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0 Introduction

0 Introduction
Algebraic geometry is the study of polynomial equations.

Example. 𝐸 = {(𝑥, 𝑦) ∈ C2 ∶ 𝑦2 = 𝑥3 − 𝑥}. Sketch this.
Consider 𝑝 ∶ 𝐸 → C, (𝑥, 𝑦) ↦ 𝑥. For each 𝑥 ∉ {0, ±1}, there are 2 points in

𝑝−1(𝑥). So this is a double cover ramified at 0, ±1, the precise meaning of these
phrases will be defined later. How does this help us sketch? For 𝑥 away from
the three points, the preimage of a disk under 𝑝 are two copies of the disk. If 𝑥
is near 0, we have 𝑥3 − 𝑥 ≈ −𝑥 so locally it looks like 𝑦2 = −𝑥. If we project
(𝑥, 𝑦) to 𝑥 we get a disk winding around twice. But if we project to 𝑦 we get a
bijection.

Still, how do we visualise 𝐸? First let’s sketch it over R. If (𝑥, 𝑦) ∈ R2 then
𝑦2 ≥ 0 so 𝑥(𝑥2 − 1) ⋅ 0. Thus 𝑥 ≥ 1 or −1 ≤ 𝑥 ≤ 0. Just like in high school, we
can differentiate. (graph) The infinite bit should be visualised as a circle minus
a point.

Now let (𝑥, 𝑦) ∈ C2. Let

Γ = {(𝑥, 𝑦) ∈ 𝐸 ∶ 𝑦 ∈ R, 𝑥 ∈ [−1, 0] ∪ [1, ∞)} = 𝑝−1{[−1, 1] ∪ [1, ∞)}.

Claim 𝐸 \ Γ is disconnected and it consists of two pieces, each isomorphic via
𝑝 to C ⊆ ([−1, 0] ∪ [1, ∞)). This is equivalent to the claim that if 𝑥 ∈ C ⊆
([−1, 0] ∪ [1, ∞)) then can choose a square root of 𝑥3 − 𝑥, and then as you
wander around, this remains a single-valued functions. The proof is left as an
exercise.

Granting this, we have two copies of C ⊆ ([−1, 0] ∪ [1, ∞)). Turn one of
them around and glue (graph).

More surprisingly, solutions of equaitons have a topology!
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1 The dictionary between algebra and geometry

1 The dictionary between algebra and geometry

1.1 Basic notions

Definition (𝑘-algebra). Let 𝑘 be a field. A (commutative) 𝑘-algebra is a
unital commutative ring countaining 𝑘 as a subring.

Example. 𝑘[𝑥1, … , 𝑥𝑛], the polynomial ring in 𝑛-variables.

Notation. If 𝑘 is a fields, write A𝑛 = A𝑛(𝑘) = 𝑘𝑛, the affine 𝑛-space.

Observe that every 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] defines a function

A𝑛(𝑘) → A1(𝑘)
(𝑝1, … , 𝑝𝑛) ↦ 𝑓(𝑝1, … , 𝑝𝑛) = ev𝑝(𝑓)

This defines a map from 𝑘[𝑥1, … , 𝑥𝑛] to the space of all functions A𝑛 → A1.
If 𝑘 is finite then it is surjective but not injective, and if 𝑘 is infinite then it is
not surjective.

More generally, if 𝐿 ⊇ 𝑘 is an algebraic extension then one can define a
function A𝑛(𝐿) → A1(𝐿) by evaluating 𝑓 at a point in 𝐿𝑛. Therefore 𝑓 defines a
function A𝑛(𝑘) → A1(𝑘) where 𝑘 is the algebraic closure of 𝑘. So now the map
𝑘[𝑥1, … , 𝑥𝑛] → {A𝑛(𝑘) → A1(𝑘)} is injective for all 𝑘 but never surjective.

The conclusion is that we should think of 𝑘[𝑥1, … , 𝑥𝑛] as very special func-
tions 𝑘𝑛 → 𝑘, namely “polynomial with 𝑘-coefficients”. As a concrete example,
let 𝑘 = F𝑞. Then 𝑥𝑞 − 𝑥 defines a function 𝑘 → 𝑘 that is not zero.

Definition (algebraic set). Let 𝑆 ⊆ 𝑘[𝑥1, … , 𝑥𝑛]. Define

𝑍(𝑆) = {𝑝 ∈ A𝑝 ∶ 𝑓(𝑝) = 0 for all 𝑓 ∈ 𝑆} ⊆ A𝑛

which are the simultaneous zeros of equations in 𝑆. Such a subset is known
as algebraic set, Zariski closed subset of A𝑛.

Example.

1. A𝑛 = 𝑍(0).

2. 𝑍(𝑥) = {0}. Similarly 𝑍(𝑥 − 7) = {7}.

3. If 𝑓(𝑥) = (𝑥 − 𝜆1) … (𝑥 − 𝜆𝑛) then 𝑍(𝑓) = {𝜆1, … , 𝜆𝑛}.

4. if 𝑘 = 𝑘 then algebraic subsets of A1 are ∅,A1 or finite set of points of 𝑘.

5. In A2, 𝑍(𝑦2 − 𝑥3 + 𝑥) = 𝐸 which we sketched in introduction.

6. In A2, 𝑍(𝑥, 𝑦) = {(0, 0)}, 𝑍(𝑥𝑦) is the union of two axes. 𝑍(𝑦) is the
𝑥-axis and 𝑍(𝑦(𝑦 − 1), 𝑥(𝑦 − 1)) is the union of a point and a line.

If 𝐽 is the ideal generated by 𝑆, i.e.

𝐽 = {∑ 𝑎𝑖𝑓𝑖 ∶ 𝑎𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑓𝑖 ∈ 𝑆}

then 𝑍(𝐽) = 𝑍(𝑆).
Recall from IB Groups, Rings and Modules
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1 The dictionary between algebra and geometry

Theorem 1.1 (Hilbert basis theorem). If 𝑘 is Noetherian then so is 𝑘[𝑥].

So every ideal in 𝑘[𝑥1, … , 𝑥𝑛] is finitely generated. Therefore there exist
𝑓1, … , 𝑓𝑟 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that

𝑍(𝑆) = 𝑍(𝑓1, … , 𝑓𝑟).

Thus algebraic sets are solutions of finitely many polynomial equations.

Lemma 1.2.

1. If 𝐼 ⊆ 𝐽 then 𝑍(𝐽) ⊆ 𝑍(𝐼).

2. 𝑍(0) = A𝑛 and 𝑍(𝑘[𝑥1, … , 𝑥𝑛]) = ∅.

3. 𝑍(⋃ 𝐽𝑖) = 𝑍(∑ 𝐽𝑖) = ⋂ 𝑍(𝐽𝑖) for any (possibly infinite) family of
ideals {𝐽𝑖}.

4. 𝑍(𝐼 ∩ 𝐽) = 𝑍(𝐼) ∪ 𝑍(𝐽) for ideals 𝐼, 𝐽.

Proof. 1, 2, 3 are clear. For 4, ⊇ follows from 1. For ⊆, if 𝑥 ∉ 𝑍(𝐼) then exists
𝑓1 ∈ 𝐼 with 𝑓1(𝑥) ≠ 0 and if 𝑥 ∉ 𝑍(𝐽) then exists 𝑓2 ∈ 𝐽 with 𝑓2(𝑥) ≠ 0. Thus
𝑓1𝑓2(𝑥) = 𝑓1(𝑥)𝑓2(𝑥) ≠ 0 so 𝑥 ∉ 𝑍(𝑓1𝑓2). But 𝑓1𝑓2 ∈ 𝐼 ∩ 𝐽 as 𝐼 and 𝐽 are
ideals. Thus 𝑥 ∉ 𝑍(𝐼 ∩ 𝐽).

We can define a map goes the other direction. If 𝑍 ⊆ A𝑛(𝑘) is a subset,
define

𝐼(𝑍) = {𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] ∶ 𝑓(𝑝) = 0 for all 𝑝 ∈ 𝑍}.

If 𝑓 ∈ 𝐼(𝑍), 𝑔 ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑓𝑔(𝑝) = 𝑓(𝑝)𝑔(𝑝) = 0 if 𝑝 ∈ 𝑍 so 𝐼(𝑍) is an
ideal.

Lemma 1.3.

1. If 𝑍 ⊆ 𝑍′ then 𝐼(𝑍′) ⊆ 𝐼(𝑍).

2. For any 𝑌 ⊆ A𝑛, 𝑌 ⊆ 𝑍(𝐼(𝑌 )).

3. If 𝑉 = 𝑍(𝐽) is an algebraic subset then 𝑉 = 𝑍(𝐼(𝑉 )).

4. If 𝐽 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] is an ideal then 𝐽 ⊆ 𝐼(𝑍(𝐽)).

Proof. 1, 2 and 4 are immediate. For 3, ⊇ follows from 𝐼(𝑉 ) = 𝐼(𝑍(𝐽) ⊇ 𝐽 by
4 so 𝑍(𝐼(𝑉 )) ⊆ 𝑍(𝐽) = 𝑉 by 1. ⊆ follows from 2.

The first lemma says that algebraic subsets of A𝑛 form the closed sets of a
topology on A𝑛. This is called the Zariski topology.

Example. If 𝑋 = A1(𝑘) where 𝑘 = 𝑘, the closed subsets are finite subsets of
points of A1.

Note that if 𝑘 = C, if 𝑍 ⊆ A𝑛(𝑘) is Zariski closed then it is closed in the
usual sense.

The second lemma says that 𝑍(𝐼(𝑌 )) is the smallest algebraic subset of A𝑛

containing 𝑌, i.e. the closure of 𝑌 in the Zariski topology.
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1 The dictionary between algebra and geometry

Example. If 𝑘 = C and Z ⊆ C then 𝑍(𝐼(Z)) = C as if a polynomial vanishes
at Z then it must be zero.

We have a correspondence

{algebraic subsets of A𝑛} {ideals in 𝑘[𝑥1, … , 𝑥𝑛]}
𝐼

𝑍

Note that this is not quite a bijection. For example in 𝑘[𝑥],

𝑍(𝑥) = 𝑍(𝑥2) = 𝑍(𝑥3) = ⋯

and more generally
𝑍(𝑓𝑞1

1 ⋯ 𝑓𝑔𝑟𝑟 ) = 𝑍(𝑓1 ⋯ 𝑓𝑟)

where 𝑞𝑖 > 0. We will fix this shortly.

1.2 Hilbert’s Nullstellensatz
Let 𝑌 ⊆ A𝑛 be an algebraic subset so 𝑌 = 𝑍(𝐼(𝑌 )). Recall that we have a map
𝑘[𝑥1, … , 𝑥𝑛] → {𝑘𝑛 → 𝑘}. Hence by restriction we have a map 𝑘[𝑥1, … , 𝑥𝑛] →
{𝑌 → 𝑘} as 𝑌 ⊆ 𝑘𝑛. By definition 𝐼(𝑌 ) ↦ 0. This motivates us to make the
following definition:

Definition. Let 𝑌 ⊆ A𝑛 be an algebraic set. Then

𝑘[𝑌 ] = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼(𝑌 ).

We’ve just seen 𝑘[𝑌 ] ↪ {𝑌 → 𝑘} so 𝑘[𝑌 ] is a special class of functions on 𝑌,
namely “polynomial functions on 𝑌 with 𝑘-coefficients”.

Example.

• 𝑘[A𝑛] = 𝑘[𝑥1, … , 𝑥𝑛].

• 𝑘[𝐸] = 𝑘[𝑥, 𝑦]/(𝑦2 − 𝑥3 + 𝑥).

Clearly 𝑘[𝑌 ] is a 𝑘-algebra. Our aim is to recover 𝑌 completely from this
𝑘-algebra.

Observe that if 𝑝 ∈ 𝑌 ⊆ A𝑛(𝑘) then the map

𝑘[𝑌 ] → 𝑘
𝑓 ↦ 𝑓(𝑝)

is an algebra homomorphism. It is surjective and its kernel, denoted

𝔪𝑝 = {𝑓 ∈ 𝑘[𝑌 ] ∶ 𝑓(𝑝) = 0},

is a maximal ideal, as 𝑘[𝑌 ]/𝔪𝑝 is a field. So

{points in 𝑌 } ↪ {algebra homomorphism 𝑘[𝑌 ] → 𝑘} ↪ {max ideals 𝔪 ⊆ 𝑘[𝑌 ]}.

It is remarkable that if 𝑘 = 𝑘 then all of these coincides (it is particularly so for
the first inclusion, as it gives a translation between geometry and algebra. By
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1 The dictionary between algebra and geometry

contrast, the second inclusion is more or less a corollary of a standard result in
algebra).

What are the maximal ideals of 𝑘[𝑥1, … , 𝑥𝑛]? We’ve observed if 𝑝 ∈ 𝑘𝑛 then
{𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] ∶ 𝑓(𝑝) = 0} is a maximal ideal.

Not all maximal ideals are of the form 𝔪𝑝, however. For example if 𝑘 = R
then (𝑥2 + 1) ⊆ R[𝑥] is a maximal ideal as R[𝑥]/(𝑥2 + 1) ≅ C. Nevertheless,
notice that R ⊆ C and this is an extension of R.

Theorem 1.4 (Nullstellensatz). If 𝔪 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] is a maximal ideal
then 𝑘[𝑥1, … , 𝑥𝑛]/𝔪 = 𝐿 is an algebraic field extension of 𝑘, and finite-
dimensional over 𝑘.

Note that in this setting 𝐿 is finite-dimensional over 𝑘 if and only if every
𝛼 ∈ 𝐿 is algebraic over 𝑘. For the nontrivial direction, images of 𝑥1, … , 𝑥𝑛 in
𝐿 generate 𝐿 and each satisfies a polynomial equation of degree 𝑑𝑖 so dim𝑘 𝐿 ≤
𝑑1 ⋯ 𝑑𝑛.

Corollary 1.5. If 𝑘 = 𝑘 then the field embedding 𝑘 → 𝐿 is an isomorphism,
that is every maximal ideal of 𝑘[𝑥1, … , 𝑥𝑛] is of the form

𝔪𝑝 = (𝑥1 − 𝑝1, … , 𝑥𝑛 − 𝑝𝑛)

for 𝑝 ∈ 𝑘𝑛.

Proof. 𝐿 ⊇ 𝑘 is an algebraic extension of fields so 𝐿 = 𝑘 as 𝑘 = 𝑘 and 𝑝𝑖 is the
image of 𝑥𝑖 under the map 𝑘[𝑥1, … , 𝑥𝑛] → 𝑘[𝑥1, … , 𝑥𝑛]/𝔪𝑝 = 𝐿.

Corollary 1.6. Suppose 𝑘 = 𝑘. If 𝑌 ⊆ A𝑛 is an algebraic set then we have
bijections

{points in 𝑌 } → {algebra homomorphisms 𝑘[𝑌 ] → 𝑘} → {maximal ideals of 𝑘[𝑌 ]}

𝑝 ↦ ev𝑝 ∶ 𝑓 ↦ 𝑓(𝑝)
𝜑 ↦ ker 𝜑

𝜑(𝑝) ↤ 𝜑
𝑘[𝑌 ] → 𝑘 = 𝑘[𝑌 ]/𝔪 ↤ 𝔪

Proof. When 𝑌 = A𝑛 this is Nullstellensatz. In general, an algebra homomor-
phism 𝜑 ∶ 𝑘[𝑥1, … , 𝑥𝑛]/𝐼 → 𝑘 is the same thing as an algebra homomorphism
𝑘[𝑥1, … , 𝑥𝑛] → 𝑘 with 𝐼 in its kernel.

We will give a better proof later when we are more adept at playing with
polynomial equations, but for now we’ll prove a special case.

Proof of Nullstellensatz when 𝑘 is uncountable. Suppose 𝐿 is not algebraic. Then
there exists 𝑡 ∈ 𝐿 which is not algebraic over 𝑘 so 𝑘(𝑡) ⊆ 𝐿. But observe the
following:

1. 𝐿 has countable dimension as a vector space over 𝑘.
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1 The dictionary between algebra and geometry

2. The set
{ 1

𝑡 − 𝜆
∶ 𝜆 ∈ 𝑘} ⊆ 𝐿

is linearly independent: suppose not then exist 𝜆1, … , 𝜆𝑟, 𝑎1, … , 𝑎𝑟 ∈ 𝑘
with 𝑟

∑
𝑖=1

𝑎𝑖
𝑡 − 𝜆𝑖

= 0.

Clear the denominators, we get an algebraic identity that 𝑡 satisfies, con-
tradicting 𝑡 transcendental.

This implies that {𝜆 ∶ 𝜆 ∈ 𝑘} is countable. Absurd.

Corollary 1.7 (Nullstellensatz). Let 𝑘 = 𝑘, 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] an ideal. Then
𝑍(𝐼) ≠ ∅ if 𝐼 ≠ 𝑘[𝑥1, … , 𝑥𝑛].

More generally, let 𝑘 = 𝑘, 𝐼 ⊆ 𝑘[𝑌 ] has 𝑍(𝐼) ≠ ∅ if 𝐼 ≠ 𝑘[𝑌 ].

Proof. If 𝐼 ≠ 𝑘[𝑥1, … , 𝑥𝑛] then 𝐼 ⊆ 𝔪 for some maximal ideal 𝔪. But Nullstel-
lensatz says that 𝑍(𝔪) = {𝑝} for some 𝑝 ∈ 𝑘𝑛 as 𝔪 = 𝔪𝑝 for some 𝑝. Thus

𝑍(𝐼) ⊇ 𝑍(𝔪) = {𝑝} ≠ 0.

This motivates us to give an abstract, algebraic definition of algebraic set.

Definition (radical). Let 𝑅 be a ring and 𝐽 ⊆ 𝑅 an ideal. The radical of
𝐽 is √

𝐽 = {𝑓 ∈ 𝑅 ∶ 𝑓𝑛 ∈ 𝐽 for some 𝑛 ≥ 1}.

Lemma 1.8. Given an ideal 𝐽 ⊆ 𝑅,
√

𝐽 is an ideal.

Proof. If 𝑓, 𝑔 ∈
√

𝐽 then 𝑓𝑛 ∈ 𝐽, 𝑔𝑚 ∈ 𝐽 for some 𝑛, 𝑚. Then

(𝑓 + 𝑔)𝑛+𝑚 =
𝑛+𝑚

∑
𝑖=0

(𝑛 + 𝑚
𝑐

)𝑓 𝑖𝑔𝑛+𝑚−𝑖 ∈ 𝐽

so 𝑓𝑔 ∈
√

𝐽.
If 𝑟 ∈ 𝑅, 𝑓 ∈

√
𝐽 then 𝑟𝑓 ∈

√
𝐽.

Example.

1. √(𝑥𝑛) = (𝑥) in 𝑘[𝑥].

2. If 𝐽 is a prime ideal then
√

𝐽 = 𝐽.

3. If 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] is irreducible then (𝑓) is a prime ideal. As 𝑘[𝑥1, … , 𝑥𝑛]
is a UFD, √(𝑓) = (𝑓).

Note that 𝑍(𝐽) = 𝑍(
√

𝐽).
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1 The dictionary between algebra and geometry

Theorem 1.9 (Nullstellensatz). If 𝑘 = 𝑘, 𝐽 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] then 𝐼(𝑍(𝐽)) =√
𝐽.

Proof. Let 𝑓 ∈ 𝐼(𝑍(𝐽)) so 𝑓(𝑝) = 0 for all 𝑝 ∈ 𝑍(𝐽). We must show that 𝑓𝑛 ∈ 𝐽
for some 𝑛 > 0. Consider 𝑘[𝑥1, … , 𝑥𝑛, 𝑡]/(𝑡𝑓 − 1) = 𝑘[𝑥1, … , 𝑥𝑛, 1

𝑓 ]. Let 𝐼 be
the ideal in this ring generated by the image of 𝐽. Claim that 𝑍(𝐼) = ∅: if not,
let 𝑝 ∈ 𝑍(𝐼). As 𝐽 ⊆ 𝐼, 𝑝 ∈ 𝑍(𝐽) so 𝑓(𝑝) = 0. But 𝑝 = (𝑝1, … , 𝑝𝑛, 𝑝𝑡) with
𝑝𝑡𝑓(𝑝1, … , 𝑝𝑛) = 1, i.e. 𝑓(𝑝) ≠ 0. Absurd.

Then the corollary to the Nullstellensatz implies that 𝐼 = 𝑘[𝑥1, … , 𝑥𝑛, 1
𝑓 ] (we

used the fact 𝑘 = 𝑘). As 1 ∈ 𝐼 = (𝐽),

𝑁
∑
𝑖=1

𝛾𝑖
𝑓 𝑖 = 1

for some 𝛾𝑖 ∈ 𝐽 for some 𝑁 ≥ 1. Multiply by 𝑓𝑁, get

𝑓𝑁 =
𝑁

∑
𝑖=1

𝛾𝑖𝑓𝑁−𝑖 ∈ 𝐽.

Remark. Let’s try to deconstruct this mysterious proof. What are the points
of 𝑘[𝑥1, … , 𝑥𝑛, 𝑡]/(𝑡𝑓 − 1) = 𝑘[𝑌 ]? Here

𝑌 = {(𝑝1, … , 𝑝𝑛, 𝑝𝑡) ∈ A𝑛+1 ∶ 𝑝𝑡𝑓(𝑝1, … , 𝑝𝑛) = 1}

which is isomorphic as a set to

{(𝑝1, … , 𝑝𝑛) ∈ A𝑛 ∶ 𝑓(𝑝) ≠ 0} = A𝑛 \ 𝑍(𝑓).

So 𝑌 is a Zariski closed subset of A𝑛+1 which is isomorphic as a set to A𝑛 \𝑍(𝑓),
and our proof was asking in what does

𝑍(𝑓) ∩ (A𝑛 \ 𝑍(𝑓)) = ∅

mean in terms of the ideal 𝐽.

Corollary 1.10. Suppose 𝑘 = 𝑘, 𝐼, 𝐽 ⊆ 𝑘[𝑥1, … , 𝑥𝑛]. Then 𝑍(𝐼) = 𝑍(𝐽) if
and only if 𝐼(𝑍(𝐼)) = 𝐼(𝑍(𝐽)) if and only if

√
𝐼 =

√
𝐽. That is we have a

bijection between

{Zariski closed subsets of A𝑛} {radical ideal 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛]}

𝑝 𝔪𝑝

𝐼

𝑍

This is a hint that we may have an intrinsic characterisation of rings 𝑘[𝑌 ].
We’ll do this shortly.
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1 The dictionary between algebra and geometry

Definition ((ir)reducible, disconnected). An algebraic subset 𝑌 is reducible
if there exist algebraic subsets 𝑌1, 𝑌2 ≠ 𝑌 such that 𝑌1 ∪ 𝑌2. It is irreducible
if is not reducible. It is disconnected if 𝑌1 ∩ 𝑌2 = ∅.

