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1 Introduction

1 Introduction
What is mirror symmetry? We will consider invariants of complex manifolds
(M,J). This is what is called the B-model. Examples: Hodge structures,
periods of differential forms, derived category of coherent sheaves. We will also
be interested in invariants of symplectic manifolds (M,ω). This is the A-model.
Examples: Gromov-Witten invariants (count number of holomorphic curves),
Fukaya category.

example of Gromov-Witten invariants:

1. number of lines passing through two points in P1,

2. number of rational curves in P2 through the maximal number of points
(Kontsevich)

3. number of rational curves of degree d on a quintic 3-fold.

For us complex/symplectic structures will appear as structures on Kähler
manifolds.

Meta-mirror symmetry: there exists pairs of Kähler spaces (M,ω, J), (M̌, ω̌, J̌)
such that A(M,ω) correponds to B(M̌, J̌) and vice versa.

This has surprising consequences on the geometry of M and M̌ :

• the Hodge diamonds of M and M̌ are “mirrors” of each other,

• closed string mirror symmetry: Gromov-Witten invariants of (M,ω) is
related to periods of (M̌, J̌) and vice versa (up to some serious algebra).

In this course we will focus on open strings/homological mirror symmetry.
It is conjectured by Kontsevich in 1994 and the statement is: if (M,ω, J) and
(M̌, ω̌, J̌) are mirror partners then there should be equivalences of categories
DbFuk(M,ω) ' DbCoh(M̌, J̌) and DbCoh(M,J) ' DbFuk(M̌, ω̌).

Why is this good?

1. it is a fundemental statement. It should imply enumerative/closed string
mirror symmetry

2. HMS is much more general: closed string mirror symmetry requires M, M̌
to be Calabi-Yau 3-folds.

3. Fuk and Coh are very rich invariants. HMS gives us a very useful dictio-
nary.

One word on “much more general”: HMS is an ”” in the sense that it holds in
a variety of settings, which have specific features. For example on the A-model
side, If M is open (“exact”) then we have sheaf-theoretic models of Fuk. If M
is open we often have extra data: regular function W : M → C, or a skeleton.
Then we have “wrapped” Fukaya category. On the B-model side, often M comes
with W :M → C.

Part of the goal of this course will be explaining how to define Fuk(M,ω)
and DbCoh(M,J). Before doing that we give a very informal picture of what
they are and use it to explain a (small piece) of HMS for elliptic curves.
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1 Introduction

Definition. Let (M,ω) be a symplectic manifold. A submanifold L ⊆ M
is Lagrangian if i∗ω = 0 (which implies dimL ≤ 1

2 dimM) and dimL = 1
2 =

dimM .
The objects of the Fukaya category Fuk(M,ω) are Lagrangians L ⊆ M

satisfying some extra properties plus some extra structures, including:

1. pin structure,

2. grading,

3. datum of a unitary local system.

(We will ignore these extra structures for the time being.) If L1, L2 are
Lagrangians that meet transversely then they will meet at finitely many
points and we define

HomFuk(L1, L2) =
⊕

p∈L1∩L2

C〈p〉.

(We will see that Hom can be graded etc.) Composition of morphisms in
the Fukaya category involves pseudo-holomorphic disks

Hom(L1, L2)⊗Hom(L2, L3) → Hom(L1, L3)

(q, r) 7→
∑
D

e
∫
D

u∗ω · p

summing over u : D →M pseudo-holomorphic triangle with vertices p, q, r.

In fact the Fukaya category is not an actual category, but an A∞-category.
Informally speaking, we have “higher compositions”

µN : Hom(L1, L2)⊗ · · · ⊗Hom(LN−1, LN ) → Hom(L1, LN )

which is defined in terms of counts of pseudo-holomorphic polygons.
On the other hand, the derived category of M , DbCoh(M,J) has objects

bounded complexes of coherent sheaves.

1.1 Homological mirror symmetry for elliptic curves
A-side: E a symplectic torus, ω = Adx ∧ dy where A > 0, a b-field which
is a class b ∈ H2(E,R)/H2(E,Z). Call ρ = iA + b the complexified Kähler
parameter .

B-side: τ ∈ H and Eτ = C/Z⊕ Zτ . Let q = exp(2πiτ). Then Eτ
∼= C∗/qZ.

Statement: Eq
ρ ↔ Eρ

q , where Eq
ρ is the elliptic curve with complex structure

given by q and symplectic structure given by ρ.
Simplest example: Ei

i ↔ Ei
i . On the symplectic side, the objects of the

Fukaya category are the smooth embedded Lagrangians, which do not bound
disks. Note that for dimension reasons, every curve on the torus is Lagrangian.
One can see that (up to Hamiltonian isotopy), we can reduce to geodesic La-
grangians, that is, images of straight lines in the unviersal cover with rational
slope. These Lagrangians are identified by

1. the slope (p, q),
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1 Introduction

2. the intersection with x-axis.

