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0 Introduction

0 Introduction
In IID Number Fields, we studied finite extensions of Q and their rings of
integers. We proved two fundamental theorem for OK :

• finiteness of ideal class group,

• finite generation of O×
K .

In this course, we’ll study

• completion at a prime,

• Galois theory of local and global fields.

and finally we’ll describe class field theory (description only).
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1 Dedekind domains

1 Dedekind domains

Definition (discrete valuation ring). Let A be a ring. We say A is a discrete
valuation ring (DVR) if A is a principal ideal domain (PID) and A has a
unique non-zero prime ideal.

Let A be a DVR. Then the unique non-zero prime ideal mA of A is also
maximal, so A is also a local ring, i.e. A has a unique maximal ideal. Hence
kA = A/mA is a field, the residue field of A.

AsA is a PID, mA = (π) is principal. Any generator π is called a uniformiser .
If π, π′ are uniformisers then (π) = (π′) so π′ = πu for some u ∈ A×.

Since A is a local, A can be written as the disjoint union

A = A× ∪mA

= A× ∪ πA
= A× ∪ πA× ∪ π2A

=
⋃
i≥0

πiA× ∪
⋂
i≥0

πiA

In fact, the ideal I =
⋂
i≥0 π

iA is zero. This follows from

Lemma 1.1 (Nakayama’s lemma). Let R be a local ring, P ⊆ R the unique
maximal ideal, M a finitely generated (fg) R-module. Then

1. if M = PM then M = 0. This is equivalent to M/PM = 0.

2. if N ≤ M is an R-submodule such that N + PM = M then N = M .
This is saying there is a surjection N �M/PM .

Proof.

1. Let a1, . . . ag be a generating set for M with g as small as possible, g ≥ 1.
Then a1 ∈M = PM so we can write

a =

g∑
i=1

xiai

where xi ∈ P . Hence

(1− x1)a1 =

g∑
i=2

xiai.

Since R is local, 1 − x1 ∈ R× so a1 ∈ 〈a2, . . . , ag〉, contradicting the
minimality of g.

2. Apply first part to M/N .

Now back to the statement. Note πI = I so Nakayama’s lemma implies
that I = 0. Hence each element of x ∈ A, x 6= 0 admits a unique description
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1 Dedekind domains

x = πnu, n ≥ 0, u ∈ A×. Each non-zero ideal of A has the form (πi) for some
i ≥ 0.

Therefore we can define a function v : K× → Z where K = FracA with the
following properties:

1. v is a surjective homomorphism,

2. for all x, y ∈ K× such that x + y 6= 0, v(x + y) ≥ min(v(x), v(y)), with
equality if v(x) 6= v(y).

We define v(x) = n when x = πnu for some n ∈ Z, u ∈ A×.

Proof.

1. πnu · πmv = πn+muv.

2. wlog x = πau, y = πa+bv where a ∈ Z, b ≥ 0. Then

x+ y = πa(u+ vπb).

If b > 0 then u+ vπb ∈ A×.

Definition (valuation). If L is a field, we call a function w : L× → Z a
valuation if satisfies 1, 2 above.

Thus if we have a DVR then we have a valuation. The converse also holds:
if w : L× → Z is a valuation, we define

AL = {x ∈ L× : w(x) ≥ 0} ∪ {0}
mL = {x ∈ L× : w(x) > 0} ∪ {0}

Lemma 1.2. If k is a field, then there is a bijection between

1. subrings A ≤ K such that A is a DVR and FracA = K,

2. valuations v : K× → Z.

Proof. Exercise.

Example.

1. Let p be a prime, v : Q× → Z defined by

v(pn
r

s
) = n

if r, s ∈ Z, (p, rs) = 1.

2. Let K be the field of meromorphic functions on C, v : K× → Z defined
by

v(f) = ordz=0 f(z).

We will see via localisation we can reduce problems to DVR. Hence we need
a way to recognise DVR. This is the content of the next proposition
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1 Dedekind domains

Proposition 1.3. Let A be a Noetherian domain. Then TFAE:

1. A is a DVR.

2. A is integrally closed in FracA and A has a unique non-zero prime
ideal.

Recall that A is integrally closed if for all γ ∈ K, a1, . . . , an ∈ A, if there is
a relation

γn + a1γ
n−1 + · · ·+ an = 0

then γ ∈ A. Equivalently, for all γ ∈ K, A[γ] is fg as an A-module then γ ∈ A.

Proof.

• 2 =⇒ 1: suppose γ ∈ K −A and there exist a1, . . . , an ∈ A such that

γn + a1γ
n−1 + · · ·+ an = 0.

We can write γ = π−ku for some k > 0, u ∈ A×. Hence

−π−nkun = a1π
−(n−1)kun−1 + · · ·+ an.

The valuation of LHS is −nk and the valuation of RHS is at least
n

min
i=1

v(aiπ
−(n−i)k) ≥ min v(π−(n−i)k) = min−(n− i)k ≥ −(n− 1)k.

These two expressions must be equal, absurd. Thus A is integrally closed
in K. A has a unique non-zero prime ideal as A is a DVR.

• 2 =⇒ 1: Let m ⊆ A be the unique non-zero prime ideal. Claim that for
any proper non-zero ideal I ⊆ A, there exists n ≥ 1 such that mn ⊆ I ⊆ m.

Proof. I ⊆ m as m is the unique maximal ideal. Suppose for contradiction
exists I such that mn * I for all n ≥ 1. Since A is Noetherian, we can
assume that I is maximal with this property. Note I is not prime as
otherwise I = m. This means that there exist a, b ∈ A such that a, b /∈ I
but ab ∈ I. Then the inclusions I ⊆ I + (a), I ⊆ I + (b) are proper. By
maximality of I, there exists n1, n2 ≥ 1 such that

mn1 ⊆ I + (a)

mn2 ⊆ I + (b)

Then

mn1+n2 ⊆ (I + (a))(I + (b))

⊆ I + (ab)

⊆ I

as ab ∈ I. Absurd.
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1 Dedekind domains

Now we can show m is principal. Choose α ∈ m − {0}. If m = (α) then
done. Otherwise, choose n ≥ 2 minimal such that mn ⊆ (α) ⊆ m. Then
mn−1 * (α) so exists β ∈ mn−1 − (α) such that

γ =
β

α
∈ 1

α
mn−1 −A.

Then
γm =

β

α
m ⊆ 1

α
mn−1m ⊆ 1

α
mn ⊆ A.

If γm ⊆ m then A[γ] ↪→ EndA(m) as A-modules. EndA(m) is a fg A-
module as A is Noetherian. So A integrally closed in K implies that
γ ∈ A. So we must have γm = A. Hence m = γ−1A. So π = γ−1 ∈ A and
π generates m.
Since A is a local ring, we have

A = A× ∪m

= A× ∪ πA

=
⋃
i≥0

πiA× ∪ I

where I =
⋂
i≥0 π

iA. I = 0 as I is fg (as A is Noetherian) and πI = I, so
we can apply Nakayama’s lemma. Hence

A = {0} ∪
⋃
i≥0

πiA×

and A is a DVR.

Definition (multiplicative subset). Let A be a ring. A multiplicative subset
of A is a subset S ⊆ A satisfying

1. 1 ∈ S,

2. for all x, y ∈ S, xy ∈ S.

Definition (localisation of ring). Let S ⊆ A be a multiplicative subset. We
define S−1A to be the set of equivalence classes of pairs (a, s) ∈ A×S under
the relation (a, x) ∼ (a′, s′) if there exists t ∈ S such that t(s′a− sa′) = 0.

We write a
s ∈ S

−1A for the equivalence class of (a, s).

Lemma 1.4.

1. S−1A is well-defined and admits a ring structure.

2. There is a ring homomorphism

A→ S−1A

a 7→ a

1
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1 Dedekind domains

with kernel {a ∈ A : exists s ∈ S, sa = 0}.

3. If A is a domain and 0 /∈ S then S−1A may be identified with the
subring {as : a ∈ A, s ∈ S} of FracA = (A− {0})−1A.

Proof.

1. ∼ is an equivalence relation: it is reflexive and symmetric by definition.
For transitivity, suppose (a, s) ∼ (a′, s′) ∼ (a′′, s′′), then exist t, t′ ∈ S
such that tas′ = ta′s, t′a′s′′ = t′a′′s′. Then

tt′s′as′′ = tt′s′′a′s = tt′a′′s′s

i.e.
tt′s′(as′′ − a′′s) = 0.

To make S−1A a ring, the zero element is 0
1 , the multiplicative identity is

1
1 , and addition and multiplication are defined as

a

s
+
a′

s′
=
as′ + a′s

ss′

a

s
· a

′

s′
=
aa′

ss′

Check the ring axioms are satisfied.

2. f : A→ S−1A is a ring homomorphism by definition.

ker f = {a ∈ A :
a

1
=

0

1
} = {a ∈ A : exists s ∈ S such that sa = 0}.

3. Now we suppose A is a domain. Recall that

FracA = {(a, s) ∈ A× (A− {0})}/•

where (a, s) • (a′, s′) if as′ = a′s. We need to check that if S ⊆ A if a
multiplicative subset with 0 /∈ S then (a, s) ∼ (a′, s′) implies (a, s)•(a′, s′).

Definition (localisation of module). Let S ⊆ A to be a multiplicative sub-
set and let M be an A-module. Then we define S−1M to be the set of
equivalence classes in M ×S for the relation (m, s) ∼ (m′, s′) if there exists
t ∈ S such that t(ms−m′s) = 0.

We write m
s for the equivalence class of (m, s).

Exercise.

1. S−1M is an S−1A-module via
a

s
· m
s′

=
am

ss′

a

s
+
a′

s′
=
as′ + a′s

ss′

7



1 Dedekind domains

2. If f : M → N is an A-module homomorphism then there is a homomor-
phism

S−1f : S−1M → S−1N

m

s
7→ f(m)

s

3. S−1 is a functor from the category of A-modules to the category of S−1A-
modules.

Lemma 1.5. Let
M ′ M M ′′f f ′

be an exact sequence of A-modules. Then

S−1M ′ S−1M S−1M ′′S−1f S−1f ′

is also exact.

Proof. f ′◦f = 0 so S−1f ′◦S−1f = 0. For the other inclusion, let m
s ∈ kerS−1f ′,

i.e. f ′(m)
s = 0, i.e. there exists s′ ∈ S such that 0 = s′f ′(m) = f ′(s′m) so

s′m ∈ ker f ′ = im f . Hence there exists m′ ∈M ′ such that f(m′) = s′m. Then

S−1f(
m′

ss′
) =

f(m′)

ss′
=
s′m

ss′
=
m

s
.

Corollary 1.6. If f is surjective (injective, resp) then so is S−1f .

Let I ⊆ A be an ideal. Then I ↪→ A is an injective homomorphism of A-
modules. Hence S−1I ↪→ S−1A is an injective homomorphism of S−1A-module.
Hence S−1I may be identified with an ideal of S−1A. It’s the ideal

S−1A · I = {x
s
: x ∈ I, s ∈ S} ⊆ S−1A.

Proposition 1.7. Let S ⊆ A be a multiplicative subset. Then there is a
bijection between the following two sets:

1. prime ideals P ⊆ A such that P ∩ S = ∅,

2. prime ideal Q ⊆ S−1A,

given by P 7→ S−1P,Q 7→ f−1(Q) where f : A → S−1A is the localisation
map.

Proof. Check the maps are well-defined: if 1 ∈ S−1P then 1
s = x

s for some
x ∈ P, s ∈ S so exists t ∈ S such that t(s− x) = 0. Then ts = tx ∈ P so t ∈ P
or s ∈ P .
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1 Dedekind domains

If a
s ,

a′

s′ ∈ S
−1A and aa′

ss′ ∈ S
−1P then aa′

ss′ = x
t . Hence exists t′ ∈ S such

that
tt′aa′ = t′ss′x ∈ P.

Since P is prime, aa′ = P so a ∈ P or a′ ∈ P . Hence a
s or a′

s′ ∈ S
−1P . Thus

S−1P is prime.
If Q ⊆ S−1A then S−1A/Q is a non-zero domain. Then A/f−1(Q) ↪→

S−1A/Q so A/f−1(Q) is also a non-zero domain so f−1(Q) is a prime ideal
(this in fact follows from the fact that pullback of any prime ideal is prime).

It is left as an exercise to check the maps in the statement of the proposition
are mutually inverse bijections.

Corollary 1.8. Let A be a ring and P ⊆ A a prime ideal. Then

1. S = A− P is a multiplicative subset of A.

2. S−1A is a local ring with unique maximal ideal S−1P .

We usually write AP for (A− P )−1A.

For example Z(p) = (Z− pZ)−1Z.

Proposition 1.9. Let A be a Noetherian domain. Then TFAE:

1. For every non-zero prime ideal P ⊆ A, AP is a DVR.

2. A is integrally closed in K = FracA and every non-zero prime ideal
is maximal.

Consequently, for any P there is the valuation vP : K× → Z associated to
AP .

Definition (Dedekind domain). Any ring satisfying the conditions is called
a Dedekind domain.

Proof.

• 1 =⇒ 2: wlog we can assume A does have non-zero prime ideals. Suppose
given a relation

an + a1a
n−1 + · · ·+ an = 0

where a ∈ A, ai ∈ A. Then AP is a DVR implies that AP is integrally
closed in K so a ∈ AP for all P . Therefore for all P we can find xP ∈
A, sP ∈ A− P such that a = xP

sP
in K. In particular sPa ∈ A.

The ideal
I = (sP : P ⊆ A non-zero prime ideal)

is the unit ideal, since it is not contained in any maximal ideal of A.
Therefore there exists element tP ∈ A, with only finitely many non-zero,
such that

1 =
∑
P

tP sP .

9



1 Dedekind domains

Then
a =

∑
P

tP sPa ∈ A.

Let P ⊆ Q be non-zero prime ideals of A, with Q maximal. Then PAQ ⊆
QAQ are non-zero prime ideals of AQ, a DVR. Hence PAQ = QAQ and
P = Q.

• 2 =⇒ 1: Again we can assume that A has a non-zero prime ideal P . We
must show AP is a DVR, or equivalently that AP is integrally closed in
K and has a unique non-zero prime ideal.
Suppose given a relation(a

s

)n
+
a1
s1

(a
s

)n−1

+ · · ·+ an
sn

= 0

where a, a1, . . . , an ∈ A, s1, . . . , sn ∈ A−P, s ∈ A−{0}. Multiply through
by (s1 · · · sn)n,(as1 · · · sn

s

)n
+
(as1 · · · sn

s

)n−1

a1s2 · · · sn + · · ·+ s1s2 · · · an = 0.

As A is integrally closed, as1···sns ∈ A so

a

s
=
as1 · · · sn

s
· 1

s1 · · · sn
∈ AP

so AP is integrally closed.
Let Q ⊆ AP be a non-zero prime ideal. Then eixsts Q′ ⊆ P such that
Q′AP = Q. By assumption we must have Q′ = P and hence Q = PAP .

Definition (fractional ideal). Let A be a domain, K = FracA. A fractional
ideal of A is a fg A-submodule of K.

If I, J ⊆ K are fractional ideals then

I + J = {x+ y : x ∈ I, y ∈ J}
IJ = {xy : x ∈ I, y ∈ J}

are also fractional ideals. On the other hand,

(I : J) = {x ∈ K : xJ ⊆ I}

is an A-submodule of K but is in general not fg.

Lemma 1.10. Let A be a Noetherian domain, S ⊆ A a multiplicative subset.
Then

1. if I, J are fractional ideals then S−1I is a fractional ideal of S−1A and

S−1(I + J) = S−1I + S−1J

S−1(IJ) = S−1I · S−1J

10



1 Dedekind domains

2. if I, J are fractional ideals of A and J is non-zero then (I : J) is a
fractional ideal of A and

S−1(I : J) = (S−1I : S−1J).

Proof.

1. Exercise.

2. If a ∈ A− {0} then

(I : (a)) = {x ∈ K : x(a) ⊆ I} = {x ∈ K : xa ∈ I} = a−1I.

In partuclar (I : (a)) is fg and hence a fractional ideal.
In general, write J = (a1, . . . , an) where ai ∈ K×. Then

(I : J) = {x ∈ K : for all i, xai ∈ I} =
n⋂
i=1

a−1
i I.

In paricular (I : (a)) ⊆ (I : (a1)). Since A is Noetherian, any submodule
of (I : (a1)) is fg and hence (I : J) is a fractional ideal.
To show S−1(I : J) = (S−1I : S−1J), we have

LHS = S−1
n⋂
i=1

a−1
i I

RHS =

n⋂
i=1

a−1
i S−1I =

n⋂
i=1

S−1(a−1
i I)

so in fact it’s enough to show that if I, J ⊆ K are fractional ideals of A
then

S−1(I ∩ J) = (S−1I) ∩ (S−1J).

We certainly have S−1(I ∩ J) ⊆ (S−1I) ∩ (S−1J). Suppose x
s = y

t where
x ∈ I, y ∈ J, s, t ∈ S then xt = sy ∈ I ∩ J and

x

s
=
xt

st
∈ S−1(I ∩ J).

Proposition 1.11. Let A be a Dedekind domain and let DivA be the set
of non-zero fractional ideals of A. Then DivA forms a group under the
multiplication of fractional ideals.

Proof. A = (1) is a multiplicative identity. Must show that for any non-zero
fractional ideal I,

I(A : I) = A.

