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1 Introduction

1 Introduction
Plan of the course:

• classical moduli spaces (Grassmannians, Hilbert scheme and Quot scheme),

• equivariant cohomology and localisation, applications: number of lines on
cubic surface, number of lines on quintic threefold etc.

• virtual classes and localisation, applications: DT invariants for local CY
threefold.

What is enumerative geometry?
Classically, one had questions, such as

1. how many lines in P2 pass through 2 points?

2. how many lines in P3 lie on a smooth cubic?

3. how many lines in P4 lie on a smooth quintic?

The strategy was

1. to construct a proper moduli space M for the objects to enumerate,

2. make sure the incidence conditions define a 0-cycle α ∈ A0M ,

3. compute degM (α),

4. make sure this number answers the original question.

Remark. In the examples above we have M some Grassmannian, which is
smooth and proper.

What is M is too singular/impure to have a fundamental class? Classically
we need the fundamental class to compute for α ∈ A∗M∫

M

α := degM (α _ [M ]).

This leads to the virtual fundamental class [M ]vir ∈ Avd(M), where vd stands
for virtual dimension. We can then define

∫
[M ]vir α ∈ Z. The question now is,

what does this count? Usually the answer is unclear. But this is OK, because the
actual thrill is to study the behaviour of the generating functions. For example
we can consider the generating functions of all classes with a fixed Chern class.
They have remarkable properties.

Example. Back to the very first example of number of lines through two pionts
p, q ∈ P2. If p and q are distinct then there is a unique line. If p = q then the
answer is infinite. They correspond to transverse and non-transverse case.

Enumerative geometry is the machinery allowing us to prove that the answer
is 1 always. Where is the answer one hiding in the non-transverse setup? One
may be tempted to say that to compute the self intersection number of Zp, the
class of lines passing through p, we may move Zp to a rationally equivalent cycle
Zq and then Z2

p = Zp · Zq = 1. But we can’t do this in general if
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1 Introduction

Recall that for X ↪→ Y a closed embedding corresponding to the ideal sheaf
I, the conormal sheaf CX/Y = I/I2 is a coherent sheaf (all schemes are locally
noetherian over C in this course), and normal sheaf NX/Y = C∨X/Y . Consider
the blowup

P1 = E B = Blp P2

p P2

g π

and note P1 is our M in case p = q. By intersection theory we have an exact
sequence

0 NE/B g∗Np/P2 Obp,p 0

where Obp,p is what is called the excess bundle. As NE/B = OE(−1), g∗Np/P2 =

OE ⊗ TpP2 = OE ⊗O⊕2
P1 . This is exactly the Euler seuqnece twisted by O(−1).

Thus
Obpp ∼= TP1(−1) = O(1),

and this is where we find the number one. We get then a uniform answer∫
π−1(q)

e(Obpq) = 1

(when p 6= q, the fibre π−1(q) is a point and the first arrow in the short exact
sequence is an isomorphism so Obpq is trivial.)

In this example the excess sheaf records “why” the moduli psace can be
“oversized”.

Example. Let Y be a smooth variety of dimension n. Let E = Spec Sym E∨ →
Y where E be is locally free of rank r. Then a section s ∈ Γ(Y,E) = Hom(OY , E∨)
gives a Cartesian square

M = Z(s)Y Y

Y E

s

0

M has expected dimension (virtual dimension) n−r, which can be smaller than
the actual dimension dimM . Again this inequality is captured by the excess
sheaf. Consider

0 IM/Y NY/E |M Ob 0

E∨

i

s∨ : E → OY has image I = IM/Y ⊆ OY , so s∨|M : E|M � CM/Y , so i
corresponds to Spec Sym(s∨|M ).
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1 Introduction

1.1 Grassmanians
Let S be a noetherian scheme and F a coherent sheaf on S. Let d ≥ 1. Let SchS

be the category of locally noetherian schemes over S. We define a contravariant
functor Schop

S → Set, sending g : U → S to

{p : g∗F � Q : Q locally free of rank d}

with the equivalence
g∗F Q

g∗F Q′

p

∼=

p′

i.e. ker p = ker p′ as subsheaves of g∗F . It is a classical result that this functor
is representable by a projective scheme s : Gd(F) → S and a universal family
s∗F � Q.

Notation: if F is locally free of rank n, 0 < k ≤ n, we call G(k,F) :=
Gn−k(F), parameterising rank k subbundles of F . For S = SpecC, we write

G(k − 1, n− 1) = G(k,Cn),

in accordance with {Pk−1 ⊆ Pn−1}.
If F is locally free then ρ : G(k, F ) → S is smooth of relative dimension

k(n− k), and the tautalogical exact sequence

0 I ρ∗F Q 0

of locally free sheaves of rank k, n and n− k respectively.
It is a fact that L = detQ is ρ-very ample, so it defines a closed immer-

sion G(k, F ) ↪→ P(ρ∗L) ↪→ P(
∧k F) via

∧k S ↪→ ρ∗
∧k F). So σ1 = c1(L) =

c1(S∨) ∈ A1G(k, F ) defines the embedding.
Later we will use

TG(k,F )/S
∼= Hom(S, I) ∼= S∨ ⊗Q.

Example. Let F be locally free and d = 1. Then G1(F ) = Gn−1(F ) = P(F ).

1.2 Quot scheme
Let S be a noetherian scheme and X → S of finite type. Let F be a coherent
sheaf on X. Define a fnctor Quot

X/S
(F) to be the functor Schop

S → Set sending
g : U → S to

{FU � E : E is U -flat, supp E proper}

under the equivalence relation. Recall that for Y locally noetherian and E a
coherent sheaf on Y , define

γ : OY → HomOY
(E , E)

f 7→ (τ 7→ f · τ)

Then ker γ is a coherent ideal sheaf, and we let supp E be the closed subscheme
it defines.
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1 Introduction

Hilbert polynomial: for Y a variety over C, let L be a very ample line bundle
and E a coherent sheaf on Y with proper support. Then

PL(E ,m) := χ(E ⊗ L⊗m)

is a polynomial for m� 0.
In the relative setting, If Y → U with L a relatively very ample line bundle,

E is a coherent sheaf on Y that is flat over U . Then u 7→ PLu
(Eu) is locally

constant. Conversely if u 7→ PLu
(Eu) is locally constant and the base U is

reduced then E is U -flat.
Now fix L a line bundle which is (X → S)-very ample and P ∈ Q[m]. Then

we have subfunctors QuotP,L

X/S
(F) ⊆ Quot

X/S
(F) of those quotients E such that

PLu
(Eu) = P for all u ∈ U .

