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0 Introduction

0 Introduction
Overview: a field theory for us is a theory of maps D →M . Map(D,M) is an in-
finite dimensional space so the first thing we do is to cut out a finite dimensional
locus M, the critical locus of an (action) functional S[ϕx]. Then we can de-
fine and compute invariants (topological, enumerative etc) by using intersection
theory on M. There are many caveats: M is generically singular/non-compact.

Physicists’ viewpoint: ϕ : I →M where I = [ta, tb], called a one-diemsnional
field theory, is used to study (quantum) mechanics. The trajectory of a particle
on M is a map of this kind. The classical trajectory ϕcl is a minimum of the
action functional S[ϕ]. In the quantum world, due to the uncertainty principle,
we cannot determine precisely the trajectory of the particle. Rather we define
a measure and compute the probability amplitude as the weighted integral

Z(xb, tb;xa, ta; ~) = “

∫
Dϕ”eiS[ϕ]/~

subject to boundary conditions ϕ ∈ Map(I,M), ϕ(ta) = xa, ϕ(tb) = xb. Note as
~ → 0, Z peaked around Scl which is the minimum of S[ϕ] by stationary phase
semiclassical limit.

In a topological quantum field theory, the semiclassical limit is exact. This
makes TQFT a heuristic tool to define and compute topological invariants. It
also allows us to ucover unexpected relations via dualities.

Plan of the course:

• 0-dim field theory: Map(∗,M) =M , so doing integrals over M . Localisa-
tion formula.

• 1-dim field theory: same as quantum mechanics. Relation with Morse
theory. Betti numbers, Euler characteristics and their refinements.

• 2-dim string theory: Frobenius manifolds, Gromov-Witten invariants, mir-
ror symmetry.
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1 Localisation formulae

1 Localisation formulae

1.1 Stationary phase

I(s) =

∫ ∞

−∞
dxg(x)eisf(x).

For large s, I(s) is dominated by the critical points of f(x). Taylor expand at
a critical point x0,

f(x) = f(x0) +
1

2
f ′′(x0)(x− x0)

2 + . . .

so the local contribution is

I0(s) = g(x0)e
isf(x0)

∫
dx exp[

1

2
isf ′′(x0)(x− x0)

2].

Exercise. Show that

I0(x) = g(x0) exp(i(sf(x0) + ε
π

4
))

(
2π

s|f ′′(x0)|

)1/2

where ε is the sign of f ′′(x0).

Generalising to higher dimension, consider

I(s) =

∫
Rn

dnxg(x)eisf(x).

At a critical point,

f(x) = f(x0) +
1

2

∑
i,j

f ′′ij(x0)(x− x0)
i(x− x0)

j + . . . .

We have
I0(s) = g(x0)e

isf(x0)(
2π

s
)n/2

eiσπ/4

|det f ′′(x0)|1/2

where σ is the signature of the Hessian of f . If f has more than one critical
point then the integral has contribution from each of them, so

I(s) 's→∞ (
2π

s
)n/2

∑
j

g(xj)e
isf(xj)

eiσjπ/4

|det f ′′(xj)|1/2
.

Example. Consider S2 = {x2 + y2 + z2 = 1}. Let g(x, y, z) = 1, f(x, y, z) = z
and consider

I(s) =

∫
S2

dAeisz.

The critical points of f are the north and the south pole. At the north pole

z ∼ 1− 1

2
(x2 + y2)
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1 Localisation formulae

and at the south pole
z ∼ −1 +

1

2
(x2 + y2)

so
I(s) ' 2π

s
(ei(−2)π/4eis + ei·2π/4e−is) =

4π sin s

s
.

In this case the integral can also be done exactly by using spherical coordinates:

I(s) =

∫ 2π

ϕ=0

∫ π

θ=0

sin θdθdϕeis cos θ = 2π

∫ 1

−1

d cos θeis cos θ =
4π sin s

s
.

The secret behind this example is symmetry: there is an S1-action on S2

and the fixed points are precisely the poles, and all information is contained in
the fixed points.

1.2 Equivariant cohomology
Suppose a compact simply-connected group G acts on a manifold M . Equivari-
ant cohomology is a cohomology theory that takes into account the action of G.
In the simplest case where G acts freely, we may define

HG(M) = H(M/G).

More interestingly if G does not act freely, one has to take into account the fixed
points. One approach is use the univeral bundle EG, which is a contractible
space with a free G-action. The quotient BG = EG/G is called the classifying
space. Then one defines

H∗
G(M) = H∗(M ×G EG) = H∗((M × EG)/G).

We will study equivariant cohomology by using the Cartan model. We define
a G-action on differential forms. Starting with a function φ ∈ C∞(M), an
element h ∈ G acts on φ via

(h · φ)(x) = φ(h−1(x)).

After differentiating we get an action of Lie algebra which we write in the
following way: for a vector field v associated an element L ∈ g, the Lie algebra
of G, we have

(v · φ)(x) = d

dε

∣∣∣
ε=0

φ(exp(−εL)x).

In local coordinates
v = vatia

∂

∂xi
.

Denote by C[g] the algebra of complex valued polynomials on g. Consider

α ∈ Ω(M, g) := C[g]⊗ Ω(M),

which is the same as a polynomial on g valued in Ω(M). G acts on Ω(M, g) by

(h · α)(X) = hα(h−1X)

where the action on Lie algebra is the adjugate.

4



1 Localisation formulae

An equivariant differential form is an α that is invariant under the action of
G. In other words, α such that α(hX) = hα(X).

We endow Ω(M, g) with a Z-grading

deg(P ⊗ β) = deg β + 2degP.

We define the equivariant exterior differential by

dGα(ξ) = dα(ξ) + iιV α(ξ)

where V is the vector field associated to ξ. Properties:

• dG : Ωn(M, g) → Ωn+1(M, g).

• dG preserves equivariant forms.

• d2G(α)(X) = iLV α(X), which is zero on equivariant differential forms.

It is a theorem of Cartan that

H∗
G(M ;C) ∼= H((C[g]⊗ Ω•(M))G,dG).

We will focus on G = S1.

Remark. Note that α(ξ) is a multiform in ordinary de Rham complex. By
considering the homogeneous components in de Rham complex, an equivariant
form α is closed if and only if

dαk−2(ξ) + ιV αk(ξ) = 0

for all k.

Example. Consider the standard action of S1 on S2. Let ω = dcos θdϕ be
a symplectic form. v = ∂

∂ϕ is the vector field generating the action. Then an
equivariant closed symplectic form

α(ξ) = ω + ιξµ(θ)

such that
0 = dS1ω(ξ) = (d + iξιv)(ω + iξµ)

which says
dω = 0, iξιvω + iξdµ = 0, ιvµ = 0.

The only nontrivial condition is the second one, which via

ιvω = −d cos θ

gives µ = cos θ.
If dimRM = 2m then we can define

eα(ξ) =

m∑
k=0

ωk

k!
eiξµ.
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1 Localisation formulae

1.3 Equivariant integration
Let M be a compact smooth oriented manifold with dimension 2m = n. Given
an equivariant form α, we define∫

M

α :=

∫
M

αn

where the second integral is the usual one as de Rham forms. By Stokes’ theorem
this is independent of cohomology class. Then the equivariant integral can be
seen as the pushforward H∗

G(M) → H∗
G(∗).

Recall for f : F → M a map between compact manifolds. Then we have
pullback f∗ : H∗(F ) → H∗(M) and pushforward f∗ : H∗(M) → H∗(F ) in
cohomology. The self-intersection formula says f∗f∗1 = e(νF ).

Theorem 1.1 (Atiyah-Bott localisation formula). Suppose F is the fixed
locus of a G-action on M . Then for an equivariant form α,∫

M

α =

∫
F

f∗α

e(νF )
.

We will consider the case of S1-action on M such that the fixed points are
isolated. In this case, for a fixed point x0, νx0

∼= Tx0
M is an SO(2)-module

of dimension 2m, which splits into irreducible SO(2)-modules with weights νi,
i = 1, . . . ,m. The vector field generating the S1-action around x0 is

m∑
k=1

νk(xk
∂

∂yk
− yk

∂

∂xk
).

The Aityah-Bott formula then reads (for a top form)∫
M

α =

(
−2π

iξ

)m∑
p

α0(ξ)(xp)

νp1 · · · ν
p
m
.

Proof via “exact” stationary phase. Introduce a 1-form

ψ =
1

2
(v, ·)

where (·, ·) is an S1-invariant metric on M . Define an equivariant exact 2-form
by

β(ξ) = dS1ψ = dψ + iξιvψ = dψ + iξ
‖v‖2

2

In a neighbourhood of the fixed point ψ has local expression

ψ ∼ 1

2

m∑
k=1

νk(xkdyk − ykdxk)

so
β(ξ) ∼

∑
νkdxk ∧ dyk +

iξ

2

∑
ν2k(x

2
k + y2k).
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1 Localisation formulae

Since β(ξ) is equivariant,

eisβ(ξ) = 1 +
∑
k=1

(is)k

k!
(dψ)k

so ∫
M

α(ξ) =

∫
M

α(ξ)eisβ(z).

As LHS is independent of s, we can evaluate RHS by letting s → ∞. Using
stationary phase, note that for large positive s, the expression

exp(isβ(ξ)) = exp(isdψ − sξ
‖v‖2

2
)

is very small except for the zeros of the vector field. Around a fixed point,∫
M

α(ξ)eisβ(ξ) ∼ α0(ξ)(xp)

m∏
k=1

(
isνpk

∫
dxkdyke

− sξ
2 (νpk)

2(x2k + y2k)

)
=

(
−2π

iξ

)m
α0(ξ)(xp)

νp1 · · · ν
p
m

alternative proof of localisation formula

Lemma 1.2. If G is a compact group and α an equivariantly closed form
then outside the set of zeroes of the vector field generating the G-action, the
top de Rham component of α is exact.

Proof. Introducce the G-invariant 1-form ψ = 1
2 (v, ·). Then

dξψ = dψ − 1

2
(v, w).

Using α is equivariantly closed and outside the zero locus dξψ is invertible, we
can write

α = dξ

(
ψ ∧ α
dξψ

)
so ∫

M

α =

∫
M\{Bxp}

α+

∫
{Bxp}

α

where Bxp
’s are balls around the fixed points. Now apply Stokes’ theorem.

Let’s see an example of a symplectif manifold admitting a Hamiltonian S1-
action. Let (M,ω) be a symplectic manifold. A vector field v on M is Hamilto-
nian if there exists a function H such that

ιvω + dH = 0.

Define the Liouville volume form

L =
ωm

m!
= [eω]2m.
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1 Localisation formulae

Theorem 1.3. Let (M,ω) be a compact symplectic manifold admitting a
Hamiltonian S1-action. Then

I(ξ) =

∫
M

LeiξH =

(
−2π

iξ

)m∑
p

eiξH(xp)

λp1 · · ·λ
p
m
.

This is a corollary of localisation formula: consider the equivariant extension
of the symplectic form

ω(ξ) = ω + iH.

Then
dS1ω(ξ) = (d + iξιv)(ω + iξH) = dω + iξ(ιvω + dH) = 0.

Define the equivariant Liouville volume form

L(ξ) = eω(ξ) = eω(ξ) = eiξH
m∑
k=1

ωk

k!

so ∫
M

L(ξ) =
∫
M

LeiξH .

Evaluate LHS by localisation formula gives the result.
Let us now revisit some of the examples. S1 acts on S2 by rotation. ω =

dcos θdϕ. Let ω(ξ) be the equivariant extension with respect to the S1-action.
Then dS1ω(ξ) = 0.

ι∂ϕd cos dϕ+ dH = 0

wher H = cos θ is the height function. Then

I(ξ) =

∫
S2

ωeiξ cos θ =

(
−2π

iξ

)(
eiξzN

νN
+
eiξzS

νS

)
=

(
−2π

iξ

)
(−eiξ+e−iξ) = 4π

sin ξ

ξ

This is the equivariant volume of S2. Note as ξ → 0 it goes to the regular
volume.

Example. ???Compactifying. In R2, let ω = dxdy, v = x∂y − y∂x. Define

ω(ξ) = dxdy + iξ
x2 + y2

2
.

Then ∫
R2

eiω(ξ) =

(
−2π

iξ

)
(e−ξHmin + e−ξHmax) = −2π

iξ
(1− 0).

We can also perform the integral directly by

i

∫
R2

dxdye−ξ
x2+y2

2 = −2π

iξ
.

Thus we can define 2π
ξ as the equivariant volume of R2 with S1-action. Note

that unlike the compact case, as ξ → 0 there is a pole (as the volume of R2 is
infinite).

8



1 Localisation formulae

Exercise. Consider S2 ∼= CP1. In affine coordinate z the Fubini-Study metric
has the form

ωFS =
i

2π

dzdz

(1 + |z|2)2
.

There is a U(1)-action z 7→ eiεz, z 7→ e−iεz. Find the corresponding vector
field. Compute the equivariant extension of ωFS and compute the equivariant
volume. Finally generalise to CPn, whose Study-Fubini metric in homogeneous
coordinates is given by

ω = i∂∂ log |Z|2.