Observe that if P ⊆ A is a non-zero prime ideal then IAP = (πiP ) as AP is a
DVR, so (AP : IAP ) = (π−i

P ) so

LHSP = IAP (AP : IAP ) = AP = RHSP

11



1 Dedekind domains

so it is enough to show that if I, J are fractional ideals of A such that IAP =
JAP for all P then I = J . In fact, we are going to show if IAP ⊆ JAP then
I ⊆ J . Suppose IAP ⊆ JAP for any non-zero prime ideal P ⊆ A. Let x ∈ I.
Then x ∈ IAP ⊆ JAP so we can write x = yP

sP
where yP ∈ J, sP ∈ A− P . Now

we use
(sP : P ⊆ A non-zero prime ideal) = (1)

to write 1 =
∑
P sP tP where tP ∈ A and only finitely many are non-zero. Then

x =
∑
P

tP sPx ∈ J.

Observe that for any non-zero P , there is a homomorphism

DivA→ DivAP

I 7→ IAP

But DivAP ∼= Z canonically as every non-zero fractional ideal of AP has the
form (πi) for some i ∈ Z.

We can define a homomorphism vP : DivA → Z by vP (I) = vP (x) where
IAP = (x). In particular, for any x ∈ K×, vP ((x)) = vP (x). Note that vP is
surjective since PAP = (π) as vP (P ) = 1 for any P . Taking the product over
all non-zero prime ideals, we get a homomorphism∏

P

vP : DivA→
∏
P

Z.

This is injective as we showed that for any I, J ∈ DivA, I = J if and only if for
all P , IAP = JAP . Now we characterise the image.

Lemma 1.12. For any I ∈ DivA, the set {P : vP (I) 6= 0} is finite.

In other words,
∏
P vP takes values in

⊕
P Z ⊆

∏
P Z.

Proof. Suppose I = (a1b1 , . . . ,
an
bn

) where ai ∈ A, bi ∈ A − {0}. Let b = b1 · · · bn.
Then J = bI is an ideal of A and

vP (I) = vP (J)− vP ((b)).

So it’s enough to prove the lemma in the case I ⊆ A is an ideal.
Let α ∈ I − {0}. Then (α) ⊆ I and for any non-zero prime ideal P ⊆ A,

vP (α) ≥ vP (I) ≥ 0 so in fact we can assume I = (α) is principal.
Now we observe that vP (α) > 0 if and only if α ∈ PAP if and only if α ∈ P .

So it’s enough to show that there are only finitely many P ’s such that α ∈ P .
Suppose for contradiction there are infinitely many P1, P2, . . . such that α ∈

Pi. Define Ji = P1 ∩ · · · ∩ Pi. Then

J1 ⊇ J2 ⊇ · · · ⊇ (α)

so
αJ−1

1 ⊆ αJ−1
2 ⊆ · · · ⊆ A.

12



1 Dedekind domains

This is an ascending chain of ideals of A so there exists n ≥ 1 such that αJ−1
n =

αJ−1
n+1. Hence Jn = Jn+1, i.e.

P1 ∩ · · · ∩ Pn = P1 ∩ · · · ∩ Pn ∩ Pn+1.

Choose xi ∈ Pi − Pn+1 for i ≤ n. Then

x1 · · ·xn ∈ P1 ∩ · · · ∩ Pn = P1 ∩ · · · ∩ Pn ∩ Pn+1.

Since Pn+1 is prime, we have xi ∈ Pn+1 for some i ≤ n. Absurd.

Proposition 1.13.

1.
∏
P vP : DivA→

⊕
P Z is an isomorphism.

2. For any I ∈ DivA,
I =

∏
I

P vP (I)

so we have unique factorisation of fractional ideals.

Proof.

1. It’s enough to show

vQ(P ) =

{
1 P = Q

0 otherwise

as then (δPQ)Q are in the ring and they generate
⊕

P Z. vP (P ) = 1 by
definition as PAP is the maximal ideal of AP . If Q 6= P then we must
show PAQ = AQ: if PAQ 6= AQ then PAQ ⊆ QAQ so P ⊆ Q. This is
impossible as both P and Q are maximal ideals.

2. I =
∏
P P

vP (I) if and only if for all Q,

vQ(I) = vQ(
∏
P

P vP (I)).

As vQ(P ) = δPQ, RHS equals to vQ(I).

13



2 Complete DVRs

2 Complete DVRs

Definition (inverse system, inverse limit). Suppose given groups Ai and
homomorphisms fi : Ai+1 → Ai for all i ≥ 1

A1 A2 A3 · · ·f1 f2 f3

we call such a collection an inverse system. Its inverse limit is

lim←−
i

Ai = {(ai) ∈
∞∏
i=1

Ai : fi(ai+1) = ai for all i ≥ 1} ⊆
∞∏
i=1

Ai.

This is a group. If the Ai’s (fi’s respectively) are abelian groups/rings
(homomorphisms/ring homomorphisms) then so is lim←−iAi.

Suppose A is a DVR with uniformiser π. Then we can make an inverse
system

A/(π1) A/(π2) A/(π3) · · ·

with maps the natural quotient maps. There’s a homomorphism A → A/(πi),
hence A→

∏∞
i=1A/(π

i) which takes values in lim←−iA/(π
i).

Definition (complete). We say A is complete if the homomorphism

A→ lim←−
i

A/(πi)

is an isomorphism.

The kernel of this homomorphism is
⋂
i≥1(π

i) = 0 so A is complete if and
only if the map is surjective.

Lemma 2.1. TFAE:

1. A is complete.

2. A is complete as a metric space with respect to the metric

d(x, y) =

{
0 x = y

2−v(x−y) x 6= y

3. K is complete as a metric space with respect to the metric given by the
formula.

Proof. We first explain why d is a metric. d satisfies the ultrametric triangle
inequality

d(x, y) ≤ max(d(x, y), d(y, z))

for all x, y, z. This is because we can assume x, y, z. Then this is equivalent to

v(x− z) ≥ min(v(x− y), v(y − z))

but LHS is equal to v((x− y)+ (y− z)). This is the axiom defining a valuation.

14



2 Complete DVRs

• 1 =⇒ 2: Let (an)n≥1 be a Cauchy sequence in A, meaning that for all
ε > 0, exists N such that for all n,m ≥ N , d(an, am) < ε. Equivalently,
for all M > 0, exists N(M) such that for all n,m ≥ N(M),

an = am (mod πM ).

We can define b = (bi)i≥1 ∈
∏∞
i=1A/(π

i) by

bn = aN(n) (mod πn)

By definition of Cauchy sequence, b ∈ lim←−iA/(π
i). Since A is a complete

DVR, exists a ∈ A such that a = aN(n) (mod πn) for all n ≥ 1. Hence
v(a− aN(n)) ≥ n, i.e. d(a, aN(n)) ≤ 2−n so limn→∞ an = a.

• 2 =⇒ 1: Suppose given (an)n≥1 ∈ lim←−nA/(π
n). Let ãn ∈ A be any

element such that ãn (mod πn) = an. Then for all m ≥ n, ãm = ãn
(mod πn) by definition of inverse limit, i.e. d(ãm, ãn) ≤ 2−n, so (ãn)n≥1 is
a Cauchy sequence in A. So there exists a ∈ A such that ãn → a in A, i.e.
for all M ≥ 1 exists N(M) such that for all n ≥ N(M), ãn = a (mod πM ).
Hence a is a preimage of (an)n≥1 under the map A→ lim←−iA/(π

i).

• 3 =⇒ 2: We must show A is a closed subspace of K. Claim that

A = {x ∈ K : d(0, x) ≤ 1},

as d(0, x) ≤ 1 if and only if x = 0 and v(x) ≥ 0.

• 2 =⇒ 3: For any x, y ∈ K,

d(πx, πy) =
1

2
d(x, y).

Let (an)n≥1 be a Cauchy sequence in K. Then there exists N ≥ 1 such
that πNan ∈ A for all n ≥ 1: there exists M such that for all n,m ≥ M ,
d(an, am) ≤ 1. Equivalently, an − am ∈ A so it’s enough to choose N so
that πNan ∈ A for 1 ≤ n ≤M . (πNan)n≥1 is a Cauchy sequence in A so
exists a ∈ A such that d(πNan, a) → 0 as n → ∞. Thus an → π−Na in
K.

Exercise. Show that A is also open in K. Show futhermore that K is totally
disconnected.

Remark. When we speak of topology on K or convergence in K we always
mean with respect to the metric d.

Proposition 2.2. Let A be a DVR, π ∈ A a uniformiser. Then

1. A → Â = lim←−iA/(π
i) is injective, Â is a complete DV R and π is a

uniformiser of Â.

2. For all i ≥ 1, the map A/πiA→ Â/πiÂ is an isomorphism.

3. Let X ⊆ A be a subset of representatives for the residue classes of

15



2 Complete DVRs

A/(π), with 0 ∈ X. Then for all a ∈ Â, there exists a unique expression

a =

∞∑
i=0

aiπ
i

with ai ∈ X for all i ≥ 0. This is the π-adic expansion of a.

Proof. We first observe that for all a ∈ A/(πi), there exist unique a0, . . . , ai−1 ∈
X such that

a = a0 + a1π + · · ·+ ai−1π
i−1 (mod πi).

Induction on i: for i = 1 this is the definition of X. To show this for i+ 1, let
a ∈ A/(πi+1). Then a (mod πi) ∈ A/(πi) so by induction there exist unqiue
a0, . . . , ai−1 such that

a− (a0 + a1π + · · ·+ ai−1π
i−1) ∈ πiA/πi+1A.

The map

X → A/(π)→ πiA/πi+1A

x 7→ x (mod π)

y (mod π) 7→ πiy (mod πi+1)

is bijective. Hence there eixsts unique ai ∈ X such that

a− (a0 + · · ·+ aiπ
i) = 0 (mod πi+1).

Note that we have a commutative diagram

A/(πi+1) {a0 + a1π + · · ·+ aiπ
i : aj ∈ X}

A/(πi) {a0 + a1π + · · ·+ ai−1π
i−1 : aj ∈ X}

where the map on the right is to omit the πi term. Thus there is a bijection
between Â and the set of formal sums

∑∞
i=0 aiπ

i where ai ∈ X for all i ≥ 0.
Note that we can’t yet think of it as an infinite sum since we haven’t yet shown
Â is complete. For any i, we set

xi = a0 + a1π + · · ·+ ai−1π
i−1 (mod πi) ∈ A/(πi),

then
∑∞
i=0 aiπ

i is simply a short hand for the element x = (xi)i≥1 ∈ lim←−iA/(π
i) =

Â.
Let’s now show Â is a DVR. We know A→ Â is injective. We’ll show each

non-zero element x ∈ Â has a unique expression x = πnu where n ≥ 0, u ∈ Â×.
Let’s write x = a0 + a1π + · · · and say

a0 = a1 = · · · = an−1 = 0, an 6= 0.

Then x = πny where y = an+an+1π+ · · ·. Note if α ∈ X−{0} then α (mod π)
is non-zero and hence α ∈ A×. Thus y = an(1− πb) where

b = 1− πa−1
n an+1 − π2a−1

n an+2 + · · · ∈ Â.

16



2 Complete DVRs

It’s enough to show 1− πb ∈ Â×. An inverse is given by

1 + πb+ π2b2 + · · · ∈ Â.

This shows Â is a DVR with uniformiser π.
The map A/πiA → Â/πiÂ is bijective as elements of both sides can be

uniquely represented by elements of the form

a0 + a1π + · · ·+ ai−1π
i−1 (mod πi)

where ai ∈ X. It follows that Â is complete, as the map

Â→ lim←−
i

Â/πiÂ ∼= lim←−
i

A/πiA

is an isomorphism by the definition of Â.

Remark. If A is complete then Â ∼= A.
Observe that if K = FracA, K̂ = Frac Â then the valuation v : K× → Z

extends to a valuation v : K̂× → Z such that Â = {x ∈ K̂ : v(x) ≥ 0}.

A K

Â K̂

An element of Â admits a unique π-adic expansion
∑∞
i=0 aiπ

i where ai lie
in a fixed set representatives in A for A/(π), and the series

∑∞
i=0 aiπ

i is a
convergent infinite sum in Â.

Definition (p-adic integer). Let p be a prime. Then we define the p-adic
integers and p-adic rational numbers to be

Zp = Ẑ(p)

Qp = FracZp

respectively.

p ∈ Zp is a uniformiser and Zp/(p) ∼= Z(p)/(p). To compute the residue field
of Z(p), we use the exact sequence

0 pZ Z Z/pZ 0

of Z-modules. It remains exact after localisation so

0 pZ(p) Z(p) (Z− (p))−1(Z/pZ) 0

is still exact so
Z(p)/pZ(p)

∼= (Z− (p))−1Z/pZ.
In fact Z/pZ→ (Z− (p))−1Z/pZ is an isomorphism as every element of Z− (p)
has image in Z/pZ contained in (Z/pZ)×.

As a consequence, we have Zp/(p) ∼= Z/pZ so we can choose the set of
representatives to be {0, 1, . . . , p− 1}. It follows that each element of Zp has a
unique expression as

∑∞
i=0 aip

i and each element of Qp has a unique expression∑
i∈Z aip

i where ai ∈ {0, . . . , p1} and the set {i < 0 : ai 6= 0} is finite.

17



2 Complete DVRs

Example. −1 ∈ Z ⊆ Z2 has

−1 =
1

1− 2
= 1 + 2 + 22 + · · ·

What is Qp like? It is a mixture of R and Fp and has features of both
analytic (R) and algebraic (number fields) objects.

Lemma 2.3 (Hensel’s lemma). Let A be a complete DVR. Let f(x) ∈ A[x]
be monic. Suppose given α ∈ A such that v(f(α)) > 2v(f ′(α)). Then exists
a unique a ∈ A such that f(a) = 0 and v(a− α) > v(f ′(α)).

Corollary 2.4. Let A be a complete DVR and f(x) ∈ A[x] a monic polno-
mial. Let k = A/(π) and f(x) = f(x) (mod π) ∈ k[x]. Suppose there exists
α ∈ k a simple root of f(x), then exists a unique a ∈ A such that f(a) = 0
and a = α (mod π).

Proof. Let α ∈ A be a lift of α. Then f
′
(α) 6= 0 implies that f ′(α) ∈ A× so

v(f ′(α)) = 0. Then apply the lemma.

Proof of Hensel’s lemma. We first show existence of a by Newton’s method.
Define

a1 = α, an+1 = an −
f(an)

f ′(an)
.

We show the following claims by induction on n ≥ 1:

1. an ∈ A, or equivalently v(an) ≥ 0.

2. v(f ′(an)) = v(f ′(a1)).

3. v(f(an)) ≥ 2v(f ′(an)) + 2n−1v(f(a1)/f
′(a1)

2).

For n = 1,

1. an = α ∈ A by hypothesis.

2. Tautological.

3. v(f(a1)) ≥ 2v(f ′(a1)) + v(f(a1)/f
′(a1)

2) = v(f(a1)).

Suppose the three statements hold for 1, 2, . . . , n. We will show they hold for
n+ 1.

1. By definition an+1 = an − f(an)/f
′(an) so an+1 ∈ A if and only if

v(f(an)/f
′(an)) ≥ 0. But 3 says

v(f(an)/f
′(an)) ≥ v(f ′(an)) + 2n−1v(f(a1)/f

′(a1)
2) ≥ 0.

2. Enough to show v(f ′(an+1)) = v(f ′(an)). Easy to see that f ′(an+1) −
f ′(an) is divisible by−an+1+an = f(an)/f

′(an) so we’ll have v(f ′(an+1)) =
v(f ′(an)) if

v(f(an)/f
′(an)) > v(f ′(an)),

i.e. v(f(an)/f ′(an)2) > 0. But

v(f(an)/f
′(an)

2) ≥ 2n−1v(f(a1)/f
′(a1)

2) > 0.

18



2 Complete DVRs

3. Suppose f(x) =
∑m
i=0 aix

i where ai ∈ A. Then we use Taylor expansion
with a small tweak

f(X + Y ) =

m∑
i=0

ai(X + Y )i

=

m∑
i=0

ai(X
i + iXi−1Y + Y 2gi(X,Y )) gi(X,Y ) ∈ Z[X,Y ]

= f(X) + f ′(X)Y + Y 2g(X,Y ) g(X,Y ) ∈ A[X,Y ]

hence

f(an+1) = f(an − f(an)/f ′(an))
= f(an)− f ′(an)f(an)/f ′(an)
+ (f(an)/f

′(an))
2 g(an, f(an)/f

′(an))︸ ︷︷ ︸
∈A

so

v(f(an+1)) ≥ 2v(f(an))− 2v(f ′(an))

≥ 2(2v(f ′(an)) + 2n−1v(f(a1)/f
′(a1)

2))− 2v(f ′(an))

= 2v(f ′(an)) + 2nv(f(a1)/f
′(a1)

2)

We’ve also shown (an)n≥1 is a Cauchy sequence as

v(an+1 − an) = v(f(an)/f
′(an))→∞

as n→∞ so there is a limit a ∈ A. We have f(a) = limn→∞ f(an) = 0 so a is
a root.

For uniqueness, we need to show if a + h ∈ A is another root such that
v(a + h − α) > v(f ′(α)) then h = 0. Since v(a − α) > v(f ′(α)), we must have
v(h) > v(f ′(α)). Using Taylor expansion, we find

0 = f(a+ h) = f(a) + hf ′(a) + h2g(a, h)

and hence hf ′(α) = −h2g(a, h). If h 6= 0 then f ′(α) = −hg(a, h). Hence

v(f ′(α)) ≥ v(h) > v(f ′(α)),

absurd.

