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0 Introduction

0 Introduction

In IID Number Fields, we studied finite extensions of Q and their rings of
integers. We proved two fundamental theorem for Og:

o finiteness of ideal class group,

o finite generation of O.

In this course, we’ll study

e completion at a prime,

e Galois theory of local and global fields.

and finally we’ll describe class field theory (description only).



1 Dedekind domains

1 Dedekind domains

Definition (discrete valuation ring). Let A be a ring. We say A is a discrete
valuation ring (DVR) if A is a principal ideal domain (PID) and A has a
unique non-zero prime ideal.

Let A be a DVR. Then the unique non-zero prime ideal m4 of A is also
maximal, so A is also a local ring, i.e. A has a unique maximal ideal. Hence
ka = A/my is a field, the residue field of A.

As Aisa PID, m4 = (7) is principal. Any generator  is called a uniformiser.
If v, 7’ are uniformisers then () = (') so 7’ = 7u for some v € A*.

Since A is a local, A can be written as the disjoint union

A:AXUmA
=A*UTrA
= AXUrA* Ur?A

= LJWiAX U ﬂwiA

i>0 i>0
In fact, the ideal I = niZO 7t A is zero. This follows from
Lemma 1.1 (Nakayama’s lemma). Let R be a local ring, P C R the unique
maximal ideal, M o finitely generated (fg) R-module. Then
1. if M = PM then M = 0. This is equivalent to M/PM = 0.

2. if N < M is an R-submodule such that N + PM = M then N = M.
This is saying there is a surjection N — M/PM.

Proof.

1. Let aq,...ay be a generating set for M with g as small as possible, g > 1.
Then a1 € M = PM so we can write

g
a= E T;a;
i=1

where z; € P. Hence

g

(1 — 1‘1)(11 = szaz

i=2
Since R is local, 1 —z1 € R* so a1 € (ag,...,ay), contradicting the
minimality of g.

2. Apply first part to M/N.
L]

Now back to the statement. Note w1 = I so Nakayama’s lemma implies
that I = 0. Hence each element of z € A,z # 0 admits a unique description
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x = m"u, n > 0,u € A*. Each non-zero ideal of A has the form (7*) for some
1 >0.

Therefore we can define a function v : K* — Z where K = Frac A with the
following properties:

1. v is a surjective homomorphism,

2. for all z,y € K* such that x +y # 0, v(z + y) > min(v(x),v(y)), with
equality if v(z) # v(y).

We define v(x) = n when = 7w for some n € Z,u € A*.
Proof.
1. 7w - 7™My = 7M.
2. wlog = mu,y = 7% where a € Z,b > 0. Then
z+y=n%u+vr’).

If b > 0 then u + v’ € A%,

Definition (valuation). If L is a field, we call a function w : L* — Z a
valuation if satisfies 1, 2 above.

Thus if we have a DVR then we have a valuation. The converse also holds:
if w: L™ — Z is a valuation, we define

Ap={zreL* :w(x)>0}u{0}
my ={z € L* :w(z)>0}U{0}

Lemma 1.2. If k is a field, then there is a bijection between
1. subrings A < K such that A is a DVR and Frac A = K,
2. waluations v : K* — Z.
Proof. Exercise. O
Example.

1. Let p be a prime, v : Q* — Z defined by

ifr,s €Z, (p,rs) = 1.
2. Let K be the field of meromorphic functions on C, v : K* — Z defined
by
U(f) = ord,— f(z>

We will see via localisation we can reduce problems to DVR. Hence we need
a way to recognise DVR. This is the content of the next proposition
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Proposition 1.3. Let A be a Noetherian domain. Then TFAE:
1. A isa DVR.

2. A is integrally closed in Frac A and A has a unique non-zero prime
ideal.

Recall that A is integrally closed if for all v € K, aq,...,a, € A, if there is
a relation
V't ary" 4+ a, =0

then v € A. Equivalently, for all v € K, A[y] is fg as an A-module then v € A.
Proof.

e 2 = 1: suppose v € K — A and there exist aq,...,a, € A such that
't ay" T e ta, =0
We can write v = 7~ *u for some k > 0,u € A*. Hence
—qp Ryt = g (DRl g

The valuation of LHS is —nk and the valuation of RHS is at least

mﬁi{lv(amf(”ﬁ)k) > min (7~ ") = min —(n — i)k > —(n — 1)k.
These two expressions must be equal, absurd. Thus A is integrally closed
in K. A has a unique non-zero prime ideal as A is a DVR.

e 2 = 1: Let m C A be the unique non-zero prime ideal. Claim that for
any proper non-zero ideal I C A, there exists n > 1 such that m™ C I C m.

Proof. I C m as m is the unique maximal ideal. Suppose for contradiction
exists I such that m™ ¢ I for all n > 1. Since A is Noetherian, we can
assume that I is maximal with this property. Note I is not prime as
otherwise I = m. This means that there exist a,b € A such that a,b ¢ I
but ab € I. Then the inclusions I C I + (a),I C I + (b) are proper. By
maximality of I, there exists ni,ny > 1 such that

m™ C T+ (a)
m" C [ + (b)
Then
m™F"2 C (T + (a))(I + (b))
C I+ (ab)
-y
as ab € I. Absurd. O
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Now we can show m is principal. Choose o € m — {0}. If m = («) then
done. Otherwise, choose n > 2 minimal such that m™ C (o) € m. Then

m" ! ¢ (a) so exists 3 € m"~! — (a) such that
1

’YZEG—mnfl—A.

a «a

Then
B

1 1
m="mC —m" mC —m" C A
[0 Q «Q

If ym € m then A[y] — Enda(m) as A-modules. Endy(m) is a fg A-
module as A is Noetherian. So A integrally closed in K implies that
v € A. So we must have ym = A. Hence m =y !A. Som =~"! € A and
T generates m.

Since A is a local ring, we have
A=A"Um
=A*UTA
= U T AXUT
i>0
where I = (), A. I =0 as I is fg (as A is Noetherian) and 7 = I, so
we can apply Nakayama’s lemma. Hence
A={0}ulJn'ax
i>0
and A is a DVR.
O

Definition (multiplicative subset). Let A be a ring. A multiplicative subset
of A is a subset S C A satisfying

1. 185,

2. forall z,ye S, zy € S.
Definition (localisation of ring). Let S C A be a multiplicative subset. We
define S™1 A to be the set of equivalence classes of pairs (a,s) € A x S under

the relation (a,x) ~ (&, s) if there exists ¢ € S such that t(s'a — sa’) = 0.
We write ¢ € S~ A for the equivalence class of (a,s).

Lemma 1.4.
1. S7'A is well-defined and admits a ring structure.
2. There is a ring homomorphism
A—S7tA

o0
a— —
1
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with kernel {a € A : exists s € S, sa = 0}.

3. If A is a domain and 0 ¢ S then S™'A may be identified with the
subring {%¢ :a € A,s € S} of Frac A = (A —{0})"*A.

Proof.

1. ~ is an equivalence relation: it is reflexive and symmetric by definition.
For transitivity, suppose (a,s) ~ (a’,s’) ~ (a”,s”), then exist t,t' € S
such that tas’ = ta’s,t’a’s” = t'a”s’. Then

tt's'as’ = tt's"a’'s = tt'a"s's
i.e.
tt's'(as” —a"’s) = 0.

To make S~ A a ring, the zero element is %, the multiplicative identity is
%7 and addition and multiplication are defined as

a a as’+ads

S /

a

SS

aa’

ss’

ISR
ISR

V)

Check the ring axioms are satisfied.

2. f:A— S71Ais a ring homomorphism by definition.

kerf:{aEA:%:%}:{aeA: exists s € S such that sa = 0}.

3. Now we suppose A is a domain. Recall that
FracA = {(a,s) € Ax (A—{0})}/e

where (a,s) o (a/,s') if as’ = a’s. We need to check that if S C A if a
multiplicative subset with 0 ¢ S then (a, s) ~ (a/, s") implies (a, s)e(a’, s).

O

Definition (localisation of module). Let S C A to be a multiplicative sub-
set and let M be an A-module. Then we define S™'M to be the set of
equivalence classes in M x S for the relation (m, s) ~ (m/,s’) if there exists
t € S such that t(ms —m’s) = 0.

We write 7 for the equivalence class of (m, s).

Exercise.

1. S71M is an S~1 A-module via

a m am
s s ss’
! / !
a i a as' +a's
s ss’

EN|
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2. If f: M — N is an A-module homomorphism then there is a homomor-
phism
S7lf:871M - STIN
m. . f(m)

S S

3. S~!is a functor from the category of A-modules to the category of S~1A-
modules.

Lemma 1.5. Let

ML L

be an exact sequence of A-modules. Then

1 —1 ¢/
SflM/ S SflMS f S—lM//

18 also exact.

Proof. f'of =0soS™!f'0S~!f = 0. For the other inclusion, let * € ker S~ f’,

ie. @ = 0, i.e. there exists s’ € S such that 0 = §'f'(m) = f'(s'm) so
s'm € ker f/ = im f. Hence there exists m’ € M’ such that f(m’) = s'm. Then

syl -

SS SS

Corollary 1.6. If f is surjective (injective, resp) then so is S™1f.

Let I C A be an ideal. Then I — A is an injective homomorphism of A-
modules. Hence S~'I < S~'A is an injective homomorphism of S~!A-module.
Hence S—1I may be identified with an ideal of S~1A. It’s the ideal

5—1A-1={§:x61,365}g5—1A.

Proposition 1.7. Let S C A be a multiplicative subset. Then there is a
bijection between the following two sets:

1. prime ideals P C A such that PNS =0,
2. prime ideal Q C ST1A,

given by P+ S7'P.Q — f~1(Q) where f : A — S™1A is the localisation
map.

Proof. Check the maps are well-defined: if 1 € S~!P then % = £ for some
x € P,s € S so exists t € S such that t(s —x) =0. Thents=tx € Psot € P
orse P.
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’

If %7% € S71A and ‘;—Z,/ € S71P then ‘;g/l = f Hence exists t' € S such
that

tt'aa’ =t'ss'z € P.

a a

Since P is prime, aa’ = P so a € P or a’ € P. Hence ¢ or ?: € S~'P. Thus
S~1P is prime.

If @ C S7'A then S71A/Q is a non-zero domain. Then A/f~1(Q) —
ST1A/Q so A/f71(Q) is also a non-zero domain so f~1(Q) is a prime ideal
(this in fact follows from the fact that pullback of any prime ideal is prime).

It is left as an exercise to check the maps in the statement of the proposition
are mutually inverse bijections. O

Corollary 1.8. Let A be a ring and P C A a prime ideal. Then
1. S = A — P is a multiplicative subset of A.

2. S A is a local ring with unique maximal ideal S~ P.

We usually write Ap for (A — P)~1A.

For example Z,) = (Z — pZ)~'Z.

Proposition 1.9. Let A be a Noetherian domain. Then TFAE:
1. For every non-zero prime ideal P C A, Ap is a DVR.

2. A is integrally closed in K = Frac A and every non-zero prime ideal
is mazximal.

Consequently, for any P there is the valuation vp : K* — 7Z associated to
Ap.

Definition (Dedekind domain). Any ring satisfying the conditions is called
a Dedekind domain.

Proof.

e 1 = 2: wlog we can assume A does have non-zero prime ideals. Suppose
given a relation
a4+ aa" M+ a, =0

where a € A,a; € A. Then Ap is a DVR implies that Ap is integrally
closed in K so a € Ap for all P. Therefore for all P we can find zp €
A,sp € A— P such that a = “g—g in K. In particular spa € A.

The ideal
I = (sp: P C A non-zero prime ideal)

is the unit ideal, since it is not contained in any maximal ideal of A.
Therefore there exists element tp € A, with only finitely many non-zero,

such that
1= thSp.
P
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Then
a= thSpa € A.
P

Let P C @ be non-zero prime ideals of A, with ) maximal. Then PAg C
QAg are non-zero prime ideals of Ag, a DVR. Hence PAg = QAg and

P=Q.

e 2 = 1: Again we can assume that A has a non-zero prime ideal P. We
must show Ap is a DVR, or equivalently that Ap is integrally closed in
K and has a unique non-zero prime ideal.

Suppose given a relation
a\"™ ai fa\"1 a
(,) +71(,) 4.4+ 2 =0
s s1 \s Sn

where a,ay,...,a, € A, 81,...,8, € A—P,s € A—{0}. Multiply through
by (s1-+8n)",
n n—1
T Y
s S
As A is integrally closed, **1*= € A so

a asy---Snp 1
- = : € Ap
s s S§1°*Sn

so Ap is integrally closed.

Let Q C Ap be a non-zero prime ideal. Then eixsts ' € P such that
Q'Ap = Q. By assumption we must have ' = P and hence Q = PAp.

O
Definition (fractional ideal). Let A be a domain, K = Frac A. A fractional
ideal of A is a fg A-submodule of K.
If I, J C K are fractional ideals then

I+J={ax+4+y:xzecl,yeJ}
IJ={zy:xz€l,yecJ}

are also fractional ideals. On the other hand,
(I:J)={zeK:2JCI}

is an A-submodule of K but is in general not fg.

Lemma 1.10. Let A be a Noetherian domain, S C A a multiplicative subset.
Then

1. if I, J are fractional ideals then S™1I is a fractional ideal of S™'A and

SHI+J)y=8"'1+S"'J
S~Y1Jg)=8"1'1-5"'J

10
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2. if I,J are fractional ideals of A and J is non-zero then (I : J) is a
fractional ideal of A and

STHI:J)=(S7'I:S7L).
Proof.

1. Exercise.

2. If a € A — {0} then
(I:(a)={recK:z(a)CI}={xcK:zacl}=a"Il

In partuclar (I : (a)) is fg and hence a fractional ideal.

In general, write J = (a1,...,a,) where a; € K*. Then

(I:J)={x €K :foralliza; €I} =()a;'Il
i=1
In paricular (I : (a)) C (I : (a1)). Since A is Noetherian, any submodule
of (I:(ay1)) is fg and hence (I : J) is a fractional ideal.
To show S™Y(I:J) = (S71: S71J), we have

n
LHS =S (a;'1
i=1

RHS = () a;'S™' T = (S (a;'])

i=1 i=1
so in fact it’s enough to show that if I, J C K are fractional ideals of A
then

SHInJ)=(S7'n)n(S7I).

We certainly have S~H(I'NJ) C (S7'I) N (S™'J). Suppose £ = ¥ where
zel,ye s, teSthenat=syeInNJ and

x xt

. -1
S SteS (IndJ.

Proposition 1.11. Let A be a Dedekind domain and let Div A be the set
of mon-zero fractional ideals of A. Then Div A forms a group under the
multiplication of fractional ideals.

Proof. A = (1) is a multiplicative identity. Must show that for any non-zero

fractional ideal I,
I(A:1)=A.

Observe that if P C A is a non-zero prime ideal then IAp = (m) as Ap is a
DVR, so (Ap : [Ap) = (7p") so

LHSP = IAP(AP : IAP) = Ap = RHSP

11
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so it is enough to show that if I, J are fractional ideals of A such that TAp =
JAp for all P then I = J. In fact, we are going to show if TAp C JAp then
I C J. Suppose [Ap C JAp for any non-zero prime ideal P C A. Let z € I.
Then x € IAp C JAp so we can write z = i’—}i where yp € J,sp € A— P. Now
we use

(sp : P C A non-zero prime ideal) = (1)

to write 1 =), sptp where tp € A and only finitely many are non-zero. Then

T = thSpiL’ e J.
P

Observe that for any non-zero P, there is a homomorphism

DivA — Div Ap
I+ IAP

~

But Div Ap = Z canonically as every non-zero fractional ideal of Ap has the
form (7%) for some i € Z.

