼𝑣1
+ 𝜆𝛼𝑣2

)|𝑎(𝑤)
= 𝒟𝛼𝑣1

|𝑎(𝑤) + 𝜆𝒟𝛼𝑣2
|𝑎(𝑤)

= 𝒟2𝑓|𝑎(𝑣1, 𝑤) + 𝜆𝒟2𝑓|𝑎(𝑣2, 𝑤)

2.

𝒟2𝑓|𝑎(𝑣, 𝑤1 + 𝜆𝑤2) = 𝒟𝛼𝑣|𝑎(𝑤1 + 𝜆𝑤2)
= 𝒟𝛼𝑣|𝑎(𝑤1) + 𝜆𝒟𝛼𝑣|𝑎(𝑤2)
= 𝒟2𝑓|𝑎(𝑣, 𝑤1) + 𝜆𝒟2𝑓|𝑎(𝑣, 𝑤2)

Now suppose 𝑚 = 1, i.e. 𝐹 ∶ 𝑈 → R. Then

𝒟2𝐹|𝑎(𝑣, 𝑤) = 𝒟2𝐹|𝑎 (
𝑛

∑
𝑖=1

𝑣𝑖𝑒𝑖,
𝑛

∑
𝑗=1

𝑤𝑗𝑒𝑗)

=
𝑛

∑
𝑖,𝑗=1

𝑣𝑖𝒟2𝐹|𝑎(𝑒𝑖, 𝑒𝑗)𝑤𝑗

= 𝑣𝑇𝐻(𝑎)𝑤
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where
𝐻(𝑎) = (𝒟2𝐹|𝑎(𝑒𝑖, 𝑒𝑗)) = (𝒟𝑖𝑗𝐹|𝑎)

is the Hessian matrix of 𝐹 at 𝑎.

Example. Let 𝐹 ∶ R2 → R, 𝐹 (𝑥1, 𝑥2) = 𝑥4
1𝑥2

2, then

𝒟11𝐹 = 12𝑥2
1𝑥2

2 𝒟12𝐹 = 8𝑥3
1𝑥2

𝒟21𝐹 = 8𝑥3
1𝑥2 𝒟22𝐹 = 2𝑥4

1

so
𝐻(1, 1) = (12 8

8 2)

and
𝒟2𝐹|(1,1)((3, 1), (1, 2)) = (3 1) (12 8

8 2) (1
2)

Definition (𝐶2 space). 𝐹 ∶ 𝑈 → R is 𝐶2 if 𝐹 is 𝐶1 and all second partial
derivatives 𝒟𝑖𝑗𝐹 exist and are continuous on 𝑈. If so 𝐹 ∈ 𝐶2(𝑈).

Remark. We conduct a reality check that 𝐹 ∈ 𝐶2(𝑈) does imply that 𝐹 is twice
differentiable: if 𝐹 ∈ 𝐶2(𝑈) then 𝒟𝑖𝐹 ∈ 𝐶1(𝑈) for all 𝑖. Since 𝛼𝑣(𝑥) = 𝒟𝐹|𝑥(𝑣)
it follows that

𝛼𝑣 =
𝑛

∑
𝑖=1

𝑣𝑖𝒟𝑖𝐹 ∈ 𝐶1(𝑈).

By Theorem 4.10 𝛼𝑣 is differentiable for all 𝑣 so 𝐹 is twice differentiable on 𝑈.

Theorem 4.19 (Symmetry of Mixed Partials). If 𝑈 ⊆ R2 is open and
𝐹 ∈ 𝐶2(𝑈) then

𝒟12𝐹 = 𝒟21𝐹.

Lemma 4.20.

𝒟21𝐹|𝑎 = lim
ℎ→0

1
ℎ2 (𝐹(𝑎1 + ℎ, 𝑎2 + ℎ) − 𝐹(𝑎1 + ℎ, 𝑎2) − 𝐹(𝑎1, 𝑎2 + ℎ) + 𝐹(𝑎1, 𝑎2)) .

Note. ℎ ∈ R, not R2.

Proof. The proof is similar to the proof of Theorem 4.10 in that we apply Mean
Value Theorem to a two step estimation.

(𝑎1, 𝑎2) (𝑎1 + ℎ, 𝑎2)

(𝑎1, 𝑎2 + ℎ) (𝑎1 + ℎ, 𝑎2 + ℎ)
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Let

Δ = 𝐹(𝑎1 + ℎ, 𝑎2 + ℎ) − 𝐹(𝑎1 + ℎ, 𝑎2) − 𝐹(𝑎1, 𝑎2 + ℎ) + 𝐹(𝑎1, 𝑎2)
𝐴(𝑡) = 𝐹(𝑎1 + ℎ, 𝑡) − 𝐹(𝑎1, 𝑡)

so that

Δ = 𝐴(𝑎2 + ℎ) − 𝐴(𝑎2)
𝐴′(𝑡) = 𝒟2𝐹|(𝑎1+ℎ,𝑡) − 𝒟2𝐹|(𝑎1,𝑡)

By Mean Value Theorem applied to 𝐴, we see that

Δ = ℎ ⋅ 𝐴′(𝑥2(ℎ))

where 𝑥2(ℎ) ∈ [𝑎2, 𝑎2 + ℎ]

= ℎ ⋅ (𝒟2𝐹|(𝑎1+ℎ,𝑥2(ℎ)) − 𝒟2𝐹|(𝑎1,𝑥2(ℎ)))

= ℎ ⋅ (𝐵(𝑎1 + ℎ) − 𝐵(𝑎1))

where

𝐵(𝑠) = 𝒟2𝐹|(𝑠,𝑥2(ℎ))

𝐵′(𝑠) = 𝒟1(𝒟2𝐹)|(𝑠,𝑥2(ℎ)) = 𝒟21𝐹|(𝑠,𝑥2(ℎ))

so by Mean Value Theorem again

= ℎ2𝒟21𝐹|(𝑥1(ℎ),𝑥2(ℎ))

In summary, Δ = ℎ2𝒟21𝐹|𝑥1(ℎ),𝑥2(ℎ) so

lim
ℎ→0

Δ
ℎ2 = lim

ℎ→0
𝐷21𝐹(𝑥1(ℎ), 𝑥2(ℎ))

where 𝑥1(ℎ) ∈ [𝑎1, 𝑎1 + ℎ], 𝑥2(ℎ) ∈ [𝑎2, 𝑎2 + ℎ]. Thus we know

lim
ℎ→0

(𝑥1(ℎ), 𝑥2(ℎ)) = (𝑎1, 𝑎2).

Since 𝐹 ∈ 𝐶2(𝑈), 𝒟21𝐹 is continuous so

lim
ℎ→0

𝒟21𝐹(𝑥1(ℎ), 𝑥2(ℎ)) = 𝒟21𝐹|𝑎 = lim
ℎ→0

Δ
ℎ2 .

Proof of Symmetry of Mixed Partials. This should be almost apparent from the
symmetry of the expression on RHS above. Let 𝐺(𝑥1, 𝑥2) = 𝐹(𝑥2, 𝑥1). Then

𝒟12𝐹|(𝑎1,𝑎2) = 𝒟21𝐺|(𝑎2,𝑎2)

= lim
ℎ→0

1
ℎ2 (𝐺(𝑎1 + ℎ, 𝑎2 + ℎ) − 𝐺(𝑎1, 𝑎2 + ℎ) − 𝐺(𝑎1 + ℎ, 𝑎2) + 𝐺(𝑎1, 𝑎2))

= lim
ℎ→0

1
ℎ2 (𝐹(𝑎1 + ℎ, 𝑎2 + ℎ) − 𝐹(𝑎1 + ℎ, 𝑎2) − 𝐹(𝑎1, 𝑎2 + ℎ) + 𝐹(𝑎1, 𝑎2))

= 𝒟21𝐹|(𝑎1,𝑎2)
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Corollary 4.21. Suppose 𝑈 ⊆ R𝑛 is open, 𝐹 ∈ 𝐶2(𝑈). Then

𝐷𝑖𝑗𝐹|𝑎 = 𝐷𝑗𝑖𝐹|𝑎

for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 and all 𝑎 ∈ 𝑈.

Proof. Apply Symmetry of Mixed Partials to

𝐺(𝑥1, 𝑥2) = 𝐹(𝑎1, … , 𝑎𝑖−1, 𝑥1, 𝑎𝑖+1, … , 𝑎𝑗−1, 𝑥2, 𝑎𝑗+1, … , 𝑎𝑛).

To summarise, if 𝐹 ∈ 𝐶2(𝑈) then the Hessian matrix

𝐻|𝑎 = (𝐷𝑖𝑗𝐹|𝑎)

is symmetric. We have proved that the second derivative is given by

𝒟2𝐹|𝑎 ∶ R𝑛 × R𝑛 → R
(𝑣, 𝑤) ↦ 𝑣𝑇𝐻|𝑎𝑤

so 𝒟2𝐹|𝑎 is a symmetric bilinear form:

𝒟2𝐹|𝑎(𝑣, 𝑤) = 𝒟2𝐹|𝑎(𝑤, 𝑣).

We could rephrase our theory for second derivatives developed so far using
the language of linear maps, which gives an alternative description from a slightly
different point: if 𝑓 ∶ 𝑈 → R𝑚 is 𝐶2, then

𝒟𝑓 ∶ 𝑈 → 𝐿(R𝑛,R𝑚) ≅ ℳ𝑚,𝑛(R) ≅ R𝑚𝑛

𝒟(𝒟𝑓)|𝑎 ∈ 𝐿(R𝑛, 𝐿(R𝑛,R𝑚)).

i.e. if 𝑤 ∈ R𝑛, 𝑣 ∈ R𝑛,
𝒟(𝒟𝑓)|𝑎(𝑤) ∈ 𝐿(R𝑛,R𝑚).