9



2 Localisation formula on supermanifolds

2 Localisation formula on supermanifolds

Definition (supermanifold). A supermanifold is a couple (M,A) where M
is a differentiable manifold and A is a sheaf of Z-graded commutative algebra
that extend the structure sheaf on M such that

1. it admits a nilpotent subsheaf N such that A/N ∼= C∞(M). σ : A →
C∞(M) is called the body map.

2. locally A is a sheaf of exterior algebra of smooth functions on M , i.e.
locally

A ∼= C∞(M)⊗
∧
V

where V is a n-dimensional vector space.

Superfunctions M (m,n) defined in terms of generators ψa of the exterior
algebra A. There is a splitting A = A+ ⊕ A− and there is a commutator
defined by

[α, β] = αβ − (−1)degα deg ββα.

The even part is called bosons and the odd par tis called fermions. We then
define a superfunction to be

f(x, ψ) = f0(x) + fa(x)ψa + fa,b(x)ψaψb + · · ·+ f1,...,n(x)ψ1 · · ·ψn.

Note ψ2
a = 0 for all a.

Example. Define the tautological supermanifoldas

A ∼=
∧
T ∗M.

M (m,m)

2.1 Integration on supermanifold
Berezin rules: ∫

ψdψ = 1,

∫
1dψ = 0

?is a derivation. By anticommutativity∫
ψ1ψ2dψ1dψ2 = 1,

∫
ψ2ψ1dψ1dψ2 = −1

and ∫
ψ1 · · ·ψndψ1 · · · dψn = 1,

∫
ψ1 · · · ψ̂a · · ·ψndψ1 · · · dψn = 0.

2.2 Euler class and Pfaffians
Let G = SO(2m), g ∈ S2V ∨ where V is a R-vector space of dimension 2m. The
Pfaffian is

Pf : so(2m,R) → R

10



2 Localisation formula on supermanifolds

where for x ∈ sO(2m,R), ... explicitly in terms of elements of x′,

Pf(x′) =
1

2mm!

∑
σ∈S2m

sgn(σ)

m∏
i=1

xσ(i−1)σ(2i).

It satisfies Pf(x)2 = detx.
Let P be a principal SO(2m)-bundle over M with curvature form F . Then

the Euler class of P is given by

e(P ) =
1

(2π)m
Pf(F ).

Example. Let P = TM . Then

e(TM) =
1

(2π)m
Pf(R).

2.3 Boson and fermion integration
Boson: let A be an N ×N a symmetric? real matrix.∫

RN

exp(−1

2
xTAx]dvol

Diagonalise A by an orthogonal transformation, we get

N∏
i=1

∫
R
dyie

−λiy
2
i /2 =

∏
i

√
2π

λi
= (

√
2π)N (detA)−1/2.

If some λi is zero then we work with det′A, a measure on kerA.
In the complex case∫

CN

e−z
tHz

∏ dzidzi
2πi

= (detH)−1.

Fermions: we consider skew-symmetric matrix ω.∫
e

1
2ψ

tωψdψ1 · · · dψ2m = Pf(ω)

This is because by definition of Pfaffian

Pf(ω)ψ1 · · ·ψ2m =
1

m!

(
1

2
ψtωψ

)m
.

Lecture 20/05
Recall that a supermanifold M (m,n) is obtained by enlarging the sheaf of

regular functions to A, a Z2-graded algebra with odd generators (ψ1, . . . , ψn).
If E is a bundle over M then

∧∗
E is one of the easiest example

Tautological supermanifold ΠTM , where Π is the parity reversing functor.
E ∼= TM .

Superfunctions: f(x, ψ) = f0(x) + fa(x)ψ
a + · · ·+ f1···nψ

1 · · ·ψn.

11



2 Localisation formula on supermanifolds

We defined integration on M (m,n). On the odd part this is given by Berezin
rule.

Now we add a group action.
A supergroup is a Lie algebra containing odd generators with respect to

Z2-grading (correspondingly exists odd vector fields generating the actions

d

dt
|t=0 exp(tQ) · y

). For example f(x, ψ + t), Q = ∂
∂ψ .

Remark. Odd generators are loosely called “supersymmetry”.

Witten’s fixed point argument: the integral of a a sypersymmetric invariant
superfunction on a superspace E gets contributions only from fixed points of
the supersymmetry. Proof: suppose Q acts on E freely. Form the fibre bundle
(what is F?)

F ↪→ E → E/F.

For an invariant superfunction f , i.e. Qf = 0 (?),∫
E

f =

∫
F

dt︸ ︷︷ ︸
odd

∫
E/F

f = 0

by Berezin rule. This is a theorem for compact supermanifolds with compact
odd vector fields (A. Schwarz et al, CMP)

2.4 Duistmaat-Heckmann on supermanifolds
One formulate a version of DH using tautological supermanifold. Let A =∧
A∗TM . ΠTM =M (2m,2m).
dx1 · · · dx2n ↔ ψ1 · · ·ψ2n. ηi1···isdxi1 · · · dxis → ηi1···isψ

i1 · · ·ψis = η̂. Then∫
M

η =

∫
ΠTM

µ̂η̂

DH says∫
M

ωneiH = i−n
∫
M

ei(ω+H) = i−n
∫
ΠTM

exp[i(H + ωabψ
aψb)].

Supersymmetry: Q = ψa ∂
∂xa + va ∂

∂ψa where va are local components of the
vector field generating the S1-action. Then Q2 = Lv. Thus supersymmetric
fixed points are in bijection with fixed points of the S1-action. Moreover the
integral is Q-invariant. The measure is also Q-invariant.∫

M

ωn

n!
eiH =

∫
−ΠTMµ̂ei(S+sQλ)

which is independent of s, so we can evaluate by taking s → ∞. Remeber
λ = vaψ

a, so Qλ ∼ ‖v‖2. The critical points are then the zeroes of v. The rest
of the proof is left as an exercise.

12



2 Localisation formula on supermanifolds

2.5 An example
Consider R(1,2) and the integral

Z =

∫
R(1,2)

µ̃e−S

where
S(x, ψ1, ψ2) = S0(x) + ψ1ψ2S1(x)

and the measure is
µ̃ = dxdψ1dψ2.

The supersymmetry is given by

δεx = ε1ψ1 + ε2ψ2

δεψ1 = ε2h′

δεψ2 = −ε1h′

for some h : R → R. Claim to make it equivaraint, i.e. δtS = 0 we need to
choose

S0(x) =
1

2
(h′)2, S1(x) = h′′

Proof:

δεS = h′h′′δεx− h′′δεψ1ψ2 − h′′ψ1δεψ2 − h′′′δεxψ1ψ2

= h′h′′(ε1ψ1 + ε2ψ2)− h′′ε2h′ψ2 + h′′ψ2ε
1h1 − h′′′(ε1ψ1 + ε2ψ2)︸ ︷︷ ︸

=0

which is indeed 0 by antisymmetry. As an exercise, show dxdψ1dψ2 is also
invariant.

Fixed point argument: h′ 6= 0 on R, ε1 = ε2 = −ψ1/h
′. Substitude

x̂ = x− ψ1ψ2

h′
, ψ̂1 = ψ1 − h′

ψ1

h′
= 0, ψ̂2 = ψ1 + ψ2.

Then ∫
dxdψ1dψ2e

−S =

∫
dx̂dψ̂1dψ̂2e

−S(x̂,0,ψ̂2).

Suppose now that h is a polynomial of degree n with isolated critical points
(what??). Summing over all fixed points xc,

Z =
∑
c

1√
2π

∫
dxdψ1dψ2 exp[−

1

2
h′′(xc)

2(x− xc)
2 + h′′ψ1ψ2]

=
∑
c

h′′(xc)

|h′′(xc)|

which is the signed count of isolated critical points. This is invariant under local
deformations of h provided we do not change asymptotic behaviour at ±∞. In
other words

Z =

{
0 n odd
±1 n even

13



2 Localisation formula on supermanifolds

Z =
∑
c

1√
2π

∫
dxdψ1dψ2 exp[−

1

2
(h′)2 + h′′ψ1ψ2]

=
1√
2π

∫
dx exp[−1

2
(h′)2h′′]

=
1√
2π
D

∫
y

dye−y

where D is the multiplicity coming from Jacobian. For example if h is odd,
hence h′ even, we have D = 0. If h is even, hence h′ odd, D = ±1.

More on deformation invariance Suppose we have a “local deformation”
(in the sense that it does not change behaviour at ±∞) h→ h+ ρ, then

S(h+ ρ) =
1

2
(h′ + ρ′)2 − (h′′ + ρ′′)ψ1ψ2

so the variation with respect to ρ is

δρS = ρ′h′ − ρ′′ψ1ψ2 = δε(ρ
′ψ1)

with ε1 = ε2 = ε: Indeed

δε(ρ
′ψ1) = ε(ρ′′ψ1ψ2 − ρ′h′).

δZ =

∫
dxdψ1dψ2e

−δεg = 0.

14



3 Supersymmetric quantum mechanics

3 Supersymmetric quantum mechanics
Recall that a Hilbert space H is a vector with a Hermitian inner product such
that the associated norm makes it a complete metric space. We will use the
Dirac bracket notation: |α〉 ∈ H for an element in the Hilbert space, 〈β| ∈ H∗

for an element in the dual space, and use the physicists’ convention

〈aα+ bβ|γ〉 = a∗ 〈α|γ〉+ b∗ 〈β|γ〉 .

A SUSY quantum mechanics is a Z2-grading on H. The even bit is called
fermions and the odd bit bosons. A SUSY operator Q exchanges (?) the parity

1

2
{Q,Q†} = H,

the Hamiltonian of the generator of translations on I or S1.
Fermion number operator (−1)F which is 1 on HB and −1 on HF . Have

[(−1)F , Q] = −Q, [(−1)F ,H] = 0, [Q,H] = 0.

Definition of commutator

[α, β] = αβ − (−1)degα deg ββα.

Then by super Jacobi identity

[Q, {Q,Q†}] + [Q†, {Q,Q}︸ ︷︷ ︸
=0

] + [Q, {Q†, Q}] = 0

H = 1
2{Q,Q

†} has the following properties:

1. all energies E (eigenvalues?) are nonnegative.

2. E = 0 if and only if Q |α〉 = Q† |α〉 = 0. The zero energy states are
called ground states. Stated in a different way, this says ground states are
supersymmetric (i.e. annihilated by both Q and Q†). This follows easily
from

〈α|H|α〉 = 1

2
(〈α|QQ†|α〉+ 〈α|Q†Q|α〉)

For nonzero energy, there is an isomorphism HE 6=0
B

∼= HE 6=0
F realised by

Q1 = Q+Q†. This is because

Q2
1 = {Q,Q†} = 2H

which is invertible on nonzero energy states.

We can define the Witten index to be the difference between number of zero
boson states and number of zero fermion states

Ω = dimHE=0
B − dimHE=0

F = trHE=0(−1)F = trH(−1)F e−βH

where β is the radius of S1 → R. The last equality is because for nonzero states
Q1 induces an isomorphism. We write in this way as this will fit into the path
integral formalism, which we will see in the future.

Ω is invariant under small deformations of H.

15



3 Supersymmetric quantum mechanics

SUSY QM on R Let H = L2(R,C) ⊕ ψL2(R,C). A wavefunction is then a
superfunction

Φ(x, ψ) = ΦB(x) + ΦF (x)ψ ∈ H.

Position x and momentum p are hermitian operators on H which do not com-
mute:

[x, p] = i

(we take ~ = 1). For the Grassmannian part

{ψ, ψ} = 1.

A realisation of these commutation relations on H is by setting

p = −i∂x, ψ = ∂ψ

with supercharge

Q = ψ(ip+ h′(x)), Q† = ψ(−ip+ h′(x)).

Then the Hamiltonian is

2H = {ψip, ψ(−ip)}+ {ψh′, ψh′}+ i{ψp, ψh′} − i{ψh′, ψp}
= p2 + (h′)2 + i(ψpψh′ + ψh′ψp− ψh′ψp− ψpψh′)

= p2 + (h′)2 + i(ψψ − ψψ)[p, h′]

= p2 + (h′)2 + h′′(ψψ − ψψ)

In matrix form, if we write the wavefunction as Φ = (ΦB , ψΦF ), then

Q =

(
0 0

∂x + h′ 0

)
,H =

1

2

(
−∂2x + h′2 − h′′ 0

0 −p2x + h′2 + h′′

)
Ground states correspond to HΨ = 0, a 2nd order PDE. However by com-

ments before this is equivalent to two 1st order ODEs

QΦ = 0, Q†Φ = 0

which has formal solutions

Φ = ABe
−h(x) +AFψe

h(x).

We need to check if it is normalisable. Several cases:

1. limx→∞ h = ∞, limx→−∞ h = −∞ or limx→∞ h = −∞, limx→−∞ h =
−∞: all solutions diverge so no ground state. Ω = 0.

2. limx→∞ h = limx→−∞ h = ∞: one bosonic SUSY ground state and no
fermionic state. Ω = 1.

