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0 Introduction

0 Introduction

Overview: a field theory for us is a theory of maps D — M. Map(D, M) is an in-
finite dimensional space so the first thing we do is to cut out a finite dimensional
locus M, the critical locus of an (action) functional S[¢,]. Then we can de-
fine and compute invariants (topological, enumerative etc) by using intersection
theory on M. There are many caveats: M is generically singular /non-compact.

Physicists’ viewpoint: ¢ : I — M where I = [t,, tp], called a one-diemsnional
field theory, is used to study (quantum) mechanics. The trajectory of a particle
on M is a map of this kind. The classical trajectory ¢ is a minimum of the
action functional S[y]. In the quantum world, due to the uncertainty principle,
we cannot determine precisely the trajectory of the particle. Rather we define
a measure and compute the probability amplitude as the weighted integral

2,1 Tas tai ) = / Dypre'Stel/n

subject to boundary conditions ¢ € Map(I, M), ¢(ts) = x4, p(ts) = zp. Note as
h — 0, Z peaked around S, which is the minimum of S[p] by stationary phase
semiclassical limit.

In a topological quantum field theory, the semiclassical limit is exact. This
makes TQFT a heuristic tool to define and compute topological invariants. It
also allows us to ucover unexpected relations via dualities.

Plan of the course:

e 0-dim field theory: Map(x, M) = M, so doing integrals over M. Localisa-
tion formula.

e 1-dim field theory: same as quantum mechanics. Relation with Morse
theory. Betti numbers, Euler characteristics and their refinements.

e 2-dim string theory: Frobenius manifolds, Gromov-Witten invariants, mir-
ror symmetry.



1 Localisation formulae

1 Localisation formulae

1.1 Stationary phase

I(s) = / dazg(z)e*f @),

For large s, I(s) is dominated by the critical points of f(x). Taylor expand at
a critical point zg,

1
f(z) = f(wo) + §f//(930)(517 —z0)* +...
so the local contribution is
) 1
Io(s) = g(axo)etsS (@) /dx exp[ﬁisf”(ato)(x —20)?].

Exercise. Show that

_ - 1/2
Io(w) = g(o) exp(i(sf(wo) +€7)) (Sf’?(zo)l)

where € is the sign of f”(zg).

Generalising to higher dimension, consider
I(s) :/ dmzg(z)ets! (@),
At a critical point,

f(z) = f(zo) + %Zf{;(ﬂco)(l“ —20)(x —x0)? 4 ....

We have )
21)”/2 eLO'7T/

s ) Tdet rwo) 72

where o is the signature of the Hessian of f. If f has more than one critical
point then the integral has contribution from each of them, so

Io(s) = glxo)e™ ¥

io 7 /4

27 2 isf(x, €
1) e G0N 0o g ey
j J

Example. Consider 5% = {2% + y* + 2% = 1}. Let g(v,y,2) = 1, f(2,y,2) = z
and consider

I(s):/ dAe’™=.
S2

The critical points of f are the north and the south pole. At the north pole

1
ZN1—§($2+Z/2)



1 Localisation formulae

and at the south pole

1
z~—14+ 5(1’2 +y2)
SO )
I(s) ~ 21(61’(72)71'/46% + ei-2w/467i5) _ 4m sms.
s s

In this case the integral can also be done exactly by using spherical coordinates:

2 ™ 1 :
o g
I(s) = / / sin fdfdpe® 5% = 27 / dcosfeiscost = TS
=0 J6=0 -1 S

The secret behind this example is symmetry: there is an S'-action on S2
and the fixed points are precisely the poles, and all information is contained in
the fixed points.

1.2 Equivariant cohomology

Suppose a compact simply-connected group G acts on a manifold M. Equivari-
ant cohomology is a cohomology theory that takes into account the action of G.
In the simplest case where G acts freely, we may define

He(M) = H(M/G).

More interestingly if G does not act freely, one has to take into account the fixed
points. One approach is use the univeral bundle EG, which is a contractible
space with a free G-action. The quotient BG = EG/G is called the classifying
space. Then one defines

HEL(M) = H*(M x¢ EG) = H*(M x EG)/G).

We will study equivariant cohomology by using the Cartan model. We define
a G-action on differential forms. Starting with a function ¢ € C*°(M), an
element h € G acts on ¢ via

(h-¢)(w) = ¢(h™" ().

After differentiating we get an action of Lie algebra which we write in the
following way: for a vector field v associated an element L € g, the Lie algebra
of G, we have
d
(v-9)(x) = o 6:Ogi)(exp(—eL)z).
In local coordinates

.0
v =0, py
Denote by Clg] the algebra of complex valued polynomials on g. Consider
a € Q(M, g) = Clg] @ Q(M),
which is the same as a polynomial on g valued in Q(M). G acts on Q(M, g) by
(h-a)(X) = ha(h™'X)

where the action on Lie algebra is the adjugate.



1 Localisation formulae

An equivariant differential form is an « that is invariant under the action of
G. In other words, « such that a(hX) = ha(X).
We endow Q(M, g) with a Z-grading

deg(P ® B) = deg 8 + 2deg P.
We define the equivariant exterior differential by

dga(§) = da(§) + iy a(§)
where V is the vector field associated to . Properties:
o dg: Q"(M,g) — Q"F(M,g).
e dg preserves equivariant forms.
o d%(a)(X) =iLya(X), which is zero on equivariant differential forms.
It is a theorem of Cartan that
HE(M;C) = H((Clo] ® Q°(M))“, dg).-
We will focus on G = S1.

Remark. Note that a(§) is a multiform in ordinary de Rham complex. By
considering the homogeneous components in de Rham complex, an equivariant
form « is closed if and only if

dag—2(&) + tvag(§) =0
for all k.

Example. Consider the standard action of S* on S2. Let w = dcosfdp be
a symplectic form. v = ai is the vector field generating the action. Then an

equivariant closed symplectic form

a(€) = w+ 1eu(0)
such that
0= dgiw(€) = (d + iée,) (w + i€n)

which says
dw = 0,i€t,w + i€dp = 0, t,u = 0.