Theorem 1.1 (Grothendieck). QuotP,L

X/S
(F) can be represented by a pro-

jective scheme QuotP,L
X/S(F).

We define another functor

HilbX/S = Quot
X/S

(OX)

which is represented by the Hilbert scheme HilbX/S

Example. Let P = n S = SpecC and any L. Let QuotX(F , n) := Quotn,LX (F),
parameterising

{F � Q : dim suppQ = 0, χ(Q) = n}/ ∼ .

If F = OX then we get the Hilbert scheme of points

Hilbn(X) := QuotX(OX , n) = {Z ↪→ X closed subschem,dimZ = 0, h0(OZ) = n}.

Note we do not have to quotient by an equivalence relation in the closed sub-
scheme description.

Theorem 1.2. Let X be a smooth variety of dimension d. Then Hilbn(X)
is smooth if and only if d ≤ 2 or n ≤ 3.

Exercise. Show Hilb4(P3) is singular.

Remark. QuotX(F , n) also exists for quasiprojective X.

If p = [K ↪→ F � Q] is a point of Y = QuotX(F) then

TpY = Hom(K,Q)

and

dimHom(K,Q) ≥ dimOY,p ≥ dimHom(K,Q)− dimExt1(K,Q)

with first equality means (?) Y is smooth at p and second equality means Y is
a lci at p.
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1 Introduction

Example. Let X be a smooth variety of dimension d.

1. d = 1. We show p = [IZ ↪→ OX � OZ ] satsifies Ext1(IZ ,OZ) = 0:

Exti(IZ ,OZ) = Exti(OX(−Z),OZ)

= Exti(OX ,OX(Z)⊗OZ︸ ︷︷ ︸
OZ

)

= Hi(OZ)

= 0

for i ≥ 1.

2. d = 2:

Theorem 1.3 (Fogatry). Hilbn(X) is smooth (2n)-dimensional.

Proof. There exists open U = {p1 ∪ · · · ∪ pn : pi

Example. Show Hilb1(X) = X. What is the universal family?

1.3 Examples of Hilbert scheme
Recall that last time when we set F = OX then we get the Hilbert scheme. We
fix the base S to be SpecC. We prove that for X smooth curve, Hilbn(X) is
smooth of dimension n. For X smooth surface, Hilbn(X) smooth of dimension
2n.

We say that the tangent space to HilbX at [Z] is

HomX(IZ ,OZ) ∼= H0(Z,NZ/X).

If Ext1X(IZ ,OZ) = 0 then [Z] ∈ HilbX is a smooth point.

1.3.1 Symmetric product

Let X be quasiprojective (so quotient is well-defined). Define

SnX = Xn/Sn = {
∑

aixi : ai ∈ N,
∑

ai = n},

parameterising effective 0-cycles of degree n. Note S1X = X.

Exercise. Check SnA1 ∼= An, SnP1 ∼= Pn.

Remark. A fact that will be useful later: take α = (1α1 · · · iαi · · · kαk) a parti-
tion of n, i.e. n =

∑
iαi. It corresponds to a Young diagram with n boxes. We

hav
SnX =

∐
α`n

Sn
αX

where Sn
αX is the cycle whose support is “decided by α”. Among those there is

a secial one correpsonding to α = (n1), corresponding to X → SnX,x 7→ n · x.
“small diagonal.
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For X a smooth variety of dimension at least 2, SnX is singular for n ≥ 2
due to nontrivial stabilisers. However we have trivial stabilisers aways from all
diagonals, i.e. on the configuration space

FnX = {(x1, . . . , xn) : xi 6= xj for all i 6= j}.

Then the quotient FnX/Sn is smooth.

Definition. {x1 ∪ · · · ∪ xn : xi 6= xj} ⊆ Hilbn(X) is the smoothable compo-
nent.

We proved that it is an equality for dimX = 1, 2.

1.3.2 Quot-to-Chow morphism

There is a Hilbert/Quot-to-Chow map

σF,n : QuotX(F , n)→ SnX

[F � T ] 7→ [supp(T )] =
∑
TX 6=0

length(TX) · x

Exercise. Hilbn(X)→ SnX restricts to an isomorphism above FnX/Sn.

Fact: if X is smooth and F is locally free, then σ−1
F,n(n · x) does not depend

on X,x or F , and onlly on d = dimX, r = rkF .

Exercise. Prove this for F = OX .

We can then define

Definition. The punctual Quot scheme

QuotAd(O⊕r, n)0 = σ−1
O⊕r,n(n · 0)

Proposition 1.4. QuotAd(O⊕r, n)0 is proper.

Proof. Compactify Ad ⊆ Pd and consider the Cartesian diagram

1.3.3 Hypersurfaces of degree d in Pn

Let Y = V (f) ⊆ Pn where

f ∈ C[x0, . . . , xn]d = H0(Pn,OPn(d)) ∼= CN

where N =
(
n+d
d

)
. We calculate the Hilbert polynomial of Y : by the short exact

sequence corresponding to IY , we have

PY (m) = χ(OY (m))

= χ(OPn(m))− χ(OPn(m− d))

=
∑
i≥0

(−1)ihi(OPn(m))−
∑
i≥0

(−1)ihi..

7



1 Introduction

Let PN−1 ∼= PH0(Pn,OPn(d))∨. Claim there is a morphism α : PN−1 →
Hilb

Pd,O(1)
Pn , given by the family

Z = {(x, [f ]) ∈ Pn × PN−1 : x ∈ V (f)}.

The morphism Z ↪→ Pn × PN−1 → PN−1 is flat because the Hilbert polynomial
is constant and the base is reduced. Thus we have a map α : [f ] 7→ [V (f)]. Note
α is bijective (i.e. only the hypersurface can have the Hilbert polynomial).

Note Hilb
Pd,O(1)
Pn is smooth:...

