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0 Homotopy

0 Homotopy

Definition (homotopy). Suppose X,Y are topological spaces, fo, f1 : X —
Y continuous. We say fy is homotopic to fi if there is a continuous F :
X x I =Y with F(z,0) = fo(x), F(z,1) = fi(x). We write fo ~ fi.

Let fi(x) = F(z,t). Then f; is a path from fy to f; in Map(X,Y) = {f :
X =Y continuous}.
Convention. All spaces are topological spaces and all maps are continous.
Example.

1. Let fo, f1: R™ = R", fo(z) =0, fi(z) = x then fy ~ fi via fi(z) = ta.

2. Let St = {2 € C:|z| =1}. Take fo, f1: St — S, fo(2) = 2, fi(2) = —=.
Then fo ~ f1 via fi(z) = e™t2.

3. Let S" = {v € R"!: ||v]| = 1}. Take fo, f1 : S™ = S, fo(v) = v, f1(v) =

—uv the antipodal map. We already knew fy ~ f1 if n = 1 and we’ll soon
see fo »~ f1 for n even.

4. Let f07f1 : Sl — 527 fo(xvy) = (0,0, 1)7f1(:177y) = ($7y,0) Then fO ~ fl
via ft(xvy) = (t(E,ty, v1-— tz)'

5. Let D" = {v € R": |lv|]| < 1}. Say f: S""! — Y extends to D" if there
exists F': D™ — Y with F|gn—1 = f. Then f extends to D™ if and only if
f is homotopic to a constant map as we can define f;(v) = F(tv).

We state here some lemmas that will be assumed and whose proofs are
omitted.

Lemma 0.1. Homotopy is an equivalence relation on Map(X,Y).
Definition. We let [X,Y] to be Map(X,Y)/ ~, i.e. the set of homotopy

classes of maps X — Y. It is also the set of path components of Map(X,Y).
We write [f] for the class of f in [X,Y].

Lemma 0.2. Suppose fo, f1: X = Y, 90,91 : Y — Z. If fo ~ f1,90 ~ 01
then go o fo ~ g1 0 f1.

Notation. If c € Y, we denote by cx : X — Y the constant map with image c.

| Corollary 0.3. Any f: X — R"™ is homotopic to Ox.
In other words, [X,R"] has one element.

Proof. We know idgr ~ Ogn so

f - ian Of ~ O]Rn o f = OX
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| Definition (contractible). X is contractible if idx ~ cx for some ¢ € X.

Proposition 0.4. Y is contractible if and only if [X,Y] has one element
for all X.

Proof. Only if is the same as the proof of the corollary. For the other direction,
[Y,Y] has one element so idy ~ ¢y for any c €Y. O

Definition (homotopy equivalence). Spaces X and Y are homotopy equiv-
alence if there are maps f: X —Y,g:Y — X such that fog ~idy,go f ~
idx. We write X ~ Y.

Example. X ~ {p} if and only if X is contractible.

Proof. The only map f : X — {p} is f(z) = p. Let g : {p} — X,g9(p) = ¢
Then fog=idy, and go f = cx. Then go f ~idx if and only if cx ~ idx if
and only if X is contractible. O

Lemma 0.5. If X; ~ X5,Y7 ~ Y5 then there is a bijection between [X1, Y1)
and [X2,Ys].

The basic question that algebraic topology tries to answer is the follow: given
spaces X and Y, is X ~Y? What is [X,Y]?
One of the tools used is homotopy groups, which we mention briefly here.
Definition (map of pairs). A map f: (X, A) — (Y, B) means that
« ACX,BCY,
. f X =Y,

. f(A)CB.

If fo, f1: (X, A) = (Y, B), we say fo ~ f1 if there exist F': (X xI,Ax1I) —
(Y, B) with F(z,0) = fo(z), F(z,1) = fi(z).

Notation. We denote by * the point (—1,0,...,0) € S™.

Definition (homotopy group). If p € X, we define the nth homotopy group
of (X,p) to be

(X, p) = [(8", %), (X, p)] = (D", 8"71), (X, p)] = [(I", 01"), (X, p)]

where the last equality is a homeomorphism and the second equality is
induced by

7T:.Dn —)Dn/Sn71 :Sn
v (1 =2[v],vv/1 = (1 =2|v])?)
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For n > 0, m,(X,p) is a group. The identity is cgn». For n > 1, m,(X,p) is
abelian.
A pointed map between pointed spaces f : (X,p) — (Y, ¢q) induces

feim(X,p) = ma (Y, q)
(V] = [f o]

which is well-defined by lemma 2.

This defines a functor between the cateogry of pointed spaces with pointed
maps to the category of groups with homomorphisms: it sends a space (X, p) to
(X, p) and a map f : (X,p) — (Y, q) to the homomorphism f, : m,(X,p) —
(Y, q), satisfying

1. (1d(X’p))* = idﬂ'n(X,p)7
2. (fog)e= fsogu
Furthermore f, is homotopy invariant: if f ~ g then f, = g, since
fe(b) =[fer] =lgenl=g.(W]).
For example the first few non-trivial homotopy groups of S! and S2 are

213 4 5 6 7

1
. (SY) | Z
0 Z|Z | Z2 |22 | Z/12 | Z)2




1 Homology
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The goal is to define functors H,, from the category of spaces with continuous
maps to the category of abelian groups with homomorphisms, satifying

1. if f ~ g then f. = gs,

2. dimension axiom: informally H,,(X) =0 if n > dim X.

1.1 Chain complexes

Let R be a commutative ring (e.g. Z,Q,Z/p).

Definition (chain complex). A chain complex (C,,d) over R is
1. R-modules C; for i € Z, and
2. homomorphisms d; : C; — C;_1 such that
3. d;od;y1 =0 for all i.

We usually write

d;

dit1
Ciy1 on Ci—1

Notation. Note that C, can mean two different things: it can either mean

C*:{Z *:0

0 otherwise
or C* = ®i€Z Cl,d = Zdl : C* — C*,l.
1.1.1 Chain complex of a simplex

Definition (simplex). The n-dimensional simplex is
A™ = {(vo,...,v,) ER" 1y > O,Zvi =1}
=0

For n < 0 we set A" = ().

Definition (face). If T = {ip <i1 < --- <ix} C€{0,1,...n} then
fi={veAt: v, =0ifi ¢ I}
is a k-dimensional face of A™. The face map is

F]ZAk—>f[

w +— v
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where

where

0:{0,...,k} > 1T
Jiy

Definition (reduced chain complex). The reduced chain complex of the
simplex A", S,(A™), is the chain complex over Z defined by

Sk(A™) = (fr : |I| = k + 1),

the free abelian group with basis f; for I a k-dimensional face, and

dk : §k(An) — gkfl(An>

k
Fre > (=1 frgyy
=0

Example. Take n = 2. Then

Co = (fo12)
C1 = (for, foz, f12)
Co = (fo, f1, f2)
C.1= <f€)>
and for example we have
d(fo12) = fi2 — fo2 + for
d(fi2) = f2— fr
d(fo2) = f2— fo
d(for) = f1 — fo
SO
d*(fo12) =0
Proposition 1.1. We have
d>=0

so it is indeed a chain complez.

Proof. Enough to check d?(f;) = 0. d?(fr) is a sum of terms of the form
fr\{i;,i;y where i; <ij. The coefficient of fr\(;; i, is

(1 (17 (-1 (1)

where the first term is obtained by omitting 7, first and then 4;,, and the second
by omitting i; first and then 4;. Then have opposite signs. O

Note that if we have a chain complex then d? = 0 so im di+1 C kerd;.
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Definition (homology group). If (C,, d) is a chain complex, its ith homology
group is

ker d;
H;(C,) = - .
( ) mm di+1
We let ror d
er
H,(C.) =@ H: = —
=/

Example. H.(S.(A?%))=0.

Example (unreduced complex of a simplex). Define the unreduced complex to
be

Sk(A™) k>0
0 k<0

H.(S(A?)) = {Z k=0

S.(A™) = {

Check that

0 k#0

Definition (chain map). If (C,d) and (C’,d’) are chain complexes over R,
a chain map f: (C,d) — (C',d’) is homomorphisms f; : C; — C! such that

dit1
Cit1 C;

Ci1
lfz‘+1 lfi J/fi—l

d; 4
/ i+l / i /
Clyy — C o

commutes. That is to say let f =>_ f; : Cx — C. then we have

df=fd.
Example. If f; is a k-dim face of A™ then there is a chain map
1 S.(A%) = 5.(a™)

fr = fen

where ¢(j) = i; as before.

If f: (C,d) — (C',d') is a chain map then it follows that f(kerd) C
kerd’, f(imd) C imd', so there is a well-defined map

fo: Ho(C) — H.(C")
2] = [f(2)]

Lemma 1.2.
1. id¢ is a chain map and (idc). = idy, (c)-

2. If f:C = C,g:C' — C" are chain maps then so is go f and
(gof)e=gso fu
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In other words, there is a functor H, from the category of chain complexes
over R with chain maps to the category of R-modules.

1.2 Singular chain complex

Let X be a topological space. A singular k-simplez in X is a map o : A¥ — X.

Thus a singular O-simplex is a point in X and a 1-simplex is a curve in X.

Definition (singular chain complex). A singular chain complex C.(X) is
given by
Cr(X) = (o : AF — X continuous),

the free abelian group generated by ¢’s and for o : A¥ — X

k
(o) =Y (=100 Fio,._ a3
§=0

Elements of the chain groups are finite sums Zfil a;o; where a; € Z.

| Lemma 1.3. d? = 0 so this is a chain complex.
Proof. If o : AF — X consider the homomorphism

0o 1 SL(A*) = CL(X)
f[ — oo Fy

d was chosen so dy, = p,d. Then
dZ(U) = dQ(U © ldAk) = d2(500(f{0,...,k})) = @a(dZ(f{O,“.,k})) = 900(0) =0
since d> = 0 in S, (AF). O

We have a variant called reduced singular chain complex of X which is defined
by
Ce(X) = (0: AF 5 X)

for k> —1 and Cy(X) = 0 for k < —1. We have

Cr(X) k>0

Ok X) = {<a@> ~7 k=-1

and if o : A® — X then do = oy.

Definition (singular homology). H,(X) = H,(C, (X)) and H,(X) = H,(C.(X))
are the nth (reduced) singular homology groups of X.

If f: X =Y is a map, define

fr 2 Cu(X) = C(Y)
o foo
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Then

d(f4(0)) (=1)7(f 0 0) o Fyo,...kp\{j}

I
.
a1 M:
[}

(=17 fo(o0Fpo,..kp})

I
<.
*
U
2

so fy is a chain map.

Lemma 1.4.
1. (idx)g = ide.(x)-
2. (fog)y=rfrogy.

In other words, there is a functor from the category of topological spaces to
the cateogory of chain complexes over Z.

Notation. If f : X — Y, write f. : H.(X) — H.(Y) instead of (f4)..

Corollary 1.5. There is a functor from the category of topological spaces
to the category of Z-modules.

Proof. Composition of functors is a functor.

Example. Let X = S! and o € C1(S') be the loop starting at p and loops
around S* once. Then do = 0, — g, = 0. Let 01,02 be paths from p to ¢ and
from ¢ to p. It is an exercise to find 7 € C2(X) with dr = 0 — (01 + 02), so
[0] = [o1 + 0.

01,

Proposition 1.6.

1. If X is path-connected then Ho(X) = Z.
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2. If X is the singleton {p} then

H*(X):{Z *=10

0 otherwise

and fI*(X) =0.

3. Let mo(X) be the set of path-components of X. Then

H(X)= € H.(P).

Penp(X)

Proof.
1. We have
kerdy = Co(X) = (op:p€ X)
imd; =span{o, — o4 :p,g € X}
since X is path-connected. Thus
kerdy — Z
S iy e
is a surjective homomorphism with kernel im d; .

2. There is a unique map o, : A" — X and

do, = Z(—l)jan—1 =

n
{anl nevenand n > 0
=0

0 otherwise
SO
kerd = (09,01,03,...)
imd = {01,05,05,...)
so the result follows. The reduced homology is left as an exercise.

3. Let tp : P — X be the inclusion. Then we have

=) wr)lg: P Cu(P) = CuX)

Pemp(X)
an injective map. AF is path-connected so if o : A¥ — X then imo C P
for some P € mo(X) so j is also surjective.
In general, if {(C*,d*)}aca is a family of chain complexes then so is
(C, D)= (P, D d)
acA acA
and
ker D = @ ker d*
acA
imD = @ imd*
acA

10



1 Homology

H,(C™") = @) H.(C).

acA

Now apply this to j.

1.3 Homotopy invariance

If go,91 : X — Y are homotopic then we want to show go. = g1 : Hi(X) —
H.(Y).

Definition (chain homotopy). Two chain maps go, g1 : (C,d) — (C’,d’) are
chain homotopic, written gy ~ g1, if there is a homomorphism h : C,, — C

such that
d/h+ hd =4dg1 — 9o.

| Lemma 1.7. Chain homotopy is an equivalence relation.

Proposition 1.8. If go and g1 are chain homotopic then go. = g1+ :
H.(C)— H.(C").

Proof. Suppose [z] € H.(C). Then

g1+ [z] = gou[z] = [91 (%) — go ()]

= [d'h(x) + hd(z)]
= [d'h(z)]
=0
since d’h(x) € imd’. O

Definition (chain homotopy equivalent). Chain complexes (C,d) and (C',d’)
are chain homotopy equivalent, written C ~ C’ if there exist chain maps
f:C—=C' g:C" — C such that fg ~ider,gf ~ ide.

Exercise. If C ~ C’ then H,.(C) = H,(C").

1.3.1 Universal chain homotopy

Let cp,c), + A" — A" x [0,1], ¢,(v) = (v,0),¢,,(v) = (v,1) and consider the

n

chain maps @, @cr @ Sx(A") = C(A" x [0,1]), e, (f1) = cn o FT.

Notation. A" x [0,1] is a convex subset of R**! x [0,1]. If pg,...,px € A" X
[0, 1], define a map

[po- - pr] : AF — A™ x [0, 1]

k
V= Z ViDi
1=0

11



1 Homology

Then
k

dlpo -+~ pr] = Z(—l)j[Po o+ Dj Dk
j=0
where the hat above p; means that p; is omitted.
Furthermore we call f; x 0 =4 and f; x 1 =14'.

0/ Ol 1/ 1/

h(fo) h(for) - h(f1)

0 01 1

Figure 1: Al x [0,1]

The intuition for chain homotopy is illustrated by Figure 1. Suppose we set
h(fo), h(f1) to be the segments 0 x [0,1] and 1 x [0,1], and h(fo1) the square
Al x [0,1]. Then

dh(fo) = ¢c (fo) — el fo)
hd(fo) = h(0) =0
so dh(fo) + hd(fo) = ¢ (fo) — pe(fo) and
dh(fo1) = (top + bottom) + (sides)
hd(fo1) = —(sides)
SO again
dh(fo1) + hd(fo1) = top + bottom = @c (fo1) — ¢c(for1)-

Thus h would be a chain homotopy if it didn’t map fy; to the square, which is
not a simplex. To overcome this problem we cut the square into triangles 00’1’
and 011’. It is worthwhile to pause for a second to think what a chain homotopy
for A? looks like.