3. limx→∞ h = limx→−∞ h = −∞: opposite situation of 2. Ω = −1.

16



3 Supersymmetric quantum mechanics

Example:super harmonic oscillator Take h(x) = ω
2 x

2 so

H = p2 + V (x) + h′′(ψψ − ψψ)

where V (x) = ω2

2 x
2. By discussion above for ω > 0 there is a bosonic SUSY

ground state
Ψω>0 = e−

1
2ωx

2

|0〉

and for ω < 0 there is a fermionic SUSY ground state

Ψω<0 = e−
1
2 |ω|x

2

ψ |0〉 .

We can solve this system and show

HB =
1

2
p2 +

ω2

2
x2

with discrete spectrum

{ |ω|
2

+ `|ω|}`≥0

The fermionnic part can be expressed as HF = ω
2

(−1 0
0 1

)
with spectrum

{ |ω|
2

+ `|ω|}`≥0.

So for ω > 0 the spectrum of H = HB + HF has a pairing except the zero
Bosonic part. The situation is reversed for ω < 0.

Partition function of Gibbs ensemble: Z = trH e
−βH .

ZB =

∞∑
n=0

e−β(n+
1
2 )|ω| =

1

eβ
|ω|
2 − e−β

|ω|
2

ZF = e−β
ω
2 + eβ

ω
2

Z = tr e−βH =
eβ

ω
2 +

denominator

Note the Witten index... is independent of β
23/04/21
We now move to higher dimension and consider R(N,2N). A wavefunction

has the form

Φ(x, ψ) =
∑

b1,...bN=0,1

Φb1,...,bN (ψ
1
)b1 · · · (ψN )bN

which is a vector with 2N components.

Q =
∑

Iψ
I
(ipI + ∂Ih(x))

where h : RN → R. One can check Q2 = 0. The Hamiltonian is

H =
1

2
{Q,Q†} =

1

2

∑
I

(p2I + (∂Ih)
2) +

1

2

∑
I,J

[Ψ
I
,ΨJ ]∂I∂Jh.

17



3 Supersymmetric quantum mechanics

To solve for ground states we need to solve

QΦ = Q†Φ = 0.

This is in general difficult but can be solved in some special cases. For example
let us consider N copies of one dimensional harmonic oscillator, i.e.

h(x) =
1

2

N∑
I=1

ωI(x
I)2.

Then
Φ0(x) = exp(−1

2

∑
I

|ωI |(xI)2
∏

I:ωI<0

Ψ
I
.

The number F is the number of negative eigenvalues of the Hessian of h, which
is the Morse index of the critical point (note h is a Morse function). The Witten
index is (−1)µ.

Using this result we can compute the Witten index for any h which is Morse.
We use deformation invariance: Ω does not depend on local deformation of
h, provided we do not modify its asymptotic behaviour h(x) → λh(x), λ →
∞. Classical fixed points are critical points of h(x). The corresponding wave
functions are the Gaussians centered at the critical points. Then

Ω =
∑

xc critical

(−1)µ(xc).

Riemannian manifolds Consider all maps S1 → M . The Hilbert space in
question is isomorphic to differential forms on M . F equals to the de Rham
degree.

Φ = Φ0 +ΦIdx
I +ΦIJdx

I ∧ dxJ .

Using the tautological supermanifold we identify dxI with ψI . The inner prod-
uct on H corresponds to the inner product of differential forms:

〈Ψ|Φ〉 =
∫

Ψ ∧ ?Φ

where ? is the Hodge star operator. In a local coordinate

〈Ψ|Φ〉 =
N∑
`=0

∫
dNx

√
ggI1J1 · · · gI`J+`ΨI1···I`ΦJ1···J` .

Operators:
Q = d = dxI∇I

H =
1

2
(QQ† +Q†Q) = ∆,

the Laplacian on M . In local coordinates,

ψ
I
= dxI ∧ (−), ψI = gIJ ι∂J

with
{ψI , ψJ} = gIJ

18



3 Supersymmetric quantum mechanics

and
H = −1

2
gIJ∇I∇J +RIJKLψ

Iψ
J
ψKψ

L
.

The Witten index is
∑

(−1)F summing over all SUSY ground states. The
equation for gound state means that Φ is a harmonic differential forms, so

Ω =

N∑
F=0

(−1)F bF (M)

which is the Euler characteristic of M .
Adding a potential h : M → R, the SUSY charge gets deformed. By conju-

gation
Qh = e−hQh=0e

h = e−hdeh = d + dh.

Note that adding h does not change Ω. Then the Hilbert space of zero energy
states HSUSY ∼= kerQ/ imQ

Proof. For all |α〉 with positive energy E,

|α〉 = 1

2E
(Q†Q+QQ†) |α〉 = Q(

1

2E
Q† |α〉)

so all positive energy states are trivial in the Q-cohomology.
On the other hand for zero energy state |α〉, ??
If |α〉 = Q |β〉 then

〈α|α〉 = 〈β|Q†|α〉 = 0

so |α〉 = 0.

Now adding h does not change the cohomology: kerα → e−h |α〉 sends
elements in the cohomology of Q0 to elements to those of Qh, which induces an
isomorphism.

3.1 Path integral for QM
We are interested in integrals over the space of all maps

Z =

∫
q:S1→M

Dq exp(−
∫ β

0

dtL(q, q̇)︸ ︷︷ ︸
S

)

where t is the coordinate on S1. For a harmonic oscillator,

A =
1

2

∫ β

0

dtq (− d2

dt2
)︸ ︷︷ ︸

D

+ω2.

Z is formally a Gaussian integral so we expect

Z(β, ω)“ =′′ (detD)−1/2.

This is given by the process of ξ-renormalisation. D has discrete real positive
eigenvalues λn > 0. Define

ζD(s) =
1

Γ(s)

∫ ∞

0

ts−1 tr(ρe−tD)dt

19



3 Supersymmetric quantum mechanics

where ρ is the projection on λn > 0. Then

ζD(s)“ =′′
∑

nλ−sn , s ∈ C

It is analytic as s→ 0. We define

det ′D = e−ξ
′
D(0).

Expand q(t) in terms of Fourier modes

qn(t) = exp(
2πi

β
nt)

such that Dqn = λnqn, λn = ω2 + ω2 + ( 2πnβ )2. If q(t) =
∑
n cnqn(t) then

Dq =
∏
n

dcn√
2π

so
S =

1

2

∑
n

c2nλn

and
Z(β, ω) =

∫ ∏
n

dcn√
2π

exp(−1

2

∑
n

λnc
2
n).

Combine with the observation above,

(det ′D)−1/2“ =′′
∏
n

(λn)
−1/2

...

Gelfand-Yaglom theorem Let D = − d2

dt2 + V (t) be a second order differ-
ential operator on [0, β]. We can pose the eigenvalue problem with Dirichlet
boundary condition, namely

Dψn = λnψn, ψn(0) = 0, ψn(β) = 0

where 0 < λ1 < · · · < λn is the discrete nondegenerate spectrum bounded from
below. One can consider the auxillary problem

Dφλ = λφλ, φλ(0) = 0, φ′λ(0) = 1.

The for all λ = λn,
φλn

(β) = 0.

Theorem 3.1.
det(− d2

dt2 + V1(t)− λ)

det(− d2

dt2 + V2(t)− λ)
=
φ
(1)
λ (β)

φ
(2)
λ (β)

.

Proof. LHS and RHS both have zeros at λ = λ
(1)
n and poles at λ = λ

(2)
n .

Moreover both sides go to 1 as λ → ∞. Thus the ratio of the two sides is a
bounded entire function, which is constant 1.
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3 Supersymmetric quantum mechanics

As an application,
det(− d2

dt2 + ω2)

det(− d2

dt2 )
=
φω0 (β)

φ0(β)
.

One can solve for φω0 (t) to get

φω0 (t) =
sinhωt

ω
, φ0(t) = t.

How to reconcile the two results?

3.2 Path integral formulation of SQM

Let φ : S1 →M , ψ, ψ ∈ Γ(S1, φ∗(TM)⊗ C).
Witten index in the path integral formulation: the partition function

Z =

∫
φ,ψ,ψ

DφDψDψ exp(−S(φ, ψ, ψ)).

By definition φ is periodic: ψ(0) = φ(β). This is a boundary condition for
bosons. For fermions, there are two possibilities: ψ(0) = ±ψ(β) (since we have
seen the action is quadratic in ψ). The correct choice is the periodic one, making

Zperiodic = trH(−1)F e−βH .

This choices preserves SUSY as
∂Zperiodic

∂β
= − trHH(−1)F e−βH

=
1

2

∫
DφDψDψ{Q,Q†}e−S

= −1

2

∫
DφDψDψδSUSY(· · · )

= 0

Now for our specific case, we define the action to be

S =

∫ β

0

dτ(
1

2
gIJ(φ)φ̇

I φ̇J + gIJ(φ)ψ
I∇τψ

J

where
∇τψ

I = ∂τψ
I + ΓIJK∂τφ

JψK .

Note that δS = 0 under SUSY where

δφI = εψ
I
, δψ

I
= 0, δψI = ε(−ψ̇I − ΓIJKψ

J
ψK).

To evaluate the partition function we find fixed points of SUSY. φ̇I = 0 gives
constant maps in LM . In terms of Fourier modes expansion

φ(τ) =
∑
n∈Z

φne
inτ

ψ(τ) =
∑
n∈Z

ψne
inτ

ψ(τ) =
∑
n∈Z

ψne
inτ
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3 Supersymmetric quantum mechanics

Then

∆B = gIJ(γ0)(−
d2

dτ2
)

∆F = gij(φ0)(i
d

dτ
)

The eigenvalues are
∆Bφn = n2φn,∆Fψn = inψn.

integration over nonconstant modes produce

(det ′∆B)
−1/2 ∼ (

∏
n 6=0

n2)−1/2 = (
∏
n>0

n2)−1

(det ′∆F ) ∼
∏
n 6=0

(in) =
∏
n→0

n2

In this case the bosonic and fermionic parts cancel completely and ZSQM col-
lapses to integration over M :

ZSQM =

∫
M

∏
i

dψIi0
∏

dψ
Ji
0 exp(

1

2
RIJKLψ

I
0ψ

J

0ψ
K
0 ψ

L

0 )

=

∫
M

∏
dψi0 exp(

1

2
ψ0Rψ0) identify ψI ∼ dxI

which is the integral over Pfaffians of R, which equals to χ(M). We thus get
Gauss-Bonet theorem.

3.3 SQM with potential
Recall that we considered Q → Qh = e−hQeh where h : M → R. There is a
deformed action

Sλ = S0 +
λ2

2
gIj∂

Ih∂Jh+ λDI∂Jhψ
I
ψJ

SUSY is changed by

δφI = εψ
I

δψ
I
= 0

δψI = ε(−ψ̇I − ΓIJKψ
J
ψK + gIJ∂Jh)

The fixed points are given by

ψ̇φI = 0, ∂Jh = 0,

which are given by constant maps to the critical points of h. The path integral
is localisated to the set of critical points of h.

∆B = −gIJ(φ)
d2

dτ2
+ λ2DI∂KhDJ∂

Kh

∆F = igIJ
d

dτ
+ λDI∂Jh
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3 Supersymmetric quantum mechanics

For bosons∏
n 6=0

(gIJn
2 + λ2DI∂KhDJ∂

Kh)−1/2 =
∏
n>0

(gIJn
2 + λ2DI∂KhDJ∂

Kh)−1

and for fermions∏
n 6=0

(ingIJ + λDI∂Jh) =
∏
n>0

(n2gIJ + λ2DI∂KhDJ∂
Kh)

which again cancel. For n = 0 the set of modes not in ker∆B is empty.
detλDI∂Jh

(detλ2DI∂KhDJ∂Kh)1/2
= sign · detDI∂Jh.

In summary,
Z = χ(M) =

∑
p

sign · detHessh|p.

Since ∂Ih is a vector field, tis givens the Poincaré-Hopf theorem.

Mathematical formulation Mathai, Quillen: Superconnections, thom classes,
and equivariant differential forms

Let E be a real vector bundle of rank 2n over X. Let Xµ be coordinates
on X and dxµ = ψµ. Let hi be local coordinates of fibres of E. Let χi be
coordiates on fibres of ΠE (parity reversing). Let gij be a metric on E, Aiµ the
1-form connection of E. Define an odd vector field on the supermanifold ΠT
ΠE.

δxµ = ψµ, δψµ = 0, δχi = hi −Aijµψ
µxi, δhi = δ(Aijψ

µχj)

so δ2 = 0. Define α ∈ Ω•(ΠE) by

α =
1

(2π)n
exp(−tδV )

where t ∈ R>0. Let V = 1
2gijχ

ihj .

δ(χ, h) = (h−Aχ, h)− (χ,dAχ−A(h−Aχ))

= (h, h)− (χ, FAχ)

where FA = dA+A ∧A.
1

(2π)2n

∫
ΠE

DhDχ exp(−1

2
δ(χ, h)) =

1

(2π)n
Pf(FA)

In particular for E = TM and χ = ψ we recover the previous result.
One can deform this by a section of the vector bundle. Let s ∈ Γ(E) and

Vs = 1
2 (χ, h +

√
−1s). Then the integral over (χ, h) produces exp(− 1

2ts
2), a

weight concentrated around s−1(0) ⊆ X.