We can define a homomorphism vp : DivA — Z by vp(I) = vp(x) where
IAp = (z). In particular, for any z € K*, vp((z)) = vp(x). Note that vp is
surjective since PAp = (7) as vp(P) = 1 for any P. Taking the product over
all non-zero prime ideals, we get a homomorphism

va :DivA — HZ.
P P

This is injective as we showed that for any I, J € Div A, [ = J if and only if for
all P, IAp = JAp. Now we characterise the image.

| Lemma 1.12. For any I € Div A, the set {P : vp(I) # 0} is finite.

In other words, [], vp takes values in @, Z C [[, Z.
Proof. Suppose I = (g*,...,3*) where a; € A,b; € A—{0}. Let b= by---by.
Then J = bl is an ideal of A and

vp(I) = vp(J) = vp((b))-

So it’s enough to prove the lemma in the case I C A is an ideal.

Let o« € I —{0}. Then (a) C I and for any non-zero prime ideal P C A,
vp(a) > vp(I) > 0 so in fact we can assume I = () is principal.

Now we observe that vp(a) > 0 if and only if & € PAp if and only if « € P.
So it’s enough to show that there are only finitely many P’s such that a € P.

Suppose for contradiction there are infinitely many Py, Ps, ... such that o €
Pi- Define Jz :leﬂPZ Then

SO
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This is an ascending chain of ideals of A so there exists n > 1 such that a.J; * =
aJT;il. Hence J,, = Jp41, ie.

PNn---NnP,=PN---NP,NP,41.
Choose z; € P; — P, 11 for i <n. Then
- €PLN---NP,=PN---NP,NP,1.

Since P, 11 is prime, we have x; € P, 11 for some i < n. Absurd. O

Proposition 1.13.

1. [Ipvp :DivA = @pZ is an isomorphism.

1=][pr®
I

so we have unique factorisation of fractional ideals.

2. For any I € Div A,

Proof.

1. It’s enough to show

0 otherwise

vg(P) = {1 P=Q

as then (0pg)g are in the ring and they generate pZ. vp(P) =1 by
definition as PAp is the maximal ideal of Ap. If @Q # P then we must
show PAg = Ag: if PAg # Ag then PAg C QAg so P C (). This is
impossible as both P and @) are maximal ideals.

2. =TI, P if and only if for all Q,
vo(I) = vo([] P*™).
P

As vg(P) = dpg, RHS equals to vg(1).

13



2  Complete DVRs

2 Complete DVRs

Definition (inverse system, inverse limit). Suppose given groups A; and
homomorphisms f; : A;y1 — A; for all i > 1

A, f1 A, f2 As f3

we call such a collection an inverse system. Its inverse limit is

@Ai = {(ai) S HAz : fi(ai_H) = a; for all i > 1} - 1_114Z

i=1 =1

This is a group. If the A;’s (fi’s respectively) are abelian groups/rings
(homomorphisms /ring homomorphisms) then so is lim A;.
K3
Suppose A is a DVR with uniformiser 7. Then we can make an inverse
system

Af(ml) +—— A)(7?) «— A)(73) +—— ---
with maps the natural quotient maps. There’s a homomorphism A — A/(7?),

hence A — ]2, A/(x*) which takes values in lim A/(x").

Definition (complete). We say A is complete if the homomorphism

A= lim A/(x")

K3
is an isomorphism.

The kernel of this homomorphism is ();5,(7") = 0 so A4 is complete if and
only if the map is surjective. -

Lemma 2.1. TFAE:
1. A is complete.

2. A is complete as a metric space with respect to the metric

0 r=y
d(z,y) = {2v($y) 24y

3. K is complete as a metric space with respect to the metric given by the
formula.

Proof. We first explain why d is a metric. d satisfies the ultrametric triangle
inequality
d(z,y) < max(d(z,y), d(y, z))

for all x,y, z. This is because we can assume z,y, z. Then this is equivalent to
v(z — z) 2 min(v(z —y),v(y — 2))

but LHS is equal to v((z —y) + (y — #)). This is the axiom defining a valuation.

14



2  Complete DVRs

o 1 = 2: Let (an)n>1 be a Cauchy sequence in A, meaning that for all
e > 0, exists NV such that for all n,m > N, d(ay,an,) < . Equivalently,
for all M > 0, exists N (M) such that for all n,m > N (M),

an = ap  (mod 7).
We can define b = (b;);>1 € [[;2, 4/(7%) by
bn = an(n) (mod ")

By definition of Cauchy sequence, b € ]&nZ A/(r?). Since A is a complete
DVR, exists a € A such that a = ay(,) (mod ") for all n > 1. Hence
v(a —anem)) > n,ie dla,aymy) <277 so lim, o0 an = a.

e 2 = 1: Suppose given (a,)n>1 € Hm A/(m™). Let a, € A be any
element such that a, (mod 7") = a,. Then for all m > n, a,, = a,
(mod 7™) by definition of inverse limit, i.e. d(@m,, @n) < 27", 80 (@n)n>1 IS
a Cauchy sequence in A. So there exists a € A such that a,, — a in A, i.e.
for all M > 1 exists N (M) such that for alln > N(M), @, = a (mod 7).
Hence a is a preimage of (ay,)n>1 under the map A — Jim, A/(m).

e 3 — 2: We must show A is a closed subspace of K. Claim that
A={ze K:d(0,z) <1},
as d(0,z) < 1if and only if z = 0 and v(z) > 0.

e 2 = 3: Forany z,y € K,
1
d(ﬂ-xaﬂ-y) = §d($7y)

Let (an)n>1 be a Cauchy sequence in K. Then there exists N > 1 such
that 7™Va,, € A for all n > 1: there exists M such that for all n,m > M,
d(ay,am) < 1. Equivalently, a, — a,, € A so it’s enough to choose N so
that 7¥a,, € A for 1 <n < M. (7¥a,),>1 is a Cauchy sequence in A so
exists a € A such that d(7™a,,a) — 0 as n — oo. Thus a,, — 7 Na in
K.

O

Exercise. Show that A is also open in K. Show futhermore that K is totally
disconnected.

Remark. When we speak of topology on K or convergence in K we always
mean with respect to the metric d.
Proposition 2.2. Let A be a DVR, m € A a uniformiser. Then

1.A— A= lm, A/(7%) is injective, A is a complete DVR and 7 is a

uniformiser of A.
2. For alli > 1, the map A/m'A — A/m'A is an isomorphism.

3. Let X C A be a subset of representatives for the residue classes of

15



2  Complete DVRs

A/(m), with0 € X. Then foralla € A, there exists a unique expression

oo
a= g a;m"
i=0

with a; € X for alli > 0. This is the m-adic expansion of a.

Proof. We first observe that for all a € A/(n*), there exist unique ag, ...,a;_1 €
X such that _ _
a=ap+am+---+a; 17" (mod 7).

Induction on ¢: for ¢ = 1 this is the definition of X. To show this for ¢ + 1, let
a € A/(r"*1). Then a (mod 7*) € A/(r%) so by induction there exist unqiue
ag, . ..,a;_1 such that

a — (ao +am+ -+ ai—lﬂ'iil) c 7TiA/7Ti+1A,
The map
X = A/(n) =» m'A/niTLA
x+— 2z (mod )

y (mod 7) — 7'y (mod 7'*!)

is bijective. Hence there eixsts unique a; € X such that
a—(ao+---+a;7m) =0 (mod 7'1).
Note that we have a commutative diagram

Af(m*) —— {ag+aim+ -+ a7t ta; € X}

| l

A)(r) «—— {ao+am+ -+ a7 ia; € X}

where the map on the right is to omit the 7% term. Thus there is a bijection
between A and the set of formal sums Z;’io a;m" where a; € X for all 4 > 0.
Note that we can’t yet think of it as an infinite sum since we haven’t yet shown
A is complete. For any i, we set

i =ap+arm+ - +a; 17" (mod 1) € A/(n"),

then Y 2 a;w" is simply a short hand for the element z = (z;);>1 € lim, A/(rt) =
A. ) A

Let’s now show A is a DVR. We know A — A is injective. We'll show each
non-zero element € A has a unique expression x = 7"y where n > 0,u € A*.
Let’s write x = ag + a1 + - - - and say

aO:alz...:an_lzo,an#O.

Then © = 7"y where y = a,, +ap 17+ - -. Note if « € X —{0} then o (mod )
is non-zero and hence o € A*. Thus y = a, (1 — 7b) where

b=1-— wa,‘tlanﬂ — 7T2a;1an+2 +---€ A

16



2  Complete DVRs

It’s enough to show 1 — wb € AX. An inverse is given by

1+ mb+m2> +--- € A.

This shows A is a DVR with uniformiser 7.
The map A/m*A — A/m'A is bijective as elements of both sides can be
uniquely represented by elements of the form

ap+arm+---+a;_17m ! (mod 7Ti)
where a; € X. It follows that A is complete, as the map
A= Lin[l/ﬂ’fl = @A/ﬂiA

is an isomorphism by the definition of A. O

Remark. If A is complete then A 2 A.

Observe that if K = Frac A,R' = Frac A then the valuation v : K* = Z
extends to a valuation v : K* — Z such that A = {z € K : v(z) > 0}.

A— K
A—s K
An element of A admits a unique 7-adic expansion Z?io a;m" where a; lie
in a fixed set representatives in A for A/(r), and the series Y .~ a;7" is a

convergent infinite sum in A.

Definition (p-adic integer). Let p be a prime. Then we define the p-adic
integers and p-adic rational numbers to be

Ly = Lp)

Qp = FracZ,

respectively.

p € Zy is a uniformiser and Z,/(p) = Z,)/(p). To compute the residue field
of Z,), we use the exact sequence

0 PZ Z Z/vZ 0
of Z-modules. It remains exact after localisation so

0 DLy Zp) (Z—(p)~"(Z/pZ) —— O

is still exact so

Zp) [PLip) = (Z — (p) "' Z/pL.
In fact Z/pZ — (Z — (p))~'Z/pZ is an isomorphism as every element of Z — (p)
has image in Z/pZ contained in (Z/pZ)*.

As a consequence, we have Z,/(p) = Z/pZ so we can choose the set of
representatives to be {0,1,...,p — 1}. It follows that each element of Z, has a
unique expression as Z?io a;p’ and each element of Q, has a unique expression
ez aip’ where a; € {0,...,p1} and the set {i < 0:a; # 0} is finite.

17



2  Complete DVRs

Example. —1 € Z C Zs has

1=t 4 +2+22+
=T 5=
What is Q, like? It is a mixture of R and F, and has features of both
analytic (R) and algebraic (number fields) objects.

Lemma 2.3 (Hensel’s lemma). Let A be a complete DVR. Let f(x) € Alx]
be monic. Suppose given o € A such that v(f(a)) > 2v(f'(«)). Then exists
a unique a € A such that f(a) =0 and v(a — a) > v(f'(a)).

Corollary 2.4. Let A be a complete DVR and f(x) € A[x] a monic polno-
mial. Let k = A/(r) and f(x) = f(x) (mod 7) € k[z]. Suppose there exists
@ € k a simple root of f(x), then exists a unique a € A such that f(a) =0
and a =@ (mod 7).

Proof. Let a € A be a lift of @. Then 7/(5) # 0 implies that f/(a) € A* so
v(f'(«)) = 0. Then apply the lemma. O

Proof of Hensel’s lemma. We first show existence of a by Newton’s method.
Define
f(an)

fan)

We show the following claims by induction on n > 1:

a; = «, Ap4+1 = Ap —

1. a, € A, or equivalently v(ay,) > 0.

2. v(f'(an)) = v(f'(a1)).

3. o(f(an)) = 20(f(@n)) + 27 o(f(a1)/f (@1)?).
Forn =1,

1. a, = a € A by hypothesis.

2. Tautological.

3. v(f(ar)) = 2v(f'(a1)) +v(f(a1)/f'(a1)?) = v(f(ar)).

Suppose the three statements hold for 1,2,...,n. We will show they hold for
n+ 1.

1. By definition an41 = an — f(an)/f'(an) so apyr € A if and only if
v(f(an)/f'(ay,)) > 0. But 3 says

v(f(an)/f'(an)) = v(f'(an)) +2""0(f(a1)/f'(a1)?) = 0.

2. Enough to show v(f'(an+1)) = v(f'(an)). Easy to see that f'(an41) —
f'(ay) is divisible by —a,+14+a, = f(an)/f (ayn) so we'll have v(f'(an+1)) =

v(f'(an)) if
v(f(an)/f'(an)) > v(f'(an)),
i.e. v(f(an)/f'(an)?) > 0. But

v(f(an)/f'(an)?) = 2" 0(f(a1)/ f'(a1)?) > 0.

18
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3. Suppose f(z) =Y., a;x* where a; € A. Then we use Taylor expansion
with a small tweak

f(X+Y)= iai(X +Y)
=0

= iai(Xi +iXTW +Y%,(X,Y)) ¢(X,Y) € Z[X,Y]
=0
=f(X)+ F(X)Y +Y%(X,)Y) g(X,Y) € A[X,Y]

hence
f(an+1) = f(an - f(an)/f/(an))
= flan) — f/(a'n)f(an)/f/(an)
+ (f(an)/ f'(@n))? glan, f(an)/ f'(an))
€A

v(f(an+1)) 2 20(f(an)) = 20(f'(an))
> 2(20(f'(an)) + 2" M0 (f(a1)/ ' (a1)?)) = 20(f(an))
= 20(f'(an)) + 2"v(f(a1)/f'(a1)?)

We’ve also shown (ay,)n,>1 is a Cauchy sequence as

v(ant1 — an) = 'U(f(an)/f/(an)) — 0

as n — oo so there is a limit @ € A. We have f(a) = lim,—, f(arn) = 0s0 a is
a root.

For uniqueness, we need to show if a + h € A is another root such that
v(a+h—a) > v(f'(«)) then h = 0. Since v(a — ) > v(f'(«)), we must have
v(h) > v(f'(«)). Using Taylor expansion, we find

0= f(a+h)= f(a)+ hf'(a) + h*g(a,h)
and hence hf'(a) = —h%g(a, h). If h # 0 then f'(c) = —hg(a, h). Hence
o(f'(a)) = v(h) > v(f' (@),
absurd. 0

Example. Which elements in Q, are squares? Any element of Q, admits a
ungiue expression z = p"u where n € Z,u € Z,;. Equivalently, there is an
isomorphism
Q) Z2Zx1Z,;
x = (n,u)
It’s enough to determine when u € Z; is a square. Equivalently, when the

polynomial f(z) = 22 — u has a root in Z,. There is a simple necessary con-
dition from arithmetics: there is a surjective homomorphism Z; — F;,z — T
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2  Complete DVRs

(mod p) and if u € (Z))? then w € (F))%. Let’s check if it is sufficient: if
w e (FY)? and let v € Z7 satisfy 3 = . Then f(7) = 0 so we are in the
position to use Hensel’s lemma. Note f'(v) = 2v and v(f'(v)) = v(2). If p is
odd then f’(v) is a unit, so by the corollary there exists a unique w € Z,; such
that w? = v and w = .

If p = 2 then we have v(f(v)) > 1,v(f'(v)) = 1 so we can’t conclude anything
yet. Note for any n > 1 there is a homomorphism Z) — (Z/p"Z)* so if u is a
square, © (mod p™) is also a square for any n > 1. For n = 3 we have a map

75 — (Z/ST)* = 7)27. x )27

hence if u € (Z5)? then v = 1 (mod 8). Conversely, if u = 1 (mod 8) then
f(1)=1—u =0 (mod 8), i.e. v(f(1)) > 3, and f'(1) = 2 so v(f'(1))
this case Hensel’s lemma does apply and u is indeed a square.

Proposition 2.5.