Example.

1. 𝑍(𝑥𝑦) = 𝑍(𝑥) ∪ 𝑍(𝑦) is reducible.

2. 𝑍(𝑦(𝑦 − 1), 𝑥(𝑦 − 1)) = 𝑍(𝑥, 𝑦) ∪ 𝑍(𝑦 − 1) is reducible and disconnected.

In other words, 𝑌 is reducible/disconnected in Zariski topology. In usual
topology, such as the usual one R, almost every set is reducible. However,
in Zariski topology there are so few closed sets that this is actually a useful
definition. In fact, they have a very nice algebraic characterisation:

Lemma 1.11. 𝑌 is irreducible if and only if 𝐼(𝑌 ) is a prime ideal in
𝑘[𝑥1, … , 𝑥𝑛].

Proof. If 𝑌 = 𝑌1 ∪ 𝑌2 is reducible then exists 𝑝 ∈ 𝑌1 \ 𝑌2 so exists 𝑓 ∈ 𝐼(𝑌2)
with 𝑓(𝑝) ≠ 0. Similarly exists 𝑞 ∈ 𝑌2 \ 𝑌1 so exists 𝑔 ∈ 𝐼(𝑌1) with 𝑔(𝑞) ≠ 0. So

𝑓𝑔 ∈ 𝐼(𝑌1) ∩ 𝐼(𝑌1) = 𝐼(𝑌 ).

But 𝑓, 𝑔 ∉ 𝐼(𝑌 ) so 𝐼(𝑌 ) is not prime.
Conversely if 𝐼(𝑌 ) is not prime then exists 𝑓1, … , 𝑓2 ∈ 𝑘[𝑥1, … , 𝑥𝑛] with

𝑓1, 𝑓2 ∉ 𝐼(𝑌 ) but 𝑓1𝑓2 ∈ 𝐼(𝑌 ). Set 𝑌𝑖 = 𝑌 ∩ 𝑍(𝑓𝑖). Then 𝑌1 ∪ 𝑌2 = 𝑌 as for
𝑝 ∈ 𝑌, 𝑓1𝑓2(𝑝) = 0 so 𝑓1(𝑝) = 0 or 𝑓2(𝑝) = 0 and 𝑌𝑖 ≠ 𝑌 as 𝑓2 ∉ 𝐼(𝑌 ).

Example. 𝐼 = (𝑥1, … , 𝑥𝑚) ⊆ 𝑘[𝑥1, … , 𝑥𝑚] is prime, as

𝑘[𝑥1, … , 𝑥𝑛]/(𝑥1, … , 𝑥𝑚) = 𝑘[𝑥𝑚+1, … , 𝑥𝑛]

is an integral domain.

Exercise. Recall that if 𝑅 is a UFD, 𝑓 ∈ 𝑅 nonzero then if 𝑓 is irreducible then
(𝑓) is a prime ideal. Furthermore as 𝑘[𝑥1, … , 𝑥𝑛] is a UFD, it is an exercise to
check that 𝑍(𝑦 − 𝑥2), 𝑍(𝑦2 − 𝑥3 + 𝑥) are irreducible.

Zariski topology is very different from usual topology: if 𝑋 is an irreducible
Zariski closed subset and 𝑈 ⊆ 𝑋 is a nonempty Zarisk open subset in 𝑋 then
𝑈 = 𝑋, i.e. nonempty Zariski open subsets are dense.

Proof. Let 𝑌 = 𝑋 \ 𝑈 which is closed. Then 𝑈 ∪ 𝑌 = 𝑋 and 𝑈 ≠ ∅ so 𝑌 ≠ 𝑋.
But 𝑋 is irreducible so 𝑈 = 𝑋.

Application (Cayley-Hamilton). Let 𝐴 ∈ Mat𝑛(𝑘), an 𝑛 × 𝑛 matrix. Define
its characteristic polynomial to be

𝜒𝐴(𝑥) = det(𝑥𝐼 − 𝐴) ∈ 𝑘[𝑥]

This defines a map

Mat𝑛(𝑘) → Mat𝑛(𝑘)
𝐵 ↦ 𝜒𝐴(𝐵)

Then for all 𝐴, 𝜒𝐴(𝐴) = 0.

9



1 The dictionary between algebra and geometry

Proof. Strategy:

1. The set of matrices for which Cayley-Hamilton holds is a Zariski closed
subset of A𝑛2 .

2. It holds for diagonalisable matrices, which is a Zariski open subset of A𝑛2 .

3. Hence as A𝑛2 is an irreducible algebraic set, it holds for all matrices.

Let 𝑋 = Mat𝑛(𝑘) = 𝑘𝑛2 = A𝑛2 be the space of matrix coefficients. It is an
affine space so irreducible closed. Consider

𝐶 = {𝐴 ∈ Mat𝑛(𝑘) ∶ 𝜒𝐴(𝐴) = 0}.

Claim that this is a Zariski closed subset, cut out by 𝑛2 equations of the form
𝜒𝐴(𝐴)𝑖𝑗 = 0. We must check these equations are polynomial equations in the
matrix coefficients of 𝐴. Note that

𝜒𝐴(𝑥) ∈ 𝑘[𝑋 × A1] = 𝑘[A𝑛2+1],

i.e. det(𝑥𝐼 − 𝐴) is a polynomial equation in 𝑛2 + 1 variables: matrix coefficients
of 𝐴 and 𝑥. Now substitute 𝑥 = 𝐴. Note that matrix coefficients of 𝐴𝑟, (𝐴𝑟)𝑖𝑗,
are polynomials in the matrix coefficients of 𝐴 (of degree 𝑟). Hence 𝜒𝐴(𝐴)𝑖𝑗 are
polynomial equations in coefficients of 𝐴.

As Mat𝑛(𝑘) ⊆ Mat𝑛(𝑘), suffices to prove the case 𝑘 = 𝑘. Note that

𝜒𝐴(𝑥) = 𝜒𝑔𝐴𝑔−1(𝑥)
𝜒𝐴(𝑔𝐵𝑔−1) = 𝑔𝜒𝐴(𝐵)𝑔−1

for all 𝑔 ∈ GL𝑛(𝑘). so 𝜒𝐴(𝐴) = 0 if and only if 𝜒𝑔𝐴𝑔−1(𝑔𝐴𝑔−1) = 0, so 𝐴 satisfies
its only characteristic polynomial if and only if 𝑔𝐴𝑔−1 does for all 𝑔 ∈ GL𝑛(𝑘).

Now let 𝑈 be the set of all matrices with distinct eigenvalues. As 𝑘 = 𝑘,
𝐴 ∈ 𝑈 implies that there exists 𝑔 ∈ GL𝑛(𝑘) such that 𝑔𝐴𝑔−1 is

⎛⎜⎜⎜
⎝

𝜆1
𝜆2

⋱
𝜆𝑛

⎞⎟⎟⎟
⎠

which clearly satisfies its own characteristic polynomial. Moreover 𝑈 ≠ ∅ since
we can always find distinct elements 𝜆1, … , 𝜆𝑛 of 𝑘 as 𝑘 = 𝑘.

Left to show 𝑈 is Zariski open. 𝐴 ∈ 𝑈 if and only 𝜒𝐴(𝑥) ∈ 𝑘[𝑥] has distinct
roots. But a polynomial 𝑓 has distinct roots if and only if 𝑓 and 𝑓 ′ have no
common root, if and only if Δ(𝑓) ≠ 0, where the discriminant Δ(𝑓) is a poly-
nomial in the coefficients of 𝑓. Hence 𝐴 ∈ 𝑈 if and only if Δ(𝜒𝐴(𝑥)) ≠ 0, so 𝑈
is Zariski open.

Now back to the abstract characterisation of algebraic varieties. We need
some preliminary definitions:

Definition (nilpotent). Let 𝑅 be a ring. 𝑦 ∈ 𝑅 is nilpotent if exists 𝑛 > 0
such that 𝑦𝑛 = 0.

10



1 The dictionary between algebra and geometry

Example.

1. If 𝑅 = 𝑘[𝑥] then 0 is the only nilpotent.

2. If 𝑅 = 𝑘[𝑥]/(𝑥7) then 𝑥 is nilpotent as 𝑥7 = 0.

Exercise. Let 𝐽 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be an ideal and 𝑅 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐽. Then
𝐽 =

√
𝐽 if and only if 𝑅 has no nonzero nilpotents.

Corollary 1.12. Let 𝑘 = 𝑘. If 𝑌 ⊆ A𝑛 is a Zariski closed subset then 𝑘[𝑌 ]
is a finitely generated 𝑘-algebra with no nonzero nilpotents.

Conversely, given a finitely generated reduced 𝑘-algebra 𝐴, there exists a
surjection 𝑘[𝑡1, … , 𝑡𝑛] → 𝐴. As 𝐴 is reduced, the kernel is radical. This is
precisely the definition of a coordinate ring.

What do we gain from this? We need not choose a generator set of the
𝑘-algebra, which is the same as an embedding 𝑌 ↪ A𝑛. In this abstract for-
mulation, the “points” in the affine space corresponds to maximal ideals of the
𝑘-algebra.

Definition (affine algebraic variety). An affine algebraic variety over 𝑘,
where 𝑘 is a field, is a finitely generated 𝑘-algebra 𝑅 with no nonzero nilpo-
tent elements.

If 𝑘 = 𝑘, define a point of 𝑅 to be a 𝑘-algebra homomorphism 𝑅 → 𝑘.
More generally if 𝐿 ⊇ 𝑘 is a field extension then an 𝐿-point of 𝑅 is a 𝑘-
algebra homomorphism 𝑅 → 𝐿.

Example. Let 𝐽 =
√

𝐽 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] be a radical ideal and 𝑅 = 𝑘[𝑥1, … , 𝑥𝑛]/𝐽
be an affine algebraic variety.

Coversely, if 𝑅 is such an algebra, choose generators 𝑥1, … , 𝑥𝑛 of 𝑅 as a
𝑘-algebra so get a surjective map 𝑘[𝑥1, … , 𝑥𝑛] → 𝑅 where 𝑥𝑖 ↦ 𝑥𝑖. Let 𝐽 be the
kernel and 𝐽 =

√
𝐽 per the exercise above.

By Nullstellensatz, points of 𝑅 is 𝑍(𝐽) ⊆ 𝑘𝑛 given by

𝑍(𝐽) → {𝑅 → 𝑘}
𝑝 = (𝑝1, … , 𝑝𝑛) ↦ (ev𝑝 ∶ 𝑥𝑖 ↦ 𝑝𝑖)

In general, choice of generators 𝑥1, … , 𝑥𝑛 of 𝑅 is the choice of an embedding of
points of 𝑅 to A𝑛.

Example. R[𝑥]/(𝑥2 + 1) has no R-point, but it has two C-points, given by
𝑥 ↦ ±𝑖.

We indulge in imprecision and often write “let 𝑌 be an affine algebraic variety
and 𝑅 = 𝑘[𝑌 ] be its ring of functions”. What we really mean, when spelt out,
is: let 𝑅 be an affine algebraic variety with 𝑘-points 𝑌.

Definition (morphism). A morphism 𝛾 ∶ 𝑋 → 𝑌 of affine algebraic varieties
is a 𝑘-algebra homomorphism 𝛾∗ ∶ 𝑘[𝑌 ] → 𝑘[𝑋].

An isomorphism 𝛼 ∶ 𝑋 → 𝑌 is a morphism such that there exists an
inverse morphism 𝛽 ∶ 𝑌 → 𝑋 such that 𝛼𝛽 = 1𝑌, 𝛽𝛼 = 1𝑋.
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1 The dictionary between algebra and geometry

Let’s unpack the definition. Suppose 𝑋 and 𝑌 are the points of 𝑅 and 𝑆
respectively. If 𝛾∗ ∶ 𝑆 → 𝑅 is a 𝑘-algebra homomorphism and 𝑝 ∈ 𝑋 is a point
of 𝑋, that is, if ev𝑝 ∶ 𝑅 → 𝑘 is a 𝑘-algebra homomorphism, then ev𝑝 ∘𝛾∗ ∶ 𝑆 → 𝑘
is a 𝑘-algebra homomorphism, so a point in 𝑌. Thus 𝛾∗ defines a map 𝑋 → 𝑌,
which we denote by 𝛾.

So this definition is a clever way of saying the map 𝛾 is defined by polynomial
equations.

Example.

1. Let 𝑋 = A1, 𝑌 = {(𝑥, 𝑦) ∈ A2 ∶ 𝑥2 = 𝑦3} = 𝑍(𝑥2 − 𝑦3). Let 𝑅 = 𝑘[𝑡].
Claim 𝑡 ↦ (𝑡3, 𝑡2) is a morphism 𝑋 → 𝑌. Unpack the definition, we have
𝑘[𝑌 ] = 𝑘[𝑥, 𝑦]/(𝑥2 − 𝑦3) and a 𝑘-algebra homomorphism

𝛾∗ ∶ 𝑘[𝑥, 𝑦]/(𝑥2 − 𝑦3) → 𝑘[𝑡]
𝑥 ↦ 𝑡3

𝑦 ↦ 𝑡2

Check that 𝑥2 − 𝑦3 ↦ 0 so it is well-defined.

Unravel the definition of a morphism in general, let 𝑘[𝑋] = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑠1, … , 𝑠ℓ),
𝑘[𝑌 ] = 𝑘[𝑦1, … , 𝑦𝑚]/(𝑟1, … , 𝑟𝑘) (remember choice of generators 𝑥1, … , 𝑥𝑛 is
choice of embeddings 𝑋 ↪ A𝑛). Let 𝑦1, … , 𝑦𝑚 denote the image of 𝑦1, … , 𝑦𝑚 in
𝑘[𝑌 ]. An algebra homomorphism 𝛾∗ ∶ 𝑘[𝑌 ] → 𝑘[𝑋] is uniquely determined by
where 𝑦1, … , 𝑦𝑚 go, i.e. by

Φ𝑖 = 𝛾∗(𝑦𝑖) ∈ 𝑘[𝑋].

Choose a polynomial Φ𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛] whose reduction is Φ𝑖. Such a choice
determines an algebra homomorphism

𝑘[𝑦1, … , 𝑦𝑚] → 𝑘[𝑥1, … , 𝑥𝑛]
𝑦𝑖 ↦ Φ𝑖

i.e. a morphism A𝑛 → A𝑚, and the conditions on the polynomials Φ𝑖 ensure the
image is in 𝑌 are the condition that the ideal (𝑟1, … , 𝑟𝑘) is sent to 0 in 𝑘[𝑋], i.e.
𝑟𝑖(Φ1, … , Φ𝑚) ∈ (𝑠1, … , 𝑠ℓ) = 0 ∈ 𝑘[𝑋].

Question. Is the morphism in the above example an isomorphism?

Example.

1. A morphsim A1 → A𝑛 is a 𝑘-algebra homomorphism 𝑘[𝑥1, … , 𝑥𝑛] → 𝑘[𝑡],
which is the same as an 𝑛-tuple of polynomials (Φ1(𝑡), … , Φ𝑛(𝑡)).

2. A morphism 𝑋 → A1 is an 𝑘-algebra homomorphism 𝑘[𝑡] → 𝑘[𝑋], which is
an element of 𝑘[𝑋] (i.e. where 𝑡 is sent to). This says that 𝑘[𝑋] is precisely
the functions 𝑋 → A1, which is something we knew before!

3. Suppose ch 𝑘 ≠ 2. Is there a morphism A1 → 𝐸 = {(𝑥, 𝑦) ∶ 𝑦2 = 𝑥3 −
𝑥}? Suppose 𝑘 = C, this is asking if there is a polynomial map from
the punctured sphere to the punctured torus. From analytic point of
view this is impossible (there is not even an analytic functions does this).
Algebraically, this is asking if there exist polynomials 𝑎(𝑡), 𝑏(𝑡) ∈ 𝑘[𝑡] such
that 𝑏2 = 𝑎3 − 𝑎. See example sheet 1.
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1 The dictionary between algebra and geometry

4. Let 𝑋 be an affine algebraic variety and let 𝑓 ∈ 𝑘[𝑋]. Consider

𝑘[𝑋] → 𝑘[𝑋][𝑡]/(𝑡𝑓 − 1) = 𝑘[𝑌 ]

which defines a morphism 𝑌 → 𝑋. What is 𝑌 and what is the morphism?
By definition a point of 𝑌 is a 𝑘-algebra homomorphism 𝛾 ∶ 𝑘[𝑋][𝑡]/(𝑡𝑓 −
1) → 𝑘. Suppose 𝛾(𝑡) = 𝑎 then 𝛾|𝑘[𝑋] = ev𝑝 where 𝑝 ∈ 𝑋 such that
𝑎𝑓(𝑝) = 1, i.e. 𝑓(𝑝) = 1

𝑎 ≠ 0. Conversely, if 𝑓(𝑝) ≠ 0, set 𝑎 = 1
𝑓(𝑝) , we get

a 𝑘-algebra homomorphism. So

𝑌 = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≠ 0} = 𝑋 \ 𝑍(𝑓)

which is Zariski open, and 𝛾 ∶ 𝑌 ↪ 𝑋 is the inclusion. In general, Zariski
open sets of the form 𝑋 \ 𝑍(𝑓) are affine varieties in their own right, and
the inclusion map is a morphism of affine varieties.

By the same argument the complement of the subvariety cut out by a single
polynomial is a variety. We call them

Definition (hypersurface). If 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] then 𝑍(𝑓) ⊆ A𝑛 is called a
hypersurface.

We may ask: is every Zariski open set also an affine variety, i.e. the image
of an affine variety inside some bigger affine space under an injection?. No!
{(𝑥, 𝑦) ∈ A2 ∶ (𝑥, 𝑦) ≠ (0, 0)} is not an affine variety.
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2 Smooth points, dimension & Noether normalisation

2 Smooth points, dimension & Noether normal-
isation

Let 𝑋 ⊆ A𝑛 be an affine variety and 𝑝 ∈ 𝑋. Let 𝑋 = 𝑍(𝐼), 𝐼 = (𝑓1, … , 𝑓𝑟).
Tentatively we define

𝑇𝑝𝑋 = {𝑣 ∈ A𝑛 ∶ ∑ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

(𝑝) = 0 for all 𝑓 ∈ 𝐼}

= {𝑣 ∈ A𝑛 ∶ ∑ 𝑣𝑖
𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑝) = 0, 𝑗 = 1, … , 𝑟}

Translate 𝑇𝑝𝑋 from the origin to 𝑝 ∈ A𝑛 so the equations are

{𝑣 ∈ A𝑛 ∶ ∑(𝑣𝑖 − 𝑝𝑖)
𝜕𝑓
𝜕𝑥𝑖

(𝑝) = 0 for all 𝑓 ∈ 𝐼}.

This is the best linear approximation to 𝑋 at the point 𝑝, as

𝑓(𝑥) = 𝑓(𝑝) + ∑(𝑥𝑖 − 𝑝𝑖)
𝜕𝑓
𝜕𝑥𝑖

(𝑝) + …

If 𝑋 is complex analytic then this is indeed the analytic definition of tangent
space. However it’s not always the case.

Example. If 𝐼 = (𝑥2 − 𝑦3) then

𝑇(𝑎,𝑏)(𝑋) = {(𝑣1, 𝑣2) ∶ 𝑣1(2𝑎) + 𝑣2(−3𝑏2) = 0}.

If (𝑎, 𝑏) ≠ (0, 0) this is a line and if (𝑎, 𝑏) = (0, 0) then this is A2.

Lemma 2.1. {𝑝 ∈ 𝑋 ∶ dim 𝑇𝑝𝑋 ≥ 𝑡} is a Zariski closed subset of 𝑋 for all
𝑡 ≥ 0.

Proof. Write 𝑇𝑝𝑋 = ker(𝐴 ∶ 𝑘𝑛 → 𝑘𝑟) where 𝐴 is the matrix

⎛⎜⎜
⎝

𝜕𝑓1
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓1
𝜕𝑥𝑛

(𝑝)
⋱

𝜕𝑓𝑟
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓𝑟
𝜕𝑥𝑛

(𝑝)

⎞⎟⎟
⎠

By rank-nullity, dim ker 𝐴 ≥ 𝑡 if and only if rank𝐴 ≤ 𝑛−𝑡. But rank of a matrix
𝐴 is greater than or equal to 𝑠 if and only if there exists an 𝑠 × 𝑠 subminor 𝐵
with det 𝐵 ≠ 0, which is a polynomial equation in matrix coefficients. Thus
rank𝐴 ≤ 𝑛 − 𝑡 if and only if all (𝑛 + 1 − 𝑡) × (𝑛 + 1 − 𝑡) subminors have zero
determinant. Hence

{𝑝 ∈ 𝑋 ∶ dim 𝑇𝑝𝑋 ≥ 𝑡} = 𝑍(𝑓1, … , 𝑓𝑟, determinants of subminors).
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2 Smooth points, dimension & Noether normalisation

Definition (dimension). Let 𝑋 be an irreducible affine variety. Then

dim 𝑋 = min{dim 𝑇𝑝𝑋 ∶ 𝑝 ∈ 𝑋}.

If 𝑘 ≠ 𝑘 then 𝑝 is taken to be 𝑘-points.

In a moment we’ll show 𝑇𝑝𝑋 is independent of embedding 𝑋 ↪ A𝑛.
We require 𝑋 to be irreducible as if not then each component can have

different dimensions and dim 𝑋 is not a good notion but we may as well define
it anyway: we let

dim 𝑋 = max{dim 𝑋𝑖 ∶ 𝑋𝑖 irreducible component of 𝑋}.

Lemma 2.2. Suppose 𝑘 = 𝑘. Let 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] be a nonconstant irre-
ducible polynomial. Then 𝑍(𝑓) has dimension 𝑛 − 1.