αs =
1

(2π)n
exp(−tδVs)

is a representative of the Thoms class of E. For s = 0 we get the Euler class.
For infinite-dimensional vector bundles we can use αs to give the definition

of the regularised Euler class. On the other hand for finite-dimensional vector
bundle we can define a defomred Euler characteristic χs(E). For example the
partition function of SQM can be regraded as the TQFT-Mathai-Quillen rep-
resentative of Euler class χs(LM). χs(LM) = χ(M) and does not depend on s
(we saw s constant maps and s vector field ∂Ih).
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3 Supersymmetric quantum mechanics

3.4 Index theorems and SQM
Some review of characteristic classes: let P be a principal GL(n,C)-bundle over
X. The Chern character is an adjoint invariant function

ch : gl(n,C) → C

X 7→ tr eX =

∞∑
n=0

1

n!
trxn

The eigenvalues of the matrix X are called the Chern roots. In terms of the
Chern roots

ch(X) =

n∑
i=1

eXi .

The Chern classes are defined by

det(1 + tX) =

n∑
k=0

tkck.

For example
c1 = trX, cn = detX.

The Todd class is defined by

td(X) = det
X

1− e−X
=

n∏
i=1

Xi

1− e−Xi
.

Note the function has a power series expansion in terms of the Bernoulli numbers

x

1− e−x
=

∞∑
k=0

(−1)k

k!
Bkx

k.

The Â-class is defined as

Â = det
X

eX/2 − e−X/2
=

n∏
i=1

Xi

eXi/2 − e−Xi/2
.

The Atiyah-Singer index theorem for Dirac operator states that

ind( /D,E) =
1

(−2π
√
−1)n

∫
X

Â(TX) chE

where the Dirac operator is defined on a spin bundle /D : S+ ⊗ E → S− ⊗ E
and its index is defined as the difference between the dimension of kernel and
cokernel.

Formally it looks very similar to the Witten index. We can “prove” various
index theorems by identifying Q with the appropriate operator (c.f. Alvarez-
Gaumé, CMP SUSY and index theorems).

For example consider

S =

∫
S1

dτ(
1

2
gµν ẋ

µẋν + ẋµAµ +
1

2
gµνψ

µ∇τψ
ν − 1

2
ψµψνFµν
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3 Supersymmetric quantum mechanics

The integral is
Z =

∫
x∈LX

ψ∈Γ(S1,x∗(TX))

DxDψe−S .

Note ψ is real. Z is independent of the radius of S1. Taking β → ∞ will give
the exact result.

xµ(ψ) = xµ0 + x̂µ(τ)

ψµ(τ) = ψµ0 + ψ̂µ(τ)

Rescale by

x̂µ(τ) → x̂µ(τ)/
√
β

ψ̂µ(τ) → ψ̂µ(τ)/
√
β

The measure is invariant (exercise).

βS →
∫ β

0

dτ(
1

2
gµν(x0) ˙̂x

µ ˙̂xν+
1

2
ψ̂iηij∂ψψ̂

j−1

2
ψµ0ψ

ν
0Fµν+

1

2
Rijµνψ

i
0ψ

j
0x̂
µ ˙̂xn)+O(

1√
β
)

so
Z =

∫
d2nx0d

2nψ0e
iFµνψ

µ
0 ψ

ν
0 [det ′(δµν ∂τ −Rµν )∂τ ]

−1/2[det ′∂τ ]
1/2

The fermionic part cancels the second factor of the bosonic part and the expo-
nential is chE so we are left with det ′(δµν ∂τ −Rµν ). Expand in Fourier modes,

det ′(
∂

∂τ
−R(i))−1/2 =

∏
k 6=0

(ik − λ(j))(ik + λ(j))

=
∏
kne0

(k2 + (λ(j))2)−1/2

=

∞∏
k=1

(k2 + (λ(j))2)−1

where R =
(

0 λ(j)

λ(j) 0

)
. By ξ-function regularisation this is

λ(j)/2

sinhλ(j)/2
.

λ(j) are the Chern roots so this is exact the Â(R)-class:

Â(R) =
∏
j

λj
eλj/2 − e−λj/2

.

Thus

Z = ind( /D,E) = dimker /D − dim coker /D =

∫
X

chEÂ(TX).

Hirzebruch-Riemann-Roch:

ind(∂,E) =
1

(−2πi)n

∫
X

td(T 1,0
X ) chE

which can be derived from Atiyah-Singer by noting that on a comples manifold
/D = ∂ ⊗K1/2

where K is the canonical class. Thus we use the Todd class instead of Â-class.
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3.5 Morse theory and SQM
Let M be a compact manifold with Morse function f . Let Mp be the number
of critical points of f with p negative eigenvalues. The weak Morse inequality
says

Mp ≥ bp

and the strong Morse inequality says that∑
p

Mpt
p −

∑
p

bpt
p = (1 + t)

∑
p

Qpt
p

where Qp ≥ 0. We will see that SQM provides refinements of Morse inequalities
via Morse-Witten index.

Recall
Zλ =

∫
DφDψDψe−Sλ(φ,ψ,ψ,h).

For λ = 0 (zero potential), the Q-fixed points are the constant maps. The
integral gives Guass-Bonnet. For λ 6= 0, Qh-fixed points are critical points to
critical points of h, giving Poincaré-Hopf.

...
Qh = e−λhQeλh, Q†

h = eλhQ†e−λh so

Hλ =
1

2
{Qh, Q†

h} =
1

2
∆ +

1

2
λ∇I∂Jh[ψ

I
, ψJ ] +

1

2
λ2gIJ∂Jh∂Jh.

In the limit λ→ ∞, expand H around the critical point xi of h,

H(xi) =
1

2

∑
I

p2I + λ2c2I(x
I)2 +

1

2
λcI [ψ

J
, ψJ ] +O(

1

λ
).

Remark. This is called pertubation theory with parameter 1
λ . The gradient

flow lines actionwhich is proportional to λ is not analytic in 1
λ . These corrections

e−λ are “non-perturbative instanton” corrections.

The ground states are Gaussians centered around the critical points. Let

|ai〉 = e−λ
∑

I |cI(xI)2
∏

J:cJ<0

ψ
J |0〉

be the ground state asscociated with xi. Note the number of J such that cJ < 0

is exactly the Morse index µi. Identify ψ
J ∼ dxI , |ai〉 ∈ Ωµi(M) ⊗ C. For λ

finite, gradient flow lines produce an overlap among these states

〈aj |Qh|ai〉 =
∫
aj ∧ ?(d + dh)ai

µj = µi + 1. In physics terms, these are ascending flow lines (instantons).
Conversely if µj = µi − 1 they are descending flow liens (anti-instantons).

Define the Morse-Witten complex

0 X0 X1 X2 · · · Xn 0
Qh Qh
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3 Supersymmetric quantum mechanics

where Xµ =
⊕

µ=µi
ai,

Qh : Xµ → Xµ+1

|ai〉 7→
∑
aj

n(aj , ai) |aj〉

Q†
h : Xµ → Xµ−1

where n(ai, aj) = ±1 according to the orientation. The orientation between two
different points can be defined using the Hessian

D2h

∂φI∂φJ
: Txi

M → Txj
M.

Example. (Example on S2)

path integral derivation Expand S around the gradient flow line:

d

dt
φI − λgIJ∂Jh = 0.

S = λ(h(xi)− h(xj)) +

∫
R
(
1

2
|D−ξ|2 −D−ψψ)dt

where D −− is first order variation of Levi-Civita connection, plus Hessian:

D−ξ
I = Dτξ

I − λgIJDJ∂Khξ
K

We study zero modes of D−. Under genericity assumption kerD†
− = 0 so

indD− = dimkerD− = µi − µj

(see remark below).

〈aj |Qh|ai〉 =
1

h(xi)− h(xj) +O( 1λ )
lim
T→∞

〈aj |e−TH [Q,h]e−TH |ai〉

Note 〈aje−THhQe−TH |ai〉 is the projection on zero energy states (for nonzero
states it vanishes)

φ(−∞) = xi, φ(∞) = xj)

〈aj |e−TH [Q,h]e−TH |ai〉 =
∫
DφDψDψDψe−Sψ

I
∂Ih

=

∫
dt0
∏
I

dψ
I

0

∏
n 6=0

dξndψ
I
ndψ

I

n∂Jhψ
I

exp(−λ(h(xj)− h(xi)) +
1

2

∫
|D−ξ|2 − (D−ψ,ψ))

=

∫
dt0
∏
I

dψ
I

0ψ
I

0∂Ih
det ′D−√
det ′D†

−D−︸ ︷︷ ︸
±1

e−λ(hj−hi)

= ±e−λ(hj−hi)(hj − hi)
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3 Supersymmetric quantum mechanics

Thus
〈aj |Qh|ai〉 =

∑
γ

nγe
−λ(hj−hi)

where the sum is over all γ from xi to xj such that µi = µj − 1.

spectral flow and relative Morse index The Hessian is a linear mapH(h) :
TxM → TxM . In an orthonormal local coordinate it is a symmetric matrix so
can be diagonalised with real eigenvalues. A gradient flow φ gives a family of
eigenvectors and eigenvalues:

H(h(φ(τ))eI(τ) = λI(τ)eI(τ)

for −∞ < τ < ∞. λI is called the spectral flow. D− = Dτ −Hh(φ) so kerD−
is given by

fI,±(τ) = eI(τ) exp(±
∫ τ

0

λI(t)dt).

provided it is normalisable. fI,± is normalisable if and only if

λI(−∞) > 0, λI(∞) < 0.

The difference
∆µ = dimkerD− − dimkerD†

−

since dimkerD− is the number of I such that λI(−∞) > 0, λI(∞) < 0.

perfect Morse function A perfect Morse function is one such that Qh van-
ishes. A class of perfect Morse functions are the moment maps of S1-action.
Morse index can jump only by an even number (due to S1-action, the tangent
space decompose into plane).
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4 String theory

4 String theory
We consider maps Σ → M from closed surfaces. Consider the supermanifold
R(2,4). We split 4 as 2+2, and work with the so called N = (2, 2) supersymmetry.
Let xm be coordinates on R2. The rotation groups acts on it via(

x1

x2

)
=

(
cos γ sin γ
− sin γ cos γ

)(
x1
x2

)
Odd superspace coordinates θα, θ

α where α = ±1. θ ∈ S, a spinor bundle. There
is a splitting S = S+ ⊕S− where S+ is Weyl spinor. θα = (θ+, θ−), θα = (θα)

†.
θ
α
= εαβθb where

ε+− = 1, ε−+ = −1, ε++ = ε−− = 0.

Clifford algebra Cl(2)

{γm, γn} = γmγn + γnγm = 2δmn,

(γ1)βα =

(
0 1
1 0

)
(γ2)βα =

(
0 −i
i 0

)
Transformation under rotation: θ 7→ ei/2ω

mnSmnθ, Smn = i
h [γm, γn], θ

± →
e±iω/2θ±, θ

±iω/2
θ where ω is antisymmetric with components

ωmn =

(
0 ω
−ω 0

)
N = (2, 2) superfields are maps

Φ : R(2,4) → C

with components

Φ(xm, θ±, θ
±
) = f(xm) + θ+f+(x

m) + θ
+
g+ + · · ·+ θ+θ−θ

+
θ
−
F

which has in total has 24 components.

supercharges The supersymmetry algebra is defined as follow. They satisfy
the relation

{Qα, Qβ} = 2i(γm)αβ∂m

The supercharges are linear realisation as derivative operations:

Qα =
∂

∂θα
− i(γm)αβθ

β
∂m

Qα = − ∂

∂θ
α + i(γm)βαθ

β∂m

Note that compared to the definition of γ1 above,

(γ1)αβ = εβγ(γ
1)γα =

(
−1 0
0 1

)
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4 String theory

Similarly

(γ2)αβ = εβγ(γ
2)γα =

(
i 0
0 i

)
Therefore we can simplify the notation by writing

Q± =
∂

∂θ±
+ θ

±
∂±

Q± = − ∂

∂θ
± − θ±∂±

where
∂± =

1

2
(
∂

∂x2
± i

∂

∂x1
),

the (anti)holomorphic derivatives on C = R2. Then the physical interpretation

{Q±, Q±} = 2∂± = H ± P

H is the operator generating traslation in “time” x2.

R-symmetry There is not only rotation in the even part, but also in the odd
part. Consider vector

Φ(xm, θ±, θ
±
) → eiαqvΦ(xm, e−iαθ

±
, eiαθ

±
)

Axial R-symmetry

Φ(xm, θ±1, θ
±
) → eiβqAΦ(xm, e∓iβθ±, e∓iβφ

±
)

where qv is the vector R-charge and qA is the axial R-charge. Call the generator
of these two symmetries Fv and FA.