Define a function
𝐵(𝑣, 𝑤) = (𝒟(𝒟𝑓)|𝑎(𝑤))(𝑣)

which is a clearly bilinear map R𝑛 × R𝑛 → R𝑚 and it is not hard too see that

𝐵(𝑣, 𝑤) = 𝒟2𝑓|𝑎(𝑣, 𝑤)

as we defined it.

4.6.1 Third and Higher Derivatives

Definition (𝐶𝑘 space). 𝐹 ∶ 𝑈 → R is 𝐶𝑘 if the partial derivatives 𝒟𝑖𝐹 are
𝐶𝑘−1 for all 1 ≤ 𝑖 ≤ 𝑛.

If 𝐹 ∈ 𝐶𝑘(𝑈), define the 𝑘th derivative

𝒟𝑘𝐹|𝑎 ∶ (R𝑛)𝑘 → R
(𝑣1, … , 𝑣𝑘) ↦ 𝒟(𝒟𝑘−1𝐹(𝑣1, … 𝑣𝑘−1))|𝑎(𝑣𝑘)

which is a symmetric multilinear form.
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Note. The above definition also applies to 𝐹 ∶ 𝑈 → R𝑚.

4.7 Taylor’s Formula
Let 𝑈 ⊆ R𝑛 be convex and open, 𝐹 ∈ 𝐶𝑘(𝑈) and 𝑥0, 𝑥0 + 𝑣 ∈ 𝑈. Define

𝑓(𝑡) = 𝐹(𝑥0 + 𝑡𝑣).

Note that 𝑓 ∶ [0, 1] → R.

Proposition 4.22. 𝑓 is 𝑘-times differentiable and

𝑓 (𝑘)(𝑡) = 𝒟𝑘𝐹|𝑥0+𝑡𝑣(𝑣, … , 𝑣).

Proof. If 𝐺 ∈ 𝐶𝑘(𝑈), 𝑔(𝑡) = 𝐺(𝑥0 + 𝑡𝑣) then

𝑔′(𝑡) = 𝒟𝑣𝐺|𝑥0+𝑡𝑣 = 𝒟𝐺|𝑥0+𝑡𝑣(𝑣). (∗)

Proof is by induction on 𝑘. 𝑘 = 1 is (∗) with 𝐺 = 𝐹. In general define

ℎ(𝑡) = 𝑓 (𝑘−1)(𝑡)
= 𝒟𝑘−1𝐹|𝑥0+𝑡𝑣(𝑣, … , 𝑣)
= 𝐻(𝑥0 + 𝑡𝑣)

where 𝐻(𝑥) = 𝒟𝑘−1𝐹|𝑥(𝑣, … , 𝑣).
Applying (∗) to ℎ gives

𝑓 (𝑘)(𝑡) = ℎ′(𝑡)
= 𝒟𝐻|𝑥0+𝑡𝑣(𝑣)
= 𝒟(𝒟𝑘−1𝐹(𝑣, … , 𝑣))(𝑣)
= 𝒟𝑘𝐹(𝑣, … , 𝑣)

Corollary 4.23 (Multivariable Taylor’s Formula). If 𝑈 is open and convex,
𝑥0, 𝑥0 + 𝑣 ∈ 𝑈 and 𝐹 ∈ 𝐶𝑘(𝑈) then

𝐹(𝑥0 + 𝑣) =
𝑘−1
∑
𝑖=0

1
𝑖!

𝒟𝑖𝐹|𝑥0
(𝑣, … , 𝑣) + 1

𝑘!
𝒟𝑘𝐹|𝑥0+𝑡𝑣(𝑣, … , 𝑣)

for some 𝑡 ∈ [0, 1].

Proof. This seems like a horrible mess but, like many other things we have
encountered in this course, its nothing more than ideas from IA Analysis I
applied new (actually gneralised from old) definitions. Define

𝑓(𝑡) = 𝐹(𝑥0 + 𝑡𝑣).

Then the single variable Taylor’s formula says that

𝑓(1) =
𝑘−1
∑
𝑖=0

1
𝑖!

𝑓 (𝑖)(0)1𝑖 + 1
𝑘!

𝑓 (𝑘)(𝑡)1𝑘

for some 𝑡 ∈ [0, 1]. Subsituting the formula for 𝑓 (𝑖) as in the proposition above
gives the result required.
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4.8 Speed & Distance
Well the title says all. This a bewildering section that doesn’t seem to go
anywhere or belong to any part of this course. Nevertheless it is required by the
faculty.1

All norms are Euclidean norms in this section since we require inner product.

Lemma 4.24. If 𝛼 ∶ R → R𝑛 is 𝐶1 then

𝑑
𝑑𝑡

‖𝛼(𝑡)‖ ≤ ‖𝛼′(𝑡)‖.

Proof. ‖𝛼(𝑡)‖ = (𝛼 ⋅ 𝛼)1/2 so

𝑑
𝑑𝑡

(𝛼 ⋅ 𝛼)1/2 = 1
2

(𝛼 ⋅ 𝛼)−1/2(2𝛼′ ⋅ 𝛼)

= 𝛼′ ⋅ 𝛼
(𝛼 ⋅ 𝛼)1/2

≤ ‖𝛼′‖‖𝛼‖
‖𝛼‖

= ‖𝛼′‖

by Cauchy-Schwarz.

Corollary 4.25. If 𝛾 ∶ R → R𝑛 is continuous then

∥∫
1

0
𝛾(𝑡)𝑑𝑡∥ ≤ ∫

1

0
‖𝛾(𝑡)‖𝑑𝑡

Note. If 𝛾(𝑡) = 𝑣(𝑡) is the velocity then this says displacement is smaller than
distance on the odometer.

Proof. Let 𝛼(𝑠) = ∫𝑠
0

𝛾(𝑡)𝑑𝑡. Then by the lemma

𝑑
𝑑𝑠

‖𝛼(𝑠)‖ ≤ ‖𝛼′(𝑠)‖ = ‖𝛾(𝑠)‖

where the equality comes from Fundamental Theorem of Calculus. Let 𝛽(𝑠) =
∫𝑠
0

‖𝛾(𝑡)‖𝑑𝑡 then 𝛽′(𝑠) = ‖𝛾(𝑠)‖.
Since ‖𝛼(0)‖ = 𝛽(0) and

𝑑
𝑑𝑠

‖𝛼(𝑠)‖ ≤ ‖𝛾(𝑠)‖ = 𝑑
𝑑𝑠

𝛽(𝑠),

‖𝛼(𝑠)‖ ≤ 𝛽(𝑠)

for all 𝑠 ≥ 0. Take 𝑠 = 1 to get the result required.

And that marks the end of this vestigial section.

1“All right let’s go ahead and get started.”
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5 Metric Spaces
In this chapter we take a short break from differential calculus (but don’t forget
them! We will need them shortly after).

5.1 Definitions

Definition (Metric space). A metric space is a set 𝑋 with a distance function
𝐷 ∶ 𝑋 × 𝑋 → R satisfying

1. positivity: 𝑑(𝑥, 𝑦) ≥ 0, 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.

2. symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

3. triangle inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Example.

1. A normed space (𝑉 , ‖⋅‖) is a metric space with

𝑑(𝑣, 𝑤) = ‖𝑣 − 𝑤‖.

Proof.

(a) 𝑑(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ ≥ 0 and 𝑑(𝑣, 𝑤) = 0 if and only if ‖𝑣, 𝑤‖ = 0 if and
only if 𝑣 − 𝑤 = 0 if and only if 𝑣 = 𝑤.

(b) 𝑑(𝑣, 𝑤) = ‖𝑣 − 𝑤‖ = ‖(−1)(𝑤 − 𝑣)‖ = | − 1| ⋅ ‖𝑤 − 𝑣‖ = 𝑑(𝑤, 𝑣).
(c) 𝑑(𝑣1, 𝑣3) = ‖𝑣1 − 𝑣3‖ ≤ ‖𝑣1 − 𝑣2‖ + ‖𝑣2 − 𝑣3‖ = 𝑑(𝑣1, 𝑣2) + 𝑑(𝑣2, 𝑣3).

2. If (𝑋, 𝑑) is a metric space and 𝑌 ⊆ 𝑋 then (𝑌 , 𝑑|𝑌 ×𝑌) is metric space. We
say 𝑌 is a subspace of 𝑋.

3. For any set 𝑋, let

𝑑(𝑥, 𝑦) = {1 𝑥 = 𝑦
0 𝑥 ≠ 𝑦

which is the discrete metric.

Most of the definitions and theorems we gave about subsets of normed spaces
apply equally well to metric spaces by replacing ‖𝑣 − 𝑤‖ with 𝑑(𝑣, 𝑤). Actually
metric is a more fundamental concept than norm: every norm induces a metric
as outlined above but not vice versa. This means that we could have organised
the contents in a more structured and formal way by introducing metric spaces
and its properties upfront and subsequently allowing normed spaces to inherit
these properties. However, we choose not to do so since

1. for most of the course up to this point, properties of metric spaces are in a
sense add complexity but not richness to our theory because we work with
R𝑛 and function spaces, which come with a normed structure. Differential
calculus in high dimension is already hard and we don’t want to make
things more complicated.
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2. in fact, we don’t use metric properties until the last chapter. It might be
better to give an ad hoc definition here lest one forget if we do it at the
very beginning.

That is enough digression about the structure of the course. As promised,
here are some definitions and results that generalise easily those from normed
space. You should find them at this point very familiar (and more so if you’ve
taken IB Metric and Topological Spaces).

Definition (Convergence). A sequence (𝑥𝑛) in 𝑋 converges to 𝑥 ∈ 𝑋 if for
every 𝜀 > 0, there exists 𝑁 such that 𝑑(𝑥𝑛, 𝑥) < 𝜀 whenever 𝑛 > 𝑁.

Definition (Continuity). If (𝑋, 𝑑𝑥) and (𝑌 , 𝑑𝑌) are metric spaces, 𝑓 ∶ 𝑋 → 𝑌
is continuous if (𝑓(𝑥𝑛)) → 𝑓(𝑥) with respect to 𝑑𝑌 whenever (𝑥𝑛) → 𝑥 ∈ 𝑋
with respect to 𝑑𝑋.