Thus α is a bijective morphism of smooth C-varieties, so is an isomorphism
by Zariski’s main theorem. Thus we have

Hilb
Pd,O(1)
Pn

∼= PH0(Pn,OPn(d))∨ ∼= P(
n+d
d ) − 1.

Curves in P3 Let C ↪→ Pn be a smooth curve of genus g and degree d. Let
us compute its Hilbert polynomial

PC(m) = χ(OC(m))

=

∫
C

char(OC(m)) · Td(C)

=

∫
c

exp(mH) · (1 + 1

2
c1(Tc))

=

∫
C

(1 +mH)(1 +
1

2
(2− 2g))

= dm+ (1− g)

Example. For d = 1, g = 0, i.e. a line, Hilbm+1
Pn

∼= G(1, n), a Grassmannian
smooth of dimension 2n− 2.

From now on we set n = 3. As an example, for a line plus a point, we have
P (m) = m+ 2. We expect

dimHilbm+2
P3 = dimG(1, 3) + dimP3 = 4 + 3 = 7.

We have to be more careful. There is an open locus of P3 × G(1, 3) or “point
not lying on the line”. The complement is precisely the universal line L over
G(1, 3).

Example (twisted cubic). The degree 2 Veronese P1 ↪→ P3 up to a change of
coordinate. P (m) = 3m+1. Let V be the closure of twisted cubics in Hilb3m+1

P3 .

dimV = 4 · h0(OP1(3))− dimC× − dimAut(P1) = 4 · 4− 1− 3 = 12.

Let V ′ be the closure of an elliptic curve and a disjoint point

Description of Hilbert scheme of 2 points As a set

8



1 Introduction

Description of QuotAd(O⊕r, n) Fix d, r ≥ 1, n ≥ 0. Set R = C[x1, . . . , xd] =
Γ(OAd). Then a quotient O⊕r � T is described by

1. an n-dimension C-vector space T ,

2. an R-module structure on T

3. that is induced by a surjection R⊕r � T .

In the linear algebra language,

1. fix V ∼= Cn (we will get rid of the choice later).

2. Ring homomorphism ϕ : R → EndC(V ), i.e. d elements A1, . . . , Ad ∈
EndC(V ).

3. τ : R⊕r → V is specified by r vectors v1, . . . , vr ∈ V . τ surjective means
that the set

{Aa1
1 · · ·Aad

d · vi}

for a1, . . . , ad ≥ 0 span V . So we must look at the GIT quotient

{(A1, . . . , Ad, v1, . . . , vr) : spanning V }/GLn

where GLn acts via

g · (A1, . . . , Ad, v1, . . . , vr) = (gA1g
−1, . . . , gAdg

−1, gv1, . . . , gvr).

It is an exerise that the spanning condition ensures that the GLn-action
is free. Thus we get a smooth quasiprojective of dimension (d−1)n2+ rn.
The resulting scheme is called noncommutative Quot scheme.
We need

QuotAd(O⊕r,n) = {[A1 . . . , Ad, v1, · · · , vr] ∈ ncQuot : [Ai, Aj ] = 0}

which is a closed subscheme.
Note that for n = 1, the commutativity condition is free so they coincide.

Import special case: d = 3.
...

9



2 Equivariant cohomology

2 Equivariant cohomology
Motivation: to compute stuff via torus localisation. The Atiyah-Bott localisa-
tion formula tells us that given a so-called equivariant class, we can compute its
integral by considering only the fixed locus.

Let G be a Hausdorff topological group. We can form the functor

PG : HTopop → Set

S 7→ {principal G-bundles}/homotopy

By Brown representability PG can be represented by an object (BG, ηG ∈
PG(BG). Milnor showed that there exists a universal (in the topological sense,
i.e. the total space EG is contractible. This implies “universal” in the sense of
category theory) principal G-bundle EG→ BG such that G acts freely on EG
(we assume on the right). Thus ηG contains one such representative, that we
denote EG → BG = EG/G. BG is called the classifying space for principal
G-bundles. Note that it is well-defined up to homotopy.

Example.

G EG→ BG

{e} ∗ → ∗
R R→ ∗
Zn Rn → (S1)n, (y1, . . . , yn) 7→ (eπiy1 , . . . , eπiyn)

Z/2Z S∞ → RP∞

C∗ C∞ \ 0→ P∞, i.e. lim−→(Cm \ 0→ Pm−1)

S1 S∞ ↪→ C∞ \ 0→ P∞, i.e. lim−→(S2m−1 ↪→ Cm \ 0→ Pm−1)

(C∗)n (C∞ \ 0)n → (P∞)n

GLn(C) Fn(C∞)→ G(n,C∞), orthonormal n-frame 7→ its span

Note that C∗ ' S1 and C∞ \ 0 ' S∞. Also EG→ BG is multiplicative.

Remark. Note that this formulation is not yet algebraic geometry-ready: in
most cases dimEG is infinite. But we have to use an infinite dimensional space
since for example Cm \ 0→ Pm−1 is not contractible, so we need to take direct
limit. We will address this problem in the next section by using approximation
spaces Em → Bm.

Definition (Borel space, equivariant cohomology). For a topological space
X with a left G-action, we define the Borel space to be

EG×G X =
EG×X

(e · g, x) ∼ (e, g · x)
.

We define the equivariant cohomology of X to be the singular cohomology
of the Borel space, i.e.

H∗
G(X) = H∗(EG×G X).

10



2 Equivariant cohomology

In particular we define

H∗
G = H∗

G(∗) = H∗(BG).

Example.

1. For G trivial we recover singular cohomology.

2. Let X = G = C∗ with left multiplication action. Then

H1
G(X) = H1(C∞ \ 0×C∗

C∗) = H1(C× \ 0) = 0.

This shows that in general we cannot recover H∗ from H∗
G.

3. In general H∗
G(X) 6= H∗(X/G) unless the G-action on X is free. To see

this do the following exercise: compute the equivariant cohomology of the
action of G = S1 on X = S2 ⊆ R3 by rotation along z-axis, and compare
it with the quotient X/S1.

Lemma 2.1. H∗
G(X) is well-defined.