1. If p is odd then u € Z,; is a square if and only if u (mod p) € F)\ is a
square.

2. If p = 2 then u € Z3 is a square if and only if u = 1 (mod 8), or
equivalently u (mod 8) € (Z/8Z)* is a square.

In the example we used the surjective homomorphism
X X
Z, —F,

i .
Zaip’ —ao (mod p)
=0

In fact, this homomoprhism has a unique splitting, i.e. exists a unique homo-
morphism 7 : F* — Z5 such that for all @ € F\, 7(@) (mod p) = @. This 7
is called the Teichmiiller lift and is constructed as follow: let f(z) = 2P — «.
Then for all @ € F, f(@) = 0, and fl(x) = prP~1 — 1 (mod p) = —1 so never
vanishes. So Hensel’s lemma says that for all & € F,, exists a unique a € 7Z,
such that o = o and a (mod pZ,) = @. Define 7(@) = a.

If @, € F) then

(r(@7(B)F = r(@P7(B)" = (@) (B)

and 7(@)7(B) (mod pZ,) = @fB. Uniqueness part of Hansel’s lemma thus says
that 7(aB) = 7(a)7(B), i.e. T is a homomorphism.
7 is the unique splitting: if o : F — Z) is another splitting then for all
aely,
o(@)” = o(a”) = o(@)
so f(o(@)) = 0. Uniqueness again says that o = 7.
As a consequence

Q) 2ZxZy =27 x (1+pZy) xFy
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2  Complete DVRs

corresponding to the expression p™ - u - 7(@). There is an isomorphism

L+Z, = fimker((Z/0'2)" — (Z/p2)")

3

p-power order
so for any n € N, (n,p) = 1, the map

1+pZy, — 1+ pZy

T "

is a bijective group homomorphism. Hence there is an isomorphism
Q /(Q))" = Z/nZ x Fy /(F;)".

Suppose ¢ is a prime such that p = 1 (mod ¢). Then Q,f contains a primitive
qth root of unit ¢,. This is because ¢, € Q. if and only if QF contains an element
of order g. But F is cyclic of order p — 1 so this is true.

Lemma 2.6. Under this assumption, Q, has eractly g + 1 isomorphism
classes of Galois extensions of degree q.

Proof. Since ¢, € Q,, Kummer theory tells us that such extensions correspond
to subgroups of Q,/(Q,)? of order g, where an element z of the subgroup
corresponds to the extension Q,(y/z). We've computed Q) /(Q,)? = Z/qZ x
Z./qZ, which has ¢ + 1 subgroups of order g. O

Before the end of the chapter, we briefly indicate where we’re heading: we
define K¢ to be the fraction field associated to the completion of O localised
at Q. Then we are going to consider its “rings of integers” Ok, so we have the
following picture:

K Ok Q Ok

Q Y/ pZ Zp Qp

If K/Q is Galois then so is Kq/Q, and Gal(Kq/Q,) — Gal(K/Q), and we are
going to study Gal(Kq/Q)) in detail.
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8 Extensions of Dedekind domains

3 Extensions of Dedekind domains

Let A be a Dedekind domain and K = Frac A. Let E/K be a finite separable
extension.

Definition (integral element). We say v € E is integral over A if exists
n>1,ay,...,a, € A such that

T+ ay" T e = 0.

Lemma 3.1. TFAE:
1. v is integral over A.
2. Alv] is a finitely generated A-module.

3. there exists a non-zero Aly]-submodule M < E which is a finitely
generated A-module.

Proof.
e 1 = 2:Ify"+a1y" '+ -+a, =0then Aly] = A+ Ay+---+ Ay L.
e 2 = 1: A is Noetherian and A[y] is a finitely generated A-module so
ACA+ AN CA+ Ay +AR?IC -

is eventually stationary, so exists n > 1 such that v € A+ Ay + --- +
Ay,

e 2 = 3: M = A

o 3 = 2: Since M is finitely generated and A is Noetherian, End 4 (M) is a
finitely generated A-module. Since M is non-zero, A[y] — End (M), z —
(m — am) is an injective homomorphism of A-modules. Hence A[y] is a
finitely generated A-module.

O

Let B = {v € E :  integral over A}, the integral closure of 4 in E.

| Lemma 3.2. B is a subring of E and B is integrally closed in E.

Proof. Suppose by, ...,b,, € B. Then Alby,...,b,,] is a finitely generated A-
module: if we have relations

WY 4 ay b i =0
for all ¢ then {[]/~, b*" : 0 < m; < n;} is a generating set for Afby,...,by,].
This also shows that B is a ring: if by,by € B then A[by,be] C F is a {g

A-module stable under multiplication by b, + by and b1bs. So part 3 of the
lemma implies that by + b2, b1bs € B.
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8 Extensions of Dedekind domains

Now suppose v € E and exists n > 1, by,...,b, € B such that
by T b, = 0.

We must show v € B. This relation shows A[b1,...,b,][v] = Alb1,...,bp, 7] is a
fg Aby,...,by]-module. But Alby,--- ,b,]is a fg A-module, so A[b, ..., by,7] is
a fg A-module: if {x;} generates Alby,...,by,7] asan Afby, ..., by]-module and
{y;} generates A[b1,...,by,,] as an A-module then {z,y; } generates A[b1,...,by,7]
as an A-module. In particular « is integral over A so v € B. O

Lemma 3.3. LetT : Ex E — K be the symmetric K-bilinear form defined
by T(x,y) = trg ik (xy). Then T is nondegenerate.

Proof. This is a consequence of the assumption that E/K is separable. Let
L/K be the Galois closure of E/K. Let 01,...,0, : E — L be the distinct
K-embeddings, where n = [E : K]. Then for all z € E

trp/r(z) =01(x) + -+ + on(2).

Recall from Galois theory that o1, ..., 0, are linearly independent (over K) as
homomorphisms o; : E* — L*, so there exists x € E* such that oq(z) + - +
on(z) # 0 and therefore trp, i (z) # 0. Then for all y € E*,

T(J?y_l’ y) = trE/K(‘r) 7& 07
i.e. kerT = 0 and T is nondegenerate. O

Remark. If z € B then trg g (x) € A: 0;(x) € L is integral over A and hence
o1(x) + -+ + op(x) is an element of L which is in K and integral over A. A
being integrally closed implies that trp,x(x) € A.

Observe that if S C A is multiplicatively closed and 0 ¢ S then S “1A4is a
Dedekind domain with field of fractions K. Moreover, the integral closure of
S~'Ain E is S~'B. This is because S™!B is contained in the integral closure
of ST'A in E. Conversely, if v € E satisfies

a a
,y"+71,y"*1+...+7":()
S1 Sn
where a; € A,s; € S then

ai

(/ysl e sn)n + (81 e Sn)n_l(’ysl .. 'Sn)n_l + e — 0

S1

and hence s, ---s, € Bsoy € S™!B.
For example (A — {0})7'A = K so (A — {0})"'B = E. In particular B
always span F as a K-vector space and Frac B = FE.

| Proposition 3.4. B is fg as A-module and is a Dedekind domain.

Proof. Let ey,...,e, be basis of F as K-vector space. We assume that in
fact e1,...,e, € B. Recall that there is a K-bilinear form 7" : E x E —
K, (z,y) — trg/k(ry) and is nondegenerate as £/K is separable. Moreover if
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8 Extensions of Dedekind domains

xr € B then trg/g(z) € A. Let fi,..., fn be the dual basis of ey, ..., e, with
respect to T, i.e. for all 4,7, T'(e;, f;) = trg/k(eif;) = 0iy5. If + € B we can
write x = 3 7 a; f; where a; € K, and

trE/K(:reZ-) = T(:v,el-) = ZajT(fj7ei) =a; € A.
=1

As x is arbitrary, this shows B C Z?Zl Afj. As A is Noetherian, B is fg as
an A-module. Hence B is fg as an A-algebra, so by Hilbert basis theorem B is
Noetherian as a ring.

To show B is a Dedekind domain, it remains to show that every non-zero
prime ideal @ C B is maximal or equivalently, B/Q is a field. To show this let
P =ANQ. Then P is prime. It is also non-zero: if v € @ — {0} then it satisfies
an equation

Y ay" T b a, =0

where a; € A. We can assume a,, # 0 (otherwise divide by 7). Then
am = —(Y" +ary™ 4 Fam_1y) € ANQ — {0}

E——B—Q

K—A——P

We have an injective ring homomorphism A/P — B/Q where A/P is a field,
B/Q is a domain and B/Q is finite dimensional as an A/P-vector space (as
B is fg as A-module). Tt follows that B/Q is a field: let « € B/Q — {0} and
consider the map M, : B/Q — B/Q,B — Ba. M, is a linear map of A/P-
vector spaces and is injective because A # 0 and B/Q is a domain. Since B/Q
has finite dimension, M, must be surjective. Hence exists o/ € B/Q such that
My(a)) = ad' = 1. O

We showed in the proof that if @ C B is a non-zero prime ideal then P =
ANQ C A is a non-zero prime ideal. In this case, we say Q lies above P. We
have @ lies above P if and only if @ D PB if and only if vg(PB) > 0 where
vg : E* — Z is the valuation corresponding to ). This is left as an exercise.

Definition (residue degree, ramification index). If @ lies above P, we define
the residue degree of @ over P to be

fQ/P= [B/QIA/P]

and the ramification index to be

€Q/p = ’UQ(PB).

Note that they are both integers greater than 0.
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Proposition 3.5. Let P C A be a non-zero prime ideal. Then

Z BQ/pr/p:[E:K].
vQ(PB)>0

Proof. Let S = A— P. Then S™!'B is the integral closure of S™!'A. In addition
localisation preserves residue degree and ramification index: we have

es-1Q/s-1p =eq/p; fs-1q/s-1p = fo/p-

The first is because by unique factorisation,

PB = HQSQ/P
Q
ST'PB =[](s7'Q)e/r
Q

so by prime ideal correspondence for localisation we must have equality. The
second is because the maps A/P — S™1A/S™1P,B/Q — S~1B/S~1Q are both
isomophisms. Therefore we can replace A by S~ A and assume that A is a DVR,
in particular a PID. Then B is a fg A-module which is torsion free, so we can
use the classification of fg modules over a PID to conclude that as an A-module,
B = A" for some n € N. Then

E=(A-{0)'B=(A-{0}) A" = K"

and hence n = [E : K].
Reducing modulo P, we have an isomorphism B/PB = (A/P)™ of A/P-
vector spaces. By Chinese remainder theorem we have an isomorphism

B/pB= [[ B/Q""P.
Qo (PB)>0
Hence

[E:K]=n= Z dimA/PB/QUQ(PB)~
Qo (PB)>0

We have a chain of inclusions
BD2Q2Q@*D---DQuerh

S0
eq/p—l

dima/p B/QUP) = Y7 dima/p Q'/Q.

i=0

For any i > 0, Q°/Q"*! has dimension 1 as a B/Q-vector space (as Q*/Q*T1 —

QiBQ/Q”lBQ is an isomorphism, so can reduce to the case of Bg). Therefore
dima/p Q'/Q = [B/Q : A/P]dimp,q Q'/Q"" = fo,p-

We thus get

EQ/pfl
[E:Kl=n= > > for=) eqrlar
Qg (PB)>0 i=0 Q
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8 Extensions of Dedekind domains

E— DB —— {Q17"'7Q7'}

K A P
Let €e; = eQi/p,fZ‘ = sz/P and so Z::l eifz- = [E : K]

Definition (unramified ideal, split ideal). If for all 1 <i <rje; =1, B/Q;
is a separable extension of A/P we say P is unramified in B (or E).
If for all 1 <i <r,e; = f; = 1, we say P splits completely in B (or E).

Notation. If P is a prime ideal in a Dedekind domain then we write kp for the
quotient field by P. For example kg = B/Q,kp = A/P.

Example. If £/Q is a number field (i.e. finite extension), we write O for the
integral closure of Z in K. If E = Q(v/d) where d € Z,d # 0,1 is a squarefree
integer, then we can show

o {Z[\/&] d=2,3 (mod 4)

[1524] d=1 (mod 4)

Note V/d satisfies X2 —d = 0 and 1+72\/& satisfied X2 — X + %d. This shows

the given rings are at least subrings of Og. To show there’s nothing else, let
o € Op. We can write a = a + bv/d where a,b € Q. Note Gal(E/Q) acts on E
and preserves Og: if a € O so

Q" +aa" o da, =0
for a; € Z, and 0 € Gal(E/Q) then
o(@)"+ao(@)" '+ +a,=0
so o(a) € Op. Hence @ = a — bv/d € O so

at+ta=2a€c0gNQ=2
aa=a>—bdeZ

we can make substitution a = § where u € Z to get u? —4b%d € 47 so 4b%d € 7.
Let p be an odd prime. Then

v, (4b%d) = v, (d) + 2v,(b) > 0.
d is squarefree so v,(d) € {0,1}. Hence v,(b) > 0. Similarly
v2(4b%d) = va(d) + 2(v2(b) + 1) >0
s0 v2(b) > —d. So we can write b = § for some v € Z. Then
4o = u? — dv? € 47,

ie. u? = dv? (mod 4). If d = 2,3 (mod 4) this forces both u,v € 2Z so have
a,b € Z, and therefore o € Z[V/d]. If d = 1 (mod 4) we get u> = v? (mod 4) so

u=wv (mod 2). This shows O = Z[%] in this case.
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Next we show how to factorise pOg when p is a prime number. First suppose
p is odd. Then it’s enough to factorise pOg (5] = pZ[3, Vd]. We compute

Osly] _ Zlp,vd _ ZI5,X] _ FplX] _ EP;]FP %Z:

POl plp VA (X2=dp) (X2=d) | P ) T

Now suppose pOg = HQ Q°@/P then by Chinese remainder theorem
Op/pOr = [[(Or/Q°/™).
Q

There are three possible isomorphism classes of this quotient, corresponding to
that for Op[3]/pOg[3]:

e p splits completely if (g) =1.
o p is unramified (and not split) if (%) =—1.
o pis ramified if p | d.
It remains to treat the case p =2. If d = 2,3 (mod 4) then
Op/20p = F2[X]/(X* = d) = F5[X]/((X - d)*)
so 2 is ramified in O in this case. If d =1 (mod 4) then

Op/20p 2 Fo[X]/(X? - X + %d)
S0
o 2 gplits completely if 1%4d is even, i.e. d =1 (mod 8).
« 2is unramified (and not split) if 27¢ is odd, i.e. d = 5 (mod 8).

This is a rather hands-on method and can be inefficient for large number
fields. Soon we’ll see another method to determine the factorisation of pOp for
a general number field E based on factorisations in Q,[X].

Now suppose A, K, E, B are as before and suppose F/K is Galois with G =
Gal(E/K). Then the action of G on E leaves B invariant.

Proposition 3.6. Le Q C B be a non-zero prime ideal, P = Q N A. Then
1. G acts transitively on the set of prime ideals of B which lie above P.

2. forallo € G, fyq)p = fo/p and e5Q)/p = €q/p-

3. If gq,p is the number of prime ideals lying above P theneq,pfq,pdq/p =
[E: K]=|G|.
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Proof. If 0 € G then ¢(Q) C B is a prime ideal and
c@QNA=0c(Q)Nc(A)=0c(QNA)=QNA=P.

To show the action is transitive, we can assume A is DVR by replacing A with
Ap. Then B has only finitely many prime ideals so by example sheet 1 is a
PID. Let m € B be a generator of (). Then

Ng/k(m) = H o(m) e QNA=P.
oeG

If Q" is another prime ideal of B which lies above P then N k(7)) € Q" and
hence (as Q' is prime) there exists 0 € G such that o(7) € Q’. Hence 0(Q) C Q'
so equality.