Proof. dim 𝑇𝑝𝑍(𝑓) is either 𝑛 or 𝑛−1 as there is only one equation. If dim 𝑇𝑝𝑍(𝑓) =
𝑛 then 𝜕𝑓

𝜕𝑥𝑖
(𝑝) = 0 for all 𝑖 so if dim 𝑍(𝑓) = 𝑛 then

𝜕𝑓
𝜕𝑥𝑖

∈ 𝐼(𝑍(𝑓)) = √(𝑓) = (𝑓)

as (𝑓) is prime. Write 𝜕𝑓
𝜕𝑥𝑖

= 𝑓𝑔 for some 𝑔 ∈ 𝑘[𝑥1, … , 𝑥𝑛]. But deg𝑥𝑖

𝜕𝑓
𝜕𝑥𝑖

<
deg𝑥𝑖

𝑓 so 𝑔 = 0, 𝜕𝑓
𝜕𝑥𝑖

= 0. Thus we have shown dim 𝑍(𝑓) = 𝑛 implies that
𝜕𝑓
𝜕𝑥𝑖

= 0 for all 𝑖.
If ch 𝑘 = 0 then 𝑓 is a constant, 𝑍(𝑓) = ∅, contradiction. If ch 𝑘 = 𝑝 this

implies 𝑓 ∈ 𝑘[𝑥𝑝
1, … , 𝑥𝑝

𝑛]. Claim that there exists ℎ ∈ 𝑘[𝑥1, … , 𝑥𝑛] such that
𝑓 = ℎ𝑝, contradicting 𝑓 being prime: write 𝑓 = ∑ 𝑎𝜆𝑥𝑝𝜆 for 𝑎𝜆 ∈ 𝑘. As 𝑘 = 𝑘,
𝑎1/𝑝

𝜆 exists. Set ℎ(𝑥) = ∑ 𝑎1/𝑝
𝜆 𝑥𝜆. As ch 𝑘 = 𝑝, ℎ𝑝 = 𝑓.

Example.

1. dimA𝑛 = 𝑛.

2. Any plane curve 𝑓(𝑥, 𝑦) has dimension 1.

Definition (smooth, singular point). Suppose 𝑘 = 𝑘. Let 𝑋 be an irre-
ducible algebraic variety and 𝑝 ∈ 𝑋. 𝑝 is smooth if dim 𝑇𝑝𝑋 = dim 𝑋. 𝑝 is
singular otherwise.

Thus the above lemma says that singular points form a Zariski closed sub-
variety and smooth points form a Zariski open subset, which is non-empty.

Proposition 2.3 (nonexaminable). If 𝑘 = C and dim 𝑋 = 𝑑, then 𝑝 ∈ 𝑋 is
smooth if and only if there exists an isomorphism from a small ball around
0 ∈ C𝑑 to a small neighbourhood of 𝑝 ∈ 𝑋 in the usual topology.

This is obviously false in Zariski topology.

Proof. This is a consequence of implicit function theorem.
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2 Smooth points, dimension & Noether normalisation

Definition (derivation). Let 𝐴 be a 𝑘-algebra and 𝜑 ∶ 𝐴 → 𝑘 a 𝑘-algebra
homomorphism. A derivation centred at 𝜑 is a 𝑘-linear map 𝐷 ∶ 𝐴 → 𝑘 such
that

𝐷(𝑓𝑔) = 𝜑(𝑓)𝐷(𝑔) + 𝐷(𝑓)𝜑(𝑔)

for all 𝑓, 𝑔 ∈ 𝐴. Write Der(𝐴, 𝜑) for derivations centred at 𝜑.

Example. 𝑓 ↦ 𝜕𝑓
𝜕𝑥 (𝑝) is a derivation centred at 𝑝.

Lemma 2.4. If 𝑋 ⊆ A𝑛 then for all 𝑝 ∈ 𝑋,

𝑇𝑝𝑋 = Der(𝑘[𝑋], ev𝑝).

Proof. If 𝑋 = A𝑛, 𝑘[𝑋] = 𝑘[𝑥1, … , 𝑥𝑛]. Let 𝐷 ∈ Der(𝑘[𝑋], ev𝑝). Let 𝑣𝑖 = 𝐷(𝑥𝑖).
This gives a map

Der(𝑘[𝑋], ev𝑝) → A𝑛

𝐷 ↦ (𝐷(𝑥𝑖) = 𝑣𝑖)

Conversely, given 𝑣 ∈ A𝑛, define a derivation 𝐷 by

𝐷(𝑓) = ∑ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

(𝑝).

In general, 𝑘[𝑋] = 𝑘[𝑥1, … , 𝑥𝑛]/(𝑓1, … , 𝑓𝑟). Let 𝑝 ∈ 𝑋 = 𝑍(𝑓1, … , 𝑓𝑟). Then

Der(𝑘[𝑋], ev𝑝) = {𝐷 ∈ Der(𝑘[𝑥1, … , 𝑥𝑛], ev𝑝) ∶ 𝐷|(𝑓1,…,𝑓𝑛) = 0}

= {𝐷 ∈ Der(𝑘[𝑥1, … , 𝑥𝑛], ev𝑝) ∶ ∑ 𝑣𝑗
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑝) = 0 for all 𝑖}

where 𝑣𝑗 = 𝐷(𝑥𝑗).

Observe that if 𝛼 ∶ 𝑋 → 𝑌 is a morphism of varieties, i.e. 𝛼∗ ∶ 𝑘[𝑌 ] → 𝑘[𝑋] is
a 𝑘-algebra homomorphism, 𝐷 ∈ Der(𝑘[𝑋], ev𝑝) then 𝐷∘𝛼∗ ∈ Der(𝑘[𝑌 ], ev𝛼(𝑝)).
Thus we get a linear map 𝑇𝑝𝑋 → 𝑇𝛼(𝑝)𝑌.

Exercise. Let 𝑓 ∈ 𝑘[𝑋]. Consider 𝑘[𝑋] → 𝑘[𝑈] = 𝑘[𝑋][𝑡]/(𝑡𝑓 − 1). We get a
morphism 𝑈 = 𝑋 \ 𝑍(𝑓) → 𝑋. Let 𝑝 ∈ 𝑈. Show this defines an isomorphism
𝑇𝑝𝑈 → 𝑇𝑝𝑋.

We have two more definitions of dimension of varieties, which agree with our
current definition. To prove so we need some algebraic tools.

Definition (Krull dimension). Let 𝑋 be an irreducible affine variety. The
Krull dimension of 𝑋 is

dimKr 𝑋 = max{𝑟 ∶ 𝑍0 ⊊ 𝑍1 ⊊ ⋯ ⊊ 𝑍𝑟 = 𝑋 ∶ 𝑍𝑖 irreducible Zariski closed}
= max{𝑟 ∶ 0 = 𝐼𝑟 ⊊ 𝐼𝑟−1 ⊊ ⋯ ⊊ 𝐼0 = 𝑘[𝑥] ∶ 𝐼𝑖 prime}

Example.
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2 Smooth points, dimension & Noether normalisation

1. If 𝑋 = A1 then {point} ⊊ A1 is the only such chain so 𝑋 has Krull
dimension 1.

2. If 𝑋 is a plane curve then it has Krull dimension 1, shown in example
sheet 1.

Definition (function field). Let 𝑋 be an irrducible affine variety. Define
the function field of 𝑋 to be

𝑘(𝑋) = Frac 𝑘[𝑋] = ⋃
𝑔∈𝑘[𝑋]

𝑘[𝑋][1
𝑔

] = ⋃
𝑔∈𝑘[𝑋]

𝑘[𝑋 \ 𝑍(𝑔)]

which is non-zero as 𝑘[𝑋] is an integral domain.
We define the transcendence dimension of 𝑋 to be the transcendence

degree of 𝑘(𝑋) over 𝑘

dimtr 𝑋 = trdeg𝑘 𝑘(𝑋).

Example.

1. 𝑘(A𝑛) = 𝑘(𝑥1, … , 𝑥𝑛).

2. 𝐸 = {(𝑥, 𝑦) ∶ 𝑦2 = 𝑥3 − 𝑥}. Then 𝑘(𝐸) = 𝑘(𝑥)[𝑦]/(𝑦2 − 𝑥3 + 𝑥) which is
an algebraic extension of 𝑘(𝑥), so has transcedence dimension 1.

Theorem 2.5. Let 𝑋 be an irreducible affine variety. Then

dim 𝑋 = dimKr 𝑋 = dimtr 𝑋.

Proof. Strategy of proof: show

dimA𝑛 = dimKr A𝑛 = dimtr A𝑛 = 𝑛

then reduce to this.

We want to describe very special maps 𝑋 → 𝑌 with the property that
dim 𝑋 = dim 𝑌 , dimtr 𝑋 = dimtr 𝑌, and then show these maps exist from
𝑋 → A𝑛 if dim 𝑋 = 𝑛.

Suppose we have 𝑋, 𝑌 affine varieties such that

1. 𝑋 and 𝑌 are irreducible,

2. there exists 𝑓 ∈ 𝑘[𝑌 ][𝑡] such that 𝑘[𝑋] = 𝑘[𝑌 ][𝑡]/(𝑓(𝑡)) so

𝑓(𝑡) = 𝑎0(𝑦) + 𝑎1(𝑦)𝑡 + ⋯ + 𝑎𝑁(𝑦)𝑡𝑁 = 𝑓(𝑦, 𝑡),

with 𝑎𝑖(𝑦) ∈ 𝑘[𝑌 ], 𝑎𝑁 ≠ 0. This defines a morphism 𝜑 ∶ 𝑋 → 𝑌.

3. 𝑓 is a separable polynomial when regarded as an element of 𝑘(𝑌 )[𝑡], i.e.
let

𝐹(𝑡) = 1
𝑎𝑁(𝑦)

𝑓(𝑡) = 𝑡𝑁 + 𝑎𝑁−1
𝑎𝑁

𝑡𝑁−1 + ⋯ + 𝑎0
𝑎𝑁

,

then 𝐹(𝑡), 𝐹 ′(𝑡) no common roots. In other words, 𝑘(𝑌 ) ⊆ 𝑘(𝑋) is a
separable algebraic extension.
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2 Smooth points, dimension & Noether normalisation

Claim 1 𝜑(𝑋) contains an open, hence dense subset of 𝑌.

Proof. By definition

𝑋 = {(𝑦0, 𝑡0) ∈ 𝑌 × A1 ∶ 𝑓(𝑦0, 𝑡0) = 0}

so if 𝑦0 ∈ 𝑌 \ 𝑍(𝑎𝑁), that is 𝑎𝑁(𝑦0) ≠ 0, then 𝑓(𝑦0, 𝑡) is a polynomial in 𝑡 of
degree 𝑁, so has exactly 𝑁 roots (counting with multiplicity) over 𝑘, i.e. there
exists1(𝑦0, 𝑡0) ∈ 𝑋 and 𝜑(𝑦0, 𝑡0) = 𝑦0, in particular non-empty.

Claim 2 There exists a non-empty Zariski open subset of 𝑌 such that the
natural map 𝑇(𝑦0,𝑡0)𝑋 → 𝑇𝑦0

𝑌 is an isomorphism.

Remark. Consider 𝑌 = A1, 𝑋 = {(𝑦, 𝑡) ∶ 𝑦 = 𝑡𝑝} with ch 𝑘 = 𝑝. Then

𝑇(𝑎,𝑏)𝑋 = {(𝑣𝑦, 𝑣𝑡) ∶ 𝑣𝑦 − (𝑝𝑡𝑝−1|(𝑎,𝑏))𝑣𝑡 = 0} = {(0, 𝑣𝑡) ∶ 𝑣𝑡 ∈ A1}

as 𝑝 = 0. So 𝑇(𝑎,𝑏)𝑋 → 𝑇𝑎𝑌 is the zero map. Thus separability assumption is
important.

Proof. Choose generators for 𝑘[𝑌 ], i.e. 𝑌 ⊆ A𝑛. Then

𝑇𝑦0
𝑌 = {𝑣 ∈ A𝑛 ∶ ∑ 𝑣𝑖

𝜕ℎ
𝜕𝑥𝑖

(𝑦0) = 0 for all ℎ ∈ 𝐼(𝑌 )}

𝑇(𝑦0,𝑡0)𝑋 = {(𝑣, 𝛾) ∈ A𝑛 × A1 ∶ ∑ 𝑣𝑖
𝜕ℎ
𝜕𝑥𝑖

(𝑦0) = 0 for all ℎ ∈ 𝐼(𝑌 ),

∑ 𝑣𝑖
𝜕𝑓
𝜕𝑥𝑖

(𝑦0, 𝑡0) + 𝛾𝜕𝑓
𝜕𝑡

(𝑦0, 𝑡0) = 0}

as 𝐼(𝑋) = 𝐼(𝑌 , 𝑓). But then

𝑇(𝑦0,𝑡0) = {(𝑣, 𝛾) ∈ 𝑇𝑦0
𝑌 × A1 ∶ ∑ 𝑣𝑖

𝜕𝑓
𝜕𝑥𝑖

(𝑦0, 𝑡0) + 𝛾𝜕𝑓
𝜕𝑡

(𝑦0, 𝑡0) = 0}

Claim this is equivalent to: there exists Zariski open subset of 𝑌 included in the
above such that 𝜕𝑓

𝜕𝑡 (𝑦0, 𝑡0) ≠ 0 for all 𝑦0 ∈ 𝑈, and this is immediate if 𝜕𝑓
𝜕𝑡 is not

the zero polynomial in 𝑘[𝑌 ][𝑡], but our assumption about separability implies it
is not.

𝜑−1(𝑈) 𝑋

𝑈 𝑌

𝜑

where 𝑈 has finite fibre and 𝜑 restricted to 𝜑−1(𝑈) induces isomorphism of
tangent space.

Corollary 2.6.

dim 𝑋 = dim 𝑌 , dimtr 𝑋 = dimtr 𝑌 .
1Lecturer suddenly declares 𝑘 = 𝑘.
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2 Smooth points, dimension & Noether normalisation

Proof. dimtr 𝑋 = dimtr 𝑌 is an immediate algebraic fact.
Let 𝑌 sm be the smooth points of 𝑌. As 𝑌 is irreducible, this is an open dense

set and hence 𝑈 ∩ 𝑌 sm is non-empty so dim 𝑇𝑦𝑌 = dim 𝑌 if 𝑦 ∈ 𝑌 sm ∩ 𝑈 and

dim 𝑇(𝑦,𝑡)𝑋 = dim 𝑇𝑦𝑌 = dim 𝑌

for all (𝑦, 𝑡) ∈ 𝜑−1(𝑦). But 𝜑−1(𝑈 ∩ 𝑌 sm) is an open set and 𝑋 is irreducible, so

dim 𝑋 = dim 𝑇𝑥𝑋 = dim 𝑌

for all 𝑥 ∈ 𝜑−1(𝑈 ∩ 𝑌 sm).

Theorem 2.7 (Noether normalisation theorem). Let 𝑋 be an irreducible
affine variety over 𝑘 with dim 𝑋 = 𝑑. Then there exists a surjective map
𝑝 ∶ 𝑋 → A𝑑 which is a composite of the above form (and in particular,
𝜑−1(𝑦) is a finite set for all 𝑦 ∈ A𝑑).

Corollary 2.8.

dim 𝑋 = dimA𝑑 = 𝑑 = dimtr A𝑑 = dimtr 𝑋.

Example. Let 𝑋 = C∗ = {(𝑥, 𝑦) ∈ C2 ∶ 𝑥𝑦 = 1}. Then Noether normalisation
asserts that there is a surjection C∗ → C, i.e.

C∗ → C
𝑡 ↦ 𝑡 + 𝑡−1 = 𝑧

𝑘[𝑡, 𝑡−1] = 𝑘[𝑧][𝑡]/(𝑡2 − 𝑧𝑡 + 1).

Exercise. Find a surjective map A1 \ {𝜆1, … , 𝜆𝑁} → A1.

It is clear that 𝜑 ∶ 𝑋 → 𝑌 such that 𝑘[𝑋] = 𝑘[𝑌 ][𝑡]/(𝑓(𝑡)) with 𝑓 monic is
particularly nice. 𝜑 is surjective, the fibres are finite. Such a 𝜑 is an example
of a finite flat morphism.

Note that 𝑘[𝑌 ] ⊆ 𝑘[𝑋] is an integral extension of rings.

Definition. 𝐵 ⊆ 𝐴 is an integral extension of rings if for all 𝑎 ∈ 𝐴, there
exists a monic polynomial 𝑓(𝑡) ∈ 𝐵[𝑡] such that 𝑓(𝑎) = 0.

Lemma 2.9.

1. If 𝑓 is a monic polynomial, 𝐵[𝑡]/(𝑓(𝑡)) is an integral extension of 𝐵.

2. If 𝐶 ⊆ 𝐵, 𝐵 ⊆ 𝐴 are integral extensions then so is 𝐶 ⊆ 𝐴.

Theorem 2.10 (Noether normalisation). Let 𝐴 be a finitely generated 𝑘-
algebra where 𝑘 is a field and suppose 𝐴 is an integral domain. Then there
exists 𝑧1, … , 𝑧𝑛 ∈ 𝐴 which generate 𝐴 as a 𝑘-algebra such that

1. there exists 𝑑 such that 𝑧1, … , 𝑧𝑑 are algebraically independent over 𝑘,

2. for all 𝑖 > 𝑑, 𝑧𝑖 is algebraic over 𝑘[𝑧1, … , 𝑧𝑖−1] with monic minimal
polynomial 𝐹𝑖.
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2 Smooth points, dimension & Noether normalisation

In particular, 𝐴 is integral over 𝑘[𝑧1, … , 𝑧𝑑].
Moreover if Frac 𝐴 is a separable field extension of 𝑘 then we can also

ensure 𝐹𝑖’s are separable polynomials, and we can always do this if 𝑘 = 𝑘.

Corollary 2.11 (Nullstellensatz). If 𝐴 is a finitely generated 𝑘-algebra that
is also a field then 𝐴 ⊇ 𝑘 is algebraic.

Lemma 2.12. If 𝐵 ⊆ 𝐴 is an integral ring extension then

𝐵× = 𝐴× ∩ 𝐵.

Proof. Let 𝑏 ∈ 𝐴× ∩ 𝐵. Then exists 𝑎 ∈ 𝐴 such that 𝑎𝑏 = 1. As 𝐴 ⊇ 𝐵 is
integral, exists 𝑐𝑖 ∈ 𝐵 such that

𝑎𝑛 + 𝑐𝑛−1𝑎𝑛−1 + ⋯ + 𝑐0 = 0.

Multiply by 𝑏𝑛−1 to get

𝑎 = −𝑐𝑛−1 − 𝑐𝑛−2𝑏 − ⋯ − 𝑐0𝑏𝑛−1 ∈ 𝐵.

Proof. Let 𝑧1, … , 𝑧𝑛 be as in Noether, so 𝐴 is generated by 𝑧1, … , 𝑧𝑛 and
𝑧1, … , 𝑧𝑑 are transcendental over 𝑘 and 𝑧𝑖 is integral over 𝑘[𝑧1, … , 𝑧𝑑] for 𝑖 > 𝑑.
Claim that if 𝑑 > 0 then 𝐴 is not a field: if 𝑑 > 0 then the units in 𝑘[𝑧1, … , 𝑧𝑑]
are just 𝑘×. So 𝑧1 is not invertible in 𝑘[𝑧1, … , 𝑧𝑑], so not invertible in 𝐴 by the
lemma.

Proof. As 𝐴 is finitely generated, there exist generators 𝑧1, … , 𝑧𝑛. wlog 𝑧1, … , 𝑧𝑑
are algebraically independent and 𝐴 is algebraic over 𝑘[𝑧1, … , 𝑧𝑑]. If 𝑑 = 𝑛 then
done. Otherwise assume the theorem holds for all 𝑘-algebras with ≤ 𝑛 − 1
generators. Let 𝐴′ = 𝑘[𝑧1, … , 𝑧𝑛−1]. There exists nonzero 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] such
that

𝑓(𝑧1, … , 𝑧𝑛−1, 𝑧𝑛) = 0.
Write 𝑓 = ∑𝑖≤𝑁 𝐹𝑖 where 𝐹𝑖 ∈ 𝑘[𝑥1, … , 𝑥𝑛] has degree 𝑖 in 𝑥𝑛.

Suppose 𝑘 is infinite, then there exist 𝜆1, … , 𝜆𝑛 ∈ 𝑘 such that

𝐹𝑁(𝜆1, … , 𝜆𝑛) ≠ 0.

Set 𝑥′
𝑖 = 𝑥𝑖 − 𝜆𝑖𝑥𝑛 for 𝑖 < 𝑛 and 𝑥′

𝑛 = 𝑥𝑛. Note that

𝑥𝑒1
1 ⋯ 𝑥𝑒𝑛𝑛 = (𝑥′

1 + 𝜆1𝑥𝑛)𝑒1 ⋯ (𝑥′
𝑛−1 + 𝜆𝑛−1𝑥𝑛)𝑒𝑛−1𝑥𝑒𝑛𝑛

= 𝜆𝑒1
1 ⋯ 𝜆𝑒𝑛−1

𝑛−1 𝑥𝑒1+⋯+𝑒𝑛𝑛 + terms in 𝑥′
1, … , 𝑥′

𝑛 with lower 𝑥′
𝑛 degree

Hence

𝑓(𝑥′
1, … , 𝑥′

𝑛) = 𝐹𝑁(𝜆1, … , 𝜆𝑛) ⋅ 𝑥𝑒1+⋯+𝑒𝑛𝑛 + lower 𝑥𝑛 degree terms.

But this implies that 𝑧′
𝑛 = 𝑧𝑛 is integral over 𝑘[𝑧′

1, … , 𝑧′
𝑛−1] = 𝐴″. But 𝐴″ is

generated by 𝑛 − 1 elements, so inductive hypothesis gives the result.
Separability requires further argument.
If 𝑘 is finite then we use an argument of Nagata: let 𝑥𝑖 = 𝑥𝑖 − 𝑥𝛾𝑖𝑛 for 𝛾𝑖

sufficiently large.
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2 Smooth points, dimension & Noether normalisation

Exercise. Let 𝑘 = 𝑘 and 𝑋, 𝑌 irreducible varieties over 𝑘 with 𝜑 ∶ 𝑋 → 𝑌 a
morphism. Show that

1. 𝑘[𝑌 ] ↪ 𝑘[𝑋] if and only if 𝜑(𝑋) = 𝑌

2. If 𝜑(𝑋) = 𝑌 then dim 𝑋 ≥ dim 𝑌. In fact, for all 𝑦 ∈ 𝜑(𝑋),

dim 𝜑−1(𝑦) ≥ dim 𝑋 − dim 𝑌

and equality holds on a dense open subset. (hard! Require Noether nor-
malisation)
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3 Projective space

3 Projective space
We will first define projective space as a set. Let 𝑉 be a vector space over 𝑘
with dim 𝑉 = 𝑛 + 1, 𝑛 ≥ 0. Define

P𝑉 = P𝑛 = {lines through origin in 𝑉 } = 𝑉 \ {0}/𝑘×.