The basic idea of mirror symmetry in this setting is

• line bundles of degree d are sent to Lagrangians of slope (1, d).

• more generally if V is a vector bundle on E then V is sent to a line of
slope deg V/ rkV .

We are interested in the following three line bundles: O,L = O(e),L2 =
O(2e) where e ∈ E is the identity for the group structure.

Analytic approach to understand sections of L. Consider π : C∗ → E ∼=
C∗/qZ. Every line bundle on C∗ is trivial: the exponential exact sequence
shows H1(C∗,O∗) ∼= H2(C∗,Z) = 0. Thus giving a line bundle L on E is the
same as giving a Z-equivariant structure on π∗L/C∗ where π∗L is the trivial line
bundle. That is, we nned to specify a Z-action on C×C∗ which is compatible
with the Z-action on C∗. It follows that every line bundle on E is determined
by a holomorphic map φ : C∗ → C∗ in such a way that Z acts on C× C∗ via

1 · (u, v) = (φ(v)(u), qv).

It turns out that if we choose φ(v) = exp(−πiτ)v−1, the resulting line bundle
is L = O(e).

A section of L is the same as a function on C satifying

1. θ(z + 1) = θ(z),

2. θ(z + τ) = φ(z)θ(z).

Up to multiplication by a scalar, there is only one such function, called the
Jacobi theta function

θ(z) =
∑
m∈Z

exp(2πi(
m2

2
τ +mz)).

Thus for L = O(e), H0(E,L) is one-dimensional, spanned by θ.
Before proceeding further, we need to say something more about theta func-

tions, so as to be able to describe canonical basis of sections of Ln. We define

θ[c′, c′′](τ, z) =
∑
m∈Z

exp{2πi(τ (m+ c′)2

2
+ (m+ c′)(z + c′′))}.

Proposition 1.1. θ[ an , 0](nτ, nz) is a basis of sections for Ln, where a ∈
{0, 1, . . . n− 1}.

DbCoh(E) → Fuk(E)

O 7→ Λ1

L 7→ Λ2

L2 7→ Λ3
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1 Introduction

where Λ1,Λ2,Λ3 are the lines with slopes 0, 1, 2 intersecting the x-axis at the
origin. Let e1 = e2 be the origin and e3 = ( 12 , 1). Then we have isomorphisms

Hom(O,L) → Hom(Λ1,Λ2)

θ 7→ e1

Hom(L,L2) = Hom(O,L) → Hom(Λ2,Λ3)

θ 7→ e2

Hom(O,L2) → Hom(Λ1,Λ3)

θ[0, 0](2τ, 2z) 7→ e2

θ[
1

2
, 0](2τ, 2z) 7→ e3

We briefly verify that this assignment respects composition. In the Fukaya
category, we have

Hom(Λ1,Λ2)⊗Hom(Λ2,Λ3) → Hom(Λ1,Λ3)

e1 ⊗ e1 7→ C2e2 + C3e3

where C2 is the count (weighted by area) of “holomorphic triangles” with ver-
ticies e1, e1, e2. We need to look at maps ϕ : D → E such taht D has three
components. We pass to a lift of the universal cover of E. One such triangle
has vertices (0, 0), (1, 0) and (2, 2), with the lifts Λ̃1, Λ̃2 chosen to pass through
the origin and Λ̃3 passing through (1, 0). Note that the map ϕ : D → C whose
image is this triangle “shifted to the right” defines the same triangle on E.
Thus we fix thelift of e1 to be the origin. Then the triangles have vertices
(0, 0), (N, 0), (2N, 2N) with N ∈ Z. It has area N2 ≥ A, where A is the area
of the torus (i.e. the symplectic form is Adx ∧ dy), which is 1 in our case. It
follows that

C2 =

∞∑
N=−∞

exp(−2πN2)

(note this defers from our preliminary definition of composition in Fukaya cat-
egory by a constant exp(−2π).)

Similarly

C3 =

∞∑
N=−∞

exp(−π(N − 1

2
)N).

What we get is in fact C2 = θ[0, 0](i2A, 0), C3 = θ[ 12 , 0](i2A, 0).
For the A-side we quote the following algebraic result:

Proposition 1.2 (addition formula for theta functions).

θ(z) · θ(z) = θ[0, 0](i2A, 0)θ[0, 0](2τ, 2z) + θ[
1

2
, 0](i2A, 0)θ[

1

2
, 0](2τ, 2z).