For the second part, o|g : B — B is an automorphism. If ¢(Q) = @’ then
it descends to an isomorphism B/Q = B/@Q’ which acts as identity on A/P.
In other words, o determines an isomorphism kg — kg of extensions of kp.
In particular fo,p = fo//p. By definition we can factorise PB = HQ Qc/P,
Then for all o € G,

o(PB) =[] o(@)
Q

so by unique factorisation for all @ have eq/p = €,(q),p-

Finally
[E : K] = ZeQ’/PfQ'/P = GQ/PfQ/PgQ/P
Ql
as eq//p = eq/p, for)p = fo p for all Q'. 0

We just saw that if 0(Q) = Q then o|p (mod Q) is an automorphism of kq.

Definition (decomposition group). If @ C B lies above P C A then the
decomposition group Dg,p = Stabg(Q).

Proposition 3.7. Suppose Q C B is a non-zero prime ideal and P = QN A
and suppose kq/kp is separable. Then
1. kg/kp is a Galois extension.

2. the map Dg,p — Gal(kq/kp), 0 + o|p (mod Q) is a surjective group
homomorphism.

Proof.

1. We must show k¢ is normal, i.e. for all & € kg, all Galois conjugates of &
in a normal closure of kg actually lie in kg. Fix @ € kg = B/Q. Choose
any a € B such that a (mod Q) = @. Define

70) = [] (X = o(a)) € BIx].

ceG

The coefficients of f(X) are invariant under G, so lie in E¢ = K, so in
BN K = A. Define f(X) = f(X) (mod P) € kp[X]. Observe that f(X)
has @ as a root and f(X) splits into linear factors in ko[X]. kg is normal,
hence Galois.
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8 Extensions of Dedekind domains

2. Since kq/kp is separable, there exists & € k¢ such that kg = kp(@), i.e.
@ is a primitive element. Let Q = @Q1,Q2,...,Q, be the prime ideals
lying above P. By Chinese remainder theorem we can find o € B such
that a (mod Q) = @, and for each 2 < 7 < 7, a (mod @;) = 0. Let

J(X) = [l,ec(X —o(a)) € A[X]. Let f(X) = f(X) (mod Q) € kp[X].

Then
FX) = [[X —0(@) (modQ))
ceCG
= J[ X¥-0(@ (modQ@)- [[ (X-0(a) (modQ))
oc€Dq/p o¢Dq/p

Note if 0 ¢ Dg/p then 0=(Q) = Q; for some i > 1 and hence

o(a) (mod Q) =oc(a)+Q =o0c(a+0 Q) = o(a+ Q).

By construction a € Q; so o(a) (mod Q) = 0. Hence f(X) = g(X)X¢?
where
gx)= JI X—-ola) (modQ)) e kplX]

JGDQ/p

and d = |G| —|Dq,p|. Suppose 7 € Gal(kq/kp). Then 7(a@) is also a root
of g(X). Hence exists 0 € Dg,p such that o(a) (mod Q) = 7(@). Since
kg = kp(@), this forces o|p (mod Q) = 7.

O

As an application, suppose E/K is a Galois extension of number fields.
Note if P C O is a non-zero prime ideal then kp is a finite field so perfect
(i.e. any finite extension is separable). If ) is a prime ideal of O lying above
P then Gal(kg/kp) has a canonical generator, i.e. the Frobenius automorphism
a — al¥rl. Observe that

|Dg,pl =1Gl/9q/p = eq/pfa/r
and | Gal(kq/kp)| = fo,p so
|ker(DQ/p — Gal(kQ/k:p))| =e€eqQ/pP

so if P is unramified in E then Dg,p — Gal(kg/kp) is an isomorphism. Thus
we can specifiy an element Frobg,p € Dg,p C G uniquely by defining Frobg,p
to be the preimage of Frobenius automorphism in Gal(kg/kp).

Example. Let f(X)= X"+ a X" ! + ..+ a, € Z[X] irreducible. Let E be
the splitting field of f(X) over Q. Let a1,...,, € E be the roots of f(X).
Then there is an injection ¢ : Gal(E/Q) < S, = Sym(ay, ..., ap).

Suppose p is a prime element such that f(X) = f(X) (mod p) € F,[X]
factors as f(X) = [[;_, f;(X) where f,(X),..., f.(X) are distinct monic irre-
ducible polynomials in F),[X] (equivalently p t disc f).
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8 Extensions of Dedekind domains

Proposition 3.8. The image of Gal(E/Q) in S, contains a permutation
of cycle types (d1)(dz) - - - (d,) where d; = deg f,(X).

Proof. Choose @ C Og lying above (p) C Z. Let @; = o; (mod Q). Note @; are
all the roots of f(X) so are distinct. The map D¢, p — Gal(kg/kp) is injective:
if o € Dg,p lies in the kernel then o (mod Q) fixes each @;. Since these are
distinct, this forces o to fix a; so 0 = 1. So Dg,p = Gal(kg/kp) and eq,p = 1
and we can define Frobg,p € Dg,p. Claim that p(Frobg,p) has cycle type

(dr)---(dy).

Proof. We must show Frobg,p has orbits on ai,...,ay of size dy,...,d,, or
equivalently Gal(kq/kp) has orbits on @, ..., @, of size di,...,d,. Note these
orbits are in bijection with irreducible factors of f(X)

O:{Blaaﬂs}HH(X_/Bl)

This lies in k,[X] because this is an orbit, and is irreducible because it is a single
orbit. O

O

Definition (inertia group). We define the inertia group of @ to be
IQ/P = ker(DQ/p — Gal(kQ/kp)).

We've seen that |Io/p| = eq,p. When ramification occurs, I, p is nontrivial
and interesting things can happen. To understand Dg,p in such cases we must
use completion.

Proposition 3.9. Let A be a Dedekind domain, K = Frac A, E/K a finite
separable extension, B the integral closure of A in E. Let P C A be a
non-zero prime ideal and let Q C B be a prime ideal lying above P. Then

1. there’s a natural homomorphism Ap — EQ extending A — B.

2. Let Kp = Fracflp,EQ = FracBQ. Then Eg = Kp - E is a finite
separable extension of Kp and Bg is the integral closure of Ap in Eq.
3. eQ/p = eQB’Q/PAP cmde/p = fQBQ/PAP and [EQ : Kp] = eQ/pr/p.

4. Suppose further E/K is Galois. Then Eq/Kp is also Galois and there
is a natural isomorphism Dg,p — Gal(Eq/Kp).

Proof. Factor
PB = Qi@l/P . QiQT/P

where Q1 = Q. Then

Ap =lim Ap/P'Ap = lim A/ P’
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8 Extensions of Dedekind domains

and similarly BQ = @2 B/Q". There is a natural map A/P? — B/Q" for any

i > 1 so passage to inverse limits gives a homomorphism Ap — BQ.
Note we are free to replace A by Ap and assume wlog that A is a DVR. In
this case, we've seen that B is a finite free A-module. Then

B/P'B=B/T[Q %" =] B/Q,*""

j=1 j=1

SO
lim B/P'B =[] B,
% j=1

as A p-modules, which are finite free as A p-module since each B [ PiB is a finite
free A/P*-module. Thus each summand By, is finite free as Ap-module. In

particular BQ is integral over Ap so BQ is the integral closure of Ap in Eqg.
Note

P HQQ/P 7QEQ/PBQ
=1
as for each i > 1, Q;Bg = Bg so Bg/PBg is isomorphic to B/Q@/F as
Ap/PAp = A/P—module Thus the map B/PB — Bg/PBg is surjective and
by Nakayama, BQ is generated by B as Ap-module. Passing to fraction field, we
see Eq is generated by E as Kp-vector space. If E/K is separable then every
element of E is separable over K so Eg/Kp is separable. If E/K is Galois
then F is the splitting field of a polynomial with coefficients in K, which can
be viewed as a polynomial with coefficients in Kp, so Eq/Kp is Galois.
Note

faba/pir = Ba/QBq : Ap/PAp] = [B/Q: A/P] = fo/p.
In addition o . .
(PAP)BQ = PBQ = (QBQ)QQ/P

implies €QBo/PAp = €Q/P We know

[Bq : Kpl = eqpo/pipfone pir = coirfo/p.

Now let’s assume E/K is Galois and show 4 holds. We've already seen that
as Eqg = KpFE and Eq/Kp is a Galois extension. If o € Dg,p then 0(Q) = @ so
o(Q%) = Q' for all i > 1. Hence o determines an automorphism o|g (mod Q°) :
B/Q" — B/Q'. By passage to inverse limit, we get an automorphism 1&11 ol

(mod Q) : BQ — EQ. By passsage to fraction field, this determines an element
of Gal(Eg/Kp). This determines a homomorphism Dg,p — Gal(Eq/Kp). By
what we’ve just show,

|Gal(Eq/Kp)| = [Eq : Kp] =eq/pfo/p = |Dg/pl

so it’s enough to show injectivity. If o € Dg,p gets sent to 1 then it acts as
the identity on Eg = Kp - F, so in particular acts as the identity on E. As
Dg,p C Gal(E/K), this means that o = 1 in Dg,/p. O
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8 Extensions of Dedekind domains

At this point one may wonder why we must pass to the completion, instead
of using the localsation. If we had done so, then firstly the field of fraction would
be the same. Secondly if ) is not the only prime ideal of B lying above P then
Bg would not be a finite Ap-module, so none of the developed techniques are
available. For example take F = Q(i),K = Q,A = Z,B = Z[i]. Consider
(5) = (24 1)(2 — ). Then Q%H is not integral over Z), as for example its
norm is % However as an exercise, by writing down the 5-adic expansion of the
minimal polynomial, check %ﬂ is a integral over Zs.

Corollary 3.10. Suppose E = K(«) is finite separable over K and let
f(X) € K[X] be the minimal polynomial of o. For any non-zero prime
ideals P C A, there is a bijection between

prime ideals Q of B JEN irreducible factors
lying above P of f(X) in Kp[X]
unique irreducible factor
Q@ g(X) of f(X) in Kp[X]
such that g(a) =0 in Eq

Proof. Let L/K be the Galois closure of E/K. Let C be the integral closure
of Ain L. Fix R C C a prime ideal lying above P. Let G = Gal(L/K),H =
Gal(L/E). We know G acts transitively on the set of prime ideals of C' lying
above P, so by orbit-stabiliser there is a bijection

G/DR/p — {

o~ o(R)

primes in C
lying above P

More importantly, the bijection is G-equivariant. We know that H acts transi-
tively on the set of prime ideals of C' lying above any give non-zero prime ideals
of B, so there is a bijection

{ prime ideals of B

H-orbits of
lying above P }

= ¢ prime ideal of C 3 <— H\G/Dg/p
lying above P

oc(R)NB <o
This means every @ C B lying above P has the form @ = o(R) N B for some
o €G. If 0,0’ € G then o(R) N B =0¢'(R) N B if and only if exists h € H,d €
Dpg/p such that o’ = hod.
On the other hand there is a bijection
{roots of f(X)in L} +— G/H
ola) <o
which is again G-equivariant. As Gal(Lr/Kp) < Gal(L/K), thereisa Gal(Lr/Kp)-
equivariant bijection
{roots of f(X) in Lg} +— G/H
ola) <o
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8 Extensions of Dedekind domains

Now irreducible factors of f(X) in Kp[X] corresponds to Gal(Lr/Kp) = Dg/p-
orbits of roots in Lp so there’s a bijection between irreducible factors of f(X)
in Kp[X] and Dgr,p\G/H, given by sending o to the unique g(X) such that
g(o(a)) =0in Lr = Kp - L. Since there is an obvious bijection

H\G/Dgsp +— Dr/p\G/H

oot

there is also a bijection

prime ideals @ of B irreducible factors
lying above P of f(X)in Kp[X]

unique irreducible factor
Q=0(R)NB+— ¢g(X) of f(X) such that
g(c™1(a)) =01in Ly

To finish the proof, it’s enough to show that this map is the same as that
in the statement of the corollary. What we need is to show that for all o €
G, g(c7'(@)) = 0 in Lg if and only if g(a) = 0 in Eg. At first sight this
seems preposterous as Lr and Eg live in completely different world. The key
observation is that o : L — L extends to an isomorphism Lgr — L,(g) which acts
as the identity on Kp: o(R)" = o(R") so o determines a map o|c (mod R’) :
C/R" — C/o(R) for every i > 1. Passage to inverse limits and fraction fields
gives the induced map Lr — Ly(gr). Hence if g(X) € Kp[X] is an irreducible
factor of f(X) then g(¢=!(a)) = 0 in Lg if and only if o(g(c™(a))) = 0 in
Lo (ry, if and only if g(a) = 0 in L, (). Note the coefficients of g are in Kp and
a € E so it is equivalent to g(a) =0 in Eg.

Lr+— L —— LO’(R)

ERQB<—’E‘—>EQ

Kp K Kp

O

Example. Let K = Q,E = Q(i),A = Z,B = Og. We know 20g = (1 + i)?
so X2 + 1 is irreducible in Q3[X]. On the other hand, 50 = (2 + i)(2 — i)
splits so X2+ 1 must factor in Q5[X]. By Hensel’s lemma, there exists a unique
€ Zs such that 6 = —1 and § = 2 (mod 5), and X? +1 = (X — 0)(X +6)
in Q5[X]. The embedding Q — E extends to isomorphisms Qs — E(24,) and
Qs — E(2—;). Note that X —0 =X —-2¢c Qs[X]and i =2 € Ep_;s0 X — 0
corresponds to the ideal (2 — 7).

Example. Let K = Q, E = Q(¥/2), P = 5Z. How does 50 factorise? We
need to factor X3 — 2 in Q5[X]. As 3% =2 (mod 5), by Hensel’s lemma there
exists a unique 6 € Zs such that §3 = 2 and 6§ = 3 (mod 5Zs). We can write
X% —2= (X —0)g(X) in Q5[X]. In fact g(X) must be irreducible, as any root
of g(X) must differ from 6 by a primitive 3rd root of unity. Note 3rd roots
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8 Extensions of Dedekind domains

of unity in Qs are roots of X3 — 1, which by Hensel’s lemma are in bijection
with roots of X3 — 1 in F5, so only one such. Thus 50f has two distinct prime

factors.
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4 FEaxtensions of complete DVRs

4 Extensions of complete DVRs

Definition (complete discrete valuation field). We call a pair (K,vk) a
complete discrete valuation field (CDVF) if vy : K* — Z is a valuation and
the corresponding DVR

A ={r e K* :vg(x) >0} U{0}

is complete.

We usually have v implicit and call K a CDVF, for example K = Q,,. We’ll
usually write T € Ak for a choice of uniformiser and kx = Ag/(7k) for the
residue field.

Next is an extremely important lemma on which almost all results in this
chapter depend.

Lemma 4.1. Let K be a CDVF and let E/K be a finite separable extension.
Then E has a natural structure of a CDVF.

Proof. Let B be the integral closure of Ax in E. By result in last chapter there
is a bijection

{non-zero prime ideals of B} +— {factors of f(X) in Kp[X]}
where f(X) € K[X] is the minimal polynomial of a generator for E and P =
(k). Since K is a CDVF, Kp = K. Since f(X) € K[X] is irreducible, this
shows B has a unique non-zero prime ideal @), hence is a DVR. Let vg : EX — Z

be the corresponding valuation. We've seen that Eg = Kp-E =K -F = E,
showing (E,vg) is a CDVF. O

Definition (extension of CDVF). We call E/K an extension of CDVF' if
K is a CDVF, E/K is finite separable and E has the structure of CDVF
given by the lemma.

In this situation Ag, Ax are DVRs. We write
fE/K = f(TFE)/(TFK) = [kE : k'K}
€E/K = €(ng)/(nk) = vE (7K )

then [E : K] = eE/KfE/K.
Remark.