4.1 Superalgebra
Superalgebra: {Q±, Q±} = 2∂±,

{Q+, Q−} = Z central charge, {Q+, Q−} = Z∗

{Q−, Q
+} = Z̃, {Q+, Q−} = Z̃∗

Q2
+ = Q2

− = Q
2

+ = Q
2

+ = Q
2

− = 0

[iM,Q±] = ∓iQ±, [iM,Q±] = ∓iQ±

[iFv, Q±] = −iQ±, [iFv, Q±] = iQ±

[iFA, Q±] = ∓iQ±, [iFA, Q±] = ±iQ±

irreps of superalgebra Superspace derivative

Dα =
∂

∂θα
+ i(γm)αβθ

β
∂m

Dα = − ∂

∂θ
α − iθβ(γm)αβ∂m
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In components

D± =
∂

∂θ±
− θ

±
∂±

D± = − ∂

∂θ
± + θ±∂±

A chiral superfield is a superfield such that

D±Ψ = 0.

To solve this, introduce a new variable

y± = x± − θ±θ
±

which is the superspace analogue of (anti)holomorphic coordinates. Indeed (no-
tation???)

D±y
± = 0, D±y

∓ = 0.

Then the solution is

Φ(y±, θ+, θ−) = φ(y±) + θ+ψ+(y
±) + θ−ψ−(y

±) + θ+θ−F (y±).

Similarly we can solve antichiral superfield D±Φ = 0 using y± = x± − θ
±
θ±.

Another possible constrant is twisted chiral fields where

D+U =, D−U = 0.

Introduce ỹ± = x± ∓ θ±θ
±. Then

D+ỹ
+ = D+ỹ

− = D−ỹ
+ = D−ỹ

− = 0.

Then U = U(ỹ±, θ+, θ
−
).

Supersymmetry transformation

δΦ = [ζαQ
α + ξ

α
α]Φ = (ζ+Q− − ζ−Q+ − ζ+Q− + ζ−Q+)Φ

relation with geometry In order to preserve SUSY specific geometric struc-
tures on M has to be introduced. We recall spinors first. Let V ∼= Cd be a com-
plex vector space equipped with a symmetric bilinear form g. Then Spin(V ) is
the extension

Z2 Spin(V ) SO(V )

Let S be the complex Dirac module of Spin(V ) with dimC S
=2bd/2c. For d odd

this is irreducible and for d even S = S+⊕S−. V (, g) gives the Clifford algebra
CL(V ), the free tensor algebra over V modulo

v · v = g(v, v)1.

Suppose γm,m = 1, . . . , d is a basis of V , gmn = ... For d = 3, 4, 6 the spin gropu
actsing on irrep Spin(V ) are the groups SL(2,F) for F = R,C,H.

Now for a superfield R(d,s) →M , ...
For N = (2, 2) supersymmetric sigma models, we nned the target manifold

to be Kähler.
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Lagrangian

S =

∫
dzdzdθ+dθ−dθ

+
dθ

−
K(Φi,Φ

i
)︸ ︷︷ ︸

D-term

+

∫
d2zdθ+dθ−W (Φi)︸ ︷︷ ︸

F-term

+ complex conjugate

where Φ : R(2,(2,2)) → M is a superfunction to a Kähler manifold. K is the
Kähler potential, a real function and W is the superpotential, a holomorphic
function.

In terms of local complex coordinates on M , φi = ϕi + θ+ + . . . and

ds2 = gi,jdϕ
i ⊗ dϕj

a hermitian metric on M ,

ω =
i

2
gijdϕ

i ∧ dϕj ,

a Kähler form. In particular the closedness implies that

∂kgij = ∂igkj , ∂kgij = ∂jgik.

The hermitian metric gij can be derived from a real function, namely the Kähler
potential:

gij =
∂2K

∂ϕi∂ϕj
.

The Levi-Civita connection has only holomorphic and antiholomorphic indices
Γijk,Γ

i
jk

.
For the D-term, K has an expansion

K(Φi,Φ
i
) = K0 +K+θ

+ + · · ·+ θ+θ
+
θ−θ

−
Ktop.

Exercise. The kinetic part is

Lkin = gij∂zϕ
i∂zϕ

j + igijψ
j

−Dzψ
i
− + igijψ

j

+Dzψ
i
+ +Rijk`ψ

i
+ψ

j

+ψ
k
−ψ

`

−

where
Dzψ

i
± = ∂zψ

i
± + Γijk∂zφ

kψj±.

The system has a symmetry δS = 0 where

δΦ = (ζ+Q− − ζ−Q+ − ζ+Q− + ζ−Q+)Φ

as defined before.

R-symmetries Recall that ψ ∈ Γ(ΠS ⊗ φ∗(TM) ⊗ R). For spin, vector R-
symmetry and axial R-symmetry,

U(1)E : ψ± → e±iγψ±, ψ
± → e±iγψ

±

U(1)V : ψ± → e−iαψ±, ψ
± → eiαψ

±

U(1)A : ψ±
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D-term: d4θ is invariant under U(1)E×U(1)V ×U(1)A. For K, qV = 0, qA =

0. If K = f(Φ
i
Φi) it is invariant for all qV and qA. For the F-term, d2θ has

U(1)V charge qV = −2. W must have qV = +2.

W (λqiφi) = λ2W (φi),

quasiholomorphic function of degree 2. d2θ has U(1)A charge qA = 0.
If the measure of the path integral is not invariant but S is then it is called

an anomaly in physics. This is related to index theorey.

4.2 Simplified SUSY model
Take

S =

∫
T 2

d2z(iψ+Dzψ+ + iψ−Dzψ−)

where Dz = ∂z +Az, Dz = ∂z +Az. In order for S to be invariant, we take

ψ± ∈ Γ(T 2, E ⊗ΠS±), ψ± ∈ Γ(T 2, E∗ ⊗ΠS±)

where E is a complex vector bundle. Then

K = indD = dimkerDz − dimkerDz

which by index theorem is ∫
T 2

c1(E)

since the connection is flat so the Todd class is trivial. Thus the difference
between the number of zero states of ψ− and psi− is K. Same for ψ+ and ψ+.

The measure is

Dψ±Dψ± =
K∏
α=1

dψ
(0)α
− dψ

(0)α

+︸ ︷︷ ︸
qA=2K

∞∏
n=1

dψ
(n)
∓ ψ

(n)

±︸ ︷︷ ︸
U(1)−invariant

.

Thus for N = (2, 2) nonlinear sigma model,∫
T 2

d2z(−2igijψ
j

−Dzψ
i
− + ...)

the kinetic term.
ψi ∈ Γ(ϕ∗(T 1,0M)), E = ϕ∗(T 1,0M).

K =

∫
T 2

c1(ϕ
∗(T 1,0M)) = 〈c1(TM), ϕ∗(T

2)〉.

To preserve U(1)A symmetry, the target manifold M need not only be Kähler
but also c1(TM) = 0. These two requirements are equivalently to saying M is
Calabi-Yau.

Why is it so important to preserve R-symmetry? They are needed to define
topological twists. For example for

δΦ = ζ+Q− − ζ−Q
+ + . . .
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SUSY requires existence of trivial sections of the spin bundle, which holds for
R2 and T 2. If we want to formulate a SUSY model of maps from a general
surface Σ. For a general Σ, the spin bundles S+

∼= K1/2, S− ∼= K−1/2 do
not admit sections. This is where the R-symmetry bundles come to rescue.
Topological twists gives redefinition of spin connection with the connection of
the U(1) R-symmetry bundle

ω′ = ω +AR

where ω is the spin connection and AR is the R-symmetry connection. There
are two choices:

1. A-model uses vector R-symmetry,

2. B-model uses axial R-symmetry.

From N = (2, 2) NLSM one can define two distinct topological string models.
We will study fixed points of A- and B-supersymmetry. They are also called
BPS solutions.

Example. Gradient flow lines satisfy SSQM ≥ |h(xi)−h(xj)| which is saturated
by

ϕ̇2 − gij∂jh = 0.

Topological twist: A-model

U(1)′E = diag(U(1)E ×U(1)V )

B-model
U(1)′E = diag(U(1)E ×U(1)A)

so ∇ = ∂ + ω + AR. This changes the representation of SUSY charges and
fields...

4.3 Scalar SUSY

A-model: Q−, Q+ are scalars. For B-model, Q−, Q
+ (one form SUSY: Q−, Q+

and Q−, Q+ respectively). We can define dcohomologies arising from

QA = Q+ +Q−, QB = Q+ +Q−.

We will strudy

1. fixed points of QA, QB ,

2. cohomology of QA, QB .

Point 1 identifies the BPS solutions and their moduli spaces, while 2 gives the
observables, the intersection theory on MBPS .

Remark.

1. A model is defined for all Kähler manifold and also for symplectic ones.
Instead B model requires M to be Calabi-Yau. Indeed U(1) is only pre-
served on CYs.
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2. Topological models on noncompact target spaces have W (φ) 6= 0. This is
called the Landau-Ginzburg model.

For N = (2, 2) SUSY,

δΦ = (ζ+Q− − ζ−Q+ − ζ+Q− + ζ−Q+)Φ.

In components

δϕi = ξ+ψ
i
− − ξ−ψ

i
+, δϕ

i = −ξ+ψ
i

− + ξ−ψ
i

+

δψi+ = 2ξ−∂zϕ
i + ξ+(Γ

i
jkψ

j
+ψ

k
− − 1

2
gi`∂`W )

δψ− =

For A model W = 0, ξ+ = 1, ξ− = 1, ξ− = 0, ξ+ = 0
Fixed points:

QAρ
i
z = 0 =⇒ ∂zϕ

i = 0

QAρ
i
z = 0 =⇒ ∂zϕ

i = 0

So BPS solutions of A model are holomorphic maps.

SA =

∫
Σ

ϕ∗(ω) = 2πn

where n is the degree of the holomorphic map φ. Then

MBPS =
∐
n

Mn(Σ,M).

For the B-model W = 0, ζ+ = 1,−ζ− = 1, ζ+ = 0, ζ− = 0. The fixed points
are

QBϕ
i = 0, QBϕ

i = ηi,

QBη
i = 0, QBθi = 0

QBρ
i

which is equivalent to say ϕ is constant. Note that the B model depends on the
complex structure of M . The A and B models are exchanged by Z2 automor-
phism of N = (2, 2) algebra.

4.4 Chiral ring
The chiral ring is the ring of observables of topological A and B modesl. Recall
that the observables are in bijection with cohomology of QA or QB . The coho-
mologies are different but they are exchanged by the Z/2-automorphism which
we call mirror symmetry.
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Q-invariant operators from superfields Let us focus on the B model. A
chiral multiplet is a field Φ such that

D±Φ = 0.

The lowest component of Φ, which we call ϕ, is invariant under Q±:

Q±ϕ = Q±Φ|θ±=0.

Note

Q± = − ∂

∂θ
± − θ±∂±

D± = − ∂

∂θ
± + θ±∂±

so
Q± = D± − 2θ±∂±.

Substitute in and use the condition that Φ is chiral,

Q±ϕ = 0.

Since QB = Q+ +Q−, it follows that

QBϕ = 0.

They form a ring by Leibnitz rule, ergo the name chiral ring.

Exercise. Show that the lowest component of a twisted chiral superfield is
annihilated by QA.

Topological observables The correlators of the observables O do not depend
on the insertion point on the source Σ of the map:

〈∂zO · · · 〉 = 0

as a consequence of SUSY algebra.

Proof. Write ∂z = 1
2 (∂2 − i∂1). Then

∂zO = [H + P,O]

= [{Q+, Q+},O]

= {[Q+,O], Q+}+ {Q+, [Q+,O]}
= {[Q+,O], Q+} − {Q+, [Q−,O]}
using [QB ,O] = 0, [Q+,O] = −[Q−,O]

= {[Q+,O], Q+} − [{Q+, Q−},O] + {Q−, [Q+,O]}
= {QB , [Q+,O]}

Similarly
∂zO = {QB , [Q−,O]}.

Recall that upon B twist, Q+ is antiholomorphic one form. Thus (?) the
correlator is independent of insertion point.
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Descent equations From the derivation above we get

dO(0) = {QB ,O(1)

where
O(1) = dz[Q−,O(0)] + dz[Q+,O(0)].

Continuing,
dO(1) = {QB ,O(2)

where
O(2) = dzdz{Q+, [Q−,O(0)]}.

Of course it stops here and dO(2) = 0.
We have seen that the chiral ring observables do not depend on the metric

of the source Σ. What about the target?
A variation of the Kähler potential gives∫

d4θ∆K ∼ {Q+, [Q−,

∫
d2θ∆K]}|

θ=θ
−
=0

up to a coboundary because (?) Q+ = − ∂

∂θ
+ + θ+∂+. Then RHS is

{Q+, [Q−,

∫
d2θ∆K]}|

θ=θ
−
=0

so chiral ring does not depend on Kähler structure of the target M .
For variation by a twisted chiral superpotential, Q+∆W̃ = 0 so∫

d2z
√
hdθ+dθ

−
∆W̃ ∼ {Q+, [Q−,∆W̃ ]}

∼ {Q+, [QB ,∆W̃ ]}

= −{QB , [Q+,∆W̃ ]}+ 0

since ∂z = 0 (no boundary on Σ and Z̃∗ = 0 (since we assume the twisted
central charge is 0). This shows that the chiral ring does not depend on twisted
chiral deformations.