Example. Which elements in Q×
p are squares? Any element of Q×

p admits a
unqiue expression x = pnu where n ∈ Z, u ∈ Z×

p . Equivalently, there is an
isomorphism

Q×
p
∼= Z× Z×

p

x 7→ (n, u)

It’s enough to determine when u ∈ Z×
p is a square. Equivalently, when the

polynomial f(x) = x2 − u has a root in Zp. There is a simple necessary con-
dition from arithmetics: there is a surjective homomorphism Z×

p → F×
p , x 7→ x
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2 Complete DVRs

(mod p) and if u ∈ (Z×
p )

2 then u ∈ (F×
p )

2. Let’s check if it is sufficient: if
u ∈ (F×

p )
2 and let v ∈ Z×

p satisfy v2 = u. Then f(v) = 0 so we are in the
position to use Hensel’s lemma. Note f ′(v) = 2v and v(f ′(v)) = v(2). If p is
odd then f ′(v) is a unit, so by the corollary there exists a unique w ∈ Z×

p such
that w2 = u and w = v.

If p = 2 then we have v(f(v)) ≥ 1, v(f ′(v)) = 1 so we can’t conclude anything
yet. Note for any n ≥ 1 there is a homomorphism Z×

p → (Z/pnZ)× so if u is a
square, u (mod pn) is also a square for any n ≥ 1. For n = 3 we have a map

Z×
2 → (Z/8Z)× ∼= Z/2Z× Z/2Z

hence if u ∈ (Z×
2 )

2 then u = 1 (mod 8). Conversely, if u = 1 (mod 8) then
f(1) = 1 − u = 0 (mod 8), i.e. v(f(1)) ≥ 3, and f ′(1) = 2 so v(f ′(1)) = 1. In
this case Hensel’s lemma does apply and u is indeed a square.

Proposition 2.5.

1. If p is odd then u ∈ Z×
p is a square if and only if u (mod p) ∈ F×

p is a
square.

2. If p = 2 then u ∈ Z×
2 is a square if and only if u = 1 (mod 8), or

equivalently u (mod 8) ∈ (Z/8Z)× is a square.

In the example we used the surjective homomorphism

Z×
p → F×

p

∞∑
i=0

aip
i 7→ a0 (mod p)

In fact, this homomoprhism has a unique splitting, i.e. exists a unique homo-
morphism τ : F×

p → Z×
p such that for all α ∈ F×

p , τ(α) (mod p) = α. This τ
is called the Teichmüller lift and is constructed as follow: let f(x) = xp − x.
Then for all α ∈ Fp, f(α) = 0, and f

′
(x) = pxp−1 − 1 (mod p) = −1 so never

vanishes. So Hensel’s lemma says that for all α ∈ Fp, exists a unique α ∈ Zp
such that αp = α and α (mod pZp) = α. Define τ(α) = α.

If α, β ∈ F×
p then

(τ(α)τ(β))p = τ(α)pτ(β)p = τ(α)τ(β)

and τ(α)τ(β) (mod pZp) = αβ. Uniqueness part of Hansel’s lemma thus says
that τ(αβ) = τ(α)τ(β), i.e. τ is a homomorphism.

τ is the unique splitting: if σ : F×
p → Z×

p is another splitting then for all
α ∈ F×

p ,
σ(α)p = σ(αp) = σ(α)

so f(σ(α)) = 0. Uniqueness again says that σ = τ .
As a consequence

Q×
p
∼= Z× Z×

p
∼= Z× (1 + pZp)× F×

p
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2 Complete DVRs

corresponding to the expression pn · u · τ(α). There is an isomorphism

1 + pZp ∼= lim←−
i

ker((Z/piZ)× → (Z/pZ)×)︸ ︷︷ ︸
p-power order

so for any n ∈ N, (n, p) = 1, the map

1 + pZp → 1 + pZp
x 7→ xn

is a bijective group homomorphism. Hence there is an isomorphism

Q×
p /(Q×

p )
n ∼= Z/nZ× F×

p /(F×
p )

n.

Suppose q is a prime such that p = 1 (mod q). Then Q×
p contains a primitive

qth root of unit ζq. This is because ζq ∈ Q×
p if and only if Q×

p contains an element
of order q. But F×

p is cyclic of order p− 1 so this is true.

Lemma 2.6. Under this assumption, Qp has exactly q + 1 isomorphism
classes of Galois extensions of degree q.

Proof. Since ζq ∈ Q×
p , Kummer theory tells us that such extensions correspond

to subgroups of Q×
p /(Q×

p )
q of order q, where an element z of the subgroup

corresponds to the extension Qp( q
√
z). We’ve computed Q×

p /(Q×
p )

q ∼= Z/qZ ×
Z/qZ, which has q + 1 subgroups of order q.

Before the end of the chapter, we briefly indicate where we’re heading: we
define KQ to be the fraction field associated to the completion of OK localised
at Q. Then we are going to consider its “rings of integers” OKQ

so we have the
following picture:

K OK Q OKQ
KQ

Q Z pZ Zp Qp

If K/Q is Galois then so is KQ/Qp and Gal(KQ/Qp) ↪→ Gal(K/Q), and we are
going to study Gal(KQ/Qp) in detail.
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3 Extensions of Dedekind domains

3 Extensions of Dedekind domains
Let A be a Dedekind domain and K = FracA. Let E/K be a finite separable
extension.

Definition (integral element). We say γ ∈ E is integral over A if exists
n ≥ 1, a1, . . . , an ∈ A such that

γn + a1γ
n−1 + · · ·+ an = 0.

Lemma 3.1. TFAE:

1. γ is integral over A.

2. A[γ] is a finitely generated A-module.

3. there exists a non-zero A[γ]-submodule M ≤ E which is a finitely
generated A-module.

Proof.

• 1 =⇒ 2: If γn+a1γn−1+ · · ·+an = 0 then A[γ] = A+Aγ+ · · ·+Aγn−1.

• 2 =⇒ 1: A is Noetherian and A[γ] is a finitely generated A-module so

A ⊆ A+A[γ] ⊆ A+Aγ +A[γ2] ⊆ · · ·

is eventually stationary, so exists n ≥ 1 such that γn ∈ A + Aγ + · · · +
Aγn−1.

• 2 =⇒ 3: M = A[γ].

• 3 =⇒ 2: Since M is finitely generated and A is Noetherian, EndA(M) is a
finitely generated A-module. Since M is non-zero, A[γ]→ EndA(M), x 7→
(m 7→ xm) is an injective homomorphism of A-modules. Hence A[γ] is a
finitely generated A-module.

Let B = {γ ∈ E : γ integral over A}, the integral closure of A in E.

Lemma 3.2. B is a subring of E and B is integrally closed in E.

Proof. Suppose b1, . . . , bm ∈ B. Then A[b1, . . . , bm] is a finitely generated A-
module: if we have relations

bni
i + a1,ib

ni−1
i + · · ·+ ani,i = 0

for all i then {
∏m
i=1 b

mi
i : 0 ≤ mi < ni} is a generating set for A[b1, . . . , bm].

This also shows that B is a ring: if b1, b2 ∈ B then A[b1, b2] ⊆ E is a fg
A-module stable under multiplication by b1 + b2 and b1b2. So part 3 of the
lemma implies that b1 + b2, b1b2 ∈ B.
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3 Extensions of Dedekind domains

Now suppose γ ∈ E and exists n ≥ 1, b1, . . . , bn ∈ B such that

γn + b1γ
n−1 + · · ·+ bn = 0.

We must show γ ∈ B. This relation shows A[b1, . . . , bn][γ] = A[b1, . . . , bn, γ] is a
fg A[b1, . . . , bn]-module. But A[b1, · · · , bn] is a fg A-module, so A[b1, . . . , bm, γ] is
a fg A-module: if {xi} generates A[b1, . . . , bm, γ] as an A[b1, . . . , bm]-module and
{yj} generatesA[b1, . . . , bm] as anA-module then {xiyj} generatesA[b1, . . . , bn, γ]
as an A-module. In particular γ is integral over A so γ ∈ B.

Lemma 3.3. Let T : E×E → K be the symmetric K-bilinear form defined
by T (x, y) = trE/K(xy). Then T is nondegenerate.

Proof. This is a consequence of the assumption that E/K is separable. Let
L/K be the Galois closure of E/K. Let σ1, . . . , σn : E → L be the distinct
K-embeddings, where n = [E : K]. Then for all x ∈ E

trE/K(x) = σ1(x) + · · ·+ σn(x).

Recall from Galois theory that σ1, . . . , σn are linearly independent (over K) as
homomorphisms σi : E× → L×, so there exists x ∈ E× such that σ1(x) + · · ·+
σn(x) 6= 0 and therefore trE/K(x) 6= 0. Then for all y ∈ E×,

T (xy−1, y) = trE/K(x) 6= 0,

i.e. kerT = 0 and T is nondegenerate.

Remark. If x ∈ B then trE/K(x) ∈ A: σi(x) ∈ L is integral over A and hence
σ1(x) + · · · + σn(x) is an element of L which is in K and integral over A. A
being integrally closed implies that trE/K(x) ∈ A.

Observe that if S ⊆ A is multiplicatively closed and 0 /∈ S then S−1A is a
Dedekind domain with field of fractions K. Moreover, the integral closure of
S−1A in E is S−1B. This is because S−1B is contained in the integral closure
of S−1A in E. Conversely, if γ ∈ E satisfies

γn +
a1
s1
γn−1 + · · ·+ an

sn
= 0

where ai ∈ A, si ∈ S then

(γs1 · · · sn)n +
a1
s1

(s1 · · · sn)n−1(γs1 · · · sn)n−1 + · · · = 0

and hence γs1 · · · sn ∈ B so γ ∈ S−1B.
For example (A − {0})−1A = K so (A − {0})−1B = E. In particular B

always span E as a K-vector space and FracB = E.

Proposition 3.4. B is fg as A-module and is a Dedekind domain.

Proof. Let e1, . . . , en be basis of E as K-vector space. We assume that in
fact e1, . . . , en ∈ B. Recall that there is a K-bilinear form T : E × E →
K, (x, y) 7→ trE/K(xy) and is nondegenerate as E/K is separable. Moreover if

23



3 Extensions of Dedekind domains

x ∈ B then trE/K(x) ∈ A. Let f1, . . . , fn be the dual basis of e1, . . . , en with
respect to T , i.e. for all i, j, T (ei, fj) = trE/K(eifj) = δij . If x ∈ B we can
write x =

∑n
j=1 ajfj where aj ∈ K, and

trE/K(xei) = T (x, ei) =

n∑
j=1

ajT (fj , ei) = ai ∈ A.

As x is arbitrary, this shows B ⊆
∑n
j=1Afj . As A is Noetherian, B is fg as

an A-module. Hence B is fg as an A-algebra, so by Hilbert basis theorem B is
Noetherian as a ring.

To show B is a Dedekind domain, it remains to show that every non-zero
prime ideal Q ⊆ B is maximal or equivalently, B/Q is a field. To show this let
P = A∩Q. Then P is prime. It is also non-zero: if γ ∈ Q−{0} then it satisfies
an equation

γm + a1γ
m−1 + · · ·+ am = 0

where ai ∈ A. We can assume am 6= 0 (otherwise divide by γ). Then

am = −(γm + a1γ
m−1 + · · ·+ am−1γ) ∈ A ∩Q− {0}.

E B Q

K A P

We have an injective ring homomorphism A/P → B/Q where A/P is a field,
B/Q is a domain and B/Q is finite dimensional as an A/P -vector space (as
B is fg as A-module). It follows that B/Q is a field: let α ∈ B/Q − {0} and
consider the map Mα : B/Q → B/Q, β 7→ βα. Mα is a linear map of A/P -
vector spaces and is injective because A 6= 0 and B/Q is a domain. Since B/Q
has finite dimension, Mα must be surjective. Hence exists α′ ∈ B/Q such that
Mα(α

′) = αα′ = 1.

We showed in the proof that if Q ⊆ B is a non-zero prime ideal then P =
A ∩ Q ⊆ A is a non-zero prime ideal. In this case, we say Q lies above P . We
have Q lies above P if and only if Q ⊇ PB if and only if vQ(PB) > 0 where
vQ : E× → Z is the valuation corresponding to Q. This is left as an exercise.

Definition (residue degree, ramification index). If Q lies above P , we define
the residue degree of Q over P to be

fQ/P = [B/Q : A/P ]

and the ramification index to be

eQ/P = vQ(PB).

Note that they are both integers greater than 0.
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Proposition 3.5. Let P ⊆ A be a non-zero prime ideal. Then∑
vQ(PB)>0

eQ/P fQ/P = [E : K].

Proof. Let S = A−P . Then S−1B is the integral closure of S−1A. In addition
localisation preserves residue degree and ramification index: we have

eS−1Q/S−1P = eQ/P , fS−1Q/S−1P = fQ/P .

The first is because by unique factorisation,

PB =
∏
Q

QeQ/P

S−1PB =
∏
Q

(S−1Q)eQ/P

so by prime ideal correspondence for localisation we must have equality. The
second is because the maps A/P → S−1A/S−1P,B/Q→ S−1B/S−1Q are both
isomophisms. Therefore we can replace A by S−1A and assume that A is a DVR,
in particular a PID. Then B is a fg A-module which is torsion free, so we can
use the classification of fg modules over a PID to conclude that as an A-module,
B ∼= An for some n ∈ N. Then

E = (A− {0})−1B ∼= (A− {0})−1An ∼= Kn

and hence n = [E : K].
Reducing modulo P , we have an isomorphism B/PB ∼= (A/P )n of A/P -

vector spaces. By Chinese remainder theorem we have an isomorphism

B/PB ∼=
∏

Q:vQ(PB)>0

B/QvQ(PB).

Hence
[E : K] = n =

∑
Q:vQ(PB)>0

dimA/P B/Q
vQ(PB).

We have a chain of inclusions

B ⊇ Q ⊇ Q2 ⊇ · · · ⊇ QvQ(PB)

so

dimA/P B/Q
vQ(B) =

eQ/P−1∑
i=0

dimA/P Q
i/Qi+1.

For any i ≥ 0, Qi/Qi+1 has dimension 1 as a B/Q-vector space (as Qi/Qi+1 →
QiBQ/Q

i+1BQ is an isomorphism, so can reduce to the case of BQ). Therefore

dimA/P Q
i/Qi+1 = [B/Q : A/P ] dimB/QQ

i/Qi+1 = fQ/P .

We thus get

[E : K] = n =
∑

Q:vQ(PB)>0

eQ/P−1∑
i=0

fQ/P =
∑
Q

eQ/P fQ/P .
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3 Extensions of Dedekind domains

E B {Q1, . . . , Qr}

K A P

Let ei = eQi/P , fi = fQi/P and so
∑r
i=1 eifi = [E : K].

Definition (unramified ideal, split ideal). If for all 1 ≤ i ≤ r, ei = 1, B/Qi
is a separable extension of A/P we say P is unramified in B (or E).

If for all 1 ≤ i ≤ r, ei = fi = 1, we say P splits completely in B (or E).

Notation. If P is a prime ideal in a Dedekind domain then we write kP for the
quotient field by P . For example kQ = B/Q, kP = A/P .

Example. If E/Q is a number field (i.e. finite extension), we write OE for the
integral closure of Z in K. If E = Q(

√
d) where d ∈ Z, d 6= 0, 1 is a squarefree

integer, then we can show

OE =

{
Z[
√
d] d = 2, 3 (mod 4)

Z[ 1+
√
d

2 ] d = 1 (mod 4)

Note
√
d satisfies X2 − d = 0 and 1+

√
d

2 satisfied X2 − X + 1−d
4 . This shows

the given rings are at least subrings of OE . To show there’s nothing else, let
α ∈ OE . We can write α = a+ b

√
d where a, b ∈ Q. Note Gal(E/Q) acts on E

and preserves OE : if α ∈ OE so

αn + a1α
n−1 + · · ·+ an = 0

for ai ∈ Z, and σ ∈ Gal(E/Q) then

σ(α)n + a1σ(α)
n−1 + · · ·+ an = 0

so σ(α) ∈ OE . Hence α = a− b
√
d ∈ OE so

α+ α = 2a ∈ OE ∩Q = Z
αα = a2 − b2d ∈ Z

we can make substitution a = u
2 where u ∈ Z to get u2−4b2d ∈ 4Z so 4b2d ∈ Z.

Let p be an odd prime. Then

vp(4b
2d) = vp(d) + 2vp(b) ≥ 0.

d is squarefree so vp(d) ∈ {0, 1}. Hence vp(b) ≥ 0. Similarly

v2(4b
2d) = v2(d) + 2(v2(b) + 1) ≥ 0

so v2(b) ≥ −d. So we can write b = v
2 for some v ∈ Z. Then

4αα = u2 − dv2 ∈ 4Z,

i.e. u2 = dv2 (mod 4). If d = 2, 3 (mod 4) this forces both u, v ∈ 2Z so have
a, b ∈ Z, and therefore α ∈ Z[

√
d]. If d = 1 (mod 4) we get u2 = v2 (mod 4) so

u = v (mod 2). This shows OE = Z[ 1+
√
d

2 ] in this case.
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3 Extensions of Dedekind domains

Next we show how to factorise pOE when p is a prime number. First suppose
p is odd. Then it’s enough to factorise pOE [ 12 ] = pZ[ 12 ,

√
d]. We compute

OE [ 12 ]
pOE [ 12 ]

=
Z[ 12 ,

√
d]

pZ[ 12 ,
√
d]

=
Z[ 12 , X]

(X2 − d, p)
=

Fp[X]

(X2 − d)
=


Fp × Fp

(
d
p

)
= 1

Fp2
(
d
p

)
= −1

Fp[X]/(X2) p | d

Now suppose pOE =
∏
QQ

eQ/P , then by Chinese remainder theorem

OE/pOE ∼=
∏
Q

(OE/QeQ/P ).

There are three possible isomorphism classes of this quotient, corresponding to
that for OE [ 12 ]/pOE [

1
2 ]:

• p splits completely if
(
d
p

)
= 1.

• p is unramified (and not split) if
(
d
p

)
= −1.

• p is ramified if p | d.