1. If E/K is Galois then for all 0 € Gal(E/K),x € E, vg(o(x)) = vg(z). In
other words, Gal(E/K) acts on E by isometry. This is because o(7g) is
a uniformiser of Ag as 0|4, is a ring automorphism.

2. In general, without assuming E/K is Galois, we have that for all x € E*,

1

= H”K(NE/K(x))-

vgp(x)
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4 FEaxtensions of complete DVRs

Proof. If E/K is Galois then
1 1

RHS =
fE/K €E/K

ve(Ng/Kk (7))
as vg|gx = eg kK by checking the uniformisers. But

Nex(@)= [[ ol

a€Gal(E/K)
)

RHS = [E_lK] > uplo(x)) = ve(z)
’ c€Gal(E/K)

as vg is Galois invariant.

Now suppose E/K is only separable and let L/K be the Galois closure.
Then we have for all z € L*,

v () ve(Np e(z)) vr(Np/k())

- fr/e B Jr/x
For z € E*, Np/g(x) = 2ILEl and Ny g(z) = NE/K(x)[L:E] 0

[L:E ! _[L:E]
e vg(x) = fL/KUK(NL/K(ﬂf)) = I UK(NE/K(x))

and hence

= fL/E UK(NE/K(QT)) = i

ve(@) = Jr/x

by tower law. O

Definition (Newton polygon). Let A be a DVR, K = FracA and let
f(X)=X"+a X" !+ ... +a, be a polynomial in K[X] with a, # 0.
Then the Newton polygon N (f) is the graph of the largest piecewise linear
continuous function N : [0,n] — R such that

1. N(0) =0, N(n) = v(ay),
2. forall 0 < j <n, N(j) <wv(a,;) if a; #0,

3. N is convex.

Equivalently, N is the lower convex hull of the points (j, v(a;)) for 0 < j < n.
Example. Let f(X)= X3 +25X% +5X + 125 € Q5[X]. Then we have
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4 FEaxtensions of complete DVRs

We define the slopes of Nk (f) to be the slopes of the line segments, and the
multiplicity of a slope is the length of the projection of the corresponding line
segment to the x-axis.

In the above example we have slopes 3 with multiplicity 2 and 2 with mul-
tiplicity 1.

Lemma 4.2. Let A be a DVR, K = FracA, ay,...,a, € K* and

fXO) =X —ai)) = X"+ a X"+ 4 a, € K[X].
i=1
Let Ny = v(ay) for 1 <i<mn. Then Ay,...,\, are the slopes of Nk (f) with
multiplicity. In particular the slopes of Nk (f) are all integers.

Proof. wlog A1 < --- < A,. Let L(f) be the polygon with slopes Aj,...,A,.
Then if L : [0,n] — R is the corresponding function then L(0) = 0 by definition,
Lin) =M+ -+ X =v(ag- ) = v(a,) = N(n), and L is convex. If
0<j<nthen L(j) =X +---+ Aj. Also

Wa) = vl ag Y anean) 2 (e a) = Ak
i1 <<ty
so in fact L(f) satisfies 1 — 3 in the definition of N (f) so L(f) lies below Ng(f)
by maximality of Nk (f). To show equality, it is enough to show each vertex of
L(f) lies on Ng(f). If (j, A1 +---+ ;) is a vertex of L(f) then A\j 11 > A, ie.
v(a,j1+1) > v(ay) since in the above expression for v(a;), if (i1,...,4;) # (1,...7)
then
v(ai1~~~aij) Z >‘1+"’+)‘j—1+)‘j+1 >)\1+"‘+>\j

so by ultrametric inequality
’U(aj) :’U(Otl"'Oéj) :>\1++/\J

Hence v(a;) > N(j) > L(j) = v(a;) so in fact (j,v(a;)) is a vertex of both L(f)
and Ng(f). O

Proposition 4.3. Let K be a CDVF and let f(X) € K[X],an, # 0 be
monic separable. Let \y < .-+ < A, be the slopes of Nk(f) where \;
occurs with multiplicity m; > 1. Then there exists a unique factorisation
F(X) = [Tiey 9i(X) in K[X] where for all 1 < i < r, g;(X) is a monic
polynomial with degree m; and Nk (g) has a single slope \;.

Proof. Let L/K be the splitting field of f(X). Let a,...,a, € L be the roots
of f(X)in L. Note N (f) is the image of Nk (f) under the linear transforma-
tion ((1) eL(;K) : R? — R?, as vy (a;) = er gvi(a;). The slopes of Np(f) are

eL/K)‘l < e < eL/K)‘n- We define
g(X) = 11 (X — ;) € LIX].
vr(aj)=er/ ki

Since Gal(L/K) leaves vy, invariant, it acts on {a; : vi(a;) = er/xAi} so by
Galois theory ¢;(X) € K[X]. By construction f(X) = [],_, ¢:(X). Uniqueness
follows from essentially the same argument. O
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4 FEaxtensions of complete DVRs

Example. Let f(X)= X3+ X2 +2X +8. Then Ng,(f) is

1 2 3

The slopes are 0,1,2 each with multiplicity 1. Thus f(X) splits into linear
factors in Qo[ X].

Definition. If F/K is an extension of CDVF, we say
1. E/K is unramified if kg /ky is separable and ep, = 1.
2. E/K is totally ramified if fg/x = 1.

We are going to show how to construct totally ramified extensions, followed
by unramified extensions. Then we show everything can be done in these two
stages.

Definition (Eisenstein polynomial). Let A be a DVR, K = Frac A. We say
f(X)=X"+a; X" 1 +...+ag € A[X] is Eisenstein if vk (a;) > 1 for each
t=1,...,n—11if a; # 0 and vk (a,) = 1.

Eisenstein polynomial has a very simple characterisation in terms of Newton
polygon: for any f(X) € K[X], f(X) is Eisenstein if and only if Ng(f) is a
single line segment of slope %

Proposition 4.4.

1. Let E/K be a totally ramified extension of CDVFs. Let f(X) € K[X]
be the minimal polynomial of mg. Then f(X) is Eisenstein and E =
K(WE).

2. Let K be a CDVF and let f(X) € K[X] be a separable polynomial which
is Bisenstein. Then f(X) is irreducible and if E = K[X]/(f(X)) then
E/K is totally ramified and X (mod f(X)) is a uniformiser in Ag.

Proof.

1. Suppose E/K is totally ramified and let f(X) € K[X] be the minimal
polynomial of 7. Then f(X) = X" + a1 X" ! + .- + a, where n =
[K(rg) : K] < [E: K] = eg/x. We know Ng(f) is the dilation by a
factor of eg/x of Nxk(f). Note that Ng(f) has a single slope, namely 1
with multiplicity n: the roots of f(X) in a splitting field are all Galois
conjugates of g, so in particular have the same valuation as 7g. In F,
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4 FEaxtensions of complete DVRs

ve(mg) =1, so Ng(f) has a single slope of 1. Hence Nk (f) has a single

slope ——, and the endpoint is therefore —%—. But this is the valuation
eE/K €E/K

of the constant term and we know vk (a,) > 1, so must have n > €E/K-
Thus we have equality and E = K(ng). f(X) is Eisenstein.

2. Suppose K is a CDVF and let f(X) € K[X] be a separable Eisenstein
polynomial. Let E = K(«) where « is a root of f(X). Note that a priori
this does not give a fixed isomorphism class of extensions E/K, as f(X)
is not assumed to be irreducible. Nevertheless F/K is finite and separable
so E/K is an extension of CDVF. We know f(X) has a root in F so at
least one slope of Ng(f) must be an integer. However as f is Eisenstein,
Ng(f) has a single slope +, hence Ng(f) has a single slope eETiK. As it

n’

is a non-zero integer, ep,x > n. Conversely,

epg/k S|E:K|=[K(a): K] <n

so equality. f(X) is irreducible and E/K is totally ramified. Moreover

€ . . .
vp(a) = 25 =150 a € Ap is a uniformiser.

O

Example. We've seen (1 +i)? = 20 where E = Q(i). Thus E(144)/Qz is
a totally ramified quadratic extension, with uniformiser 1+ ¢. So the minimal
polynomial of 1 + 7 must be Eisenstein. It is X2 — 2X + 2.

We now show how to construct unramified extensions.

Proposition 4.5. Let K be a CDVF. Let {/kx be a finite separable exten-
sion. Then there exists an extension L/K of CDVFs and an isomorphism
v 4 — kr with the following property: for any extension E/K of CDVFs
and field homomorphism j : £ — kg, there exists a unique K-embedding
J : L — E such that the diagram

kp —— ¢

|
7
ke

commutes. Moreover L/K is unramified.

In other words, there is an unramified extension L/K such that
Hompg (L, E) = Homy, (¢, kg).

Proof. Since {/kk is separable, we can choose a primitive element @ € ¢. Let
f(X) € kg[X] be the minimal polynomial and let f(X) € Ag[X] be any
monic lift of f(X). f(X) is irreducible since f(X) is, and is separable since
disc f (mod (7)) = disc f # 0 € kx. We define L = K[X]/(f(X)), which
is separable, and @ = X (mod f(X)) € L. Claim A; = Ak[a]: we have
Agla] € Ap since « is integral over Agx. There is a ring homomorphism
Aklo]/(nk) — AL/(7k), so inducing a ring homomorphism ¢ : £ — Ay, /(7k)
as = kr[X]/(f(X)) = Ax[X]/(f(X),7K). Toshow A = Ax[a], take z € Ap,
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and choose n > 0 as small as possible such that 7%z € Ax[a]. Since z is integral
over Ay, we can write

24 a 2" et a, =0
for a; € Ag. Then
(W?(Z)m + alﬁ?((ﬂ?(z)m71 4+ 4 amﬂ.?(m -0

in Ar. Reduction modulo 7 gives (7} z)™ (mod (rx)) = 0 in Ar/(7k).
But 7%z € Agla] so n%z (mod (7)) is in the image of ¢. () is a field so
contains no non-zero nilpotent, so we must have 7%z (mod (7x)) = 0. Since ¢
is injective this means 7}z (mod (7x)) =0 € Ag[a]/(7k), i.e. Tz is divisible
by 7k in Ag[al, so either 772 € Ag[a] or n = 0. The first case contradicts
the minimality of n so n = 0 and z € Ag[a]. Since z is arbitrary, this show
Ap = Akla], and also the map ¢ : £ — Ap/(wg) = kg is an isomorphism. In
particular L/K is unramified.

We need to show that if F/K is an extension of CDVFs then embeddings

L — F correspond to embeddings ¢ — kr. We know
{K-embeddings L — E} +— {roots of f(X) in E} +— {roots of f(X) in Ag}

where the last correspondence is because f(X) € Ax[X] is monic. On the other
hand kg-embeddings ¢ — kg correspond to roots of f(X) in kg. There is a
map

{roots of f(X) in Ag} — {roots of f(X) in kg}

Hensel’s lemma shows this map is bijective: @ is separable so f(X) has simple
roots. O

Example. Let p be a prime. Then for any n > 1 there is a unique unramified
extension of Q, of degreee n up to isomorphism. This follows from uniqueness
of finite extension of degree n of finite field and the universal property: there
is a unique extension Fp» /F, up to isomorphism. By proposition we can find
L,,/Q, unramified extension of degree n and an isomorphism ¢ : Fpn — kr,,. To
show uniqueness, let £, /Q, be another unramified extension of degree n. Then
kg, /F, has degree n, so we can find an isomorphism j : Fyn — kg, . Then there
is a unique Qp-embedding J : L,, — E,, inducing j o' at the level of residue
fields. Since L,,, F,, both have degree n over QQp,, J is an isomorphism.

Let E/K be an extension of CDVFs with kg /kx separable. Then there exists
a unique subextension Ey/K which is unramified, and such that kg, = kg. Then

feo/x = fE/K and ep g, = ep/k. Then we have

E

totally ramified

Ey

unramified

K

We construct Ey as follow. Take a pair (L,¢) where L/K is unramified and
t: kg — kr. Then there exists a unique K-embedding J : L — E inducing
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¢~% at the level of residue fields. We define Ey to be the image J(L) of this
embedding. To show uniqueness, note that any embedding of L in F must have
image in Ey. Moreover Fj contains any unramified subextension. Ej is called
the mazimal unramified subextension of E/K.

Now suppose further that E/K is Galois and G = Gal(E/K). In this case
we know kg/kk is also Galois and there is a surjective homomorphism G —
Gal(kg/kx). By Galois theory there is an intermediate extension E!#/x /K.
Claim that E'e/x = Ej.

Proof. By Galois theory it’s enough to show that for all 0 € G = Gal(E/K),
o € Ig/k if and only if o|g, = id|g,. Note for all 0 € G, o(Ep)/K is still
an unramified subextension of E/K. As Ej is the maximal such, we have
o0(Ep) = Ep. In particular Ey/K is Galois. Moreover

HOHIK(E(),E) = Gal(Eo/K) — Gal(k’E/kK)

is bijective so for all 0 € G, o|g, = id|g, if and only if the image of ¢ in
Gal(Ey/K) is identity, if and only if the action of o on kg is the identity
action. O

Thus we have an alternative characterisation of the maximal unramified
subextension. As a consequence We have a tower of Galois extensions E/Ey/K
with Gal(E/Ey) = IE/K7 Gal(Ey/K) = Gal(kg/kk).

In fact we can do much more. We assume for the rest of today that E/K
is a Galois extension of CDVFs with kg/kx separable. For concreteness one
might have in mind finite extensions E/Q, and E/Q((t)).

Definition (lower ramification group). Let i > 0. We define the ith lower
ramification group of G = Gal(E/K) to be G; = ker(G — Aut(Ag/(75h))).
We set G_1 = G.

Remark.

1. Informally, G; is the set of elements which fix the first i + 1 digits of the
mg-adic expansion of elements of Ag.

2. Gy = ker(G — Gal(kg/kk)) = I /K.
3. Go12Go2G1 2 and ;50 Gi = {1}

4. Each G; is normal in G. If E/L/K is an intermediate extension and
H = Gal(E/L) then H; = HN G,.

Lemma 4.6. Suppose 0 € Gog. Then for any i > 0, o € G; if and only if
vep(o(rg) —7g) > i+ 1.

Proof. Let Ey/K be the maximal unramified subextension. Then o € Gal(E/Ey).
Note Ag = Ap,[7E] as any element of A admits a mg-adic expansion with dig-
its in Ag,: since maximal unramified implies they have the same residue field
we may choose representatives in Ag,. Thus the map Ag,[rg] = Ar/(7E) =
Ap/(mF'") is surjective. We know Ap is a finitely generated Apg,-module so
Nakayama implies that Ag,[rg| = Ag.
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If o € Gy then the image of o in Aut(Ag/(7f")) is a ring automorphism

and Ap/(rtt) is generated by Ap,[rg]. So the image of ¢ is trivial if and only
if o(mg) =7 (mod 77?'1), if and only if vg(o(nmg) — 7g) > i+ 1. O

Example. Let K = Qy, E = Qo(v/2). E is the splitting field of X2 4 2 which
is Eisenstein so E/K is totally ramified. G = Gy and we can take 7 = V2.
Suppose G = {1, s}, then
vp(s(tp) — mr) = vE(—V2 = V2) = vp(-2v2) = vp(-(V2)?) = 3
so by the lemma
G:G02G1:G27{1}:G3:G4:..

Example. Let K = Qo, E = Q2(i) so E is the splitting field of X2 + 1. We
have (1 +4)? = 2i so E/K must be a quadratic ramified extension (otherwise
vg(1+1i) =) with 75 = 1+ 4. Suppose G = {1,t}, then

vpt(1+4) — (1+9) = vp(l —i— (1 +1)) = vp(—2i) = 2.