Proof. Suppose EG → BG,FG → BG are two universal principal G-bundles.
Let Y = (EG× FG×X)/G. Then we have two fibre bundles

EG ↪→ Y → FG×G X

FG ↪→ Y → EG×G X

so by the homotopy long exact sequence

· · · πn(FG) πn(Y ) πn(EG×G X) πn−1(FG) · · ·

0 0

so Y ' EG×G X. Same for FG×G X.

2.1 H∗
G-module structure

The Borel space can be regarded as a fibration

X ↪→ EG×G X
p−→ BG

so H∗
G(X) is endowed with a H∗

G-module structure via p∗.
If G acts on X trivially then EG×G X = BG×X so by Künneth formula

(assumptions?)
H∗

G(X) ∼= H∗
G ⊗H∗(X)

As an example if X = Y G ⊆ Y then

H∗
G(Y

G) ∼= H∗
G ⊗H∗(Y G).

11



2 Equivariant cohomology

Definition (equivariantly formal). If G acts on X such that H∗
G(X) ∼=

H∗
G ⊗H∗(X) then we say the action is equivariantly formal.

Remark. If K ⊆ G is a closed subgroup then EK = EG → EG/K = BK is
the classifying space for K. Suppose G acts on X. We can form the orbit space
G×K X, which has a left G-action. Then

H∗
G(G×K X) = H∗(EG×G G×K X) = H∗(EG×K X) = H∗

K(X).

In particular
H∗

G(G/K) ∼= H∗
K .

On the other hand if G/K is contractible then we have a fibration

G/K ↪→ EG×K X → EG×G X

so HG ∗ (X) ∼= H∗
K(X).

Example.

• Let G = T = (C∗)n so

H∗
T = H∗((P∞)n) = Z[s1, . . . , sn]

where si has degree 2 and is defined to be the first Chern class of the
pullback along the ith projection of OP∞(−1).

• Let G = GLn(C). Then

H∗
GLn(C) = H∗(G(n,C∞) = Z[e1, . . . , en]

where ei = ci = ci(S), S the universal rank n bundle on G(n,C∞).

Let G be a Lie .. ∫
X

α̃ = p∗α̃ ∈ H∗
G

is what we call an equivariant integral. So via the relation

∈X α = b∗
∫
X

α̃

we see that we can compute ordinary integrals using equivariant integrals.

2.2 Approximation spaces
Let X be a complex variety and G an algebraic group. We are mainly interested
in G = C∗, for whiich EG infinite dimensional. Now we fix this.

Lemma 2.2. Let {Em}m≥0 be connected spaces with free right G-actions.

Proof. This is another application of double fibration. Let E = EG. Let G act
diagonally on E × Em. Then we have

Leray-Hirsch

12



2 Equivariant cohomology

Example. G = T = (C∗)n. Let Em = (Cm \ −)n → Bm = (Pm−1)n. As
Cm \ 0 ' S2m−1, we can pick k(m) = n(2m − 1) to achieve πi(Em) = 0 for
0 < i < n(2m− 1). Thus

Hi
T
∼= Hi((P(m− 1))n)

for i < n(2m− 1).

2.3 Equivariant vector bundle
Lift the action on X to an action on E. Such as choice of lift is called an
equivariant structure on E.

Example. If X is a point then an equivariant structure is exactly a represen-
tation G→ GL(E).

We can form a new vector bundle

VE = EG×G E → EG×G X

of rank r. Then we define the equivariant Chern class to be

cGi (E) = ci(VE) ∈ H2i(EG×G X) = H2i
G (X).

They can also be computed via approximation spaces.
Lecture 4

2.4 Self-intersection formula and pushforward formula
Recall that f : X → Y is a map between closed connected oriented smooth man-
ifolds of dimension n and m, we can use Poincaré duality to define pushforward
in cohomology, namely

Hp(X) Hp+d(Y )

Hn−p(X) Hn−p(Y )

f∗

pd pd

f∗

To get an equivariant version of this, we need to use approximation space
(since there is no Poincaré duality for infinite dimensional spaces).

Let π : E → X be a vector bundle of rank r with orientation class η ∈
Hr(E,E \ X), corresponding to 1 ∈ H0(X) under Thom isomorphism. the
image of η under

Hr(E,E \X)→ Hr(E)→ Hr(X)

is the Euler class e(E).
Let X → Y be a closed embedding of codimenion d = m − n. Assume the

normal bundle N = NX/Y has an orientation that is compatible with f . Then
the cohomological pushforward is the composition

hp(X)→ Hp+d(N,N \X)→ Hp+d(Y, Y \X)→ Hp+d(Y )

13



2 Equivariant cohomology

where the second arrow is by tubular neighbourhood theorem. In particular for
p = 1 and compose with f∗ : Hd(Y ) → Hd(X), we get the self-intersection
formula

f∗f∗1 = e(N).

Informually, the self-intersection X · X means slightly deform X to X ′, and
compute X ·X ′ where the intersection is transerse. To do so we treat X as the
zero section of the normal bundle N , and take X ′ to be a generic section s of
N . Then the Euler class e(N) can be interpreted as the Poincaré dual of zeros
of s.

Note the formula also works for regular embeddings of varieties.
Now suppose G is a compact Lie group and f : X → Y a G-equivariant map

of closed oriented manifolds. Since G is compact, we can choose the approxi-
mation spaces Ei to be compact, and thus the Borel spaces Xi

G = Ei×GX and
Y i
G are compact, so we can define pushforward fG∗ : Hp

G(X)→ Hp+d
G (Y ). They

are compatible with i so they define a map fG∗ : H∗
G(X)→ H∗

G(Y ).
From now on we let G = T = (C∗)r. Denote by

T̂ = HomZ(T, C∗) ∼= Zr

be the character lattice. Let B be a T-representation, then it can be decomposed
as

V =
⊕
χ∈T̂

Vχ.

We call V fix = V0 the fixed part, and the rest V mov =
⊕

χ 6=0 Vχ the moving part.
Let X be a smooth variety on which T acts trivially. (Assume X is equiv-

ariantly formal). Let E → X be a T equivariant vector bundle. Then E also
splits as eigen-subbundles

E =
⊕
χ∈T̂

Eχ.

The Borel space ET×TX = BT×X, and one can show VEχ
∼= Vχ⊗Eχ. Using

the formula for the Chern class of a vector bundle and a line bundle, we find

cTi (Eχ) =

Theorem 2.3 (Iversen, Fogarty). Let X be a smooth variety, then XT is
also smooth.