It remains to treat the case p = 2. If d = 2, 3 (mod 4) then

OE/2OE ∼= F2[X]/(X2 − d) = F2[X]/((X − d)2)

so 2 is ramified in OE in this case. If d = 1 (mod 4) then

OE/2OE ∼= F2[X]/(X2 −X +
1− d
4

)

so

• 2 splits completely if 1−d
4 is even, i.e. d = 1 (mod 8).

• 2 is unramified (and not split) if 1−d
4 is odd, i.e. d = 5 (mod 8).

This is a rather hands-on method and can be inefficient for large number
fields. Soon we’ll see another method to determine the factorisation of pOE for
a general number field E based on factorisations in Qp[X].

Now suppose A,K,E,B are as before and suppose E/K is Galois with G =
Gal(E/K). Then the action of G on E leaves B invariant.

Proposition 3.6. Le Q ⊆ B be a non-zero prime ideal, P = Q ∩A. Then

1. G acts transitively on the set of prime ideals of B which lie above P .

2. for all σ ∈ G, fσ(Q)/P = fQ/P and eσ(Q)/P = eQ/P .

3. If gQ/P is the number of prime ideals lying above P then eQ/P fQ/P gQ/P =
[E : K] = |G|.
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3 Extensions of Dedekind domains

Proof. If σ ∈ G then σ(Q) ⊆ B is a prime ideal and

σ(Q) ∩A = σ(Q) ∩ σ(A) = σ(Q ∩A) = Q ∩A = P.

To show the action is transitive, we can assume A is DVR by replacing A with
AP . Then B has only finitely many prime ideals so by example sheet 1 is a
PID. Let π ∈ B be a generator of Q. Then

NE/K(π) =
∏
σ∈G

σ(π) ∈ Q ∩A = P.

If Q′ is another prime ideal of B which lies above P then NE/K(π) ∈ Q′ and
hence (as Q′ is prime) there exists σ ∈ G such that σ(π) ∈ Q′. Hence σ(Q) ⊆ Q′

so equality.
For the second part, σ|B : B → B is an automorphism. If σ(Q) = Q′ then

it descends to an isomorphism B/Q ∼= B/Q′ which acts as identity on A/P .
In other words, σ determines an isomorphism kQ → kQ′ of extensions of kP .
In particular fQ/P = fQ′/P . By definition we can factorise PB =

∏
QQ

eQ/P .
Then for all σ ∈ G,

σ(PB) =
∏
Q

σ(Q)eQ/P

so by unique factorisation for all Q have eQ/P = eσ(Q)/P .
Finally

[E : K] =
∑
Q′

eQ′/P fQ′/P = eQ/P fQ/P gQ/P

as eQ′/P = eQ/P , fQ′/P = fQ/P for all Q′.

We just saw that if σ(Q) = Q then σ|B (mod Q) is an automorphism of kQ.

Definition (decomposition group). If Q ⊆ B lies above P ⊆ A then the
decomposition group DQ/P = StabG(Q).

Proposition 3.7. Suppose Q ⊆ B is a non-zero prime ideal and P = Q∩A
and suppose kQ/kP is separable. Then

1. kQ/kP is a Galois extension.

2. the map DQ/P → Gal(kQ/kP ), σ 7→ σ|B (mod Q) is a surjective group
homomorphism.

Proof.

1. We must show kQ is normal, i.e. for all α ∈ kQ, all Galois conjugates of α
in a normal closure of kQ actually lie in kQ. Fix α ∈ kQ = B/Q. Choose
any α ∈ B such that α (mod Q) = α. Define

f(X) =
∏
σ∈G

(X − σ(α)) ∈ B[X].

The coefficients of f(X) are invariant under G, so lie in EG = K, so in
B ∩K = A. Define f(X) = f(X) (mod P ) ∈ kP [X]. Observe that f(X)
has α as a root and f(X) splits into linear factors in kQ[X]. kQ is normal,
hence Galois.

28



3 Extensions of Dedekind domains

2. Since kQ/kP is separable, there exists α ∈ kQ such that kQ = kP (α), i.e.
α is a primitive element. Let Q = Q1, Q2, . . . , Qr be the prime ideals
lying above P . By Chinese remainder theorem we can find α ∈ B such
that α (mod Q) = α, and for each 2 < i ≤ r, α (mod Qi) = 0. Let
f(X) =

∏
σ∈G(X − σ(α)) ∈ A[X]. Let f(X) = f(X) (mod Q) ∈ kP [X].

Then

f(X) =
∏
σ∈G

(X − σ(α) (mod Q))

=
∏

σ∈DQ/P

(X − σ(α) (mod Q)) ·
∏

σ/∈DQ/P

(X − σ(α) (mod Q))

Note if σ /∈ DQ/P then σ−1(Q) = Qi for some i > 1 and hence

σ(α) (mod Q) = σ(α) +Q = σ(α+ σ−1(Q)) = σ(α+Qi).

By construction α ∈ Qi so σ(α) (mod Q) = 0. Hence f(X) = g(X)Xd

where
g(X) =

∏
σ∈DQ/P

(X − σ(α) (mod Q)) ∈ kP [X]

and d = |G|− |DQ/P |. Suppose τ ∈ Gal(kQ/kP ). Then τ(α) is also a root
of g(X). Hence exists σ ∈ DQ/P such that σ(α) (mod Q) = τ(α). Since
kQ = kP (α), this forces σ|B (mod Q) = τ .

As an application, suppose E/K is a Galois extension of number fields.
Note if P ⊆ OK is a non-zero prime ideal then kP is a finite field so perfect
(i.e. any finite extension is separable). If Q is a prime ideal of OE lying above
P then Gal(kQ/kP ) has a canonical generator, i.e. the Frobenius automorphism
α 7→ α|kP |. Observe that

|DQ/P | = |G|/gQ/P = eQ/P fQ/P

and |Gal(kQ/kP )| = fQ/P so

| ker(DQ/P → Gal(kQ/kP ))| = eQ/P

so if P is unramified in E then DQ/P → Gal(kQ/kP ) is an isomorphism. Thus
we can specifiy an element FrobQ/P ∈ DQ/P ⊆ G uniquely by defining FrobQ/P
to be the preimage of Frobenius automorphism in Gal(kQ/kP ).

Example. Let f(X) = Xn + a1X
n−1 + · · ·+ an ∈ Z[X] irreducible. Let E be

the splitting field of f(X) over Q. Let α1, . . . , αn ∈ E be the roots of f(X).
Then there is an injection ϕ : Gal(E/Q) ↪→ Sn = Sym(α1, . . . , αn).

Suppose p is a prime element such that f(X) = f(X) (mod p) ∈ Fp[X]
factors as f(X) =

∏r
i=1 f i(X) where f1(X), . . . , fr(X) are distinct monic irre-

ducible polynomials in Fp[X] (equivalently p - disc f).

29



3 Extensions of Dedekind domains

Proposition 3.8. The image of Gal(E/Q) in Sn contains a permutation
of cycle types (d1)(d2) · · · (dr) where di = deg f i(X).

Proof. Choose Q ⊆ OE lying above (p) ⊆ Z. Let αi = αi (mod Q). Note αi are
all the roots of f(X) so are distinct. The map DQ/P → Gal(kQ/kP ) is injective:
if σ ∈ DQ/P lies in the kernel then σ (mod Q) fixes each αi. Since these are
distinct, this forces σ to fix αi so σ = 1. So DQ/P

∼= Gal(kQ/kP ) and eQ/P = 1
and we can define FrobQ/P ∈ DQ/P . Claim that ϕ(FrobQ/P ) has cycle type
(d1) · · · (dr).

Proof. We must show FrobQ/P has orbits on α1, . . . , αn of size d1, . . . , dr, or
equivalently Gal(kQ/kP ) has orbits on α1, . . . , αn of size d1, . . . , dr. Note these
orbits are in bijection with irreducible factors of f(X)

O = {β1, . . . , βs} ←→
s∏
i=1

(X − βi).

This lies in kp[X] because this is an orbit, and is irreducible because it is a single
orbit.

Definition (inertia group). We define the inertia group of Q to be

IQ/P = ker(DQ/P → Gal(kQ/kP )).

We’ve seen that |IQ/P | = eQ/P . When ramification occurs, IQ/P is nontrivial
and interesting things can happen. To understand DQ/P in such cases we must
use completion.

Proposition 3.9. Let A be a Dedekind domain, K = FracA, E/K a finite
separable extension, B the integral closure of A in E. Let P ⊆ A be a
non-zero prime ideal and let Q ⊆ B be a prime ideal lying above P . Then

1. there’s a natural homomorphism ÂP → B̂Q extending A→ B.

2. Let KP = Frac ÂP , EQ = Frac B̂Q. Then EQ = KP · E is a finite
separable extension of KP and B̂Q is the integral closure of ÂP in EQ.

3. eQ/P = eQB̂Q/PÂP
and fQ/P = fQB̂Q/PÂP

and [EQ : KP ] = eQ/P fQ/P .

4. Suppose further E/K is Galois. Then EQ/KP is also Galois and there
is a natural isomorphism DQ/P → Gal(EQ/KP ).

Proof. Factor
PB = Q

eQ1/P

1 · · ·QeQr/P
r

where Q1 = Q. Then

ÂP = lim←−
i

AP /P
iAP = lim←−

i

A/P i
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3 Extensions of Dedekind domains

and similarly B̂Q = lim←−iB/Q
i. There is a natural map A/P i → B/Qi for any

i ≥ 1 so passage to inverse limits gives a homomorphism ÂP → B̂Q.
Note we are free to replace A by AP and assume wlog that A is a DVR. In

this case, we’ve seen that B is a finite free A-module. Then

B/P iB = B/

r∏
j=1

Q
ieQj/P

j
∼=

r∏
j=1

B/Q
ieQj/P

j

so

lim←−
i

B/P iB ∼=
r∏
j=1

B̂Qj

as ÂP -modules, which are finite free as ÂP -module since each B/P iB is a finite
free A/P i-module. Thus each summand B̂Qi is finite free as ÂP -module. In
particular B̂Q is integral over ÂP so B̂Q is the integral closure of ÂP in EQ.

Note

PB̂Q =
r∏
i=1

Q
eQi/P

i B̂Q = QeQ/P B̂Q

as for each i > 1, QiB̂Q = B̂Q so B̂Q/PB̂Q is isomorphic to B/QeQ/P as
ÂP /PÂP ∼= A/P -module. Thus the map B/PB → B̂Q/PB̂Q is surjective and
by Nakayama, B̂Q is generated by B as ÂP -module. Passing to fraction field, we
see EQ is generated by E as KP -vector space. If E/K is separable then every
element of E is separable over K so EQ/KP is separable. If E/K is Galois
then E is the splitting field of a polynomial with coefficients in K, which can
be viewed as a polynomial with coefficients in KP , so EQ/KP is Galois.

Note

fQB̂Q/PÂP
= [B̂Q/QB̂Q : ÂP /PÂP ] = [B/Q : A/P ] = fQ/P .

In addition
(PÂP )B̂Q = PB̂Q = (QB̂Q)

eQ/P

implies eQB̂Q/PÂP
= eQ/P . We know

[EQ : KP ] = eQB̂Q/PÂP
fQB̂Q/PÂP

= eQ/P fQ/P .

Now let’s assume E/K is Galois and show 4 holds. We’ve already seen that
as EQ = KPE and EQ/KP is a Galois extension. If σ ∈ DQ/P then σ(Q) = Q so
σ(Qi) = Qi for all i ≥ 1. Hence σ determines an automorphism σ|B (mod Qi) :
B/Qi → B/Qi. By passage to inverse limit, we get an automorphism lim←−i σ|B
(mod Qi) : B̂Q → B̂Q. By passsage to fraction field, this determines an element
of Gal(EQ/KP ). This determines a homomorphism DQ/P → Gal(EQ/KP ). By
what we’ve just show,

|Gal(EQ/KP )| = [EQ : KP ] = eQ/P fQ/P = |DQ/P |

so it’s enough to show injectivity. If σ ∈ DQ/P gets sent to 1 then it acts as
the identity on EQ = KP · E, so in particular acts as the identity on E. As
DQ/P ⊆ Gal(E/K), this means that σ = 1 in DQ/P .

31



3 Extensions of Dedekind domains

At this point one may wonder why we must pass to the completion, instead
of using the localsation. If we had done so, then firstly the field of fraction would
be the same. Secondly if Q is not the only prime ideal of B lying above P then
BQ would not be a finite AP -module, so none of the developed techniques are
available. For example take E = Q(i),K = Q, A = Z, B = Z[i]. Consider
(5) = (2 + i)(2 − i). Then 1

2+i is not integral over Z(5), as for example its
norm is 1

5 . However as an exercise, by writing down the 5-adic expansion of the
minimal polynomial, check 1

2+i is a integral over Z5.

Corollary 3.10. Suppose E = K(α) is finite separable over K and let
f(X) ∈ K[X] be the minimal polynomial of α. For any non-zero prime
ideals P ⊆ A, there is a bijection between{

prime ideals Q of B
lying above P

}
←→

{
irreducible factors
of f(X) in KP [X]

}

Q 7→
unique irreducible factor
g(X) of f(X) in KP [X]
such that g(α) = 0 in EQ

Proof. Let L/K be the Galois closure of E/K. Let C be the integral closure
of A in L. Fix R ⊆ C a prime ideal lying above P . Let G = Gal(L/K),H =
Gal(L/E). We know G acts transitively on the set of prime ideals of C lying
above P , so by orbit-stabiliser there is a bijection

G/DR/P ←→
{

primes in C
lying above P

}
σ 7→ σ(R)

More importantly, the bijection is G-equivariant. We know that H acts transi-
tively on the set of prime ideals of C lying above any give non-zero prime ideals
of B, so there is a bijection{

prime ideals of B
lying above P

}
=

 H-orbits of
prime ideal of C
lying above P

←→ H\G/DR/P

σ(R) ∩B ↔ σ

This means every Q ⊆ B lying above P has the form Q = σ(R) ∩ B for some
σ ∈ G. If σ, σ′ ∈ G then σ(R) ∩ B = σ′(R) ∩ B if and only if exists h ∈ H, d ∈
DR/P such that σ′ = hσd.

On the other hand there is a bijection

{roots of f(X) in L} ←→ G/H

σ(α)← [ σ

which is againG-equivariant. As Gal(LR/KP ) ↪→ Gal(L/K), there is a Gal(LR/KP )-
equivariant bijection

{roots of f(X) in LR} ←→ G/H

σ(α)← [ σ
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Now irreducible factors of f(X) in KP [X] corresponds to Gal(LR/KP ) = DR/P -
orbits of roots in LR so there’s a bijection between irreducible factors of f(X)
in KP [X] and DR/P \G/H, given by sending σ to the unique g(X) such that
g(σ(α)) = 0 in LR = KP · L. Since there is an obvious bijection

H\G/DR/P ←→ DR/P \G/H
σ 7→ σ−1

there is also a bijection{
prime ideals Q of B

lying above P

}
←→

{
irreducible factors
of f(X) in KP [X]

}

Q = σ(R) ∩B 7→
unique irreducible factor
g(X) of f(X) such that
g(σ−1(α)) = 0 in LR

To finish the proof, it’s enough to show that this map is the same as that
in the statement of the corollary. What we need is to show that for all σ ∈
G, g(σ−1(α)) = 0 in LR if and only if g(α) = 0 in EQ. At first sight this
seems preposterous as LR and EQ live in completely different world. The key
observation is that σ : L→ L extends to an isomorphism LR → Lσ(R) which acts
as the identity on KP : σ(R)i = σ(Ri) so σ determines a map σ|C (mod Ri) :
C/Ri → C/σ(R)i for every i ≥ 1. Passage to inverse limits and fraction fields
gives the induced map LR → Lσ(R). Hence if g(X) ∈ KP [X] is an irreducible
factor of f(X) then g(σ−1(α)) = 0 in LR if and only if σ(g(σ−1(α))) = 0 in
Lσ(R), if and only if g(α) = 0 in Lσ(R). Note the coefficients of g are in KP and
α ∈ E so it is equivalent to g(α) = 0 in EQ.

LR L Lσ(R)

ER∩B E EQ

KP K KP

Example. Let K = Q, E = Q(i), A = Z, B = OE . We know 2OE = (1 + i)2

so X2 + 1 is irreducible in Q2[X]. On the other hand, 5OE = (2 + i)(2 − i)
splits so X2+1 must factor in Q5[X]. By Hensel’s lemma, there exists a unique
θ ∈ Z5 such that θ2 = −1 and θ = 2 (mod 5), and X2 + 1 = (X − θ)(X + θ)
in Q5[X]. The embedding Q → E extends to isomorphisms Q5 → E(2+i) and
Q5 → E(2−i). Note that X − θ = X − 2 ∈ Q5[X] and i = 2 ∈ E(2−i) so X − θ
corresponds to the ideal (2− i).

Example. Let K = Q, E = Q( 3
√
2), P = 5Z. How does 5OE factorise? We

need to factor X3 − 2 in Q5[X]. As 33 = 2 (mod 5), by Hensel’s lemma there
exists a unique θ ∈ Z5 such that θ3 = 2 and θ = 3 (mod 5Z5). We can write
X3 − 2 = (X − θ)g(X) in Q5[X]. In fact g(X) must be irreducible, as any root
of g(X) must differ from θ by a primitive 3rd root of unity. Note 3rd roots
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3 Extensions of Dedekind domains

of unity in Q5 are roots of X3 − 1, which by Hensel’s lemma are in bijection
with roots of X3 − 1 in F5, so only one such. Thus 5OE has two distinct prime
factors.
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4 Extensions of complete DVRs

4 Extensions of complete DVRs

Definition (complete discrete valuation field). We call a pair (K, vK) a
complete discrete valuation field (CDVF) if vK : K× → Z is a valuation and
the corresponding DVR

AK = {x ∈ K× : vK(x) ≥ 0} ∪ {0}

is complete.