Suppose 𝑣 ∈ 𝑉 , 𝑣 ≠ 0, 𝑘𝑣 = {𝜆𝑣 ∶ 𝜆 ∈ 𝑘} is a line. Conversely, ℓ ∈ P𝑉 is a line if
and only if ℓ = 𝑘𝑣 for any 𝑣 ∈ ℓ \ {0}.

Note that it is not clear that P𝑛 is a variety (affine or otherwise) as it is the
result of two operations, neither of which gives a variety:

1. 𝑉 \ {0} is not an affine algebraic variety if dim 𝑉 > 1.

2. quotienting a vaiety by the action of group like 𝑘× is subtle, even if the
variety is affine. This is the subject of geometric invariant theory.

The first we can do to analyse the projective space is to give it homoegeneous
coordiantes. Choose a basis 𝑒0, … , 𝑒𝑛 of 𝑉, i.e. an isomorphism 𝑉 ≅ 𝑘𝑛+1, write
[𝑥0 ∶ ⋯ ∶ 𝑥𝑛] ∈ P𝑛 for the line through ∑ 𝑥𝑖𝑒𝑖. Thus

[𝑥0 ∶ ⋯ ∶ 𝑥𝑛] = [𝜆𝑥0 ∶ ⋯ ∶ 𝜆𝑥𝑛]

for all 𝜆 ∈ 𝑘×. Claim P𝑛 = A𝑛 ⨿ P𝑛−1:

Proof. Consider 𝑝 = [𝑥0 ∶ ⋯ ∶ 𝑥𝑛]. If 𝑥𝑛 = 0, 𝑝 = [𝑥0 ∶ ⋯ ∶ 𝑥𝑛−1 ∶ 0] determines
a unique point in P𝑛−1, and conversely if 𝑥𝑛 ≠ 0 then

[𝑥0 ∶ ⋯ ∶ 𝑥𝑛] = [ 𝑥0
𝑥𝑛

∶ … 𝑥𝑛−1
𝑥𝑛

∶ 1].

This gives a bijection as required.

Corollary 3.1.
P𝑛 = A𝑛 ⨿ A𝑛−1 ⨿ ⋯ ⨿ A0.

This gives a nice set theoretic description of P𝑛, although we still cannot
quite make it into an algebraic variety by gluing together a closed and an open
subset. For example, 𝑍(𝑥2 − 𝑦3) ⊆ A2 can be written as 𝑘× ⨿ {pt}. On the
other hand, A1 = 𝑘× ⨿ {pt}. More data is needed.

We want to rephrase P𝑛 = A𝑛 ⨿ P𝑛−1. Let 𝐻 ≤ 𝑉 be a hyperplane, let
𝑤0 ∈ 𝑉 \ 𝐻 (for example 𝐻 = {𝑥 ∶ 𝑥𝑛 = 0}, 𝑤0 = (0, … , 0, 1)). Then we have
an inclusion of the projectivisation of 𝐻

P𝐻 ↪ P𝑉
𝑘𝑣 ↦ 𝑘𝑣

as well as the affine hyperplane

𝐻 ↪ P𝑉
ℎ ↦ 𝑘(ℎ + 𝑤0)
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3 Projective space

It is an exercise to show that

P𝑉 \ P𝐻 ≅ 𝐻 = A𝑛,

with the isomorphism depends on the choice of 𝑤0.
Set 𝑈𝑖 = {𝑥 = [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] ∈ P𝑛 ∶ 𝑥𝑖 ≠ 0}, 𝐻𝑖 = {(𝑥0, … , 𝑥𝑛) ∶ 𝑥𝑖 = 0} ≅ A𝑛

so P𝑉 \ P𝐻𝑖 = 𝑈𝑖. It is clear that

𝑈0 ∪ 𝑈1 ∪ ⋯ ∪ 𝑈𝑛 = P𝑛

as if 𝑥 = [𝑥0 ∶ ⋯ ∶ 𝑥𝑛] ∈ P𝑉, some 𝑥𝑖 ≠ 0 and then 𝑥 ∈ 𝑈𝑖.

Example.

1. For 𝑛 = 1, 𝑈0 = {[1 ∶ 𝑥1]}, 𝑈1 = {[𝑥0 ∶ 1]}. The inclusion is

𝑈0 → P1

[𝑥0 ∶ 𝑥1] → 𝑥1
𝑥0

∈ A1 ∪ {∞}

2. 𝑛 = 2: P2 = 𝑈0 ∪ 𝑈1 ∪ 𝑈2. P2 = 𝑈𝑖 ⨿ P1.
(graph) three lines at infinity in P2. Exercise: the pattern of P𝑛−1’s at ∞
in P𝑛 is given by the boundary of the 𝑛-simplex.

Consider such a map 𝑗 ∶ 𝑈 ↪ P𝑛 where 𝑈 = 𝑈𝑖 = A𝑛 for some 𝑖. This is an
open embedding of topological spaces. It is an exercise to check this is an open
embedding of topological spaces.

As each 𝑈𝑖 ≅ A𝑛 is an affine variety, and

𝑈𝑖 ∩ 𝑈𝑗 → 𝑈𝑗

𝑘× × A𝑛−1 → A𝑛

is a morphism of affine variety, the P𝑛 is a well-defined algebraic variety, and
𝑈 → P𝑛 is a morphism of algebraic varieties.

Lots of maps A𝑛 ↪ P𝑛 (choose a hyperplane and a point off the hyperplane.
(𝑥0, … , 𝑥𝑛−1) ↦ (𝑥0, … , 𝑥𝑛−1, 1). Call the map 𝑖 ∶ A2 → P2.

Let 𝐸0 = {(𝑥, 𝑦) ∈ A2 ∶ 𝑦2 = 𝑥3 − 𝑥}. What is 𝑖(𝐸0) in P2? Let’s work it
out. As [𝑥 ∶ 𝑦 ∶ 1] = [𝑋 ∶ 𝑌 ∶ 𝑍] for 𝑧 ≠ 0, have 𝑥 = 𝑋

𝑍 , 𝑦 = 𝑌
𝑍 so 𝑦2 = 𝑥3 − 𝑥

gives
𝑌 2𝑍 = 𝑋3 − 𝑋𝑍2

so
𝑖(𝐸0) = {[𝑋 ∶ 𝑌 ∶ 𝑍] ∈ P2 ∶ 𝑌 2𝑍 = 𝑋3 − 𝑋𝑍2, 𝑍 ≠ 0}.

From now on write 𝐸0 for 𝑖(𝐸0). Then the closure will be the same equation but
allow 𝑍 = 0. This can be done as follow. There are three charts: 𝑋 ≠ 0, 𝑌 ≠
0, 𝑍 ≠ 0. In chart 𝑍 ≠ 0, 𝑦2 = 𝑥3 − 𝑥. In chart 𝑌 ≠ 0, put 𝑧 = 𝑍

𝑌 , 𝑥 = 𝑋
𝑌 so the

equation for 𝐸0 is 𝑧 = 𝑥3 − 𝑥𝑧2 and 𝑧 ≠ 0. On chart 𝑋 ≠ 0, put 𝑦 = 𝑌
𝑋 , 𝑧 = 𝑍

𝑋 ,
equation is 𝑦2 = 1 − 𝑧2 and 𝑧 = 1. Now taking closure of 𝐸0 in each chart gives
closure of 𝐸0 in P2.

If [𝑋 ∶ 𝑌 ∶ 𝑍] is in the chart 𝑌 ≠ 0 but not in chart 𝑍 ≠ 0, must have 𝑧 = 0.
The equation says 𝑥3 = 0, which has a unique solution 𝑥 = 0, so we get an extra
point [0 ∶ 1 ∶ 0].
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3 Projective space

If [𝑋 ∶ 𝑌 ∶ 𝑍] is in the chart 𝑋 ≠ 0 and not in the chart 𝑍 ≠ 0 then 𝑧 = 0
and have 0 = 1 which has no solution, so no extra point.

Thus the projective curve 𝐸, defined as the closure of 𝐸0 in P2, is 𝐸0 ∪ {[0 ∶
1 ∶ 0]}, which is what we wanted in the first lecture.

In general, given 𝑋 = 𝑍(𝐼) ⊆ A𝑛 where 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛], we may ask what
is the closure of 𝑋 in P𝑛 under the embedding (𝑥1, … , 𝑥𝑛) ↦ [1 ∶ 𝑥1 ∶ ⋯ ∶ 𝑥𝑛].
To do so we would like to talk about varieties in projective spaces just as in
affine spaces. However, note that the zero of a general polynomial in P𝑛 is not
well-defined as it is not invariant under the action of 𝑘×.

Definition (homogeneous polynomial). Given 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛], 𝑓 is homo-
geneous of degree 𝑑 if

𝑓 = ∑
𝑐1+⋯+𝑐𝑛=𝑑

𝑎𝑖1⋯𝑖𝑛
𝑥𝑖1

1 ⋯ 𝑥𝑖𝑛𝑛 .

If 𝑘 is infinite then this holds if and only if

𝑓(𝜆𝑥1, … , 𝜆𝑥𝑛) = 𝜆𝑑𝑓(𝑥1, … , 𝑥𝑛)

for all 𝜆 ∈ 𝑘×.

Any 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛] can be written as 𝑓 = ∑𝑛
𝑟=0 𝑓(𝑟) where 𝑓(𝑟) is homoge-

neous of degree 𝑟.

Definition (homogeneous ideal). An ideal 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] is if for all 𝑓 ∈ 𝐼,
𝑓 = ∑𝑟 𝑓(𝑟) then 𝑓(𝑟) ∈ 𝐼 for all 𝐼.

Example. (𝑥𝑦 + 𝑦2, 𝑦3, 𝑥2) is homogeneous but (𝑥𝑦 + 𝑦3) is not.

Given 𝑓 ∈ 𝑘[𝑥1, … , 𝑥𝑛], we homogenise it by defining

̃𝑓(𝑋0, … , 𝑋𝑛) = 𝑋𝑑
0 𝑓(𝑋1

𝑋0
, … , 𝑋𝑛

𝑋0
)

where 𝑑 = deg 𝑓. 𝑓 can be recovered by

̃𝑓(1, 𝑥1, … , 𝑥𝑛) = 𝑓(𝑥1, … , 𝑥𝑛).

Example. If 𝑓 = 𝑦2 − 𝑥3 + 𝑥 then

̃𝑓 = 𝑍3((𝑌 /𝑍)2 − (𝑋/𝑍)3 + (𝑋/𝑍)) = 𝑍𝑌 2 − 𝑋3 + 𝑋𝑍2.

For an ideal 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛], define

̃𝐼 = ( ̃𝑓 ∶ 𝑓 ∈ 𝐼),

Exercise. ̃𝐼 is an ideal and is homogeneous. ̃𝐼 |𝑋0=1 = 𝐼.

Lemma 3.2.

1. 𝐼 ⊆ 𝑘[𝑥1, … , 𝑥𝑛] is homogeneous if and only if 𝐼 is generated by a finite
set of homogeneous polynomials.

2. Suppose 𝑘 is infinite. ̃𝐼 ⊆ 𝑘[𝑥0, … , 𝑥𝑛] is a homogeneous ideal if
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3 Projective space

and only if �̃� = 𝑍( ̃𝐼) ⊆ A𝑛+1 is invariant under the 𝑘×-action
(𝑝0, , … , 𝑝𝑛) ↦ (𝜆𝑝0, … 𝜆𝑝𝑛).

Proof. Exercise.

This shows that Zariski closed subsets of P𝑛, defined to be zeros cut out
by homogeneous ideals in 𝑘[𝑥0, … , 𝑥𝑛], are well-defined. They correspond to
𝑘×-invariant closed subsets of A𝑛+1.
Note. If 𝐼 = (𝑓1, … , 𝑓𝑟) ⊆ 𝑘[𝑥1, … , 𝑥𝑛], it need not be the case that ̃𝐼 =
( ̃𝑓1, … , ̃𝑓𝑟). For example given 𝐼 = (𝑥 − 𝑦2, 𝑦) = (𝑥, 𝑦) = 𝐼({0}),

(𝑥𝑧 − 𝑦2, 𝑦) = (𝑥𝑧, 𝑦) ≠ (𝑥, 𝑦) = ̃𝐼.

Exercise. Find an ideal such that ̃𝐼 ≠ ( ̃𝑓1, … , ̃𝑓𝑟) for any minimal generator
𝑓1, … , 𝑓𝑟 of 𝐼.

Definition (quasi-projective/affine variety). A quasi-projective variety is
an open subvariety of a projective variety.

A quasi-affine variety is an open subvariety of an affine variety.

Example. C2 \ {(0, 0)} ⊆ C2 is a quasi-affine variety.
Remark. If 𝑋 is an affine variety, 𝑓 ∈ 𝑘[𝑋] and 𝑋 is irreducible, 𝑘[𝑋 \ 𝑍(𝑓)] =
𝑘[𝑋][ 1

𝑓 ] so

𝑘(𝑋 \ 𝑍(𝑓)) = Frac 𝑘[𝑋 \ 𝑍(𝑓)] = Frac 𝑘[𝑋] = 𝑘(𝑋).

Hence if 𝑋 is an affine algebraic variety, we can define 𝑘(𝑋) to be 𝑘(𝑈) for 𝑈 any
open affine subvariety of 𝑋, for example for 𝑈 an open set in a chart defining
𝑋.

For example in P𝑛,

𝑘(𝑈0) = 𝑘(𝑥1
𝑥0

, … , 𝑥𝑛
𝑥0

) = 𝑘(𝑈𝑛) = 𝑘( 𝑥0
𝑥𝑛

, … , 𝑥𝑛−1
𝑥𝑛

).

We end this chapter with a brief discussion of compactness of projective
spaces. Let 𝑘 = C. Claim

P𝑛 = (C𝑛+1 \ {0})/C× = 𝑆2𝑛+1/𝑆1.

Proof. Define
𝑆2𝑛+1 = {𝑥 ∈ C𝑛+1 ∶ ‖𝑥‖ = 1}

where ‖𝑥‖ = (∑ |𝑥𝑖|2)1/2. Consider the map

C𝑛+1 \ {0} → 𝑆2𝑛+1

𝑥 = (𝑥0, … , 𝑥𝑛) ↦ 1
‖𝑥‖

(𝑥0, … , 𝑥𝑛)

|𝜆| = 1, i.e. 𝜆 ∈ C∗ if and only if ‖𝜆𝑥‖ = ‖𝑥‖ so this descends to a map

(C𝑛+1 \ 0)/C× → 𝑆2𝑛+1/𝑆1.

𝑆2𝑛+1 is compact in the usual topology and so is its quotient. Thus P𝑛 is
compact in the usual topology. Surprisingly, this has an algebraic version in the
Zariski topology.
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3 Projective space

Definition (proper). 𝑋 is proper if for every continuous map 𝜑 ∶ 𝑋 → 𝑌,
the image of a closed subset under 𝜑 is closed.

Theorem 3.3 (fundamental theorem of elimination theory). For any field
𝑘, P𝑛 is proper.

Corollary 3.4. If 𝑋 ⊆ A𝑛 is an affine variety and 𝑋 is proper then 𝑋 is a
finite set of points.

Proof. Suppose 𝑋 is not a finite set of points. Then as 𝑋 is affine there exists
a non-constant element 𝜑 ∈ 𝑘[𝑋], that is a morphism 𝜑 ∶ 𝑋 → A1 which is not
constant. But 𝑋 is proper so im 𝜑 is closed and by assumption, 𝜑(𝑋) is not a
finite set of points. Hence 𝜑(𝑋) = A1. Define �̃� ∶ 𝑋 → P1 to be the obvious
composition. The image of �̃� is A1 which is not closed in P1 so 𝑋 is not proper.
Contradiction.
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4 Curves

4 Curves

From now on suppose 𝑘 = 𝑘.

Definition (curve). A curve is a quasi-projective algebraic variety 𝑋 such
that dim 𝑋 = 1.

Example. If 𝐹 ∈ 𝑘[𝑋0, 𝑋1, 𝑋2] is an irreducible homogeneous polynomial then
𝑍(𝐹) ⊆ P2 is an irreducible plane projective curve.

Warning: not all curves can be embedded in P2.

Exercise. dim 𝑋 = 1 means that for all 𝑝 ∈ 𝑋 \ {finite set}, dim 𝑇𝑝𝑋 = 1, if
and only if dimtr 𝑘(𝑋) = 1, if and only if any Zariski closed subvariety of 𝑋 is
𝑋 or a finite set of points.

Definition. Let 𝑋 be an irreducible algebraic variety and 𝑝 ∈ 𝑋. Define
the local ring at 𝑝 to be

𝒪𝑋,𝑝 = {𝑓
𝑔

∈ 𝑘(𝑋) ∶ 𝑔(𝑝) ≠ 0},

rational functions defined on some neighbourhood of 𝑝. Define

𝔪𝑋,𝑝 = {𝛾 ∈ 𝒪𝑋,𝑝 ∶ 𝛾(𝑝) = 0},

the maximal ideal of 𝒪𝑋,𝑝.

Exercise.

1. If 𝛾 ∈ 𝒪𝑋,𝑝 \ 𝔪𝑋,𝑝 then 𝛾−1 ∈ 𝒪𝑋,𝑝.

2. Show 𝔪𝑋,𝑝 is the unique maximal ideal of 𝒪𝑋,𝑝.

Suppose 𝑘 = C. Let 𝑋 be a curve, 𝑝 ∈ 𝑋 a smooth curve. Then a small
open neighbourhood of 𝑝 in the usual topology is diffeomorphic to a small open
neighbourhood of 0 in C by implicit function theorem. The corresponding no-
tion is convergent power series on some neighbourhood of 𝑝. It is completely
analogous that here is an algebraic replacement for it.

Theorem 4.1. Let 𝑋 be a curve, 𝑝 ∈ 𝑋 a smooth point. Write 𝔪 = 𝔪𝑋,𝑝.

1. 𝔪 is a principal ideal in 𝒪𝑋,𝑝.

2. ⋂𝑛≥1 𝔪𝑛 = {0}.

Example. Intuition: Consider {𝑥2 + 𝑦2 = 1} ⊆ A1. If 𝑝 ≠ (0, ±1) then 𝑦 − 𝑦0
is a “local coordinate” at 𝑝. If 𝑘 = C, 𝑝 ≠ (0, ±1), then we can write 𝑥 in terms
of 𝑦 as a convergence power series for |𝑦 − 𝑦0| < 𝜀. For example at (1, 0),

𝑥 = (1 − 𝑦2)1/2 = ∑
𝑛≥0

(1/2
𝑛

)(−1)𝑛𝑦2𝑛
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4 Curves

so
𝑥 − 1 = −1

2
𝑦2 + high order terms

so 𝑥 − 1 vanishes to order 2 at the point. In the theorem,

𝔪𝑋,𝑝 = (𝑦 − 𝑦0)

if 𝜕𝑓
𝜕𝑥 (𝑝) ≠ 0. Alternatively,

𝑥 − 1 = 𝑥2 − 1
𝑥 + 1

= − 𝑦2

𝑥 + 1

and 1
𝑥+1 ∈ 𝒪𝑋,𝑝 \ 𝔪𝑋,𝑝.

Proof. By definition of 𝑋 there exists an affine open neighbourhood 𝑋0 of 𝑝, i.e.
an open subset 𝑋0 ⊆ 𝑋 which is an affine variety. Write 𝑘[𝑋0] = 𝑘[𝑥1, … , 𝑥𝑛]/𝐼.
wlog 𝑝 ∈ 𝑋0 corresponds to the point (0, … , 0). Let us write 𝑥𝑖 for the image
of 𝑥𝑖 in 𝑘[𝑋0]. Then

𝒪𝑋,𝑝 = {𝑓
𝑔

∶ 𝑓, 𝑔 ∈ 𝑘[𝑋0], 𝑔 ∉ (𝑥1, … , 𝑥𝑛)}

𝔪𝑋,𝑝 = {𝑓
𝑔

∶ 𝑓 ∈ (𝑥1, … , 𝑥𝑛), 𝑔 ∉ (𝑥1, … , 𝑥𝑛)}

𝑋 is a curve smooth at 𝑝 so dim 𝑇𝑝𝑋0 = 1. Thus 𝑇𝑝𝑋0 ⊆ A𝑛 is a line, and by
changing coordinates we can assume it is the line 𝑥2 = 𝑥3 = ⋯ = 𝑥𝑛 = 0. In
other words, if ̃𝑓2, ̃𝑓3, … generate the ideal 𝐼 then write

̃𝑓𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗 + quadratic and higher term.

Note that the higher terms do not contribute to the tangent space at 0. Thus
dim 𝑇0𝑋 = 1 implies that dim ker(𝑎𝑖𝑗) = 1, so by row reduction can assume
that

̃𝑓𝑖 = 𝜆𝑖𝑥𝑖 + high order terms
for 𝑖 = 2, … , 𝑛 and

̃𝑓𝑖 = quadratic and higher terms

for 𝑖 > 𝑛. So there exist ̃𝑓2, … , ̃𝑓𝑛 ∈ 𝐼, ̃𝑓𝑖 = 𝑥𝑖 +ℎ𝑖 where ℎ𝑖 is at least quadratic.
Thus in 𝑘[𝑋0], 𝑥𝑗 = −ℎ𝑗 and

𝑥𝑗 ∈ (𝑥2
1, 𝑥1𝑥2, … ) = 𝔪2

for 𝑗 ≥ 2. Thus

𝔪 = (𝑥1, … , 𝑥𝑛) = 𝑥1𝒪𝑋,𝑝 + ⋯ + 𝑥𝑛𝒪𝑋,𝑝 = 𝑥1𝒪𝑋,𝑝 + 𝔪2

We want to conclude that 𝔪 = (𝑥1). Invoke Nakayama’s lemma

Proposition 4.2. Let 𝑅 be a ring, 𝑀 a finitely generated 𝑅-module, 𝐽 ⊆ 𝑅
an ideal. Then

1. if 𝐽𝑀 = 𝑀 then exists 𝑟 ∈ 𝐽 such that (1 + 𝑟)𝑀 = 0.