Proposition 5.1 (Alternate characterisation of continuity). 𝑓 is continuous
if and only if for every 𝜀 > 0 and 𝑥 ∈ 𝑋, there exists 𝛿 > 0 such that
𝑑(𝑓(𝑥′), 𝑓(𝑥)) < 𝜀 whenever 𝑑(𝑥′, 𝑥) < 𝛿.

Definition (Open ball). The set

𝐵𝑟(𝑥) = {𝑥′ ∈ 𝑋 ∶ 𝑑(𝑥′, 𝑥) < 𝑟}

is the open ball of radius 𝑟 centred at 𝑥.

Definition (Closed ball). The set

𝐵𝑟(𝑥) = {𝑥′ ∈ 𝑋 ∶ 𝑑(𝑥′, 𝑥) ≤ 𝑟}

is the closed ball of radius 𝑟 centred at 𝑥.

Definition (Open subset). 𝑈 ⊆ 𝑋 is an open subset of 𝑋 if for every 𝑥 ∈ 𝑈,
there exists 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊆ 𝑈.

Proposition 5.2. If 𝑓 ∶ 𝑋 → 𝑌 is continuous and 𝑈 ⊆ 𝑌 is open then

𝑓−1(𝑈) ⊆ 𝑋

is open.

We have stressed this before but in case one has forgotten,

Note. Being open (and closed) is a property of a subset, not a space.

Example. Let 𝑋 = R with metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|. Then [0, 1
2 ) is not an open

subset of 𝑋. If 𝑌 = [0, 1] ⊆ 𝑋 with the subspace metric then [0, 1
2 ) is an open

subset of 𝑌.
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Definition (Closed subset). 𝐶 is a closed subset of 𝑋 if 𝑋 \ 𝐶 is an open
subset.

Proposition 5.3. 𝐶 ⊆ 𝑋 is closed if and only if whenever (𝑥𝑛) → 𝑥 in 𝑋
and 𝑥𝑛’s are all in 𝐶 then 𝑥 ∈ 𝐶 as well.

Definition (Cauchy sequence). A sequence (𝑥𝑛) in 𝑋 is Cauchy if for every
𝜀 > 0 there exists 𝑁 such that 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀 whenever 𝑛, 𝑚 ≥ 𝑁.

Definition (Completeness). 𝑋 is complete if whenever (𝑥𝑛) is a Cauchy
sequence in 𝑋, there exists 𝑥 ∈ 𝑋 such that (𝑥𝑛) → 𝑥.

Proposition 5.4. Suppose 𝑋 is a complete metric space and 𝐶 ⊆ 𝑋 is
closed. Then 𝐶 with the subspace metric is also complete.

Proof. Suppose (𝑥𝑛) is a Cauchy sequence in 𝐶. Then (𝑥𝑛) is also a Cauchy
sequence in 𝑋. Since 𝑋 is complete there exists 𝑥 ∈ 𝑋 such that (𝑥𝑛) → 𝑥.
Since 𝐶 ⊆ 𝑋 is closed 𝑥 ∈ 𝐶 so 𝐶 is complete.

Joke. This is a story about John Conway. Before he moved to the U.S. he was
a professor here in Cambridge. He was a very unusual guy and liked playing
games. His office was full of toys, such as balls to study sphere packing. In fact
he had two offices full of toys: the first one was filled up so he was given a second
one.

One day he had his attic repainted. When the painters finished, they left
behind this long roll of paper and an enormous pair of shears. They came back
and collect hte shears but not didn’t bother the paper.

Back then Conway was interested in finite simple group. Around that time
someone suspected a new finite simple group and Conway proposed a way to
build it. Other group theorists told Conway that, well, if you want to prove it
then just write down the character table (which is enormous). But he was too
busy to get started.

Just about then he thought it would a really good idea to use the paper at
hand to do this. He cover the floor of attic with paper and started working on
the character table. And indeed he found it, so now we have a finite simple
group (actually three) called Conway group.1

5.2 Lipschitz Maps
Suppose (𝑋, 𝑑𝑋) and (𝑌 , 𝑑𝑌) are metric spaces.

Definition (Lipschitz map). 𝑓 ∶ 𝑋 → 𝑌 is 𝐾-Lipschitz, where 𝐾 ∈ R, 𝐾 > 0,
if for every 𝑥, 𝑥′ ∈ 𝑋,

𝑑𝑌(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐾𝑑𝑋(𝑥, 𝑥′).

1Moral of the story: sometimes you just need a really big piece of paper!
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Say 𝑓 is Lipschitz if it is 𝐾-Lipschitz for some 𝐾.
Example.

1. If 𝑓 is Lipschitz then it is uniformly continuous:

Proof. Suppose 𝑓 is 𝐾-Lipschitz. Given 𝜀 > 0, 𝑑(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐾𝑑(𝑥, 𝑥′) <
𝜀 whenever 𝑑(𝑥, 𝑥′) < 𝜀/𝐾.

2. Suppose 𝑈 ⊆ R𝑛 is open, 𝐹 ∈ 𝐶1(𝑈). If 𝐾 = 𝐵𝑟(𝑥0) ⊆ 𝑈 then 𝐹|𝐾 is
Lipschitz:

Proof. The function

𝑈 → R𝑛 → R
𝑥 ↦ 𝛁𝐹|𝑥 ↦ ‖𝛁𝐹|𝑥‖

is continuous. 𝐾 is closed and bounded and thus compact. Thus by
Maximum Value Theorem there exists 𝑀 such that ‖𝛁𝐹|𝑥‖ ≤ 𝑀 for all
𝑥 ∈ 𝐾. 𝐾 = 𝐵𝑟(𝑥0) is convex so by Mean Value Inequality

|𝐹 (𝑥) − 𝐹(𝑥′)| ≤ 𝑀‖𝑥 − 𝑥′‖

so 𝑓 is 𝑀-Lipschitz.

3. If 𝑓 ∶ 𝑋 → 𝑌 is 𝐾1-Lipschitz, 𝑔 ∶ 𝑌 → 𝑍 is 𝐾2-Lipschitz then 𝑔 ∘ 𝑓 is
𝐾1𝐾2-Lipschitz:

Proof.

𝑑(𝑔(𝑓(𝑥)), 𝑔(𝑓(𝑥′))) ≤ 𝐾2𝑑(𝑓(𝑥), 𝑓(𝑥′))
≤ 𝐾2𝐾1𝑑(𝑥, 𝑥′)

4. Consequently, composition of Lipschitz maps is Lipschitz.

5. If ‖⋅‖ and ‖⋅‖′ are two norms on 𝑉. Then they are Lipschitz equivalent if
and only if the maps

id ∶ (𝑉 , ‖⋅‖) → (𝑉 , ‖⋅‖′)
id ∶ (𝑉 , ‖⋅‖′) → (𝑉 , ‖⋅‖)

are both Lipschitz.

5.2.1 Operator Norm

Definition (Operator norm). Let 𝑉 and 𝑊 be normed spaces. Given 𝐿 ∈
𝐿(𝑉 , 𝑊), the operator norm is

‖𝐿‖op = sup
𝑣∈𝑉 \{0}

‖𝐿(𝑣)‖𝑊
‖𝑣‖𝑉

= sup
𝑣∈𝑉 \{0}

∥𝐿 ( 𝑣
‖𝑣‖

)∥
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Remark. If 𝑉 and 𝑊 are finite-dimensional, 𝐿 ∈ 𝐿(𝑉 , 𝑊) is continuous and
𝑆(𝑉 ) = {𝑣 ∈ 𝑉 ∶ ‖𝑣‖ = 1} is compact. By the Maximum Value Theorem,

sup
𝑣∈𝑆(𝑉 )

‖𝐿(𝑣)‖ = max
𝑣∈𝑆(𝑉 )

‖𝐿(𝑣)‖.

so we can replace sup with 𝑚𝑎𝑥 in the definition.

Observe that if 𝑣 ∈ 𝑉 then ‖𝐿(𝑣)‖ ≤ ‖𝐿‖op ⋅ ‖𝑣‖.
We call something a norm without checking whether it is a norm so we had

better do it now:

Proposition 5.5. ‖⋅‖op is a norm on 𝐿(𝑉 , 𝑊).

Proof. Example sheet.

Form here on let 𝑉 = (R𝑛, ‖⋅‖2) and 𝑊 = (R𝑚, ‖⋅‖2).

Proposition 5.6. Suppose 𝑈 ⊆ R𝑛 is open and convex, 𝑓 ∶ 𝑈 → R𝑚 is
differentiable and ‖𝒟𝑓|𝑥‖op ≤ 𝑀 for all 𝑥 ∈ 𝑈. Then 𝑓 is 𝑀-Lipschitz.

Proof. The proof for the general case is similar to that of Mean Value Inequality
and is left as an exercise. Here we want to draw our attention to the case where
𝑓 is 𝐶1 and show how it arises as a corollary of Mean Value Inequality.

Given 𝑥0, 𝑥1 ∈ 𝑈, define

𝑥 ∶ [0, 1] → 𝑈
𝑡 ↦ (1 − 𝑡)𝑥0 + 𝑡𝑥1

𝛾 ∶ [0, 1] → R𝑚

𝑡 ↦ 𝑓(𝑥(𝑡))

By Corollary 4.25,

∥∫
1

0
𝛾′(𝑡)𝑑𝑡∥ ≤ ∫

1

0
‖𝛾′(𝑡)‖𝑑𝑡

By Fundamental Theorem of Calculus, LHS is

∥∫
1

0
𝛾′(𝑡)𝑑𝑡∥ = ‖𝛾(1) − 𝛾(0)‖ = ‖𝑓(𝑥1) − 𝑓(𝑥0)‖,

and by chain rule the integrand on RHS is

‖𝛾′(𝑡)‖ = ∥𝒟𝑓|𝑥(𝑡)(𝑥′(𝑡))∥ ≤ ‖𝒟𝑓|𝑥(𝑡)‖ ⋅ ‖𝑥′(𝑡)‖ ≤ 𝑀‖𝑥1 − 𝑥0‖.