From this we conclude that that the compositions in the two categories match.
Thus by HMS, the classical addition formula for theta functions come from
counting triangles.
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2 A∞-spaces

2 A∞-spaces
We need to define A∞-categories (because the Fukaya category has this struc-
ture). We will take the historical path and satrt from A∞-spaces, followed by
A∞-algebras, and then A∞-categories.

The premier example of an A∞-space is the loop space

Ω∗M = {α : [0, 1] →M : α(0) = α(1) = ∗}.

In fact connected A∞-spaces are equivalent to Ω∗M where M is simply con-
nected. This is part of homotopy theory concerning operads and recognition
principles for (infinite) loop spaces.

The basic idea is the following: X is an A∞-space if it has a multiplication
m2 : X ×X → X which is associative up to homotopy, and such that all higher
associative laws only held up to homotopy.

For example for X = Ω∗M , composition is clearly not associative, but is
associative up to homotopy: let m2 : X ×X → X be composition. Then there
is a map

m3 : [0, 1]×X ×X ×X → X

such that

m3(0, x1, x2, x3) = m2(x3,m2(x2, x1))

m3(1, x1, x2, x3) = m2(m2(x3, x2), x1)

Now if we have four loops, there are many ways to put brackets between them
and they should all be equivalent. This is

We denote the boundary of the pentagon by K4. Using m2,m3, we can write
down a map

K4 ×X ×X ×X ×X → X.

For example on the
The point is that if X = Ω∗M we can extend this map on all the pentagon

K4, namely we can construct a map m4 such that

∂K4 ×X ×X ×X ×X X

K4 ×X ×X ×X ×X X

Stasheff in the 1960s constructed an infinite sequence of associahedra in such
a way that the vertices of the associahedron KN corresponds to the various ways
to bracket xN · · ·x1. The maximal proper faces of KN correspond to choosing
one single bracket, e.g.

xN · · ·xp+q+1(xp+q · · ·xq+1)xq · · ·x1

and are isomorphic to KN−p+1 ×Kp.

Definition (A∞-space). An A∞-space X is a space X equipped with maps

mN : KN ×X × · · · ×X → X

6



2 A∞-spaces

which are compatible with restrictions to faces.

(For those who are familiar with the language of operads, another name for
the A∞-operad is E1-operad. We have an infinite hierarchy E1, E2, . . . , E∞. E2

is also called the “little disk” operad. The A∞-operad is a (fibrant) resolutiono
of the associative operad.)

We shall give two alternative descrptions of the KN as moduli spaces.

metric ribbon graphs

Definition (metric ribbon graph). A metric ribbon graph is a connected
tree with finitely many vertices and edges, plus a a cylic ordering of eedges
around each vertex, and a length in (0,∞] assigned to each edge.

Definition. KN is the moduli space of metric ribbon trees with (N + 1)
external vertices (i.e. 1-valent vertex) such that each edge connected to an
external vertex has infinite length.

KN ⊆ KN is the moduli space of metric ribbon trees such that all
internal edges have finite length.

Example. K2 is just a point since all segments have infinite length. For K3,

The combinatorial type of the tree gives us a cubical decomposition of KN ,
namely the cubical cells come from assigning lengths in [0,∞] to the internal
edges:

What we are doing is “topologising” associativity. That is, we should think
that we are labelling incoming verticies with “arguments”. Then given any
3-valent ribbon tree there is only one way to put brackets around incoming
vertices.

Note that metric ribbon trees also allow us to beter understand the boundary
structure of KN . Placing a single bracket, such as the following

xN · · ·xp+q+1(xp+q · · ·xp+1)xp · · ·x1,

coreesponds to a face KN−p+1 ×Kp. From the point-of-vew of trees this corre-
sponds to letting the length of one internal edge to be infinite.

moduli space of marked points Recall that M0,N+1 is the compactified
moduli space of N + 1 curves on P1.

M0,4
∼= P1 \ {0, 1,∞} and M0,4

∼= P1, where the family over 0 is two copies
of P1 with a nodal singularity (similar for 1 and ∞).

In general M0,N parameterises stable rational curves, i.e. trees of rational
curves, with nodal singularities, such that on each component there are at least
3 special points (namely singularities and markings).

To recover KN from M0,N , we do the following

1. consider the real locus of M0,N+1. This corresponds to curves such that
the marked points lie on the equator.