The only nontrivial condition is the second one, which via
Low = —d cos 8

gives 1 = cos 6.
If dimgr M = 2m then we can define

m ok
&) — Y itn

k!
k=0



1 Localisation formulae

1.3 Equivariant integration

Let M be a compact smooth oriented manifold with dimension 2m = n. Given
an equivariant form «, we define

[l

where the second integral is the usual one as de Rham forms. By Stokes’ theorem
this is independent of cohomology class. Then the equivariant integral can be
seen as the pushforward H (M) — HE(x).

Recall for f : FF — M a map between compact manifolds. Then we have
pullback f* : H*(F) — H*(M) and pushforward f. : H*(M) — H*(F) in
cohomology. The self-intersection formula says f*f.1 = e(vp).

Theorem 1.1 (Atiyah-Bott localisation formula). Suppose F' is the fized
locus of a G-action on M. Then for an equivariant form «,

for= it
a= .
M re(vr)
We will consider the case of S'-action on M such that the fixed points are
isolated. In this case, for a fixed point zg, vy, = Ty, M is an SO(2)-module

of dimension 2m, which splits into irreducible SO(2)-modules with weights v;,
i=1,...,m. The vector field generating the S'-action around z is

i Vk(xki - yki)-
Oy Oy,

k=1

The Aityah-Bott formula then reads (for a top form)
2m\ " g~ @0(é) (wp)
/ @ = <—l§> > ,,p...yg -
M P! m

Proof via “exact” stationary phase. Introduce a 1-form
1
= —(v. -
Y=1(v)

where (-, -) is an Sl-invariant metric on M. Define an equivariant exact 2-form
by

2
[[o]]

BE) = vy = A + iuth = Ao + i€

In a neighbourhood of the fixed point ¢ has local expression

1 m
P~ 3 1; vi(zrdyr — yrday)

SO

BE) ~ Y vy A dys + = 37 (aF +4)
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Since () is equivariant,

0 214 3 O gy
k=1 ’

| a@= [ a@e.

As LHS is independent of s, we can evaluate RHS by letting s — oco. Using
stationary phase, note that for large positive s, the expression

SO

v
2 )

is very small except for the zeros of the vector field. Around a fixed point,

exp(isf(€)) = exp(isdi — s¢

/M a(€)e*P®) ~ ao(é)(xp)ijl (iSVQ’/dxkdyke‘f(Vi)%wi + yi))

alternative proof of localisation formula
Lemma 1.2. If G is a compact group and o an equivariantly closed form

then outside the set of zeroes of the vector field generating the G-action, the
top de Rham component of a is exact.

Proof. Introducce the G-invariant 1-form ¢ = (v, ). Then

det = A — 3 (v,w).

Using « is equivariantly closed and outside the zero locus d¢4) is invertible, we

can Write

/ a:/ a+/ o
M M\{Bz,} {Bzp}

where B, ’s are balls around the fixed points. Now apply Stokes’ theorem. [

SO

Let’s see an example of a symplectif manifold admitting a Hamiltonian S*-
action. Let (M, w) be a symplectic manifold. A vector field v on M is Hamilto-
nian if there exists a function H such that

tow +dH = 0.

Define the Liouville volume form

m

w w
L= ml :[6 ]Qm.
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Theorem 1.3. Let (M,w) be a compact symplectic manifold admitting a
Hamiltonian S*-action. Then

eifH(xp)

_ wen _ (_2m\"
o= [ e = (%) 2

This is a corollary of localisation formula: consider the equivariant extension
of the symplectic form
w(€) =w+iH.
Then
dsrw(§) = (d + iey)(w + i) = dw + i§(yw + dH) = 0.

Define the equivariant Liouville volume form

m k

_ ow(€) _ w8 _ igH w

L&) =e"'S) =S =¢ kg o
=1

/M fe= /M Lot

Evaluate LHS by localisation formula gives the result.

Let us now revisit some of the examples. S' acts on S2? by rotation. w =
dcosfdy. Let w(€) be the equivariant extension with respect to the S*-action.
Then dgiw(§) = 0.

SO

tg,dcosdp +dH =0
wher H = cos @ is the height function. Then

_ i€cost _ _277) (eiEZN 6i£zs>:(_277) i€ —ify _ sin§
1(§) /S2we ( 7 . 7 (—e® e ) =4r :

This is the equivariant volume of S2. Note as & — 0 it goes to the regular
volume.

Example. ???Compactifying. In R?, let w = dzdy,v = 29, — yd,. Define

2 2
w(€) = dady +ic2 ‘2”’ :

Then

/ eiw(f) — (_27T> (engmin + e*&Hmax) — _21(1 _ 0)
R2 i§
We can also perform the integral directly by

22442 2

z/ dedye™¢ T = —,—W.
R2 i§

2w

Thus we can define °F as the equivariant volume of R2 with S'-action. Note

that unlike the compact case, as & — 0 there is a pole (as the volume of R? is
infinite).
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Exercise. Consider S? = CP!. In affine coordinate z the Fubini-Study metric
has the form
i dzdz
YES T or (L4 [22)2
There is a U(1)-action z +— €2,z — e~ z. Find the corresponding vector
field. Compute the equivariant extension of wpg and compute the equivariant
volume. Finally generalise to CP", whose Study-Fubini metric in homogeneous

coordinates is given by B
w = i00log | Z|?.
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2 Localisation formula on supermanifolds

Definition (supermanifold). A supermanifold is a couple (M, A) where M
is a differentiable manifold and A is a sheaf of Z-graded commutative algebra
that extend the structure sheaf on M such that

1. it admits a nilpotent subsheaf A/ such that A/N = C*°(M). o: A —
C>*(M) is called the body map.

2. locally A is a sheaf of exterior algebra of smooth functions on M, i.e.
locally

A=CM)® \V

where V is a n-dimensional vector space.