Thus putting everyting together we get

‖𝑓(𝑥1) − 𝑓(𝑥0)‖ ≤ 𝑀‖𝑥1 − 𝑥0‖.

5.3 Contraction Mapping Theorem
In this section we will learn a new way to solve equations.
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Definition (Contraction map). Let 𝑋 be a metric space. 𝑓 ∶ 𝑋 → 𝑋 is a
contraction map if it is 𝐾-Lipschitz for some 𝐾 < 1, i.e.

𝑑(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐾𝑑(𝑥, 𝑥′).

Intuitively, 𝑓 shrinks distances, ergo the name.

Definition (Fixed point). 𝑥 ∈ 𝑋 is a fixed point of 𝑓 ∶ 𝑋 → 𝑋 if 𝑓(𝑥) = 𝑥.

Theorem 5.7 (Contraction Mapping Theorem). Suppose 𝑋 is a complete
metric space. If 𝑓 ∶ 𝑋 → 𝑋 is a contraction map then 𝑓 has a unique fixed
point.

Proof. Since 𝑓 is a contraction, there is some 𝐾 < 1 such that

𝑑(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐾𝑑(𝑥, 𝑥′).

We prove the uniqueness part first since it is short. Suppose 𝑥 and 𝑥′ are
both fixed points of 𝑓, then

𝑑(𝑥, 𝑥′) = 𝑑(𝑓(𝑥), 𝑓(𝑥′)) ≤ 𝐾𝑑(𝑥, 𝑥′)

where 𝐾 < 1. The only way for this to hold is 𝑑(𝑥, 𝑥′) = 0, i.e. 𝑥 = 𝑥′.
Next we prove the more interesting part about existence. Heuristically,

completeness appears in our hypothesis although it is not in any part of the
definition of a contraction map or fixed point, so we better find a Cauchy sequence
to which we can apply the condition. Pick 𝑥0 ∈ 𝑋 and inductively define

𝑥𝑛+1 = 𝑓(𝑥𝑛) = 𝑓𝑛+1(𝑥0).

Observe that

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝑓(𝑥𝑛−1), 𝑓(𝑥𝑛)) ≤ 𝐾𝑑(𝑥𝑛−1, 𝑥𝑛)

so by induction we see that

𝑑(𝑥𝑛, 𝑥𝑛−1) ≤ 𝐾𝑛𝑑(𝑥0, 𝑥1) = 𝐾𝑛𝑅

where 𝑅 = 𝑑(𝑥0, 𝑥1). Claim (𝑥𝑛) is Cauchy:

Proof.

𝑑(𝑥𝑛, 𝑥𝑛+𝑟) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + ⋯ + 𝑑(𝑥𝑛+𝑟−1, 𝑥𝑛+𝑟)
≤ 𝐾𝑛𝑅 + 𝐾𝑛+1𝑅 + ⋯ + 𝐾𝑛+𝑟−1𝑅

= 𝐾𝑛𝑅1 − 𝐾𝑟

1 − 𝐾

≤ 𝐾𝑛𝑅 1
1 − 𝐾

As 𝐾 < 1,
lim

𝑛→∞

𝐾𝑛𝑅
1 − 𝐾

= 0.
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Given 𝜀 > 0, pick 𝑁 such that 𝐾𝑛𝑅
1−𝐾 < 𝜀 whenever 𝑛 ≥ 𝑁. Then for

𝑚 ≥ 𝑛 ≥ 𝑁,
𝑑(𝑥𝑛, 𝑥𝑚) ≤ 𝐾𝑛𝑅

1 − 𝐾
< 𝜀

so (𝑥𝑛) is Cauchy.

Since 𝑋 is complete, there exists 𝑥 ∈ 𝑋 such that (𝑥𝑛) → 𝑥. 𝑓 is Lipschitz
so it is continuous so (𝑓(𝑥𝑛)) → 𝑓(𝑥), i.e. (𝑥𝑛+1) → 𝑓(𝑥). But (𝑥𝑛+1) → 𝑥 so
by uniqueness of limits in metric space 𝑓(𝑥) = 𝑥, i.e. 𝑥 is a fixed point of 𝑓.

Remark. How does this help us solve equations? The theorem says that the
equation 𝑓(𝑥) = 𝑥 has a unique solution and the proof shows that we can
approximate the fixed point by starting with 𝑥0 ∈ 𝑋 and repeatedly applying 𝑓.

In practice, not every map is contraction so we often have to restrict the
domain of 𝑓 in order to get a contraction map.

Example (Finding square roots using iteration). An elementary method to find
the square root of a non-negative number 𝑛 is to let

𝑓 ∶ (0, ∞) → (0, ∞)

𝑥 ↦ 1
2

(𝑥 + 𝑛
𝑥

)

and iterate 𝑓.
Why does this work? We are essentially finding a fixed point of 𝑓. But then

𝑥 = 𝑓(𝑥) = 1
2 (𝑥 + 𝑛/𝑥) so 𝑥2 = 𝑛. Therefore the fixed point of 𝑓 is precisely

√
𝑛.

That seems promising. Now we are left to show 𝑓 is a contraction:

|𝑓(𝑥) − 𝑓(𝑦)| = 1
2

∣𝑥 + 𝑛
𝑥

− 𝑦 − 𝑛
𝑦

∣ = 1
2

|𝑥 − 𝑦| ⋅ ∣1 − 𝑛
𝑥𝑦

∣ .

Unfortunately, this means that if 𝑥 and 𝑦 are small 𝑓 is definitely not a contraction.
To fix this, we restrict 𝑓 to 𝐼𝐾 = [

√
𝑛/𝐾, 𝐾

√
𝑛]. Then 𝑓(𝐼𝐾) ⊆ 𝐼𝐾 and if we

choose 𝐾 =
√

2, for example, then

∣1 − 𝑛
𝑥𝑦

∣ ≤ |1 − 2| = 1

so
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 1

2
|𝑥 − 𝑦| ⋅ 1 = 1

2
|𝑥 − 𝑦|

for 𝑥, 𝑦 ∈ 𝐼𝐾 so 𝑓|𝐼√
2

is a contraction map. Therefore if I start with 𝑥0 ∈ 𝐼√
2

and iterate it will converge to
√

𝑛.
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6 Solving Equations
In this final chapter we are going to learn methods to solve equations, first in
R𝑛 and then in function space.

6.1 Inverse Function Theorem

Definition (Diffeomorphism). Suppose 𝑈1, 𝑈2 ⊆ R𝑛 is open. A map 𝑓 ∶
𝑈1 → 𝑈2 is a diffeomorphism if 𝑓 is a bijection and both 𝑓 and 𝑓−1 are 𝐶1.

Example.

1. If 𝐿 ∈ 𝐿(R𝑛,R𝑛) is invertible (i.e. det 𝐿 ≠ 0) then the affine map

𝐴 ∶ R𝑛 → R𝑛

𝑥 ↦ 𝐿(𝑥) + 𝑦0

is a diffeomorphism with inverse 𝑦 ↦ 𝐿−1(𝑦 − 𝑦0).

2. The polar coordinates map

𝑓 ∶ (0, ∞) × (0, 𝜋) → R × (0, ∞)
(𝑟, 𝜃) ↦ (𝑟 cos 𝜃, 𝑟 sin 𝜃)

is a diffeomorphism. It is easy to see that 𝑓 is bijective and 𝐶1 and its
inverse is

𝑓−1(𝑥, 𝑦) = (√𝑥2 + 𝑦2, tan−1 𝑦
𝑥

)

also 𝐶1.

The second example gives us another way to interpret diffeomorphism: if
𝑓 ∶ 𝑈1 → 𝑈2 is a diffeomorphism then (𝑓1(𝑥), … , 𝑓𝑛(𝑥)) is a different coordinate
system on 𝑈1. This is the basis of differential geometry.

Remark.

1. If 𝑓 ∶ 𝑈1 → 𝑈2 and 𝑔 ∶ 𝑈2 → 𝑈3 are diffeomorphisms then so is the
composition 𝑔 ∘ 𝑓 ∶ 𝑈1 → 𝑈3.

2. If 𝑈1, 𝑈2 ⊆ R𝑛 are open, write 𝑈1 ≅ 𝑈2 if there is a diffeomorphism
𝑓 ∶ 𝑈1 → 𝑈2. Then ≅ is an equivalence relation on open subsets of R𝑛.

3. Differentiable functions are continuous so if 𝑓 ∶ 𝑈1 → 𝑈2 is a diffeomorphism
then it is also a homeomorphism. The converse is not true: 𝑓 ∶ R →
R, 𝑥 ↦ 𝑥3 is a homeomorphism with 𝑓−1(𝑥) = 𝑥1/3. However 𝑓 is not a
diffeomorphism since 𝑓−1 is not differentiable at 0.

4. If 𝑓 ∶ 𝑈1 → 𝑈2 is a diffeomorphism then 𝑓−1 ∘ 𝑓 = id𝑈1
. Applying the

chain rule,

𝒟𝑓−1|𝑓(𝑥) ∘ 𝒟𝑓|𝑥 = 𝒟(id𝑈1
)|𝑥 = 𝜄 ∈ 𝐿(R𝑛,R𝑛).
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This implies that 𝒟𝑓|𝑥 is invertible and

(𝒟𝑓−1)|𝑓(𝑥) = (𝒟𝑓|𝑥)−1.

We can use this to prove the above proposition: 𝑓(𝑥) = 𝑥3 is not a
diffeomorphism since 𝒟𝑓|𝑥 = (3𝑥2) is not invertible at 𝑥 = 0.