Let F ⊆ XT be a component and x ∈ F . Then T acts naturally on the
vector space NF/X,x. Then the fixed part (NF/X , x)

T = 0:
Thus eT(Nx) 6= 0 (since it is a product of nonzero weights). In fact, if

N =
⊕

χNχ, then eT(N) becomes invertible in H2d
T (F )[χ−1].

Now suppose E → X is a T-equivariant bundle of rank r. Let F ⊆ XT

be a component and suppose F is equivariant formal. E|F splits into eigen-
subbundles as before and we can express the equivariant Chern class...

But H2k = 0 for k > dimF , so elements of H>0(F ) are nilpotent in H∗
T(F ).

Thus cTi (EF,χ) is a unit if and only if χ is a unit.

14



2 Equivariant cohomology

Proposition 2.4. Let F ⊆ XT

2.5 Localisation formula
... Let ΛT = Frac(H∗

T) = Q(s1, . . . , sn).

Theorem 2.5 (Atiyah-Bott locaisation). ι : XT → X induces an isomor-
phism

ιloc
∗ : H∗

T(X
T)⊗H∗

T
ΛT →

with inverse ∑
F

ι∗Fψ

eT(NF/X)
←[ ψ

What this means is that a class ψ can be written as

ψ = ι∗
∑
F

ι∗Fψ

eT(NF/X)

Since X is compact, we have∫
X

ψ =
∑
F

∫
X

ι∗Fψ

eT(NF/X)

Now we prove the theorem in the algebraic setting

Theorem 2.6. Let X be a msooth variety and suppose XT ⊆ X is finite.
Let e =

∏
p∈XT eT(TpX). Let S ⊆ H∗

T\0 be a multiplicative subset containing
e. Then

1. S−1ι∗ is surjective,

2. If H∗
T(X) is a free H∗

T-module of rank r ≤ |XT| then r = |XT| and
S−1ι∗ is an isomorphism.

Proof. 1. The composition
S−1(ι∗ι∗) :,

by self-intersection formula, is diagonal with entries eT(TpX), so det(S−1(ι∗ι∗)) =
e. But e is invertible after inverting S, so the composition is surjective
and so S−1ι∗ is surjective.

2. Rank of free module is

The assumption that XT is finite seems to strong
Fact: if X is smooth and projective, XT is finite then H∗

T(X) is free over
H∗

T.

Corollary 2.7 (integration formula). Suppose X is smooth projective and

15



2 Equivariant cohomology

XT is finite then for ψ ∈ H∗
T(X)⊗ ΛT,∫

X

ψ =
∑
p∈XT

Another application

Corollary 2.8. Suppose Y is a quasiprojective C-scheme of finite type.
Then

χ(Y ) = χ(Y T).

Proof. We assume Y is smooth projective. Then F = Y T is also smooth.

Example. χ(G(k, n)) =
(
n
k

)
.

Lecture 5
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3 Application of Atiyah-Bott localisation

3 Application of Atiyah-Bott localisation

3.1 Lines on hypersurfaces
Let Y ⊆ Pn be a general degree d hypersurface, i.e. Y = {f = 0} where
f ∈ H0(Pn,OPn(d)). Let ` ⊆ Pn be a line. We say ` is contained in Y , written
` ⊆ Y , if under the restriction

H0(OPn(d)→ H0(`,O`(d))

f is mapped to 0. We regard the set of lines {` : ` ⊆ Y } as a subset of the
Grassmannian G = G(1, n). We would like to define a scheme structure on this
subset and show this is 0-dimensional. On B there is the tautological short exact
sequence

0 S OG ⊗ V ∗ Q 0

and S|` = ....
We can make it more explicity:

L = {(p, `) ∈ Pn ×G : p ∈ `} Pn

G

q

π

We define a sheaf
Ed = π∗q

∗OPn(d) ∼= SymdS∗

which is locally free of rank d+ 1. Let Ed be its total space, which has fibre

Ed|` = H0(`,O`(d)).

...
F (Y ) the Fano scheme of lines in Y .
Since we assume f is general, τf is general so by classical charactertic class

theory F (Y ) defines a cycle class

[F (Y )] = e(Ed)capproduct[G] ∈ AdimG−rkEd
(G).

dimG = 2n− 2 and d+ 1..

• if d > 2n− 3 then no lines on Y ,

• if d < 2n− 3 then infinitely many lines,

• if d = 2n− 3 then deg[F (Y )]

If the answer is finite, when is it the actual number of lines? ∈G e(Ed) is the
number of lines on Y as long as F (Y ) is reduced, which happens if H0(`,N`/Y ) =
0 for all ` ∈ F (Y ). This holds for qunitic Y ⊆ P4 since

N`/Y =

Exercise. Show H0(`,N`/Y ) = 0 for the cubic surface.

17



3 Application of Atiyah-Bott localisation

Warming up: Let T = C∗ act with distinct weights w0, w1, . . . , wa on

Fa = H0(OP1(1))

The fixed points are
(Pa)T = {p0, . . . , pa}

It is easy to see the invariant lines are those connecting distinct pi and pj

18



4 Virtual classes and virtual localisation

4 Virtual classes and virtual localisation
Goal: apply torus localisation to singular schemes. We will discuss the non-
equivariant version first, then the equivariant one.

4.1 Toy model
Suppose Y is a smooth variety of dimension d. Let E = Spec Sym E∗ be a vector
bundle on Y . Let s : Y → E be a section. The ideal sheaf of X = Z(s) ↪→ Y is
given by

I = im(s∨ : E∗ → OY ),

giving a surjection σ : E|X � I/I2 which fits into a diagram

Es [E∗|X ΩY |X ]

LX [I/I2 ΩY |X ]

ϕs

d◦σ

σ

d

We think of this as a morphism in D[−1,0](QCoh(X)), the truncated derived
category. We call the top complex Es and the bottom complex LX , which is the
truncated cotangent complex of X.
Exercise. Show that LX is well-defined, i.e. it does not depend on the embed-
ding X ↪→ Y where Y is smooth.

The following definition is due to Behrend-Fantechi.