Superfunctions M (™™ defined in terms of generators v, of the exterior
algebra A. There is a splitting A = AT & A~ and there is a commutator
defined by

[Oé,,@] _ Oéﬁ _ (—l)ngangﬁﬁa.

The even part is called bosons and the odd par tis called fermions. We then
define a superfunction to be

f(xﬂ/}) = fO(«'E> + fa(x)% + fa’b(x)waq/}b +oeee fl,...,n(x)wl c d)n~
Note 92 = 0 for all a.

Example. Define the tautological supermanifoldas
A= \T*M.

M(’m,m)

2.1 Integration on supermanifold

/¢d¢=1,/1d¢=o

?is a derivation. By anticommutativity

Berezin rules:

/¢1¢2d¢1d1/12 = 1,/¢2¢1d1/)1d¢2 = -1

and

/¢1-~~¢nd¢1--~d¢n=1,/¢1---¢a--~wnd¢1---dwn=0.

2.2 Euler class and Pfaffians
Let G = SO(2m), g € S?VV where V is a R-vector space of dimension 2m. The

Pfaffian is
Pf:s0(2m,R) - R

10



2 Localisation formula on supermanifolds

where for z € sO(2m,R), ... explicitly in terms of elements of 2/,

m

1
Pi(a') = gy > sen(0) [ [ wot-noc-
’ =1

o€Sam

It satisfies Pf(z)? = det x.
Let P be a principal SO(2m)-bundle over M with curvature form F. Then
the Euler class of P is given by

1
P) = Pi(F
“(P) = Gy PEE)
Example. Let P =TM. Then
(TM) = L Pf(R)
T Gy VY

2.3 Boson and fermion integration

Boson: let A be an N x N a symmetric? real matrix.
L 7
exp(—=xz" Az]dvol
i~ 2

Diagonalise A by an orthogonal transformation, we get

N

2 2
H/ dZJie_>"?yz'/2 = H 1/ )\—ﬂ = (v27)N (det A)_l/Q.
i=17/R i g

If some \; is zero then we work with det’ A, a measure on ker A.
In the complex case

¢ dz;dz;
—2"Hz | | 1 v H 71.
/CN ¢ 2mi (det H)

Fermions: we consider skew-symmetric matrix w.

/ e2?" ey - difor, = Pl(w)

This is because by definition of Pfaffian
P A T
T

Lecture 20/05

Recall that a supermanifold M (™™ is obtained by enlarging the sheaf of
regular functions to A, a Zs-graded algebra with odd generators (11, ..., %™).

If E is a bundle over M then A" E is one of the easiest example

Tautological supermanifold ITT'M, where II is the parity reversing functor.
Ex=TM.

Superfunctions: f(z,1) = fO(z) + fa()® + - + fr.nbt - ™.

11



2 Localisation formula on supermanifolds

We defined integration on M ™™, On the odd part this is given by Berezin
rule.

Now we add a group action.

A supergroup is a Lie algebra containing odd generators with respect to
Zs-grading (correspondingly exists odd vector fields generating the actions

d
yr li=o exp(tQ) - y

). For example f(x,¢ +1),Q = %,
Remark. Odd generators are loosely called “supersymmetry”.

Witten’s fixed point argument: the integral of a a sypersymmetric invariant
superfunction on a superspace £ gets contributions only from fixed points of
the supersymmetry. Proof: suppose @) acts on E freely. Form the fibre bundle
(what is F'?)

F—FE— E/F.

For an invariant superfunction f, i.e. Qf =0 (7),
/ f :/ dt f=0
E F JE/F
——
odd

by Berezin rule. This is a theorem for compact supermanifolds with compact
odd vector fields (A. Schwarz et al, CMP)

2.4 Duistmaat-Heckmann on supermanifolds

One formulate a version of DH using tautological supermanifold. Let A =
NA*TM. TITM = M@m2m),
dat- - da?®® <l 2y, da® - dats — . 0" -t = §). Then

/ / A A
M IITMm
DH SayS

/ wneiH _ Z_n/ ei(‘*""H) = z_n/ exp[i(H-l-wabwa?ﬂb)}-
" M M

Supersymmetry: Q = ¢ 620 + v® OZ"' where v® are local components of the

vector field generating the S'-action. Then Q% = £,. Thus supersymmetric
fixed points are in bijection with fixed points of the S!'-action. Moreover the
integral is Q-invariant. The measure is also Q-invariant.

wn

7€iH — _HTM,ELei(S-FSQA)
M TL'

which is independent of s, so we can evaluate by taking s — oco. Remeber
A = v,9%, 50 QX ~ ||v||?. The critical points are then the zeroes of v. The rest
of the proof is left as an exercise.

12



2 Localisation formula on supermanifolds

2.5 An example

Consider R(?) and the integral

Z = / fie=s
R(1,2)

S(x, 11, 12) = So(x) + Y1251 (x)

where

and the measure is
i = dzdidys.

The supersymmetry is given by

bex = €'Yy + €9y
S = 2R
detpo = —e'n

for some h : R — R. Claim to make it equivaraint, i.e. §:S = 0 we need to
choose

1
So(w) = 5 (W), Su(a) = b
Proof:
0eS = W'H'0cx — B dectp19p2 — W' ip10ctps — W ewipras
_ h/hn(lel + 621/}2) 7 h”Gzh/i/JQ + h“d)gelhl _ h///(el”(/Jl + 621/)2)
N——
=0

which is indeed 0 by antisymmetry. As an exercise, show dady;dis is also
invariant.
Fixed point argument: A’ # 0 on R, e! = €2 = —);/h/. Substitude

1t
W

r=x

U1 = —h/% =0,y = 11 + 2.
Then
/dxd@bldwge*S = /did%d%efﬂi,o,wz).