In the rest of the section we are going to prove a single theorem. This theorem
gives a sufficient condition for the existence of a local diffeomorphism. Roughly it
says that if we are interested in determining whether a map is a diffeomorphism
near a point, we only have to consider its invertibility at that point.

This theorem is of enormous importance and is considered Theorem 0 of
differential geometry:

Theorem 6.1 (Inverse Function Theorem). Suppose 𝑈 ⊆ R𝑛 is open, 𝑓 ∶
𝑈 → R𝑛 is 𝐶1 and 𝑥0 ∈ 𝑈 is such that 𝒟𝑓|𝑥0

is invertible, then there
exists 𝑈1 ⊆ 𝑈, 𝑈2 ⊆ R𝑛 open with 𝑥0 ∈ 𝑈1 such that 𝑓|𝑈1

∶ 𝑈1 → 𝑈2 is a
diffeomorphism.

As said, this is a huge theorem and we will take two lectures to prove it so
before we start to prove it let us discuss its intuition and implications.

Remark.

1. We can choose 𝑈1 = 𝐵𝜀(𝑥0) or 𝑈2 = 𝐵𝛿(𝑓(𝑥0)) but not both at once.

2. The theorem says that if det 𝒟𝑓|𝑥0
≠ 0 then (𝑓1(𝑥), … , 𝑓𝑛(𝑥)) are local

coordinates on R𝑛 near 𝑥0.

3. On R, if 𝑓 ∶ R → R is 𝐶1 and 𝑓 ′(𝑥) ≠ 0 then 𝑓 is a diffeomorphism onto
its image. But this is false in higher dimension: that 𝑓 ∶ R𝑛 → R𝑛 is 𝐶1

with det 𝒟𝑓|𝑥 ≠ 0 does not imply 𝑓 is a diffeomorphism onto its image.
For example, let

𝑓 ∶ (0, ∞) × R → R2 \ {0}
(𝑟, 𝜃) ↦ (𝑟 cos 𝜃, 𝑟 sin 𝜃)

has
𝒟𝑓|𝑟,𝜃 = (cos 𝜃 −𝑟 sin 𝜃

sin 𝜃 𝑟 cos 𝜃 )

and det 𝒟𝑓|𝑟,𝜃 = 𝑟 ≠ 0 (note that we excluded the origin in the definition,
which is always a problem for polar coordinates). But 𝑓 is not injective since
𝑓(𝑟, 𝜃) = 𝑓(𝑟, 𝜃 + 2𝜋). This shows that there is no global generalisation of
the one-dimensional result and Inverse Function Theorem is, in a sense, the
best alternative we can have in terms of the local generalisation thereof.

Proof of Inverse Function Theorem. As this proof is long, I will interleave it
with comments and remarks for clarity.

First consider a special case. Let 𝑓 ∶ 𝑈 → R𝑛, 0 ∈ 𝑈, 𝑓(0) = 0 and
𝒟𝑓|0 = 𝜄 ∈ 𝐿(R𝑛,R𝑛).
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Remark. Before we prove the theorem for this special case, note that to pass
from the special case to a general case where 𝒟𝑔|𝑥0

is invertible, we consider the
function

𝑓(𝑥) = 𝐿−1(𝑔(𝑥 + 𝑥0) − 𝑔(𝑥0))
where 𝐿 = 𝒟𝑔|𝑥0

∈ 𝐿(R𝑛,R𝑛).

The hard bit is to show that 𝑓 is locally invertible near 0, i.e. there exist 𝜀 > 0,
𝛿 > 0 such that if 𝑦0 ∈ 𝐵𝜀(0) then there is a unique 𝑥 ∈ 𝐵𝛿(0)with 𝑓(𝑥) = 𝑦0.
If this holds, take 𝑈2 = 𝐵𝜀(0), 𝑈1 = 𝑓−1(𝑈2) ∩ 𝐵𝛿(0), then 𝑓 ∶ 𝑈1 → 𝑈2 is a
bijection.

The way we solve 𝑓(𝑥) = 𝑦0 is to use the tool we have just acquired: Con-
traction Mapping theorem. If we could write down a contraction map 𝑁𝑦0

whose
fixed point 𝑁𝑦0

(𝑥) = 𝑥 solves 𝑓(𝑥) = 𝑦0 then we are done.
Let us write done the map first. Take

𝑁𝑦0
(𝑥) = 𝑥 + 𝑦0 − 𝑓(𝑥).

Check that 𝑁𝑦0
(𝑥) = 𝑥 if and only if 𝑥 = 𝑥 + 𝑦0 − 𝑓(𝑥) if and only if 𝑓(𝑥) = 𝑦0.

Remark. Okay so this map works for us. The question is, how do I come up
with this map? The answer (essentially) is Newton’s method. Recall Newton’s
method in one-dimension: to solve 𝑓(𝑥) = 𝑦0 for 𝑓 ∶ R → R, let 𝑥𝑚+1 = 𝑁𝑦0

(𝑥𝑛)
where

𝑁𝑦0
(𝑥) = 𝑥 + 𝑦0 − 𝑓(𝑥)

𝑓 ′(𝑥)
.

This easily generalises to a function 𝑓 ∶ R𝑛 → R𝑛: let

𝑁𝑦0
(𝑥) = 𝑥 + (𝒟𝑓|𝑥)−1(𝑦0 − 𝑓(𝑥)).

It is now only one step from its final form. We simplify further by approxi-
mation 𝒟𝑓|𝑥 ≈ 𝒟𝑓|0. By hypothesis 𝒟𝑓|0 = 𝜄 so we get

𝑁𝑦0
(𝑥) = 𝑥 + 𝜄−1(𝑦0 − 𝑓(𝑥)) = 𝑥 + 𝑦0 − 𝑓(𝑥).

We want to find 𝛿 > 0 such that 𝑁𝑦|𝐵𝛿(0) is a contraction map. We first
prove it is Lipschitz:

Lemma 6.2. There exists 𝛿 > 0 such that 𝑁𝑦|𝐵𝛿(0) is 1
2 -Lipschitz.

Proof. Notice that

𝒟𝑁𝑦|𝑥 = 𝒟(𝑥 + 𝑦 − 𝑓(𝑥))|𝑥 = 𝜄 − 𝒟𝑓|𝑥.

Now 𝑓 is 𝐶1 so the map 𝒟𝑓 ∶ 𝑈 → 𝐿(R𝑛,R𝑛) ≅ R𝑛2 is continuous. All norms
on R𝑛2 are equivalent so 𝒟𝑓 is continuous with respect to ‖⋅‖op. Thus there
exists 𝛿 > 0 such that

‖𝒟𝑓|𝑥 − 𝒟𝑓|0‖op < 1
2

whenever ‖𝑥‖ < 𝛿, i.e. ∥𝒟𝑁𝑦|𝑥∥
op

= ‖𝒟𝑓|𝑥 − 𝜄‖op < 1
2 .

By Proposition 5.6, 𝑁𝑦|𝐵𝛿(0) is 1
2 -Lipschitz.

That is one step in the correct direction. However, we still haven’t quite got
a contraction map as 𝑁𝑦(𝑥) may end up not in the ball 𝐵𝛿(0). Our objective is
to make sure when 𝑦 is small enough it is also small.
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Lemma 6.3. Let 𝜀 = 𝛿
2 . Then if 𝑦 ∈ 𝐵𝜀(0),

𝑁𝑦(𝐵𝛿(0)) ⊆ 𝐵𝛿(0).

Proof. Suppose 𝑥 ∈ 𝐵𝛿(0). Then

‖𝑁𝑦(𝑥)‖ ≤ ‖𝑁𝑦(0)‖ + ‖𝑁𝑦(𝑥) − 𝑁𝑦(0)‖

≤ ‖0 + 𝑦 − 𝑓(0)‖ + 1
2

‖𝑥 − 0‖

= ‖𝑦‖ + 1
2

‖𝑥‖

< 𝛿
2

+ 𝛿
2

= 𝛿

so 𝑁𝑦(𝑥) ∈ 𝐵𝛿(0).

In summary, we get

𝑁𝑦|𝐵𝛿(0) ∶ 𝐵𝛿(0) → 𝐵𝛿(0)

is 1
2 -Lipschitz and is thus a contraction map.

Proposition 6.4. Let 𝜀 and 𝛿 be as above. If 𝑦 ∈ 𝐵𝜀(0) there is a unique
𝑥 ∈ 𝐵𝛿(0) with 𝑓(𝑥) = 𝑦.

Proof. Check the hypotheses for Contraction Mapping Theorem: R𝑛 is complete
and 𝐵𝛿(0) ⊆ R𝑛 is closed so 𝐵𝛿(0) is a complete metric space. Contraction
Mapping Theorem applied to 𝑁𝑦|𝐵𝛿(0) ∶ 𝐵𝛿(0) → 𝐵𝛿(0) shows that there is a
unique 𝑥 ∈ 𝐵𝛿(0) with 𝑁𝑦(𝑥) = 𝑥, i.e. there is a unique 𝑥 ∈ 𝐵𝛿(0) with 𝑓(𝑥) = 𝑦.
To remove the bar on top of the ball, apply 𝑁𝑦 again so we get

𝑥 = 𝑁𝑦(𝑥) ∈ 𝐵𝛿(0).

Corollary 6.5. There exists 𝑈1 ⊆ 𝑈 open with 0 ∈ 𝑈1 and 𝑈2 ⊆ R𝑛 open
with 0 ∈ 𝑈2 such that 𝑓|𝑈1

∶ 𝑈1 → 𝑈2 is a bijection.

Proof. Take 𝑈2 = 𝐵𝜀(0) and 𝑈1 = 𝑓−1(𝑈2) ∩ 𝐵𝛿(0). 𝑓 is continuous so 𝑓−1(𝑈2)
is open so 𝑈1 is open. By construction 𝑓(𝑈1) ⊆ 𝑈2. The proposition above says
that for every 𝑦 ∈ 𝑈2 then there exists a unique 𝑥 ∈ 𝑈1 with 𝑓(𝑥) = 𝑦.