2. Now KN ⊆ MR
0,N+1 is the subset corresponding to rational curves with

marked points on the equators which occur in cyclic order.
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2 A∞-spaces

3. Finally KN is the closure of KN inside MR
0,N+1.

For example, K3 is the closure of the negative reals inside M0,4.
We can interpret KN as a moduli space of holomorphic disks (plus bubbling

on the boundary) with cyclically ordered marked points on the boundary.
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3 A∞-algebras and A∞-categories

3 A∞-algebras and A∞-categories
Fix a ground field k.

Definition (A∞-algebra). A (non-unital) A∞-algebra is a Z-graded vector
space A =

⊕
p∈ZA

p with graded k-linear maps md : A⊗A → A of degree
2− d for d ≥ 1 such that∑
1≤p≤d

0≤q≤d−p

(−1)|a1|+...|aq|−qmd−p+1(ad, . . . , ap+q+1,mp(ap+q, . . . , aq+1), aq, . . . , a1) = 0.

Remark. If X an A∞-space and C∗(X) is its cellular chains then C∗(X) has
a natural structure of an A∞-algebra: we need to take C∗(KN ) with the poly-
hedral cellular decomposition. The top cell of C∗(KN ) labels an operation of
degree N − 2. Indeed the N − 2 degree part of C∗(KN ) is one-dimensional and
hence determines a degree N − 2 map

C∗(KN )⊗ C∗(X)⊗N → C∗(X).

The compatibility condition is encoded in the cellular decomposition of KN .

Now we try to understand more concretely the axioms of A∞-algebras. For
d = 1, degm1 = 1 and the axiom says

m1(m1(a1)) = 0

so m1 is a differential.
For d = 2, degm2 = 0 so

deg(m2(a2, a1)) = deg(a2) + deg(a1).

The axiom becomes

m2(a2,m1(a1)) + (−1)deg a1−1m2(m1(a2), a1) +m1(m2(a2, a1)) = 0.

This means that (up to sign adjustments) m2 satisfies the graded Leibniz rule

∂(a2 · a1) = −a2 · ∂(e1) + (−1)deg a1−1∂(a2) · a1.

(read d as m1 and · as m2)
For d = 3 we get

0 = m3(a3, a2,m1(a1)) + (−1)|a1|−1m3(a3,m1(a2), a1)

+ (−1)|a1|+|a2|−2m3(m1(a3), a2, a1) +m2(a3,m2(a2, a1))

+ (−1)|a1|−1m2(m2(a3, a2), a1) +m1(m3(a3, a2, a1)).

Note that the fourth and fifth term are

(−1)|a2|a3 · (a2 · a1)− (−1)|a2|(a3 · a2) · a1

so m3 is measuring the failure of associativity of m2.
Let use make some obervations:

9



3 A∞-algebras and A∞-categories

1. if mk = 0 for all k ≥ 3 then an A∞-algebra is the same as an associative
dg algebra.

2. if m1(e1) = m1(e2) = m1(e3) = 0 (i.e. if a1, a2, a3 are closed) then the
A∞-condition becomes

a3 · (a2 · a1)− (a3 · a2) · a1 = ±d(m3(a3, a2, a1)).

Thus on H∗(A) the multiplication is associative.

Definition (morphism of A∞-algebras, quasiisomorphism). A morphism of
A∞-algebras f : A→ B is a family fd : A⊗d → B of graded maps of degree
1− d satisfying certain conditions.

A morphism of A∞-algebras is a quasiisomorphism if f1 is a quasiiso-
morphism.

Remark. If fm = 0 for all m ≥ 2 then we get for all d,

mB
d (f1(ad), . . . , f1(a1)) = f1(m

A
d (ad, . . . , a1)).

such a morphism is called strict.

Definition (A∞-category). A (non-unital) A∞-category A consists of

1. a set of objects,

2. for two objects A and B, a chain complex HomA(A,B),

3.
md : Hom(Xd−1, Xd)⊗ · · ·Hom(X0, X1) → Hom(X0, Xd)

of degree d− 1

Remark. An A∞-category is not an ordinary category: composition of mor-
phisms is not associative!

Definition (functor betweenA∞-categories). A functor betweenA∞-categories
A and B is given by the following data:

1. a map F from objects of A to objects of B,

2. for all d ≥ 0, maps

Fd : HomA(Xd−1, Xd)⊗ · · · ⊗HomA(X0, X1) → HomB(FX0, FXd)

satisfying certain axioms.

We call a functor strict if Fd = 0 for all d > 2

Remark. A∞-categories are related to several other category. A dg-category
can be regarded as an A∞-category, and conversely if µd = 0 for d ≥ 3 then an
A∞-category is the same as a dg-category. If A is an A∞-category, we denote
by Ho(A) the (ordinary) category with the same objects and with homs given
by H0(HomA(X,Y )).

10



3 A∞-algebras and A∞-categories

Remark. In fact the theory of dg-categories is equivalent to the theory of
A∞-categories: every A∞-category is equivalent (as an A∞-category) to a dg-
category. Some of the key words are strictification, homological perturbation
lemma, minimal models.