Suppose now that h is a polynomial of degree n with isolated critical points
(what??). Summing over all fixed points z.,

h”(xc)

W (z)|

Cc
which is the signed count of isolated critical points. This is invariant under local
deformations of h provided we do not change asymptotic behaviour at +oo. In

other words
7 0 n odd
+1 n even

13



2 Localisation formula on supermanifolds

Z = zc: \/%/dxdz/zld% exp[—%(h’)Q + W' 1p11)o]

1 1

= —— [ dzexp[—=(n')*n"
= [ dwespl—g ()7
1

=—D [ dye™?
V2 /y Y

where D is the multiplicity coming from Jacobian. For example if A is odd,
hence h’ even, we have D = 0. If h is even, hence h’ odd, D = #1.

More on deformation invariance Suppose we have a “local deformation”
(in the sense that it does not change behaviour at +00) h — h + p, then

1
S(h+p) = §(h' +0)% = (" + 0" )1y
so the variation with respect to p is

6pS = p'h — p"ih1vpa = b (1)

with €; = €5 = e: Indeed
Sc(p'h1) = e(p"hrpa — p'H).

67 = / dadypdipre™%9 = 0.

14



8 Supersymmetric quantum mechanics

3 Supersymmetric quantum mechanics

Recall that a Hilbert space H is a vector with a Hermitian inner product such
that the associated norm makes it a complete metric space. We will use the
Dirac bracket notation: |a) € H for an element in the Hilbert space, (5] € H*
for an element in the dual space, and use the physicists’ convention

(aa +bBly) = a™* (aly) +b" (B]y) -

A SUSY quantum mechanics is a Zs-grading on H. The even bit is called
fermions and the odd bit bosons. A SUSY operator @) exchanges (?) the parity

1
§{Q7QT} = H7

the Hamiltonian of the generator of translations on I or S*.
Fermion number operator (—1) which is 1 on Hp and —1 on Hp. Have

(=D, Q] = -Q,[(-1)F, H] = 0,[Q, H] = 0.
Definition of commutator
[, 8] = aff — (=1)%B 48P ga.
Then by super Jacobi identity
[Q.{Q. Q"1 +Q,{Q.Q} + Q. {Q",Q}] =0

0

H = £{Q,Q} has the following properties:
1. all energies F (eigenvalues?) are nonnegative.

2. E = 0 if and only if Qo) = Q'|a) = 0. The zero energy states are
called ground states. Stated in a different way, this says ground states are
supersymmetric (i.e. annihilated by both @ and Q). This follows easily
from

(alHla) = 1 ((0]QQ|0) + {a]Q'Qla))

For nonzero energy, there is an isomorphism Hg#) = 7—[?#0 realised by
Q1 = Q + Qf. This is because

Qi ={Q,Q"} =2H
which is invertible on nonzero energy states.

We can define the Witten index to be the difference between number of zero
boson states and number of zero fermion states

Q= dimHET — dim HET? = trym=o(—1)F = try(—1)F e PH

where £3 is the radius of S* — R. The last equality is because for nonzero states
@1 induces an isomorphism. We write in this way as this will fit into the path
integral formalism, which we will see in the future.

Q) is invariant under small deformations of H.

15



8 Supersymmetric quantum mechanics

SUSY QM on R Let H = L*(R,C) ® ¥ L*(R,C). A wavefunction is then a
superfunction - -
O(z, ) = op(x) + Cp(x)Y € H.

Position = and momentum p are hermitian operators on H which do not com-
mute:
[x,p] =1
(we take h = 1). For the Grassmannian part
{, 9} =1.
A realisation of these commutation relations on H is by setting
with supercharge
Q = Y(ip+ h'(2)), Q" = (—ip + I'(x)).
Then the Hamiltonian is
2H = {Yip,(—ip)} + {®', vh'} + i{p, o'} — i{$h’ yp}
= p* + (I')* +i(Ppyh’ + Yh'bp — ' p — PpPh’)
=p* + (W')* + iy — ) p, 1]
=p” + (W) + 1" (Y — )

In matrix form, if we write the wavefunction as ® = (®p5,9®F), then

(0 0 1 (24 h2—p 0
Q‘(amth’ 0>’H_2< 0 —p§+h’2+h”>

Ground states correspond to HY = 0, a 2nd order PDE. However by com-
ments before this is equivalent to two 1st order ODEs

Qd=0,QT®=0
which has formal solutions
d = Age M) 4 Apieh(w).
We need to check if it is normalisable. Several cases:

1. limg sooh = 00,limy, . _oh = —o0 or lim,_ oo h = —o00,lim,_,_h =
—oo: all solutions diverge so no ground state. 2 = 0.

2. limy, oo h = lim,_, o h = co: one bosonic SUSY ground state and no
fermionic state. Q = 1.

3. limg 00 h = lim,_,_ o, h = —o0: opposite situation of 2. Q = —1.

16



8 Supersymmetric quantum mechanics

Example:super harmonic oscillator Take h(z) = %x2 SO
H =p* +V(z) + 1" () — ¢9)

where V(z) = %2902. By discussion above for w > 0 there is a bosonic SUSY
ground state
2
\I/w>() = 6_%“;m |0>

and for w < 0 there is a fermionic SUSY ground state
Vyco = 6_%|M|Z2@|0> :

We can solve this system and show

1 2
Hp = —p* + —2?
2
with discrete spectrum
w
s s

The fermionnic part can be expressed as Hp = § ( ’01 (1)) with spectrum

w
4 teyese

So for w > 0 the spectrum of H = Hp + Hp has a pairing except the zero
Bosonic part. The situation is reversed for w < 0.
Partition function of Gibbs ensemble: Z = try e PH.

> 1

_ —B(n+3)w| _
Zp = Ze O Ry
"0 eP T —e ]

Zp=eP% 4 P2
B+

Z=tre M=~ "~
denominator

Note the Witten index... is independent of £

23/04/21

We now move to higher dimension and consider R(V:2N) A wavefunction
has the form

B(r,g) = D By (B (@)

b1,...by=0,1

which is a vector with 2 components.