12
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| Proposition 1.9. ¢, ~ ¢ .
Proof. Define

Upn : So(A™) = Cupq (A™ x [0,1])
k
fre > (=1)[ig iz} -+ i}
=0
for I = {ip < iy <--- <ir}. Then

Und(fr) =Y (=1)" " ig - -daipiy - - i}

a<b

i 2! ./
+ E a+b .szb...za...lk}

a>b

AU (f1) = > (=1)"*ig - dq -+ ipip - - - ]

a<b

b 1 Ry s -/
+ E POt oy g ]
a>b

E : b b . -/ -/
+ + 'belzb"'zk]

k+1

§ : b 1 b . -/ -/
+ + 'lbfllb""%]

so almost everything cancels out and we have

(AU, + Und)(f1) = lig - - ix] = [io - - -] = wer, (f1) = @e, (f1)-

Notation. Let F; = F; x idjg,1) : AF x [0,1] — A™ x [0,1].

Lemma 1.10. The following diagram commutes:

S (AF) —— L 5 S (A™)

o Jon

Cuir (A% x [0,1]) %5 €y (A" % [0,1])

Proof. Checking definitions.

| Theorem 1.11. Suppose go,g1 : X — Y are homotopic then goy ~ gr4.
Proof. Let G : X x [0,1] = Y be the homotopy. Define

Gy : A" x[0,1] =Y
(v,t) = G(o(v),1)

13
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Then Gyor, = Gy o F1. Define

h:Cu(X) = Cupr(Y)
o Gg#(Un(fOn))

then

dh(a)

#( (fO n)): 0#(dUn(f0n))

Z a'oF

> (1Y Goor,(Un-1(fom-1))
> (-1 JGU#F (Un-1(fo--n-1))
> (=1
G

G

0'

1)? ‘Pj(fo n—1))) by lemma

o# ( n(Z(_ ) (Pj(fOMn—l)))
o# ( nd(fO ’ﬂ))

SO

(dh + hd)(0) = Gop(Und + dU,)(fo...n)
= Gog((pir, = @i, )(fo.n))
= Goplif, — in)
=01°0 —gooo

= g1#(0) — gox (o)

Corollary 1.12. Ifgg, g1 : X — Y are homotopic then go. = g1 : Ho(X) —
H.(Y).
| Corollary 1.13. If X areY are homotopy equivalent then H.(X) = H.(Y).

Proof. X ~Y sowehave f: X - Y, g:Y — X with fog~idy,go f ~idx.
Then
feoge=(fog). = (dy). =idy,(v)

and similarly g, o f, =id H.(X) SO gx and f, are inverses to each other. O

Corollary 1.14. If X is contractible then

14
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1.4 Homology of a pair
1.4.1 Exact sequence
Suppose we have a sequence

Ai+1 fit1 Az fi Ai—l fi—1

where A;’s are R-modules and f;’s are homomorphisms.

Definition (exact sequence). We say the sequence is exact at A; if ker f; =
im f; 1. We say the sequence is exact if it is exact at all A;.

In other words, the sequence is exact is the same as saying (A, f) is a chain
complex with H,(A) = 0.

Example.

1. 0 —— A —— B isexact at A if and only if « is injective.
2. B—"- C —— 0 isexact at C if and only if 7 is surjective.

3. 0 —— A —— 0 isexact if and only if A =0.

4. 0 A-L.p 0 is exact if and only if f : A — B is an
isomorphism.
5.0 A—— B-—"=C 0 is exact if and only if 1 : A — B

and 7 : B — C is a surjection with kernel im A. This is called a short
exact sequence (SES). In particular, a long exact sequence gives a bunch
of short exact sequences

0 —— coker f;1o LN A; LI T fici1—0

Definition. A sequence

0 A, —— B, ——— C, 0

is a SES of chain complexes if
1. A,, B, C, are chain complexes and ¢, 7 are chain maps.

2. 0 A, —— B, == C; 0 is a exact for all 7.

Proposition 1.15 (snake lemma). If

0 A, —— B, ——— C, 0

15
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is a SES of chain complexes then there is a long exact sequence on homology

H.(A) —*— H.(B) ——— H,(C)

Hi g — ---

where the map O is called the boundary map.
Proof. The map 0 is defined as follow: suppose given [¢] € H,,(C) so dc = 0.

1. 7 is surjective so exists b € B,, with 7(b) = c.
2. wdb = dwb = dc = 0.
The sequence is exact at B, _1 so exists a € A,,_1 with ta = db.

tda = dia = ddb = d*b = 0 so by injectivity of ¢, da = 0.

AN B

Finally define 9([c]) = [a].

0 A, - B, = Ch 0

J# o Lo

0 An—l Bn—l —_— Cn—l — 0

We have to check this is well-defined and the resulting sequence is exact. We
check exactness at H,_1(A):

[a] € ker i, <= ta = db for some b € B,
< [a] = O[wb]
< [a] €imd

The rest are left as exercises. O

Example. Recall that if X # (), we can express unreduced homology as

H.(X) x>0

H.(X) = {E&(X) DL +=0

We can show this using the snake lemma. Let K. = (og) if *x = —1 and 0
otherwise, then
=1
H.(K) = (o0)
0 x £ —1

so we have a SES
00— K, —— 5*(X) —— Cu(X) — 0

so we have a long exact sequence that looks like

H (K) —— H.(X) — H.(X) — H,_,(K)

16



1 Homology

so for x > 0, H,(X) = H,(X). The only interesting bit is at * = 0 which gives
0 —— Hy(X) — Ho(X) -2 Z —— H_1(X) —— 0

Let p € X be any point and let 0, : A — X be an element of Hy. As
do, = oy, we have J[o,] = oy so 0 is surjective. Thus H_1(X) = 0 and
Hy(X) =2 Ho(X) ® Z by example sheet 1 question 3.

1.4.2 Subcomplexes and quotient complexes

Definition (subcomplex, quotient complex). Suppose (Cy,d) is a chain
complex. We say A, is a subcomplex of C, if

1. A, = @, Ai where A; C C; is a submodule.

2. d(A,L) - Aifl.

If so then (A.,d) is a chain complex.

Let @; = C;/A; then d : C; — C;_; induces dg : @Q; — Q;—1 with
dg = d*> = 0. Call (Q.,dq) the quotient complez.

In other words, there is a SES

0 A, C. Q- 0

Suppose A C X. If o : A* — X hasimo C A then oo Fyo, . k\{j} AF-1

.....

X has image in A as well, so do € C4(A). Therefore C,(A) is a subcomplex of
C.(X). We then define

Definition (homology of a pair). If A C X, we define
Cu(X,A) =Cu(X)/CL(A)
and H,.(X,A) = H.(C.(X,A)) is the homology of the pair (X, A).
We have the SES
0 —— Cu(A) — Cu(X) — Cu(X,A) —— 0

whose corresponding long exact sequence is the long exact sequence of the pair
(X, 4)

S —— H(A) —2 H(X) — H (X, A) —25 H, 1(A) — -

where ¢ : A < X is the inclusion.

Example. Let (X, A) = (D', 5Y). We have

H*<S°>={OZ@Z ;3 H*<D1>={Z Y

17



1 Homology

so the long exact sequence of the pair (D*, S°) gives

Hl(Dl) — Hl(X,A) E— HO(SO) — Ho(Dl) — Ho(X,A) — 0

| | |
0 YASY/ Z

It is an exercise to check the map Hy(S°) — Ho(D!) is surjective and thus
Hi(X,A) > Z.

Induced maps Suppose f : (X,A) — (Y,B) is a map of pairs, meaning
f:X — Y and f(A) C B. Then if o : A¥ — A then fy : C.(X) — C.(Y)
is such that fu(o) = foo : A* — B so fg(Ci(A)) C C.(B) and hence fg
descends to a chain map f;f) : Cu(X)/Ci(A) = C(Y)/C.(B), which we usually
just write fyu : Cu(X, A) — C.(Y, B). We define f, : H.(X,A) — H.(Y,B) to
be the induced map.

Lemma 1.16. Suppose

L T

0

’
T

A, B. c,
|
0 ALY g c 0

is a commutative diagram of chain complezes and chain maps, and the rows
are exact. Then we have a commutative diagram of long eract sequences

—— H,(A) —— H,(B) — H,(C) —2— H,_1(4) — ---

|~ |~ |~ |~

— 5 H(A') — H.(B') — H.(C") 2 H,_{(A) — -

Proof. We check the square involving 9 and 8’ commutes and the rest are left
as exercises. If [c] € H,(C), pick b € B,,a € A,—1 with 7b = ¢,1a = db. Then
dlc] = [a]. Let a’ = fa,b/ = fb,d = fe. Then 7't/ = ¢ and /o' = db’ so
d'c] = [a’]. Then
0'fule] = fila] = f.0[c].
O

In the language of category theory, this says that there is a functor from the
category of short exact sequences with morphisms satisfying the hypothesis of
the lemma to the category of long exact sequences of R-modules with morphisms
satisfying the conclusion.

Corollary 1.17. If f : (X, A) — (X, B) then there is a commutative dia-
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gram

(A) —— H,(X) — H,(X,A) —25 H,_1(A) — -

" |~ | |~ |~

— s H.(B) — H.(Y) — H.(Y,B) — 2~ H,_(B) — ---

—

Proof. We have a commutative diagram of SES

0— Ci(A) — C(X) — C.(X,A) —— 0

P s

0 —— Ci(B) —— C.(Y) — C.(Y,B) —— 0

O

Homotopy invariance If gg, 91 : (X, A4) — (Y, B) are homotopic as maps of
pairs then go. = g1« : Hi(X, A) — H.(Y, B).

Pmof, The maps go#, g1 : Ci(X) — C.(Y) are chain homotopic via h(c) =
o#(Un(fo..)) where 0 : A" — X and G : X x [0,1] — Y is a homotopy such
that G(Ax[0,1]) C B. If o : A" — Athen Gy : A"x[0,1] C Bso h(o) € Cu(B),
i.e. h(C.(A)) C C.(B) so it descends to h(® : C,(X)/C.(A) = C.(Y)/C.(B)
with
dh@ 4+ p@g = 98&2 9(()(;2

s0 g\ ~ gi%) : CL(X, A) — C.(Y, B). -

Reduced homology Define C,, (X, A) = C,(X)/C,(A) and similarly H, (X, A) =
H.(C.(X,A)). Again we have a long exact sequence of pairs.

Example.
1. Ho(X,A) = H.(X,A)if A#0.
Proof. In fact they are isomorphic on the chain complex level: we have
Cu(X) = Cu(X) & (09), CL(A) = C.(A) & (o9)

SO

Co(X, A) = Cu(X)/C.(A) = C.(X)/Cu(A) = Cu(X, A).

O
2. If pe X then _ _
HL(X) = H.(X,p) = H.(X,p).
Proof. Recall that H,({p}) = 0 so we have a long exact sequence
H.({p}) — H.(X) —— H.(X,p) — H.1({p})
| |
0 0
SO T, is an isomorphism. O
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3. H.(D", S" 1) = H,_,(S" ).

Proof. D™ is contractible so ﬁ*(D") = 0. Then by considering the long
exact sequence we again have 9 : H,(D",S"" ') — H, 1(S""1) an iso-
morphism. O

So far we have developed a lot of theory and are able to make certain sim-
plifications of homology groups, but we haven’t computed anything (that isn’t
contractible) explicitly. However, with the help of the following tool, which
will be proven in the next section, we can compute virtually the homology of
everything.

Collapsing a pair

Definition (deformation retraction). A C U is a deformation retraction of
U if exists 7 : (U, A) = (A, A) with o7 ~ id(y,4) as maps of pairs.

Example. S"7! is a deformation retraction of D™\ {0} via 7(v) = Tl

Definition (good pair). The pair (X, A) is good if
1. A C X is closed.

2. there is some U C X open, A C U and A is a deformation retract of
U.

Example.
1. (D", 8™1) is good as we can take U = D" \ {0}.
2. (D", D™\ {0}) is not good as D™\ {0} is not closed.
3. A={L:nezZ\{0}}U{0} CRis closed but (R, A) is not good.

4. A pair consisting of a smooth manifold and a compact submanifold is
good.

5. A pair consisting of a simplicial complex and a subcomplex is good.

If AC X, we have a quotient map

7 (X, A) = (X/A, AJA) = (X/A, {pa}).

Theorem 1.18 (collapsing a pair). If a pair (X, A) is good then m, :

H.(X,A) = H.(X/A,{pa}) =2 H.(X/A) is an isomorphism.

We defer the proof to the end of next section. For now let’s see some appli-
cations.
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Proposition 1.19. The reduced homology of S™ is

~ 7, =
N

0 *x#n
Proof. Induction on n. When n = 0 then S° = {—1,1} so

Z@&Z x=0

H.(8%) = H.({-1}) & H.({1}) = {0 £ 0

As Hy(X) = Hy(X) @ Z, the result holds for n = 0. We know D"/S"~1 =~ §»
so inductively

PNI*(S") ~ H,.(D", 8" ') collapsing a pair

>~ [, 1(5""') computation above

Z *x=mn
0 *=#n

Corollary 1.20.
1. S™ is not contractible.

2. If S» = S™ then n=m.

Corollary 1.21. The map id : S™ — S™ does not extend to D"*1, i.e. there
does not exists F': D""1 — S™ such that F o1 = idgn.

Proof. By functoriality Fiot. = idz_ (sm) but D™ is contractible so H, (D"+1) =
0 so ¢4 is the zero map. Absurd. OJ

| Corollary 1.22. 7,(S", %) is nontrivial.

Proof. f:S™ — X is homotopic to a constant if and only if f extends to D"+!
so idgn # 0 in m,(S™, ). O

Example (homology of torus). Let X = §% A = S° = {p, ¢} C S?. Claim that
H.(X,A) =Z if *x = 1,2 and 0 otherwise, which easily follows from the long
exact sequence of reduced homologies for the pair (X, A).

Let Y =72 = S!' x S*. Let B=S'x1C T?. Note that Y/B = X/A so we
know H, (T?, B). Then the long exact sequence for (T2, B) gives

Hy(B) —— Hy(T?) —— Hy(T?, B)

Hy(B) —=— H,(T?) —— H,(T?, B)
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Claim that ¢, : H1(B) — Hy(T?) is injective: let 7 : ST x S* — S be projection
onto the first factor, then 7o =idg: so 7. 0 1. = idp, (1)
Then the long exact sequence splits into SES’s

0 —— Hy(T?) —— Hy(T? B) ker ¢ 0

I I
v/ 0

0 —— H{(B) —— H{(T?) —— H(T*>,B) —— 0

| |
Z Z

SO in summary
7Z *x=0,2
H(T?)={72 %=1
0  otherwise

1.5 Subdivide, Excise & Collapse

1.5.1 Subdivision

Suppose U = {U,} is an open cover of X.

Notation. In this subsection, if o : AF - X, write 0 < U if imo C U, for
some «.
Definition. We define
CH4(X)=(o: A" - X, 0 QU).

If imo C U, then imo o Fr C U, so CY¥(X) is a subcomplex of C,(X). Let
t:CY(X) — C.(X) be the inclusion.

| Theorem 1.23 (subdivision). ¢, : H4(X) — H,.(X) is an isomorphism.