Independence on antichiral deformations
Dependence on chiral deformation:∫

d2θ∆W ∼ {Q+, [Q−,∆W ]} ∼ ∆W (2)

so-called marginal deformation.

Exercise. Repeat the computation for the A model.

Ring structure Choose a basis {φi}Mi=0 of the cohomology of Q. We have
structure constants

φiφj = Ckijφk

up to a coboundary term. Chiral ring is an unital associative commutative
algebra over C. In terms of structure constant this is saying

Cmi`C
`
jk = ...
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To compute the structure constants,

Cijk = 〈φiφjφk〉0

where the subscript 0 denotes integration over maps from genus 0 surface to M .

〈φiφjφk〉0 = 〈φiC`jkφ`〉= = C`jk〈φiφ`〉

〈φiφ`〉 is a topological metric ηi`.
Cijk depends only holomorphically on the chiral parameters (since antichiral

deformation is trivial). More precisely

∂`〈φiφjφk〉0 = 〈φiφjφk
∫
Σ

O(2)
` 〉

(?)
∂`Cijk = ∂iC`jk

leading to WDVV equation. The symmetry of Cijk together with WDVV im-
plies the existence of F , called prepotential, such that

Cijk = ∂i∂j∂kF .

This makes the algebra of chiral ring a Frobenius algebra.
For A model with W = 0,

QAϕ
i = χi, QAϕ

i = χi

QAχ
i = 0, QAχ

i = 0

QAρ
i
z = ∂zϕ

i + Γijkρ
j
zχ

k

QAρ
i
z = ∂zϕ

i + Γi
jk
ρjzχ

k

The QA-cohomology in the zero forms. QAω = 0 if and only if ω is closed with
respect to de Rham differential. Similar for exact forms. Thus QA = d = ∂+∂.
Thus the chiral ring for A-model as a vector space is isomorphic to H∗

dR(M).
For B model, the chiral ring is isomorphic to

⊕
H0,p(M,

∧q
T 1,0M).

Landau-Ginzburg B model Observables correspond to holomorphic func-
tions.

{OLG} ∼= C[ϕ1, . . . , ϕn]/(∂jW ).

4.5 CY moduli spaces
Recall that we define a CY manifold to be a Kähler manifold with c1(TM) = 0.
The second condition can be equivalently stated as holonomy SU(n) or trivial
canonical bundle. This means hn,0 = 1. We also assume the manifold is simply
connected so h1,0 = h0,1 = 0. We will focus on n = 3 so by Serre duality
h2,0 = h0,2 = 0. Thus the Hodge diamond is determined except for h1,1, which
is associated with Kähler moduli, and h2,1, which is associated with the complex
structure.
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For A model, the Kähler metric gives a form ω1,1. The Kähler cone is the
set of ω ∈ H1,1(M) such that∫

C

ω ≥ 0,

∫
D

ω ∧ ω
2

≥ 2,

∫
M

ω3

3!
≥ 0.

It is a cone of dimension h1,1.
For B model,

δΩ = Ω+ ωaaΩabcdz
adzbdzc

ω ∈ H1(M,TM) infinitesimal deformations. A theorem of Tian-Todorov states
that the deformation is unobstructed, so

dimMC = h2,1 + 1

where the number 1 comes from overall scaling of ω. Thus MC is a projective
space.

4.6 Mirror symmetry
Mirror symmetry is the automorphism

Q− ↔ Q−, FV ↔ FA

thus exchanging A and B model. Using the unique (n, 0)-form we can write the
B-model chiral ring as Hp,q(M). Thus B model chiral ring describes complex
structure deformations of MB . For NLSM with compact CY3 target, mirror
symmetry exchanges H1,1(MA) and H2,1(MB).

Example. Consider a torus of raius R1 and R2. The Kähler form is Ω =
R1R2dθ1dθ2. The Kähler modulus is R1R2 = A.

The complex structure τ = iR1

R2
. The complex modulus is R1

R2
. Mirror

symmetry exchanges A and N , equivalent to invert of radius of one of the
circles (R2 7→ 1

R2
. This is related to T-duality symmetry.

4.7 Topological A-model
S ≥

∫
Σ
ϕ∗(ω + iB),

QA-fixed point:

∂zϕ
i = 0, ϕzϕ

i = 0 holomorphic maps

Dzψ
i = 0, Dzψ

i = 0 TM

Dzψ
i

z = 0, Dzψ
i
z = 0 obstruction

Then upon localising,∫
D

ϕDψDΨe−S =

∫
M,ker(Dz,D

†
z)

dmdψ(0)dψ
(0)
e−S

For the bosonic part, there is a stratification

Mg(M,C) =
∐
d

Mg(M,β)
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where d ∈ Nb2(M) and β = ϕ∗(Σg) ∈ H2(M ;Z). Give an integral basis {si}
of H2(M ;Z) and write β =

∑
i di[Si]. Then d = {di} is the degree of the

holomorphic map. Then

e−
∫
Σ
ϕ∗(ωC) = qβ :=

∏
qdii

where qi = e−ti for ti the complex Kähler moduli.
For fermions there is an anomaly (which is related to the virtual dimension

of the moduli space):
#ψ(0) −#ψ

(0)
= indDz.

By Hirzebruch-Riemann-Roch

indDz =

∫
Σg

ch(ϕ∗(TM) td(TΣ) = dimCM(1− g) +

∫
Σg

ϕ∗(c1(TM ))

Remark. The index is the virtual dimension of the moduli space. If g = 0
and M is CY then it is positive so we need to integrate over some forms (in
physics language, inserting observables). If g = 1 and M is CY then the virtual
dimension is 0. For g > 1, the virtual dimension is negative, meaning that there
is no solution. This suggests we should integrate also over the moduli space of
complex structures on Σg. In physics language it is topological gravity. The
(real) dimension of moduli space of complex structure on genus g surface is
6g − 6 so after taking it into account the virtual dimension becomes

dimCM(1−g)+
∫
ϕ∗(c1(TM ))+3(g−1) = (dimCM−3)(1−g)+

∫
Σ

ϕ∗(c1(TM ))

which is zero for M CY3. Non trivial topological string amplitudes at all genera.

What is to come: schematically

〈
∏
k

O(Pk)〉A =
∑
β

qβNg
β

RHS is called the Gromov-Witten invariants, informally the “number” of holo-
morphic maps of degree β from Σg to M .

4.8 Evaluation of observables

Generic case: Ind = K ≥ 0,#ψ
(0)

= 0. Let Oi(xi) be the pullback of ωi ∈
H∗(M) via the evaluation map at Pi ∈ Σ

evi : Mg(M,β) →M

ϕ 7→ ϕ(Pi)

Then
〈O1(P1) · · · On(Pn)〉 =

∑
β

qβ
∫
Mg(M,β)

ev∗1ω1 ∧ · · · ∧ ev∗1ωn

is called the Gromov-Witten invariants and denoted Nβ
g . If [ωi] is the Poincaré

dual of Di then

Nβ
g (D1 · · ·Dn) = #{holomorphic maps ϕ such that ϕ(Pi) ∈ Di, ϕ∗(Σ) = β}.
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Nβ
g ∈ Q in general because of nontrivial automorphism group on the moduli

space of stable maps.
The simplest example is β = 0 so ϕ∗(Σ) is a point. Then

Mg=0(M, 0) ∼=M

and evi = idM for all Pi. Then

〈O1(P1) · · · On(Pn)〉const
0 =

∫
M

ω1 ∧ · · · ∧ ωn,

“recovering” intersection theory on M . For example for M CY3,

Cconst
abc = 〈OaObOc〉const

0 =

∫
M

ωa ∧ ωb ∧ ωc = #(Da ·Db ·Dc).

Topological metric
ηab = 〈ÕaÕb〉 =

∫
M

ω̃a ∧ ω̃b.

4.9 nongeneric case
H0(Σ,K ⊗ ϕ∗(T ∗

M )) 6= 0, which we assume to have constant dimension `. This
the rank of the obstruction bundle OM . Then when integrating there is an extra
insertion e(OM ), an (`, `)-form:

〈O1(P1) · · · On(Pn)〉β =

∫
Mg(M,β)

ev∗1ω1 · · · ∧ ev∗nωn ∧ e(OM ).

Take derivative with respect to Kähler moduli,

∂

∂t`
〈OiOjOk〉 = 〈OiOjOk

∫
Σ

O(2)
` 〉

4.10 Example of topological A model
We consider maps S1 ∼= P1 → P1. The cohomology of QA is the same as the de
Rham cohomology, which is C in degree 0 and 2. The observables of A model
are generated by P and Q in H0 and H1. From intersection theory we know∫

P1

H = 1

for H ∈ H2(P1) the hyperplane class. This corresponds to the topological metric

ηPQ = ηQP = 1

and 0 otherwise.
Three point correlator: a priori

〈QQQ〉 =
∑
n∈N

〈QQQ〉n.
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For ϕ of degree n, let β = ϕ∗(P1) = n[H]. The expected dimension of M0(P1, β)
is

dimC P1(1− g) +

∫
P1

ϕ∗(c1(T
1
P )) = 1 +

∫
P1

ϕ∗(2H) = 1 + 2n.

The axial R-symmetry charge R = (#χi, χi) is 6 and must equal to twice
the expected dimension, so the only contribution is from n = 1 maps. Recall
〈QQQ〉1 is the “number” of holomorphic maps from the source P1 to the target
P1 with degree 1 and mapping 3 fixed points of the source P3 to 3 fixed points
of the target P1. There is only one such map. Thus

〈QQQ〉 = e−t.

The quantum cohomology we get is

CPPQ = ηPQ = 1, CPPP = 0, CPQQ = 0, CQQQ = e−t

in which we get a correction by the Kähler moduli. The prepotential is

F = −1

2
v2t+ e−t

where v is associated to H0 and t is associated to H2. One can check ∂i∂j∂kF =
Cijk.

Remark. F can also be obtained as τ -function of estended Toda hierarchy. C.f.
Carlet-Dubrovin-Zhang, Okounkov-Pandhariphande

4.11 Local P1

P1 is not CY so we want to locally embed it in a CY3 and consider its tubular
neighbhourhood. Total space of a rank 2 vector bundle L1 ⊕ L2 → P1 with
Li = O(−ni). The condition that this is CY is equivalent to n1 + n2 − 2 = 0.

Example. The conifold Tot(O(−1) ⊕ O(−1)) which is the crepant resolution
of conifold singularity ab− cd = 0.

P1 → O(−1)⊕O(−1) isolated rational curve in the target. Multiple covering
maps are known explicitly:

P1 → P1

z 7→ u

(x, y) 7→ (s, t)

For d = 1, u = az+b
cz+d is determined by the three points. For d > 1,

s

t
=

∑
aix

iyd−i∑
bixiyd−i

so Md(β) ∼= P2d+1.

Cabc(t) = [ea] ∩ [eb] ∩ [ec] +
∑
k

∑
d|k

k2

d3
qk
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4.12 Topological Landau-Ginzburg B-model
We assume the critical points y1, . . . , yN are isolated. The chiral ring is C[ϕ1, . . . , ϕn]/∂iW .
...

〈Of1 · · · Ofs〉 =
∑
{ya}

f1(ya) · · · fs(ya)(det ∂i∂jW )g−1(ya)

For a sphere (g = 0 the topological metric is

ηij =
∑
{ya}

=
fifj

det ∂i∂jW
(ya)

The three point function is

Cijk =
∑
{ya}

fifjfk
det ∂i∂jW

(ya).

Example. Sine-Gordon model: S2 → C∗, W = z + e−tz−1. The chiral ring is
generated by 1, z subject to z2 = e−t (since W ′ = 1 − 1

z2 e
−t = 0. The critical

points are z∗ = ±e−t/2. The Hessian is

z∂z(z∂zW )|z∗ = (z +
e−t

z
)|z∗ = ±2e−t/2.

Correlator

〈111〉0 =
1

2e−t/2
+

1

−2e−t/2
= 0

〈11z〉0 =
e−t/2

2e−t/2
+

−e−t/2

−2e−t/2
= 1

〈1zz〉0 =
e−t

2e−t
+

e−t

−2e−t/2
= 0

〈zzz〉0 =
e−3t/2

2e−t/2
+

−e−3t/2

−2e−t/2
= e−t

This is the same as A-model on P1 target upon identification P with 1 and
Q with z. It comes from mirror symmetry. One can prove that the mirror of
A-model on P1 is indeed Landau-Ginzburg B-model on C∗ with Sine-Gordon
superpotential.

4.13 B-model on compact CY
Fixed locus are constant maps and the moduli space is M . The observables are
generated by the chiral ring

⊕
p,q

H0,p(M,

q∧
TM).