—I,.
Q=" I (ipr + drh(x))
where h : RY — R. One can check Q? = 0. The Hamiltonian is

1

1= Q.01 = L+ @)+ LS w0
I I1,J

17



8 Supersymmetric quantum mechanics

To solve for ground states we need to solve
QP =Q'® =0.

This is in general difficult but can be solved in some special cases. For example
let us consider N copies of one dimensional harmonic oscillator, i.e.

| N
h(z) = §Zw1(x1)2.
I=1

Then 1
—I
@O(I):exp(fizwﬂ(xl)z II ¥
I T:wr<0

The number F' is the number of negative eigenvalues of the Hessian of h, which
is the Morse index of the critical point (note h is a Morse function). The Witten
index is (—1)~.

Using this result we can compute the Witten index for any h which is Morse.
We use deformation invariance: €2 does not depend on local deformation of
h, provided we do not modify its asymptotic behaviour h(xz) — Ah(z), A —
oo. Classical fixed points are critical points of h(x). The corresponding wave
functions are the Gaussians centered at the critical points. Then

Q=) (-1)rlee),

x. critical

Riemannian manifolds Consider all maps S' — M. The Hilbert space in
question is isomorphic to differential forms on M. F equals to the de Rham

degree.
& =&y + d;de’ + ®yyda’ Ada’.

—I
Using the tautological supermanifold we identify dz! with 1) . The inner prod-
uct on H corresponds to the inner product of differential forms:

(U] ®) :/@A*@

where « is the Hodge star operator. In a local coordinate

N
<\I/‘(I>> = Z/de\/ggIlJl o 'gIEJ+ZEh'~Iz(I>J1'“J£'
=0

Operators:
Q=d=dz'Vv;

1
H = 5(@@T +Q7Q) = A,
the Laplacian on M. In local coordinates,
—I
¢ =dz' A (=), =g,
with

(w9} =g

18



8 Supersymmetric quantum mechanics

and L
B —
H= —§9UV1VJ + Ry’ 5y

The Witten index is Y (—1)! summing over all SUSY ground states. The
equation for gound state means that ® is a harmonic differential forms, so

N
Q= (-1)"bp(M)
F=0

which is the Euler characteristic of M.
Adding a potential h : M — R, the SUSY charge gets deformed. By conju-
gation
Qn = e "Qp_pe” = e "de = d + dh.

Note that adding h does not change €). Then the Hilbert space of zero energy
states Hgusy = ker Q/ imQ@

Proof. For all |o) with positive energy E,

o) = 5 =(Q'Q +QQ")a) = Q5" o)

so all positive energy states are trivial in the @)-cohomology.
On the other hand for zero energy state |a), 77
If |a) = Q|B) then
(ala) = (BlQ"|a) = 0
so |a) = 0. O

Now adding h does not change the cohomology: kera — e~"|a) sends
elements in the cohomology of Qg to elements to those of )y, which induces an
isomorphism.

3.1 Path integral for QM

We are interested in integrals over the space of all maps

B
Z:/ quxp(—/ dtL(q.q))
¢:S1—M 0
——

S

where t is the coordinate on S'. For a harmonic oscillator,
1 [P >
A=—- dtq (——) +w?.
5 /O ¢(=75)+
——
D
7 is formally a Gaussian integral so we expect

Z(B,w)“ =" (det D)™/,

This is given by the process of {-renormalisation. D has discrete real positive
eigenvalues A\, > 0. Define

1 a1 tD
— t* 7 tr(pe” ") dt
i, )

19
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8 Supersymmetric quantum mechanics

where p is the projection on A,, > 0. Then
Cp(s)«=" Zn/\;s,s eC
It is analytic as s — 0. We define
det'D = e <00,
Expand ¢(t) in terms of Fourier modes
an(t) = exp( 5 )

such that Dq, = A\, Ay = w? +w? + (Q”T”)2 If q(t) = )", cnan(t) then

dey,
qul;[\/%
" S—EZCQ)\
22 nAn
and

Z(B,w) :/Hj;%exp(—;Z)\nci).

Combine with the observation above,

(det /D)71/2“ 1 H(>m)71/2

n

Gelfand-Yaglom theorem Let D = —% + V(t) be a second order differ-
ential operator on [0,3]. We can pose the eigenvalue problem with Dirichlet
boundary condition, namely

where 0 < A\; < --- < A, is the discrete nondegenerate spectrum bounded from
below. One can consider the auxillary problem

Doy = Aoy, 92(0) = 0,¢4(0) = 1.

The for all A = A,
o, (B) = 0.

Theorem 3.1. )
det(—g + Va(t) =) _ 60(8)

det(—Z + Vo) =) 9D (8)

Proof. LHS and RHS both have zeros at A = A" and poles at A = \2.
Moreover both sides go to 1 as A — oco. Thus the ratio of the two sides is a
bounded entire function, which is constant 1. O]

20



8 Supersymmetric quantum mechanics

As an application,

~—

det(—4 +w?) _ 65(8
det(—4;) b (B
One can solve for ¢ (t) to get

-

sinh wt

#(1) = do(t) = .

)
w

How to reconcile the two results?