Sketch proof. The idea is as follow: suppose we have an open cover {Uy,Us}.
Given [o] € H1(X), by example sheet 1 question 1 we can replace [o] by [o1]+][02]
and so on, and eventually each o; will be contained in one of the U;’s. The
difficulty is to find an efficient way to write down this process. See the lecture
handout for details. O

Suppose Uy, Us € X open and Uy NUs = X, ie. U = {Uy,Us} is an open
cover of X. Then we have a diagram of inclusions

U, NU; L>U1

b

UQLX
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Proposition 1.24 (Mayer-Vietoris sequence). There is a long exact se-
quence

H. (U, NUy) —222 5 i (Uy) @ H,(Us) 2225 1,
o

(X

H, (U N Us) 2% H, (Uy) & Ho 1 (Un) 2% H, 4 (X
o

Proof. There is a SES
0 —— C.(UL NUs) 222 0 (U) @ O (Un) 2225 0¥ (X)) —— 0

Take LES on homology and use HY(X) = H,(X). O
There is a similar sequence for reduced homologies.

Example. Let X = S U; = 8" — {p}, Uy = 8™ — {q} so Uy N Uy ~ S"1L.
Then the Mayer-Vietoris sequence gives

H,(Uy) ® H,(Uy) — H,(5") —— H,_(Uy NUs) —— H,_1(Uy) & H,_1(Us)
| |
0 0
so H,(S™) = H,_1(S"1). Note that this is the same calculation as before using
collapsing. This is a general principle: anything that can be calculated using

Mayer-Vietoris can be calculated by collapsing subspace, and vice versa.

1.5.2 Excision

Suppose A C X and U is an open cover of X. Let Uy = {U, N A} be an open
cover of A. Then C%4(A) is a subcomplex of C¥(X). We define CY (X, A) =
CYU(X)/CH4(A) and we would like to show it is isomorphic to C (X, A).

Lemma 1.25 (five lemma). Suppose
Ay Ao As Ay As
J{fl J{fz J{fS J{fz; J{fs
By B B3 By Bs

is a commutative diagram of exact sequences. If f1, fa, fa, f5 are all isomor-
phisms then so is f3.

Proof. Example sheet. O
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| Corollary 1.26. HU(X, A) = H,(X, A).
Proof. There is a map of SES’s

0 —— CY4(A) —— CY(X) —— CY(X,A) —— 0

l | |

0 —— Cu(4) —— Ci(X) —— Cu(X,A) —— 0
so we have a commutative diagram of long exact sequences

H{4(A) —— HY(X) —— HY(X,A) —— HY L, (A) —— H((X)
H.(A) —— H.(X) —— H*(;(,A) —— H, 1(A) —— H._1(X)

The four solid arows are isomorphisms by subdivision by the dotted arrow is
also an isomorphism by five lemma. O

Suppose BC AC X and j: (X — B,A— B) — (X, A) is the inclusion.

Theorem 1.27 (excision). If the closure of B is contained in the interior
of A then j. : Ho (X — B,A— B) — H.(X, A) is an isomorphism.

Proof. As the B CInt A, i{ = {X — B,Int A} is an open cover of X. Then
CYX)=(c U :imoNB=0)®(c AU :imocN B # () as a group
= CY (X —B)® (0 :imo C Int A)
where U’ = Ux _p. Similarly
CYa(A) = C*UL‘(A —B)® (0:imo CInt A)

SO

CU(X) _ CH'(X = 4)

CY(A) ~ YA -B)
SO j% : Cf:’l (X — B,A— B) = CY(X, A) is an isomorphism. Then we have a
commutative diagram

U
CU'(X — B,A— B) % CU(X, A)

I I

C.(X - B,A-B) —T* C,(X, A)

By the corollary ¢/, and ¢, are isomorphisms, and j¥ is an isomorphism since j;ﬁ’
is. Thus j. is an isomorphism. O

Example.

1. H (R™,R™ —p) = Z if *+ = n and 0 otherwise.
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Proof. R" —p = R" — 0 ~ S" 1 so LES of (R",R" — p) is
H,(R") —— H,(R",R" — p) —2» H, {(R" —p) — H,_1(R")
0 0
so 0 : H (R",R" —p) — H,_1(R™ — p) is an isomorphism. O

Note that this does not equal to H,(R"/(R™ — p)), which is a two-point
non-Hausdorff space whose homology does not even depend on n.

2. If U CR" is open then H,(U,U — p) = Z if x = n and 0 otherwise.
Proof. C =R" — U is closed in R" so C C R™ — p. Thus by excision

H,(R",R" —p) = H,(R" — C,R" —p—C) = H,(U,U — p).

| Corollary 1.28. IfU CR™, V CR™ are open and U 2V then n =m.

Therefore open subsets of Euclidean spaces have an intrinsic dimension that
is invariant under homeomorphism.

Proof. If f : U — V is a homeomorphism then sois f : (U,U—-p) = (V,V—f(p))
so Ho(U,U —p) = H,(V,V — f(p)). -

Deformation retraction Suppose A C U and let i : A — U be the inclusion.
If #: U — A, we have maps of pairs

(U, A) 5 (4,A) 5 (U, A).

Definition (deformation retraction). = : U — A is a deformation retraction
if fo@ ~id(y, 4y as maps of pairs.

Thus t o ~ idy,m ot ~ id4 so in particular A ~ U.

Lemma 1.29. If 7 : U — A is a deformation retraction then so is 7' :
U/A— A/A.

Lemma 1.30. Suppose B C A C X. Then there is a LES

H.(A,B) — H.(X,B) 2 H.(X,A) —2+ H,_1(A,B) —— -

where iy, J.« are induced by inclusions of pairs.
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Proof. There is a SES

O

Lemma 1.31. Suppose A C U C X and A is a deformation retraction of
U then v, : Ho (X, A) — H.(X,U) is an isomorphism.

Proof. + : A — U is a homotopy equivalence so ¢, : H.(A) — H,(U) is an
isomorphism. The LES of (U, A) gives

0 —— coker ") —— H.(UA) — S —

| |
0 0
so H.(U, A) = 0. Now the LES for the triple (X, U, A) gives

H,(U,A) —— H.(X,A) — H,(X,U) — H,_1(U,A)
l l
0 0

O

Recall that (X, A) is a good pair if A C X is closed and exists U C X open
such that A C U is a deformation retraction.

Theorem 1.32 (collapsing a pair). If (X, A) is good then 7, : H, (X, A) —
H.(X/A, A/A) is an isomorphism.

Proof. We have a commutative diagram

H (X, A) — 5 H(X,U) «+— H.(X - AU - A)

| | |7
i

HL(X/A, AJA) —s H.(XJA,UJA) <2 H.(XJA— AJA,UJA - AJA)

Note 73 : (X — A, U — A) — (X/A— A/A,U/A— A/A) is a homeomorphism. A
is closed, U is open so A C Int U so by excision j,, j. are isomorphisms. Thus
o4 18 an isomorphism. i, are isomorphisms by Lemma 1.31 and Lemma 1.29
SO 714 18 also an isomorphism. O

1.6 Maps 5" — S™

Fix generators [S™] for H,,(S™) = Z as follow: for 80 = {£1}, [S°] = 041 —0_4
generates Hy(S%). We have isomorphisms

H,(S") «2— H,(D", 8" 1) —L H,(I",0I")

la

f{'n_l(snfl)

and use it to inductively define generators of H,(S™).
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Definition (degree). If f: S™ — S™ then f.([S™]) = k[S™] for some k € Z.
We call deg f. = k the degree of f:S™ — S™.

Proposition 1.33.

1. deg(f og) =deg f - degg by functoriality.

2. If f ~ g then deg f = deg g by homotopy invariance.
3. degidgn = 1.

4. If f: 8™ — S™ is constant then deg f = 0.

5. If f 8™ — S™ is a homeomorphism then deg f = +1.

Proposition 1.34. If p : S™ — S™ is a reflection in a hyperplane then
degp =—1.

Corollary 1.35. If A : S* — S™ v — —v is the antipodal map then
deg A = (—1)"*+L,

Proof. A = p1opso---0puyp1 where pi(v) = (v1,v2,..., =Vi, Vig1,. .., Vns1) is
a reflection. O

| Corollary 1.36. If n is even then A ~ idgn.

To show reflection has degree —1, we begin by considering reflection of the
unit square in the first coordinate R : I — I, (z1,x) — (1 — 21, ).

| Lemma 1.37. [a] 4+ [a o R] =0 in m,(X,p), i.e. [@ o R] = —[a].

Proof. Exercise. O

| Corollary 1.38. R,[I",0I"] = —[I", 81"].
Proof. 0 = [a+ ao R] = o] + deg R[q]. O
Proof of Proposition 1.34. There is a homeomorphism f : (I"™,0I™) — (D™, 8"~ 1)
with fo R = pj o f where p; : D™ — D", (x1,2) — (—21,7) so pr.[D", S" 1] =
—[D", S~ 1. Then

p1el8"71] = prdlD" S = Dpr. D", 877 = ~9D", "] = (5]

so deg p; = —1. As any two reflections are homotopic, we have degp = —1. O

1.6.1 Hurewicz homomorphism
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Definition (Hurewicz homomorphism). The Hurewicz homomorphism is

1/1 : Wn(Xap) - Hn(X)
[&] — & [S™]

where & : (8™, %) = (X,p). If we write

T

(Im,o1m)

.p)

then equivalently ¢([a]) = au.[I™, 0I"].

1 is well-defined: if a ~ 8 then a, = S,.

Proposition 1.39. ¢ is a homomorphism, that is Y ([a + B]) = ¥([a]) +
P((8])-

Therefore

Y :mp (8™ +) = Hpy(S") 2 Z
f s deg f
is a homomorphism. As ¢ (idgn) = 1, ¢ is surjective.

To prove the Hurewicz homomorphism is indeed a homomorphism we need
the notion of coproduct in the category of pointed spaces.

Definition (wedge). If {(X4,Da)}aca is a collection of spaces X,, and p,, €
X, then the wedge is

\/ oupoz HXa/Hpa

a€A

Usually we consider the case X,’s are homogeneous, i.e. if p,q € X, then
there is a homeomorphism fp, : X, — X, with f,q(p) = ¢. The typical
example is a connected manifold. We can drop p,’s from the notation if X,’s
are homogeneous.

Lemma 1.40. If (X,,pa) s a good pair for all « € A then there are
isomorphisms

@ ﬁ*(Xa) — ﬁ*( \/ (Xompoz))

a€cA a€A
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induced by T =73 tax, T = P Tax where 1o : Xo =\ yen(Xa,pa) and

ot \/ (Xa,Pa) = Xa

acA
r x€X,
T )
P Otherwise

Proof. We have isomorphims

D H.(Xo) = D Ho(Xapa) = Ho([] Xa T p0) = A([] Xo/ [T o)

Composing these gives 7. Check that 7o 7 = id. O
If fo : (Xa,Pa) — (Y,q) then we define

\/fa:\/Xa—>Y

T folx)
if z € X,,.

Corollary 1.41. We have a commutative diagram

(\/X ) Ve (\/fa)* . (Y)

e /

@ H.(Xa

Proof. Note (\/ fa) © to, = fo and use the lemma. O

| Proposition 1.42. ¢([a + 8]) = ¥([a]) + ([B]).

Proof. Given o, : (8™, %) — (X,p), we can consider them as maps from
(I™,0I™) and glue them along the boundary to get a map aw+ 3 : (S™, %) —
(X, p). The common boundary is an equator C' and S™/C = SV .S;'. Then we
have a commutative diagram

gn ot x
l” avB
sn/C

SO

(a+B)«[S"] = (@ V B)smi[S"] = QuPase[S"] + Buppam[S"] = cu[S™] + Bi[S"]
O

In general the Hurewicz homomorphism is neither injective nor surjective.
For example exists n > 2 such that ,, (52, *) is nontrivial but H, (5?) = 0 for all
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n > 2. On the other hand, if o : S? — T2 is a map then it lifts to & : S? — R?
SO

@.[S?] = p.@.[S?] =0
since Ho(R?) = 0. But we know Hs(T?) # 0 so the map is not surjective.

The following is an important result, although we will neither prove it nor
use it in this course:

Theorem 1.43 (Hurewicz). Suppose X is path-connected. Then Hq(X) =
m1 (X, ®)/|m1,m], the abelianisation of w1. If m;(X) is trivial for 1 <i <n
then ¢ : mp41(X) = Hpp1(X) ds an isomorphism and H;(X) = 0 for all
1 <n.

Corollary 1.44. If m(X) =1 and H;(X) =0 for 1 <i <n then m;(X) is
trivial for 1 <i <mn and mp41(X) = Hp41(X).

| Corollary 1.45. 7,(S") = Z,m;(S™) = 0 for i < n.

1.6.2 Local degree
If p € S™ then S™—p = R™ is contractible so 7, : Hy,(S™) — H,(S™, 8™ —p) is an
isomorphism. Let [S™, S™ —p| = m.[S™]. Let U C S™ be an open neighbourhood
of pso t.: Hy(UU — p) = H,(S™,S™ — p) is an isomorphism by excision. Let
[Ua U-— p} = L;I[Sna S 7p]

Suppose f : S — S™ with f~1(p) = {q1,...,qn} finite. Pick U; C S™ open
such that ¢; € U; and U;NU; = 0 for ¢ # j. Then f : (U;,U; —q;) — (S™, 8™ —p)
has f.[U;, Ui — ¢;] = k[S™, S™ — p] for some k € Z.

Definition (local degree). The local degree of f at q; € f~1(p) is deg,, [ =
k.

Note that finiteness of f~1(p) guarantees deg,, f is well-defined.

Theorem 1.46. If f : S™ — S™ with f~(p) = {q1,...,qn} finite then
N
deg f = Zdegqi f.
i=1
Proof. Consider the following commutative diagram

Ho(S") —— L 1,8

L THL (S, ST — f7(q)) s Ho (ST, 57— p)

@ H,(S", 5" — ;) +L— @ Ho (U, U; — q,)
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where g[U;, U; — q;] = deg,, f[S™,S™ —p|. t. is an isomorphism by excision. Let
a=fom, B=gof where 8 =1 ! om, then

alS"] = deg f[S", 8" — p] = B[S"].
Claim that p'[S™] = @[U;, U; — ¢:], and then it follows that
BIS™) =D deg,, f[S", 5" —p]

so the result follows. But this is because

B[S = it 0[S = i N EPIS™, S — ai]) = P Ui — ai).

1.7 Cellular homology

Definition (attaching cell). f AC X, BCY, f: B — A then
XU Y =X1TY/(b~ f(b))

for all b € B.
If (Y, B) = (D*, S¥=1) we say X Uy D* is obtained by attaching a k-cell
to X.

Definition (cell complex). An n-dimensional finite cell complez (FCC) is

1. a space X,

2. closed subspaces ) = X_; C Xg C ---X,, = X where X} is the
k-skeleton, such that

3. X} is obtained by attaching finitely many k-cells to Xj_1, i.e. there is a
finite set Aj, and maps ¢, : D*¥ — X}, for a € K such that 1, (S*71) C
Xj—1 and [ tq : [[Int D* — X3 — X, is a homeomorphism.

Example.

1. X = S¥. Then X has the structure of a k-dimensional cell complex with
exactly 1 O-cell and 1 k-cell.

2. X=V, S* has 1 0-cell and n k-cells. Conversely, any cell complex with
this structure must be a wedge of spheres.

3. In general a space has many different cell complex structures. For example
let X = S!. Then X can be obtained by gluing two arcs on their endpoints,
so has the 2 0-cells and 2 1-cells.