We usually have vK implicit and call K a CDVF, for example K = Qp. We’ll
usually write πK ∈ AK for a choice of uniformiser and kK = AK/(πK) for the
residue field.

Next is an extremely important lemma on which almost all results in this
chapter depend.

Lemma 4.1. Let K be a CDVF and let E/K be a finite separable extension.
Then E has a natural structure of a CDVF.

Proof. Let B be the integral closure of AK in E. By result in last chapter there
is a bijection

{non-zero prime ideals of B} ←→ {factors of f(X) in KP [X]}

where f(X) ∈ K[X] is the minimal polynomial of a generator for E and P =
(πK). Since K is a CDVF, KP = K. Since f(X) ∈ K[X] is irreducible, this
shows B has a unique non-zero prime ideal Q, hence is a DVR. Let vE : E× → Z
be the corresponding valuation. We’ve seen that EQ = KP · E = K · E = E,
showing (E, vE) is a CDVF.

Definition (extension of CDVF). We call E/K an extension of CDVF if
K is a CDVF, E/K is finite separable and E has the structure of CDVF
given by the lemma.

In this situation AE , AK are DVRs. We write

fE/K = f(πE)/(πK) = [kE : kK ]

eE/K = e(πE)/(πK) = vE(πK)

then [E : K] = eE/KfE/K .

Remark.

1. If E/K is Galois then for all σ ∈ Gal(E/K), x ∈ E, vE(σ(x)) = vE(x). In
other words, Gal(E/K) acts on E by isometry. This is because σ(πE) is
a uniformiser of AE as σ|AE

is a ring automorphism.

2. In general, without assuming E/K is Galois, we have that for all x ∈ E×,

vE(x) =
1

fE/K
vK(NE/K(x)).
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Proof. If E/K is Galois then

RHS =
1

fE/K

1

eE/K
vE(NE/K(x))

as vE |K× = eE/KvK by checking the uniformisers. But

NE/K(x) =
∏

α∈Gal(E/K)

σ(x)

so
RHS =

1

[E : K]

∑
σ∈Gal(E/K)

vE(σ(x)) = vE(x)

as vE is Galois invariant.
Now suppose E/K is only separable and let L/K be the Galois closure.
Then we have for all x ∈ L×,

vL(x) =
1

fL/E
vE(NL/E(x)) =

1

fL/K
vK(NL/K(x))

For x ∈ E×, NL/E(x) = x[L:E] and NL/K(x) = NE/K(x)[L:E] so

[L : E]

fL/E
vE(x) =

1

fL/K
vK(NL/K(x)) =

[L : E]

fL/K
vK(NE/K(x))

and hence

vE(x) =
fL/E

fL/K
vK(NE/K(x)) =

1

fE/K
vK(NE/K(x))

by tower law.

Definition (Newton polygon). Let A be a DVR, K = FracA and let
f(X) = Xn + a1X

n−1 + · · · + an be a polynomial in K[X] with an 6= 0.
Then the Newton polygon NK(f) is the graph of the largest piecewise linear
continuous function N : [0, n]→ R such that

1. N(0) = 0, N(n) = v(an),

2. for all 0 < j < n, N(j) ≤ v(aj) if aj 6= 0,

3. N is convex.

Equivalently, N is the lower convex hull of the points (j, v(aj)) for 0 ≤ j ≤ n.

Example. Let f(X) = X3 + 25X2 + 5X + 125 ∈ Q5[X]. Then we have

1 2 3

1

2

3
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4 Extensions of complete DVRs

We define the slopes of NK(f) to be the slopes of the line segments, and the
multiplicity of a slope is the length of the projection of the corresponding line
segment to the x-axis.

In the above example we have slopes 1
2 with multiplicity 2 and 2 with mul-

tiplicity 1.

Lemma 4.2. Let A be a DVR, K = FracA, α1, . . . , αn ∈ K× and

f(X) =

n∏
i=1

(X − αi) = Xn + a1X
n−1 + · · ·+ an ∈ K[X].

Let λi = v(αi) for 1 ≤ i ≤ n. Then λ1, . . . , λn are the slopes of NK(f) with
multiplicity. In particular the slopes of NK(f) are all integers.

Proof. wlog λ1 ≤ · · · ≤ λn. Let L(f) be the polygon with slopes λ1, . . . , λn.
Then if L : [0, n]→ R is the corresponding function then L(0) = 0 by definition,
L(n) = λ1 + · · · + λn = v(α1 · · ·αn) = v(an) = N(n), and L is convex. If
0 < j < n then L(j) = λ1 + · · ·+ λj . Also

v(aj) = v(α1 · · ·αj +
∑

i1<···<ij

αi1 · · ·αij ) ≥ v(α1 · · ·αj) = λ1 + · · ·+ λj

so in fact L(f) satisfies 1 – 3 in the definition of NK(f) so L(f) lies below NK(f)
by maximality of NK(f). To show equality, it is enough to show each vertex of
L(f) lies on NK(f). If (j, λ1 + · · ·+ λj) is a vertex of L(f) then λj+1 > λj , i.e.
v(αj+1) > v(αj) since in the above expression for v(aj), if (i1, . . . , ij) 6= (1, . . . j)
then

v(αi1 · · ·αij ) ≥ λ1 + · · ·+ λj−1 + λj+1 > λ1 + · · ·+ λj

so by ultrametric inequality

v(aj) = v(α1 · · ·αj) = λ1 + · · ·+ λj .

Hence v(aj) ≥ N(j) ≥ L(j) = v(aj) so in fact (j, v(aj)) is a vertex of both L(f)
and NK(f).

Proposition 4.3. Let K be a CDVF and let f(X) ∈ K[X], an 6= 0 be
monic separable. Let λ1 < · · · < λr be the slopes of NK(f) where λi
occurs with multiplicity mi ≥ 1. Then there exists a unique factorisation
f(X) =

∏r
i=1 gi(X) in K[X] where for all 1 ≤ i ≤ r, gi(X) is a monic

polynomial with degree mi and NK(g) has a single slope λi.

Proof. Let L/K be the splitting field of f(X). Let α1, . . . , αn ∈ L be the roots
of f(X) in L. Note NL(f) is the image of NK(f) under the linear transforma-
tion

(
1 0
0 eL/K

)
: R2 → R2, as vL(aj) = eL/KvK(aj). The slopes of NL(f) are

eL/Kλ1 < · · · < eL/Kλn. We define

gi(X) =
∏

vL(αj)=eL/Kλi

(X − αj) ∈ L[X].

Since Gal(L/K) leaves vL invariant, it acts on {αj : vi(αj) = eL/Kλi} so by
Galois theory gi(X) ∈ K[X]. By construction f(X) =

∏r
i=1 gi(X). Uniqueness

follows from essentially the same argument.
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4 Extensions of complete DVRs

Example. Let f(X) = X3 +X2 + 2X + 8. Then NQ2
(f) is

1 2 3

1

2

3

The slopes are 0, 1, 2 each with multiplicity 1. Thus f(X) splits into linear
factors in Q2[X].

Definition. If E/K is an extension of CDVF, we say

1. E/K is unramified if kE/kK is separable and eE/K = 1.

2. E/K is totally ramified if fE/K = 1.

We are going to show how to construct totally ramified extensions, followed
by unramified extensions. Then we show everything can be done in these two
stages.

Definition (Eisenstein polynomial). Let A be a DVR, K = FracA. We say
f(X) = Xn+ a1X

n−1+ · · ·+ a0 ∈ A[X] is Eisenstein if vK(ai) ≥ 1 for each
i = 1, . . . , n− 1 if ai 6= 0 and vK(an) = 1.

Eisenstein polynomial has a very simple characterisation in terms of Newton
polygon: for any f(X) ∈ K[X], f(X) is Eisenstein if and only if NK(f) is a
single line segment of slope 1

n .

Proposition 4.4.

1. Let E/K be a totally ramified extension of CDVFs. Let f(X) ∈ K[X]
be the minimal polynomial of πE. Then f(X) is Eisenstein and E =
K(πE).

2. Let K be a CDVF and let f(X) ∈ K[X] be a separable polynomial which
is Eisenstein. Then f(X) is irreducible and if E = K[X]/(f(X)) then
E/K is totally ramified and X (mod f(X)) is a uniformiser in AE.

Proof.

1. Suppose E/K is totally ramified and let f(X) ∈ K[X] be the minimal
polynomial of πE . Then f(X) = Xn + a1X

n−1 + · · · + an where n =
[K(πE) : K] ≤ [E : K] = eE/K . We know NE(f) is the dilation by a
factor of eE/K of NK(f). Note that NE(f) has a single slope, namely 1
with multiplicity n: the roots of f(X) in a splitting field are all Galois
conjugates of πE , so in particular have the same valuation as πE . In E,
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4 Extensions of complete DVRs

vE(πE) = 1, so NE(f) has a single slope of 1. Hence NK(f) has a single
slope 1

eE/K
, and the endpoint is therefore n

eE/K
. But this is the valuation

of the constant term and we know vK(an) ≥ 1, so must have n ≥ eE/K .
Thus we have equality and E = K(πE). f(X) is Eisenstein.

2. Suppose K is a CDVF and let f(X) ∈ K[X] be a separable Eisenstein
polynomial. Let E = K(α) where α is a root of f(X). Note that a priori
this does not give a fixed isomorphism class of extensions E/K, as f(X)
is not assumed to be irreducible. Nevertheless E/K is finite and separable
so E/K is an extension of CDVF. We know f(X) has a root in E so at
least one slope of NE(f) must be an integer. However as f is Eisenstein,
NK(f) has a single slope 1

n , hence NE(f) has a single slope eE/K

n . As it
is a non-zero integer, eE/K ≥ n. Conversely,

eE/K ≤ [E : K] = [K(α) : K] ≤ n

so equality. f(X) is irreducible and E/K is totally ramified. Moreover
vE(α) =

eE/K

n = 1 so α ∈ AE is a uniformiser.

Example. We’ve seen (1 + i)2 = 2OE where E = Q(i). Thus E(1+i)/Q2 is
a totally ramified quadratic extension, with uniformiser 1 + i. So the minimal
polynomial of 1 + i must be Eisenstein. It is X2 − 2X + 2.

We now show how to construct unramified extensions.

Proposition 4.5. Let K be a CDVF. Let `/kK be a finite separable exten-
sion. Then there exists an extension L/K of CDVFs and an isomorphism
ι : ` → kL with the following property: for any extension E/K of CDVFs
and field homomorphism j : ` → kE, there exists a unique K-embedding
J : L→ E such that the diagram

kL `

kE

ι−1

J
j

commutes. Moreover L/K is unramified.

In other words, there is an unramified extension L/K such that

HomK(L,E) ∼= HomkK (`, kE).

Proof. Since `/kK is separable, we can choose a primitive element α ∈ `. Let
f(X) ∈ kK [X] be the minimal polynomial and let f(X) ∈ AK [X] be any
monic lift of f(X). f(X) is irreducible since f(X) is, and is separable since
disc f (mod (πK)) = disc f 6= 0 ∈ kK . We define L = K[X]/(f(X)), which
is separable, and α = X (mod f(X)) ∈ L. Claim AL = AK [α]: we have
AK [α] ⊆ AL since α is integral over AK . There is a ring homomorphism
AK [α]/(πK) → AL/(πK), so inducing a ring homomorphism ι : ` → AL/(πK)
as ` = kK [X]/(f(X)) = AK [X]/(f(X), πK). To show AL = AK [α], take z ∈ AL
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4 Extensions of complete DVRs

and choose n ≥ 0 as small as possible such that πnKz ∈ AK [α]. Since z is integral
over AK , we can write

zm + a1z
m−1 + · · ·+ am = 0

for ai ∈ AK . Then

(πnKz)
m + a1π

n
K(πnKz)

m−1 + · · ·+ amπ
nm
K = 0

in AL. Reduction modulo πK gives (πnKz)
m (mod (πK)) = 0 in AL/(πK).

But πnKz ∈ AK [α] so πnKz (mod (πK)) is in the image of ι. ι(`) is a field so
contains no non-zero nilpotent, so we must have πnKz (mod (πK)) = 0. Since ι
is injective this means πnKz (mod (πK)) = 0 ∈ AK [α]/(πK), i.e. πnKz is divisible
by πK in AK [α], so either πn−1

K z ∈ AK [α] or n = 0. The first case contradicts
the minimality of n so n = 0 and z ∈ AK [α]. Since z is arbitrary, this show
AL = AK [α], and also the map ι : ` → AL/(πK) = kL is an isomorphism. In
particular L/K is unramified.

We need to show that if E/K is an extension of CDVFs then embeddings
L→ E correspond to embeddings `→ kE . We know

{K-embeddings L→ E} ←→ {roots of f(X) in E} ←→ {roots of f(X) in AE}

where the last correspondence is because f(X) ∈ AK [X] is monic. On the other
hand kK-embeddings ` → kE correspond to roots of f(X) in kE . There is a
map

{roots of f(X) in AE} → {roots of f(X) in kE}
Hensel’s lemma shows this map is bijective: α is separable so f(X) has simple
roots.

Example. Let p be a prime. Then for any n ≥ 1 there is a unique unramified
extension of Qp of degreee n up to isomorphism. This follows from uniqueness
of finite extension of degree n of finite field and the universal property: there
is a unique extension Fpn/Fp up to isomorphism. By proposition we can find
Ln/Qp unramified extension of degree n and an isomorphism ι : Fpn → kLn

. To
show uniqueness, let En/Qp be another unramified extension of degree n. Then
kEn

/Fp has degree n, so we can find an isomorphism j : Fpn → kEn
. Then there

is a unique Qp-embedding J : Ln → En inducing j ◦ ι−1 at the level of residue
fields. Since Ln, En both have degree n over Qp, J is an isomorphism.

Let E/K be an extension of CDVFs with kE/kK separable. Then there exists
a unique subextension E0/K which is unramified, and such that kE0 = kE . Then
fE0/K = fE/K and eE/E0

= eE/K . Then we have

E

E0

K

totally ramified

unramified

We construct E0 as follow. Take a pair (L, ι) where L/K is unramified and
ι : kE → kL. Then there exists a unique K-embedding J : L → E inducing
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4 Extensions of complete DVRs

ι−1 at the level of residue fields. We define E0 to be the image J(L) of this
embedding. To show uniqueness, note that any embedding of L in E must have
image in E0. Moreover E0 contains any unramified subextension. E0 is called
the maximal unramified subextension of E/K.

Now suppose further that E/K is Galois and G = Gal(E/K). In this case
we know kE/kK is also Galois and there is a surjective homomorphism G →
Gal(kE/kK). By Galois theory there is an intermediate extension EIE/K/K.
Claim that EIE/K = E0.

Proof. By Galois theory it’s enough to show that for all σ ∈ G = Gal(E/K),
σ ∈ IE/K if and only if σ|E0

= id |E0
. Note for all σ ∈ G, σ(E0)/K is still

an unramified subextension of E/K. As E0 is the maximal such, we have
σ(E0) = E0. In particular E0/K is Galois. Moreover

HomK(E0, E) = Gal(E0/K)→ Gal(kE/kK)

is bijective so for all σ ∈ G, σ|E0 = id |E0 if and only if the image of σ in
Gal(E0/K) is identity, if and only if the action of σ on kE is the identity
action.

Thus we have an alternative characterisation of the maximal unramified
subextension. As a consequence We have a tower of Galois extensions E/E0/K
with Gal(E/E0) = IE/K ,Gal(E0/K) = Gal(kE/kK).

In fact we can do much more. We assume for the rest of today that E/K
is a Galois extension of CDVFs with kE/kK separable. For concreteness one
might have in mind finite extensions E/Qp and E/Q((t)).

Definition (lower ramification group). Let i ≥ 0. We define the ith lower
ramification group of G = Gal(E/K) to be Gi = ker(G→ Aut(AE/(π

i+1
E ))).

We set G−1 = G.

Remark.

1. Informally, Gi is the set of elements which fix the first i+ 1 digits of the
πE-adic expansion of elements of AE .

2. G0 = ker(G→ Gal(kE/kK)) = IE/K .

3. G−1 ⊇ G0 ⊇ G1 ⊇ · · · and
⋂
i≥0Gi = {1}.

4. Each Gi is normal in G. If E/L/K is an intermediate extension and
H = Gal(E/L) then Hi = H ∩Gi.

Lemma 4.6. Suppose σ ∈ G0. Then for any i ≥ 0, σ ∈ Gi if and only if
vE(σ(πE)− πE) ≥ i+ 1.

Proof. Let E0/K be the maximal unramified subextension. Then σ ∈ Gal(E/E0).
Note AE = AE0 [πE ] as any element of AE admits a πE-adic expansion with dig-
its in AE0

: since maximal unramified implies they have the same residue field
we may choose representatives in AE0

. Thus the map AE0
[πE ] → AE/(πE) =

AE/(π
eE/K

K ) is surjective. We know AE is a finitely generated AE0
-module so

Nakayama implies that AE0
[πE ] = AE .
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4 Extensions of complete DVRs

If σ ∈ G0 then the image of σ in Aut(AE/(π
i+1
E )) is a ring automorphism

and AE/(πi+1
E ) is generated by AE0

[πE ]. So the image of σ is trivial if and only
if σ(πE) = πE (mod πi+1

E ), if and only if vE(σ(πE)− πE) ≥ i+ 1.

Example. Let K = Q2, E = Q2(
√
2). E is the splitting field of X2 + 2 which

is Eisenstein so E/K is totally ramified. G = G0 and we can take πE =
√
2.