3.2 Path integral formulation of SQM

Let ¢ : ST — M, ¥, € T'(St,¢*(TM) @ C).
Witten index in the path integral formulation: the partition function

Z:/ _ D¢Dy DY exp(—5(e, 1, 4)).
RUR

By definition ¢ is periodic: ¥(0) = ¢(B). This is a boundary condition for
bosons. For fermions, there are two possibilities: ¥(0) = +¢(8) (since we have
seen the action is quadratic in ¢). The correct choice is the periodic one, making

Zperiodic = trH(fl)FeiﬁH'
This choices preserves SUSY as

aZperiodic

Z~periodic _1\Fe—BH
5 tryy H(—1)"e

— 5 | PoDuDEQ. Q)

= _%/DqﬁDl/)DECSSUSY("')
=0

Now for our specific case, we define the action to be

p 1 Sr e —I
) 2/ dT(iglJ(¢)¢I¢J +915(9)0 V!
0
where
VT¢I = 571/1[ + F5K87¢J¢K-
Note that 45 = 0 under SUSY where
[ . —J
0" =€ 00 = 0,007 = e(—" ~ T ).
To evaluate the partition function we find fixed points of SUSY. gz'SI = 0 gives
constant maps in LM. In terms of Fourier modes expansion

G(T) =Y dne™”

nezZ

() =D ne™
nez

P(r) =D e
neEZ

21



8 Supersymmetric quantum mechanics

Then
d2
Ap = glJ(Wo)(—ﬁ)
d
Ap = gij(¢0)(ig)

The eigenvalues are
AB(bn = n2¢n7 AFwn = anl)n

integration over nonconstant modes produce

(det'Ap) /2~ (T )2 = (J] n*) 7

n#0 n>0

(det’Ap) ~ [ (in) = T] »*

n#0 n—0

In this case the bosonic and fermionic parts cancel completely and Zgqum col-
lapses to integration over M:

) —J; 1 —J —L
Zsam :/ Hdwé’Hd% exp(iRIJKL%% 6 %o)
M

= / Hdwé exp(iz/)ono) identify ’(/JI ~ dz!
M

which is the integral over Pfaffians of R, which equals to x(M). We thus get
Gauss-Bonet theorem.
3.3 SQM with potential
Recall that we considered Q — Qn = e "Qe" where h : M — R. There is a
deformed action
A? I oJ R
Sy =50+ ?gfj(') hO’h + AD;0yhyp
SUSY is changed by
60" = e’
5 =0
50" = (= Tl " + 9" 0yh)
The fixed points are given by
Vo’ =0,0;5h =0,

which are given by constant maps to the critical points of h. The path integral
is localisated to the set of critical points of h.
d2
AB = —gU(gi))ﬁ + >\2D18KhDJ8Kh

d
Ap =igrg— + AD10sh
dr

22



8 Supersymmetric quantum mechanics

For bosons
H (9101 + N2DrdhD ;05 h) 1% = H (gron® + N2D;0xchD ;0% h) ™!
n#0 n>0

and for fermions
[1Gngrs + ADs0sh) = T (n*91s + N> D19k hD ;0% )
n#0 n>0
which again cancel. For n = 0 the set of modes not in ker Ag is empty.
det \D;O;h
(det \2D ;O hD ;0K h)1/2

= sign - det D;0sh.

In summary,
Z =x(M)= Z sign - det Hessh|.
P
Since Orh is a vector field, tis givens the Poincaré-Hopf theorem.

Mathematical formulation Mathai, Quillen: Superconnections, thom classes,
and equivariant differential forms

Let E be a real vector bundle of rank 2n over X. Let X* be coordinates
on X and dz* = ¥*. Let h' be local coordinates of fibres of E. Let x* be
coordiates on fibres of IIE (parity reversing). Let g;; be a metric on E, AZ the
1-form connection of E. Define an odd vector field on the supermanifold IIT
IIE.

Sat =t Syt = 0,6x" = h' — AL rz’ 6h' = §(ALyrxT)

50 62 = 0. Define a € Q*(IIE) by

(271r)" exp(—tdV)

where t € Ryg. Let V = %gijxihj.
- (h7 h) - (X? FAX)
where Fy =dA + AN A.
1 1 1
—_— DhD —— = ——Pf(F
o | DRDXexp(— 380 1) = s PEE)

In particular for F = T M and x = v we recover the previous result.

One can deform this by a section of the vector bundle. Let s € T'(E) and
Vi = 2(x,h + v/=1s). Then the integral over (x,h) produces exp(—4 s?), a
weight concentrated around s~1(0) C X.

o =

1
g = @ exp(—tdVs)

is a representative of the Thoms class of E. For s = 0 we get the Euler class.

For infinite-dimensional vector bundles we can use a; to give the definition
of the regularised Euler class. On the other hand for finite-dimensional vector
bundle we can define a defomred Euler characteristic xs(E). For example the
partition function of SQM can be regraded as the TQFT-Mathai-Quillen rep-
resentative of Euler class xs(LM). xs(LM) = x(M) and does not depend on s
(we saw s constant maps and s vector field Orh).
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8 Supersymmetric quantum mechanics

3.4 Index theorems and SQM

Some review of characteristic classes: let P be a principal GL(n, C)-bundle over
X. The Chern character is an adjoint invariant function

ch:gl(n,C) — C
=1
X > treX = E Htrw"

n=0

The eigenvalues of the matrix X are called the Chern roots. In terms of the
Chern roots

n
ch(X) = Z eXi
i=1

The Chern classes are defined by

n

det(1+tX) =Y tFe.
k=0

For example
c1 =trX,c, = det X.

The Todd class is defined by

X X,

i=1

Note the function has a power series expansion in terms of the Bernoulli numbers

IE = i (71)kkak.

1—e® k!
k=0
The A-class is defined as
~ X - X;
A= det oX/2 _ o—X/2 II oXi/2 _ o—Xi/2°

i=1
The Atiyah-Singer index theorem for Dirac operator states that

1 ~
ind(D, E) = (C2m/ 1) /XA(TX)chE
where the Dirac operator is defined on a spin bundle P : ST @ F - S~ ® F
and its index is defined as the difference between the dimension of kernel and
cokernel.

Formally it looks very similar to the Witten index. We can “prove” various
index theorems by identifying @ with the appropriate operator (c.f. Alvarez-
Gaumé, CMP SUSY and index theorems).

For example consider

1 ., . 1 " v 1 v
S = o dT(aguuwuw + LUHA;L + 59;41/1/}/ V‘rw - §¢”¢ Fuu
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8 Supersymmetric quantum mechanics

The integral is
Z = / DazDype™"
zeLX
Yer(st,z"(Tx))
Note v is real. Z is independent of the radius of S'. Taking 8 — oo will give
the exact result.