So far we have got a well-define map 𝑔 = (𝑓|𝑈1
)−1 ∶ 𝑈2 → 𝑈1. The next goal

is to show 𝑔 is 𝐶1 so that 𝑓|𝑈1
∶ 𝑈1 → 𝑈2 is a diffeomorphism.

Lemma 6.6. 𝑔 is 2-Lipschitz.

57



6 Solving Equations

Proof. Suppose 𝑔(𝑦1) = 𝑥1 and 𝑔(𝑦2) = 𝑥2. Then 𝑁𝑦1
(𝑥1) = 𝑥1 and 𝑁𝑦2

(𝑥2) =
𝑥2. Notice that

𝑁𝑦1
(𝑥) − 𝑁𝑦2

(𝑥) = 𝑥 + 𝑦1 − 𝑓(𝑥) − 𝑥 − 𝑦2 + 𝑓(𝑥) = 𝑦1 − 𝑦2.

We have

‖𝑥1 − 𝑥2‖ = ‖𝑁𝑦1
(𝑥1) − 𝑁𝑦2

(𝑥2)‖
≤ ‖𝑁𝑦1

(𝑥1) − 𝑁𝑦1
(𝑥2)‖ + ‖𝑁𝑦1

(𝑥2) − 𝑁𝑦2
(𝑥2)‖

≤ 1
2

‖𝑥1 − 𝑥2‖ + ‖𝑦1 − 𝑦2‖

so 1
2 ‖𝑥1 − 𝑥2‖ ≤ ‖𝑦1 − 𝑦2‖, i.e. ‖𝑔(𝑦1) − 𝑔(𝑦2)‖ ≤ 2‖𝑦1 − 𝑦2‖.

Corollary 6.7. 𝑔 is continuous.

Proof. 𝑔 is 2-Lipschitz so uniformly continuous.

Suppose 𝑦 ∈ 𝑈2, 𝑔(𝑦) = 𝑥. We want to show 𝒟𝑔|𝑦 = (𝒟𝑓|𝑥)−1. Note that
although 𝒟𝑓|0 is invertible, we don’t know about 𝒟𝑓|𝑥 yet.

Lemma 6.8. 𝒟𝑓|𝑥 is invertible.

Proof. In the proof of a previous lemma we know that ‖𝒟𝑓|𝑥 − 𝜄‖op < 1/2. Write
𝐴 = 𝜄 − 𝒟𝑓|𝑥 so ‖𝐴‖op < 1/2. From an exercise on example sheet we know the
series 𝐵 = ∑∞

𝑛=0 𝐴𝑛 converges and 𝐵 = (𝜄 − 𝐴)−1 = (𝒟𝑓|𝑥)−1.

We have set up everything properly and are ready for the final step. The
ideas involved should be very reminiscent of those in the proof of (baby) Inverse
Function Theorem in IA Analysis I.

Proposition 6.9. 𝑔 ∶ 𝑈2 → 𝑈1 is 𝐶1.

Proof. Fix 𝑦 ∈ 𝑈2, let 𝑔(𝑦) = 𝑥. Since 𝑈2 is open there exists 𝜂 > 0 such that
𝐵𝜂(𝑦) ⊆ 𝑈2. For 𝜅 ∈ 𝐵𝜂(0), define

ℎ(𝜅) = 𝑔(𝑦 + 𝜅) − 𝑔(𝑦),

i.e. 𝑔(𝑦 + 𝜅) = 𝑔(𝑦) + ℎ(𝜅) so 𝑓(𝑥 + ℎ(𝜅)) = 𝑦 + 𝜅. We know 𝑓 is differentiable
at 𝑥 ∈ 𝑈1 ⊆ 𝑈 so

𝑦 + 𝜅 = 𝑓(𝑥 + ℎ(𝜅))
= 𝑓(𝑥) + 𝐿(ℎ(𝜅)) + ‖ℎ(𝜅)‖𝛼(ℎ(𝜅))

where 𝐿 = 𝒟𝑓|𝑥 and limℎ→0 𝛼(ℎ) = 0 by the definition of differentiability

= 𝑦 + 𝐿(𝑔(𝑦 + 𝜅) − 𝑔(𝑦)) + ‖ℎ(𝑘)‖𝛼(ℎ(𝜅))

which implies that

𝑔(𝑦 + 𝜅) = 𝑔(𝑦) + 𝐿−1(𝜅) − ‖ℎ(𝑘)‖𝐿−1(𝛼(ℎ(𝜅)).
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To show that 𝑔 is differentiable, it suffices to show that

lim
𝜅→0

‖ℎ(𝜅)‖
‖𝜅‖

𝐿−1(𝛼(ℎ(𝜅))) = 0.

Now 𝑔 is 2-Lipschitz so

‖ℎ(𝜅)‖ = ‖𝑔(𝑦 + 𝜅) − 𝑔(𝑦)‖ ≤ 2‖𝜅‖.

Since ℎ is continuous lim𝜅→0 ℎ(𝜅) = 0. 𝛼 and 𝐿−1 are continuous at 0 so

lim
𝜅→0

‖ℎ(𝜅)‖
‖𝜅‖

𝐿−1(𝛼(ℎ(𝜅))) = 0.

by squeeze rule. Therefore 𝑔 is differentiable.
We are almost there. To show 𝑔 is 𝐶1, the derivative map

𝑈2 → 𝐿(R𝑛,R𝑛)
𝑥 ↦ (𝒟𝑓|𝑥)−1

is continuous by composition.

We have essentially done the proof. Now we have to prove the theorem in
the form stated. Begin with an obseravtion:

Lemma 6.10. Suppose 𝑓 ∶ 𝑈1 → 𝑈2 is 𝐶1. If 𝑈3 ⊆ 𝑈1 is open then
𝑓|𝑈3

∶ 𝑈3 → 𝑓(𝑈3) is 𝐶1.

Proof. 𝑓(𝑈3) = (𝑓−1)−1(𝑈3) is open since 𝑓−1 is 𝐶1 and thus continuous. By
construction 𝑓|𝑈3

∶ 𝑈3 → 𝑓(𝑈3) is a bijection. As 𝑓 and 𝑓−1 are 𝐶1, 𝑓|𝑈3
and

(𝑓−1)|𝑓(𝑈3) are 𝐶1.

Now suppose 𝒟𝑓|𝑥0
= 𝐿 is invertible. Let

̃𝑓(𝑥) = 𝐿−1(𝑓(𝑥 + 𝑥0) − 𝑓(𝑥0)),

which is to say ̃𝑓 = 𝐴2 ∘ 𝑓 ∘ 𝐴1 where

𝐴1, 𝐴2 ∶ R𝑛 → R𝑛

𝐴1(𝑥) = 𝑥 + 𝑥0

𝐴2(𝑦) = 𝐿−1(𝑦 − 𝑓(𝑥0))

are both affine diffeomorphisms. Now ̃𝑓(0) = 0 so

𝒟 ̃𝑓|0 = 𝒟𝐴2|𝑓(𝐴1(𝑥)) ∘ 𝒟𝑓|𝐴1(0) ∘ 𝒟𝐴1|0
= 𝐿−1 ∘ 𝐿 ∘ 𝜄
= 𝜄

̃𝑓 ∶ 𝐴−1
1 (𝑈) → R𝑛 satisfies all requirements we used above and thus there exists

𝑈1 ⊆ 𝐴−1
1 (𝑈) such that ̃𝑓 |𝑈1

∶ 𝑈1 → ̃𝑓(𝑈1) is a diffeomorphism. All that’s left is
to write the correct subset on which the functions are defined.

Let 𝑈1 = 𝐴1(𝑈1) ⊆ 𝑈. Then

𝑓|𝑈1
= 𝐴−1

2 | ̃𝑓(𝐴−1
1 (𝑈1)) ∘ ̃𝑓|𝐴−1

1 (𝑈1) ∘ 𝐴−1
1 |𝑈1

.

Done!

Remark. The proof of differentiability of 𝑔 is non-examinable.

59



6 Solving Equations

6.2 Implicit Function Theorem
Question. Suppose 𝑓 ∶ R𝑛 → R𝑚 is 𝐶1 and 𝑦0 ∈ R𝑚. What can I say about

𝑓−1(𝑦0),

the set of solutions to 𝑓(𝑥) = 𝑦0?

Let’s begin with a simple example. Let

𝐹 ∶ R2 → R
(𝑥1, 𝑥2) ↦ 𝑥2

1 − 𝑥2
2

𝑦 = 0
𝑦 > 0

𝑦 < 0

𝑥1

𝑥2

Figure 1: Level sets for different 𝑦’s

For most 𝑥 ∈ R2, there exists 𝜀 > 0 such that 𝐵𝜀(𝑥) ∩ 𝐹 −1(𝐹(𝑥)) is the
image of a parameterised curve. But something different happens at the origin:
two curves intersect there and there is no neighbourhood of the origin in which
it looks like a curve.

Question. What is different about (0, 0)?

The answer lies in the derivative of the map. 𝒟𝐹|(𝑥1,𝑥2) = (2𝑥1, −2𝑥2) ∈
𝐿(R2,R) is surjective everywhere except (0, 0).

Theorem 6.11. Suppose 𝑓 ∶ R𝑛 → R𝑚 is 𝐶1, 𝑥0 ∈ R𝑛 and 𝒟𝑓|𝑥0
∈

𝐿(R𝑛,R𝑚) is surjective. Then there is an open subset 𝑈 ⊆ R𝑛, 𝑥0 ∈ 𝑈 and
diffeomorphism ℎ ∶ 𝑈 → 𝑈 ′ such that

𝑓(𝑥) = (ℎ1(𝑥), … , ℎ𝑚(𝑥))

for 𝑥 ∈ 𝑈.