4. X = T2 Tt has 1 1-cell, 2 1-cells (an equator and a meridian), and 1
2-cell.

The next important example is
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Definition (complex projective space). The n-dimensional complex projec-
tive space is

CP" = (C"' —0)/C" = {z € C™*! : |z]| = 1}/C" = §>"*1/C”.

The map 7 : $2"*+1 — CP" is called the Hopf map.

We write [z : 21 : -+ 2y] for the equivalence class of (zo,...,2,) in CP™.
Note that CP"~! — CP" by adding 0 to the last coordinate. Consider
L: D" — CP"
(20, 2Zn—1) = [20: " zn_1: 1 —2|]]

Have ¢(S?"~1) C CP"~!. Can check that t|j p2n : Int D" — CP™ — CP"~!
is a homeomorphism, so CP" is obtained by attaching a 2n-cell to CP"~!. By
induction we see CP" is a FCC with one cell of dimension 0,2,...,2n. In
particular CP? = §2.

Claim that
Z x=0,2,...,2n

0 otherwise

H,(CP") = {

Proof. Induction on n. CP° = {p}. In general, (CP", CP"~!) is a good pair so

7 x=2n

H,(CP™ CP" ') = H,(CP"/CP" ') = H,(S*") = ,
0 otherwise

In the LES of (CP",CP"" 1), the boundary map 0 : Ha,(CP",CP"!) —
Hy,_1(CP"~1) = 0 by induction. So we get
0 —— H,(CP" ') —— H,(CP") —— H,(CP",CP"') —— 0
but H,(CP",CP"1!) is free so we have
H,.(CP") = H,(CP" ') @ H,(CP",CP" )

Definition (real projective space). The real projective space is
RP" = (R"~! — {0})/R* = §"/(z ~ —x).

The same argument shows that RP™ is a FCC with one cell of dimension
0,1,...,n. The attaching map ¢ : S~ ! — RP"~! is projection. This time there
is no trick to bypass the computation. We need to develop the theory of celluar
chain complex.

Definition (cellular homology). If X is a n-dimensional FCC with k-skeleton
X}, we define C{(X) = Hy,(Xg, Xi—1) and dj : C5(X) — O£l (X) to be
the boundary map in LES of triple (Xx, Xx—1, Xx—2).

Define 0y : Hg(Xg, Xx—1) — Hg—1(Xk—1) to be the boundary map in LES
of (Xp, Xp—1) and mp—q : Hyp_1(Xp—1) = Hp—1(Xp—1, Xp—2).
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| Lemma 1.47. dp = mp_10k.

Proof. Suppose [¢] € Hp(Xj, Xk—1) for some ¢ € Cy(Xj) such that dc €
Ckfl(kal). Then

Gk[c] = [dC] S kal(kal)
dk[c] = [dc] € kal(Xk717Xk72)

so the result follows. O

| Corollary 1.48. d°! o ¢! = 0.

Proof. By lemma d‘l;e“di‘ill = 10k TkOk+1- But in LES of (X, Xi—1) we have

T 0,
Hy (X)) — Hp(Xp, Xp—1) —— Hyp_1(Xp—1)

so Oy, = 0. O

Therefore we indeed have a chain complex. We can describe C¢!'(X) more
explicitly. Have maps i, : D¥ — Xj where 1,(S*71) € Xp1. (Xp, Xp_1) is
good so

Hk(X]ka,l) = ﬁk(Xk/kal) = ﬁ( \/ S;L) = <6§ RS Ak>
aEA

where ef = 1,.[DF,S*"1] € Hyp(Xy, Xr_1). To describe the boundary maps,

«
first note

el = Optox[DF, 8% = 100D, S* 1) = 10k [S* 7Y € Hyp 1 (X1 1)

where the last two ¢, is a map Sk=1 5 X\_1. Then dkeZ is induced by the
composition

fa:SFTIN X B /X &\ SET
BEAK_1

Let pg : \/WeAk_1 S’j_l — S’g_l be the projection. Then

de’g: Z nageg_l
BEAR_1

where n,g is the degree of pg o fo.
Thus to calculate the cellular homology we just need to compute the degree
of each map. For example consider CS!'(RP"). Then

(=27 0<k<n

0 otherwise

O;C:ell (an) _ {

and to calculate de®, we invoke the theorem about local degrees on the compo-
sition
f:8F1 L RPFI 5 RPFL/RPF 2 = gL
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Each p has two preimages {q, Aq} antipodal to each other so
deg f = deg, f +deg,, f = deg,(f)(1+ deg A).

Near ¢, f is a local homeormorphism so deg, f =1, and deg A = (—1)*. Thus

2 k even
de¥ =14+ (=1)F =
e =1+(-1 {0 k odd

so we have a chain of Z with maps alternating between 0 and multiplication by
2.

Lemma 1.49. If X is a FCC with 1 0-cell and all other cells of dimension
>m then H,(Xi) =0 unless m < * < k.

Proof. Induction on k. If k& < m then X = Xo = {p}. If & = m then
Xy =X =Vi_; S™ so H,(X},) = 0 unless * = m. Now suppose the statement
holds for X;_;. Then H,(X;_1) =0 unless m < * < k —1 and

H (Xp, Xp—1) = Ho(Xp/Xpo1) = -FNI*(\/ s¥y=0
unless * = k. Consider the LES of the (Xj, X;_1)
Ho(Xk-1) —— Hi(Xg) —— Hio( Xk, Xi—1)

where the first and last term vanish identically unless m < % < k. Thus the
result follows. O

| Corollary 1.50. If X is a FCC then Hy(X) = Hy(Xji1).
Proof. LES of (X, Xyy1) gives
Hiy1(X, Xpi1) —— He(Xpg1) —2— Hp(X) —— Hp(X, Xpi1)

Also H, (X, Xj41) & H, (X/X41) and X/ X1 has 1 O-cell and all other cells
of dimension > k + 1 so by lemma Hj_1(X, Xi41) = Hip(X, Xp4+1) = 0. Thus
7 is an isomorphism. O

Theorem 1.51. If X is a FCC then HS(X) =& H,(X).
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Proof. Consider the commutative diagram

Hy(Xpy1, Xk)

/

Hyp(Xp-1) Hi(Xk+1)

& ( Xk

H
v N

AN

dk+1 dk

Hk+1(Xk+17Xk) I Hk(Xkanfl)

Hy 1 (Xk—1, Xp—2)

Hy1(Xp—2)

where the diagonal and anti-diagonal sequences are LES’s of pairs. The groups
written in blue are 0 by the lemma so 71 and 7y, are injective and 7 is surjective.
Thus

kerdy, = ker Oy = imm, = Hp(Xy), imdgsr =imOgyq
and so

kerdk Hk(Xk) . .
HENX) = = = coker Q41 = = Hi(X = Hy(X).
K(X) dr  imony,  Coker Oy = imi k(Xkt1) k(X)

O

Corollary 1.52 (dimension axiom). If X is a FCC of dimension n then
H.(X) =0 for x> n.

Corollary 1.53. If X is a FCC then H.(X) is a finitely generated abelian
group.

Example. The homologies of real projective spaces are

Z * =0
H,(RP*™) = HENRP?™) = ¢ Z/2 +=1,3,...,2n—1
0 otherwise

and
7 *x=0,2n+1
H.(RP*" ) ={7/2 %=1,3,...,2n—1
0 otherwise

Before closing this chapter, we would like to mention that cell complexes
are important not only because they enable efficient computation of homology
groups, but also because of its theoretical importance. In some sense cell com-
plex (with some slight generalisations) is the “correct” category to do algebraic
topology in.

We quote the following result
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1 Homology

Theorem 1.54 (Whitehead). If X and Y are connected FCC’s, f : X =Y
with f. : m(X) = m;(Y) isomorphisms for all i > 1 then it is a homotopy
equivalence.

This is a nice result but it is impractical to check all homotopy groups.
Instead, with the help of Hurewicz theorem (and Barrat-Puppe sequences) we
have

Corollary 1.55. Suppose X and Y are as above and m(X) = m(Y) =
1 then if fo : Ho(X) — H.(Y) are isomorphisms then f is a homotopy
equivalence.

Corollary 1.56. Suppose X is an FCC with m(X) = 0 and H,(X) = 0
then X s contractible.
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2 Cohomology & Products

2.1 Homology with coefficients

Although this chapter is titled cohomology we begin with more on homology.
Firstly we very briefly summarise properties of tensor products. Let R be a
commutative ring. If M and N are R-modules. There is an R-module

M@rN=M@N=m®n:meMneN)/~
where ~ is generated by

(mi+ma)@n~m;@n+my®n
m® (ny+ng) ~mn; +m ng
r(m®mn)~ (rm) @n ~m®e (rn)

Example.

1. For any R-module N, R® N = N with the isomorphism given by r®n —
rn.

2. Let R=7Z. Then Q ®Z/a =0 as

x x
:c®y=a®ay:;®0=0.

3. Z/a®RZ/b=27/(a,b).

Proposition 2.1.
1. MN==N®M.
2. (Mi®M)QNZM @N®My®@N.
3. In particular R™ @ R™ =2 R™ and R™ @ M = M™.
If f: My — Ms,g: N; = Ny are homomorphisms, so is

f®g:M1®N14>M2®N2
m®@mn f(m)®g(n)

and (f1 ® g1) o (f2® g2) = (f1 0 f2) ® (91 0 g2)-
On the level of chain complexes, if (Cy,d) is a chain complex over R and M

is an R-module then (C, ® M,d ® idps) is a chain complex as
(d®idy)? = d? ®id3,; = 0.
Example. Consider the cellular complex for RP2

0 7 —2.7_9%.7 0

Tensor with Z/2, we get

0 7)2 —25 72 -2 7,/2 0
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but —-2:Z/2 — Z/2 is just 0 so

7/2 =0,1,2
H.(C®P) 02/ = 27 T =0

0 otherwise
In particular, it is not the same as HS"(RP?) ® Z/2.

Lemma 2.2. If f : C, — C' is a chain map then f®idy; : CL.@M — C,QM
is also a chain map. If f ~ g then f ®idy ~ g ®idyy.

Definition (singular homology with coefficients). If X is a space, G a Z-
module we define the singular chain complex of X with coefficients in G to
be Ci(X;G) = Cy(X)®7G and the singular homology of X with coefficients
in G to be H (X;G) = H.(Ci(X; G)).

Note if G = Z then C.(X;Z) = C.(X). We usually consider the case
G = R,Q,Z/a, which are in particular rings. Note that if R is a ring then
C.(X;R) is a chain complex over R.

If g € G there is a chain map Cy(X) — C.(X;G),x — = ® g. It induces
H.(X)—= H(X;G),[z] » [z®g]. Alsoif f: X =Y, fp®idg : C.(X;G) —
C.(Y;G) is a chain map, inducing f. : H.(X;G) - H.(Y;G).

Lemma 2.3. There is a commutative square

Ho(X) —L 5 m.(v)

[ J-o»

H.(X:G) L H.(v;@Q)

If X is an FCC then we define H¢"'(X; G) to be the homology of C¢°/( X; G) =
CeN(X) ®z G.

| Theorem 2.4. If X is an FOC then H.(X;G) = He(X; Q).

Sketch proof. Basically we review what we have done so far and convince our-
selves that they still hold with coefficients. The list of properties are

1. functoriality: H.(—,G) is a functor from the category of pairs of spaces
to the category of abelian groups. This follows from

o | Cxi6)
Ci(X, 4,G)=Cu(X,A) 0 G = C.(4,G)

2. homotopy invariance: if f ~ g then f, = g..

3. naturality: if f: (X, A) — (Y, B) then there is a commutative diagram of
LES of pairs

H.(A;G) —— H.(X;G) — H.(X,A;G) —— H._1(4;G)

| | |

H.(B;G) — H.(X;G) —— H.(X,B;G) —— H._1(B;G)
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4. excision: if B C Int A then H,(X — B, A — B;G) = H.(X, 4;G).
5. dimension axiom: H,({p};G) = G if * = 0 and 0 otherwise.

A functor H.(—, Q) satisfying properties 1 — 4 is a generalised homology theory,
and has the property that it is completely determined by its value on the one

point space. _
For our purpose, we define H,(X;G) = ker(f. : H.(X;G) — H.({p}; G))
where f: X — {p}. Then show

G *x=n

1. H,(S™G) = H,(D",S"1;G) = o
0 otherwise

2. If f: 8™ — S™ then from the commutative diagram

H,(S™) —L H,(5™)
—®g l—@y
Ho(S™G) L H, (5™ @)
we conclude f, : H,(S™;G) — H,(S™; G) is multiplication by deg f.

3. Run the proof of cellular homology as before.

Example. Generalising the example above,

Z/2 *=0,...,n

H.(RP";Z/2) = H(RP"; Z,/2) = .
0 otherwise

2.2 Cohomology

This section is the mirror image of the previous section, with the functor
Homy(—, G) in place of — ®z G. Let’s begin the duality by quickly review-
ing Hom.

If M, N are R-modules then

Hom(M,N) ={¢: M — N : ¢ a homomorphism}
is an R-module via

(P14 p2)(m) = @1(m) + pa(m),  (ap)(m) = ap(m).

Proposition 2.5.
1. Hom(R,N) — N, ¢ — ¢(1) is an isomorphism.
2. Hom(M; & M3, N) = Hom(M;, N) & Hom(M;, N).

3. Hom(M, N1 & N3) = Hom(M, N1) @ Hom(M, N3).
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Note that unlike tensor product, Hom(M, N) # Hom(N, M). For example
take R = Z then

Hom(Z,Z/a) = Z/a 2 0 = Hom(Z/a,Z).

We also note that Hom(Z/a,Z/b) = Z/(a, b).
If f:M; — My we get f*: Hom(My, N) — Hom(M;,N),p — po f and
(fog)"=g*o f*. In other words Hom(—, N) is a contravariant functor.

Definition (cochain complex, cohomology). A cochain complex is (C*,d*) =
(Byer CF, > d*F) where d* : CF — CF1 satisfies (d*)% = 0.
Its cohomology is H*(C*) = ker d*/im d*~*.

It is nothing but a chain complex/homology with a different grading.
If (C.,d) is a chain complex then (Hom(C,, N),d*) is a cochain complex.
Explicitly d*~! = (dy)*, the transpose of dj.

Definition (singular cohomology with coefficients). If X is a space and G
an abelian group, then the singular cochain complex of X with coefficients
in G is C*(X;G) = Hom(C«(X),G), and its cohomology is H*(X;G) =
H*(C*(X;Q)).

If f: X — Y is a map then it induces f# : C*(Y;G) — C*(X;G) and so
maps on homologies f*: H*(Y;G) — H*(X;G). In addition (fog)* = g*o f*.
If X is an FCC then we define C* ,(X; G) = Hom(C¢(X), G).

cell

| Theorem 2.6. If X is an FCC then H*(X;G) = H: ,(X; G).

cell

Example. C¢Y(RP?%Z) is

0 72,797 0
SO :e“(RIP’Q;Z) is
0 Z+2 7% 7 0
SO
Z * =0
H*(RP%Z) = Z/2 =2
0 otherwise

and in particular this is not the same as Hom(H, (RP?),Z).