The virtual dimension is dimCM(1− g) = n(1− g). On a CY3,

H0,p(M,

q∧
TM) ∼= Hn−q,p(M).
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Vector R-symmetry:
∑
i pi =

∑
i qi.

We require
s∑
i=1

(pi + qi) = 2n(1− g).

For g = 0 we need
∑
pi =

∑
qi = n.

〈OaObOc〉 =
∫
M

ωiaω
j

b
ωkcΩijk ∧ Ω

Choose a basis for H3(M) αI , β
I for I = 0, . . . , h2,1 such that

αI ∩ βJ = δJI .

Let zI =
∫
αI
ω,GI =

∫
βI Ω.

θ =

∫
M

Ω
∂

∂zk
Ω Hodge-Riemann

=

∫
αJ

Ω

∫
βJ

∂kΩ−
∫
αJ

∂kΩ

∫
βJ

Ω

=

∫
αJ

(zIAI −GIB
I)

∫
βJ

∂

∂zk
(zIAI −GIβ

I)−
∫
αJ

∂

∂zk
(zIAI −GIB

I)

∫
βJ

(zIAI −GIβ
I)

Using ∫
αJ

AI = δJI ,

∫
βJ

BI = δIJ

we get
Gk =

∂

∂zk
(zJGJ)−G,GJ =

1

2
∂J(z

IGI)

Define G = zIGI , we get 2GJ = ∂JG. Multiply by zJ and sum over J ,

2zJ
∂

∂zJ
G = 2G.

This shows that G is a homogeneous polynomial of zI of degree 2. This is the
prepotential.

CIJK = ∂I∂J∂KG.

Special geometry:
zI =

∫
αI

Ω,
∂G

∂zI
=

∫
βI

Ω.
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5 Linear sigma models
Let φi, i = 1, . . . , n be scalar fields and consider the Lagrangian

L = −1

2

∑
i

(∂µφ
i)2 − U(φ).

For example U(φ) = e2

4 (
∑
i(φ

i)2 − r)2. The lowest energy field configurations
are those with φi constant. If r ≤ 0 then the unique mimimum is given by
φi = 0 for all i. If r > 0 then the mumimum is given by∑

(φi)2 = r,

which is a sphere. We thus define

Mvac = {(φi) ∈ Rn :
∑

(φi)2 = r} ∼= Sn−1.

At each point of Mvac the gradient of U is zero, with Hessian ∂i∂jU symmetric
tensor in Rn. It can be diagonalised by an orthogonal transformation with all
eigenvalues nonnegative (since it is a minimum).

TMvac corresponds to zero eigenspace, while NMvac are the positive ones.
Physically, fields with positive eigenvalues are massive. One can study effective
theory of massless modes only. Thus the linear σ-model reduces to nonlinear
σ-model of maps to Mvac ∼= Sn−1.

This generalises to the construction of Mvac as quotient spaces. Standard
example: CPN−1. One can consider CPN−1 as the quotient of S2N−1 ⊆ CN
under the action of U(1). Physically, we can consider the Langrangian of N
complex fields

L = −
∑

|Dµφi|2 − U(φ)

where we identify

(φ1(x), . . . , φN (x)) ∼ (eiγφ1(x), . . . , e
iγφN (x))

and the covariant derivative

Dµφi = ∂µφi +
√
−1vµφi

where vµdxµ is the connection one form of the U(1)-bundle. One checks that
under φi 7→ eiγ(x)φi , vµ 7→ vµ − ∂µγ so Dµφi 7→ eiγDµφi. and the Lagrangian is
invariant under U(1).

One defines

Mvac = {(φi) :
∑

|φi|2 = r}/U(1) ∼= CPN−1.

To find the mimimum set ∂L
∂vµ

= 0, from which we get∑
i

(Dµφiφi − φiDµφi) = 0

which is solved by

vµ =
i

2

∑
i(µi∂µφi − ∂µθiθi)∑

i |φi|2
.
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This is the Fubini-Study metric on CPN−1

gFS =

∑N−1
i=1 |dzi|2

1 +
∑N−1
i=1 |zi|2

−
∑N−1
i=1 |zidzi|2

(1 +
∑

|zi|2)2
.

The standard procedure for reducing to NLSM: One takes tangent vectors
in CN , imposes the condition ∂U = 0 (i.e. orthogonality to orbits) to obtain
tangent space to the quotient target space Mvac.

C.f. Hitchin-Karlhede-Lindstrom-Rocek, HyperKähler metrics and SUSY.

5.1 SUSY gauged linear sigma model
Recall that we have met chiral superfield with Lagrangian (in flat space)

L =

∫
d4θφφ.

We want a gauge theory for the transformation φ 7→ eiAφ. First note that
A itself must be a chiral superfield. To make the Lagrangian invariant, we
introduce a new real superfield V which transforms as

V 7→ V + i(A−A).

The modified Lagrangian is defined to be

L =

∫
d4θφeV φ

which is now invariant. Expressed in terms of components,

V = θ−θ
−
(v0 − v1) + θ+θ

+
(v0 + v1)

= −θ−θ+σ − θ+φ
−
φ

= +iθ−θ+(θ
−

this is the supersymmetrization of the gauge connection. V is the connection
superfield.

The curvature superfield is

Σ = D+D−V

which is a twisted chiral superfield. Σ is invariant under V 7→ V + i(A−A) so

D+Σ = D−Σ = 0.

In terms of components,

Σ = σ(ỹ) + iθ+θ+(ỹ)− iθ
−
λ−(ỹ) + θ+θ

−
[D(ỹ)− iv01](ỹ)

where v01 = ∂0v1 − ∂1v0 is the curvature of v. This is the supersymmetrisation
of the curvature.
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The SUSY Lagrangian is

Lkin =

∫
d4θφeV φ

= −DµφDµφ+ iψ−Dzψ
−

+ iψ+Dzψ+ +D|φ|2

+ |F |2 − |σ|2|φ|2

− ψ−σψ+ − ψ+σψ−

− iφλ−ψ+ψ
iφλ+ψ−

+ iψ+λ−φ− iψ−λ+φ

Note Dz is the U(1)-covariant derivative, not to be confused with D, the auxil-
lary derivative for superfield.

Lgauge = − 1

2e2

∫
d4θΣΣ

=
1

2e2
(−∂µσ∂µ + iλ−∂zλ− + iλ+∂zλ+ + v201 +D2).

Finally there is the twisted superpotential

W̃FI,θ = −tΣ

where t = r − iθ.

LFI,θ =
1

2
(−t

∫
d2θ̃Σ+ cc) = rD + θv01.

The two terms on the far right side are called Fayet-Iliopoules term and θ-angle.
The full Lagrangian is

L =

∫
d4θ(ΦeV Φ− 1

2e2
ΣΣ) +

1

2
(−t

∫
d2θ̃Σ+ cc).

The potential is

U(φ, σ) = |σ|2|φ|2 + e2

2
(|φ|2 − v)2.

Remark. Recall that we have R-symmetry U(1)V × U(1)A. L is invariant if
we assign (0, 2) to Σ. We can then generalise to multiple bundles: Consider∏k
a=1 U(1). Φi “matter chiral fields” transform as

Φi 7→ eiQaiAaΦi.

The Lagrangian is then

L =

∫
d4(θ

∑
i

Φie
QiaVaΦi −

k∑
a,b=1

1

2e2a,b
ΣaΣb) +

1

2
(

∫
d2θ̃

∑
a

(−taΣa)).

We can add a superpotential term

LW =

∫
d2θW (Φi) + cc
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The full potential term is

U =
∑
i

|Qiaσa|2|φi|2 +
∑
a,b

(ea,b)2

2
(Qia|φi|2 − va)(Qib|φi|2 − vb) +

∑
i

∣∣∣∂W
∂φi

∣∣∣2.
Example (SUSY CPN−1).

U =
∑
i

|σ|2|φi|2 +
e2

2
(
∑

|φ2i − r)2.

For r > 0, the extrema is given by σ = 0,
∑

|φi|2 = r.

Mvac = CPN−1 = {(φ1, . . . , φN ) :
∑
i

|φi|2 = r}/U(1).

The “effective” Lagrangian for TMvac turns out to be the NLSM of R2 →
CPN−1.

Equation of motion for fermions:∑
i

Φiψi± = 0,
∑
i

ψi±φi = 0.

In other words, ψ± = (ψi±, ψi±) is tangent to
∑
i |φi|2 = r as in NLSM and

orthogonal to U(1)-orbit δ(φj , φj) = (iφj ,−iθj).
Vector multiplet equation:

vµ =
i

2

∑
i(φi∂µφi − ∂µφiφi)∑

i |φi|2
, σ = −

∑
i ψi+ψi−∑
i |φj |2

.

Substitute in this solution vµ = v∗µ we get r times Fubini-Study metric. σ gives
four fermion terms.

Recall the complexified Kähler modulus consists of two parts

ωFS + iB,

where B is the pullback via φ of curvature 2-form of the U(1)-connection on
CPn−1. Indeed v∗µ is the pullback via φ of a U(1) connection A on Mvac, dA =
ωFS
2π . Then

θ

2π

∫
dv =

θ

2π

∫
d(φ∗A) =

θ

2π

∫
φ∗ω

which is the B-field coupling if we set B = θ
2πωFS.

[ω]− i[B] =
t

2π
[ωFS]

where t is the twisted superpotential parameter t = r−iθ. Thus the complexified
Kähler class is a twisted chiral parameter.
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5.2 Toric manifolds
To work with toric manifolds we work with U(1)k. Same as before we introduce
N fields Φ1, . . . ,ΦN with charges Qia where 1 ≤ i ≤ N, 1 ≤ a ≤ k. The coupling
constants are

1

e2a,b
= δab

1

e2a
.

The potential is thus

U =
∑
i

|Qiaσa|2|φi|2 +
∑
a

e2a
2

(∑
i

Qia|φi|2 − ra

)2

.

The moment maps are indexed by a

µa =
∑
i

Qia|φi|2 − ra

and the potential is minimised at µa = 0.
Choose ra such that U = 0 implies σa = 0 for all a. Then

Xr = {(Φ1, . . . ,ΦN ) : µa = 0}/U(1)k = µ−1(0)/U(1)k

is a symplectic quotient.
Xr also has a complex structure, namely that inherited from CN . Indeed we

can regard Xr as the quotient

Xr
∼= (CN − P )/(C∗)k

where P is the locus of CN whose (C∗)k-orbits do not contain solutions to
µa = 0. This depends on the choice of ra’s. With respect to this complex
structure the symplectic form is Kähler. This whose discussion is related to
Marsden-Weinstein theorem relating GIT and symplectic quotient.

The natural torus action on CN descends to a (C∗)N−k action on Xr. This
action is free and transitive on an open dense submanifold, making Xr a toric
variety.

The specific Xr depends on {ra}. Given Xp, the region of {ra} such that
Xr

∼= Xp is the Kähler cone.
There is a geometric interpretation

Qia = c1(Hi)αa

where αa, 1 ≤ a ≤ k generate H2(Xp,Z) and Hi is the line bundle over Xp

admitting φi as a global section.

c1(Hi) =
∑
a

Qiac1(La)

where La is the line bundle over Xp defined by

((CN − P )× C)/(C∗)k

with action (λ1, . . . , λk) : c→ λac.
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v∗aµ =
i

2
Mab

∑
i

Qib(φi∂µφi − ∂µφiφi)

is the pullback via φ of the connection 1 form of La. Here Mab is the inverse of
Mab =

∑
iQiaQib.

Using the change of basis

c1(Xp) =
∑
i

c1(Hi) =
∑
i

∑
a

Qiac1(La) =
∑
a

b1ac1(La)

(the first equality comes from the SES

0 O⊕k H1 ⊕ · · · ⊕HN TXp 0

) where b1a =
∑
iQia. The condition Xp begin CY is equivalently to b1a = 0.

Example. Gauge linear sigma model allows us to connect different models.
We examine OPN−1(−N). Consider U(1) gauge group with N chiral superfields
with charge 1 and 1 chiral superfield with charge −N . Take r � 0, the Mvac is
the total space of O(−N) over PN−1. For r � 0,

Mvac = {N |p|2 = |r|+
∑
i

|φi|2}/U(1).

Since |p| 6= 0, either not all φi’s are zero, CN/ZN .

Example. Consider OP1(−1) ⊕ OP1(1). There are four fields with charge
(1, 1,−1,−1).

µ = |φ1|2 + |φ2|2 − |φ3|2 − |φ4|2 − r.

For r � 0 and r � 0, the moduli space is the total space of OP1(−1)⊕OP1(1)
(note the symmetry). For r = 0, we have a conifold singularity xw = yz by
letting

x = φ1φ3, y = φ1ψ4, z = φ2φ3, w = φ2φ4.

The total space of the bundle gives a crepant resolution of the conifold singu-
larity. c.f. Witten, Phases of two-dimension SUSY theories.

5.3 T-duality
Consider maps x : R× S1 → S1

R. We can think of x as a function x(t, s) where
t is the time parameter and x is 2π periodic in s. The action is

S =
1

2π
=

∫
Σ

Ldtds =
1

4π

∫
Σ

((∂tx)
2 − (∂sx)

2)dtdt.