Suppose G = {1, s}, then

vE(s(πE)− πE) = vE(−
√
2−
√
2) = vE(−2

√
2) = vE(−(

√
2)3) = 3

so by the lemma

G = G0 = G1 = G2, {1} = G3 = G4 = · · ·

Example. Let K = Q2, E = Q2(i) so E is the splitting field of X2 + 1. We
have (1 + i)2 = 2i so E/K must be a quadratic ramified extension (otherwise
vE(1 + i) = 1

2 ) with πE = 1 + i. Suppose G = {1, t}, then

vE(t(1 + i)− (1 + i)) = vE(1− i− (1 + i)) = vE(−2i) = 2.

Hence
G = G0 = G1, {1} = G2 = G3 = · · ·

The extension Q2(
√
2) is “more ramified” than Q2(i) as it has more non-

trivial ramification groups.

Example. Let K = Q2, E = Q2(
√
2, i). As Q2(

√
2) � Q2(i) by calculation

above, E/K is Galois with G = {1, s, t, st} where

s|Q2(
√
2) = s, s|Q2(i) = idQ2(i), t|Q2(i) = t, t|Q2(

√
2) = idQ2(

√
2)

in notations above.
Let ζ = 1+i√

2
so ζ2 = 1+2i−1

2 = i so ζ is a primitive 8th roots of unity in
Q2(
√
2, i). ζ − 1 satisfies the polynomial

(X + 1)4 + 1 = X4 + 4X3 + 6X2 + 4X + 2

which is Eisenstein in Q2. Thus E/K is totally ramified with uniformiser πE =
ζ − 1. We now calculate vE(σ(πE)− πE) for all σ ∈ G = G0.

vE(s(πE)− πE) = vE(−
1 + i√

2
− 1 + i√

2
) = vE(−2ζ) = vE(2) = eE/K = 4

vE(t(πE)− πE) = vE(
1− i√

2
− 1 + i√

2
) = vE(−

2i√
2
) = vE(

√
2) = 2

vE(st(πE)− πE) = vE(−
1− i√

2
− 1 + i√

2
) = vE(−

2√
2
) = vE(

√
2) = 2

Thus
G = G0 = G1, {1, s} = G2 = G3, {1} = G4 = G5 = · · ·

In this case there are two jumps in the filtration of G by its lower ramification
groups.

42



4 Extensions of complete DVRs

Proposition 4.7.

1. There exists an injective homomorphism G0/G1 → k×E . In particular
G0/G1 is of order prime to p if char kE = p > 0.

2. If i ≥ 1 then there’s an injective homomorphism Gi/Gi+1 → (kE ,+).
In particular Gi/Gi+1 is abelian, and is trivial if char kE = 0 and an
Fp-vector space if char kE = p > 0.

Proof.

1. Note for any σ ∈ G0, we can write σ(πE) = aσπE mod π2
E for some

aσ ∈ AE0
where E0/K is the maximal unramified subextension: we can

choose X ⊆ AE0 containing 0 and giving a set of representatives of kE0 =
kE . Then any α ∈ AE has a unique expression

∑∞
i=0 a(α)iπ

i
E . σ(πE) has

valuation 1 so equals to a(σ(πE))1πE + π2
Ez for some z ∈ AE , so we can

take aσ = a(σ(πE)). Note as well that aσ (mod πE) 6= 0. Moreover aσ
(mod πE) depends only on σ and πE (but not X).
We defineG0 → k×E by σ 7→ aσ (mod πE). To show aστ = aσaτ (mod πE),
note we have

στ(πE) = aστπE (mod π2
E)

while

σ(τ(πE)) = σ(aτπE + π2
Ez) = aτσ(πE) + π2

Ez
′ = aτaσπE (mod π2

E)

so we must have aστ = aσaτ (mod πE), so the map is a homomorphism.
An element σ ∈ G0 lies in the kernel if and only if σ(πE) = πE (mod π2

E),
if and only if vE(σ(πE)−πE) ≥ 2, if and only if σ ∈ G1. im(G0/G1 ↪→ k×E )
is a finite subgroup of k×E . Any finite subgroup of the multiplicative group
of a field is cyclic, of order prime to p if the characteristic p > 0.

2. Observe if σ ∈ Gi for some i ≥ 1 then we can write

σ(πE) = πE + aσπ
i+1
E (mod πi+2

E )

where aσ ∈ AE0
and aσ (mod πE) ∈ kE depends only on σ and πE . We

thus define Gi → (kE ,+) by σ 7→ aσ (mod πE). This is a homomorphism:

σ(τ(πE)) = σ(πE + aτπ
i+1
E + πi+2

E z)

= πE + aσπ
i+1
E + πi+2

E z′ + σ(aτπ
i+1
E ) + σ(πi+2

E z)

= πE + aσπ
i+1
E + aτσ(πE)

i+1 (mod πi+2
E )

= πE + aσπ
i+1
E + aτ (πE + aσπ

i+1
E )i+1 (mod πi+2

E )

= πE + (aσ + aτ )π
i+1
E (mod πi+2

E )

= πE + aστπ
i+1
E (mod πi+2

E )

so aσ + aτ = aστ (mod πE).
σ lies in the kernel if and only if σ(πE) = πE (mod πi+2), if and ony if
vE(σ(πE)−πE) ≥ i+2, if and only if σ ∈ Gi+2. Thus we have an injective
homomorphism Gi/Gi+1 ↪→ (kE ,+) so Gi/Gi+1 is abelian.
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If char kE = 0 then kE is a Q-vector space so contains no non-trivial finite
group so Gi/Gi+1 = {1}. If char kE = p then kE is an Fp-vector space, so
Gi/Gi+1 is annihilated by p.

As a consequence, if char kE = 0 then G1 is trivial, as each Gi/Gi+1 and⋂
i≥0Gi = {1}. Thus G0 = G0/G1 is cyclic. If char kE = p then G0 is solvable

since we have
G0 ⊇ G1 ⊇ · · ·

and all quotients Gi/Gi+1 are abelian. G1 is the (unique) p-Sylow subgroup of
G0, as G0/G1 has order prime to p while G1 has order a power of p. As all
p-Sylow subgroups are conjugate and G1 E G0, G1 is the unique one.

Moreover in the case kE is finite (such as when K/Qp is an extension of
CDVFs) then G/G0

∼= Gal(kE/kK) is cyclic so

G ⊇ G0 ⊇ G1 ⊇ · · ·

and hence G = Gal(E/K) is solvable (not just G0).

Definition (tamely/wildly ramified). If E/K is an extension of CDVFs,
we say it’s tamely ramified if either char kE = 0 or char kE = p > 0 and
p - eE/K . Otherwise we say E/K is wildly ramified.

Note that if E/K is Galois and kE/kK is separable, then E/K is wildly
ramified if and only if G1 6= {1} (and the only case where the inertia group is
not cyclic).

Proposition 4.8. Let E/K be a Galois extension of CDVFs such that it’s
totally and tamely ramified, i.e. eE/K = [E : K] and if char kE = p > 0 then
p - eE/K . Then if n = [E : K] then K contains n nth roots of unity and
there exists a uniformiser πK ∈ AK such that E = K( n

√
πK).

Eisenstein polynomial Xn−πK . Also if and only if (assuming K containing
n nth roots of unity).

Proof. Since it is tamely ramified, G1 is trivial so G0 ↪→ k×E = k×K . Since E/K is
totally ramified, G = G0 and so G = G0 is cyclic of order n. Hence kK contains
n nth roots of unity and f(X) = Xn − 1 splits into linear factors in kK [X].
f ′(X) = nXn−1 and n (mod πK) ∈ k×K so the simple version of Hensel’s lemma
applies to show Xn−1 splits into linear factors in AK [X] and K contains n nth
roots of unity.

Let σ ∈ Gal(E/K) be a generator and πE ∈ AE be a choice of uniformiser.
Then exists a unique primitive nth root of unity ζ ∈ AK such that

σ(πE) = ζπE (mod π2
E).

If

α = πE + ζ−1σ(πE) + ζ−2σ2(πE) + · · ·+ ζ1−nσn−1(πE) (mod πE)
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then
σ(α) = σ(πE) + ζ−1σ2(πE) + · · ·+ ζπE = ζα

and α = nπE (mod π2
E). So vE(α) = 1 and α ∈ AE is a uniformiser and

σ(αn) = (ζα)n = αn, so αn ∈ AK . Hence E = K( n
√
πK) where πK = αn.

We have seen that Q2(
√
2)/Q2 is “more ramified” than Q2(i)/Q2. How can

we make this precise? The dream is to define for any v ∈ R≥0 a subfield Ev/K
inside E/K. This should have the following property:

1. E0 is maximal unramified, E =
⋃
v≥0E

v and if v ≤ v′ then Ev ⊆ Ev′ .

2. for any intermediate extension E/L/K with L/K Galois, want Lv = L ∩
Ev.

3. if L1, L2 are intermediate extensions with E = L1 ·L2 then Ev = Lv1 ·Lv2.

The naïve idea is to define Ev = EGv for v ∈ N. This satisfies 1 as G0 =
IE/K ,

⋂
i≥0Gi = {1} and G0 ⊇ G1 ⊇ · · ·. However this definition does not

satisfy 2 or 3. For 2, this is related to having an equality (G/H)i = im(Gi →
G/H) where H = Gal(E/L) and G/H = Gal(L/K). Although Gi ∩ H =
Hi, this does not hold in general for quotient group. For example take E =
Q2(
√
2, i),K = Q2. Recall that

Gal(E/K)i =


Gal(E/K) i = 0, 1

{1, s} i = 2, 3

{1} i ≥ 4

Look at im(Gal(Q2(
√
2, i)/Q2)3 → Gal(Q2(

√
2)/Q2)) = Gal(Q2(

√
2)/Q2), which

is not the same as Gal(Q2(
√
2)/Q2)3 = {1}.

To solve this problem we introduce the upper ramification groups. These
are the same as the lower groups but with a different indexing. First we extend
Gu to u ∈ R≥0 by Gu = Gdue. We define

ϕE/K(u) =

∫ u

t=0

[G0 : Gt]
−1dt.

ϕE/K is a continuous piecewise linear function. The discontinuities of ϕ′
E/K(u)

occur only at integer values of u. Moreover ϕE/K(u) is strictly increasing and
ϕE/K(0) = 0 so ϕE/K : [0,∞) → [0,∞) is a homeomorphism. We define
ψE/K = ϕ−1

E/K : [0,∞) → [0,∞). Then ψE/K is also a strictly increasing
piecewise linear homeomorphism.

Definition (upper ramification group). If v ∈ R≥0, we define the vth upper
ramification group to be Gv = GψE/K(v) ≤ G = Gal(E/K).

We say v is a jump in the upper ramification group if Gv 6= Gv+ε for
any ε > 0.

Warning: by definition, the jumps in the lower ramification groups Gu can
only occur at integer values of u. However, the jump in the upper ramification
groups can occur at rational but non-integer values of v.
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4 Extensions of complete DVRs

Example. E = Q2(
√
2, i),K = Q2, G = Gal(E/K). First plot [G0 : Gt]

−1

against t.

t

[G0 : Gt]
−1

1 2 3 4

1
2

1

Then plot ϕ against u.

t

ϕ

1 2 3 4

1

2

Its inverse ψ is

t

ψ

1 2 3

2

4

so we conclude

Gv =


G v ∈ [0, 1]

{1, s} v ∈ (1, 2]

{1} v ∈ (2,∞)

In this case all jumps occur at integer points.

Example. E = Q2(
√
2).

Gv =

{
G v ∈ [0, 2]

{1} v ∈ (2,∞)

Note the map Gal(Q2(
√
2, i)/Q2) → Gal(Q2(

√
2)/Q2) has kernel {1, t} and

im(Gal(Q2(
√
2, i)/Q2)

v) = Gal(Q2(
√
2)/Q2)

v for any v ∈ R≥0.
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To show this works in general, we introduce some more notations. Given a
Galois extension E/K of CDVFs with kE/kK separable and G = Gal(E/K),
we define iG : G→ Z≥0 ∪ {∞} by

iG(1) =∞, iG(s) = sup{i : s ∈ Gi−1} = 1 + sup{i : s ∈ Gi}

so in general iG(s) ≥ i+ 1 if and only if s ∈ Gi.

Lemma 4.9. For any u ∈ R≥0 we have

ϕ(u) + 1 =
1

|G0|
∑
s∈G

min(iG(s), u+ 1).

Proof. Both sides are continuous, piecewise linear and linear away from integer
value of u and

LHS(0) = 1,RHS(0) =
1

|G0|
∑
s∈G

min(iG(s), 1) =
1

|G0|
∑
s∈G0

1 = 1.

To show they are equal it’s enough to show for any i ∈ Z≥0 and for any t ∈
(i, i+ 1), LHS′(t) = RHS′(t).

LHS′(t) = [G0 : Gi+1]
−1 = [G0 : Gt]

−1

RHS′(t) =
1

|G0|
∑
s∈G

min(iG(s), u+ 1)′(t).

We have

min(iG(s), u+ 1) =

{
iG(s) iG(s) ≤ u+ 1

u+ 1 iG(s) ≥ u+ 1

so for t ∈ (i, i+ 1),

min(iG(s), u+ 1)′(t) =

{
0 iG(s) ≤ t+ 1

1 iG(s) ≥ t+ 1

Recall s ∈ Gi if and only if iG(s) ≥ i+ 1 so

RHS′(t) =
1

|G0|
∑
s∈Gt

1 = [G0 : Gt]
−1 = LHS′(t).

Lemma 4.10. Suppose exists α ∈ AE such that AE = AK [α]. Then iG(s) =
vE(s(α)− α).

Proof. By definition, s ∈ Gi if and only if s acts trivially on AE/(π
i+1
E ), which

is generated as a ring by the image of AK and α, so if and only if s acts trivially
on the image of α in AE/(π

i+1
E ), if and only if s(α) = α (mod πi+1

E ).
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4 Extensions of complete DVRs

Lemma 4.11. There exists α ∈ AE such that AE = AK [α].

Proof. By Nakayama, it’s enough to find α such that AK [α] → AE/(πK) is
surjective. Let y ∈ kE be a primitive element and f(X) ∈ kK [X] be its minimal
polynomial, f(X) ∈ AK [X] a choice of monic lift of f(X), and y ∈ AE the
unique root of f(X) such that y (mod πE) = y. Since f(X) is separable,
f
′
(y) 6= 0 so f ′(y) ∈ A×

E . Thus

f(y + πE) = f(y) + f ′(y)πE + π2
Ez

has valuation 1 and is a uniformiser for AE . Moreover AK [y + πE ]→ kE sends
y + πE 7→ y so is surjective, so we can choose a set X ⊆ AE of representative
for kE with 0 ∈ X and X ⊆ AK [y + πK ]. Then any element of AE/(πK) =

AE/(π
eE/K

E ) has a unique representation of the form
∑eE/K−1

i=0 aif(y+πE) with
ai ∈ X. But this lies in AK [y + πE ] so AE = AK [y + πE ].

Lemma 4.12. Let H E G,L = EH so Gal(L/K) = G/H. Let s ∈ G.
Then

iG/H(sH) =
1

eE/L

∑
t∈H

iG(st).

Proof. Choose α ∈ EE , β ∈ AL such that AE = AK [α], AL = AK [β].

E AK [α]

L AK [β]

K AK

Then

iG/H(sH) = vL(s(β)− β) =
1

eE/L
vE(s(β)− β)

iG(st) = vE(st(α)− α)

for t ∈ H. We need to show
1

eE/L
vE(s(β)− β) =

1

eE/L

∑
t∈H

vE(st(α)− α)

or equivalently,
vE(s(β)− β) = vE(

∏
t∈H

(st(α)− α)).

Let f(X) ∈ AL[X] be the minimal polynomial of α over L. Then f(X) =∏
t∈H(X− t(α)). Let s(f)(X) denote the polynomial where s acts on the coeffi-

cients of f(X) so s(f)(X) =
∏
t∈H(X − st(α)) and s(f)(α) =

∏
t∈H(α− st(α)).

Write f(X) =
∑
aiX

i, s(f)(X) =
∑
s(ai)X

i for ai ∈ AL. Then

s(f)(α) = s(f)(α)− f(α) =
∑

(s(ai)− ai)αi.
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4 Extensions of complete DVRs

Since AL = AK [β], for a ∈ AL, s(a) − a is divisible by s(β) − β so s(β) − β |
s(f)(α) =

∏
t∈H(α− st(α)). Thus

vE(s(β)− β) ≤ vE(
∏
t∈H

(α− st(α))).

To show the reverse inequality, choose g(X) ∈ AK [X] such that g(α) = β.
We can do this since b ∈ AE and AE = AK [α]. Then g(X)− β ∈ AL[X] has α
as a zero, so is divisible by f(X) in AL[X]. Hence f(X) | g(X) − β in AE [X],
hence s(f)(X) | g(X)− s(β) in AE [X]. Now evaluate at X = α to get

s(f)(α) | g(α)− s(β) = β − s(β)

in AE . Equivalently,

vE(
∏
t∈H

(α− st(α))) ≤ vE(β − s(β))

so equality.

Lemma 4.13. Suppose H E G and L = EH . Define j : G/H → Z≥0∪{∞}
by j(sH) = supt∈H iG(st). Then

iG/H(sH) = 1 + ϕE/L(j(sH)− 1).

Proof. Recall that

LHS =
1

eE/L

∑
t∈H

iG(st)

RHS =
1

|H0|
∑
t∈H

min(iH(t), j(sH))

Note that eE/L = |H0| and for all t ∈ H, iG(t) = iH(t) (as both sides equal
vE(t(α) − α) where AE = AK [α]). We can assume that the representative for
sH is chosen so that j(sH) = iG(s) or equivalently for all t ∈ H, iG(st) ≤ iG(s).
Therefore it suffices to show∑

t∈H
iG(st) =

∑
t∈H

min(iG(t), iG(s)).