Rescale by

D) = () /B
The measure is invariant (exercise).
5 = [ Ar(L )5+ L D0 M Fuat i) +O( )
; 59w i3 v i o NG

SO

Z = / d?"zd? e P o Yo [det (610, — RM)0,]~?[det '8,]/?

The fermionic part cancels the second factor of the bosonic part and the expo-
nential is ch E so we are left with det’(6%0, — R¥). Expand in Fourier modes,

0

det’(a— = RO)=12 = T (ik — A9 (ik 4+ AD)
T k=0
— H k2 —1/2
kne0

H + (A0))2

where R = ()\?j) Af)j) ) By &-function regularisation this is

)\(j)/g
sinh A\(4) /2
AU) are the Chern roots so this is exact the E(R)-ClaSSZ
- by
A(R) = H eNi/2 — =X /2"
J
Thus
= ind(, E) = dimker I) — dim coker ) = / ch EA\(TX).
X
Hirzebruch-Riemann-Roch:
— 1
ind(d, E) = ) / td(Tx") ch E

(—2mi)™
which can be derived from Atiyah-Singer by noting that on a comples manifold
p=de K"

where K is the canonical class. Thus we use the Todd class instead of A-class.
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8 Supersymmetric quantum mechanics

3.5 Morse theory and SQM

Let M be a compact manifold with Morse function f. Let M, be the number
of critical points of f with p negative eigenvalues. The weak Morse inequality
says

M, >b,

and the strong Morse inequality says that
DM = bt = (1+1) > Qut?
P P P

where @@, > 0. We will see that SQM provides refinements of Morse inequalities
via Morse-Witten index.
Recall

7y = / DDy Dipe™ SN (@#:9:h)

For A = 0 (zero potential), the @Q-fixed points are the constant maps. The
integral gives Guass-Bonnet. For A # 0, @Qp-fixed points are critical points to
critical points of h, giving Poincaré-Hopf.

Qn = e—AthAh’Q;fl — Qe g0
1 t 1 1 -1 Lye 1
Hy = 5{Qn, Qi) = 5 A+ SAVIOsh[Y 7] + S X7 " 95hdsh.
In the limit A — oo, expand H around the critical point z; of h,
H(z;) = lzpz N3 + 1/\(;]@‘7 ba] + ()(l)
) 2 - I I 2 y YJ 2\ .

Remark. This is called pertubation theory with parameter % The gradient

flow lines actionwhich is proportional to A is not analytic in % These corrections

e~ are “non-perturbative instanton” corrections.

The ground states are Gaussians centered around the critical points. Let
la;) = e A T ler@? 11 ¥ 10)
J:c;<0

be the ground state asscociated with z;. Note the number of J such that c¢; < 0

is exactly the Morse index ;. Identify EJ ~ dz!, |a;) € Q*i(M) ® C. For A
finite, gradient flow lines produce an overlap among these states

(a;|Qnla:) = /Ej A x(d + dh)a;

i; = p; + 1. In physics terms, these are ascending flow lines (instantons).
Conversely if j1; = p; — 1 they are descending flow liens (anti-instantons).
Define the Morse- Witten complex

Qn Qn

0 X0 X! X2 - X" 0
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8 Supersymmetric quantum mechanics

where X* = @#:u‘ a;,
Qp: XH — xrtt

lai) = Y n(aj, ai) |ag)

Q) Xt — xr!

where n(a;, a;) = £1 according to the orientation. The orientation between two
different points can be defined using the Hessian

D?h

Example. (Example on 52)

path integral derivation Expand S around the gradient flow line:

d
a(bl —X¢'7asn = 0.

S = Alh(e) = hla)) + [ (GID-6 = D-w)ar
where D — — is first order variation of Levi-Civita connection, plus Hessian:
D_¢! = D¢l — \g!! D;orheE
We study zero modes of D_. Under genericity assumption ker DI =050
indD_ =dimker D_ = p; — p;
(see remark below).

. i J|o—TH TH|
Rws) = hay) + O(L) o, (asle™ 7@ hle™ Hlas)

(a;1Qnlai) =

Note (aje"THhQe TH|a;) is the projection on zero energy states (for nonzero
states it vanishes)

H(—00) = z;, p(00) = ;)
(ajle"TH[Q, he™TH|a;) = / DD Dy DgeS0 arh
- / dto [Ty [] dgnduldho ng’
I n#0

exp(~A(h(z) ~ @) + 5 [ ID-¢ = (D-F.0)

—I— det’D_
- / dto [T dowadrh —mmeeee ™At =h0)
I



8 Supersymmetric quantum mechanics

Thus
<a’j‘Qh|ai> = Z n,ye_)\(hj—hi)

Y

where the sum is over all v from z; to z; such that u; = p; — 1.

spectral flow and relative Morse index The Hessian is a linear map H(h) :
T,M — T, M. In an orthonormal local coordinate it is a symmetric matrix so
can be diagonalised with real eigenvalues. A gradient flow ¢ gives a family of
eigenvectors and eigenvalues:

H(h(o(1))er(r) = Ar(r)er(r)

for —oo < 7 < 0. Aj is called the spectral flow. D_ = D, — Hy(¢) so ker D_
is given by

fra(r) =er(7) exp(:l:/ Ar(t)de).
0
provided it is normalisable. f7 + is normalisable if and only if
/\[(—OO) > 0,/\[(00) < 0.

The difference
Ap = dimker D_ — dim ker DI

since dimker D_ is the number of I such that A\;(—o0) > 0, A;(c0) < 0.
perfect Morse function A perfect Morse function is one such that @ van-
ishes. A class of perfect Morse functions are the moment maps of S'-action.