Hence
G=Gy=G,{1} =Gy=G3="--

The extension Qo(v/2) is “more ramified” than Qo (i) as it has more non-
trivial ramification groups.

Example. Let K = Qo, F = Q2(v/2,4). As Qu(v/2) 2 Qy(i) by calculation
above, E/K is Galois with G = {1, s, t, st} where
Slga(va) = 5 8laat) = o)y tlowt) = b tlo,va) = 1o, (va)

in notations above. .
Let ¢ = 1—\%’ so (2 = 2= — j 50 ( is a primitive 8th roots of unity in

Q2(v/2,1). ¢ — 1 satisfies the polynomial
(X+1D*+1=X*+4X> +6X? +4X +2

which is Eisenstein in Q. Thus E/K is totally ramified with uniformiser 7 =
¢ — 1. We now calculate vg(o(ng) — g) for all 0 € G = Gy.

ve(s(te) — TE) = vE(— 1\2@' - 1\26 =vg(—2() =vp(2) =eg/k =4
vn(t(rp) — 75) = w(lg - 1%6 - vE<—%> —op(V3) =2
op(st(rp) — 75) = vE(—% - %) - vE<—%> — up(V2) =2

Thus
G:GQ:Gl,{l,s}:G2=G3,{1}:G4=G5:'~'

In this case there are two jumps in the filtration of G by its lower ramification
groups.
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Proposition 4.7.

1. There exists an injective homomorphism Go/G1 — k. In particular
Go/G1 is of order prime to p if charkg = p > 0.

2. If i > 1 then there’s an injective homomorphism G;/Gi11 — (kg,+).
In particular G;/G;y1 is abelian, and is trivial if charkg = 0 and an
Fp,-vector space if charkp =p > 0.

Proof.

1. Note for any o € Gy, we can write o(7g) = a,mp mod 7% for some
a, € Ag, where Ey/K is the maximal unramified subextension: we can
choose X C Ap, containing 0 and giving a set of representatives of kg, =
kg. Then any o € Ag has a unique expression Y.~ a(a);7y. o(ng) has
valuation 1 so equals to a(o(mg))1mE + 7%z for some 2z € Af, so we can
take a, = a(o(mg)). Note as well that a, (mod 7g) # 0. Moreover a,
(mod 7g) depends only on ¢ and 7 (but not X).

We define Gy — kj, by o + a, (mod 7g). To show ayr = aya, (mod 7g),
note we have
or(mg) = agrmr  (mod %)

while
o(1(rg)) = o(a;mp + 152) = ayo(np) + 752 = araemp  (mod 7%)

so we must have a,, = a,a, (mod 7g), so the map is a homomorphism.

An element o € G lies in the kernel if and only if o(7g) = 7 (mod 7%),
if and only if vg(o(mg)—mg) > 2, ifand only if 0 € Gy. Im(Go/G1 — kj)
is a finite subgroup of k. Any finite subgroup of the multiplicative group
of a field is cyclic, of order prime to p if the characteristic p > 0.

2. Observe if o € G; for some i > 1 then we can write

o(re) = mE +a,my !t (mod 7 ?)

where a, € Ag, and a, (mod 7g) € kg depends only on o and 7. We
thus define G; — (kg,+) by 0 — a, (mod 7g). This is a homomorphism:
o(1(mp)) = o(rp + a,mif ' + 7i?2)
=7E +a,mg !+ 12+ o(a i) + o(ri2z)
=7p+ aomd ! + aro(np)™ (mod 7if?)

i+1 i+1yi+1
=7g + agwg +a-(mg + agﬁg )et

=7p+ (ay +a-)mdt (mod 7if?)

=g+ amwgrl (mod 7r}5r2)

(mod 74?)

SO a4y + a; = ayr (mod 7g).

o lies in the kernel if and only if o(7mg) = mg (mod 7*2), if and ony if
vp(o(rg)—mg) > i+2, if and only if 0 € G;42. Thus we have an injective
homomorphism G;/G;+1 — (kg,+) so G;/G;1 is abelian.
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If char kg = 0 then kg is a Q-vector space so contains no non-trivial finite
group so G;/G;y1 = {1}. If char kg = p then kg is an Fp-vector space, so
G;/G;41 is annihilated by p.

O

As a consequence, if charkg = 0 then Gy is trivial, as each G;/G;4+1 and
Niso Gi = {1}. Thus Gy = Go/G is cyclic. If char kg = p then G is solvable
since we have

Go2G1 2

and all quotients G;/G; 1 are abelian. G is the (unique) p-Sylow subgroup of
Go, as Gp/G1 has order prime to p while G; has order a power of p. As all
p-Sylow subgroups are conjugate and G; < G, G is the unique one.

Moreover in the case kg is finite (such as when K/Q, is an extension of
CDVFEs) then G/Go = Gal(kg/kk) is cyclic so

G2Gy2G, D

and hence G = Gal(FE/K) is solvable (not just Gy).

Definition (tamely/wildly ramified). If E/K is an extension of CDVFs,
we say it’s tamely ramified if either charkp = 0 or charkg = p > 0 and
p1{ep/k. Otherwise we say E/K is wildly ramified.

Note that if E/K is Galois and kg/kx is separable, then E/K is wildly
ramified if and only if G; # {1} (and the only case where the inertia group is
not cyclic).

Proposition 4.8. Let E/K be a Galois extension of CDVFs such that it’s
totally and tamely ramified, i.e. e/ = [E : K| and if char kg = p > 0 then
p{eg/x. Then if n = [E : K] then K contains n nth roots of unity and
there exists a uniformiser g € Ax such that E = K({/7k).

Eisenstein polynomial X™ — g . Also if and only if (assuming K containing
n nth roots of unity).

Proof. Since it is tamely ramified, G is trivial so Gy < kj = kj. Since E/K is
totally ramified, G = Gy and so G = Gy is cyclic of order n. Hence ky contains
n nth roots of unity and f(X) = X™ — 1 splits into linear factors in kx[X].
/(X)) =nX""'and n (mod mx) € kj so the simple version of Hensel’s lemma
applies to show X™ — 1 splits into linear factors in Ax[X] and K contains n nth
roots of unity.

Let 0 € Gal(E/K) be a generator and mg € Ag be a choice of uniformiser.
Then exists a unique primitive nth root of unity ¢ € Agx such that

o(rg) =Crep  (mod 7%).
If

a=1g+C to(rg) + (20 () + -+ 0" Hrg)  (mod 7R)
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then
o(e) =o(mp)+ (o’ (mE) + - + (7 = (a

and a = nrp (mod 7%). So vg(a) = 1 and a € Ap is a uniformiser and
o(a™) = (Ca)” = a™, s0 a™ € Ag. Hence E = K({/7k) where rx =a™. O

We have seen that Q2(v/2)/Qs is “more ramified” than Qo(i)/Q,. How can
we make this precise? The dream is to define for any v € R>¢ a subfield EV/K
inside E/K. This should have the following property:

1. EY is maximal unramified, F = Uvzo E? and if v < v’ then E¥ C EY.

2. for any intermediate extension F/L/K with L/K Galois, want LY = L N
Ev.

3. if Ly, Ly are intermediate extensions with £ = Ly - Ly then E¥ = L} - LY.

The naive idea is to define EY = ES» for v € N. This satisfies 1 as Gy =
Ig/k:Ni>oGi = {1} and Go 2 Gy D ---. However this definition does not
satisfy 2 or 3. For 2, this is related to having an equality (G/H); = im(G; —
G/H) where H = Gal(E/L) and G/H = Gal(L/K). Although G; N H =
H;, this does not hold in general for quotient group. For example take F =
Q2(v/2,i), K = Q. Recall that

Gal(E/K) i=0,1
Gal(E/K); = { {1,s) i=2,3
1} i>4

Look at im(Gal(Q2(v/2,1)/Q2)3 — Gal(Q2(v/2)/Q2)) = Gal(Q2(+/2)/Q2), which
is not the same as Gal(Q2(v/2)/Q2)3 = {1}.

To solve this problem we introduce the upper ramification groups. These
are the same as the lower groups but with a different indexing. First we extend
Gy to u € Ryg by Gy = G, We define

u
or/Kr(u) :/ [Go : Gy~ dt.

t=0
¥E/K 18 a continuous piecewise linear function. The discontinuities of cpjg K (u)
occur only at integer values of u. Moreover ¢ / K (u) is strictly increasing and
vp/k(0) = 0 s0 pg/k : [0,00) — [0,00) is a homeomorphism. We define
YE/k = QDE}K : [0,00) = [0,00). Then 9p K is also a strictly increasing
piecewise linear homeomorphism.

Definition (upper ramification group). If v € R>q, we define the vth upper
ramification group to be G¥ = Gy, . (v) < G = Gal(E/K).

We say v is a jump in the upper ramification group if G¥ # GV for
any € > 0.

Warning: by definition, the jumps in the lower ramification groups G, can

only occur at integer values of u. However, the jump in the upper ramification
groups can occur at rational but non-integer values of v.
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Example. E = Q2(v2,i), K = Q2,G = Gal(E/K). First plot [Go : G¢]™*
against .

[GQ : Gt]il

1+——

1] -
2
% t
1 2 3 4
Then plot ¢ against u.
2
20
1 +
t t t t t
1 2 3 4

Its inverse 1 is

(G
4+
21
T T
so we conclude
G v e [0,1]

G'=q{1,s} vel(l,2
{1} v € (2,00)

In this case all jumps occur at integer points.

Example. E = Qy(V/2).

. ]G wel0,2]
¢ _{{1} v € (2,00)

Note the map Gal(Q(v/2,i)/Qs) — Gal(Q2(v/2)/Q2) has kernel {1,¢} and
im(Gal(Q2(v/2,1)/Q2)?) = Gal(Q2(v/2)/Q2)" for any v € Rxy.
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To show this works in general, we introduce some more notations. Given a
Galois extension E/K of CDVFs with kg/kx separable and G = Gal(E/K),
we define ig : G — Z>o U {o0} by

ig(l) = 00,ig(s) =sup{i:s € G;_1} =1+ sup{i:s € G}

so in general ig(s) > ¢+ 1 if and only if s € G;.

Lemma 4.9. For any u € R>q we have
plu)+1= Zmlnlg()u—i—l)
|G0| =

Proof. Both sides are continuous, piecewise linear and linear away from integer
value of u and

LHS(0) = 1, RHS(0 min(ig(s), 1) 1=
0= |Go| Z |Go| Sez;

To show they are equal it’s enough to show for any ¢ € Z>o and for any ¢ €
(i,3 + 1), LHS'(t) = RHS'(¢).

LHS'( ) = [Go G| =[Go: Gy

RHS'(¢ Z min(ig(s),u + 1)'(t).
‘GO| seG

We have
ic(s) ig(s) <u+1

min(ig(s),u +1) = {u+1 ig(s) > u+1

so for t € (i,i+ 1),

0 ig(s)<t+1

min(ig(s), v +1)'(t) = {1 ig(s)>t+1

Recall s € G; if and only if ig(s) > i+ 1 so

RHS'( 1= = LHS’
|G0| SezG: -

Lemma 4.10. Suppose ezists &« € Ag such that Agp = Ag[a]. Thenig(s) =
vp(s(a) — a).

Proof. By definition, s € G; if and only if s acts trivially on Ag /(7 ZJrl) which
is generated as a ring by the image of Ax and «, so if and only if s acts trivially
on the image of a in Ag/(7'f"), if and only if s(a) =a (mod 741). O

47



4 FEaxtensions of complete DVRs

| Lemma 4.11. There exists a € A such that Ap = Ak|[a].

Proof. By Nakayama, it’s enough to find « such that Ax[a] = Ag/(7k) is
surjective. Let § € kg be a primitive element and f(X) € kx[X] be its minimal
polynomial, f(X) € Ag[X] a choice of monic lift of f(X), and y € Ap the
unique root of f(X) such that y (mod 7g) = ¥. Since f(X) is separable,

7 (@) # 050 f'(y) € A Thus
fy+me)=Ff)+ ' (Yre + 752

has valuation 1 and is a uniformiser for Ap. Moreover Ak [y + mr] — kg sends
Yy + TE — 7 so is surjective, so we can choose a set X C Ag of representative
for kg with 0 € X and X C Ag[y + mx]|. Then any element of Ag/(ng) =

Ag/(m7"*) has a unique representation of the form ZZ{JKA a; f(y+7g) with
a; € X. But this lies in Agly + 7g] so Ag = Ak[y + 7E]. O

Lemma 4.12. Let H < G,L = Ef s0 Gal(L/K) = G/H. Let s € G.

Then
> ia(st).

teH

ig/(sH) = Py

Proof. Choose o € Eg, 8 € A, such that Ag = Akla], A = Ak[B].

E AK[Oz]
L Ak|[B]
K Ak
Then
i (sH) = v0(6(8) =) = o (s(5) — )

ig(st) = vg(st(a) — )
for t € H. We need to show
1 1

ve(s(B) — B) = > vn(st(a) —a)

CE/L €E/L ;chy

or equivalently,
vp(s(8) = B) = ve(] [ (st(a) - a)).
teH
Let f(X) € Ap[X] be the minimal polynomial of o over L. Then f(X) =
[Licn (X —t(a)). Let s(f)(X) denote the polynomial where s acts on the coeffi-
cients of f(X) so s(f)(X) = [[;ex(X — st(a)) and s(f)(a) = [[;c (o — st(a)).
Write f(X) = a; X", s(f)(X) => s(a;)X* for a; € Ar,. Then

s(f)(@) = s(f)(@) = fla) = Y (s(a;) —a)e.
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Since A, = Ag[f], for a € AL, s(a) — a is divisible by s(8) — 8 so s(8) — S |
$(£)(@) = Tlyepr( — st(a)). Thus

ve(s(8) — B) < ve(] ] (a - st(@))).

teH

To show the reverse inequality, choose g(X) € Ag[X] such that g(a) = .
We can do this since b € Ag and Ap = Ak[a]. Then g(X) — 5 € Ap[X] has «
as a zero, so is divisible by f(X) in A;[X]. Hence f(X) | g(X) — B in Ag[X],
hence s(f)(X) | g(X) — s(B) in Ag[X]. Now evaluate at X = « to get

s(f)(a) | g(e) —s(B) = B —s(B)

in Ag. Equivalently,

ve([ [ (a = st(a))) < ve(B - s(8))

teH

so equality. O
Lemma 4.13. Suppose H < G and L = Ef. Define j : G/H — Z>oU{oo}
by j(sH) = sup,cp ic(st). Then

iq/u(sH) =1+ op,(j(sH) —1).

Proof. Recall that

LHS = — > ia(st)

CB/L icqr

1 L. .
RHS = ] > min(in(t),j(sH))

teH

Note that eg,, = [Ho| and for all t € H, ig(t) = ing(t) (as both sides equal
vp(t(a) — a) where A = Ag[a]). We can assume that the representative for
sH is chosen so that j(sH) = ig(s) or equivalently for all t € H, ig(st) < ig(s).
Therefore it suffices to show

> ig(st) =Y min(ia(t),ic(s)).

teH teH

We will show for all t € H, ig(st) = min(ig(t),ig(s)). fm+1=ig(t) <
ig(s) =n+1thent € Gy, \ Gp,s € Gy,,. Hence st € G,,, \ Gy, 0 ig(st) = ig(t).
On the other hand if ig(t) > ig(s) then ig(st) > ig(s). Since s was chosen so
that for all t € H, ig(st) <ig(s), we get ig(st) = ig(s). O

Theorem 4.14 (Herbrand). Suppose H < G and L = EH. Ifu € R>q and
v = g/(u) then

(G/H)y = GuH/H(= im(G, — G/H)).
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Proof. For s € G, we have sH € G, H/H if and only if exists ¢ € H such that
ig(st) > u+ 1, if and only if j(sH) > u + 1. Since @g,, is strictly increasing,
we have j(sH) > u + 1 if and only if pg,(j(sH) — 1) > ¢g/r(u), if and only
ifig/u(sH) > pp/r(u) + 1, if and only if sH € (G/H),,,,, (u)- O

| Lemma 4.15. We have vp/x = ¢1/K © PE/L-

Proof. Both sides are piecewise linear continuous functions [0,00) — [0, 00)
which take 0 to 0 so it’s enough to show derivatives coincide.