2. if 𝑁 ⊆ 𝑀 is a submodule such that 𝐽𝑀 + 𝑁 = 𝑀 then there exists
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𝑟 ∈ 𝐽 such that (1 + 𝑟)𝑀 = 𝑁.

Apply Nakayama to 𝑅 = 𝒪𝑋,𝑝, 𝐽 = 𝔪𝑋,𝑝 and note that 1 + 𝑟 ∈ 𝒪∗
𝑋,𝑝 if

𝑟 ∈ 𝔪𝑋,𝑝, so
(1 + 𝑟)𝑀 = 𝑀.

We would like to apply Nakayama to 𝑀 = 𝔪𝑋,𝑝, 𝑁 = (𝑥1), so need to show 𝑀
is finitely generated. But every ideal 𝐽 ⊆ 𝒪𝑋,𝑝 is finitely generated,

𝐽 = {𝑓
𝑔

∶ 𝑓 ∈ 𝐽 ∩ 𝑘[𝑋0], 𝑔 ∈ 𝑘[𝑋0], 𝑔(𝑝) ≠ 0}

so 𝑔 ⋅ 𝑓
𝑔 = 𝑓 ∈ 𝐽 ⊆ 𝑘[𝑋0], but 𝐽 ∩ 𝑘[𝑋0] is an ideal in 𝑘[𝑋0], hence finitely

generated by Hilbert basis theorem. As

𝔪 = (𝑥1) + 𝔪2,

Nakayama 2 says that 𝔪 ⊆ (𝑥1). But (𝑥1) ⊆ 𝔪 so equality. In particular 𝔪 is
the principal ideal generated by 𝑥1.

Now let 𝑀 = ⋂𝑛≥1 𝔪𝑛, 𝐽 = 𝔪 ⊆ 𝒪𝑋,𝑝 so a finitely generated ideal. But
𝔪𝑀 = 𝑀 so by Nakayama 1 𝑀 = 0.

Exercise. Apply this to the circle.

Let 𝑋 = 𝑍(𝑓) ⊆ A2 be a plane curve, 𝑝 = (𝑥0, 𝑦0) ∈ 𝑋 a smooth point.
Then 𝑥−𝑥0 generate 𝔪𝑋,𝑝 if and only if 𝜕𝑓

𝜕𝑦 (𝑥0, 𝑦0) ≠ 0, and a similar statement
holds for 𝑦. Thus if

𝜕𝑓
𝜕𝑥

(𝑝) = 𝜕𝑓
𝜕𝑦

(𝑝) = 0

then 𝑝 is not a smooth point. Thus we can either write 𝑦 in terms of 𝑥 locally
or vice versa near a smooth point.

Exercise: check this is immediate from the theorem and its proof.

Definition. A function 𝑡 ∈ 𝔪𝑋,𝑝 such that 𝔪𝑋,𝑝 = (𝑡) is called a local
parameter or local coordinate at 𝑝.

Such is not unique but if 𝑡 is a local parameter so is 𝑢𝑡 if 𝑢 ∈ 𝒪∗
𝑋,𝑝 and all

other local parameters are of this form.

Corollary 4.3 (order of vanishing/pole). Every 𝑓 ∈ 𝑘(𝑋)∗ can be written
uniquely as

𝑓 = 𝑡𝑛 ⋅ 𝑢

where 𝑛 ∈ Z, 𝑢 ∈ 𝒪∗
𝑋,𝑝. We call 𝑛 = 𝜈𝑝(𝑓) the order of vanishing/pole of 𝑓

at 𝑝.

𝒪𝑋,𝑝 = {𝑓 ∈ 𝑘(𝑋) ∶ 𝜈𝑝(𝑓) ≥ 0} ∪ {0}
𝔪𝑋,𝑝 = {𝑓 ∈ 𝑘(𝑋) ∶ 𝜈𝑝(𝑓) ≥ 1} ∪ {0}

This is independent of the choice of 𝑡.
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Proof. Given 𝑓 ∈ 𝒪𝑋,𝑝, as ⋂𝑛≥0 𝔪𝑛 = 0, there exists a unique 𝑛 ≥ 0 such that
𝑓 ∈ 𝔪𝑛\𝔪𝑛+1. Define 𝜈𝑝(𝑓) = 𝑛. As 𝔪𝑛 = (𝑡𝑛), 𝑓 = 𝑡𝑛𝑢 with 𝑢 ∈ 𝒪𝑋,𝑝\𝔪𝑋,𝑝 =
𝒪∗

𝑋,𝑝. Note if 𝑡𝑛𝑢′ = 𝑡𝑚𝑢 where 𝑛 ≥ 𝑚 then 𝑡𝑛−𝑚 = 𝑢′𝑢−1 ∈ 𝒪∗
𝑋,𝑝 so 𝑛 = 𝑚.

If 𝑓 ∈ 𝑘(𝑋)∗, 𝑓 ∉ 𝒪𝑋,𝑝 then 𝑓−1 is. Apply the above and define 𝜈𝑝(𝑓) =
−𝜈𝑝(𝑓−1).

Example. 𝑋 = P1 so 𝑘(𝑋) = 𝑘(𝑥). Let 𝑓 ∈ 𝑘(𝑥), 𝑓 ≠ 0. Then 𝑓 = ∏(𝑥−𝑎𝑖)𝑛𝑖 ,
where 𝑎𝑖’s are distinct. Consider 𝜈𝑝(𝑓).

1. If 𝑝 = 𝑎 ∈ A1, i.e. 𝑝 ≠ ∞, then a local coordinate 𝑡 is 𝑥 − 𝑎 so

𝜈𝑎(𝑓) = {0 𝑎 ∉ {𝑎1, … , 𝑎𝑚}
𝑛𝑖 𝑎 = 𝑎𝑖

2. If 𝑝 = ∞ then 1
𝑥 is a coordinate.

𝑓(𝑥) = ( 1
𝑥

)− ∑ 𝑛𝑖 ∏(1 − 𝑎𝑖
𝑥

)𝑛𝑖
⏟⏟⏟⏟⏟

regular at ∞

so 𝜈∞(𝑓) = − ∑ 𝑛𝑖.
Proof of Nakayama. Let 𝑀 be generated by 𝑚1, … , 𝑚𝑛 as an 𝑅-module. As
𝐽𝑀 = 𝑀, there exists 𝑥𝑖𝑗 ∈ 𝐽 such that 𝑚𝑖 = ∑ 𝑥𝑖𝑗𝑚𝑗, i.e.

∑
𝑗

(𝛿𝑖𝑗 − 𝑥𝑖𝑗)⏟⏟⏟⏟⏟ 𝑚𝑗 = 0

for all 𝑖. Recall that
𝑋 ⋅ adj 𝑋 = det 𝑋 ⋅ 𝐼,

so multiply the above by adj(𝐼 − 𝑋) to get 𝑑𝑚𝑖 = 0 for all 𝑖, where

𝑑 = det(𝐼 − 𝑋) = 1 + 𝑟

for some 𝑟 ∈ 𝐽. expanding out the det, i.e. (1 + 𝑟)𝑀 = 0 as required.
The second part is immediate by applying Nakayama’s lemma to 𝑀/𝑁.

Exercise. Show
𝒪𝑋,𝑝/𝔪𝑛 = 𝒪𝑋,𝑝/(𝑡𝑛) = 𝑘[𝑡]/(𝑡𝑛).

(inverse limit)
Discussion on projective space having no holes:

Proposition 4.4. Let 𝑋 be a curve, 𝑈 = 𝑋 \ {finite set of points} and
𝛼 ∶ 𝑈 → 𝑌 a morphism with 𝑌 a projective variety. Let 𝑝 ∈ 𝑋 be smooth.
Then 𝛼 extends to a morphism 𝑈 ∪ {𝑝} → 𝑌.

Proof. wlog 𝑌 = P𝑚 (by continuity). In some neighbourhood of 𝑝, 𝛼 = [𝑓0 ∶ ⋯ ∶
𝑓𝑚] where 𝑓𝑖 ∈ 𝑘(𝑋). Let 𝑡 be a local coordinate at 𝑝. Let 𝑛𝑖 = 𝜈𝑝(𝑓𝑖) so either
𝑓𝑖(𝑝) = 0 or 𝑓𝑖 = 𝑡𝑛𝑖𝑢𝑖 where 𝑢𝑖 ∈ 𝒪∗

𝑋,𝑝. Let 𝑁 = min{𝑛1, … , 𝑛𝑚}, say it is
attained at 𝑛𝑗, that is 𝑁 = 𝑛𝑗 for some 𝑗. Then

𝛼 = [𝑡−𝑁𝑓0 ∶ ⋯ ∶ 𝑡−𝑁𝑓𝑚]

but 𝑓𝑖𝑡−𝑁 ∈ 𝒪𝑋,𝑝 has no pole at 𝑝 and 𝑓𝑗𝑡−𝑁 = 𝑢𝑗 which does not vanish at
𝑝.
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Definition (rational map). Let 𝑋, 𝑌 be arbitrary algebraic varieties. A
rational map 𝜑 ∶ 𝑋 99K 𝑌 is a pair of a Zariski open 𝑈 ⊆ 𝑋 and a morphism
𝜑 ∶ 𝑈 → 𝑌 (i.e. it is a partially defined map).

Using this terminology, the proposition is saying that a rational map to a
projective variety extends to a smooth point.

Example. If 𝐹0, … , 𝐹𝑚 are homogeneous polynomials of degree 𝑑 in 𝑋0, … , 𝑋𝑛
then

[𝑋0 ∶ ⋯ ∶ 𝑋𝑛] ↦ [𝐹0(𝑋) ∶ ⋯ ∶ 𝐹𝑚(𝑋)]

is a rational map P𝑛 99K P𝑚 defined on the open set where some 𝐹𝑖 is nonzero,
i.e. on the complement of 𝑍(𝐹0, … , 𝐹𝑛).

Definition. Two rational maps 𝜑1, 𝜑2 ∶ 𝑋 99K 𝑌 defined on 𝑈1, 𝑈2 are equal
if there exists a Zariski open 𝑉 ⊆ 𝑈1 ∩ 𝑈2 with 𝜑1|𝑉 = 𝜑2|𝑉. That is, the
rational map defined by 𝜑 doesn’t depend on 𝑈 — we can shrink and think
of them as the same rational map.

Definition. 𝑋, 𝑌 are birational if there exist rational maps 𝜑 ∶ 𝑋 99K 𝑌 , 𝜓 ∶
𝑌 99K 𝑋 such that

𝜓𝜑 = id𝑋

𝜑𝜓 = id𝑌

as rational maps.

Remark. The proposition is false if dim 𝑋 > 1 or 𝑝 ∈ 𝑋 is not smooth. For
example

A2 99K P1

(𝑥, 𝑦) ↦ 𝑥 − 𝑦
𝑥 + 𝑦

cannot be extended to (0, 0). More interestingly, consider

[𝑋 ∶ 𝑌 ∶ 𝑍] ↦ [𝑌 𝑍 ∶ 𝑋𝑍 ∶ 𝑋𝑌 ]‶ =″ [ 1
𝑋

∶ 1
𝑌

∶ 1
𝑍

]

which cannot be extended to three points. This is the beginning of high dimen-
sional algebraic geometry.

Proposition 4.5. Let 𝛼 ∶ 𝑋 → 𝑌 be a nonconstant morphism of irreducible
curves.

1. For all 𝑞 ∈ 𝑌, 𝛼−1(𝑞) is a finite set.

2. 𝛼 induces an embedding of fields 𝑘(𝑌 ) ↪ 𝑘(𝑋) such that [𝑘(𝑋) ∶ 𝑘(𝑌 )]
is finite.
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Definition (degree). The degree of the extension is called the degree of 𝛼.

Proof.

1. 𝛼−1(𝑞) is a closed subset of 𝑋. But the only closed subsets are fintie set
of points and 𝑋. As 𝛼 is nonconstant the result follows.

2. If 𝑓 ∈ 𝑘(𝑌 ) then exists 𝑈 ⊆ 𝑌 affine such that 𝑓 ∈ 𝑘[𝑈]. Then 𝑓 ∘ 𝛼 ∶
𝛼−1(𝑈) → 𝑘 is well-defined in 𝑘[𝛼−1(𝑈)] ⊆ 𝑘(𝑋) so we have a map of
fields 𝑘(𝑌 ) → 𝑘(𝑋). Have 𝑘 ⊆ 𝑘(𝑌 ) ⊆ 𝑘(𝑋) where 𝑘(𝑋) and 𝑘(𝑌 ) are
both algebraic over 𝑘. Thus 𝑘(𝑋)/𝑘(𝑌 ) is algebraic.

Example. Consider the morphism

𝛼 ∶ A1 → A1

𝑧 ↦ 𝑧𝑟

which induces a filed extension 𝑘(𝑌 ) = 𝑘(𝑦) ⊆ 𝑘(𝑋) = 𝑘(𝑥), 𝑦 ↦ 𝑥𝑟 so 𝑘(𝑥𝑟) ⊆
𝑘(𝑥). The degree of 𝛼 is 𝑟.

Let 𝛼 ∶ 𝑋 → 𝑌 be a nonconstant morphism of smooth irreducible projective
curves. Then 𝛼 is surjective (as 𝛼(𝑋) ⊆ 𝑌 is a closed subvariety (?) and not a
finite set of points). Let 𝑦 ∈ 𝑌 , 𝑡 ∈ 𝒪𝑌 ,𝑦 a local coordinate. If 𝑥 ∈ 𝑋, 𝛼(𝑥) = 𝑦.
Then 𝑡 ∘ 𝛼 ∈ 𝒪𝑋,𝑥, i.e. 𝑡 ∘ 𝛼 is a function defined in some neighbourhood of
𝑥 ∈ 𝑋. So we can ask what is the order of vanishing of 𝑡 ∘ 𝛼 at 𝑥, i.e. 𝜈𝑥(𝑡𝛼).
Call this the multiplicity or ramification index of 𝛼 at 𝑥, denote it 𝑒𝛼(𝑥). How
to calculate this? Choose a local parameter 𝑠 at 𝑥 then 𝑡𝛼 = 𝑠𝑛 ⋅ 𝑢 for some
𝑛 ≥ 0, 𝑢 ∈ 𝒪∗

𝑋,𝑥. Then 𝑛 = 𝜈𝑥(𝑡𝛼) = 𝑒𝛼(𝑥).

Example. Assume ch 𝑘 ∤ 𝑟 and consider

𝛼 ∶ A1 → A1

𝑧 ↦ 𝑧𝑟

Let’s compute 𝑒𝛼(𝑥). Suppose 𝑎 ∈ A1. A local parameter at 𝛼(𝑎) = 𝑎𝑟 is
𝑡 = 𝑥 − 𝑎𝑟. Now

𝑡 ∘ 𝛼(𝑥) = 𝑥𝑟 − 𝑎𝑟 =
𝑟−1
∏
𝑖=0

(𝑥 − 𝜁𝑖𝑎)

where 𝜁 is a primitive 𝑟th root of unity (here we used the assumption ch 𝑘 ∤ 𝑟).
Hence

𝜈𝑎(𝑥𝑟 − 𝑎𝑟) = {1 𝑎 ≠ 0
𝑟 𝑎 = 0

as 𝑥 − 𝑎 is a local parameter at 𝑎.
Notice that #𝛼−1(𝑎) = 𝑟 for all 𝑎 ∈ A1 if we count the points with multi-

plicity. This is a general phenomenon.

Theorem 4.6 (finiteness theorem). Let 𝛼 ∶ 𝑋 → 𝑌 be a morphism of smooth
projective irreducible curves. Then
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1. for all 𝑦 ∈ 𝑌,
∑

𝑥∈𝛼−1(𝑦)
𝑒𝛼(𝑥) = deg 𝛼.

2. if 𝑘(𝑋)/𝑘(𝑌 ) is separable then 𝑒𝛼(𝑥) = 1 for all but finitely many
𝑥 ∈ 𝑋.

Exercise. Check the separability assumption in 2 is necessary.

Proof. Omitted.

Corollary 4.7. Let nonzero 𝑓 ∈ 𝑘(𝑋) where 𝑋 is a smooth projective curve.
Then the number of zeros of 𝑓 equals to the number of poles of 𝑓. More
precisely, there are only finitely many zeros and poles, {𝑝 ∈ 𝑋 ∶ 𝜈𝑝(𝑓) ≠ 0}
is finite and

∑
𝑝∈𝑋

𝜈𝑝(𝑓) = 0.

Cauchy’s theorem implies this if 𝑘 = C.

Proof. 𝑓 ∈ 𝑘(𝑋) is a rational map 𝑋 99K P1. As 𝑋 is smooth this extends to
a well-defined morphism of algebraic varieties 𝑋 → P1. Now 𝑥 ∈ 𝑘(P1) is a
local coordinate around 0 ∈ P1, so if 𝑓(𝑝) = 0 then 𝑒𝑓(𝑝) = 𝜈𝑝(𝑓). 1

𝑥 is a local
coordinate around ∞ ∈ P1 so if 𝑓(𝑝) = ∞ then 𝑒𝑓(𝑝) = −𝜈𝑝(𝑓). If 𝑓(𝑝) ≠ 0 or
∞ then 𝜈𝑝(𝑓) = 0. Thus finiteness theorem says that

deg 𝑓 = ∑
𝑝∶𝑓(𝑝)=0

𝜈𝑝(𝑓) = ∑
𝑝∶𝑓(𝑝)=∞

−𝜈𝑝(𝑓)

and hence the result.

The rest of this course aims to answer the question, given a curve and points
on the curve, can we find a function with prescribed order of vanishing at these
points?

Definition (divisor). A divisor 𝐷 on a curve 𝑋 is a formal sum 𝐷 = ∑ 𝑛𝑖𝑃𝑖
where 𝑛𝑖 ∈ Z, 𝑃𝑖 ∈ 𝑋 and only finitely many nonzero terms. Div(𝑋) is the
abelian group of all divisors on 𝑋, i.e. the free abelian group generated by
points of 𝑋.

There is a homomorphism

deg ∶ Div(𝑋) → Z

∑ 𝑛𝑖𝑃𝑖 ↦ ∑ 𝑛𝑖

If 𝑓 ∈ 𝑘(𝑋), define
div(𝑓) = ∑

𝑝∈𝑋
𝜈𝑝(𝑓)𝑝.

We just saw that
deg div(𝑓) = 0.
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Define Div𝑛(𝑋) = {𝐷 ∈ Div(𝑋) ∶ deg 𝐷 = 𝑛}. Divisors of the form div(𝑓) are
called principal divisors, denoted div 𝑘(𝑋)∗. We will study

Cl(𝑋) = Pic(𝑋) = Div(𝑋)/ div 𝑘(𝑋)∗,

the class group, Picard group or group of line bundles on 𝑋. Note that we have
an induced homomorphism deg ∶ Cl(𝑋) → Z.

Proposition 4.8. If 𝑋 = P1 then Cl(𝑋) = Z.

Remark. We will show this characterises P1.

Proof. For any curve 𝑋, deg ∶ Cl(𝑋) → Z is surjective so we must show ker(deg ∶
Cl(𝑋) → Z) = 0, i.e. any degree 0 divisor is of the form div(𝑓).

Let
𝐷 = ∑

𝑎∈A1

𝑛𝑎(𝑎) + 𝑛∞(∞)

so 0 = deg 𝐷 = ∑ 𝑛𝑎 + 𝑛∞ implies that 𝑛∞ = − ∑ 𝑛𝑎. Consider 𝑓(𝑥) =
∏𝑎∈A1(𝑥 − 𝑎)𝑛𝑎 . It is clear that div(𝑓) = 𝐷.

Write [𝐷] for the class of 𝐷 ∈ Div(𝑋) in Cl 𝑋 and 𝐷 ∼ 𝐷′ if [𝐷] = [𝐷′], i.e.
if 𝐷 = 𝐷′ + div(𝑓) for some 𝑓 ∈ 𝑘(𝑋)∗.

If 𝐷 = ∑ 𝑛𝑖𝑃𝑖, say 𝐷 is effective if 𝑛𝑖 ≥ 0 for all 𝑖. Write 𝐷 ≥ 0.

Example. Let 𝛼 ∶ 𝑋 → 𝑌 be a morphism. Then ∑𝑥∈𝛼−1(𝑦) 𝑒𝛼(𝑥)(𝑥) is an
effective divisor of degree deg 𝛼.

Suppose 𝑘 = 𝑘 and let 𝑋 be a smooth irreducible projective curve. Let
𝐷 = ∑𝑛

𝑖=1 𝑛𝑖𝑃𝑖 be a divisor. Let

𝐿(𝐷) = {𝑓 ∈ 𝑘(𝑋)∗ ∶ 𝐷 + div(𝑓) ≥ 0} ∪ {0}
= {𝑓 ∈ 𝑘(𝑋)∗ ∶ 𝜈𝑝𝑖

(𝑓) ≥ −𝑛𝑖, 𝜈𝑝(𝑓) ≥ 0 for 𝑝 ∉ {𝑝1, … , 𝑝𝑟}} ∪ {0}

As 𝜈𝑝(𝑓 + 𝑔) ≥ min{𝜈𝑝(𝑓), 𝜈𝑝(𝑔)}, 𝐿(𝐷) is a vector space (usual notation:
Γ(𝑋, 𝒪(𝐷))).

Example.
1. 𝐿(𝑛𝑃) = {𝑓 ∈ 𝑘(𝑋) with a pole of order ≤ 𝑛 at 𝑝 and no other poles}

2. If 𝑋 = P1, 𝐿(𝑛(∞)) is the set of polynomials of degree ≤ 𝑛. 𝐿(𝑛(∞)−(𝑎))
where 𝑎 ∈ A1 equals to (𝑥 − 𝑎) ⋅ {polynomials of deg ≤ 𝑛 − 1}.

Lemma 4.9.

1. If deg 𝐷 < 0 then 𝐿(𝐷) = 0.

2. 𝐿(0) = 𝑘.

3. If 𝐷 ∼ 𝐷′, i.e. 𝐷 = 𝐷′ + div(𝑔) where 𝑔 ∈ 𝑘(𝑋)∗ then

𝐿(𝐷) → 𝐿(𝐷′)
𝑓 ↦ 𝑓𝑔

is an isomorphism.
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4. If 𝐿(𝐷) ≠ 0 then there exists 𝐷′ ≥ 0 with 𝐷′ ∼ 𝐷.