The theorem says that there are local coordinates (𝑦1, … , 𝑦𝑛) on R𝑛 near 𝑥0
such that 𝑦𝑖 = ℎ𝑖(𝑥), with respect to which 𝑓 is the projection of the first 𝑚
coordinates.
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Proof. Let 𝐿1 = 𝒟𝑓|𝑥0
∈ 𝐿(R𝑛,R𝑚). 𝐿1 is surjective so dim ker 𝐿1 = 𝑛 − 𝑚 by

Rank-nullity. Pick 𝐿2 ∈ 𝐿(R𝑛,R𝑛−𝑚) such that ker 𝐿2 ∩ ker 𝐿1 = 0. There are
many possibilities for 𝐿2, for example the orthogonal projection onto ker 𝐿1 ≅
R𝑛−𝑚. Define

ℎ ∶ R𝑛 → R𝑚 × R𝑛−𝑚 ≅ R𝑛

𝑥 ↦ (𝑓(𝑥), 𝐿2(𝑥))

Then the derivative 𝒟ℎ|𝑥0
∶ R𝑛 → R𝑚 × R𝑛−𝑚 is given by (𝒟𝑓|𝑥0

, 𝒟𝐿2|𝑥0
) =

(𝐿1, 𝐿2).
R𝑛 ⊇ 𝑈 𝑈 ′

R𝑚

ℎ

𝑓
𝜋=𝑓∘ℎ−1

If 𝑣 ∈ ker 𝒟ℎ|𝑥0
then 𝑣 ∈ ker 𝐿1 ∩ ker 𝐿2 = 0 so 𝑣 = 0. That is to say

𝒟ℎ|𝑥0
∈ 𝐿(R𝑛,R𝑛) is injective and thus invertible. Thus by Inverse Function

Theorem there exists 𝑈 ⊆ R𝑛 open, 𝑥0 ∈ 𝑈 such that ℎ|𝑈 is a diffeomorphism.
By construction

𝑓(𝑥) = (ℎ1(𝑥), … , ℎ𝑚(𝑥)).

Corollary 6.12. With 𝑓 and 𝑥0 as above, there is an open set 𝑉 ⊆ R𝑛−𝑚

and an injective map 𝑔 ∶ 𝑉 → R𝑛 such that

𝑓−1(𝑦0) ∩ 𝑈 = 𝑔(𝑉 )

where 𝑦0 = 𝑓(𝑥0). That is to say 𝑓−1(𝑦0) is locally the image of a function
𝑔 ∶ 𝑉 → R𝑛.

Proof. Consider the map

𝜄 ∶ R𝑛−𝑚 → R𝑛 ≅ R𝑚 × R𝑛−𝑚

𝑧 ↦ (𝑦0, 𝑧)

𝑈 ⊆ R𝑛 R𝑛 ⊇ 𝑈 ′

𝑉 ⊆ R𝑛−𝑚

ℎ

𝑔 𝜄

Let 𝑉 = 𝜄−1(𝑈 ′), which is open since 𝜄 is continuous. 𝑔 ∶ 𝑉 → R𝑛 is given by
𝑔 = ℎ−1 ∘ 𝜄. Then 𝑔 is injective since both ℎ−1 and 𝜄 are, and 𝑓(𝑥) = 𝑦0 if and
only if ℎ(𝑥) = (𝑦0, 𝑧), if and only if 𝑥 ∈ Im 𝑔.

We have the tools ready for (stating) our theorem. Before that let’s introduce
some terminologies. Let 𝑓 ∶ R𝑛 → R𝑚.

Definition (Critical point). 𝑥 ∈ R𝑛 is a critical point of 𝑓 if 𝒟𝑓|𝑥 is not
surjective.
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Definition (Critical value). 𝑦 ∈ R𝑚 is a critical value of 𝑓 if any 𝑥 ∈ 𝑓−1(𝑦)
is a critical point.

Definition (Singular). If 𝑥 ∈ 𝑓−1(𝑦) is a critical point then 𝑥 is a singular
point of 𝑓−1(𝑦).

If 𝑦 is a critical value of 𝑓 then 𝑓−1(𝑦) is singular.

And the one final definition:

Definition (Manifold). An 𝑛-manifold is a metric space 𝑋 such that any
𝑝 ∈ 𝑋 has an open neighbourhood 𝑈 homeomorphic to an open subset of
R𝑛.

With these fancy languages, our previous result could be succintly stated as
follow:

Theorem 6.13 (Global Implicit Function Theorem). If 𝑦 ∈ R𝑚 is not a
critical value of 𝑓, 𝑓−1(𝑦) is an (𝑛 − 𝑚)-dimensional manifold.

Remark. In differential geometry, Sard’s Theorem asserts that in a sense, most
points in R𝑚 are not critical values.

6.3 Solving ODEs
Given 𝐕 ∶ R𝑛 → R𝑛 which is 𝐶1 (think of it as a vector field on R𝑛) and 𝐱0 ∈ R𝑛,
the main question in the section is to find a map 𝐱 ∶ (−𝜀, 𝜀) → R𝑛 for some
𝜀 > 0 satisfying

𝑑𝐱
𝑑𝑡

= 𝐕(𝐱(𝑡)), 𝐱(0) = 𝐱0. (∗)

Example. Solve

{𝑥′
1(𝑡) = 𝑥2 sin(𝑥1𝑥2

2)
𝑥′

2(𝑡) = 𝑒𝑥2
1+𝑥3

2

with initial conditions

{𝑥1(0) = 0
𝑥2(0) = 0

Let’s set up a physical model for 𝑛 = 2. Let R2 be the surface of the ocean.
𝐕(𝐩) is the velocity of the current at position 𝐩. If I drop a rubber duck in
at position 𝐱0 at time 𝑡 = 0, then 𝐱(𝑡) is the position of the duck at time 𝑡.
Then (∗) says that 𝑑𝐱

𝑑𝑡 , the velocity of the duck at time 𝑡, equals to 𝐕(𝐱(𝑡)), the
velocity of the current at the duck’s position, i.e. the duck moves at the same
speed as the current. For this reason, solutions to (∗) are often called flowlines
of 𝐕.

The tangent vector to 𝐱(𝑡) at time 𝑡 is 𝐱′(𝑡) = 𝐕(𝐱(𝑡)), i.e. the flowline 𝐱(𝑡)
is everywhere tangent to 𝐕.

Remark.
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1. If ‖𝐕(𝐩)‖ grows rapidly with ‖𝐩‖ then the duck may escape to infinity in
finite time. So, the physical model being a model, shouldn’t be taken too
literally. For example for 𝑛 = 1, the problem

𝑑𝑥
𝑑𝑡

= 𝑥2, 𝑥(0) = 1

has a solution 𝑥 = 1
1−𝑡 . There is no solution on [0, 𝑡) for any 𝑡 > 1. This

hints that we may not be able to get global solution, but only a local
solution in an 𝜀-neighbourhood of certain points.

2. Argurably a more realistic physical model would allow 𝐕 to have time-
dependence, i.e.

𝐕 ∶ R × R𝑛 → R𝑛

and solve
𝑑𝐱
𝑑𝑡

= 𝐕(𝑡, 𝐱), (∗∗)

However, there is a cheap trick that reduces the problem to the previous
form. Consider 𝑦0(𝑡), 𝑦1(𝑡), … , 𝑦𝑛(𝑡) which are components of 𝐲 ∶ R𝑛+1 →
R𝑛+1, satisfying

𝑦′
0(𝑡) = 1

𝑦′
1(𝑡) = 𝑉1(𝑦0(𝑡), … , 𝑦𝑛(𝑡))

⋮
𝑦′

𝑛(𝑡) = 𝑉𝑛(𝑦0(𝑡), … , 𝑦𝑛(𝑡))

with initial conditions

𝑦0(0) = 0
(𝑦1(0), … , 𝑦𝑛(0)) = 𝐱0

This is an equation of type (∗) with 𝐕̃(𝐩) = (1, 𝐕(𝐩)). Any solution
satisfies 𝑦0(𝑡) = 𝑡 so 𝐱(𝑡) = (𝑦1(𝑡), … , 𝑦𝑛(𝑡)) is a solution to (∗∗). Therefore
we can reduce the problem of solving equations of type (∗∗) to the problem
of solving equations of type (∗).

To solve this type of equation, we will use Contraction Mapping Theorem.
Recall that we need two things: a complete metric space 𝑋 and a contraction
𝐹 ∶ 𝑋 → 𝑋.

Take
𝑋𝜀 = {𝐱 ∶ [−𝜀, 𝜀] → R𝑛 ∶ 𝐱 is continuous}

where 𝜀 is to be determined. This is a normed vector space with

‖𝐱‖ = max
𝑡∈[−𝜀,𝜀]

‖𝐱(𝑡)‖2 = ‖‖𝐱(⋅)‖2‖∞

We showed back in Theorem 3.16 that 𝐶[𝑎, 𝑏] is complete with respect to ‖⋅‖∞.

Corollary 6.14. 𝑋𝜀 is complete.
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Proof. Suppose (𝐱𝑘) is a Cauchy sequence in 𝑋𝜀. Write 𝐱𝑘(𝑡) = (𝑥𝑘,1(𝑡), … , 𝑥𝑘,𝑛(𝑡)).
Then for 1 ≤ 𝑖 ≤ 𝑛, (𝑥𝑘,𝑖) is Cauchy in 𝐶[−𝜀, 𝜀]. Thus there exists 𝑦𝑖 ∈ 𝐶[−𝜀, 𝜀]
such that (𝑥𝑘,𝑖) → 𝑦𝑖. Then (𝐱𝑘) → 𝐲 = (𝑦1(𝑡), … , 𝑦𝑛(𝑡)) in 𝑋𝜀 so 𝑋𝜀 is
complete.

Before we look for a contraction map note that the equation 𝐱′(𝑡) = 𝐕(𝐱(𝑡))
is not good for iteration since differentiation is a map 𝐶𝑟 → 𝐶𝑟−1. Instead,
consider the integral equation

𝐱(𝑡) = 𝐱0 + ∫
𝑡

0
𝐕(𝐱(𝑠))𝑑𝑠 (†)

Proposition 6.15. If 𝐱 ∈ 𝑋𝜀, 𝐱 satisfies (†) if and only if 𝐱 satisfies (∗).