LHS (u) = [Go : Gu] !
RHS'(u) = ¢ /i (05/L (W) (u)
=[(G/H)o : (G/H)yy,,w) [Ho : Hu] ™'
= [GoH/H : G,H/H] '[Hy : H,]”" Herbrand

Now use isomorphism theorem
G,H/H=>G,/G,NH=G,/H,

(as lower ramification groups are compatible with subgroups) so

_ |Gol [Hu| _ [Go: G

[GoH/H : G, H/H] = \Ho| |G| — [Ho : Hy]

so the result follows. O

Finally we can deduce upper ramifications groups are compatible with quo-
tients:

Theorem 4.16. For any v > 0,
G'H/H = (G/H)".

Proof. By definition G¥ = Gy, (v), (G/H)" = (G/H)y, 1 (v)- PE/K = @E}K
so by the lemma g/ = Y/ 0¥ k. Herbrand gives

(G/H)v = (G/H)lbL/K(U) = GwE/L(wL/K(U))H/H = GwE/K(U)H/H = GUH/H'
O
Definition. Let E/K be an extension of CDVF (not necessarily Galois)
with kg /kk separable. If v € [0, 00) we define
E'=ENL%

where L/E is any extension of CDVFs with kr /kx separable, L/K Galois
with G = Gal(L/K).
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This is independent of the choice of L: it’s enough to show that if L'/L is a
further extension of CDVFs and L'/K is Galois then

v

ENLS =EN(L)E)
where G’ = Gal(L'/K). Let H = Gal(L'/L). Then
ENLE = ENLY/MN" = En @) HH — B (L))" H = (L)@
where the last equality is because E C L = (L/)H.

Proposition 4.17.

1. EO is the mazimal unramified subextension and
E=ENLY =ENL% = EN L.

2. If v < then E* CEY". Forv>0,E" =E.

3. If E/M/K is an intermediate extension then MY = M N E" (as both
are M N LS for L/E with L/K Galois).

4. If E/M,N/K are two intermediate extensions then M?-NV C (M-N)?
(as (MNLE")-(NNLE") C (M-N)NLE"). Moreover if MV = M, N? =
N then (M -N)* =M - N.

We can think of inf{v : EY = E'} as a measure of “how ramified” an extension
E/K is. For example back to the example F = Qo(v/2,4), K = Qo. Recall that

G v € 1[0,1]
G"=q{1,s} ve(l,2]
{1}  ve(2,00)
SO
@2 v E [07 ”
E?=¢Q2(i) ve(l2]
E v € (2,00)
This example displays another important feature of the group G, which we
will not prove:

Theorem 4.18 (Hasse-Arf). Let K/Q, be a finite extension and let E/K
be an abelian extension, i.e. E/K is a Galois extension and Gal(E/K) is
abelian. Then all of the jumps in the upper ramification groups are integers.

The example Q2(v/2,)/Q; is an application. For counterexample in non-
abelian case, example sheet 3 gives Q2((3, v/2)/Q2 in which 3 is a jump.

Definition (conductor ideal). Let K/Q, be a finite extension. Let E/K
be an abelian extension. We define the conductor ideal Cr,x of Ak to be

o1
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(m%,) where

a =inf{n € Z>¢ : G" = {1}} = 1 + highest jump.

Proposition 4.19.
1. Cp )k = Ak if and only if E/K is unramified.

2. If By, B3/ K are abelian extensions then Cp,. g, /xk = lem(Cg, )k, Cg, k),
as if Cg,)x = (1) then a; = inf{n € Zxo : E} = E;}, but
(E1 - E2)™ = Ey - Ey if and only if EY = Ey and EY = Es.

This formulation will be important when studying global fields.
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5  Global class field theory

5 Global class field theory

What is GCFT? Fix a number field K. Want to give a description of all abelian
extensions E/K. We will organise these around the notion of conductor ideal.

Definition (conductor ideal). Let E/K be an abelian extension of number
fields. The conductor ideal is the unique Cp/x C Ok with the follow-
ing property: for any non-zero prime ideal P C Ok and any prime ideal
Q C Og lying above P, Cp/xAx, = Cp,/kp- Equivalently vp(Cp i) =
vp(Crg/kp)-

This is well-defined as
1. Cg,/Kkp is independent of choice of @ (as Eq = Eq as extensions of Kp).

2. Cp,/kp = Ak, for all but finitely many P (as all but finitely many
P C Ok are unramified in Og).

3. existence and uniqueness of C /i then follows by unique factorisation of
ideals in Ok.

We first explain what happens for K = Q. We know that if N € Z>; then
Q(¢w) is an abelian extension of @Q and there’s an isomorphism

Gal(Q(¢n)/Q) = (Z/NZ)*

g & a
where 0,((n) = (%. By Galois theory there’s a bijection

abelian extensions L/Q
contained in Q({n)/Q

We have the Kronecker-Weber(-Hilbert) theorem: if L/Q is any abelian
extension then exists N € Z>1 such that L C Q({x). In fact, for any N € Z>1,
L C Q(Cw) if and only if Cp, g | (V). Thus we get a bijection for any N € Z>

} +— {quotients of (Z/NZ)*}

abelian extension L/Q
in a fixed algebraic closure j <+ {quotients of (Z/NZ)*}
such that Cp,/q | (V)

This is almost GCFT for K = Q, but we still need to give a characterisation of
the bijection independent of explicit description of Q({x). We do this using the
Artin symbol.

Recall that if L/K is a Galois extension of number fields, not necessarily
abelian, then for any non-zero prime ideal P C Ok and prime ideal @ C Of
lying above P such that eg,p = 1 (i.e. P is unramified in Or), we define
Frobg,p € Gal(L/K) as the unique element such that

L. F‘rObQ/P(Q) = Qa

2. for all x € kg, we have Frobg/p(z) = z!Frl e, it is the Frobenius auto-
morphism of kg /kp.
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If 0 € Gal(L/K) then there is a commutative diagram

kQ zsz!kPl

kq

so by the characterisation of Frobenius element
FI‘ObU(Q)/p =0 FI‘ObQ/p oL

In particular, if Gal(L/K) is abelian then Frob, gy, p = Frobg,p, so is inde-
pendent of choice of Q.

Definition (Artin symbol). If L/K is an abelian extension of number fields
and P C Ok is a non-zero prime ideal that is unramified in Oy, we define
the Artin symbol (P,L/K) € Gal(L/K) by (P,L/K) = Frobg,p for any
prime ideal @ C Oy, lying above P.

This allows us to give a formulation of GCFT over Q that does not rely on
knowing the extension Q((n): for any N € Z>1, there’s a bijection

{ abelian extension L/Q

: X
such that C /g | (V) } «— {quotients of (Z/NZ)*}

This may be uniquely characterised as follow: suppose given L/Q. Then there
is a unique surjective homomorphism ¢ ,q : (Z/NZ)* — Gal(L/Q) with the
property that for any prime p{ N,

¢r/g(p mod N) = ((p), L/Q).

Remark. When L = Q({y) this does recover the inverse of the usual map
Gal(Q(¢{n)/Q) — (Z/NZ)*: need to check that if p { N then o, € Gal(Q(¢n)/Q)

equals ((p), Q((n)/Q). Let Q@ C Ogcy) be a prime lying above (p). Then
kq =TFp(Cn) and

(), QUN)/Q)(Cv  (mod @) =¢F  (mod Q).

But reduction modulo @ gives a bijection between roots of X~ — 1 in Q({x)
and in kg. So we must have

((r), QUCN)/Q)(Cw) = CX

so ((p), Q(¢N)/Q) = 0p.

The first step is generalising this to arbitrary base number field K. We first
need to explain what object will replace (Z/NZ)*. This will be ray class group.

Definition (modulus). A modulus is a pair m = (mg, M) where mg C Og
is a non-zero ideal and mo, € Homg (XK, R), a possibly empty subset.
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Recall that for any number field K, | Homg(K,C)| = [K : Q] = r + 2s where
r is the number of real embeddings and s is the number of pairs of complex
embeddings.

If m = (mog,Mmeo) and n = (ng, N ) are moduli, we write m < n if mq | ng
and Mmeo C Neo.

Let K be a number field. We write Z = DivOg,P = {I € T : exists a €
K> such that I = («)} the principal fractional ideals. Then Z/P is the ideal
class group of Ok. Now let m = (mg, Mmoo ) be a modulus. We define

K (me) = a € K*: for all non-zero prime P C O
o) = such that vp(mg) > 0, vp(a) =0
a € K(myg): for all non-zero prime P C Ok
K,, = such that vp(mg) > 0, vp(a — 1) > vp(mg)
and for all 7 € me, 7(a) >0

T(me) = I €T: for all P C Ok non-zero prime
0 such that vp(mg) > 0, vp(I) =0

P(mo) =P NZ(mg)={(a) : @ € K(myp)}

I € T: exists & € K™ such that (o) =1
and for all P C Ok non-zero prime
such that vp(mg) > 0, vp(a — 1) > vy(my)
and for all 7 € meo, 7(a) >0

={(a):a€ K}

P =

Note Py, is a subgroup of P(mg).

Definition (ray class group). The ray class group of modulus m is
H(m) =Z(mg)/Pm.
Remark. If m is the trivial modulus (O, ?) then
Z(mo)=Z,Pm="P

and H(m) = Z/P, the usual ideal class group.

Proposition 5.1.
1. H(m) is a finite abelian group.

2. There are short exact sequences

0 —— P(mg)/Pm — H(m) Hyg 0

where Hy is the usual ideal class group of Ok, and

0 — Ox/(OxNKy) — (O /mo)* x {£1}"= — P(mg)/Pm — 0
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In particular

|H(m)| = |Hi| - [(Or /mo)*| - 2! - |0 /O N K| "
Proof. 1 follows from 2 and the finiteness of Hx which is done in IID Number

Fields. There’s a short exact sequence

0 —— P(mo)/Pm —— Z(mo)/Pm —— Z(mg)/P(mg) —— 0

H(m)

There is a homomorphism Z(myg)/P(my) — Z/P = Hg. This is injective as
P(mg) = PNZ(mg). We need to show it’s surjective, i.e. for any I € Z, exists
a € K* such that a='I € T(mg). Write I = 11]2_1 where I1,I5 C Ok are
non-zero ideal. By Chinese remainder theorem we can find ay,as € Ok such
that for all P C Ok such that vp(mg) > 0,

vp(l1) =vp(ar),vp(lz) = vp(a2).

Then
vp(aflfl) = Up(a;1[2) =0

for all such P, so
oy (g L) = (ag/ag) M € Z(myg).

Set o = 2L,
Q2
To obtain the second short exact sequence, we consider the commutative
diagram with exact rows

By snake lemma there’s a short exact sequence
0 — 0 /(O NK,) — K(mg)/Ky, — P(mo)/Pm — 0

We need to construct an isomorphism K(mg)/K,, — (O /mg)* x {£1}™e=.
There is at least a homomorphism: we can think of

(Ok/mo)* x {£1}™> =[] Ak, /1+modx,) x [ ®/Rso)

P:’L)p(m())>0 TEMoo

For any P C Ok, there’s an inclusion K* C K. If vp(mg) > 0, this extends
to an inclusion K'(mg) € Ag . The homomorphism we want is

Kmo)— J] Ak x [] R*= ] Ak /1+meAk,)x J] (R*/Rs)

P:vp(mgo)>0 TEMoo P:vp(mg)>0 TEMoo

ar ((a)p, (1(a)))
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The kernel equals K, by definition. To complete the proof we need to show
this homomorphism is surjective. Let ((zp)p, (67)r) € [1p.up(me)>0(Ax, /1 +
moAgp) x {£1}™=. By Chinese remainder theorem exists z € Og — {0}
such that for all P such that vp(mg) > 0, © (mod moAk,) = zp. In particular
x € K(myp). It’s now enough to prove that for any (¢;)rem._, exists y € Ox—{0}
such that for all P such that vp(mg) > 0, y = 1 (mod moAk,) and for all
T € Moo, 8g0(7(y)) = &,. Equivalently, y = 1 (mod mg) and for all 7 € my,
sgn(7(y)) = e,. Note mg NZ is a non-zero ideal, so we can find N > 2 such
that N € moNZ. We can find 8 € Ok such that K = Q(3). Let f(X) € Z[X]
be the minimal polynomial of 5. Then

Homg(K,C) = {y € C: f(y) =0}
Homg(K,R) = {y € R: f(y) =0}

Let v, € R be 7(8) for any 7 € ms. We can find a polynomial g(X) € R[X]
such that for all 7 € mo, sgn(g(v,)) = €. Since Q is dense in R, we can assume
that ¢g(X) € Q[X]. By multiplying ¢g(X) by a positive integer we can assume
g(X) € Z[X]. Then we take y = 1+ kNg(8) for some k € N. Then y = 1
(mod mg) as N € mg. If k is large enough then

sgn(7(y)) = sgn(l +kNg(v,)) = sgn(g(v7)) = &~

Example. Let K = Q,m = (N, {r}) where N € N. Then Hg = {1} so

(Z/NZ)Z%XX B o vz

(a (mod N),1)<++a (mod N)

IR

H(m)

So ray class group generalises the classical ideal class group. If instead m =
(N,0) then H(m) = (Z/NZ)* /{*1}.

Example. Let K = Q(v/d) where d € Z,d > 1 squarefree. Then exists ¢ € 0%
such that O = {£e?} and there exist two distinct embeddings 0,7 : K — R
where o(v/d) > 0,7(v/d) < 0. Suppose H is trivial. Let m = (O, {o,7}).
Then

{£1} x {£1} N {£1} x {£1}

Fim) = {eno(a),sgnt(a)) s a € O}~ ((—1,-1), (sgno(e),sgnr(e))

so two possibilities for H(m): it is trivial if o(¢) and 7(¢) have different signs,
or cyclic of order 2 if same sign. Note

NK/Q(E) = 0'(5)7_(5) = {1_1 Zizgi; 7:5 :Ei;

They both occur: if d = 2 then Hg = {1} and £ = 14 /2 has norm N g(c) =
1—-2= -2 Ifd =3 then Hx = {1} and € = 2 + /3 has norm 1.
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Theorem 5.2 (global class field theorem). Let K be a number field and m
a modulus of K.

1. Let L/K be an abelian extension. Define its associated modulus mp/g =
(Mmr/K,0, ML/ K,00) Where

mr/ko0=CL/x
- 7 € Homg(K,R): exist no
ML/K,co = Fe Hom@(L,R) such that 7~'|K =T

Define the homomorphism ), /k : Z(Cr k) — Gal(L/K) as the unique
homomorphism such that for any non-zero prime P C Ok such that
vp(Cr/kx) = 0,¢r/k(P) = (P,L/K). Suppose mp;x < m. Then
Pm Ckeryr k sor i determines a homomorphism ¢, /i : H(m) —
Gal(L/K) which is surjective.

2. The assignment L/ K + ker ¢1, /i defines an inclusion-reversing bijec-
tion

abelian extesion L/ K
{ such that my i < m } «— {subgroup of H(m)}
If L corresponds to H then ¢r/x : H(m)/H — Gal(L/K) is an
isomorphism. In partciular the trivial subgroup of H(m) corresponds
to the mazimal abelian extension L(m)/K such that mp,)x < m.