Example (differential form). If M is a smooth manifold and w € Q¥(M) then
w defines a cochain on smooth simplices o : A¥ — M by w(o) = [, 0% (w). if
d: QF(M) — QFFY(M) is the exterior derivative then

dwlo) = [ o) = [ drt@)= [ o) =aldn)

i.e. d =d* in this sense.
de Rham’s theorem says that H*(Q*(M),d) = H*(M;R).
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Similarly we can define cohomology of pairs. Let
C(X,A)={aeC*(X):a(o)=01if imo C A}.
Then the SES
0 — C*(X,A) — C*(X) — C*(4) —— 0
gives LES
H*(X,A;G) — H*(X;G) —— H*(A;G) —— H*'\(X,A;G) — - -
There is a bilinear pairing

() OM(X;G) x Cp(X) = G
(a,x) — a(x)

with respect to which d* and d are adjoints
(d*a,z) = (d*a)(z) = a(dz) = {(a,dx).
Similarly if f: X — Y then

(f*a,2) = (a, fpx).

| Lemma 2.7. (-,-) descends to a pairing H*(X;G) x H.(X) — G.

Proof. Given [a] € H*(X;G),[x] € H.(X), we know d*a = 0,dz = 0 so by
bilinearity

(a4 d*b,z + dy) = (a,z) + (b,dzx) + (d*a,y) + (b,d*y) = (a,x).

2.3 Universal coefficient theorem

Definition. A chain complex C, over R is short injective if
1. C, =0for x £k +1,k,

2. Cy,Cyyq are free over R,

3. di41 : Cry1 — Cj is injective.

Ck/c’k+1 * = k

In particular H,(C,) = {O herwise”
otherwise

Lemma 2.8. If C, is short injective and di4q1 is invertible then C, is
contractible.

Proof. Let h =d;;' : C, — Cry1. Then dh+hd = idc, so C, is contractible. [
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Theorem 2.9. If C. is a free chain complex over a PID R then C, is
isomorphic to a direct sum of short injective complexes.

Some algebra facts:
1. Z,F[t],F[t,t~'] where F is a field are all PIDs.
2. If Ris a PID, M is free over R and N C M then N is also free.

3.If 0 A B C 0 and C is a free then the se-
quence splits and B = A@ C. This is essentially example sheet 1 question
3.

PT‘OOf. Let Z;, = ker(dk : Ck — Ckfl),kal =imdy. Then Zk,Bk - Ck which
is free, so are themselves free. We have a short exact sequence

0 Zy, Ci B4 0

and By_ is free so O = Z), @ By—1. Note d(Z;) =0,d(Bg—1) C Zk_1, i.e.

C, = @(Bk—1 LN Z—1)-

O
Theorem 2.10 (Smith normal form). If f: R™ — R™ is injective where R
is a PID then there are bases {e;},1 < i < n for R", {e;},l <ji<m for
R™ such that f(e;) = ase} and a; #0 for 1 <i<n.
Corollary 2.11. If C, is a free, finitely generated complex over a PID R
then C, is chain homotopy equivalent to a direct sum of complexes of the
following forms:
. 0—— R—— 0,
2. 0 R—/— R 0,a#0.
Proof. Put each short injective summand of C, into Smith normal form. O

Corollary 2.12. If C, is a finitely generated complex over a field F then
C. ~ (H.(C),0).

Proof. Complexes of the type 2 are contractible since any a # 0 in F is invertible.
O

The upshot of this section is

Theorem 2.13. H,.(X;G) and H*(X;G) are determined by H,.(X).

Later we’ll develop enough homological algebra machinery to say precisely
what we mean by “determined”. Consider for now the case R is a PID and
C, is a free finitely generated chain complex over R. By structure theorem for
modules over a PID, H,(C.) = F. ®T, where F, and T, are the free and torsion
parts. Summands of type 1 account for Fy, and type 2 account for T.
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Proposition 2.14.
H,(CoR/(b)=F,R/(b)® T, ® R/(b) & Ti—1 @ R/(D).

Proof. Suffices to check for complexes of type 1 and 2. Type 1 is easy. For type
2

)

(R = R)® R/(b) = R/(b) = R/(b),
and both homology groups are isomorphic to R/(a,b) = R/(a) ® R/(b). O

| Proposition 2.15. H*(Hom(Cy, R)) = Fy & Tj,_,.

Proposition 2.16.
H*(Hom(C,, R/(a))) = Hom(F}, R/(a))®Hom(Ty, R/(a))®Hom(T)_1, R/(a)).

Example. Suppose

Z/4 x=3
- 7 =9
H.(X) = *
Z/2 x=1
0 otherwise
Then
Z/4 =3.4
Z/4 «—4 Z%@Zm i )
~ ~ X =
H(X)=(Z®ZL/]2 x=2 H.(X;Z/4) = 7/ )
* =
0 otherwise .
0 otherwise
Remark.

1. We've proved these results for free finitely generated chain complexes.
More generally they hold whenever C.(X) is free and not necessarily
finitely generated.

2. If X is a FCC then C!(X) is free so we can use the formulas to compute
their (co)homologies with coefficients. In fact, the theorems hold for all
spaces.

2.3.1 Tor and Ext

Let R be a commutative ring.

Definition (free resolution). If M is an R-module, a free resolution of M
is a chain complex C, with Cy =0 for £k < 0 and H.(C) = M if * =0 and
0 otherwise.

Example.

1. If M is free then 0 —— M —— 0 is a free resolution of M.
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2. If Ris a PID and @ # 0 then 0 R—- R 0 is a free
resolution of R/(a).

3.If 0 Ch Cy 0 is short injective then it is a free reso-
lution of H,(C) = Hy(C).

4. If R = Clz,y],M = R/(x,y) then R (y) YR 0 is a

free resolution of M.

Definition (Tor and Ext). If M, N are R-modules then

Torl(M, N) = H;(C. ® N)
Ext% (M, N) = H'(Hom(C,, N))

where C, is a free resolution of M.

It is a fact (that we shall not prove here) that this does not depend on the
choice of free resolution C,.

Example.

1. If M is free then

Ext*(M, N) =

Tor*(M,N):{M@@N £ =0 {Hom(M,N) $=0

0 otherwise otherwise

2. If Ris a PID, a,b # 0 then

R/(a,b) *=0,1
0 otherwise

Tor.(R/(a), R/ (b)) = {

3. (Nothing interesting).
4. If R = Clz,y], M = R/(z,y) then

M x=0,2
Tor, (M, M) =<{ M? %=1
0 otherwise

Proposition 2.17. If C, is a free chain complex over a PID R then

Hy,(C ® N) = Torg(Hy(C), N) @ Tor, (Hy_1(C), N)

= Hy(C) ® N @ Tor, (Hy_1(C), N)
H*(Hom(C, N)) = Ext’(H,(C), N) @ Ext' (H,_1(C), N)
= Hom(Hy(C), N) @ Ext'(Hy_1(C), N)
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Proof. Suffices to check for a short injective complex since C' is a direct sum of

these. If 0 Cri1 Ch 0 is short injective, it is a (shifted)
free resolution of Hy(C) so the homology of C, ® N is Tor;(H.(C,N)) and
Torg(H.(C, N)) in degree k + 1 and k. Similar for Ext. O

Corollary 2.18. If H, is a free over Z then
H.(X;G)=Hy(X)®G
H*(X;G) = Hom(Hy(X); G)

Proof. H,(X) is free implies that Tor; and Ext' terms are 0. O

Corollary 2.19. If H.(X) is free then H*(X) = Hom(H,(X),Z), the dual
of H,(X). Furthermore if f : X =Y then f*: H*(Y) — H*(X) s dual to
fo  Ho(X) = H(Y).

Proof. This follows from the pairing formula

(ffa,x) = (a, f.x).

2.4 Products

2.4.1 Tensor product of chain complexes

Notation. If C, is a chain complex and z € C;, write |z| = 1.

Definition (tensor product of chain complexes). If C' and C’ are chain
complexes over R then C' ® C' is the chain complex

(CoC), = @ C’i®Cj'-
it+i=k

with

dyey)=dyey +(-1)¥yedy.
Check that

Pyey)=dyoy +(-1)¥dy o dy
+ (-D)Wdy @ dy’ + (-1)*My @ (d)%y
=0
since |dy| = |y| — 1.
Proposition 2.20. IfY and Y’ are FCCs, A;, A} are the set of i-cells of

Y and Y’ respectively. Then Z =Y xY' is a finite cell complex with k-cells
{(,a)aedy o’ e Ajritj =k}
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Example. [ is a FCC with 2 0O-cells and 1 1-cell. Then [ x I has a cell complex
structure of 4 0-cells, 4 1-cells and 1 2-cell. (picture)

Sketch proof. Take Zj = Ui+j=kYi X Yj’. If o € 4;,0 € A;, have ¢, : D* —
Yi, il i DI — Yj’. Then have 1, X ¢, : D' x DJ =2 D' — Y, x Yj’ C Z,. Check
details. 0

Theorem 2.21. IfY and Y’ are FCCs then
CeMY xY') = CN(Y) @ O (Y.
Proof. At the level of chain groups,
CioM (Y xY') = (e(aa) 10 € Ao € Al i+ j =)
(CMY) @ CEMNY )k = (ea ®ea a € Ay, o € Al i+ j =)

so there is an obvious correspondence. Check the differentials on both sides
agree. [

Example. Homology of product FCCs can be computed using the differential
graded double complex associated to the tensor product cell complex. For ex-
ample to compute H,(RP? x RP?) = H, (C(RP?) @ C¢!(RP?)) we draw the
double complex (note the minus sign)

Z Z+2 7+2 7
I
Z Z+2 -7+ 17
I (N
Z Z+2 7+ 7

Z+2 72 7

The double complex has the form (4? 4*) with zero maps between different

A;’s. Ag, A1, As are boring so let’s look at As, which is
(3) 22
7~ 72 22 g
so has homology

Summing up contributions from each summand, we get

7 *x=0
H.(RP? x RP?) = (Z/2)* =1
* 72 * =23
0 otherwise
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Theorem 2.22 (Kiinneth formula). If C,C" are free over a PID R then
H(CoC)= @ H(C)eHj(CYo P Tori(Hi(C),H,;(C")).
it+j=k itj=k—1
One should think of this as
H.(C®C") =~ H,(C)® H.(C") & Tor1 (H.(C), H.(C")).

with suitable indices. In particular H,(X x Y) is determined by H.(X) and
H.(Y).

Proof. We prove the case where C, C’ are finitely generated. Since tensor prod-
uct distributes over direct sum, it suffices to check the formula for type 1 and
2. We verify one case here and the rest are left as exercise. Suppose C,C’ are

0 R—— R 0
0 R—“5R 0
in degree ¢ and j. Then
/ R——n (ﬂFrfz’) (£d’ a)
CeC = Jia' ba/ = R4 RPEYR
R+*— R

Let b = ged(a, a’). Then

Hiyj(C®C') = R/b=H,;(C) ® H;(C")
Hiyj41(C® C") = R/b = Tor1(H;(C), H;(C"))

Example. Use the implicit index convention,

Z *x =0
7)2)? x=1
H,.(RP?) @ H,(RP?) = (
( )@ Ha ) Z]2 x* =2
0 otherwise

and
Tor, (H,(RP?), H,(RP?)) = Tor, (H, (RP?), H,(RP?)) = Tor,(Z/2,7/2) = 7/2

so torsion contributes Z/2 to degree 1+ 1+ 1 = 3 in H,(RP? x RP?). Compare
with result last time.

| Corollary 2.23. If H.(X) is free over Z then H, (X xY) = H (X)) H.(Y).

Proof. We assume X and Y are FCCs. Then it follows from Tor;(M,N) = 0
for M free. O
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Corollary 2.24. IfF is a field then
H (X xY;F)2 H(X;F) @p H.(Y;F).
Proof. Again we assume X and Y are FCCs.
CN (X Vi) = (G (X) @05 CN(Y)) @ F
= (Cy(X) @2 F) @ (CH(X) @2 F)
= O (X5 F) @ CN(Y5F)
and note that modules over a field are free. O

Example.

F +=0,4
F?2 x=1,3
F3 =2

0  otherwise

H.(RP* x RP*;Z/2) & H,(RP*, Z/2) ®z,2 H.(RP* Z/2) =

If we only care about homology with coefficients in a field then the only
information is the dimensions of the homology groups as vector spaces. We
define

Definition (Poincaré polynomial). Let F be a field. Then the Poincaré
polynomial of X with respect to I is

Pr(X) =) dim H;(X;F)t' € Z[[t]].

i>0

The corollary simply says that Pr(X X Y) = Pp(X)Pr(Y).
There is a problem with this approach. Recall that if H,(X) is free then we
have isomorphisms

H.(X)®G — H.(X;QG)
[z] @ g = [z ®g]
H*(X;G) —» Hom(H,.(X);G)
a— {a,—)

which are realised by natural maps (and independent of cell structure). However
if we would like a natural map

H,(X)® H,(Y) = H, (X xY),

it would be really painful to write it down. Instead we use cohomology where
is a natural notion of product.

2.5 Cup product

Let R be a commutative ring.

48



2 Cohomology € Products

Definition (cup product). If « € C*(X;R) and 8 € C*(X; R), their cup

product a — B € C*(X; R) is given by
a— B(o) = a(o o Fo..k)B(0 © Fi...oqk)
for o : AT - X.
Note that we exploited the ring structure of R.
| Lemma 2.25. d*(a — ) = d*a — f+ (=1)*la — d*B.
Proof. If o : A***+1 — X then
d*(a — B)(o) = (a — B)(do)

ko1 ,
= Z (=1 (= B)(o 0 Fy 5 pper1)
j=0
k .
= Z(*DJO&(U 0 Fy gr1)B(00 Frprkpetn)
j=0
k4641 '
+ Y (~1a(oo Fok)B(o o Fy 5 pipi1)
j=k+1
k+1 _
= Z(‘UJCX(U 0 Fy 5. 111)B(0 0 Fryioptetr)
j=0
k+6+4+1 .
+ Z (—1)]OZ(O' © -F()---k)ﬂ(o- ° Fk"'j~'~k+f+l)
j=k

— d'a— B(o) + (~1)”la — d*B(o)

Thus if d*a = d*8 = 0 then d* (o — ) =0 so
[(a+da) — (B+d"B)]
=la— f+d(a— B)+d(-1)a’ — §) +d* (o) — +d"F")]
=[a— 7]
so cup products descends to a map
H*(X;R) x H(X;R) — H*"*(X; R)
(lod, [8]) = [a — 7]

Proposition 2.26. — makes H*(X; R) into a ring. If f : X = Y then

f*:H*(Y;R) — H*(X;R) is a ring homomorphism.

Proof. We need to find the unit with respect to —. Define 1 € C°(X;R) by

1(c)=1€ Rforall o : A — X. Then
d*()(r)=1dr)=(toF1 —T0F))=1-1=0
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for 7: A’ - X. Let 1 = [1] € H°(X; R). Then we need to check 1 is the unit,
associativity of — and distributivity of — over addition. These are all true at
the level of cochains.

If f: X - Y then

f#(a— B)(0) = (a — B)(f40)
=(a—p)(foo)
=a(foooFy.k)B(fooo Fy. kye)
= (f*(a) — [#(8))(0)
F(la] = [B) = [f*(a = B)] = [fF(a) — [F(B)] = f*([a) — f*([8]).
O

Remark. de Rham’s theorem says that for a smooth manifold M the map
v H*(Q*(M),d) — H*(M;R) is a ring homomorphism, i.e. we have wedge
product A : QF(M) x QY(M) — QF¢(M) and

p([wl A [n]) = e((w]) — (n))-

Proposition 2.27. If a,b € H*(X) then a — b = (=1)l*lllp — a. In
other words, — is graded commutative (or supercommutative if you’re a
physicist).