Proof. Suppose 𝐱 ∈ 𝑋𝜀. Then 𝐕 ∘ 𝐱 ∶ [−𝜀, 𝜀] → R𝑛 is continuous so the function

𝐲(𝑡) = 𝐱0 + ∫
𝑡

0
𝐕(𝐱(𝑠))𝑑𝑠

is well-defined. By Fundamental Theorem of Calculus

𝐲′(𝑡) = 𝐕(𝐱(𝑡)).

Thus if 𝐱 satisfies (†) then 𝐱′(𝑡) = 𝐕(𝐱(𝑡)) so 𝐱 satisfies (∗).
Conversely, if 𝐱′(𝑡) = 𝐕(𝐱(𝑡)), 𝐱 is differentiable and thus continuous so

𝐕 ∈ 𝑋𝜀. Moreover 𝐱′(𝑡) = 𝐕(𝐱(𝑡)) is continuous (since 𝐕 ∘ 𝐱 is) so 𝐱(𝑡) is 𝐶1.
Integrating both sides of (∗) gives (†).

Consider the map

𝐹 ∶ 𝑋𝜀 → 𝑋𝜀

𝐹(𝐱)(𝑡) = 𝐱0 + ∫
𝑡

0
𝐕(𝐱(𝑠))𝑑𝑠

then 𝐱 solves (†) if and only if 𝐱 is a fixed point of 𝐹. Now there is only one
question left: when is 𝐹 a contraction map?

Proposition 6.16. If 𝐕 is 𝐾-Lipschitz the 𝐹 is 𝐾𝜀-Lipschitz.

Thus if 𝐕 is Lipschitz, taking 𝜀 small enough guarantees that 𝐹 is a contrac-
tion.
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Proof. For 𝑡 ∈ [−𝜀, 𝜀],

‖𝐹(𝐱1)(𝑡) − 𝐹(𝐱2)(𝑡)‖2 = ∥∫
𝑡

0
𝐕(𝐱1(𝑠)) − 𝐕(𝐱2(𝑠))𝑑𝑠∥

2

≤ ∫
𝑡

0
‖𝐕(𝐱1(𝑠)) − 𝐕(𝐱2(𝑠))‖2𝑑𝑠

≤ ∫
𝑡

0
𝐾‖𝐱1(𝑠) − 𝐱2(𝑠)‖2𝑑𝑠

≤ 𝐾𝑡 max
𝑠∈[0,𝑡]

‖𝐱1(𝑠) − 𝐱2(𝑠)‖2

≤ 𝐾𝑡 max
𝑠∈[−𝜀,𝜀]

‖𝐱1(𝑠) − 𝐱2(𝑠)‖2

= 𝐾𝑡‖𝐱1 − 𝐱2‖

so
‖𝐹(𝐱1) − 𝐹(𝐱2)‖ = max

𝑡∈[−𝜀,𝜀]
‖𝐹(𝐱1)(𝑡) − 𝐹(𝐱2)(𝑡)‖2 ≤ 𝐾𝜀‖𝐱1 − 𝐱2‖

Corollary 6.17. If 𝐕 is 𝐾-Lipschitz then there exists a unique solution to
(∗) on [−𝜀, 𝜀] for any 𝜀 < 1/𝐾.

Proof. If 𝜀 < 1/𝐾 then 𝐹 ∶ 𝑋𝜀 → 𝑋𝜀 is a contraction. 𝑋𝜀 is complete so 𝐹 has
a unique fixed point so (∗) has a unique solution.

This is a nice result but not quite the answer to what we have asked at the
beginning of the section since 𝐕, being 𝐶1, may not be Lipschitz in general.

Question. What if 𝐕 is 𝐶1 but not Lipschitz?

As a common trick, choose a cut-off function 𝜌 ∶ [0, ∞) → R which is 𝐶1 and
satisfies

𝜌(𝑥) = {1 𝑥 ≤ 1
0 𝑥 ≥ 2

𝑥

𝜌(𝑥)

Now let 𝐕̃(𝐩) = 𝐕(𝐩)𝜌(‖𝐩 − 𝐱0‖). Intuitively this weight 𝜌 localises 𝐕 to
the ball 𝐵1(𝐱0).

Lemma 6.18. 𝐕̃ is Lipschitz.
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Proof. 𝐕̃ is 𝐶1 so the map

R𝑛 → 𝐿(R𝑛,R𝑛) → R𝑛

𝐩 ↦ 𝒟𝐕̃|𝐩 ↦ ∥𝒟𝐕̃|𝐩∥
op

is continuous. 𝐵2(𝐱0) is compact so there exists 𝑀 such that ∥𝒟𝐕̃|𝐩∥
op

≤ 𝑀

for all 𝐩 ∈ 𝐵2(𝐱0). On the other hand 𝐕̃(𝐩) = 0 for 𝐩 ∉ 𝐵2(𝐱0) so 𝒟𝐕̃|𝐩 = 0.
Thus ∥𝒟𝐕̃|𝐩∥

op
≤ 𝑀 for all 𝐩 ∈ R𝑛 so 𝐕̃ is 𝑀-Lipschitz.

By the corollary, the equation

̃𝐱′(𝑡) = 𝐕̃(𝐱̃(𝑡)), 𝐱̃(0) = 𝐱(0) = 𝐱0 (∗ ∗ ∗)

has a unique solution on [−𝜀, 𝜀] when 𝜀 < 1/𝑀. Since 𝐕̃ is continuous, there
exists 𝑀 ′ such that ‖𝐕̃(𝐩)‖2 ≤ 𝑀 ′ for all 𝐩 ∈ 𝐵2(𝐱0), i.e. ‖𝐕̃(𝐩)‖ ≤ 𝑀 ′ for all
𝐩 ∈ R𝑛. Choose 𝜀 < min{1/𝑀, 1/𝑀 ′}.

Lemma 6.19. With 𝜀 and 𝐱̃ as above, ‖𝐱̃(𝑡) − 𝐱0‖2 < 1 for all 𝑡 ∈ [−𝜀, 𝜀].

Proof.

‖𝐱̃(𝑡) − 𝐱0‖2 = ∥∫
𝑡

0
𝐕̃(𝐱̃(𝑠))𝑑𝑠∥

2

≤ ∣∫
𝑡

0
‖𝐕̃(𝐱̃(𝑠))‖2𝑑𝑠∣

≤ 𝑀 ′|𝑡|
≤ 𝑀 ′𝜀
< 1

So for 𝑡 ∈ [−𝜀, 𝜀],

̃𝐱′(𝑡) = 𝐕̃(𝐱̃(𝑡))
= 𝐕(𝐱̃(𝑡))𝜌(‖𝐱̃(𝑡) − 𝐱0‖2)
= 𝐕(𝐱̃(𝑡))

i.e. 𝐱̃ solves (∗).
Conversely, a solution to (∗) on [−𝜀, 𝜀] gives a solution to (∗ ∗ ∗).
In summary, we have proved that

Theorem 6.20. If 𝐕 ∶ R𝑛 → R𝑛 is 𝐶1 and 𝐱0 ∈ R𝑛, there exists 𝜀 > 0
such that there is a unique 𝐱 ∶ [−𝜀, 𝜀] → R𝑛 satisfying

𝐱′(𝑡) = 𝐕(𝐱(𝑡)), 𝐱(0) = 𝐱0.

Remark.
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1. If 𝐕 is Lipschitz then there exists a unique solution 𝐱 ∶ R → R𝑛, which
solves the equation for all time 𝑡. See example sheet.

2. If 𝐕 is continuous it can still be shown that solutions exist.

3. If 𝐕 is not Lipschitz, however, the solutions may not be unique. For
example consider

𝑥′(𝑡) = 3
2

𝑥1/3, 𝑥(0) = 0.

Then 𝑥(𝑡) = 0 and 𝑥(𝑡) = 𝑡3/2 are both solutions. The reason is that
𝑉 ′(𝑦) = 1

3 𝑦−2/3 is not bounded and thus 𝑉 is not Lipschitz.

6.4 General ODEs
We end our course by a brief disussion on general ODEs. In general, an ODE
may not have a solution, for (a stupid) example

(𝑥′(𝑡))2 = −1, 𝑥(0) = 1

or have many solutions
(𝑥′(𝑡))2 = 1, 𝑥(0) = 0.

But we can reduce a general ODE into a form we are familiar with, namely
first order equation:

1. Eliminate 𝑡 (as a term in the equation) at the cost of adding an extra
variable. We have already shown how to do this before. For example,

𝑡2(𝑦′)2 + 𝑦3 = sin 𝑡

can be rewritten as

{𝑥2(𝑡)2(𝑥′
1)2 + 𝑥3

1 = sin 𝑥2
𝑥′

2 = 1

2. Eliminate higher derivatives by adding extra variables. For example,

𝑦″𝑦 + (𝑦′)3 = 1

can be rewritten as

{𝑥′
2𝑥1 + 𝑥3

2 = 1
𝑥′

1 = 𝑥2

3. After the previous two steps, we have reduced the problem to the form

𝐹(𝐲, 𝐲′) = 0, 𝐲(0) = 𝐲0.

At this stage, we can try to

(a) look for solutions to 𝐹(𝐲0, 𝐳0) = 0, which is an algebraic problem,
(b) and then use Global Implicit Function Theorem to find a function

𝐺 ∶ 𝐵𝜀(𝐲0) → R𝑛 such that

{𝐺(𝐲0) = 𝐳0
𝐹(𝐲, 𝐺(𝐲)) = 0
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If I find such a 𝐺, then solutions to

𝐲′(𝑡) = 𝐺(𝐲(𝑡)), 𝐲(0) = 𝐲0

will be solutions to 𝐹(𝐲, 𝐲′) = 0.
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