We will show for all t ∈ H, iG(st) = min(iG(t), iG(s)). If m + 1 = iG(t) <
iG(s) = n+1 then t ∈ Gm \Gn, s ∈ Gn. Hence st ∈ Gm \Gn so iG(st) = iG(t).
On the other hand if iG(t) ≥ iG(s) then iG(st) ≥ iG(s). Since s was chosen so
that for all t ∈ H, iG(st) ≤ iG(s), we get iG(st) = iG(s).

Theorem 4.14 (Herbrand). Suppose H E G and L = EH . If u ∈ R≥0 and
v = ϕE/L(u) then

(G/H)v = GuH/H(= im(Gu → G/H)).

49



4 Extensions of complete DVRs

Proof. For s ∈ G, we have sH ∈ GuH/H if and only if exists t ∈ H such that
iG(st) ≥ u + 1, if and only if j(sH) ≥ u + 1. Since ϕE/L is strictly increasing,
we have j(sH) ≥ u + 1 if and only if ϕE/L(j(sH) − 1) ≥ ϕE/L(u), if and only
if iG/H(sH) ≥ ϕE/L(u) + 1, if and only if sH ∈ (G/H)ϕE/L(u).

Lemma 4.15. We have ϕE/K = ϕL/K ◦ ϕE/L.

Proof. Both sides are piecewise linear continuous functions [0,∞) → [0,∞)
which take 0 to 0 so it’s enough to show derivatives coincide.

LHS′(u) = [G0 : Gu]
−1

RHS′(u) = ϕ′
L/K(ϕE/L(u))ϕ

′
E/L(u)

= [(G/H)0 : (G/H)ϕE/L(u)]
−1[H0 : Hu]

−1

= [G0H/H : GuH/H]−1[H0 : Hu]
−1 Herbrand

Now use isomorphism theorem

GuH/H ∼= Gu/Gu ∩H = Gu/Hu

(as lower ramification groups are compatible with subgroups) so

[G0H/H : GuH/H] =
|G0|
|H0|

|Hu|
|Gu|

=
[G0 : Gu]

[H0 : Hu]

so the result follows.

Finally we can deduce upper ramifications groups are compatible with quo-
tients:

Theorem 4.16. For any v ≥ 0,

GvH/H = (G/H)v.

Proof. By definition Gv = GψE/K(v), (G/H)v = (G/H)ψL/K(v). ϕE/K = ϕ−1
E/K

so by the lemma ψE/K = ψE/L ◦ ψL/K . Herbrand gives

(G/H)v = (G/H)ψL/K(v) = GψE/L(ψL/K(v))H/H = GψE/K(v)H/H = GvH/H.

Definition. Let E/K be an extension of CDVF (not necessarily Galois)
with kE/kK separable. If v ∈ [0,∞) we define

Ev = E ∩ LG
v

where L/E is any extension of CDVFs with kL/kK separable, L/K Galois
with G = Gal(L/K).
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4 Extensions of complete DVRs

This is independent of the choice of L: it’s enough to show that if L′/L is a
further extension of CDVFs and L′/K is Galois then

E ∩ LG
v

= E ∩ (L′)(G
′)v

where G′ = Gal(L′/K). Let H = Gal(L′/L). Then

E ∩ LG
v

= E ∩ L(G′/H)v = E ∩ L(G′)vH/H = E ∩ (L′)(G
′)vH = E ∩ (L′)(G

′)v

where the last equality is because E ⊆ L = (L′)H .

Proposition 4.17.

1. E0 is the maximal unramified subextension and

E0 = E ∩ LG
0

= E ∩ LG0 = E ∩ L0.

2. If v ≤ v′ then Ev ⊆ Ev′ . For v � 0, Ev = E.

3. If E/M/K is an intermediate extension then Mv = M ∩ Ev (as both
are M ∩ LGv for L/E with L/K Galois).

4. If E/M,N/K are two intermediate extensions then Mv ·Nv ⊆ (M ·N)v

(as (M∩LGv

)·(N∩LGv

) ⊆ (M ·N)∩LGv). Moreover if Mv =M,Nv =
N then (M ·N)v =M ·N .

We can think of inf{v : Ev = E} as a measure of “how ramified” an extension
E/K is. For example back to the example E = Q2(

√
2, i),K = Q2. Recall that

Gv =


G v ∈ [0, 1]

{1, s} v ∈ (1, 2]

{1} v ∈ (2,∞)

so

Ev =


Q2 v ∈ [0, 1]

Q2(i) v ∈ (1, 2]

E v ∈ (2,∞)

This example displays another important feature of the group Gv, which we
will not prove:

Theorem 4.18 (Hasse-Arf). Let K/Qp be a finite extension and let E/K
be an abelian extension, i.e. E/K is a Galois extension and Gal(E/K) is
abelian. Then all of the jumps in the upper ramification groups are integers.

The example Q2(
√
2, i)/Q2 is an application. For counterexample in non-

abelian case, example sheet 3 gives Q2(ζ3,
3
√
2)/Q2 in which 1

2 is a jump.

Definition (conductor ideal). Let K/Qp be a finite extension. Let E/K
be an abelian extension. We define the conductor ideal CE/K of AK to be
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4 Extensions of complete DVRs

(πaK) where

a = inf{n ∈ Z≥0 : Gn = {1}} = 1 + highest jump.

Proposition 4.19.

1. CE/K = AK if and only if E/K is unramified.

2. If E1, E2/K are abelian extensions then CE1·E2/K = lcm(CE1/K , CE2/K),
as if CEi/K = (πaiK ) then ai = inf{n ∈ Z≥0 : Eni = Ei}, but
(E1 · E2)

n = E1 · E2 if and only if En1 = E1 and En2 = E2.

This formulation will be important when studying global fields.
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5 Global class field theory

5 Global class field theory
What is GCFT? Fix a number field K. Want to give a description of all abelian
extensions E/K. We will organise these around the notion of conductor ideal.

Definition (conductor ideal). Let E/K be an abelian extension of number
fields. The conductor ideal is the unique CE/K ⊆ OK with the follow-
ing property: for any non-zero prime ideal P ⊆ OK and any prime ideal
Q ⊆ OE lying above P , CE/KAKP

= CEQ/KP
. Equivalently vP (CE/K) =

vP (CEQ/KP
).

This is well-defined as

1. CEQ/KP
is independent of choice of Q (as EQ ∼= EQ′ as extensions of KP ).

2. CEQ/KP
= AKP

for all but finitely many P (as all but finitely many
P ⊆ OK are unramified in OE).

3. existence and uniqueness of CE/K then follows by unique factorisation of
ideals in OK .

We first explain what happens for K = Q. We know that if N ∈ Z≥1 then
Q(ζN ) is an abelian extension of Q and there’s an isomorphism

Gal(Q(ζN )/Q) ∼= (Z/NZ)×

σa ↔ a

where σa(ζN ) = ζaN . By Galois theory there’s a bijection{
abelian extensions L/Q
contained in Q(ζN )/Q

}
←→ {quotients of (Z/NZ)×}

We have the Kronecker-Weber(-Hilbert) theorem: if L/Q is any abelian
extension then exists N ∈ Z≥1 such that L ⊆ Q(ζN ). In fact, for any N ∈ Z≥1,
L ⊆ Q(ζN ) if and only if CL/Q | (N). Thus we get a bijection for any N ∈ Z≥1 abelian extension L/Q

in a fixed algebraic closure
such that CL/Q | (N)

↔ {quotients of (Z/NZ)×}

This is almost GCFT for K = Q, but we still need to give a characterisation of
the bijection independent of explicit description of Q(ζN ). We do this using the
Artin symbol.

Recall that if L/K is a Galois extension of number fields, not necessarily
abelian, then for any non-zero prime ideal P ⊆ OK and prime ideal Q ⊆ OL
lying above P such that eQ/P = 1 (i.e. P is unramified in OL), we define
FrobQ/P ∈ Gal(L/K) as the unique element such that

1. FrobQ/P (Q) = Q,

2. for all x ∈ kQ, we have FrobQ/P (x) = x|kP |, i.e. it is the Frobenius auto-
morphism of kQ/kP .
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5 Global class field theory

If σ ∈ Gal(L/K) then there is a commutative diagram

kQ kQ

kσ(Q) kσ(Q)

x 7→x|kP |

σ σ

x 7→x|kP |

so by the characterisation of Frobenius element

Frobσ(Q)/P = σ FrobQ/P σ
−1.

In particular, if Gal(L/K) is abelian then Frobσ(Q)/P = FrobQ/P , so is inde-
pendent of choice of Q.

Definition (Artin symbol). If L/K is an abelian extension of number fields
and P ⊆ OK is a non-zero prime ideal that is unramified in OL, we define
the Artin symbol (P,L/K) ∈ Gal(L/K) by (P,L/K) = FrobQ/P for any
prime ideal Q ⊆ OL lying above P .

This allows us to give a formulation of GCFT over Q that does not rely on
knowing the extension Q(ζN ): for any N ∈ Z≥1, there’s a bijection{

abelian extension L/Q
such that CL/Q | (N)

}
←→ {quotients of (Z/NZ)×}

This may be uniquely characterised as follow: suppose given L/Q. Then there
is a unique surjective homomorphism φL/Q : (Z/NZ)× → Gal(L/Q) with the
property that for any prime p - N ,

φL/Q(p mod N) = ((p), L/Q).

Remark. When L = Q(ζN ) this does recover the inverse of the usual map
Gal(Q(ζN )/Q)→ (Z/NZ)×: need to check that if p - N then σp ∈ Gal(Q(ζN )/Q)
equals ((p),Q(ζN )/Q). Let Q ⊆ OQ(ζN ) be a prime lying above (p). Then
kQ = Fp(ζN ) and

((p),Q(ζN )/Q)(ζN (mod Q)) = ζpN (mod Q).

But reduction modulo Q gives a bijection between roots of XN − 1 in Q(ζN )
and in kQ. So we must have

((p),Q(ζN )/Q)(ζN ) = ζpN

so ((p),Q(ζN )/Q) = σp.

The first step is generalising this to arbitrary base number field K. We first
need to explain what object will replace (Z/NZ)×. This will be ray class group.

Definition (modulus). A modulus is a pair m = (m0,m∞) where m0 ⊆ OK
is a non-zero ideal and m∞ ⊆ HomQ(K,R), a possibly empty subset.
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Recall that for any number field K, |HomQ(K,C)| = [K : Q] = r+2s where
r is the number of real embeddings and s is the number of pairs of complex
embeddings.

If m = (m0,m∞) and n = (n0, n∞) are moduli, we write m ≤ n if m0 | n0
and m∞ ⊆ n∞.

Let K be a number field. We write I = DivOK ,P = {I ∈ I : exists α ∈
K× such that I = (α)} the principal fractional ideals. Then I/P is the ideal
class group of OK . Now let m = (m0,m∞) be a modulus. We define

K(m0) =

{
α ∈ K×: for all non-zero prime P ⊆ OK

such that vP (m0) > 0, vP (α) = 0

}

Km =

 α ∈ K(m0): for all non-zero prime P ⊆ OK
such that vP (m0) > 0, vP (α− 1) ≥ vP (m0)

and for all τ ∈ m∞, τ(α) > 0


I(m0) =

{
I ∈ I: for all P ⊆ OK non-zero prime

such that vP (m0) > 0, vP (I) = 0

}
P(m0) = P ∩ I(m0) = {(α) : α ∈ K(m0)}

Pm =


I ∈ I: exists α ∈ K× such that (α) = I

and for all P ⊆ OK non-zero prime
such that vP (m0) > 0, vp(α− 1) ≥ vp(m0)

and for all τ ∈ m∞, τ(α) > 0


= {(α) : α ∈ Km}

Note Pm is a subgroup of P(m0).

Definition (ray class group). The ray class group of modulus m is

H(m) = I(m0)/Pm.

Remark. If m is the trivial modulus (OK , ∅) then

I(m0) = I,Pm = P

and H(m) = I/P, the usual ideal class group.

Proposition 5.1.

1. H(m) is a finite abelian group.

2. There are short exact sequences

0 P(m0)/Pm H(m) HK 0

where HK is the usual ideal class group of OK , and

0 O×
K/(O

×
K ∩Km) (OK/m0)

× × {±1}m∞ P(m0)/Pm 0
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In particular

|H(m)| = |HK | · |(OK/m0)
×| · 2|m∞| · |O×

K/O
×
K ∩Km|−1.

Proof. 1 follows from 2 and the finiteness of HK which is done in IID Number
Fields. There’s a short exact sequence

0 P(m0)/Pm I(m0)/Pm I(m0)/P(m0) 0

H(m)

There is a homomorphism I(m0)/P(m0) → I/P = HK . This is injective as
P(m0) = P ∩ I(m0). We need to show it’s surjective, i.e. for any I ∈ I, exists
α ∈ K× such that α−1I ∈ I(m0). Write I = I1I

−1
2 where I1, I2 ⊆ OK are

non-zero ideal. By Chinese remainder theorem we can find α1, α2 ∈ OK such
that for all P ⊆ OK such that vP (m0) > 0,

vP (I1) = vP (α1), vP (I2) = vP (α2).

Then
vP (α

−1
1 I1) = vP (α

−1
2 I2) = 0

for all such P , so

α−1
1 I1(α

−1
2 I2)

−1 = (α1/α2)
−1I ∈ I(m0).

Set α = α1

α2
.

To obtain the second short exact sequence, we consider the commutative
diagram with exact rows

0 O×
K K(m0) P(m0) 0

0 O×
K ∩Km Km Pm 0

By snake lemma there’s a short exact sequence

0 O×
K/(O

×
K ∩Km) K(m0)/Km P(m0)/Pm 0

We need to construct an isomorphism K(m0)/Km → (OK/m0)
× × {±1}m∞ .

There is at least a homomorphism: we can think of

(OK/m0)
× × {±1}m∞ =

∏
P :vP (m0)>0

(A×
KP
/1 +m0AKP

)×
∏

τ∈m∞

(R×/R>0)

For any P ⊆ OK , there’s an inclusion K× ⊆ K×
P . If vP (m0) > 0, this extends

to an inclusion K(m0) ⊆ A×
KP

. The homomorphism we want is

K(m0)→
∏

P :vP (m0)>0

A×
KP
×

∏
τ∈m∞

R× →
∏

P :vP (m0)>0

(A×
KP
/1 +m0AKP

)×
∏

τ∈m∞

(R×/R>0)

α 7→ ((α)P , (τ(α)))
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The kernel equals Km by definition. To complete the proof we need to show
this homomorphism is surjective. Let ((xP )P , (ετ )τ ) ∈

∏
P :vP (m0)>0(A

×
KP
/1 +

m0AKP
) × {±1}m∞ . By Chinese remainder theorem exists x ∈ OK − {0}

such that for all P such that vP (m0) > 0, x (mod m0AKP
) = xP . In particular

x ∈ K(m0). It’s now enough to prove that for any (ετ )τ∈m∞ , exists y ∈ OK−{0}
such that for all P such that vP (m0) > 0, y = 1 (mod m0AKP

) and for all
τ ∈ m∞, sgn(τ(y)) = ετ . Equivalently, y = 1 (mod m0) and for all τ ∈ m∞,
sgn(τ(y)) = ετ . Note m0 ∩ Z is a non-zero ideal, so we can find N ≥ 2 such
that N ∈ m0 ∩ Z. We can find β ∈ OK such that K = Q(β). Let f(X) ∈ Z[X]
be the minimal polynomial of β. Then

HomQ(K,C) = {γ ∈ C : f(γ) = 0}
HomQ(K,R) = {γ ∈ R : f(γ) = 0}

Let γτ ∈ R be τ(β) for any τ ∈ m∞. We can find a polynomial g(X) ∈ R[X]
such that for all τ ∈ m∞, sgn(g(γτ )) = ετ . Since Q is dense in R, we can assume
that g(X) ∈ Q[X]. By multiplying g(X) by a positive integer we can assume
g(X) ∈ Z[X]. Then we take y = 1 + kNg(β) for some k ∈ N. Then y = 1
(mod m0) as N ∈ m0. If k is large enough then

sgn(τ(y)) = sgn(1 + kNg(γτ )) = sgn(g(γτ )) = ετ .

Example. Let K = Q,m = (N, {τ}) where N ∈ N. Then HQ = {1} so

H(m) ∼=
(Z/NZ)× × {±1}

Z×
∼= (Z/NZ)×

(a (mod N), 1)← [ a (mod N)

So ray class group generalises the classical ideal class group. If instead m =
(N, ∅) then H(m) = (Z/NZ)×/{±1}.

Example. Let K = Q(
√
d) where d ∈ Z, d > 1 squarefree. Then exists ε ∈ O×

K

such that O×
K = {±εZ} and there exist two distinct embeddings σ, τ : K → R

where σ(
√
d) > 0, τ(

√
d) < 0. Suppose HK is trivial. Let m = (OK , {σ, τ}).

Then

H(m) =
{±1} × {±1}

{(sgnσ(α), sgn τ(α)) : α ∈ O×
K}
∼=

{±1} × {±1}
〈(−1,−1), (sgnσ(ε), sgn τ(ε))〉

so two possibilities for H(m): it is trivial if σ(ε) and τ(ε) have different signs,
or cyclic of order 2 if same sign. Note

NK/Q(ε) = σ(ε)τ(ε) =

{
1 sgn(ε) = τ(ε)

−1 sgn(ε) 6= τ(ε)

They both occur: if d = 2 then HK = {1} and ε = 1+
√
2 has norm NK/Q(ε) =

1− 2 = −2. If d = 3 then HK = {1} and ε = 2 +
√
3 has norm 1.
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Theorem 5.2 (global class field theorem). Let K be a number field and m
a modulus of K.