Note this is very false at the cochain level.
Sketch proof. The map
p: AF 5 AF
(v, y0k) = (Vgy .., 00)
induces a chain map
ru: Cu(X) = Ciu(X)
o e(lo])oop

where (k) = (=1)**=1/2 the determinant of the k x k matrix with 1 on the
antidiagonal and 0 elsewhere. The map ry “reverses” a chain (up to a sign) and
r4 ~ide, (x) (see Hatcher for formula). Dualising to get 7# : C*(X) — C*(X)
and 7% ~ idc-(x). Thus [r*a] = [o]. Now

r# (o — B) = (|04\) (|5|)T (B) — r*(a) = (_1)\allﬁlr#(5) < r#(a)
SO
[a] — [8] = [a — f]
= [r*(a — B)]
(=) # () — ()]
= (=Dl IPI#(8)] — [r#(a)]
(=)l IPVB] — o]
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To avoid having to keep track of the ring R (and for saving paper when you
print these notes) for the rest of the section we take R = Z, but everything
works over a ring R.

There is also a cup product for pairs. If a € C*(X,A) then a(y) = 0 if
imy C A, soif 8 € C*(X) and imo C A then

(a— B)(0) =alooFy. k)B(c o Fypte) =0

since imo o Fy...,, € A. In other words we have a map —: C*(X, A) x C*(X) —
C*(X, A) and this descends to a map

—: H¥(X,A) x HY(X) —» H***(X, A)
(a,b) = a—p

Lemma 2.28. If § € H*(X) then the square

H* (X, A) — H*(X)

|- |-

H*(X,A) —— H*(X)

commautes.
Proof. Exercise. O
Example.

1. If X is path-connected then H°(X) = Z = (1).

Proof. Ho(X) = Z so H°(X) = Z by universal coefficient. If p € X then
(1,]op]) =1 s0 1 generates H°(X). O

2. H*(X1IY) =2 H*(X) x H*(Y) as rings.

Proof. There is an isomorphism

C'(XIOY)=>C"(X)xC*(Y)=C"(X)a C'(Y)
o (Lﬁa,ﬁa)
7+ (@, f)

where v(0) = a(o) if imo C X and (o) = (o) if imo C Y. It follows
that /% x o3 : H*(XIIY) — H*(X) x H*(Y) is an isomorphism. It is a
ring homomorphism as ¢%, ¢j- are. O

3. H*(S™) = Z[a]/(a®) if n > 0.
Proof. H*(S™) = Z if *+ = 0 or n and 0 otherwise. Let (a) = H™(S™).

Then as groups H*(S") =(l,a) and 1 — 1=1,1—a=a—1=a,a —
a = 0 since H*"(S™) = 0. O
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Exterior product Recall that we promised at the end of last section that
there is a natural way to define a bilinear map from product cohomology groups
to the cohomology of product space. Now we define the map.

Definition (exterior product). Let m : X XY — X, : X xY — Y be
the projections. If a € H*(X),b € H*(Y) then their exterior product is

axb=ri(a) —7m3(b) € HX xY).

Theorem 2.29. If H*(Y) is free over R =7 then the map

O H (X)®H*(Y) > H' (X xY)
a®br—axb

is an isomorphism.

Proof. We prove the theorem under the assumption that X and Y are FCCs.
The proof is divided into two parts. We first show that the two gadgets we want
to show isomorphic are two functors. Then we show @ is a natural isomorphism
between them.

For a fixed Y, observe that apart from H*(—), there are two more con-
travariant functors E*, h™ from the category of pairs of spaces to the category
of graded Z-modules, sending objects to

R(X,A) = H* (X xY,AxY)
h(X,A) = H* (X, A) @ H*(Y)

and sending a map f : (X1, A1) — (X2, 42) to

We are going to show H*,E* and h, are all generalised cohomology theories,
which is a functor H*(—) satisfying the following axioms:

1. functoriality: H*(—) is contravariant.

2. homotopy invariance: if f ~ g then f* = g*.

3. naturality: map of pairs induces a map of LES’s of pairs.

4. excision: if B C Int A then H*(X,A) = H*(X — B, A — B).

homotopy invariant: for H* this follows from that of homology as f ~ g
implies fz ~ gy so f# ~ g# so f* = g*. For 1" this follows from H* as
(f xidy) ~ (g x idy). A" is obvious.

naturality: we have done this for H*. Then 1" follows. For h* this follows
from the flatness of H*(Y). Note that the assumption of freeness of H*(Y') is
crucial.

excision: for H* we can prove this using subdivision, or use the result that

if fo : H(X,A) — H.(Y,B) is an isomorphism then so is f* : H*(Y,B) —
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H*(X, A), which is left as an exercise. Then 1" follows. h* is obvious. As a
side note, 1, 2, 3, 4 together imply collapsing a pair, and the proof is exactly
the same as in homology.

Now the key ingredient is to note that

Lemma 2.30. ® is a natural transformation, i.e. if f: (X, A) = (X', A")
then we have commutative diagrams

B(XL A L (X, A) BN(X,A) S h(A)

| T Js

E*(X/,A/) f*> E*(X,A) E*(X7 A) L E*+1(A)

Proof. We prove the first square and the second is left as an exercise on example
sheet 3:

(@)@ b) =Tt @) — 5(0)

= F'i'(a) = F'75 ()
(0 F)"(a) — (50 F)" (b
= mif*(a) - m3b
= f*(a) x b
SACED)

where F' = f x idy. O

We now show @ is a natural isomorphism by showing it is an isomorphism
pointwise. Let P(X, A) be the statement that

®:h,(X,A) = h (X, A)
a®b—axb
is an isomorphism.
1. P(D°) and P(S°) hold: for P(D"), note

r(D%) = H* (DY@ H*(Y)=Z® H*(Y) = H*(Y)
1"(D°) = H*(D° x Y) = H*(D")

so composed with @, we get a map H*(Y) — H*(Y)
b—1®@1l—ni(1) —75(b)=1—b=hb.

which is an isomorphism so ® is an isomorphism.

For S° we have

(%) =22 @ H(Y)

(SO = H*(YIIY) = H*(Y)® H*(Y)

= IS

so we similarly get
(m,n) ® b— (ma,na).
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2. If X ~ X’ then P(X) if and only if P(X’). As a corollary P(D™) holds.

Proof. Let f: X — X’ be the map inducing homotopy equivalence. Then
by the lemma there is a commutative square

*

B (X') —E B (X)

[+ o
BX) L B(X)

and ?*, f* are isomorphisms. The result thus follows. O

3. If two of P(A),P(X) and P(X, A) hold, so does the third. This follows
from naturality and five lemma.

4. If (X, A) is a good pair then P(X, A) if and only if P(X/A).
Proof. P(X,A) holds if and only if P(X/A, A/A) holds by collapasing a
pair and the lemma. As A/A = DY P(A/A) holds. Therefore P(X/A, A/A)
holds if and only if P(X/A) holds by 3. O
5. P(S™) and P(D™, 8" 1) hold.

Proof. Induction on n. Base case is 1. Suppose this holds for n. Then by
4 P(S™) = P(D"/S™"1) also holds. Then P(D"*!,S") holds by 3. O

6. If P(X) then P(X Uy D*).
Proof. Consider (X Uy D¥, X). This is a good pair with XUy D¥ /X = S*.
P(S*) holds by 5 and P(X) hold by hypothesis. Thus P(X Uy D, X) by
4 so P(X Uy D*) holds by 3. O
7. P(X) holds if X is an FCC.
Proof. Induction on the number of cells in X. Write X = X' Uy D* where
X'’ has one fewer cell than X. P(X’) holds by induction so P(X) holds
by 6. O

O

Theorem 2.31. If X is homotopy equivalent to a FCC and H*(Y') is free
over Z then ® : H*(X)® H*(Y) —» H*(X x Y) is an isomorphism.

Proof. Follows from claim 2 and 7 in the proof above. O

Example.
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1. For purpose of bookkeeping,
(a1 x b1) — (a2 x b2) = 7w (a1) — 73(b1) — 7y (az) — w3 (b2)
= (=D)"lelrt(ar) — 77 (a) — 75 (b1) — 75 (b2)
(=D)Prllezla (@) — ag) — 75 (b1 — bs)
(1)

1 ‘blll‘”l(al ~ CLQ) X (b1 ~ b2)

2. Cohomology ring of T2, Recall that H*(S') = Z[c|/(c?) where |c| = 1.
By the theorem H*(S! x S1) = (1 x 1, x 1,1 X ¢,c X ¢) as a group. Let
a=cx1,b=1xc. Then

avb:(cx1)v(1xc):(71)0'ocxc:cxc
b—a=(-1'""a—b=—-a—b

a—a=(cx1)—(ecxl)=—=(c—c)x(1—1)=0

and similar for b so as H*(S x S!) is generated as a (noncommutative
unital) ring by a, b with relations

a—a=b—b=0, a—b=-b—a

i.e.
H*(T?) = (a,blab = —ba,a® = b* = 0) = A*(a,b),

the exterior algebra in two variables.
3. Similarly
H*(T") = (a1, ..., anla;a; = —aja;,a; = 0) = A*(ay,...,a,).
Here a; =1x---xex - x1and |a;| = 1.

4. Cohomology ring of S% x S2. Have H*(S?) = Z[c']/(c?) where || = 2.
Then H*(S?xS%) = (1x1,¢! x1,1xc, ¢ xc). Let A= x1,B=1xc.
Still have A? = B2 =0 but AB = (—1)*2BA = BA so

H*(S% x S?) = 7Z|A, B]/(A%, B?).

5. Wedge product: it follows from LES of the pair (X II'Y, {z,y}) that for
k>0,
H¥XVY)2 HYXTIY) = {(a,b) : a € H*(X),b € H*(Y)}.

If X,Y are path connected then H*(X VY) = Z. H*(X VY) is a subring
of H*(XTIY) = H*(X) x H*(Y).
6. H*(S2v S2v S%) = HF(S2) x HX(S?) x H*(5*) so for example H?(S? V
§2V 8% = (0 = (¢,0,0), = (0,¢,0)) and
a®=p2=0, aBf=(c0,0)—(0,c0)=0

As a result, H*(S? Vv 82 v §4) = H*(S? x S?) as groups but not as rings.
Thus cohomology ring is strictly stronger than groups: the two spaces are
not homotopy equivalent although they have isomorphic (co)homology
groups.
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7. Cohomology ring of Y. Let A be a loop (picture) so 7 : o — ¥g/A =
T? v TZ. On homology groups we have
1—(1,1)
T s Hi(32) & Hi(T7) @ Hy(T75)
from example sheet 1. H,(X2) and H,.(T? V T?) are free so by universal
coefficient 7* is dual to m, so
7 HX(TEV TE) = H*(T?) @ H*(T}) — H?*(%,)
(c1) @0 (o)
0@ (c3) — (C)
7 HY(TEVTE) = HY(T?) @ HY(T?) — H' (%)
(a1,b1) @ (ag, ba) — (@1, b1, @z, by)

so m(c1) = 7*(c2) =< In H*(T2 vV T%),

aivbizéijci,aivaj:O,bivbj=0

SO
Ei vgj = 71'*(0,1‘) ~ W*(bj) = 7r*(ai ~— b]) = ﬂ*((;ijci) = §ij6
a; — a; :Bi\—/gj =0
Similarly B
Hl(zq) =(@;,bi:1<i< 9>7H2(Eq) =(©)
with
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3 Vector bundles & Manifolds
3.1 Vector bundles

Definition (vector bundle). An n-dimensional real vector bundle over B is
a map 7w : ' — B such that

1. 7=1(b) is an n-dimensional real vector space for all b € B,

2. there is an open cover {U,}aca of B and homeomorphisms f, :
7 Y(U,) — Uy x R™ such that the diagram

commutes, and 72 0 fo|r-1(3) : 77 1(b) — R" is a linear isomorphism
for all b € U,.

B is the base space, E is the total space, 7=1(b) are the fibres of 7 : E — B
and f,’s are the local trivialisations.

There is an analogous definition of complex vector bundles by replacing R
with C.

Definition (morphism of vector bundles). A morphism between vector bun-
dles 7 : E — B, 7’ : B/ — B’ is a commutative square

such that for every b € B, fp|r-1(p) : 7 1(b) = («')"1(f(b)) is a linear map.
Vector bundles together with morphisms between them form a category.

Definition (subbundle). E is a subbundle of E’ if there is an injective
morphism

=
&

5

W

@ —

Transition functions Suppose 7: F — B is as above. Consider

fao 5t (UaNUg) x R™ = (Us N Us) x R™
(b,v) = (b, fap(b,v))
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where fo5(b,v) is a linear function of v. In other words fo5(v,b) = gas(b)v
where go5(v) € GL,(R). The maps gas : Uy N Uz — GL,(R) are called transi-
tion functions.

Lemma 3.1. The transition functions g.g satisfy

gag(b) =id
95a(b) = gap(0) ™"
9op(0)g3+(b) = gay (D)
Proof. Exercise. O

Conversely

Proposition 3.2. Suppose {Uqy}aca s an open cover of B and gag : Ug N
U — GL,(R) satisfies the relations in the statement of the preceding lemma,
then there exists a vector bundle m : E — B with transition functions gas
unique up to isomorphism.

Sketch proof. Let E = [[,c4(Ua x R™)/ ~ where (b,v) ~ (b, gas(b)v) for b €
U, NUg. Then the three relations imply that ~ is an equivalence relation. [

Definition (section). A section of m : E — B is a map s : B — E with
mos=idg.

Example. For every bundle 7 : F — B we have the zero section s : B —
E, b+ 0€ 7 1(b). It is an exercise to check this is continuous.

The simplest bundle is the n-dimensional trivial bundle over B given by
m : BxR" — B.

Proposition 3.3. 7w : E — B is isomorphic to B x R™ if and only if there
are sections S1,...,8, : B = E such that {s1(b),...,sn(b)} is a basis of
7= 1(b) for all b € B.

Proof. 1If sq,...,s, are such sections then define

f:BxR" 5 E
(b,v) — Z%‘Si(b)
i=1

Check this is an isomorphism. The converse is trivial. O
Example.

1. Mobius bundle: let M = [0,1] x R/(0,z) ~ (1,—x) and M — [0,1]/0 ~
1 = S'. This is a line bundle (i.e. a 1-dimensional vector bundle) over
Sl If s: St — M is a section, say s(t) = (¢, f(t)) € [0,1] x R, then f(t)
satisfies f(0) = —f(1). We know from IA Analysis I f(t9) = 0 for some
to € [0,1] so {s(tg)} is not a basis of m~1(¢y) so M is not trivial.
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2. Tautological bundle: the tautological bundle of the real projective space is
defined to be

mree = {([z],v) € RP" x R"! : y € Ra}

with projection onto first coordinate mgpn — RP™. Have local trivialisa-
tions U; = {x; # 0} and

fi : W_l(Ui) — Uz x R
([z],v) = (2], v:)
and the transition functions are

gi([z]) = z—J € R* = GL,(R).