Definition (perfect obstruction theory). Let X be a scheme. A perfect
obstruction theory on X is a morphism ϕ : E→ LX in D[−1,0](QCoh(X)),
where E is perfect of perfect amplitude [−1, 0], h0(ϕ) is an isomorphism and
h−1(ϕ) is surjective.

Recall that a complex E is perfect of perfect amplitude [a, b] if it is locally
isomorphic to a complex

[Ea → · · · → Eb]

of locally free sheaves of finite rank.
We see immediately that ϕs is a perfect obstruction theory. In fact every

perfect obstruction theory looks locally like this.
Given a perfect obstruction theory, we define its virtual dimension to be

rkE. In particular

vd(ϕs : Es → LX) = dimY − rk E .

Now we consider the special case of the “critical perfect obstruction theory”:
let E = ΩY . Take an element f ∈ Γ(Y,OY ). It has differential df ∈ H0(Y,ΩY ).
Let X = Z(df) ⊆ Y be the critical locus. Then we have a perfect obstruction
theory

Ω∗
Y |X ΩY |X

I/I2 ΩY |X

Hess(f)

d

with virtual dimension 0. This is a key example of

19



4 Virtual classes and virtual localisation

Definition (symmetric perfect obstruction theory). A perfect obstruction
theory (E, ϕ) is called a symmetric perfect obstruction theory if there exists
an isomorphism θ : E→ E∨[1] such that θ = θ∨[1].

Example. We will use without proof the fact that

QuotA3(O⊕r, n) ⊆ ncQuotA3(O⊕r, n)

is critical.

The general idea is that whenever there is a perfect obstruction theory, we
can define a virtual fundamental class [X]vir ∈ Avd(X). Recall that we have an
inclusion of cones over X

CX/Y ↪→ NX/Y ↪→ E|X

where CX/Y is pure of dimension d = dimY , and its pullback along Ad(E|X)→
Ad−rkE(X) gives [X]vir. In fact, in intersection theory it is the same as 0![Y ]
with respect to the cartesian diagram

X Y

Y E

i

s

0

Note by self-intersection formula we have

i∗[X]vir = i∗0
![Y ] = 0∗s∗[Y ] = s∗s∗[Y ] = e(E)_ [Y ].

If X is proper and has a perfect obstruction theory of virtual dimension 0
then it has a virtual intersection number

#vir(X) :=

∫
[X]vir

1 = degX [X]vir ∈ Z.

We will use this forX = Hilbn(A) where A is a smooth projective 3-fold, yielding
the Donaldson-Thomas invariant of A.

Example. Suppose Y is smooth and f = 0. Then the critical locus is Y itself
and Edf = [Ω∗

Y
0−→ ΩY ], so

[Y ]vir = e(ΩY )_ [Y ].

If Y is proper then

#vir(Y ) =

∫
Y

e(ΩY ) = (−1)dimY χ(Y ).

Example. If Y is smooth then LY is isomorphic to the cotangent sheaf so we
may take id : LY → LY as the perfect obstruction theory. In this case we get

[Y ]vir = [Y ] ∈ AdimY (Y ).

4.2 Equivariant sheaves
Let X be a separated noetherian schemes over C. Suppose σ : G ×X → X is
an action by an algebraic group G.

20



4 Virtual classes and virtual localisation

Definition (equivariant sheaf). An equivariant coherent sheaf is a pair
(F , θ) where F is a quasicoherent sheaf and θ : p∗2F → σ∗F is an isomor-
phism, plus the compatibility condition along the diagram

G×G×X G×X

G×X X

m×1X

1G×σ σ

σ

Exercise. Write down the commutative diagram and show that OX and ΩX

are naturally G-equivariant.

A morphism of G-equivariant sheaves (F , θ) → (F ′, θ′) is a morphism of
sheaves f : F → F ′ such that the following diagram commute

p∗2F p∗2F ′

σ∗F σ∗F ′

p∗
2f

θ θ′

σ∗f

G-equivariant sheaves form an abelian category QCohG(X). In fact we have

HomQCohG(X)((F , θ), (F ′, θ′)) = HomQCoh(X)(F ,F ′)G ⊆ HomQCoh(X)(F ,F ′)

where given a morphism of sheaves f : F → F ′, we define an action of g ∈ G
as follow: θ restricts to θg = θ|{g}×X : F → g∗F . Then we define g · f vis the
following diagram

F F ′

g∗F g∗F ′

θg

g·f

(θ′
g)

−1

There is a forgetful functor QCohG(X)→ QCoh(X) which induces a func-
tor Φ between the respective derived categories. One way to see Φ is to identify

D(QCohG(X)) = D(QCoh[X/G])

of the stack quotient [X/G] and pullback via the stack morphism X → [X/G].

Definition (G-equivariant perfect obstruction theory). A G-equivariant
perfect obstruction theory is a choice of lift of Φ of a perfect obstruction
theory E→ LX .

Classical localisation (Atiayh-Bott) virtual localisation (Graber-
Pandharipande)

X smooth with T-action, ι : XT ↪→ X T-action on X with POT E→ LX

[X] = ι∗
∑

Xi⊆XT
[Xi]

eT(NXi/X
)

in H∗
T(X)⊗

ΛT

[X]vir = ι∗
∑

Xi⊆XT
[Xi]

vir

eT(Nvir
Xi/X

)
in

H∗
T(X)⊗HT ΛT
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4 Virtual classes and virtual localisation

Why does it live in the ring? In the toy model, suppose Y is smooth with
a T-action. Let E be a T-equivariant vector bundle and s ∈ H0(Y,E)T. Let
X = Z(s) ↪→ Y be the T-equivariant embedding. Taking pullback via a section
we get [X]vir an equivariant class.

We have to check [Xi]
vir exists. As for the equivariant normal bundle, we

define T vir
X to be the derived dual E∨. For Xi ⊆ XT, we define

Nvir = moving part of T vir
X |Xi .

Why does Xi have a virtual fundamental class? We assume there is an
equivariant embedding X ↪→ Y into a smooth Y . Y T has a stratification into
nonsingular Yi. Then XT = X ∩ Y T has a stratification into Xi’s, which might
be singular. We need to show Xi has a perfect obstruction theory.