1. Every A∞-algebra A is equivalent to an A∞-algebra with trivial differen-
tial (supported on H∗(A)).

2. In particular if A is a dg-algebra, there is a unique A∞-algebra structure
on H∗(A) such that there is an equivalence of A∞-algebras A→ H∗(A).

3. The same statement holds for A∞-categories.

In particular we can get an A∞-model of the derived category of a scheme
X: we find an enhancement of DbCoh(X) to a dg-category. Then we use the
homological perturbation method to induce an A∞-structure on DbCoh(X).

This explains how to interpret Kontsevich’s HMS conjecture: if X and X̌
are mirror pairs then

Fuk(X) ∼= DbCoh(X̌),Fuk(X̌) ∼= DbCoh(X)

are equivalence of A∞-categories.
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4 Floer cohomology

4 Floer cohomology
We want to associate a cohomology theory to pairs of Lagrangians L1, L2 in
a symplectic manifold M . There is a chain complex CF ∗(L1, L2) called Floer
complex and we denote by HF ∗(L1, L2) its cohomology with the following prop-
erties:

1. HF ∗(L0, L1) ∼= HF ∗(L0, ψ(L1)) where ψ is a Hamiltonian symplectomor-
phism.

2. If L0 intersects L1 transversely then

CF ∗(L0, L1) ∼=
⊕

p∈L0∩L1

K〈p〉

3. HF ∗(L0, L0) ∼= H∗(L0), the singular cohomology of L0 with suitable co-
efficients.

Floer’s original motivation was to prove Arnold’s conjecture, which says that
if L is a Lagrangian and ψ a Hamiltonian isotopy such that L intersects ψ(L)
transversely then

|ψ(L) ∩ L| ≥
∑

dimHi(L;Z/2).

Note that the existence of Floer cohomology with properties 1, 2, 3 immediately
implies the conjecture, since CF ∗(L,ψ(L)) = CF ∗(L,L), and the dimension of
a chain complex is certainly going to be larger than the sum of dimensions of
the cohomologies.

Theorem 4.1 (Floer). Assume that the area of any disk in M with boundary
in L vanishes and that L intersects ψ(L) transversely then

|ψ(L) ∩ L| ≥
∑

dimHi(L;Z/2).

Before proceeding, let us explain some concepts in symplectic geometry, such
as Hamiltonian flow, symplectomorphism etc. Let M be a symplectic manifold
and f ∈ C∞(M). Then there exists a unique vector field Xf such that

ιXf
ω = df.

The flow on M generated by Xf is called a Hamiltonian flow. If M is com-
pact, we get a 1-parameter group of diffeomorphism by integrating Xf . These
diffeomorphisms are all symplectomorphisms, i.e. they preserve ω.

Example. Let X = T ∗M equipped with the symplectic form ω = −dθ where
θ is the tautological 1-form. Now any function f ∈ C∞(M) gives rise to a
function on X. Let Γdf ⊆ X be the graph of df . Then the Hamiltonian flow
generated by f is just Hamiltonian by Γdf .

For example let X = T ∗S1. Take f to be a bump function on S1. Then Γdf

is the equation with a “squiggly” part. We can now displace via this flow any
Lagrangian in T ∗S1.

12



4 Floer cohomology

Let us see why it is necessary that L does not bound any positive area disk
for Arnold’s conjecture to hold. Take a disc on T ∗S1. Then it can be displaced
away from itself.

To deefine Floer complex and Floer differential using Novikov coefficients.
Fix a ground field k.

Definition (Novikov ring). The Novikov ring is given by

Λ0 = {
∞∑
i=0

aiT
λi : ai ∈ k, λi ∈ R≥0, lim

i→∞
λi = ∞}.

The Novikov field is

Λ = {
∞∑
i=0

aiT
λi : ai ∈ k, λi ∈ R, lim

i→∞
λi = ∞}.

Definition (Floer complex). The Floer complex (as an ungraded vector
space) is the free Λ-module generated by the intersection points of L1 and
L2, proved that they intersect transversely.

Note that by Darboux theorem, locally every symplectic manifold is sym-
plectomorphic to an open subset of R2N = CN with the standard symplectic
form. Thus we can say that L1 and L− 2 mett transervely at p if around p,

l1 ∪ L2
∼= RN ∪ iRN .

Next, we want to define differentials on CF (L1, L2). EquipM with an almost
complex J compatible with ω, that is ω(−, J−) is a Riemannian metric. Such an
almost complex structure always exists by a result of Gromov, and in fact there is
a contractible space of choices. Floer differential ∂ : CF (L0, L1) → CF (L0, L1)
counts pseudoholomorphic strips with boundary on L0, L2. The coefficient of
an intersection point q in ∂(p) is obtained by considering maps

u : R× [0, 1] →M

(s, t) 7→ u(s, t)

such that u satsifes

1. the Cauchy-Riemann equation

du · i = Jdu

or equivalently
∂u

∂s
+ J(u)

∂u

∂t
= 0.