5. dim 𝐿(𝐷) ≤ deg 𝐷 + 1 if deg 𝐷 ≥ 0. Indeed,

dim 𝐿(𝐷) ≤ dim(𝐿(𝐷 − 𝑝)) + 1

for all 𝑝 ∈ 𝑋.

Proof.

1. If 𝑓 ∈ 𝐿(𝐷) then deg 𝑓 ≤ deg 𝐷 from the definition. But deg 𝑓 ≥ 0.

2. Exercise.

3. As div(𝑓𝑔) = div(𝑓) + div(𝑔) since 𝜈𝑝(𝑓𝑔) = 𝜈𝑝(𝑓) + 𝜈𝑝(𝑔).

4. Obvious from definition.

5. Induct on deg 𝐷. If deg 𝐷 < 0 then 𝐿(𝐷) = 0 by 1. Pick 𝑝 ∉ {𝑝1, … , 𝑝𝑟}.
Consider the map 𝜆 ∶ 𝐿(𝐷) → 𝑘, 𝑓 ↦ 𝑓(𝑝). This is well-defined as 𝑓 has
no pole at 𝑝. Then 𝑓 ∈ ker 𝜆 if and only if 𝑓 ∈ 𝐿(𝐷) and 𝜈𝑝(𝑓) ≥ 1,
if and only if 𝑓 ∈ 𝐿(𝐷 − 𝑝). Note that 𝜆 need not be surjective. As
ker 𝜆 = 𝐿(𝐷 − 𝑝), induction gives

dim 𝐿(𝐷) ≤ 1 + dim 𝐿(𝐷 − 𝑝) ≤ 1 + (deg 𝐷 − 1) + 1

by induction. More generally, if 𝐷 = 𝑛𝑝 ⋅ 𝑝 + ∑𝑞≠𝑝 𝑛𝑞 ⋅ 𝑞 then define

𝜆 ∶ 𝐿(𝐷) → 𝑘
𝑓 ↦ (𝑡𝑛𝑝𝑓)(𝑝)

if 𝑡 is a local coordinate at 𝑝.

Definition.
ℓ(𝐷) = dim 𝐿(𝐷).

Example. If 𝑋 = P1 and deg 𝐷 = 𝑛 ≥ 0 then ℓ(𝐷) = deg 𝐷 + 1.

Proof. By 3, this only depends on [𝐷] ∈ Cl(P1) ≅ Z, so may as well take
𝐷 = 𝑛(∞) and we have ℓ(𝑛(∞)) = 𝑛 + 1.

Example. Let 𝐸0 = {(𝑥, 𝑦) ∈ A2 ∶ 𝑦2 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3)} where 𝜆𝑖’s
are distinct and 𝜆1𝜆2𝜆3 ≠ 0. Let 𝐸 be the plane curve contained in P2 defined
by this, i.e. the closure of 𝐸0 in P2. (Recall that 𝐸 is the projective variety
given by

𝑍𝑌 2 = (𝑋 − 𝜆1𝑍)(𝑋 − 𝜆2𝑍)(𝑋 − 𝜆3𝑍).

It has an extra point when 𝑍 = 0, which implies 𝑋 = 0, 𝑌 ≠ 0, so a unique
point at ∞, 𝑃∞ = [0 ∶ 1 ∶ 0])
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We will compute 𝐿(𝑛𝑃∞) for 𝑛 small. Start by computing div(𝑥), div(𝑦).
𝑥 = 0 when 𝑦 = ±√𝜆1𝜆2𝜆3 = ±𝑐. 𝑥 = ∞ at 𝑃∞. Note that at (𝑥, 𝑦) = (0, ±𝑐),
𝜕𝑓
𝜕𝑦 ≠ 0 so 𝑥 is a local parameter at these points and so

div(𝑥) = 𝑎𝑃∞ + [0 ∶ 𝑐 ∶ 1] + [0 ∶ −𝑐 ∶ 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟
vanishes of order 1 at these points

To find 𝑎 we can either take a local coordinate, or use the fact that deg(div(𝑥)) =
0 so 𝑎 = −2. Similarly

div(𝑦) = −3𝑃∞ +
3

∑
𝑖=1

[𝜆𝑖 ∶ 0 ∶ 1]

as 𝜕𝑓
𝜕𝑥 ≠ 0 at [𝜆𝑖 ∶ 0 ∶ 1] so 𝑦 is a local parameter there. Thus 𝑥 ∈ 𝐿(2𝑃∞), 𝑦 ∈

𝐿(3𝑃∞). This is similar to computation of Weierstrass ℘-function.
Claim that 𝐿(𝑃∞) = 𝑘. Granting the claim, lemma 5 implies that dim 𝐿(𝑛𝑃∞) ≤

𝑛, but

1, 𝑥 ∈ 𝐿(2𝑃∞)
1, 𝑥, 𝑦 ∈ 𝐿(3𝑃∞)

1, 𝑥, 𝑦, 𝑥2 ∈ 𝐿(4𝑃∞)
1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦 ∈ 𝐿(5𝑃∞)

Note that all these are linearly independent. But

1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑥3, 𝑦2 ∈ 𝐿(6𝑃∞),

which are not linearly indepedent as

𝑦2 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3).

Exercise. {𝑥𝑖, 𝑥𝑖𝑦 ∶ 𝑖 ≥ 0} are linearly independent in 𝑘(𝑋) and hence dim 𝐿(𝑛𝑃∞) =
𝑛 for all 𝑛 ≥ 1.

Compare this with 𝑋 = P1, dim 𝐿(𝑛∞) = 𝑛 + 1 when 𝑛 ≥ 0.
Note that 𝜆𝑖’s being distinct is essential as it ensures the curve is smooth.

On the other hand, 𝜆1𝜆2𝜆3 ≠ 0 is just a convenience (without which 𝑥 vanishes
at [0 ∶ 𝑐 ∶ 1] with order 2).

Proof of claim. If 𝐿(𝑃∞) ≠ 𝑘 then 𝐿(𝑃∞) = 𝑘 + 𝑘𝑡 for some function 𝑡 ∈ 𝑘(𝐸).
Then 𝑡𝑛 ∈ 𝐿(𝑛𝑃∞) \ 𝐿((𝑛 − 1)𝑃∞) so 1, 𝑡, … , 𝑡𝑛 are a basis of 𝐿(𝑛𝑃∞). But
𝑥 ∈ 𝐿(2𝑃∞), 𝑦 ∈ 𝐿(3𝑃∞) so exist 𝑔2(𝑡), 𝑔3(𝑡) polynomials of degree 2 and 3 such
that 𝑥 = 𝑔2(𝑡), 𝑦 = 𝑔3(𝑡), so 𝑥 = (𝑎𝑡 + 𝑏)2 + 𝑑, 𝑎 ≠ 0, 𝑏, 𝑑 ∈ 𝑘. By a change of
variable (replacing 𝑡 by 𝑎𝑡 + 𝑏), the defining equation

𝑦2 = ∏(𝑥 − 𝜆𝑖)

becomes
𝑔3(𝑡)2 = ∏(𝑡2 − (𝜆𝑖 − 𝑑)).

But 𝜆𝑖’s distinct implies that 𝜆𝑖 − 𝑑 distinct so RHS is not a square in 𝑘(𝑡),
contradiction.
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Suppose 𝑋 is a smooth projective curve, 𝐷 ∈ Div(𝑋) with ℓ(𝐷) ≥ 1. Set
𝑚 = ℓ(𝐷) − 1. Choose a basis 𝑓0, … , 𝑓𝑚 of 𝐿(𝐷). We get a rational map

𝑋 99K P𝑚 = P(𝐿(𝐷)∗)
𝑝 ↦ [𝑓0(𝑝) ∶ ⋯ ∶ 𝑓𝑚(𝑝)]

which, as 𝑋 is smooth, extends to a morphism 𝛼𝐷 ∶ 𝑋 → P𝑚.
Moreover if 𝐷 ∼ 𝐷′, i.e. 𝐷′ = 𝐷 + div(𝑔) then 𝑓0𝑔, … , 𝑓𝑚𝑔 is a basis of

𝐿(𝐷′) by part 3 of the lemma and

[(𝑔𝑓0)(𝑝) ∶ ⋯ ∶ (𝑔𝑓𝑛)(𝑝)] = [𝑓0(𝑝) ∶ ⋯ ∶ 𝑓𝑚(𝑝)]

so we get the same map to projective space. Thus the map 𝛼𝐷 ∶ 𝑋 → P𝑚

depends only on [𝐷] ∈ Cl(𝑋).

Example. 𝑋 = P1, 𝐷 = 𝑛∞, ℓ(𝐷) = 𝑛 + 1. Choose basis 1, 𝑡, … , 𝑡𝑛 of 𝐿(𝐷).
Have

𝛼𝐷(𝑡) = [1 ∶ 𝑡 ∶ ⋯ ∶ 𝑡𝑛] ∶ P1 → P𝑛

Write 𝑡 = 𝑥1
𝑥0

,

𝛼𝐷[𝑥0 ∶ 𝑥1] = [1 ∶ 𝑥1
𝑥0

∶ ⋯ ∶ (𝑥1
𝑥0

)
𝑛

] = [𝑥𝑛
0 ∶ 𝑥𝑛−1

0 𝑥1 ∶ ⋯ ∶ 𝑥𝑛
1 ]

Definition (embedding). 𝛼 ∶ 𝑋 → 𝑌 is an embedding of 𝑋 if it is a morphism
which induces an isomorphism between 𝛼(𝑋) and 𝑋.

Exercise.

1. Show 𝛼𝑛∞ ∶ P1 → P𝑛 is an embedding if 𝑛 ≥ 1.

2. Show that the map

𝛼 ∶ P1 → P2

𝑡 ↦ [1 ∶ 𝑡2 ∶ 𝑡3]

is not an embedding.

Exercise. Let

𝑋 = 𝐸 = Cl{(𝑥, 𝑦) ∶ 𝑦2 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3)} ⊆ P2.

Show

𝛼𝑃∞
∶ 𝐸 → P0 = pt

𝛼2𝑃∞
∶ 𝐸 → P1 = P(⟨1, 𝑥⟩∗)

(𝑥, 𝑦) ↦ 𝑥
𝛼3𝑃∞

∶ 𝐸 → P2 = P(⟨1, 𝑥, 𝑦⟩∗)
(𝑥, 𝑦) ↦ (𝑥, 𝑦)
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Theorem 4.10 (embedding criterion). Let 𝑋 be a smooth projective curve
and 𝐷 ∈ Div(𝑋). Then 𝛼𝐷 ∶ 𝑋 → P𝑚 is an embedding if and only if for all
𝑝, 𝑞 ∈ 𝑋,

ℓ(𝐷 − 𝑝 − 𝑞) = ℓ(𝐷) − 2.

Intuition: if 𝑝 ≠ 𝑞 then this ensures this is an injection. If 𝑝 ≠ 𝑞 then this gives
a criterion for singular point.

Proof. Omitted for now. Instead, we will define the degree of a curve in P𝑚.

When this happens, 𝑋 is a curve in P𝑚 of degree deg 𝐷.
𝑋 ⊆ P𝑚 = P𝑉 where dim 𝑉 = 𝑚 + 1, 𝑋 a smooth curve. Let 𝐻 ⊆ P𝑚 be a

hyperplane such that 𝑋 ⊈ 𝐻 (otherwise take 𝑚 − 1)). Define

[𝐻 ∩ 𝑋] ∈ Cl(𝑋)

as 𝐻 ∩ 𝑋 “counted with multiplicity”. (picture) There exists a linear function
𝑥0 ∈ 𝑉 ∗ such that 𝐻 = {𝑝 ∶ 𝑥0(𝑝) = 0}. Write this as 𝑥0 = 0. 𝑥0 is not a
well-defined function in 𝑘(𝑋). To get a rational function on 𝑋, pick 𝑥1 ∈ 𝑉 ∗

such that 𝑥1(𝑝) ≠ 0. Now 𝑥0
𝑥1

∈ 𝑘(𝑋) and 𝜈𝑝( 𝑥0
𝑥1

) is defined and we set it to be
𝑛𝑝. If 𝑥′

1 is another line with 𝑥′
1(𝑝) ≠ 0 then

𝜈𝑝(𝑥0
𝑥′

1
) = 𝜈𝑝(𝑥0

𝑥1
) + 𝜈𝑝(𝑥1

𝑥′
1

)
⏟

=0

so 𝑛𝑝 is independent of the choice of 𝑥1. We thus define

[𝐻 ∩ 𝑋] = ∑
𝑝∈𝐻∩𝑋

𝑛𝑝𝑝 ∈ Div(𝑋).

Notice that 𝑛𝑝 ≥ 0 for all 𝑝, i.e. [𝐻 ∩ 𝑋] ≥ 0. Moreover, if we picked another
hyperplane 𝐻′ = {𝑥′

0 = 0} with 𝑋 ⊈ 𝐻′ then

𝜈𝑝(𝑥0
𝑥1

) = 𝜈𝑝(𝑥′
0

𝑥0
) + 𝜈𝑝(𝑥0

𝑥′
0

)

hence
[𝐻 ∩ 𝑋] = [𝐻′ ∩ 𝑋] + div(𝑥0

𝑥′
0

),

so image in the class group is independent of the choice of 𝐻. Thus we de-
fine

Definition.
deg 𝑋 = deg[𝐻 ∩ 𝑋]

for any hyperplane 𝐻 not containing 𝑋.

Theorem 4.11. Let 𝐹(𝑋0, 𝑋1, 𝑋2) be a homogeneous polynomial of degree
𝑑 and suppose 𝑍(𝐹) ⊆ P2 is smooth irreducible. Then

deg 𝑍(𝐹) = 𝑑.
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Proof. Linearly change coordinates if necessary so [0 ∶ 1 ∶ 0] ∉ 𝑍(𝐹). Then

𝐹 = ∑
𝑖+𝑗+𝑘=𝑑

𝑎𝑖𝑗𝑘𝑋𝑖
0𝑋𝑗

1𝑋𝑘
2

and 𝐹[0 ∶ 1 ∶ 0] ≠ 0 implies that 𝑎0,𝑑,0 ≠ 0. Thus set 𝑥 = 𝑋0
𝑋1

, 𝑧 = 𝑋2
𝑋1

and

𝑓(𝑥, 𝑧) = 1
𝑎0,𝑑,0

𝐹(𝑥, 1, 𝑧) = 𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎0

where 𝑎𝑖 = 𝑎𝑖(𝑧) is a polynomial in 𝑧 of degree ≤ 𝑑 − 𝑖. 𝑓(𝑥, 𝑧) is a polynomial
of degree 𝑑 in variable 𝑥. In picture 𝑧 = 0 is the hyperplane 𝐻 (yellow line) and
we are computing 𝐻 ∩ 𝑋 using chart 𝑋1 ≠ 0 (complement of green line).

We will now compute 𝜈𝑝(𝑧) for all 𝑝 ∈ 𝒳0 where 𝒳0 = 𝑍(𝐹) ∩ {𝑋1 ≠ 0} =
{(𝑥, 𝑧) ∶ 𝑓(𝑥, 𝑧) = 0}. Note the last expression is affine. But

𝑘[𝒳0]/(𝑧) = 𝑘[𝑥, 𝑧]/(𝑧, 𝑓(𝑥, 𝑧)) = 𝑘[𝑥]/(𝑓(𝑥, 0)).

Now write
𝑓(𝑥, 0) = (𝑥 − 𝛼1)𝑛1 ⋯ (𝑥 − 𝛼𝑟)𝑛𝑟

with 𝛼𝑖’s distinct and ∑ 𝑛𝑖 = 𝑑 and notice that points (𝛼𝑖, 0) are exactly the
intersections 𝒳0 ∩ {𝑧 = 0}. But Chinese remainder theorem says

𝑘[𝑥]/(𝑥 − 𝛼1)𝑛1 ⋯ (𝑥 − 𝛼𝑟)𝑛𝑟 ≅ ⨁ 𝑘[𝑥]/(𝑥 − 𝛼𝑖)𝑛𝑖 .

Let 𝒳 = 𝑍(𝐹). Claim

𝜈𝑝(𝑧) = dim 𝒪𝒳,𝑝/(𝑧) = dim 𝒪𝒳0,𝑝/(𝑧)

by definition: as if 𝑡 is a local parameter at 𝑝, 𝑧 = 𝑡𝑛 ⋅ 𝑢 where 𝑛 = 𝜈𝑝(𝑧), and
we’ve seen

𝒪𝒳0,𝑝/(𝑧) = 𝑘[𝑡]/(𝑡𝑛)

which has dimension 𝑛. So

𝑘[𝒳0]/(𝑧) ≅ ⨁
𝑝∈𝒳∩𝐻

𝒪𝒳,𝑝/(𝑧) ≅
𝑟

⨁
𝑖=1

𝒪𝒳0,(𝛼𝑖,0)/(𝑧).

Have
dim 𝑘[𝒳0]/(𝑧) = ∑ 𝑛𝑖 = ∑ 𝜈𝑝𝑖

(𝑧) = 𝑑.

Remark (quadrics). 𝑥2 + 𝑦2 = 1, 𝑥𝑦 = 1 and 𝑦 = 𝑥2 are three type of curves
over R, and two types over C. But they all correspond to curves in P2: 𝑋𝑌 = 𝑍2

has two points [1 ∶ 0 ∶ 0] and [0 ∶ 1 ∶ 0] at infinity while for 𝑌 𝑍 = 𝑋2, there is
one point (with multiplicity 2) at infinity. There is only one family of quadric
(degree 2 curve) in P2, isomorphic to P1.

Corollary 4.12 (Bezout’s theorem). If 𝑋 = 𝑍(𝐹), 𝑊 = 𝑍(𝐺) with deg 𝐹 =
𝑑, deg 𝐺 = 𝑑′ are two curves in P2 such that 𝑋 ⊈ 𝑊, 𝑊 ⊈ 𝑋 then they
intersect in ≤ 𝑑𝑑′ points.
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Proof. Given a curve 𝒳 in P𝑚 and 𝐺 ∈ 𝑘[𝑋0, … , 𝑋𝑛] homogeneous of degree 𝑑′

such that 𝑋 ⊈ 𝑊 = 𝑍(𝐺). Define

[𝒳 ∩ 𝑊] = ∑
𝑝∈𝒳∩𝑊

𝑚𝑝𝑝

where 𝑚𝑝 = 𝜈𝑝(𝐺/𝑋𝑑′

1 ) for any linear function 𝑋1 such that 𝑋1(𝑝) ≠ 0. As

𝐺
𝑋𝑑′

1
= (𝑋0

𝑋1
)

𝑑′

⋅ ( 𝐺
𝑋𝑑′

0
)

but 𝜈𝑝(𝑋0/𝑋1) is the order of vanishing of 𝒳 along 𝑋0 so

[𝒳 ∩ 𝑊] = 𝑑′[𝒳 ∩ 𝐻] + div 𝐺
𝑋𝑑′

0

hence
[𝒳 ∩ 𝑊] = 𝑑′[𝒳 ∩ 𝐻] ∈ Cl(𝒳)

with deg[𝒳 ∩ 𝑊] = 𝑑′ deg[𝒳 ∩ 𝐻]. So if 𝑚 = 2 and 𝑊, 𝒳 ⊆ P2, deg[𝒳 ∩ 𝐻] = 𝑑,
by the theorem. Hence #(𝒳 ∩ 𝑊) ≤ 𝑑𝑑′.
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5 Differentials
Let 𝐵 be a ring, 𝐴 ⊆ 𝐵 a subring.

Definition (Kähler differential). The Kähler differential, 1-form or relative
cotangent bundle Ω1

𝐵/𝐴 is the free 𝐵-module generated by 𝐵, which we denote
by d𝑏 for 𝑏 ∈ 𝐵, quotiented by the submodule generated by

d(𝑓𝑔) − 𝑓d𝑔 − 𝑔d𝑓
d(𝑏 + 𝑏′) − d𝑏 − d𝑏′

d𝑎

where 𝑏, 𝑏′, 𝑓, 𝑔 ∈ 𝐵, 𝑎 ∈ 𝐴.

Exercise.

1. Let 𝑋 be an affine algebraic variety over 𝑘, 𝑥 ∈ 𝑋 and ev𝑥 ∶ 𝑘[𝑋] → 𝑘 the
corresponding 𝑘-algebra homomorphism. Show that

Hom𝑘[𝑋](Ω1
𝑘[𝑋]/𝑘, 𝑘) ≅ Der(𝑘[𝑋], ev𝑥)

where on LHS 𝑘 is regarded as a 𝑘[𝑋]-module via ev𝑥.

2. More generally, for any 𝐵-module 𝑀,

Hom𝐵(Ω1
𝐵/𝐴, 𝑀) ≅ {𝐴-linear derivations 𝐵 → 𝑀}.

Hence Ω1
𝑘[𝑋]/𝑘 is dual to the tangent bundle, hence called the cotangent

bundle.

Definition (rational differential). The rational differentials on 𝑋 is defined
to be Ω1

𝑘(𝑋)/𝑘.

If you prefer the language of complex geometry, this is the space of meromorphic
differential forms.

Usual rules of calculus apply so for example

0 = d(1) = d(𝑔
𝑔

) = 1
𝑔

d𝑔 + 𝑔d1
𝑔

by Leibniz so
d1

𝑔
= − 1

𝑔2 d𝑔.

Similarly
d(𝑓𝑔) = 𝑔d𝑓 − 𝑓d𝑔

𝑔2 .

Corollary 5.1.

1. Ω1
𝑘(𝑥)/𝑘 = Ω1

𝑘(P1)/𝑘 = 𝑘(𝑥)d𝑥 where 𝑥 is transcendental over 𝑘.
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2. If 𝐿 ⊇ 𝑘 is a separable algebraic extension then Ω1
𝐿/𝑘 = 0.

Proof. If 𝛼 ∈ 𝐿 then by definition there exists a monic 𝑓(𝑧) ∈ 𝑘[𝑧] such that
𝑓(𝛼) = 0 and 𝑓 ′(𝛼) ≠ 0. Differentiate the relation 𝑓(𝛼) = 0 to get (d𝑓)(𝛼) = 0.
But d𝑓(𝛼) = 𝑓 ′(𝛼)d𝛼 and 𝑓 ′(𝛼) ≠ 0 so d𝛼 = 0.

Combining these, get

Lemma 5.2. If 𝑋 is a curve, 𝑝 ∈ 𝑋 smooth and 𝑡 a local parameter at 𝑝
then

Ω1
𝑘(𝑋)/𝑘 = 𝑘(𝑋)d𝑡.