3. Similarly we can define the tautological bundle of the complex projective
space, which is a complex line bundle, to be

mepn = {([2],v) € CP" x C"*! : v € Cz}.

In addition to the vector bundle, we have the map my : 7cpn — CP1!
which is blowup in algebraic geometry. If v # 0 then 75 *(v) = ([v],v). If
v =0 then 7y *(v) = {([2],0)} is the image of the zero section.

4. The tangent bundle of S™
TS™ = {(z,v) € S" x R"™ : v .z =0}
Let U; = {x € S™ : x; # 0} and we have local trivialisations
fi : 7T_1(Ui) — R"
(x,v) = m(v)
For a general vector bundle E — B, a section s : B — E is nonvanishing
if s(b) # 0 for all b € B. From example sheet 1 T'S™ has a nonvanishing

section if and only if n is odd (in fact T'S™ is trivial if and only if n =
1,3,7).

5. Product of bundles: if 7 : E — B,n’ : E' — B’ are vector bundles then so
ismx7': ExE': BxE with fibres (7 x ') 71(b,0') = 7= 1(b) x 7'~ 1 (V).

6. Pullback of bundle: if 7 : E — B is a vector bundle and f : X — B then
JTE={(z,v) e XxE: f(z) =7(v)}

is a vecotr bundle over X with «’ : f*(F) — X, (z,v) — x. The fibre
is (7)1 (x) 2 77 1(f(z)). If E is trivial on U, with transition functions
Jop : Ua NUz = GL,(R) then f*E is trivial on f~1(U,) with transition
functions geg o f.

7. Whitney sum: If 7 : E — B, 7’ : E/ — B are vector bundles over B then
define
E®E =A"(Ex FE')

where A : B — B x B is the diagonal map. If we denote the vector bundle
by Te : E®E' — Bthennz'(b) 2 71 (b)x (7)) "H(b) Z 7~ (D)@ (7)1 (b).

59



8 Vector bundles & Manifolds

Partition of unit

Definition (support). If ¢ : B — R, we define the support of ¢ to be

supp = {b € B : p(b) # 0}.

Definition (partition of unity). If U = {U, : o € A} is an open cover of B,
a partition of unity subordinate to U is a collection of functions {¢;} such
that

1. ¢; : B—[0,1],
2. supp p; C Uy, for some o; € A,

3. for any b € B, ¢;(b) = 0 for all but finitely many 4,

4. >~ ¢i(b) = 1. This makes sense as it is locally a finite sum.

We say B admits a partition of unity if whenever U is an open cover of B then
there is a partition of unity subordinate to /. It is a fact that compact Hausdorff
spaces, metrisable spaces and manifolds all admit partition of unity. In general
B admits a partition of unity if and only if B is paracompact Hausdorff.

The reason we care so much about vector bundles in algebraic topology is

Theorem 3.4. Suppose m : E — B’ is a vector bundle, fo, f1 : B — B’
with fo ~ f1 and B admits partition of unity then ffE = ffE.

Notation. If B’ C B and ¢ : B’ < B is the inclusion then let Eg: = i*E be
the restriction of E to B’.

Now suppose 7 : E — B x [0, 1] is a vector bundle.

| Lemma 3.5. If E|p,(o,1) and E|p, 1 1) are both trivial then so is E.

Proof. Exercise. O

Lemma 3.6. Any b € B has an open neighbourhood Uy, C B such that
E|be[071] is trivial.

Proof. E is locally trivial so given b € B,s € [0,1], can find Uy s C U an
open neighbourhood of b and Iy C [0, 1] an open neighbourhood of s such that
E|u, .x1. is trivial. Now [0, 1] is compact so can find 0 =ty < s1 < t1 < s1 <
.-+ < t, = 1 such that ElUb,siX[tiflyti] is trivial. Now let U, = (i, Up,s, and
apply the previous lemma. O

| Proposition 3.7. If B admits a partition of unity then E|pxo = E|px1-

Proof. Pick Uy as in the proof of the lemma. Then & = {U, : b € B} is an open
cover of B. Let {y;} be a partition of unity subordinate to U so supp p; C Uy,
for some b; € B. Let ¢, = > i, ¢; and p, : B — B x I,b — (b, 1, (b)). Let
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E,=piE. Let f; : 71 (Up, x [0,1]) = Uy, x [0,1] x R™ be a local trivialisation.
There is an isomorphism

/Bn : En—l — En

b0y s {00) ¢ Ui,
’ (b’frjl(bﬂpn(b)’v)) be U,

Now if 8 = lim;, o0 Bn0- - <081 then : E|gxo — E|Bx1 is an isomorphism. [

Proof of Theorem 3.4. Let F : B x [0,1] — B’ be the homotopy. Then

fo(BE) = F*(E)[Bxo = F*(E)|px1 = [ (E).

Corollary 3.8. If 7 : E — B is a vector bundle and B is contractible and
admits a partition of unity then E is trivial.

Proof. idp ~ ¢, since B is contractible, so
E~idp(E) = ¢, (E) 2 Bxn '(b)

is trivial. O

3.2 The Thom isomorphism

Let m: E — B be an n-dimensional vector bundle.

Notation. If b € B, E, = 7 !(b) is the fibre at b and i} : E, — FE is the
inclusion. Let sq : B — E be the O-section, E# = E — im so,EZ!7£ =FE—-0=
R™ — 0.

We know that

Z x=mn

H,.(Ey, Ef) = H,(R",R" — 0) =
(B, By ( ) {0 otherwise
which is in particular free. So by universal coefficient

R x=n

H*(Ey,EI';R) =
(Ey b ) {O otherwise
From now on we assume R-coefficient.

Definition (Thom class). U € H"(E, E¥; R) is an R-Thom class (or R-
orientation) for E if i} (U) generates H"(Ej, Ef) ~ Rforallbe B.

Example. Let E be the trivial bundle. Then

H*(E,E#)~ H*(B xR",B x (R" — 0)) = H*(B) ® H*(R",R" — 0)
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since H*(R™,R™ — 0) is free. So

HY(B) — H""*(E, E¥)

a—axec
is an isomorphism where (¢) = H"(R",R™ — 0). Thus

H"(E,E*)=H'B)= [[ H°B)= ][] R
BiEﬂ'o(B) BiEﬂ'(](B)

so we have an isomorphism

II 2= I H"Els. E*s)

BiE‘IT()(B) BiE‘IT()(B)

r = (r;c)

so 7 x ¢ is a Thom class if and only if r; generates R = HY(B;) for all i. For
R = 7/2 there is a unique Thom class while if R = Z there are 2/70(®)! Thom
classes.

If f : B" — B there is a morphism

Lemma 3.9. If U € H"(E,E#) is a Thom class for E then f*(U) €
H"(f*(E), f*(E)*) is a Thom class for f*(E).

Proof. The diagram

(B ——

ib/T if(b’)T

By —— Elsu)

commutes so if i}, (U) generates H”(Ef(b/),Ef(b,)) then ¢}, (f5(U)) generates
H"(f*(E)y. f*(B)})- =

Lemma 3.10. Suppose B = ByUBy and U € H"(E,E#). IfU|p, =i} (U)
is a Thom class for E|p, for each i where i; : m=Y(B;) — E then U is a
Thom class for E.

Proof. If b € B then b € B; for some i and if we write Ul, = ;(U) then
Uly = (U|B,)» generates H"(Eb,Eff) since Ulp, is a Thom class. O
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Theorem 3.11 (Thom isomorphism). If 7 : E — B is an n-dimensional
vector bundle then

1. E has a unique Z/2-Thom class.

2. if E has an R-Thom class then the map

¢ : H*(B;R) - H*™(E,E*; R)
a—7(a)—U

is an isomorphism.

Proof. We will prove this when B is compact.

Step 1: the theorem holds if F is trivial. This is the example above.

Step 2: suppose B, By C B. Let BA = B; N By. Claim if the theorem holds
for E|p,, E|p, and E|p,np, then it holds for E|p,up,. Write E; = E|p, and
similarly En, Fy. Consider the Mayer-Vietoris sequence for R = Z/2:

H" " Y(En, EZ) — H™(Ey, EY) % H"(Ey, EY)® H"(E,, EY) LN H"(En, EZ)

I
0

since 2 holds for Fn. Since 1 holds for F; and FEs, they have Thom classes
U; € H"(E“El#) By lemma U;|g, is a Thom class for En. By 1 U;|g, = Un
is the unique Thom class for En, so 8(U; & Us) = Un — U = 0. By exactness
Ui ®Us; € ima so exists Uy € H”(EU,EL#) with Uy|g, = U;. By lemma U is
a Thom class for E.

For uniqueness note that if U/, is a Thom class for E, then U/)|g, is a Thom
class for E; so again by uniqueness U/)|g, = U;, i.e. a(U)) = U1 @Uz so U/, = Uy
by injectivity of a.

For part 2, consider the commutative diagram of Mayer-Vietoris sequences

H*(B)) ————  H*(B1) ® H*(By) ————  H*(Bp)

lwu lwl Drp2 l¢m

H*t"(E,, BY) —— H**"(Ey, Ef) ® H*t"(Ey, B} ) —— H**"(En, EY)

As Y1 @ 1o and 1 are isomorphisms, so is 1.

Step 3: Suppose B has an open cover {V;,---,V;} with E|y, trivial. Let
W; = U]_, Vi. Prove by induction on j that the theorem holds for Ely,: if
j = 1 then Wy = Vj so done by step 1. In general if the theorem holds for
W;_1 it also holds for V; and V; N W;_; since Ely, is trivial implies E|v,nw,_,
is trival, so holds for W; by step 2.

Sphere bundles
Definition (Riemannian metric). A Riemannian metric g on E is a map

g : E® E — R such that the map g|(geg), : By X Ey — R is an inner
product on Ej for all b € B.
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Lemma 3.12. If B admits partition of unity then E admits a Riemannian
metric.

Proof. 111 Differential Geometry. O

Definition (unit sphere bundle, unit disk bundle). If g is a Riemannian

metric on F, define the unit sphere bundle of E to be
S(E,g)={veE:g(v,v)=1}

and the unit disk bundle to be

D(E,g)={veE:gv) <1}
Always have S(E,g) N E, = S"! and D(E, g) N E, = D".

Exercise. If g, g’ are Riemannian metrics on E then show S(E,g) = S(FE,¢’)
and D(E,g) 2 D(E,g'). As a result we often write S(E) and D(E) instead of
S(E,g) and D(E, g).

Note that S(E) ~ E# and D(E) ~ B.
Example.

1. Let E = B x R™ be the trivial bundle. Then S(E) = B x S"~! D(E) =
B xD".

2. Let m : E — S! be the Mébius bundle (pic). Then D(E) is the Mobius
band and S(E) = dD(E) = S! # B x S°. This is another proof that E is
nontrivial. In fact this shows E is nonorientable: we have

E# — > E
ok

St 2522 St
and z — 22 has degree 2 so the LES of (E, E#) gives

Z)2 %=2

H*(E,E*:7Z) =
( ) {O otherwise

which is not isomorphic to H*~1(B). Thus E is not Z-orientable.

Gysin sequence Assume 7 : E — B is R-oriented with Thom class U. We
assume coefficients in R. The LES of (E, E#) is

*

H*(E,E#) —*— H*(E) —— H*(E#) —— H**'(E, E#)

d <] | d

H*~"(B) —*— H*(B) —— H*(S(E)) —— H**1="(B)
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where j : (E,0) — (FE, E#). Thus
ala) = soi"Y(a)
= spj" (7" (a) — U)
= s5("(a) — j*(U))
= som (a) — 505" (U)
=a— 557 (U)

Definition (Euler class). If 7 : E — B is an R-oriented n-dimensional
vector bundle with Thom class U € H*(E, E#; R), its Euler class is

e(E) =s5i*(U) € H"(B).
Theorem 3.13 (Gysin sequence). If 7 : E — B is an R-oriented n-
dimensional vector bundle, there is a LES

B

where f(a) = a — e(E).
Proposition 3.14. Let 7 : E — B be an R-oriented n-dimensional vector
bundle. Then

1. if f : B' — B then f*(E) is R-oriented and e(f*E) = f*(e(E)).

2. if E is trivial and n > 0 then e(E) = 0.

3. if m: E; — B are R-orientable then so is E1 ® E2 and e(Eq @ Ey) =
e(El) ~ e(EQ).

4. if s: B— E is a nonvanishing section and n > 0 then e(E) = 0.

Proof.

1. There is a commutative diagram

(B,0) —2— (E,0) 7 (E, E#)

fT / fET fET

v

(B',0) — (f*E,0) —— (f*E, [*E*)
fE(U) is a Thom class for f*(E) so f*(E) is oriented and
e(f*(B) = s¢i" fu(U) = fs55"(U) = [ (e(E))

2. Let m: By =R" — {P}, e(Ep) € H*{p}) =0asn>0. If r: E — B is
trivial then F = f*Ey where f : B — {p}. Thus e(F) = f*(e(Ep)) = 0.

3. Example sheet 4.
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4. If s is a nonvanishing section then (s) is a one dimensional subbundle of
E. From example sheet 3 we know E = (s) @ s*. By 3

e(B) = e({s)) —e(s*) =0
since (s) is trivial.
O

Example. As an application, let’s compute the cohomology ring of projective
spaces using Euler class of the tautological bundle. Recall

Z/2 0<x<n

H.(RP";Z/2) = )
0 otherwise

so by universal coefficient

Z/)2 0<x<n

0 otherwise

H*(RP",Z/2) = {
Choose a Riemannian metric on mgpn by
9(([2],v1), ([2],v2)) = (v1,v2)
using the inner product on R"**. Thus
S(r(RP")) = {([z],v) : v € Ra, |Jv]| = 1} = 5™.

The Gysin sequence for Tgpn with Z/2-coefficient is
H*~1(RP") L H*(RP") —— H*(S") —— H*(RP™)

Claim that § is an isomorphism for 1 < x < n for n > 1: for * = 1 the relevant
bit of LES is

0 — HORP™) —=5 HO(S™) —% HORPY) 25 HY(RPY) — HY(S™) =0

so A3 is an isomorphism. For 1 < * < n this follows from H*~1(S") = H*(S") =
0. For * = n we have
HP1(S™) — HP\(RP™) L g (RPM) % H7(S™) 2 HMYRPY) — H'HL(RE™)
I I [ I
0 Z)2 72 0

Let a = e(rgpn) € HY(RP";Z/2). Claim that (a*) = HF(RP";Z/2): in-
duction on k. k = 0 is obvious. Suppose it holds for £k — 1. Then we have
isomorphism

B: H*Y(RP") — H*(RP")
ab s a®
Furthermore H" ™1 (RP") = 0 so a" ™! = 0. In summary

H*(RP"; Z/2) = (Z/2)[a]/(a" ).
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Orientations and Orientability We say F is orientable if it is Z-orientable.
We have seen on example sheet 3 that any vector bundle over S! is isomorphic
to [0,1] x R™"/ ~ where (0,v) ~ (1, Av) for some A € GL,(R). Thus there are
precisely two isomorphism classes: det A > 0 corresponds to the trivial bundle,
and det A < 0 corresponds to the nontrivial, nonorientable bundle.