2. boundary condition u(s, 0) ∈ L0, u(s, 1) ∈ L1 for all s ∈ R, lims→∞(s, t) =
p, lims→−∞ u(s, t) = q.

3. the energy is finite:
E(u) =

∫
u∗ω <∞.

13



4 Floer cohomology

By Riemann mapping theorem, the domain biholormophic to a disk D with
two marked points x1, x2 on the boundary. We consider maps ϕ : D →M which
are compatible with the complex structure such that

ϕ(∂D+) ⊆ L0, ϕ(∂D−) = L1, ϕ(x1) = p, ϕ(x2) = q

which have finite energy.
Note that such a map defines a class in π2(M,L0∪L1). Let M̂(p, q, [u], J) be

the space of solutions satifying the above three conditions and with homotopy
class [u]. It has an R-action by translation in the s-direction. We dnote by
M(p, q, [u], J) the orbit space.

Remark. M̂(p, q, [u], J) is a smooth compact oriented manifold of dimension
equal to the Maslov index of [u] (which will be defined in a minute), proved that
various conditions are satisfied.

M(p, q, [u], J) is (the space of solutions of) a Fredholm problem. We have
the Atiyah-Singer index theorem that allows us to compute the index from the
topology of p, q, L0, L1. The index is the dimension of a smooth moduli space
if the cokernel of the Fredholm operator satisfies certain conditions. Otherwise
the space of solutions has a derived structure and the index computes the virtual
dimension.

By the above discussion, if [u] has index 1 then M(p, q, [u], J) is a compact
oriented 0-manifold so has a signed count. Temporary definition of differential:

∂(p) =
∑

q∈L0∩L1,[u] index 1

#M(p, q, [u], J)Tω([u])q.

Theorem 4.2. If

[ω] · π2(M,L0) = 0, [ω] · π2(M,L1) = 0,

(i.e. L0, L1 do not bound disks of a positive area), char k = 2, L0, L1 are
oritned and have a spin structure then ∂ is well-defined and ∂2 = 0. Futher
up to isomorphism HF (L0, L1) is independent of the chosen almost complex
structure J , and is invariant under Hamiltonian isotopy.

The Floer differential is well-defined by Gromov compactness, according to
which given an energy bound E0 there are only finitely many homotopy classes
[u] such that ω([u]) ≤ E0 and M(p, q, [u], J) is non-empty.

Maslov index Let (R2N , ω) be a symplectic vector space. We denote by
LGr(N) the “Lagrangian Grassmannian”, the space parameterising Lagrangian
N -planes. It is a fact that LGr(N) = U(N)/O(N) (consider RN ↪→ R2N = CN ,
then RN is Lagrangian. U(N) acts transitively on N -planes with isotopy group
O(N)). With this identification we have a map

det 2 : LGr(N) → U(1) = S1.

This map induces an isomorphism of fundamental groups, and the index of a
Lagrangian will be the image in Z under this map.

14



4 Floer cohomology

Given two transverse Lagrangian planes λ0, λ1 in CN , there exists A ∈
Sp(2N,R) which maps λ0 to Rm and λ1 to iRm. Then we have a distinguished
homotopy class of paths in LGr(N) connecting λ0 and λ1, represented by the
canonical short path

λt = A−1((e−iπt/2)RN ), t ∈ [0, 1].

Since R × [0, 1] is a contrac u∗TM is a trivial symplectic vector bundle.
Fix a trivialisation u∗TM ∼= D × R2n. Now for every s ∈ R, u(s, 1) ∈ L1 so
u(s, 1)∗TL1 gives a family of Lagrangian subspaces inside u(s, 1)∗TM ∼= R2N .
Thus we obtain a path in LGr(N). Similar for u(s, 0). in order to get a loop,
we need to fill in the shaded region. We do this via canonical short path, using
that fact that TpL1 and TpL2 (resp. TqL1 and TqL2) are transverse.

Definition (Maslov class). The Maslov class of u is the class in

π1(LGr(N)) ∼= π1(S
1) ∼= Z

of the loop
TpL1 TqL1

TpL2 TqL2

Example. Let M = R2. Then LGr(1) = P1
R
∼= S1. It is easy to see that the

Maslov class of u is 1. The tangent line to L1, L− 0 go through all points of P1
R

exactly once.

Let us make some comments on the Maslov index 1 constraint in the defini-
tion of Floer differential.