Proof. If 𝑡 is a local parameter then the extension 𝑘(𝑋)/𝑘(𝑡) is algebraic and
separable (the first one is obvious by transcendence degree and the second re-
quires proof, but we omit it). Thus if 𝛼 ∈ 𝑘(𝑋) there exists 𝑓 ∈ 𝑘(𝑡)[𝑧] such that
𝑓(𝛼) = 0, 𝜕𝑓

𝜕𝑧 (𝛼) ≠ 0. Write 𝑓(𝑧) = ∑ 𝑓𝑖(𝑡)𝑧𝑖 where 𝑓𝑖(𝑡) ∈ 𝑘(𝑡). Differentiate,

0 = d0 = d𝑓(𝛼) = d(∑ 𝑓𝑖(𝑡)𝛼𝑖) = ∑(𝑓 ′
𝑖 (𝑡)𝛼𝑖)d𝑡 + ∑ 𝑖𝑓𝑖(𝑡)𝛼𝑖−1

⏟⏟⏟⏟⏟⏟⏟
= 𝜕𝑓

𝜕𝑧 (𝛼)

d𝛼

by linearity and Leibniz rule. We get

d𝛼 = − ∑ 𝑓 ′
𝑖 (𝑡)𝛼𝑖

(𝜕𝑓/𝜕𝑧)(𝛼)
d𝑡 ∈ 𝑘(𝑋)d𝑡.

Definition (regular). If 𝜔 ∈ Ω1
𝑘(𝑋)/𝑘, 𝑝 ∈ 𝑋 smooth and 𝑡 a local parameter

at 𝑝 so 𝜔 = 𝑓d𝑡 for some 𝑓 ∈ 𝑘(𝑋). Define the order of vanishing of 𝜔 at 𝑝
to be

𝜈𝑝(𝜔) = 𝜈𝑝(𝑓)

and the divisor of 𝜔 to be

div(𝜔) = ∑
𝑝

𝜈𝑝(𝜔)𝑝.

Say 𝜔 is regular at 𝑝 if 𝜈𝑝(𝜔) ≥ 0.

Need to show that 𝜈𝑝(𝜔) is independent of choice of local parameter 𝑡.

Lemma 5.3.

1. If 𝑓 ∈ 𝒪𝑋,𝑝 then 𝜈𝑝(d𝑓) ≥ 0.

2. If 𝑡1 is any local coordinate at 𝑝 then 𝜈𝑝(d𝑡1) = 0. In particular, 𝜈𝑝(𝜔)
is well-defined and

𝜈𝑝(𝑓d𝑡1) = 𝜈𝑝(𝑓) + 𝜈𝑝(d𝑡1).

3. If 𝑓 ∈ 𝑘(𝑋) has 𝜈𝑝(𝑓) = 𝑛 < 0 then 𝜈𝑝(d𝑓) = 𝜈𝑝(𝑓) − 1 if ch 𝑘 ∤ 𝑛.
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Proof.

1. Choose an affine open neighbourhood 𝑋0 of 𝑋 so 𝑝 ∈ 𝑋0 ⊆ A𝑁. Then
𝑓 ∈ 𝒪𝑋,𝑝 means that 𝑓 = 𝑔

ℎ where 𝑔, ℎ ∈ 𝑘[𝑥1, … , 𝑥𝑁], ℎ(𝑝) ≠ 0. So

d𝑓 = ℎd𝑔 − 𝑔dℎ
ℎ2 =

𝑁
∑
𝑖=1

𝛾𝑖d𝑥𝑖

for some 𝛾𝑖 ∈ 𝒪𝑋,𝑝, that is 𝜈𝑝(𝛾𝑖) ≥ 0. Hence

𝜈𝑝(d𝑓) ≥ min{𝜈𝑝(d𝑥𝑖) ∶ 𝑖 = 1, … , 𝑁}.

Hence {𝜈𝑝(d𝑓) ∶ 𝑓 ∈ 𝒪𝑋,𝑝} is bounded below. Choose 𝑓 ∈ 𝒪𝑋,𝑝 with
𝜈𝑝(d𝑓) minimal. Write 𝑓 − 𝑓(𝑝) = 𝑡𝑓1, 𝑓1 ∈ 𝒪𝑋,𝑝. Hence

d𝑓 = d(𝑓 − 𝑓(𝑝)) = 𝑓1d𝑡 + 𝑡d𝑓1. (∗)

If 𝜈𝑝(𝑓) < 0 then as 𝜈𝑝(𝑓1d𝑡) = 𝜈𝑝(𝑓1) ≥ 0 by definition, then (∗) implies
that

𝜈𝑝(d𝑓1) = 𝜈𝑝(d𝑓) − 1,

contradicting minimality of 𝜈𝑝(d𝑓).

2. 𝑡1 = 𝑢𝑡 for some 𝑢 ∈ 𝒪∗
𝑋,𝑝 and hence

d𝑡1 = 𝑢d𝑡 + 𝑡d𝑢.

By 1, d𝑢 = 𝑔d𝑡 with 𝜈𝑝(𝑔) ≥ 0. So d𝑡1 = (𝑢 + 𝑡𝑔)d𝑡 and 𝜈𝑝(𝑢 + 𝑡𝑔) =
𝜈𝑝(𝑢) = 0.

3. 𝑓 = 𝑡𝑛𝑢 then d𝑓 = 𝑛𝑡𝑛−1𝑢d𝑡 + 𝑡𝑛d𝑢 and 2 implies the result.

Proposition 5.4. Let 𝜔 ∈ Ω1
𝑘(𝑋)/𝑘. Then 𝜈𝑝(𝜔) = 0 for all but finitely

many 𝑝 ∈ 𝑋.

Proof. Choose 𝑡 ∈ 𝑘(𝑋) such that 𝑘(𝑋)/𝑘(𝑡) is separable algebraic (for example
𝑡 is a local parameter at some point 𝑝, or 𝑡 is obtained from Noether normalisa-
tion). Then 𝑡 defines a rational map 𝛼 = [1 ∶ 𝑡] ∶ 𝑋 99K P1, hence extends to a
map 𝛼 ∶ 𝑋 → P1 as 𝑋 is smooth projective. Finiteness theorem says that only
finitely many points 𝑝 with 𝛼(𝑝) = ∞, or with 𝑒𝛼(𝑝) > 1. For any other 𝑝 ∈ 𝑋,
𝑡 − 𝑡(𝑝) is a local coordinate at 𝑝, and so 𝜈𝑝(d𝑡) = 0 for all but finitely many 𝑝.
Thus the proposition holds if 𝜔 = d𝑡.

For any arbitrary 𝜔 ∈ Ω1
𝑘(𝑋)/𝑘, 𝜔 = 𝑓d𝑡 and

𝜈𝑝(𝑓d𝑡) = 𝜈𝑝(𝑓) + 𝜈𝑝(d𝑡)

and 𝜈𝑝(𝑓) = 0 for all but finitely many 𝑝, proving the result.
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Definition. The divisor of a Kähler form is defined to be

div 𝜔 = ∑
𝑝∈𝑋

𝜈𝑝(𝜔)𝑝 ∈ Div(𝑋).

We have just shown that this is a finite sum and indeed well-defined.
As div(𝑓𝜔) = div 𝑓 + div 𝜔, the class of div(𝜔) in Cl(𝑋) is independent of 𝜔.

This is called the canonical class 𝒦𝑋 = [div 𝜔] for any 0 ≠ 𝜔 ∈ Ω1
𝑘(𝑋)/𝑘.

Pick 0 ≠ 𝜔0 ∈ Ω1
𝑘(𝑋)/𝑘. Recall that

𝐿(𝒦𝑋) = 𝐿(div(𝜔0))
= {𝑓 ∈ 𝑘(𝑋) ∶ div(𝜔0) + div(𝑓) ≥ 0}
= {𝑓 ∈ 𝑘(𝑥) ∶ div(𝑓𝜔0) ≥ 0}
= {𝜔 ∈ Ω1

𝑘(𝑋)/𝑘 ∶ div 𝜔 ≥ 0}

Definition (genus). We define the genus of 𝑋 to be

ℓ(𝒦𝑋) = dim 𝐿(𝒦𝑋).

Example.

1. Let 𝑋 = P1. Let 𝑥 be a coordinate on P1 and choose 𝜔 = d𝑥. Must
compute 𝜈𝑝(d𝑥) for 𝑝 ∈ P1. If 𝑝 ∈ A1 then 𝑥 − 𝑝 is a local coordinate and
d(𝑥 − 𝑝) = d𝑥 has 𝜈𝑝(d𝑥) = 0.

If 𝑝 = ∞ then 𝑡 = 1
𝑥 is a local coordinate and

d𝑥 = d (1
𝑡
) = − 1

𝑡2 d𝑡

so 𝜈∞(d𝑥) = −2 so div(d𝑥) = −2∞ = 𝒦𝑋. Thus deg 𝒦𝑋 = −2. Then by
a lemma ℓ(𝒦𝑋) = 0 so P1 has genus 0.

2. 𝑦2 = 𝑓(𝑥) = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3) where 𝜆𝑖’s distinct. This gives
𝑋 = 𝐸 ⊆ P2 with a unique point at ∞, 𝑃∞ = [0 ∶ 1 ∶ 0]. Take derivative,
2𝑦d𝑦 = 𝑓 ′(𝑥)d𝑥. Let’s consider the 1-form

𝜔 = d𝑥
𝑦

= 2d𝑦
𝑓 ′(𝑥)

∈ Ω1
𝑘(𝐸)/𝑘.

Need to compute div 𝜔. Given 𝑝 = (𝑥0, 𝑦0) ∈ A2, if 𝑓 ′(𝑥0) ≠ 0 then 𝑦 − 𝑦0
is a local coordinate so

𝜔 = 2
𝑓 ′(𝑥0)

d𝑦 = 2
𝑓 ′(𝑥0)

d(𝑦 − 𝑦0)

and thus 𝜈𝑝(𝜔) = 0.

If 𝑦0 = 1
2

𝜕
𝜕𝑦 (𝑦2 − 𝑓(𝑥))|𝑝 ≠ 0 then 𝑥 − 𝑥0 is a local parameter so

𝜔 = 1
𝑦

d(𝑥 − 𝑥0)
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has 𝜈𝑝(𝜔) = 0. Since 𝜆𝑖’s are distinct and the curve is smooth at 𝑝, at
least one of these happens.
At 𝑝 = 𝑃∞, have

𝑌 2𝑍 = (𝑋 − 𝜆1𝑍)(𝑋 − 𝜆2𝑍)(𝑋 − 𝜆3𝑍).

Consider the chart 𝑌 ≠ 0. Write

𝑢 = 𝑥
𝑦

= 𝑋
𝑌

𝑣 = 1
𝑦

= 𝑍
𝑌

In this chart, 𝐸 becomes {(𝑢, 𝑣) ∶ 𝑔(𝑢, 𝑣) = 0} where

𝑔(𝑢, 𝑣) = 𝑣 − (𝑢 − 𝜆1𝑣)(𝑢 − 𝜆2𝑣)(𝑢 − 𝜆3𝑣).

In this chart 𝑃∞ corresponds to (𝑢, 𝑣) = (0, 0). As

𝜕𝑔
𝜕𝑣

∣
(0,0)

= 1 ≠ 0

𝑢 is a local parameter at (0, 0). Thus 𝜈𝑃∞
(𝑢) = 1 and 𝜈𝑃∞

(𝑣) ≥ 1. Here
is an ad hoc way of computing it:

𝜈𝑃∞
(𝑢 − 𝜆𝑖𝑣) ≥ 1

so 𝜈𝑃∞
(𝑣) ≥ 3. Thus 𝜈𝑃∞

(𝑢 − 𝜆𝑖𝑣) = 1 and 𝜈𝑃∞
(𝑣) = 3. But then 𝑦 = 1

𝑣
so 𝜈𝑃∞

(𝑦) = −3. So

𝜈𝑃∞
(𝑥) = 𝜈𝑃∞

(𝑢𝑥) = 1 − 3 = −2.

So
𝜈𝑃∞

(d𝑥) = −2 − 1 = −3
if ch 𝑘 ≠ 2 by lemma 3. Thus

𝜈𝑃∞
(d𝑥

𝑦
) = −3 − (−3) = 0

so div 𝜔 = 0, i.e. 𝒦𝑋 = 0. Thus 𝑔 = ℓ(0) = 1. 𝐸 has genus 1.

Definition (elliptic curve). A curve of genus 1 is called an elliptic curve.

We showed 𝑦2 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3) has genus 1.

Proposition 5.5. Let 𝒳 = 𝑍(𝐹) ⊆ P2 be an irreducible smooth projective
curve, 𝐹 = 𝐹(𝑋, 𝑌 , 𝑍) homogeneous of degree 𝑑. Then

𝒦𝑋 = (𝑑 − 3)[𝒳 ∩ 𝐻]

where 𝒳∩𝐻 is the divisor of the intersection of any line 𝐻 (i.e. hyperplane)
with 𝒳. In particular

deg 𝒦𝑋 = 𝑑(𝑑 − 3).
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Proof. Let 𝑥 = 𝑋
𝑍 , 𝑦 = 𝑌

𝑍 and 𝑓(𝑥, 𝑦) = 𝐹(𝑥, 𝑦, 1) be the equation of 𝒳 on A2

which is the chart 𝑍 ≠ 0 in P2. Differentiate,

d𝑓 = 𝜕𝑓
𝜕𝑥

d𝑥 + 𝜕𝑓
𝜕𝑦

d𝑦 = 0 ∈ Ω1
𝑘(𝑋)/𝑘

as 𝑓 = 0 ∈ 𝑘(𝑋). Take

𝜔 = d𝑥
𝜕𝑓/𝜕𝑦

= − d𝑦
𝜕𝑓/𝜕𝑥

and need to compute 𝜈𝑝(𝜔) for all 𝑝 ∈ 𝒳.
Let 𝑝 = (𝑥0, 𝑦0) ∈ A2 ∩ 𝒳. If 𝜕𝑓

𝜕𝑦 (𝑝) ≠ 0 then 𝑥 − 𝑥0 is a local coordinate at
𝑝 so 𝜔 = d(𝑥−𝑥0)

𝜕𝑓/𝜕𝑦 has 𝜈𝑝(𝜔) = 0. If 𝜕𝑓
𝜕𝑥 (𝑝) ≠ 0 then 𝑦 − 𝑦0 is a local coordinate

so 𝜈𝑝(𝜔) = 0. As 𝒳 is smooth by hypothesis, at least one of this is nonzero, so
𝜈𝑝(𝜔) = 0 for all 𝑝 ∈ A2 ∩ 𝒳, i.e. with the choice of 𝜔, all contributions occur
at the line at ∞, which is 𝑧 = 0.

If necessary, change coordinates on the 𝑧 = 0 line so [1 ∶ 0 ∶ 0] ∉ 𝒳. Then
𝒳 ∩ {𝑧 = 0} is contained in the chart 𝑌 ≠ 0. (the only case in which we can’t
do this operation is {𝑧 = 0} ⊆ 𝒳, but in this case 𝑋 is just P1). Let

𝑢 = 𝑍
𝑌

= 1
𝑦

𝑣 = 𝑋
𝑌

= 𝑥
𝑦

so 𝑢, 𝑣 are coordinates on 𝑌 ≠ 0 chart. Now the equation of 𝒳 is given by

𝑔(𝑢, 𝑣) = 𝐹(𝑣, 1, 𝑢) = 𝐹(𝑥
𝑦

, 1, 1
𝑦

) = 𝑦−𝑑𝐹(𝑥, 𝑦, 1) = 𝑦−𝑑𝑓(𝑥, 𝑦),

that is
𝑓(𝑥, 𝑦) = 𝑦𝑑𝑔(𝑢, 𝑣).

Now differentiate and use chain rule,

𝜕𝑓
𝜕𝑥

= 𝑦𝑑 ⎛⎜⎜
⎝

𝜕𝑔
𝜕𝑣

𝜕𝑣
𝜕𝑥

+ 𝜕𝑔
𝜕𝑢

𝜕𝑢
𝜕𝑥⏟
=0

⎞⎟⎟
⎠

= 𝑦𝑑−1 𝜕𝑔
𝜕𝑣

Also d𝑦 = − 1
𝑢2 d𝑢 so

𝜔 = − d𝑦
𝜕𝑓/𝜕𝑥

= 𝑢𝑑−3 d𝑢
𝜕𝑔/𝜕𝑣

= 𝑢𝑑−3𝜂

where
𝜂 = d𝑢

𝜕𝑔/𝜕𝑣
= − d𝑣

𝜕𝑔/𝜕𝑢
For exactly the same reason as before, 𝜈𝑝(𝜂) = 0 for all 𝑝 ∈ A2

(𝑢,𝑣) ∩ 𝒳. Thus

𝜈𝑝(𝜔) = (𝑑 − 3)𝜈𝑝(𝑢) + 𝜈𝑝(𝜂) = (𝑑 − 3)𝜈𝑝(𝑢).

Finally observe that
𝜈𝑝(𝑢) = 𝜈𝑝(𝑍

𝑌
)

is just the contact order of the line 𝑍 = 0 with 𝒳, i.e. [𝒳 ∩ {𝑍 = 0}] =
∑𝑝∈𝒳⊆{𝑍=0} 𝜈𝑝(𝜔)𝑝, by definition.
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6 Riemann-Roch theorem

Theorem 6.1 (classical Riemann-Roch). Let 𝑋 be a smooth projective curve
with genus 𝑔 = 𝑔(𝑋) = ℓ(𝒦𝑋). Let 𝐷 = ∑ 𝑛𝑖𝑃𝑖 ∈ Div(𝑋). Then

ℓ(𝐷) − ℓ(𝒦𝑋 − 𝐷) = 1 − 𝑔 + deg 𝐷.

We will not prove this theorem but will spend the rest of the course understand-
ing the statement and its consequences. Immediate consequences are:

1. take 𝐷 = 0. As ℓ(0) = 1, this says that ℓ(𝒦𝑋) = 𝑔, which is the definition
of genus.

2. take 𝐷 = 𝒦𝑋, we get deg 𝒦𝑋 = 2𝑔 − 2.

3. If deg 𝐷 > 2𝑔 − 2 then deg(𝒦𝑋 − 𝐷) < 0 so ℓ(𝒦𝑋 − 𝐷) = 0 so by
Riemann-Roch,

ℓ(𝐷) = 1 − 𝑔 + deg 𝐷.

Warning: if 0 < deg 𝐷 ≤ 2𝑔 − 2, the behaviour of ℓ(𝐷) is complicated as
you vary 𝐷 in Cl𝑎(𝑋), 𝑎 = deg 𝐷 fixed, ℓ can jump. In fact Cl𝑎(𝑋) is an
algebraic variety and it stratifies into subvarieties according to ℓ(𝐷). This
is Brill-Noether loci.

4. If deg 𝐷 > 2𝑔 then for all 𝑝, 𝑞 ∈ 𝑋,

ℓ(𝐷 − 𝑝 − 𝑞) = ℓ(𝐷) − 2 = 1 − 𝑔 − 2 + deg 𝐷.

Hence by embedding criterion

𝛼𝐷 ∶ 𝑋 → P(𝐿(𝐷)∗) ≅ P𝑛

is an embedding, with image a curve of degree deg 𝐷.

Corollary 6.2. If 𝒳 is a smooth plane curve of degree 𝑑, then as deg 𝒦𝑋 =
𝑑(𝑑 − 3), have

𝑔 = 1
2

(𝑑 − 1)(𝑑 − 2).

For example if 𝑑 = 1 or 2, correponding to line and conics respectively, we
have 𝑔 = 0. If 𝑑 = 3 then 𝑔 = 1. In general we have a progression

0, 0, 1, 3, 6, 10, ⋯

which does not have every natural number in there. Thus smooth projective
curves of genus 2, 4, 5, 7, ⋯ cannot occur inside P2.

Let’s study curves of small genus using Riemann-Roch.

Proposition 6.3. 𝑋 has genus 0 if and only if 𝑋 = P1.

Proof.

• ⟸ : done earlier.
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6 Riemann-Roch theorem

• ⟹ : suppose 𝑋 has genus 0. Let 𝑝 ∈ 𝑋. The divisor (𝑝) has degree 1.
As 1 > −2 = 2𝑔 −2, by Riemann-Roch ℓ((𝑝)) = 2. But 𝑘 = 𝐿(0) ⊆ 𝐿((𝑝))
so exists 𝑓 ∈ 𝐿((𝑝)) \ 𝑘. Have div(𝑓) + (𝑝) ≥ 0, i.e. 𝑓 has a pole at 𝑝 and
no other pole. But div(𝑓) has degree 0, so deg(div(𝑓) + (𝑝)) = 1, which
is saying div(𝑓) = −(𝑝) + (𝑞) for some 𝑞 ∈ 𝑋. In addition 𝑝 ≠ 𝑞 as 𝑓 is
not constant. As 𝑝 ≠ 𝑞, 𝑓 is not constant so 𝛼 = [1 ∶ 𝑓] ∶ 𝑋 99K P1 is a
nonconstant rational map, hence a morphism (as 𝑋 is smooth) of degree
1. Thus by an exercise on example sheet 3 𝛼 is an isomorphism.

Note that there are two parts of the proof: we showed that if ℓ((𝑝)) = 2 for
some 𝑝 ∈ 𝑋 then 𝑋 ≅ P1, and we used Riemann-Roch to show such 𝑝 exists.

6.1 Curves of genus 1
Let 𝑋 be a smooth projective curve with genus 𝑔 = 1. Then by Riemann-Roch,
if deg 𝐷 > 0 then ℓ(𝐷) = deg 𝐷.