1. Let L/K be an abelian extension. Define its associated modulus mL/K =
(mL/K,0,mL/K,∞) where

mL/K,0 = CL/K

mL/K,∞ =

{
τ ∈ HomQ(K,R): exist no

τ̃ ∈ HomQ(L,R) such that τ̃ |K = τ

}
Define the homomorphism ψL/K : I(CL/K)→ Gal(L/K) as the unique
homomorphism such that for any non-zero prime P ⊆ OK such that
vP (CL/K) = 0, ψL/K(P ) = (P,L/K). Suppose mL/K ≤ m. Then
Pm ⊆ kerψL/K so ψL/K determines a homomorphism φL/K : H(m)→
Gal(L/K) which is surjective.

2. The assignment L/K 7→ kerφL/K defines an inclusion-reversing bijec-
tion {

abelian extesion L/K
such that mL/K ≤ m

}
←→ {subgroup of H(m)}

If L corresponds to H then φL/K : H(m)/H → Gal(L/K) is an
isomorphism. In partciular the trivial subgroup of H(m) corresponds
to the maximal abelian extension L(m)/K such that mL(m)K ≤ m.
L(m) is called the ray class field of modulus m, and φL(m)/K : H(m) ∼=
Gal(L(m)/K).

Example. For anyK there’s the ray class field E associated the trivial modulus.
This is the maximal extension E/K, everywhere unramified, and such that every
embedding τ : K ↪→ R extends to an embedding τ̃ : E ↪→ R. E is called
the Hilbert class field of K, and comes with an isomorphism φE/K : HK

∼=
Gal(E/K).

If K has trivial ideal class group then E = K, for example E = Q.
If K = Q(

√
−23) then E is the splitting field of X3 −X + 1.

Proof. Define L to be the splitting field of f(X) = X3 −X + 1 over Q. Then
disc f = −4a3− 27b2 = −23 so Q(

√
−23) ⊆ L and f(X) is irreducible mod 3 so

Gal(L/Q) ∼= S3 and Gal(L/K) is cyclic of order 3. To show L/K is the Hilbert
class field, we need to check

1. mL/K ≤ (OK , ∅) (i.e. L/K is everywhere unramified),

2. |HK | = 3.

We take 2 as given. For 1, note that L/Q is unramified for any prime away
from p = 23. Note OK has a unique prime ideal P lying above 23 as 23
is ramified, i.e. 23OK = P 2 (in fact P = (

√
−23). We need to show P is

unramified in L, equivalently that if Q is a prime ideal of OL lying above 23
then eQ/(23) = |IQ/(23)| is prime to 3.

If f(X) = f(X) mod 23 then f(X) has a repeated root. In fact f(X) =
a(X)b(X)2 where a(X), b(X) ∈ F23[X] of degree 1: a cubic having a repeated
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root either has a single root with multiplicity 3 or is of this form. But

3f(X)−Xf ′(X) = 3x3 − 3X + 3− 3X3 +X = −2X + 3

so (f, f
′
) 3 (−2X + 3) and gcd(f, f

′
) has degree 1. Let α1, α2, α3 ∈ OL be

the roots of f(X). Assume they’re labeled so that a(α1 (mod Q)) = 0, b(α2

(mod Q)) = 0. Recall

IQ/(23) = {σ ∈ Gal(L/Q) : σ(Q) = Q, σ (mod Q) = idkQ}.

If σ ∈ IQ/(23) then

a(σ(α1) (mod Q)) = 0

b(σ(α2) (mod Q)) = b(σ(α3) (mod Q)) = 0

hence we must have σ(α1) = α1, σ(α2) ∈ {α2, α3} so IQ/(23) ⊆ {1, (23)}.

Example. Let d ∈ Z, d > 1 squarefree and let K = Q(
√
d). Suppose HK = {1}.

Recall that if m = (OK ,HomQ(K,R)) then

H(m) =

{
{1} NK/Q(ε) = −1
Z/2 NK/Q(ε) = 1

By GCFT if NK/Q(ε) = 1 then there exists a quadratic extension L/K which
is everywhere unramified but with no real embedding. For example let K =
Q(
√
3). Then HK = {1}, ε = 2 +

√
3, NK/Q(ε) = 1. In this case L = K(i) =

K(
√
−23) is an everywhere unramified quadratic extension of K.

L L

K Q(i) K Q(
√
−3)

Q Q
ramified only at 2 ramified only at 3

In the remainder of the course we’ll examine the relation between GCFT of
imaginary quadratic fields and binary quadratic forms.

Definition (binary quadratic form). A binary quadratic form is a polyno-
mial f(x, y) = ax2 + bxy + cy2 where a, b, c ∈ Z. Equivalently

f(x, y) = (x, y)

(
a b/2
b/2 c

)(
x
y

)
We say an integer m is represented by f(x, y) if there exist x0, y0 ∈ Z

such that f(x0, y0) = m.

A classical question in number theory asks: which primes p are represented
by a fixed BQF? For example (for p odd)

• p = x2 + y2 if and only if p = 1 (mod 4) (Fermat).
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5 Global class field theory

• p = x2 + 2y2 if and only if p = 1, 3 (mod 8) (Euler).

• p = x2 + 5y2 if and only if p = 1, 9 (mod 20) (Gauss).

• p = x2 + 14y2 if and only if the equations x2 = −14 and (y2 + 1)2 = 8
both have solutions in Fp.

In fact if n ∈ N and −n = 2, 3 (mod 4) squarefree then p is represented by
x2 +ny2 (with p - 4n) if and only if p splits completely in the Hilbert class field
of Q(

√
−n).

Definition (discriminant of a BQF). If f(x, y) = ax2 + bxy+ cy2 is a BQF
we define its discriminant to be disc f = b2 − 4ac.

SL2(Z) acts on the set of BQFs by

γ · f(x, y) = f(γ−1

(
x
y

)
)

Equivalently γ·f is associated to γ−T
(

a b/2
b/2 c

)
γ−1. Since disc f = −4 det

(
a b/2
b/2 c

)
it is invariant under the action.

Remark. If disc f < 0 then f(x, y) is either positive definite (a > 0) or negative
definite (a < 0).

To describe the relation between BQFs and imaginary quadratic fields we
need to introduce the discriminant of a number field. Recall from IID Number
Fields that if K/Q is a number field of degree [K : Q] = n and α1, . . . , αn ∈ K,
we define

disc(α1, . . . , αn) = detD2

where Dij = σi(αj), σ1, . . . , σn : K → C are the distinct embeddings. This
doesn’t depend on the ordering of σ1, . . . , σn. IfA ∈Mn(Z) and βi =

∑n
j=1Aijαj

then
disc(β1, . . . , βn) = detA2 disc(α1, . . . , αn).

In particular if M ≤ K is a free Z-module of rank n then we can define discM =
disc(α1, . . . , αn), where α1, . . . , αn is a generating set for M . This does not
depends on the choice of αi’s. If M ′ ≤ M are free of rank n then by a similar
argument using Smith normal form

discM ′ = discM · [M :M ′]2.

Note. OK is always free of rank n as a Z-module so we can define discOK . For
example if d ∈ Z squarefree, d 6= 0, 1 then

OK =

{
Z⊕ Z

√
d d = 2, 3 (mod 4)

Z⊕ Z 1+
√
d

2 d = 1 (mod 4)

so

discOK =


det

(
1

√
d

1 −
√
d

)2

= 4d d = 2, 3 (mod 4)

det

(
1 1+

√
d

2

1 1−
√

d
2

)2

= d d = 1 (mod 4)
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Theorem 5.3. Let d ∈ Z squarefree, d < 0. Fix an embedding K =
Q(
√
d)→ C. Then there is a bijection

SL2(Z)
{

positive definite BQF
of discriminant D

}
←→ HK

ax2 + bxy + y2 7→ Z⊕ Zβ

where β = −b+
√
D

2a .

We first prove

Proposition 5.4. There is a bijection

{
positive definite BQF

of discriminant D

}
←→

 β ∈ K such that Imβ > 0
and Z⊕ Zβ is a

fractional ideal of OK


given by the same formula as above. This bijection is SL2(Z)-equivariant,
where SL2(Z) acts on β ∈ K with Imβ > 0 by Möbius transformation(

A B
C D

)
· β =

Aβ +B

Cβ +D
.

Proof. First check that Z⊕Zβ is a fractional ideal of OK , i.e. it is stable under
multiplication by OK . Note β = −b+

√
D

2a is a root of f(x, 1) = ax2 + bx + c so
aβ2 = −(bβ + c) and

aβ · (Z⊕ Zβ) ⊆ Z⊕ Zβ.

This implies that aβ is integral over Z, hence aβ ∈ OK , hence Z⊕ Zaβ ⊆ OK .

disc(Z⊕ Zaβ) = det

(
1 aβ

1 aβ

)2

= a2(β − β)2 = D = discOK

Hence Z⊕ Zaβ = OK so Z⊕ Zβ is a fractional ideal of OK .
We now define an inverse to the map in the statement of the proposition.

It sends β to the binary quadratic form f(x, y) = ax2 + bxy + cy2 where ax2 +
bx + c ∈ Z[x] is the unique quadratic which has β as a root, gcd(a, b, c) = 1
and a > 0. We need to check that disc f = D. Note aβ2 = −(bβ + c) so
aβ · (Z ⊕ Zβ) ⊆ Z ⊕ Zβ and aβ ∈ OK . If A + Bβ ∈ OK for A,B ∈ Q then
(A+Bβ) · (Z⊕ Zβ) ⊆ Z⊕ Zβ so

A+Bβ ∈ Z⊕ Zβ

(A+Bβ)β = Aβ +B(−bβ
a
− c

a
)

= −Bc
a

+ (A− Bb

a
)β ∈ Z⊕ Zβ

so A,B ∈ Z and −Bca , A −
Bb
a ∈ Z so B

a ∈ Z (as a, b, c coprime) so B ∈ aZ.
Thus A+Bβ ∈ OK lies in Z⊕ Zaβ. Hence OK = Z⊕ Zaβ and

D = discOK = disc(Z⊕ Zaβ) = disc f.
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This shows the existence of a bijection as in the statement of the proposition.
SL2(Z)-equivariane is left as an exercise.

Proof of Theorem 5.3. By proposition there’s a bijection

SL2(Z)\
{

positive definite BQF
of discriminant D

}
←→ SL2(Z)\

 β ∈ K such that Imβ > 0
and Z⊕ Zβ is a

fractional ideal of OK


We need to show the map

RHS→ HK

Z⊕ Zβ 7→ [Z⊕ Zβ]

is an bijection. First show it is well-defined: suppose β, β′ ∈ K, Imβ >
0, Imβ′ > 0, Z ⊕ Zβ, Z ⊕ Zβ′ fractional ideals of OK and β = xβ+y

zβ+w for
( x y
z w ) ∈ SL2(Z). Then

Z⊕ Zβ′ = Z⊕ xβ + y

zβ + w
=

1

zβ + w
(Z(zβ + w)⊕ Z(xβ + y))

so
[Z⊕ Zβ′] = [Z(zβ + w)⊕ Z(xβ + y)] = [Z⊕ Zβ].

Now show the map is injective. If [Z⊕ Zβ] = [Z⊕ Zβ′] then exists α ∈ K×

such that Z⊕ Zβ = Zα⊕ Zαβ′, so exists ( x y
z w ) ∈ GL2(Z) such that

1 = xα+ yαβ′, β = zα+ wαβ′

so β = wβ′+z
yβ′+x . Since β, β′ both have positive imaginary part, the matrix (w z

y x )
has determinant +1.

Finally we show the map is surjective. Let I be a fractional ideal of OK .
Then I is free of rank 2 as a Z-module, so has a basis α1, α2 over Z. wlog we
can assume Im α2

α1
> 0. Then

[I] = [Zα1 ⊕ Zα2] = [Z⊕ Z
α2

α1
]

which lies in the image.

This gives an efficient way to compute HK as a set, using the existence of a
fundamental domain for the action of SL2(Z) on H, the upper half plane. We
set

D = {z ∈ H : |z| > 1,−1

2
≤ Re z <

1

2
} ∪ {z ∈ H : |z| = 1,−1

2
≤ Re z < 0}.

It is a fact that for all z ∈ H, SL2(Z) · z) ∩ D contains exactly one element.
For any orbit of BQFs with discriminant D, there is a unique representative

f(x, y) = ax2 + bxy + cy2 such that β = −b+
√
D

2a ∈ D. e have |β|2 = c
a ,Reβ =

− b
2a . Thus β ∈ D if and only if

c

a
> 1, a ≥ b > −a or c

a
, a ≥ b ≥ 0.

This is usually written as c ≥ a ≥ |b| and if c = a or a = |b| then b ≥ 0.
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Definition (reduced BQF). A positive definite BQF of disciminant D is
called reduced if it satisfies the condition above.

Lemma 5.5. There is a bijection between HK and the set of reduced positive
definite BQFs of discriminant D.

This also shows HK is finite, as there are finitely many reduced forms f(x, y):
−D = 4ac− b2 ≥ 4b2 − b2 = 3b2 so |b| ≤

√
|D|3 so there are only finitely many

possibilities for b, hence for a, c.

Proposition 5.6.

1. The identity [OK ] ∈ HK corresponds to the reduced form

f(x, y) =

{
x2 − dy2 d = 2, 3 (mod 4)

x2 + xy + 1−d
4 y2 d = 1 (mod 4)

called principal form of OK .

2. A class [I] ∈ OK satisfies [I]2 = [OK ] if and only if the corresponding
reduced form ax2 + bxy + cy2 satisfies c = a, a = b or b = 0.

Proof.

1. We do the calculation for d = 2, 3 (mod 4). x2 − dy2 has discriminat D
and is reduced. It corresponds to the fractional ideal class [Z⊕Zβ] where
β = −b+

√
D

2a =
√
d. We know Z⊕ Z

√
d = OK .

2. Observe that Gal(K/Q) = {1, c} acts on HK . In fact for any [I] ∈ HK we
have [I][c(I)] = [OK ]: it’s enough to check that if Q ⊆ OK is a non-zero
prime ideal, Qc(Q) is principal. Say Q lies above (p) ⊆ Z. Then one of
the three cases:

(a) p splits in OK : pOK = Qc(Q) so Qc(Q) = pOK .
(b) p is inert: pOK = Q so Qc(Q) = p2OK .
(c) p is ramified: pOK = Q2 so Qc(Q) = pOK .

so we need to show [I] = [c(I)] if and only if a = c, a = b or b = 0.
wlog I = Z ⊕ Zβ where β = −b+

√
D

2a so c(I) = Z ⊕ Zβ = Z ⊕ Z(−β).
If f(β, 1) = 0 where f(x, y) = ax2 + bxy + cy2 then g(−β, 1) = 1 where
g(x, y) = ax2 − bxy + cy2. Thus [I]2 = [OK ] if and only if f(x, y), g(x, y)
lies in the same SL2(Z)-orbit.
If β lies in the interior of D, i.e. if c > a and a > |b| then β also lies
in the interior so g(x, y) is reduced, so f(x, y), g(x, y) lies in the same
SL2(Z)-orbit so by uniqueness f(x, y) = g(x, y) so b = 0.
The other case is when β lies on the boundary of D, i.e. b = a or c = a. In
this case −β is not in D so g(x, y) is not reduced. However −β is SL2(Z)-
conjugate to β to f(x, y), (use, for example, the MMöbius tranformation(
1 −1
0 1

)
when b = 1) and indeed [I]2 = [OK ].
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Corollary 5.7. Let p - D be a prime number. Then p is represented by the
principal form of OK if and only if p splits completely in the Hilbert class
field H/K.

Proof. Suppose OK = Z⊕ Zβ where β =
√
d 1+

√
d

2 . Have

f(x, y) = (x+ yβ)(x+ yβ) = NK/Q(x+ yβ)

so p is representated by f(x, y) if and only if exists α ∈ OK such that NK/Q(α) =
αα = p, if and only if exists α ∈ OK such that (α)(α) = (p), if and only if p
splits in OK , p = Q1Q2 and both Q1 and Q2 are principal. Now recall the
isomorphism φH/K : HK → Gal(H/K) sending [Q] 7→ Gal(Q,H/K), Q ⊆ OK
a non-zero prime ideal, DQ′/Q = 〈(Q,H/K)〉. So p is represented by f(x, y) if
and only if p splits and φH/K(Q1) = idH , if and only if p splits and Q1Q2 splits
completely in H/K (?), if and only if p splits completely in H/Q.

We can show that if f(x, y) is a reduced form of discriminant D then f(x, y)
represents a prime p | D if and only if p splits p = Q1Q2 in OK and φH/K(Qi)
equals φH/K([I]) for some i = 1, 2, where [I] is the class corresponding to f(x, y).

Idea:H/K/Q. p is represented by some form f(x, y) of discriminant D if
and only if p splits in OK , which forms f(x, y) repsent p is determined by the
factorisation of p in OH .

Example. d = −1,K = Q(i), D = −4. There is a unique reduced form x2 + y2

so if pndivides2 then x2 + y2 represents p if and only if p splits in Z[i], if and
only if

(−1
p

)
= 1, if and only if p = 1 (mod 4).

Example. d = −5, D = −20. Have bound |b| ≤
√

|D|
3 < 3 so |b| = 0, 1, 2. Also

b2 − 4ac = −20. If b = 0 then there is a unique reduced form x2 + 5y2. If b = 2
then there is a unique reduced form 2x2 + 2xy + 3y2. The Hilbert class field is
H = K(i) = K(

√
5). Thus if p - 20 then x2 + 5y2 representes p if and only if

p splits in H and 2x2 + 2xy + 3y2 represents p if and only if p splits in K but
does not split in Q(i).
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