1. We are counting disks discarding multiple covers.

2. The Maslov index 1 constraint also imposes direction: the image above
seems to suggest p and q are symmetric. But Maslov class 1 specifies
whether the disk gives a differential from p to q or vice versa.

grading on Floer complex For this we need some extra assumptions on
L1, L2 and M :

1. 2c1(TCM) = 0 (aside: the stronger condition c1(TCM) = 0 is called
Calabi-Yau). That is, we have a nowhere vanishing section θ of (

∧m
TCM)⊗2.

2. Once we fix θ, we can define for every Lagrangian L ⊆M phase

ϕL : L→ S1

p 7→ arg(θ(TpL, TpL))

3. The “Maslov class of L” is [ϕL] ∈ [L, S1] = H1(L;Z).

15



4 Floer cohomology

The grading on CF ∗(L1, L2) requires L1 and L2 to have vanishing Maslov
class. The point is that in order to define CF ∗(L1, L2) as a graded complex, L1

and L2 need to be graded Lagrangian. A graded Lagrangian L̃ is a Lagrangian
L with vanishing Maslov class together with a lift to R

R

L S1ϕL

If we fix graded lifts L̃0, L̃1, we get a Z-grading (changing the graded lifts changes
the grading of CF ∗ but not the even/odd components).

What is the degree of p ∈ L0 ∩L1? We fix graded lifts L̃0, L̃1. We are going
to associate to p a loop in LGr(TpM) as follows:

1. choose any path α̃ between T̃pL0 and T̃pL1 in ˜LGr(TpM), where ˜LGr(TpM)
is the universal cover.

2. α = π(α̃) defines a path from TpL0 to TpL1. We close this path by
canonical short path.

3. We have associated to p a loop in LGr(TpM). Its image in π1(S
1) is the

degree of p.

It is easy to see that if u is a strip connecting p and q with indedex 1 then

deg q = deg p+ 1.

Thus the Floer differential has degree 1.

Remark. If we do not want to work with graded Lagrangians, we can work with
Z/2-grading on the Floer complex. Then we can get away with L0, L1 being
oriented as in Floer’s theorem (but still some extra assumptions on L0, L−1 are
needed for ∂ to be well-defined and for ∂2 = 0, see those in Floer’s theorem).

We are now ready to explain why b2 = 0. The coefficient of q in ∂2p is∑
r∈L0∩L2

#M(p, q, [u′], J) ·#M(r, q, [u′′], J)Tω([u′])+ω([u′′]).

We can break this up as follow. Set

[u] = [u′] + [u′′] ∈ π2(M,L1 ∪ L2)

with index 2 and we can write the sum as∑
[u]:ind([u])=2

(
∑

r∈L0∩L1

· · · ).

We are going to show the term in the parenthesis is 0. By Gromov compactness
the moduli space M(p, q, [u], J) can be compactified and the boundary points
are of the foolowing three types:

1. broken strips,

16



4 Floer cohomology

2. disk bubbling,

3. sphere bubbdling.

The key point is to exclude 2 and 3 from occurring. For instance this is the
case if [ω] · π2(M,Li) = 0, which is precisely the assumption we made. Now the
structure of the boundary of M(p, q, [u], J) can be described explicitly:

M(p, q, [u], J) =
∐

r∈L0∩L1

[u]=[u′]+[u′′]

M(p, r, [u′], J)×M(r, q, [u′′], J).

Now the term in parenthesis is ∑
p∈∂M

(−1)sgnp

but the signed count of boundary points of a compact 1-dimensional manifold
is 0, and we get the desired result.

Remark. For those who know GW-invariants, the relationship betweenM(p, q, [u], J)
and kN is analogous to that between M0,N (X, [β]) and M0,N .

To see CF ∗(L,L) = H∗(L), one uses Morse cohomology. Consider T ∗S1

with L = S1, the zero section. ϕ(L) is obtained by displaceing L via Hamiltonian
isotopy induced by a map f : S1 → R. ϕ(L) = Γdf . Since L and ϕ(L) meet
transversely,

CDF ∗(L,ϕ(L)) ∼= Λ(p, q).

M(p, q, J) has two points. Thus

∂q = 0

∂ = TA1q + TA2q if A1 = A2

(we assume Λ has characteristic 2 to avoid keeping track of signes. But the areas
are indeed the same since L = Γdf and by fundamental theorem of calculus.
This means that in fact ∂ = 0 and therefore

HF ∗(L,ϕ(L)) = CF ∗(L,ϕ(L)) ∼= H∗
sing(L,Λ).

4.1 Fukaya category
The Fukaya category Fuk(M) of a symplectic manifold M is an A∞-category
such that

• the objects are Lagrangian satisfying extra properties/structures . L is
“unobstructed” (i.e. [ω] · π2(M,L) = 0), is oriented, has a spin structure,
grading and is equipped with U(1)-local system etc.