Step 1: by Fogarty, ΩY |fix
Yi

∼= ΩYi
. Then via the diagram

Xi Yi

X Y

ΩX |fix
Xi

∼= ΩXi
.

Step 2: exercise: suppose ψ : A• → B• is a morphism of complexes. Then
h0(ψ) is an isomorphism and h−1(ψ) is onto if and only if the mapping cone is
exact on the right:

A−1 ⊕B−1 A0 ⊕B−1 B0 0

Step 3: ϕ : E→ LX gives rise to

Ei := E|Xi

ϕi−→ LX |Xi
→ LXi

Step 4: Taking the fixed parts gives a perfect obstruction theory

Efix
i → LXi

.

We only need to show the induced map is an isomorphism in degree 0 and
surjection in degree 1. We check this for ϕfix

i and δi. Since −⊗OX
OXi

is right
exact, by the characterisation in step 2 ψi satisfies the conditions. Since taking
fixed part of a torus action is exact, this is done for ϕfix

i .
For δfix

i , we write down the cotangent complex for X ↪→ Y and Xi ↪→ Yi.

(I/I2)|fix
Xi

(ΩY |X)|fix
Xi

Ii/I2i ΩYi
|Xi

Again as taking fixed part is exact,

(ΩY |X)|vir
Xi

= ΩY |fix
Xi
.

Since ΩY |fix
Yi

∼= ΩYi
, the right arrow is an isomorphism. Similarly the left arrow

is a surjection. Thus we have isomorphism in degree 0 and surjection in degree
−1.

Missed a lecture 22/04/21
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4 Virtual classes and virtual localisation

4.3 equivariance of perfect obstruction theory on H

Let X be a toric 3-fold and H = Hilbn(X). Let σX : T ×X → X be the toric
action. We first lift the action to H. On X × H there is the universal short
exact sequence

0 J O OZ 0
ξ

where Z ⊆ X × H is the unviersal subscheme. Pullback along σX × 1H :
T×X ×H → X ×H to get

(σX × 1H)∗(ξ) ∈ Hilbn(X)(T×H)

which corresponds to an action σH : T×H → H.
Define

ϕ : T×X ×H → X ×H
(t, x, z) 7→ (σX(t, x), σH(t−1, z))

then we have a commutative diagram

T×X ×H X ×H

T×X X

ϕ

p12 q

ξX

Then

OT×X×H = p∗12p
∗
2OX

p∗
12θ−−−→ p∗12σ

∗
XOX = ϕ∗q∗OX = ϕ∗OX×H

ϕ∗ξ−−→ ϕ∗OZ

This is a surjection so gives a point in the hilbert scehme ?? T ×H → H. This
map is in fact projection to the second factor since

ϕ∗OZ |{t}×X×{[Z]} = t · OZ·t−1 = OZ .

This gives an isomrophism of surjections

ϕ∗ξ
∼=−→ (T×X ×H → X ×H)∗ξ.

Thus J → OZ is also T-equivariant. Thus

H = RHom(J, J)0 → RHOm(J, J)
tr−→→ O

is also equivariant.
To conclude, recall that the perfect obstruction theory we have constructed

is the image of Atiyah class At(J) ∈ Ext1(J, J ⊗ LX×H) in Ext1(p∗Lh) ∼=
Ext−2Rp∗(H⊗ ωp),LH). Check

• the Atiyah class in T-equivariant,

• Grothendieck duality preserves equivariance,

• (−)T corresponds to a morphism in D(QCohT(H)).
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4 Virtual classes and virtual localisation

Definition (Donaldson-Thomas invariant). Let X be a smooth projective
3-fold, n a nonnegative integer. Then the nth Donaldson-Thomas invariant
is

DTX
n =

∫
[Hilbn X]vir

1 ∈ Z.

We define a generating function

DTX(q) =
∑
n

DTX
n ·qn

.

Remark. If X is toric then DTX
n can be computed equivariantly.

We want to also define DT invariant for Calabi-Yau 3-folds. For this we
need to shift our attention to quasiprojective varieties, whose Hilbert scheme is
no longer proper. Nevertheless the torus fixed points are still proper.

From now on X is a smooth quasiprojective 3-fold. Then

X =
⋃

α∈∆(X)

Uα

where Uα
∼= A3 with T = (C∗)3 acting on Γ(Uα) = C[xα1 , xα2 , xα3 ] via

(t1, t2, t3) · (xαi ) = (tix
α
i ).

For a fixed α, we have a unique T-fixed point in Uα, which we call XT.

Exercise. Show

Hilbn(X)T =
∐

∑
α∈∆(X) nα=n

∏
α∈∆(X)

Hilbnα(Uα)
T

But we know Uα
∼= A3 so Hilbnα(Uα)

T correpond to monomial ideals or equiv-
alently, plane partitions.

Let ι : Hilbn(X)T ↪→ Hilbn(X) be the fixed locus. By virtual localisation
formula,

[Hilbn(X)]vir = ι∗
∑

IZ∈Hilbn(X)T

[S(IZ)]vir

eT(Nvir
Z )

where S(IZ) ↪→ Hilbn(X)T is the largest subscheme supported at {IZ}.
It is a fact that Ext1(IZ , IZ)T = Ext2(IZ , IZ)T = 0, so S(IZ) is reduced

and [S(IZ)]vir = [∗], the genuine fundamental class of a point. Thus we have
reduced the computation to

[Hilbn(X)]vir = ι∗
∑
IZ

eT(−Nvir
Z ).

Recall

Nvir
Z = E∨|mov

IZ
= (Ext1(IZ , IZ)0−Ext2(IZ , IZ)0)mov = Ext1(IZ , IZ)−Ext2(IZ , IZ)

Thus
[Hilbn(X)]vir = ι∗

∑
IZ

eT(Ext2(IZ , IZ))
eT(Ext1(IZ , IZ))

.
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4 Virtual classes and virtual localisation

Definition. For X quasiprojective, we define the Donaldson-Thomas in-
variant to be

DTX
n =

∫
[Hilbn(X)]vir

1 =
∑
IZ

∫
{IZ}

eT(Ext2(IZ , IZ))
eT(Ext1(IZ , IZ))

∈ ΛT.

interlude on K-theory For Y a toric variety, let KT
0 (Y ) = K0(CohT(Y )).