Fix a point 𝑝∞ ∈ 𝑋. Have

𝐿(0)⏟
𝑘

⊆ 𝐿(𝑝∞)⏟
𝑘

⊊ 𝐿(2𝑝∞)⏟
𝑘⟨1,𝑥⟩

⊊ 𝐿(3𝑝∞)⏟
𝑘⟨1,𝑥,𝑦⟩

⊊ ⋯

where we choose 𝑥 ∈ 𝐿(2𝑝∞) \ 𝑘, 𝑦 ∈ 𝐿(3𝑝∞) \ 𝐿(2𝑝∞). As before, 𝐿(6𝑝∞)
contains 1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑥3, 𝑦2. But dim 𝐿(6𝑝∞) = 6 so there exist a linear relation
between these monomials, with 𝑥3, 𝑦2 appearing with non-zero coefficients (as
1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦 ∈ 𝐿(5𝑝∞) are linearly independent, and we cannot have only one of
𝑥3, 𝑦2 with nonzero coefficient by considering the degree of pole at ∞). Rescale
𝑥 ↦ 𝜆𝑥, 𝑦 ↦ 𝜇𝑦, we get a relation in 𝑘(𝑋)

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6

for some 𝑎𝑖 ∈ 𝑘. This equation defines a curve 𝐶0 in A2 (exericse: this is
irreducible) with a unique point at ∞, call it 𝑝∞, so 𝐶 = 𝐶0 ∪ {𝑝∞} ⊆ P2, and

𝛼3𝑝∞
= [1 ∶ 𝑥 ∶ 𝑦] ∶ 𝑋 → P2

maps 𝑋 into 𝐶. As 𝛼3𝑝∞
is not constant and 𝐶 is irreducible, this map is

surjective. The embedding criterion tells us 𝛼3𝑝∞
is an isomorphism 𝑋 ≅ 𝐶.

We can do better: if ch 𝑘 ≠ 3, we can complete the cube by 𝑥 ↦ 𝑥 − 𝑎2
3 so

the equation becomes (by renaming the coefficients)

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎4𝑥 + 𝑎6.

If ch 𝑘 ≠ 2, we can complete the square by 𝑦 ↦ 𝑦 − 𝑎1𝑥+𝑎3
2 to get

𝑦2 = 𝑥3 + 𝑞2𝑥2 + 𝑎4𝑥 + 𝑎6.

Combining these two, if ch 𝑘 ≠ 2, 3, do them in this order to get

𝑦2 = 𝑥3 + 𝑎4𝑥 + 𝑎6 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3)

for 𝜆𝑖’s distinct (by smoothness).
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Theorem 6.4. Every curve of genus 1 is isomorphic to a smooth plane
curve of the form

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6.

Amazingly, every curve of genus 1 is a group by the following:

Proposition 6.5. Let 𝐸 be a curve of genus 1, 𝑝∞ ∈ 𝐸. Then the map

𝐸 → Cl0(𝐸)
𝑝 ↦ [𝑝 − 𝑝∞]

is a bijection.

Proof. For injectivity, if 𝑝 − 𝑝∞ = 𝑞 − 𝑝∞ in Cl(𝐸) the 𝑝 − 𝑞 = div(𝑓) for some
𝑓 ∈ 𝑘(𝐸). But then [1 ∶ 𝑓] ∶ 𝐸 → P1 is an isomorphism, contradicting 𝐸 having
genus 1.

For surjectivity, if 𝐷 ∈ Div(𝐸) and deg 𝐷 = 0, then

deg(𝐷 + 𝑝∞) = 1 > 2𝑔 − 2 = 0

so by Riemann-Roch ℓ(𝐷 + 𝑝∞) = 1. Let 0 ≠ 𝑓 ∈ 𝐿(𝐷 + 𝑝∞) so

𝐷 + 𝑝∞ + div(𝑓) ≥ 0.

But the degree of this is 1, implying that 𝐷 + 𝑝∞ + div(𝑓) = 𝑞, i.e. 𝐷 = 𝑞 − 𝑝∞
in Cl(𝐸).

Corollary 6.6. 𝐸 is an algebraic group, where the group operation ⊞ is
define by

𝑝 ⊞ 𝑞 = 𝑟 ⟺ (𝑝 − 𝑝∞) + (𝑞 − 𝑝∞) = (𝑟 − 𝑝∞)

in Cl(𝐸), i.e. if 𝑝 + 𝑞 = 𝑟 + 𝑝∞ in Cl(𝐸).

Notice that the identity of the group is 𝑝∞.

Definition (elliptic curve). An elliptic curve is a pair (𝐸, 𝑝∞) where 𝐸 is
a curve of genus 1 and 𝑝∞ ∈ 𝐸.

In fact, the group law is algebraic: consider 𝛼3𝑝∞
∶ 𝐸 → P2 and let 𝑋, 𝑌 , 𝑍

be coordinates on P2. As we know 𝐸 ∩ {𝑍 = 0} = 3𝑝∞ and if 𝐿 = {ℓ = 0} is
any line in P2, [𝐿 ∩ 𝐸] = 𝑝1 + 𝑝2 + 𝑝3 and div(ℓ/𝑧) = 𝑝1 + 𝑝2 + 𝑝3 − 3𝑝∞. Note
ℓ/𝑧 ∈ 𝑘(𝐸). Thus 𝑝1 + 𝑝2 + 𝑝3 = 3𝑝∞ in Cl(𝐸), i.e.

𝑝1 ⊞ 𝑝2 ⊞ 𝑝3 = 𝑝∞ ⊞ 𝑝∞ ⊞ 𝑝∞ = 𝑝∞.

Thus geometrically the group law can be characterised as follow: any line 𝐿
intersects 𝐸 at three points, and the sum of the three points in the group is 𝑝∞.

Exercise.
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1. Show that for fixed 𝑝 ∈ 𝐸, the map

𝐸 99K 𝐸
𝑒 ↦ 𝑒 ⊞ 𝑝

is a rational map, hence a morphism, hence an isomorphism.

2. Show the map 𝑦 ↦ ⊟𝑦 is a morphism (i.e. it is a rational function).

3. Show that ⊞ ∶ 𝐸 × 𝐸 → 𝐸 defines a morphism so 𝐸 is a group object in
the category of smooth projective varieties.

Suppose 𝐸 = {𝑦2 = (𝑥 − 𝜆1)(𝑥 − 𝜆2)(𝑥 − 𝜆3)} ∪ {𝑝∞} and ch 𝑘 ≠ 2, 3.
Consider the line {𝑥 = 𝑎} in P2. It intersects 𝐸 at 𝑝∞ and at (𝑎, ±𝑏) for some
𝑏 ∈ 𝑘. Hence

(𝑎, 𝑏) ⊞ (𝑎, −𝑏) ⊞ 𝑝∞ = 𝑝∞

i.e.
(𝑎, 𝑏) ⊞ (𝑎, −𝑏) = 𝑝∞,

that is ⊟(𝑎, 𝑏) = (𝑎, −𝑏), so this proves a special case of 2. This implies that
[2]𝑝 = 0, that is 𝑝 ⊞ 𝑝 = 𝑝∞ if and only if 𝑏 = 0 or 𝑝 = 𝑝∞, i.e. 𝑝 = (𝜆𝑖, 0) or
𝑝 = 𝑝∞. These are exactly the ramification points of the morphism 𝛼2𝑝∞

= [𝑥 ∶
1] ∶ 𝐸 → P1. That is, 𝐸 is a double cover of P1, ramified at 4 points, and these
four points are just the points of order 2 on 𝐸, i.e. P1 = 𝐸/(Z/(2)) where Z/(2)
acts on 𝐸 by 𝑝 ↦ ⊟𝑝. These 4 points are well-defined, independent of choices,
up to a coordinate change on P1, i.e. up to action of PGL2 on P1.

Let 𝑗(𝐸) be the cross ratio of these 4 points ∞, 𝜆1, 𝜆2, 𝜆3. It is an invariant
of (P1)2/ PGL2. For example if we scale (change of coordinates?) so that
𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆), then

𝑗(𝐸) = 𝑗(𝜆) = 28 (𝜆2 − 𝜆 + 1)3

𝜆2(𝑙 − 1)2 .

Thus 𝑗(𝐸) = 𝑗(𝐸′) if and only if 𝐸 ≅ 𝐸′: only if because given 𝜆1, 𝜆2, 𝜆3, ∞,
we can define 𝐸, if by the discussion above.

Corollary 6.7. There is a three way correspondence

{genus 1 curves up to isomorphism}
↔{4 distinct points in P1}/ PGL2

↔A1 given by 𝑗

6.2 Riemann-Hurwitz

Theorem 6.8 (Riemann-Hurwitz). Let 𝛼 ∶ 𝑋 → 𝑌 be a nonconstant mor-
phism of smooth projective curves such that 𝑘(𝑋)/𝑘(𝑌 ) is a separable alge-
braic extension (for example if ch 𝑘 = 0). Set 𝜒(𝑋) = 2 − 2𝑔(𝑋). Then

𝜒(𝑋) = 𝜒(𝑌 ) deg 𝛼 − ∑
𝑝∈𝑋

(𝑒𝑝(𝛼) − 1).
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Proof. 𝛼 defines a map

𝛼∗ ∶ Ω1
𝑘(𝑌 )/𝑘 → Ω1

𝑘(𝑋)/𝑘

𝑓d𝑔 ↦ (𝑓𝛼)d(𝑔𝛼)

Separability implies that 𝛼∗ is injective (as 𝛼 is nonconstant). Pick 0 ≠ 𝜔 ∈
Ω1

𝑘(𝑌 )/𝑘, then by Riemann-Roch

deg 𝜔 = 2𝑔(𝑌 ) − 2 = −𝜒(𝑌 ).

Let 𝑝 ∈ 𝑋, 𝑞 = 𝛼(𝑝) ∈ 𝑌 and pick local coordinates 𝑡𝑝, 𝑡𝑞 at 𝑝, 𝑞 respectively,
so 𝑡𝑞 ∘ 𝛼 = 𝑢𝑡𝑒𝑝(𝛼)

𝑝 where 𝑢 is a unit. Write 𝜔 = 𝑓d𝑡𝑞 for some 𝑓 ∈ 𝑘(𝑌 ), so
𝛼∗𝜔 = 𝑓𝛼d(𝑢𝑡𝑒𝑝). Hence

𝜈𝑝(𝛼∗𝜔) = 𝜈𝑝(𝑓𝛼) + 𝜈𝑝(d(𝑢𝑡𝑒𝑝))
= 𝜈𝑞(𝑓)𝑒𝑝 + 𝜈𝑝(𝑢𝑡𝑒𝑝) − 1 if ch 𝑘 ∤ 𝑒𝑝

= 𝜈𝑞(𝜔)𝑒𝑝 + 𝑒𝑝 − 1

Therefore

−𝜒(𝑋) = deg 𝛼∗𝜔

= ∑
𝑞∈𝑌

( ∑
𝑝∈𝛼−1(𝑞)

𝑒𝑝)𝜈𝑞(𝜔) + ∑
𝑝∈𝑋

(𝑒𝑝 − 1)

= deg 𝛼 ∑
𝑞∈𝑌

𝜈𝑞(𝜔) + ∑
𝑝∈𝑋

(𝑒𝑝 − 1)

Corollary 6.9. Let 𝑘 = C. Then the topological Euler characteristic of a
smooth projective curve 𝑋 is 2 − 2𝑔, i.e. 𝑔 is the “number of holes”.

Proof. The topological characteristic of P1 is 2 = 2 − 0 so the statement holds
for 𝑋 = P1. In general, let 𝑓 ∈ 𝑘(𝑋) nonconstant. Then 𝑓 defines a morphism
𝛼 ∶ 𝑋 → P1. Now Riemann-Hurwitz for 𝑓 as a Riemann surface and as an
algebraic curve coincide.

Corollary 6.10. If 𝑔(𝑋) < 𝑔(𝑌 ) then there are no non-constant maps
𝑋 → 𝑌. In particular if 𝑔(𝑌 ) > 0 then there are no non-constant maps
P1 → 𝑌.

c.f. exercise proving the non-existence of non-constant map from P1 to an elliptic
curve.

Proof. By Riemann-Hurwitz for any 𝛼 ∶ 𝑋 → 𝑌 non-constant,

0 ≤ 2(𝑔(𝑋) − 𝑔(𝑌 )) + (−2𝑔(𝑌 ) + 2)(deg 𝛼 − 1) < 0,

absurd.
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Definition (hyperelliptic). If a curve 𝑋 admits a degree 2 map 𝑋 → P1,
we say 𝑋 is hyperelliptic.

For example an elliptic curve is hyperelliptic.
Suppose 𝑋 is hyperelliptic, 𝜋 ∶ 𝑋 → P1 is a degree 2 map and ch 𝑘 ≠ 2. If

𝑝 ∈ 𝑋, either 𝑒𝑝 = 1 and 𝑝 is unramified, or 𝑒𝑝 = 2 and 𝑝 is ramified (constrast
this with the case 𝛼 ∶ 𝑋 → P1 with degree ≥ 3, where there are more than one
type of ramification). Then Riemann-Hurwitz says that

2 − 2𝑔 = 2 × 2 − #{ramification points}

so there are 2 + 2𝑔 ramification points, which in particular is always even. For
example if 𝑔 = 1 then there are 4, if 𝑔 = 2 then there are 6.

6.3 Curves of genus 2
If a curve 𝑋 has 𝑔(𝑋) > 0 then we can then consider the map 𝛼𝒦 ∶ 𝑋 → P𝑔−1,
the canonical morphism. This is not very interesting for 𝑔(𝑋) = 1. Suppose 𝑋
has genus 2.

Proposition 6.11. 𝛼𝒦 is a map of degree 2, so 𝑋 is a hyperelliptic curve
and 𝛼𝒦 is ramified at 6 points.

Proof. Only thing needs proving is that 𝛼𝒦 has degree 2. As ℓ(𝒦𝑋) = 𝑔(𝑋) =
2 > 0, 𝒦𝑋 = 𝑝 + 𝑞 in Cl(𝑋) and

ℓ(𝑝 + 𝑞) = ℓ(𝒦𝑋) = 2 > 1

so there exists a non-constant function ℎ ∈ 𝐿(𝑝+𝑞), i.e. div(ℎ)+𝑝+𝑞 ≥ 0. As ℎ
has poles at most at 𝑝 and 𝑞, deg ℎ = 1 or 2. But deg ℎ = 1 would imply 𝑋 ≅ P1,
contradicting 𝑋 has genus 2. Thus deg ℎ = 2 and 𝛼𝒦𝑋

= [1 ∶ ℎ] ∶ 𝑋 → P1 has
degree 2.

Corollary 6.12. There is a map from
the set of isomorphism classes of curves of genus 2 embeds
to
{tuples of 6 points in P1}/PGL2,

We’ll see in a moment these 6 points determine the curve, so this is an open
embedding, suggesting that dim {curves of genus 2} is 6 − 3 = 3.
Remark. For 𝑔 ≥ 2, 𝛼2𝒦𝑋

∶ 𝑋 → P𝑛 is always an embedding by Riemann-Roch
and embedding theorem.

Proposition 6.13. Let 𝑋 be a smooth curve of genus 𝑔, 𝑔 ≥ 2. Then

1. either 𝑋 is hyperelliptic, i.e. admits a degree 2 map to P1, in which
case the canonical map factors

𝛼𝒦𝑋
∶ 𝑋 ↠ P1 ↪ P𝑔−1

and 𝛼𝒦𝑋
∶ 𝑋 → P1 has degree 2.
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2. or 𝑋 is not hyperelliptic, in which case 𝛼𝒦𝑋
∶ 𝑋 → P𝑔−1 is an embed-

ding, called the canonical embedding.

Moreover, 2 happens for most curves of genus 𝑔, 𝑔 ≥ 3. The set of all curves
of genus 𝑔, i.e. the moduli space of curves of genus 𝑔, denoted ℳ𝑔, is an
algebraic variety of dimension 3𝑔−3, and the set of all hyperelliptic curves of
genus 𝑔 is a subvariety, isomorphic to (P1)2𝑔+2/ PGL2, of dimension 2𝑔 −1.

Proof. We prove 2 first. The embedding criteria says 𝛼𝒦𝑍
is an embedding if

and only if for all 𝑝, 𝑞 ∈ 𝑋,

ℓ(𝒦𝑋 − 𝑝 − 𝑞) = ℓ(𝒦𝑋) − 2 = 𝑔 − 2.

Riemann-Roch says ℓ(𝒦𝑋 − 𝑝 − 𝑞) = ℓ(𝑝 + 𝑞) + 𝑔 − 3 so the embedding criteria
is equivalent to ℓ(𝑝 + 𝑞) = 1. But ℓ(𝑝 + 𝑞) > 1 implies that 𝑋 is hyperelliptic by
the argument last time on 𝑔 = 2 curves. Conversely if 𝑋 is hyperelliptic there
exist 𝑝, 𝑞 with ℓ(𝑝 + 𝑞) > 1 (obvious). Thus ℓ(𝑝 + 𝑞) = 1 if and only if 𝑋 is not
hyperelliptic and 𝛼𝒦𝑋

is an embedding.
For the first part, suppose 𝑋 is hyperelliptic, i.e. there exists a double cover

(degree 2 map) 𝑋 → P1. This gives an embedding 𝑘(𝑥) = 𝑘(P1) ↪ 𝑘(𝑋)
which makes 𝑘(𝑋)/𝑘(𝑥) an algebraic extension of degree 2. Assume ch 𝑘 ≠ 2,
there exists 𝑦 ∈ 𝑘(𝑋) such that 𝑦2 = 𝑓(𝑥) for some 𝑓 ∈ 𝑘(𝑥) (by completing
the square). This gives a rational function 𝑓 ∶ 𝑋 99K P1. As 𝑋 is smooth,
get a morphism 𝑓 ∶ 𝑋 → P1, ramified at ∞ and at points 𝑎1, … , 𝑎𝑟 if 𝑓(𝑥) =
(𝑥−𝑎1) ⋯ (𝑥−𝑎𝑟). But we say that Riemann-Roch implies that there are 2𝑔 +2
ramification oints, so deg 𝑓 = 2𝑔 + 1. Need to show that 𝛼𝒦𝑋

factors through
P1. To finish choose 𝜔 = d𝑥

𝑦 , and check that 𝑋0, defined to be

𝑋 P1 = A1 ∪ {∞}

𝑋0 = 𝑓−1(𝐴) A1

𝑓

⊆ ⊆

has 𝑋0 = {(𝑥, 𝑦) ∶ 𝑦2 = 𝑓(𝑥)} and 𝐿(𝒦𝑋) = ⟨𝜔, 𝑥𝜔, … , 𝑥𝑔−1𝜔⟩ and 𝑓|𝑋0 ∶ 𝑋0 →
A1 is (𝑥, 𝑦) ↦ 𝑥, so that

𝛼𝒦𝑋
= [1 ∶ 𝑥 ∶ 𝑥2 ∶ ⋯ ∶ 𝑥𝑔−1] ∶ 𝑋 → P𝑔−1

Indeed factors through P1 as

𝑋 → P1 → P𝑔−1

(𝑥, 𝑦) ↦ 𝑥 ↦ [1 ∶ 𝑥 ∶ ⋯ ∶ 𝑥𝑔−1]

Finally we will not prove 3. See what happens when you restrict 𝑓 to 𝑓−1(P1\
{0}).
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7 Abel-Jacobi theorem
Let 𝑘 = C and 𝑋 a smooth curve. Pick 𝜔 ∈ 𝐿(𝒦𝑋). For concreteness, consider

𝑦2 = 𝑥3 − 𝑎2𝑥 + 𝑎4

𝜔 = d𝑥
𝑦

= d𝑥
√𝑥3 − 𝑎2𝑥 + 𝑎4

For 𝑃 , 𝑄 ∈ 𝑋, we would like to define ∫𝑄
𝑃

𝜔, but this is not defined unless unless
we choose a path 𝛾 from 𝑃 to 𝑄. If 𝛾 is a loop and the loop is contractible
then ∫

𝛾
𝜔 = 0, but if we choose 𝛾 to be 𝛾1, 𝛾2, two elements giving independent

classes in homology, then the integral is not zero. Thus ∫𝑄
𝑃

is not well-defined,
but it is well-defined up to multiples

𝑘1 ∫
𝛾1

𝜔 + 𝑘2 ∫
𝜔2

𝜔,

i.e. up to an element of Z𝜏1 + Z𝜏2. Thus there is a well-defined pairing

𝐻1(𝑋;Z) × 𝐿(𝒦𝑋) → C

([𝛾], 𝜔) ↦ ∫
𝛾

𝜔

which is linear, so defines a map

𝐿(𝒦𝑋) → HomZ(𝐻1(𝑋,Z),C) ≅ 𝐻1(𝑋;C)

If ℓ(𝒦𝐺) = 𝑔 then 𝐻1(𝑋,Z) ≅ Z2𝑔, so the cohomology group is C2𝑔. It is a fact
that this is an injection, and RHS does not depende on the complex structure
on 𝑋 (and in particular, on the algebraic structure of 𝑋). However the map
does change so we get a faimly of C𝑔 sitting inside a fixed C2𝑔.

Theorem 7.1 (Abel-Jacobi). Pick a basis 𝜔1, … , 𝜔𝑔 of 𝐿(𝒦𝑋). Then the
map

𝑃 − 𝑄 ↦ (∫
𝑄

𝑃
𝜔1, … , ∫

𝑄

𝑃
𝜔𝑔)

extends to a well-defined map

Cl0(𝑋) → C𝑔/Z2𝑔

which is an isomorphism, so

Cl0(𝑋) ≅ C𝑔/Z2𝑔 = (𝑆1)2𝑔.

The number ∫
𝛾

𝜔 for 𝛾 ∈ 𝐻1(𝑋;Z) are called periods.
Moreover Cl0(𝑋) is a projective algebraic variety, so an abelian variety.

Elementary application: we can do integrals

∫
𝛾

d𝑥
𝑥2 + 𝑎𝑥 + 𝑏
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7 Abel-Jacobi theorem

by writing in elementary terms. but we cannot integrate

∫
𝛾

d𝑥
𝑥3 − 𝑥 + 1

.

The former is a quadric so isomorphic to P1. The failure in doing so for cubic
gives a point in Cl0(𝑋).

55



Index

𝑘-algebra, 3

Abel-Jacobi theorem, 54
affine algebraic variety, 11
affine space, 3

Bezout’s theorem, 39

canonical class, 44
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cotangent bundle, 41
curve, 27

degree, 32
derivation, 16
differential form

regular, 42
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disconnected, 9
divisor, 33

elliptic curve, 45, 49
embedding, 37

function field, 17

genus, 44

homogeneous, 24
homogeneous polynomial, 24
hyperelliptic, 52
hypersurface, 13

irreducible, 9
isomorphism, 11

Krull dimension, 16
Kähler differential, 41

morphism, 11

nilpotent, 10
Noether normalisation theorem, 19
Nullstellensatz, 6

order of vanishing/pole, 29

point, 11
proper, 26

quasi-affine variety, 25
quasi-projective variety, 25

radical, 7
rational differential, 41
rational map, 31
reducible, 9
Riemann-Hurwitz, 50
Riemann-Roch theorem, 47

singular, 15
smooth, 15

Zariski topology, 4
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