• the morphisms are given by CF ∗(L1, L2).

• have all A∞ higher products

17



4 Floer cohomology

(To make the Fukaya category well-defined we need to choose consistent pertur-
bation data (for every pair of Lagrangians L1, L2 we need to chooose a Hamil-
tonian isotopy to make them transverse).)

In fact for the sake of HMS the Fukaya category needs to be further enlarged.
The point is that we want to be able to take the cones of morphisms. We need
to pass to the trianglulated envelop of the Fukaya category. This is the same
as adding to the Fukaya category all finite limits/colimits. There is a universal
way to add cones (and in fact all limits/colimtis) to an A∞-category, namely
taking twisted complexes. We do not get all limits/colimits this way, and we
need to pass to the split closure (i.e. the Karoubi envelop).

18



5 Aside: special Lagrangians

5 Aside: special Lagrangians
Let (X,ω, J) be a smooth compact Kähler manifold. X is Calabi-Yau if the
canonical bundle KX =

∧n
T ∗X is trivial. If X is Calabi-Yau, let Ω be a

nowhere vanishing section of KX . If L ⊆ X is a Lagrangian submanifold then
Ω|L = ψ · volL for some ψ ∈ C∞(L,C∗). Indeed dimR L = dimCX so Ω|L is a
complex-valued top form on L.

Definition (special Lagrangian). L ⊆ X is special Lagrangian if eigenvalues
of ψ is constant.

In the first example we claimed that lines with rational slopes are special
Lagrangians on a Kähler torus. Why is this the case? On a torus, a section
of the canonical is just dz = dx + idy. On the line x = n

my, we can choose
parameterisation x 7→ (x, mn y) so the pullback to the line is (1+ imn )dx. Clearly
eigenvalues of 1 + imn are constant.

For the other direction, we only sketch the argument. In each Hamiltonian
isotopy class of Lagrangian submanifolds there is at most one special Lagrangian
(there are many interesting analytic properties. For example they are volume
minimising). Given any Lagrangian submanifold in a Riemann surface, there
is a Hamiltonian isotopy sending it to a geodesic. In the case of a torus, this
means that every Lagrangian can be isotoped to line.

Reference: Dominic Joyce, Conjectures on Bridgeland stability for Fukaya
categories of Calabi-Yau manifolds, special Lagrangians.

Thomas, Yau, Special Lagraingian and stable bundles and mean curvature
flow.
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6 Aside: additional structure on objects of Fukaya category

6 Aside: additional structure on objects of Fukaya
category

Why are objects in the Fukaya category Lagrangian submanifolds plus the data
of (U(N)-local system (plus other data)? The first answer is that we don’t
necessarily have to: there exist variants of the Fukaya category where

1. Lagrangians do not carry a local system,

2. or Lagrangians carry a GL(N,C)-local system.

The variant of the Fukaya category where we consider Lagrangians with
U(N)-local system is needed for HMS and this is especially clear from the SYZ
viewpoint. According to SYZ, if X and X̌ are mirrors then we habe dual speical
Lagrangian fibrations: if π : X → B and π̌ : X̌ → B are fibrations, then for
b ∈ B, X̌b = π̌−1(b) is the dual torus to Xb in the sense that X̌b is the moduli
space of U(1)-local systems on Xb.

Example. As an example of a fibration in special Lagrangian tori, we can
consider the moment map p : XΣ → ∆Σ ⊆MR where XΣ is a toric variety and
∆Σ is its moment polytope.

Let’s see SYZ in the elliptic curve case (ψ = ρ = i). What are the dual
SYZ fibrations in this case? Note that E is self-mirror, but we denote its dual
by Ě and note Fuk(E) ' DbCoh(Ě). The special Lagrangian fibres of the
SYZ fibrations are objects of the Fukaya category. Lp = π−1(p) plus a choice of
U(1)-local system determines a point (say x) in Ě: indeed Ľp = π̌−1(p) is the
moduli psace of U(1)-local systems on Lp. Thus HMS sends the object (Lp, U)
to k(x) ∈ DbCoh(Ě), where k(x) is a skyscraper sheaf at x.
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7 Aside: closed and open string mirror symmetry

7 Aside: closed and open string mirror symme-
try

Closed string mirror symmetry: QH∗(X) ∼= HH∗(X̌). Open string mirror
symmetry: Fuk(X) ∼= Db(X̌). Taking Hochshild cohomology and using PSS
isomorphism that QH∗(X) ∼= HH∗(Fuk(X)), this seems to say that in principle
open string mirror symmetry implies closed string mirror symmetry. However
working this implication out is hard. As of today, these issues should be solved
by work of Ganatra-Perutz-Sheridan.
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