For example KT
0 (pt) is generated by three characteres. Have an isomorphism

trKT
0 (pt)→ Z[tµ : µ ∈ T̂].

Now for the standard action of T = (C∗)3 on A3,

tr(Sg) =
∑

k1,...,kg≥0

g∏
i=1

tki
i =

g∏
i=1

1

1− ti
∈ Z[[t1, . . . , tg]] ⊆ Q((t1, . . . , tg)).

For F,G ∈ KT
0 (Ag), define

χ(F,G) =
∑
i≥0

(−1)i Exti(F,G) ∈ KT
0 (pt)

and let χ(F ) = χ(O, F ).
Some manipulation

(t1 · · · tg) tr(Sg) =
∏ ti

1− ti
=

∏ 1

t−1
i − 1

= (−1)g 1

1− t−1
i

= (−1)gtr(Sg)

where
ti 7→ t−1

i

Lemma 4.1.

χ(F,G) =
χ(F )χ(G)

χ(OAg )
.

Proof. Ingredients:
1. χ(F ) = χ(F |0)χ(O),

2. χ(F ⊗ F ′|0) = χ(F |0 ⊗ F ′|0) = χ(F |0)χ(F ′|0),

3. Serre duality: (−1)gχ(F ′, F ) = χ(F, F ′ ⊗ KAg ). In particular setting
F ′ = O we get

(−1)gχ(F ) = χ(F ∗,KAg ) = χ(F ∗)t1 · · · tg.

Thus

Back to perfect obstruction theory...
20/05/21
Recap: if X is a toric CY3 then∑

DTX
n ·qn =M(−q)χ(X)

where
M(q) =

∏
m≥1

(1− qm)−m = 1 + q + 3q2 + 6q3 + . . .
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4 Virtual classes and virtual localisation

4.4 DT/PT correspondence
Let Y be a smooth projective CY3 over C. Fix a homology class β ∈ H2(Y,Z)
and an interger m. We construct two moduli spaces:

1. the DT moduli space

Im(Y, β) = {Z ↪→ Y : [Z] = β, χ(OZ) = m}.

Note when β = 0 we get the Hilbert scheme of points Hilbm(Y ).

2. the PT moduli space of stable pairs

Pm(Y, β) = {[OY
s−→ F ] : F pure 1 dim, coker s 0 dim, [supp s] = β, χ(F) = m}.

Every stable pair J•[OY
s−→ F ] gives rise to an exact sequence

0 IC OY F Q 0s

By purity of F , C is Cohen-Macaulay. Since dimQ = 0, suppQ is a
collection of points on C.
For example let i : C ↪→ Y be a smooth curve. Let D ⊆ C be an effective
divisor. We can form

[OY � i∗OC
i∗sD−−−→ i∗OC(D)].

If C ↪→ Y is a smooth curve and is the only curve in class β = [C] then
all stable pairs are of this form. Thus Pm(Y, β) ∼= Sym#pt(C), where

#pt = length(Q) = χ(IC)−χ(OY )+χ(F) = χ(IC)−0+m = m−χ(OC) = m+g−1.

Pm(Y, β) has symmetric POt and [Pm(Y, β)]vir ∈ A0(Pm(Y, β)). Then we
can form the generating function

PTβ(q) =
∑
m∈Z

PTm,β ·qm

where
PTm,β =

∫
[Pm(Y,β)]vir

1 ∈ Z.

Theorem 4.2 (DT/PT correspondence, Bridgeland, Toda).

DTβ(q) =M(−q)χ(Y ) · PTβ(q) = DT0(q) · PTβ(q).

We will dedicate the rest of the course to computing somes terms in the gen-
erating function. From now on let Y be the total space π : OP1(−1)⊕OP1(−1)→
P1, the resolved conifold. Note Y is CY3 but not projective. Nevertheless it is
toric and we can apply virtual techniques.

Let C0 ↪→ Y be the 0 section of π. It is the only proper curve in Y . Call β
its homology class. We can form Im(Y, dβ), Pm(Y, dβ) for d ≥ 1. We will focus
on d = 1 today.
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4 Virtual classes and virtual localisation

By discussion above

Pm(Y, β) ∼= Symm−1(C0) ∼= Pm−1

for all m ≥ 1. This moduli space is nonsingular of dimension m − 1. Since we
know

[Pm(Y, β)]vir = e(Ob)_ [Pm(Y, β)] = e(ΩPm(Y,β))_ [Pm(Y, β)]

by definition of virtual fundamental class and symmetry,

PTm,β =

∫
Pm(Y,β)

e(Ω) = (−1)m−1

∫
e(TPm(Y,β)) = (−1)m−1 ·m

so

PTβ(q) =
∑
m≥1

(−1)m−1m · qm = q
∑
m≥0

(−1)m(m+ 1)qm = q(1 + q)−2

where for the last equality we used χ(
∑m P1) = m+ 1.

Our goal is to verify DT/PT formula for Y in the first few terms. We do
RHS first. χ(Y ) = χ(P1) = 2, so the first few terms of the first term is

M(−q)2 = (1− q + 3q − 6q3 + . . . )2 = 1− 2a+ 7q2 − 18q3 + . . .

so
M(−q)2 · PTβ(q) = q − 4q2 + 14q3 + . . . .

Now for the LHS, we can generalise the construction of DT in the case of
Hilbert scheme of points to Im(Y, β). It has a symmetric POT with finite T (and
T0) fixed locus given as follows. We cover Y by two copies of A3, trivialising it
over P1 \ 0 and P1 \∞. Then

Im(Y, β)T = {IZ : IZ |A3
0
, IZ |A3

∞
monomial}

... len(Q) = −1 +m.
Then the fixed locus is in bijection with the number of ways to stack m− 1

boxes along (insert diagram).

Lemma 4.3 (Behrend-Bryan).

(−1)m−d = (−1)dimTp(Tm(Y,dβ))

for all p ∈ Im(Y, dβ)T.

We then define

DT(dβ,m) = (−1)m−d · χ(Im(Y, dβ)).

Then by the box interpretation,

DTβ,≤0 = 0,DTβ,1 = 1,DTβ,2 = −4,DTβ,3 +14.

DTβ(q) = q − 4q2 + 14q3 + . . .

which indeed agrees.
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