L(m) is called the ray class field of modulus m, and ¢ ),k : H(m) =
Gal(L(m)/K).

Example. For any K there’s the ray class field F associated the trivial modulus.
This is the maximal extension F /K, everywhere unramified, and such that every
embedding 7 : K — R extends to an embedding 7 : £ — R. E is called
the Hilbert class field of K, and comes with an isomorphism ¢p,x @ Hx =
Gal(E/K).

If K has trivial ideal class group then E = K, for example E = Q.

If K = Q(v/—23) then E is the splitting field of X3 — X + 1.

Proof. Define L to be the splitting field of f(X) = X3 — X + 1 over Q. Then
disc f = —4a® — 27b* = —23 so Q(v/—23) C L and f(X) is irreducible mod 3 so
Gal(L/Q) = S5 and Gal(L/K) is cyclic of order 3. To show L/K is the Hilbert
class field, we need to check

1. mp /g < (Ok,0) (ie. L/K is everywhere unramified),
2. |Hy| = 3.

We take 2 as given. For 1, note that L/Q is unramified for any prime away
from p = 23. Note Ok has a unique prime ideal P lying above 23 as 23
is ramified, i.e. 230k = P? (in fact P = (v/—23). We need to show P is
unramified in L, equivalently that if @ is a prime ideal of Of, lying above 23
then eq/(23) = [1g/(23)| is prime to 3.

If f(X) = f(X)mod 23 then f(X) has a repeated root. In fact f(X) =
a(X)b(X)? where a(X),b(X) € Fo3[X] of degree 1: a cubic having a repeated
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root either has a single root with multiplicity 3 or is of this form. But
3f(X) - Xf'(X)=32>-3X +3-3X3+ X =-2X +3

0 (f,?/) 3 (—2X + 3) and gcd(?,f/) has degree 1. Let ai,a9,a3 € O be
the roots of f(X). Assume they’re labeled so that a(a; (mod Q)) = 0,b(aq
(mod Q)) = 0. Recall

123 = {0 € Gal(L/Q) : 0(Q) = Q, 0 (mod Q) = id,}.
If o e IQ/(23) then

a(o(ar)  (mod Q)) =
b(o(az) (mod Q)) =b(a(az) (mod Q)) =
hence we must have o(a1) = a1, 0(az) € {az, sz} so Ig23) € {1,(23)}. O

Example. Let d € Z,d > 1 squarefree and let K = Q(v/d). Suppose Hx = {1}.
Recall that if m = (Ok,Homg(K,R)) then

H(m) = {1} Ngpole) = -1

By GCFT if Ng/g(e) = 1 then there exists a quadratic extension L/K which
is everywhere unramified but with no real embedding. For example let K =
Q(V3). Then Hyx = {1},e = 2+ /3, Ng/g(e) = 1. In this case L = K(i) =
K (v/—23) is an everywhere unramified quadratic extension of K.

\ Anlﬁed only at 2 \ Alﬁed only at 3

In the remainder of the course we’ll examine the relation between GCFT of
imaginary quadratic fields and binary quadratic forms.

Definition (binary quadratic form). A binary quadratic form is a polyno-
mial f(x,y) = ax? + bry + cy? where a, b, c € Z. Equivalently

o= (2 ") i)

We say an integer m is represented by f(x,y) if there exist xg,yo € Z
such that f(zo,yo) =m

A classical question in number theory asks: which primes p are represented
by a fixed BQF? For example (for p odd)

e p=2a%+y?if and only if p =1 (mod 4) (Fermat).
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o p=21%+2y%if and only if p=1,3 (mod 8) (Euler).
e p=2a?+5y?ifand only if p=1,9 (mod 20) (Gauss).

e p = 2% + 14y? if and only if the equations 2 = —14 and (y*> +1)? = 8
both have solutions in IF),.

In fact if n € N and —n = 2,3 (mod 4) squarefree then p is represented by
2% +ny? (with p t 4n) if and only if p splits completely in the Hilbert class field

of Q(v/~7).

Definition (discriminant of a BQF). If f(x,y) = ax? + bwy + cy? is a BQF
we define its discriminant to be disc f = b> — 4ac.

SL2(Z) acts on the set of BQFs by

v flzy) = f(r! (5))

Equivalently v- f is associated to v~ 7 ( b72 bé2 )7_1. Since disc f = —4 det ( b72 bé2)
it is invariant under the action.

Remark. If disc f < 0 then f(x,y) is either positive definite (a > 0) or negative
definite (a < 0).

To describe the relation between BQFs and imaginary quadratic fields we
need to introduce the discriminant of a number field. Recall from IID Number
Fields that if K/Q is a number field of degree [K : Q] =n and oy, ...,y € K,
we define

disc(av, ..., ap) = det D?

where D;; = o0;(a;),01,...,0, : K — C are the distinct embeddings. This
doesn’t depend on the ordering of 04, ...,0,. If A € M, (Z) and §; = Z;lzl Ajjo
then
disc(B1,. .., Bn) = det A% disc(a, ..., o).

In particular if M < K is a free Z-module of rank n then we can define disc M =
disc(aq, ..., ay), where ag,...,q, is a generating set for M. This does not
depends on the choice of a;’s. If M’ < M are free of rank n then by a similar
argument using Smith normal form

disc M’ = disc M - [M : M']?.

Note. O is always free of rank n as a Z-module so we can define disc Ok . For
example if d € Z squarefree, d # 0,1 then

O — Z®ZVd  d=2,3 (mod 4)
T lzez4d d=1 (mod 4)
SO 9
det(l ﬂ) —4d d=2,3 (mod 4)
. 1 -Vd
disc O = | 1t
det | 1 =d d=1 (mod4)
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Theorem 5.3. Let d € Z squarefree, d < 0. Fiz an embedding K =
Q(Vd) — C. Then there is a bijection

positive definite BQF
of discriminant D

ax® +bry +y* = Z 7P

SLy(Z) { } s Hyg

_ —b+VD
where 3 = ==,
We first prove

Proposition 5.4. There is a bijection

positive definite BQF B € K such that I,mﬁ >0
of discriminant D — and Z.& 23 is o
fractional ideal of Ok

given by the same formula as above. This bijection is SLa(Z)-equivariant,
where SLo(Z) acts on f € K with Im 8 > 0 by Mobius transformation

A B .B_A6+B
¢ D - CB+D’

Proof. First check that Z @& 7Z5 is a fractional ideal of O, i.e. it is stable under
multiplication by Og. Note 5 = _b%m is a root of f(x,1) = ax? + bx + ¢ so
af? = —(bB + c) and

aB - (Z®ZB) CZ LS.

This implies that af is integral over Z, hence a8 € Ok, hence Z & ZafS C Ok.

1 af
1 af

Hence Z & Zaf = Ok so Z & ZS is a fractional ideal of Ok.

We now define an inverse to the map in the statement of the proposition.
It sends 3 to the binary quadratic form f(z,y) = az? + by + cy® where az? +
br + ¢ € Z[x] is the unique quadratic which has 8 as a root, ged(a,b,¢) = 1
and a > 0. We need to check that discf = D. Note a?> = —(b3 + ¢) so
aB-(Z®ZB) CZ LB and aff € Or. If A+ BB € Ok for A,B € Q then
(A+Bp) - (ZoZB) CZOH LB so

2
disc(Z @ ZaB) = det ( > =d*(f - B)*> = D = disc Ok

A+BBeZ @B

(A+ BB)B = AB+ B(—% - 2)

B Bb
=—f+(A—7)BeZEBZﬁ

so A,B € Z and —%,A— % € 7Z so g € Z (as a,b,c coprime) so B € aZ.
Thus A + BB € Ok lies in Z & ZafS. Hence O = Z & Zaf and

D = disc Ok = disc(Z @ ZapB) = disc f.
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This shows the existence of a bijection as in the statement of the proposition.
SLo(Z)-equivariane is left as an exercise. O

Proof of Theorem 5.3. By proposition there’s a bijection

B € K such that Im 5 > 0
} > SLo(Z)\ and Z®Zp is a
fractional ideal of Ok

positive definite BQF
of discriminant D

SLa(@)\ {

We need to show the map

RHS — Hg
Z® LB — (LD LB
is an bijection. First show it is well-defined: suppose 3,8 € K,Imfg >
0,ImpB > 0, Z ® ZB,Z & ZS' fractional ideals of O and 8 = jg% for
(2 ¥) € SLa(Z). Then
B+y 1
2+w  zB+w

ZOLB =7 & (Z(28 +w) ® Z(zf + y))

[Z®Zp') = [Z(28 + w) ® Z(zp + y)] = [Z & Z].

Now show the map is injective. If [Z ® Z] = [Z ® Z0'] then exists o € K*
such that Z ® ZS = Za ® Zaf', so exists (% ) € GL2(Z) such that

1=za+yaf,B=za+wap’

so 8= ’;’g,/:; Since 3, 8" both have positive imaginary part, the matrix (% )
has determinant +1.

Finally we show the map is surjective. Let I be a fractional ideal of Ok.
Then I is free of rank 2 as a Z-module, so has a basis aj,as over Z. wlog we

can assume Im g—f > (0. Then

(1] = [Zoy @ Zas] = [Z & ZZ—?]

which lies in the image. O

This gives an efficient way to compute Hg as a set, using the existence of a
fundamental domain for the action of SLo(Z) on H, the upper half plane. We
set

1 1 1
D:{ZGH:|z|>1,f§§Rez<§}U{Z€H:|z\:1,f§§Rez<O}.

It is a fact that for all z € H, SL2(Z) - z) N D contains exactly one element.
For any orbit of BQFs with discriminant D, there is a unique representative

x,y) = ax” + bxry + cy” such that p = —= &€ D. e have ==, Rep =
f 24y 2 such that § = =22YD ¢ D. ¢ have |32 = £,Ref
f%. Thus g € D if and only if

c c
->1l,a>b>—aor —,a>b>0.
a a

This is usually written as ¢ > a > |b| and if ¢ = a or a = |b| then b > 0.
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Definition (reduced BQF). A positive definite BQF of disciminant D is
called reduced if it satisfies the condition above.

Lemma 5.5. There is a bijection between Hy and the set of reduced positive
definite BQFs of discriminant D.

This also shows H is finite, as there are finitely many reduced forms f(x,y):
—D = 4ac —b* > 4b* — b? = 3b* so |b| < /| D|3 so there are only finitely many
possibilities for b, hence for a, c.

Proposition 5.6.
1. The identity [Ok| € Hk corresponds to the reduced form

x? — dy? d=2,3 (mod 4)

22 +zy+15%?% d=1 (mod 4)

f(w,y)={

called principal form of O .

2. A class [I] € Ok satisfies [I)? = [Ok] if and only if the corresponding
reduced form ax? + bxy + cy? satisfies c =a,a =b or b= 0.

Proof.

1. We do the calculation for d = 2,3 (mod 4). 22 — dy? has discriminat D
and is reduced. It corresponds to the fractional ideal class [Z & Z3] where

B ==tYD — \/d. We know Z & Zd = O.

2. Observe that Gal(K/Q) = {1, ¢} acts on Hg. In fact for any [I] € Hx we
have [I][c(I)] = [Ok]: it’s enough to check that if @ C Ok is a non-zero
prime ideal, Qc(Q) is principal. Say @ lies above (p) C Z. Then one of
the three cases:

(a) psplits in Ok: pOx = Qc(Q) so Qe(Q) = pOk.
(b) pis inert: pOx = Q so Qc(Q) = p*Ok.
(c) p is ramified: pOx = Q? so Qc(Q) = pOk.

so we need to show [I] = [¢(])] if and only if @ = ¢,;a = b or b = 0.
wlog I = Z ® Z§ where § = =YD o (1) = Z® ZB = Z ® Z(—P).
If f(3,1) = 0 where f(z,y) = ax?® + bry + cy? then g(—3,1) = 1 where
g(z,y) = ax? — bry + cy®. Thus [I]? = [Ok] if and only if f(x,y), g(z,y)
lies in the same SLq(Z)-orbit.

If B lies in the interior of D, i.e. if ¢ > a and a > |b| then 3 also lies
in the interior so g(z,y) is reduced, so f(z,y),g(x,y) lies in the same
SLo(Z)-orbit so by uniqueness f(x,y) = g(z,y) so b = 0.

The other case is when S lies on the boundary of D, i.e. b=a or ¢ = a. In
this case —f3 is not in D so g(x,y) is not reduced. However —f3 is SLy(Z)-
conjugate to 8 to f(x,y), (use, for example, the MM&bius tranformation
(5 3') when b= 1) and indeed [I]? = [Ok].

O
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Corollary 5.7. Let pt D be a prime number. Then p is represented by the

principal form of Ok if and only if p splits completely in the Hilbert class
field H/K.

Proof. Suppose O = 7 & 7 where 3 = /d 1+—2‘/E. Have

f(@,y) = (x+yB)(z +yB) = Nk oz + yb)

so p is representated by f(x,y) if and only if exists o € Ok such that Ng (o) =
a@ = p, if and only if exists a € Ok such that (a)(@) = (p), if and only if p
splits in O, p = @1Q2 and both @)1 and () are principal. Now recall the
isomorphism ¢p/x : Hx — Gal(H/K) sending [Q] — Gal(Q, H/K), Q € Ok
a non-zero prime ideal, Dg/ /o = ((Q, H/K)). So p is represented by f(z,y) if
and only if p splits and ¢p/x(Q1) = idg, if and only if p splits and Q1 Q> splits
completely in H/K (?), if and only if p splits completely in H/Q. O

We can show that if f(z,y) is a reduced form of discriminant D then f(z,y)
represents a prime p | D if and only if p splits p = Q1Q2 in Ok and ¢k (Q:)
equals ¢/ ([I]) for some i = 1,2, where [[] is the class corresponding to f(z,y).

Idea:H/K/Q. p is represented by some form f(z,y) of discriminant D if
and only if p splits in Ok, which forms f(z,y) repsent p is determined by the
factorisation of p in Op.

Example. d = —1, K = Q(i), D = —4. There is a unique reduced form x? + ¢>
so if pndivides2 then x? + y? represents p if and only if p splits in Z[i], if and
only if (%) =1, if and only if p =1 (mod 4).

Example. d = —5, D = —20. Have bound [b| < % < 3so0 |b| =0,1,2. Also

b2 — 4ac = —20. If b = 0 then there is a unique reduced form 2 + 5y2. If b = 2
then there is a unique reduced form 222 4 2xy + 3y2. The Hilbert class field is
H = K(i) = K(v/5). Thus if p { 20 then 22 + 5y representes p if and only if
p splits in H and 222 + 2xy + 3y? represents p if and only if p splits in K but
does not split in Q(7).
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binary quadratic form, 59
BQF
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complete discrete valuation field,
35
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conductor ideal, 51, 53

decomposition group, 28
Dedekind domain, 9
discrete valuation ring, 3
discriminant, 60

Eisenstein polynomial, 38
fractional ideal, 10

GCFT, 58
global class field theorem, 58

Hasse-Arf theorem, 51
Hensel’s lemma, 18
Herbrand’s theorem, 49
Hilbert class field, 58

ideal class group, 55

inertia group, 30
integral element, 22
inverse limit, 14

Kronecker-Weber theorem, 53

lie above, 24
localisation, 6, 7
lower ramification group, 41

maximal unramified subextension,
41

modulus, 54, 58

multiplicative subset, 6

Nakayama’s lemma, 3
Newton polygon, 36

ramification index, 24
ray class field, 58

ray class group, 55
residue degree, 24

split ideal, 26

tamely/wildly ramified, 44
Teichmiiller lift, 20

uniformiser, 3
unramified ideal, 26
upper ramification group, 45

valuation, 4
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