If v: S' — B, define pg(y) = 0 if ¥*E is trivial and 1 otherwise. If 75 ~ 71
then v E = i F so ¢ defines a homomorphism ¢g : m(B) = Z/2. As Z/2 is
abelian, ¢p factors through the abelianisation of 71 (B)

so P € Hom(H{(B),Z/2) = H*(B;Z/2). We quote the result

m(B) 25 7Z/2
(B)

H,y

| Theorem 3.15. E is orientable if and only if oy = 0.

| Corollary 3.16. If H'(B;Z/2) = 0 then E is orientable.
Example. 7¢pn is orientable. Then the same argument as for RP" shows that
H*(CP™;Z) = Z[a]/(a™ ")

where a = e(7cpr ) has |a| = 2.

3.3 Manifolds

In the last bit of the course we are going to discuss manifolds and Poincaré
duality.

Definition (topological manifold). An n-dimensional (topological) manifold
M is a second-countable Hausdorff space M which admits an open cover
{Uq : @ € A} and homeomorphisms ¢, : U, — R”™ called charts.

The maps

Yap = Pa © 5051 1 pp(Ua NUs) = pa(Ua NUs)

are called transition functions. Like transition functions for vector bundles, they
satisfy the cocycle conditions.

Definition (smooth manifold). A smooth manifold is a topological manifold
M together with an open cover {U,} and charts ¢, such that all transition
functions ¢, are smooth maps.

If M, M' are smooth manifold, we say f : M — M’ is smooth if pjz o f o
¢t is smooth where defined for all charts ¢, of M and @ of M'. fisa

diffeomorphism if f is a homeomorphism and f, f ' are smooth.

Example. S™,RP", CP",T", %, are all smooth manifolds.

67



8 Vector bundles & Manifolds

Remark. If M is an n-manifold, we can consider the set of smooth manifolds
homeomorphic to M up to diffeomorphism. For n < 3 this set is a singleton.
However for n > 3 it could be empty or it could have more than one element.

We're interested in smooth manifolds in this course because they have a
natural bundle, the tangent bundle. If M is a smooth manifold with charts ¢,
define

Jap : U, N Uﬁ — GLn(R)
$|—>D¢aﬁ|¢ﬁ($)

Then chain rule says gng’s satisify the cocycle conditions.

Definition (tangent bundle). If M is a smooth manifold as above, the tan-
gent bundle T'M is the n-dimensional vector bundle with transition functions

Jap-

Fundamental class

Notation. Suppose M™ is an n-manifold and A C M compact. Write (M|A)
for the pair (M,M — A). If B C A we have a map i : (M|A) — (M|B). If
w € H (M|A) write w|p = i.(w).

Fix R-coefficient. If x € M choose a chart with U, 3 z. By excision

R x=n

Hy(M|z) = H,(Uslz) = Hy(R"@(2)) = Ho(R",R™ — () = {o otherwise

Definition (fundamental class, orientation). An R-fundamental class, or
R-orientation for M is a class [M] € H,(M; R) = H,(M|M;R) such that
[M]|; generates H,(M|z;R) = R for all z € M.

Theorem 3.17. Any closed manifold M has a unique Z/2-fundamental
class.

Recall that we say M is closed if it is compact.

Theorem 3.18. If M is closed and connected then
1. H,(M;7Z/2) 2 Z]2 = {([M]).

2. Hy(M;Z) is Z or 0 and if M is Z-orientable then H,(M;Z) =7 =
([M]).
3. H;(M) =0 for alli > n.

Proof. Non-examinable and see lecture handout. Similar to the proof for Thom
class, we show orientability is a local condition and use Mayer-Vietoris to glue
together. O

Submanifolds
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Definition (submanifold). Suppose M is a smooth n-manifold. N C M is
a k-dimensional submanifold of M if for every x € N there exists an open
neighbourhood U, > x and a chart ¢, : U, — R" such that ¢, (U, N N) =
R* x 0 C R™.

If so then N is a smooth k-manifold.
Example. S"~! C §" RP"~! C RP", S" x {p} C S™ x S™.
If N C M is a submanifold then TN C T M|y is a subbundle.

Definition (normal bundle). The normal bundle is defined as vy /n =
TN C TM|y so TM|y = vp/n & TN.

Note that to define TN we need to pick a Riemannian metric on TM.
However the isomorphism class of vy;/x is independent of the choice. In fact
VM/N %TM|N/TN

Exercise.

1. M =R N = S". Then Vgn+1,gn 18 trivial since it has a section x — z.
Note TRt gn = v @ TS™, where TR™t!|gn and v are trivial but T'S™ is
not necessarily trivial.

2. Let M be the Mébius band and N = S? its central band. Then VN 18
the Mobius bundle.

3. Let M = R]Perl,N = RP" then VM/N = TRPn .
4. Similarly if M = CP"*!, N = CP" then vy/y = Tcpn.

We need a technical tool from differential geometry:

Theorem 3.19 (tubular neighbourhood theorem). If N C M is a subman-
ifold, there is an open V.C M, N CV such that (V,N) = (var/n, 50(N)).

Proof. Omitted. Proved using exp : vj;/ny — M by showing that it is locally a
diffeomorphism. O

| Proposition 3.20. M is Z-orientable if and only if TM is Z-orientable.

Sketch proof. If S = v C M is a submanifold, we get a tubular neighbourhood
V(y). M is orientable if and only if V(v) is orientable for all v, if and only if
TM]y () is orientable, if and only if T'M]|, is orientable, if and only if T'M is
orientable. O

3.4 Poincaré duality

Use R coefficient throughout, where R be either Z or a field. Let M be a closed
connected smooth n-manifold and denote by [M] the R-fundamental class for
M. Recall that if M is connected and R-orientable then H,, (M) = R.
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| Corollary 3.21. H"(M) = R.

Proof. If R is a field then H"(M) = Homgz(H,(M),R) = R. If R is Z then
M is Z/p-oriented for every prime p since the image of [M] under H,,(M;Z) —
H,(M;Z/p) is a Z/p-fundamental class so H,(M;Z/p) 2 Z/p. H,(M;Z) 27
so by universal coefficient H,,_1(M;Z) has no p-torsion. Hence H,,_1(M;Z) is
free so H"(M;Z) = Z. O

Now suppose N C M is a k-dimensional closed submanifold and v = vy,
is its normal bundle. V is a tubular neighbourhood for N so (V|N) & (v, v#).

| Lemma 3.22. N is orientable if and only if v is orientable.

Sketch proof. M is orientable implies T'M is orientable, so T M|y is orientable,
80 @rag|y = 0 where @ryy € HY(N;Z/2). Now TM|xy = TN ®v so Prviy =
Yrn + @, =0. Thus ;5 =0 if and only if g, = 0.

Now suppose N is R-orientable, so v is R-orientable. Consider the following
maps:

~

(M,0) —— (M|N) <—— (VIN) +— (v,v#)
(M|z)

The maps 7, and ¢* are isomorphisms by excision.

| Lemma 3.23. j.[M] generates H,(M|N) = R
Proof. By excision and Thom isomorphism,

R x=n

H*(M|N) = H*(V|N) 2 H*(v,v#) 2 H* " "TH(N) = {
0 *>n

By universal coefficient, it follows that H,(M|N) = R. [M] is a fundamental
class so B.[M] = a.j.[M] generates H,(M|xz) = R. Thus j.[M] generates
H,(M|N). O
Let [N]* € H*(N) be given by ([N]*,[N]) =1 € R.
Corollary 3.24. There is a unique R-orientation Upr/n on v such that
(*[N]* — Upiyn, iy g [M]) =1 € R.
Proof. i;'j.[M] generates H,(v,v#) = R. Let U be some Thom class for v.

[N]* generates H*(N) so m*[N]* — U generates H"(v,v#). So (m*[N]* —
U, i, j [M]) = r generates R. Take Uy =1~ 'U. O

Definition (Poincaré dual). If [M] and [N] are R-orientations on M and
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N, the Poincaré dual of N is

PDpy([N) = 5* (%) " (Uniyw) € H* (M),
The key ingredient is

Proposition 3.25. Ifa € H*(M) then

{a,i0+[N]) = (a — PDpyy([N]), [M

)

where ig: N <— M.

Proof. [N]* generates H¥(N) = R so if ¢ = (a,ig.[N]) = (i§a, [N]) then if(a) =
¢[N]*. We have
~y s M

3

which commutes up to homotopy, so i*(a) = 7*i§(a) = cn*[N]*. So
(@ — PDp([N]), [M]) = (a — j* (")~ Ungyw, [M])
= (a — ()" Unyn, 54 [M))
= (i*a — Unyn, (i) 715 ([M]))
e [N]" = Unyyw, (i0) ™' j<[M])

= (a, i0«[N])

Example. Let N = {p} C M. Then
so PDy({p}) = [M]".

Definition (cup product pairing). The cup product pairing on H*(M) is
the bilinear map

() H* (M) x H*(M) - R
(a,b) = (a — b, [M])
We thus have (a,io«[N]) = (a, PDa([N]))-
Remark. Cup product pairing splits as a sum of pairings (-,-) : H¥(M) x
H"*(M) — R.
Definition. Let V and W be F-vector spaces. A bilinear pairing (-,-) :
V x W — F is nonsingular if
1. (v,w) =0 for all v € V implies w = 0 and

2. (v,w) =0 for all w € W implies v = 0.
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| (+,+) induces maps ¢ : V. — W* ¢ : W — V*.

Lemma 3.26. IfV and W are finite dimensional and (-,-) is nonsingular
then ¢ and v are isomorphisms.

Proof. Nonsingularity implies that ¢ and v are injective. Now use dimensions.
O

We need another technical tool from differential geometry.

Definition (transverse). Two submanifolds Ny, No C M are transverse,
written Ny M Ny if for every x € N1 N Ny there is a chart ¢, : U, — R™ with
0o(x) = 0and @, (N1NU,) = RFxR™ 7k %0, 0, (NoNU,) = RF xOx R"2~F,
If so N’ = Ny N N, is a k-dimensional submanifold of Ny, Ny and M.

From differential geometry we know Ny Ny if TNy |, + TNy|, = TM|, for
allz € N'.

Proposition 3.27. If Ny h Ny and is : No — M is the inclusion then
i5(PD(N1)) = PDy, (N').

Proof. Let V be a tubular neighbourhood of N;. If V is small enough then
V= Ny NV is a tubular neighbourhood of N” in Ny. Consider the diagram

(M,0) —"— (M|N1) ¢—— (V|N) & (v,v¥)

&
T T T (R*=m1]0)
(N2, 0) —— (No|N') —— (V|N') = (v, /%)~

Have i3 04, ~ i,. If U is a Thom class for (V|N7) then i*(i5U) = i%(U)
generates H" " (R™""1|0) so i5(U) is a Thom class for (V'|N’). Now

i5PDay(Ny) = i35 (i*) "0 = j"* (i) "\ (i3U) = PDy, (N').
O

Now consider A = {(z,z) : ® € M} C M x M. A is an n-dimensional
submanifold in M x M. Assume R = F is a field. Suppose M is orientable with
dual fundamental class [M]* then M x M is orientable with dual fundamental
class [M]* x [M]*. Let D = PDprxp(A).

Lemma 3.28. Ifa € H*(M) then
(I1xa)—D=(ax1)—D.

Proof. Consider
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where V is a tubular neighbourhood of A. As sg : M — V is a homotopy
equivalence, s{) is an isomorphism. Then

sji*lax1l)=A"ax1l)=a—1=1—a=A"1xa)=s"(1l xa)
s0 i*(a X 1) = ¢*(1 x a). Then we have the following sequence of equalities:

i*(ax1) —U=i*(1xa)—U
(ax1)— (*)'U =
(i)

k.

(ax1)—y
X

Choose a basis {a;} for H*(M). F is a field so H*(M x M) = H*(M) ®
H*(M). Write D =Y, a; x b; for some b; € H"~lail (M),

| Lemma 3.29. D = [M]" x 1+, ., ai X b;.
Proof. Consider i, : M — M x M,z — (z,y). M xy M A so
in(PDarxar(A)) = PDarsy (AN M xy) = PDy({y}) = [M]".

Now

iy(ai x b)) = i, (77 (a;) — 75 (b;))
= (m1 0dy)"a; — (ma 0dy)"b;

. a;b; bZEHO(M)gF
o otherwise

Write D = [M}* X bo +Z|ai|<n a; X bz Then

[M]* = i*(D) = [M]*bo + 0

Yy

so by = 1. O

| Lemma 3.30. If a € H*(M) is homogeneous then a =3 (—1)"%(a, a;)b;.
Proof. As (1 xa)— D =(ax1)— D, we have
D o (=n)leliela; x (@ — b)) =3 (a— a;) x b;.

By degree consideration only terms of the form [M]* x ¢ where ¢ € H°(M) do
not vanish on LHS. Thus by the previous lemma

(1" xa =3l — ap, [M])[M)* x b,

so a = (—1)" S (a, a;)b;. O
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Corollary 3.31 (Poincaré duality). Suppose F is a field and M is F-
oriented. Then

1. the cup product pairing (-,-) : H¥(M)x H"~*(M) — F is nonsingular.

2. there is an isomorphism PD : Hy,(M) — H" *(M) given by {(a,z) =
(a, PD(x)).

Proof.
1. If (a,b) = 0 for all b then a = 0 by Lemma 3.30. As (a,b) = (—1)1°l1°l(b, a),

(+,-) is nonsingular.

2. Poincaré duality and universal coefficient give two isomorphisms

)
a(b)(a) = (a,b)
B: Hy(M) — HF(M)*
B(x)(a) = (a,z)
so define PD =a~ 10 8.
We conclude with three applications of Poincaré duality
| Proposition 3.32. If a;,b; are as above then (a;,b;) = (—1)“”‘51']».
Proof. a =b; in lemma 3. O

Proposition 3.33. If7: E — M is a vector bundle with transverse sections
$,80: M — E then

e(E) = s3(PDg(s)) = PDu(s™(0)).

| Proposition 3.34. e(TM) = x(M)[M]*.
Proof.
(e(TM),[M]) = (D,D) cup product pairing in M x M
= () aix by, Y (=1)“l¥lb; x a)
=Y

= x(M)
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cup product pairing, 71
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diffeomorphism, 67

Euler class, 65
exact sequence, 15
excision theorem, 24
Ext, 44

exterior algebra, 55
exterior product, 52

finite cell complex, 31, 45
five lemma, 23

free resolution, 43
fundamental class, 68

generalised cohomology theory, 52

generalised homology theory, 39
good pair, 20, 26

graded commutative, 50

Gysin sequence, 65

homology, 7
homology group
of a pair, 17

homotopy, 2

homotopy equivalence, 3
homotopy group, 3

Hopf map, 32

Hurewicz homomorphism, 28
Hurewicz theorem, 30

Kiinneth formula, 47

line bundle, 58
local degree, 30

map of pairs, 3
Mayer-Vietoris sequence, 23
Mbobius bundle, 58

normal bundle, 69

orientable, 67
orientation, 68

partition of unity, 60
Poincaré dual, 70
Poincaré duality, 74
Poincaré polynomial, 48
projective space
complex, 32
real; 32

Riemannian metric, 63

section, H8
nonvanishing, 59

simplex, 5

singular cohomology
with coefficients, 40

singular homology, 8
with coefficients, 38

skeleton, 31

smooth manifold, 67

snake lemma, 15

submanifold, 69

support, 60

tangent bundle, 59, 68
tautological bundle, 59, 66
Thom class, 61

Thom isomorphism, 63
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