The Euler-Lagrange equation asserts that the equation of motion is

(
∂2

∂t2
− ∂2

∂x2
)x = 0

which has well-known solution

x(t, s) = f(t− s) + g(t+ s).
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By periodicity
x(t, s+ 2π) = x(t, s) + 2πmR.

m ∈ Z ∼= π1(S
1) is called the winding modes.

We can expand x in the Fourier modes of the target space S1
R, which have

momentum p = `
R . After quantisation there are two quantum numbers, result-

ing in a direct sum decomposition

H =
⊕

(`,m)∈Z2

H(`,m)

and we label the eigenstates by |`,m〉. The solution of the Euler-Lagrange
equation can then be expressed as

xR(t− s) =
x0 − x̂0

2
+

1√
2
(t− s)PR + oscillationsR

xL(t− s) =
x0 − x̂0

2
+

1√
2
(t− s)PL + oscillationsL

where x0 is the zero mode (?) and [x0, p0] = i

p0 |`,m〉 = `

R
|`,m〉 , w0 |`,m〉 = mR |`,m〉

and
pL =

1√
2
(p0 − w0), pL =

1√
2
(p0 + w0).

The oscillation part is

oscR =
i√
2

∑
n6=0

1

n
αne

−in(t−s)

oscL =
i√
2

∑
n6=0

1

n
α̃ne

−in(t−s)

The associated Hamiltonian is

HR =
1

2
(H − P ) =

1

2
P 2
R +

∞∑
n=1

α−nαn +
1

2

∞∑
n=1

n

HL =
1

2
(H + P ) =

1

2
P 2
L +

∞∑
n=1

α̃−nα̃n +
1

2

∞∑
n=1

n

Using ζ-regularisation, we identify∑
n = ζ(−1) = − 1

12
.

Now we compute the partition function

TrH e
−βH .

Instead of considering the source as a torus with sides β and 2π, we consider
the more general situation τ = τ1 + iτ2 and the torus has lengths 2πτ1, 2πτ2.
We consider

Z(τ, τ) = TrH q
HRqHL
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where q = e2πiτ . In our case

Z(τ, τ) = (qq)−1/24
∞∏
n=1

trHR
n
qα−nαn trHL

n
qα̃−nα̃n

∑
(`,m)∈Z2

q
1
4 (

`
R−mR)2q

1
4 (

`
R+mR)2

The first two lines are

trHR
n
qα−nαn =

∞∑
k=0

(qn)k =
1

1− qn

trHL
n
qα̃−nα̃n =

∞∑
k=0

(qn)k =
1

1− qn

(qq)−1/24
∞∏
n=1

∣∣∣ 1

1− qn

∣∣∣2 =
∣∣∣ 1

η(τ)

∣∣∣2
where η is the Dedekind η-function, a modular function. Under the transfor-
mation τ 7→ aβ+b

cτ+d ,

η(τ + 1) = eπi/12η(τ), η(−1

τ
) = (−iτ)1/2η(τ).

Z(τ, τ) is invariant under exchanging momentum ` and winding modes m.
In other words, we can exhange R↔ 1

R , `↔ m. This is called T-duality.

NLSM on T 2 Consider T 2 = S1
R1

× S1
R2

. It has Kähler moduli

A =
area
(2π)2

= R1R2

and complex moduli
σ = i

R1

R2
.

Suppose we perform T -duality on the second cirle, namely R2 7→ 1
R2

, then we
exchange the two parameters.

Exercise. Compute the partition function with target space T 2 with B-field
(ρ = B

2π + iA) and show that it is invariant under ρ↔ σ.

T-duality in the path integral formalism Consider maps ϕ : Σ → S1
R and

action
Sϕ =

1

4π

∫
Σ

R2hµν∂µϕ∂νϕ
√
hd2σ

where h is a metric on Σ. Intoduce a one-form B on Σ and consider

S′ =
1

2π

∫
Σ

1

2R2
hµνBµBν

√
hd2σ +

i

2π

∫
Σ

B ∧ dϕ.

One can do two things with S1

1. either take derivative with respect to B to get Sϕ with target space S1
R,
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2. or take derivative with respect to ϕ to get another action S̃θ with target
S1
1/R.

For 1, the equation of motion is B = iR2 ∗Σ dϕ and

S′|B=iR2∗Σdϕ = Sϕ.

For 2, the equation of motion for ϕ implies B is a closed one form on Σ so
we write

B = dθ0 +

2g∑
i=1

aiωi

where ωi is a basis of harmonic forms of H1(Σ;R). Choose γi ∈ H1(Σ < Z)
such that ∫

γi

ωj = δij .

Note ∫
Σ

ωi ∧ ωj = J ij ,

a unimodular matrix.
The key observation is that the equation of motion of ϕ also imposes con-

straints on ai. By periodicity

dϕ = dϕ0 +
∑
i

2πniω
i.

Then ∫
B ∧ dϕ = 2π

∑
i,j

aiJ
ijnj

so eiS will contain ei
∑

i,j aiJ
ijnj . For the action to be single-valued, summing

over j imposes the condition
ai = 2πmi.

This shows B = dθ where θ is a periodic variable of period 2π. Plug back into
S′, one sees

S′|B=dθ = S̃θ =
1

4π

∫
Σ

1

R2
hµν∂µθ∂νθ

√
hd2σ,

a NLSM with target space S1
1/R. In summary, upton the substitution Rdϕ =

i
R ∗ dθ, Sϕ becomes S̃θ.

5.4 Strategy for constructive proof of mirror symmetry
We will prove mirror symmetry for toric varieties. Toric varieties as target
spaces can be realised from GLSM N = (2, 2) with suitable complex superfields
Φi and supercharges (using U(1) representation). The phase of Φi is S1, to
which we will apply T-duality. This produces a LG model W , the mirror to the
toric variety. If it is CY then we can solve it for a geometric model.

For each chiral superfield Φi we get Yi, a neutral (U(1)-invariant) superfield
with twisted chiral superpotential.
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GLSM

NLSM with toric target LG model

X X̌

T-duality

T-duality for SUSY sigma model Consider the case where the target is
C∗ = R× S1

R. Let B be a real superfield, Θ twisted chiral superfield.

L1 =

∫
d4θ(

R2

4
B2 − 1

2
(Θ + Θ)B).

As before we can apply either equations of motion for B or for Θ, getting mirrors
of each other. The equation for Θ,Θ implies that

D+D−B = 0, D+D−B = 0

which is solved by
B = Φ+Φ.

Substituting back one gets

L2 =

∫
d4θ

R2

4
(Φ + Φ)2 =

∫
d2θ

R2

2
ΦΦ.

This is the Lagrangian for a σ-model of maps into a cylinder R× S1
R.

On the other hand the eom for B implies

B =
1

R2
(Θ + Θ).

Substituting back into L1 gives

L3 =

∫
d4θ(− 1

2R2
ΘΘ),

a σ-model of maps onto cylinder R× S1
1/R.

One thus gets T-dual models, which satisfy

R2(Φ + Φ) = Θ+Θ.

Since we are interested in gauge σ-models, consider

L =

∫
d4θ(e2QV+B − 1

2
(Y + Y )B)

where V (superconnection) and B are real superfields, Y, Y are twisted chiral
superfields with Im(Y ) periodic with period 2π.

Same as before the eom of Y, Y demands

D+D−B = 0, D+D−B = 0
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which is solved by
B = Ψ+Ψ

where Ψ is a chiral superfield with ImΨ also 2π-periodic. Substituting back we
get

L1 =

∫
d4θe2QV+Ψ+Ψ =

∫
d4θΦe2QV Φ

where Φ = eΨ.
The eom for B gives

B = −2QV + log(
Y + Y

2
).

Substituting back gives

L2 =

∫
d4θ[QV (Y + Y )− 1

2
(Y + Y ) log(Y + Y )].

For D+Y = 0, D−Y = 0,∫
d4θV Y =

∫
dθ+dθ

−
(D+D−V )Y =

∫
d2θ̃ΣY

where Σ = D+D−V is the supercurvature. Thus the Lagrangian includes a
kinetic term for Σ:

L̃ =

∫
d4θ(− 1

2e2
ΣΣ− 1

2
(Y + Y ) log(Y + Y )) +

∫
d2θ̃ΣQ(Y − t) + cc

This is T -dual to

L =

∫
d4θΦe2QV Φ+

1

2e2
ΣΣ− t

∫
d2θ̃QΣ.

They satisfy
2Φe2QV Φ = Y + Y .

W̃ (Y ) = Σ(QY − t). So far everything is on classical level. Quantum effects
add a further term to W̃ proportional to e−Y .

S|bos =
1

2π

∫
d2xL|bos =

1

2R

∫
d2x|Dµφ|2+|σφ|2+ 1

2e2
|∂µσ|2+

1

2e2
(F12+D

2)+iθF12

where
D = e2(|φ|2 − r0)

where t = r0 + iθ.
The BPS solutions are

F12 = e2(|φ|2 − r0), Dzφ = 0, σ = 0.

These are known as vortices. Why do they saturate the bounds? Recall that
in SQM we used squaring argument to find the mimimum. Substitute the BPS
solutions, we get

1

2π

∫
d2x|2Dzφ|2 − F12|φ|2 +

1

2e2
(F12 +D)2 − 1

e2
DF12 + iθF12.
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Recall that D = −e2(|φ|2 − r0) so we can rewrite this as

1

2π

∫
d2x(|2Dzφ|2 +

1

2e2
(F12 +D)2)− t

2π

∫
d2xF12.

Thus Sbos ≥ tK where K is the first Chern class of the U(1)-bundle. One then
sees that the purported BPS solutions achieves the bound.

Vortices Work with complex coordinates z = x1+ ix2. As z → ∞, |φ|2 → r0.
Let φ =

√
r0φ̂ so |φ̂| → 1, thus mapping S1

∞ → S1. They are classified by
k ∈ Z ∼= π1S

1, called the charge of the vortex. For k = 1, φ → √
r0

z
|z| .

Vanishing of covariant derivative imposes as z → ∞

Aµ → ∂µ arg(z).

One can then reparameterise the eom with f(w), w = |z|2:

iA = −1− f

2
(
dz

z
− dz

z
)φ =

√
r0 exp(−

∫ ∞

|z|2

dw

2w
f(w))

z

|z|
.

Plugging back to the BPS solution, we get an ODE for f

wf ′′ =
e2r0
2
f + ff ′, f(0) = 1, f(∞) = 0.

There are approximate solutions in terms of modified Bessel functions of the
second kind (but we don’t need them).

For |z| � 1
e
√
r0

, f ∼
√
m(z)e−m|z| where m = e

√
2r0.

Fermionic part

−i(Ψ−, λ+)

(
2Dz −φ
φ† e−1/2∂z

)(
ψ−
λ+

)
+ i(ψ+, λ−)

(
2Dz −φ
φ† − 1

e2 ∂z

)(
ψ+

λ−

)
For Dz, Dz, apply index theorem to get

IndDz =
1

2π

∫
F12 = K = 1.

Are these (ψ−, λ+), (ψ+, λ−) zero modes? The answer is no. We have vanishing
theorem

0 =

∫
d2z(|2Dzψ+ − φλ−|2 + 2e2|φ†ψ+ − 1

e2
∂zλ−|2)

=

∫
d2z(|2Dzψ+|2 + 2e2|φ|2|ψ+|2 +

2

e2
|∂zλ−|2 + |φ|2|λ−|2)

Remark. ψ, λ are commuting variables:

ψ(0) =
∑
n

ψ(0)
n ψn

where ψ(0)
n is Grassmann odd.
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Thus the only zero modes in the K = 1 vortex background are ψ+, ψ−.

〈ψ(0)

+ φ(φ†ψ
(0)
− 〉 =

∫
d2ze−t0Ψ

(0)

+ φ(z)φ†(z)ψ
(0)
− .

Rewriting in twisted chiral variables

Φe2QV Φ = Y + Y

and expanding in components (Y has components (y, χ+, χ−), Φ has compo-
nents (φ, ψ+, ψ−)),

χ+ = 2ψ+ψ, χ− = −2φ†ψ−.

Since
ψ+φφ

†ψ−e
−t ∼ e−yχ+χ−,

the vortex effects generate a potential W̃ (Y ) = e−Y .
In summary, we started with GLSM with Φi, Qi wrt U(1). This gives a

NLSM with toric variety Qi, which is T-dual to a LG model with Yi and super-
potential

widetildeW (Yi) = −Σ(t−
N∑
i=1

QiYi) +

N∑
i=1

e−Yi .

Example (CPN−1). The GLSM has Φi for i = 1, . . . , N and Qi = 1. The
mirror has W̃ = Σ(Y1 + · · ·+ YN ) +

∑
i e

−Yi . The eom for Σ is

Y1 + . . . YN = 0

so one gets W̃ = e−Y1 + · · · + e−YN−1 + e
∑
Yi . For N = 2, one gets CP1 in

A-model has mirror with Sinh Gordon potential.
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