Morse index can jump only by an even number (due to S!-action, the tangent
space decompose into plane).
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4 String theory

4 String theory

We consider maps ¥ — M from closed surfaces. Consider the supermanifold
R4 We split 4 as 242, and work with the so called N = (2, 2) supersymmetry.
Let ™ be coordinates on R2. The rotation groups acts on it via

x! [ cosvy sinvy T1
22) 7 \—siny cosvy/ \ a9
Odd superspace coordinates Ha,ga where o = £1. 6 € S, a spinor bundle. There

is a splitting S = ST & S~ where ST is Weyl spinor. 0, = (04,0_),0, = (0,)".
0" = P9, where

e =1l T=—1eT =" =0.
Clifford algebra C1(2)

(YA =AY A =26,

ai=(1 o) o= (1 7

Transformation under rotation: 6 s /20" "Smng S — %[’ym,fyn], 6+ —

; ~tiw/2 . . . .
eFw/20% 9 wf 0 where w is antisymmetric with components

WM — 0 w
T \—w 0

N = (2,2) superfields are maps
@ :REY - C

with components

—+

O™, 05,07 ) = f(@™) + 0T fr(@™) +0 g+ +0T00 0 F

which has in total has 2% components.

supercharges The supersymmetry algebra is defined as follow. They satisfy
the relation

{Qav @,B} = 21(7m)aﬁam

The supercharges are linear realisation as derivative operations:

0 o B
Qa—%_w’)/ )aﬂ9 8771

— 0
a:_TO/_‘_Z m aeﬁﬁm
Q o7 T i0™)s

Note that compared to the definition of 4! above,
-1 0
(’Yl)cxﬁ - 65’7(71)34 = ( 0 1)
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4 String theory

Similarly
i

(7)ap = eay(Y")L, = <6 0)

Therefore we can simplify the notation by writing

0 —+
Qs = 20% +0 04
— 0
Qi=——"— eiai
T 0
where 1 8 9
O = 550 Tigg7):

the (anti)holomorphic derivatives on C = R2. Then the physical interpretation

{Q+,Q =20 =H+P

H is the operator generating traslation in “time” z2.

R-symmetry There is not only rotation in the even part, but also in the odd
part. Consider vector

D(2™, oi’gi) . eiaquq)(zm’ efmai | eiaﬁi)
Azial R-symmetry
B(2™,041,07) = PP (2 FBYE FIOGT)
where g, is the vector R-charge and g4 is the axial R-charge. Call the generator

of these two symmetries F, and Fj4.

4.1 Superalgebra

Superalgebra: {Q+,Q,} = 204,

{Q+,Q_} = Z central charge, {@+,@7} =7
{Q-.Q"}=Z4Q+.Q_} =2
=@ =0.=0,=0Q-=0
[iM, Q+] = FiQx, [iM, Q] = FiQ4
[iFy, Q] = —iQx, [iF,, Q] = iQ4
[iFa, Q4] = FiQx, [iFa, QL) = +iQ,

irreps of superalgebra Superspace derivative

— 9 P (AT i

— 0

Daszaf-gﬁ maam
i (v")as
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4 String theory

In components

0 —+
Di:aoﬁio aj:
0

bi - e + Giﬁi
00
A chiral superfield is a superfield such that
D, T =0.
To solve this, introduce a new variable

yt =zt — oot

which is the superspace analogue of (anti)holomorphic coordinates. Indeed (no-

tation???)

Then the solution is
O(y=,07,07) = oY) + 070 () + 07 Y (yF) + 0707 F(y*).
Similarly we can solve antichiral superfield D4 ® = 0 using 7+ = 2% — ?iei.
Another possible constrant is twisted chiral fields where
D.U=,D_U=0.
Introduce y* = z* ¥ 90" . Then
Dyt =D,y =D_yt=D_y =0.

Then U = U(y*,0%,0 ).

Supersymmetry transformation
60 = [(uQ + €00 = (¢+Q- ~ ¢-Q4 —C,Q_+C Q)P

relation with geometry In order to preserve SUSY specific geometric struc-
tures on M has to be introduced. We recall spinors first. Let V = C? be a com-
plex vector space equipped with a symmetric bilinear form g. Then Spin(V') is
the extension

Zs — Spin(V) —— SO(V)

Let S be the complex Dirac module of Spin(V) with dimg S=2L4/2]. For d odd
this is irreducible and for d even S = ST @& S~. V(,g) gives the Clifford algebra
CL(V), the free tensor algebra over V' modulo

v-v=g(v,v)l.

Suppose Y, m=1,...,dis a basis of V, g;n,, = ... For d = 3,4, 6 the spin gropu
actsing on irrep Spin(V') are the groups SL(2,F) for F = R, C, H.

Now for a superfield R(%5) — M ...

For N' = (2,2) supersymmetric sigma models, we nned the target manifold
to be Kahler.
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4 String theory

Lagrangian

S = /dzd2d9+d0*d§+d§7K(<I>i,5i) +/d22d9+d0*W(<I>i) + complex conjugate

D-term F-term

where ® : R((22) 5 M is a superfunction to a Kéahler manifold. K is the
Kahler potential, a real function and W is the superpotential, a holomorphic
function.

In terms of local complex coordinates on M, ¢' = ¢* + 6+ + ... and

ds? = gijdgoi ® d<p7
a hermitian metric on M,
w= %gijdsoi Ady?,
a Kéhler form. In particular the closedness implies that
hgi7 = 095, %97 = 079:%-

The hermitian metric g;7 can be derived from a real function, namely the Kahler
potential:

- PK
9i5 = &pia(pj.
The Levi-Civita connection has only holomorphic and antiholomorphic indices
|
ikt 5k

For the D-term, K has an expansion

K@ ) =Ko+ K 0"+ +070 070 Kiop.
Exercise. The kinetic part is
in F oo T ] i i 73 kTl
Liin = 9550:0'0z¢" +igz0" Do’ +igs0" Doy + Rz 0 vk 9
where ‘ . ‘ ‘
The system has a symmetry 65 = 0 where
50 = ((+Q- — Qs —C,Q_+C_Q,)0

as defined before.

R-symmetries Recall that ¢ € T'(ILS ® ¢*(TM) ® R). For spin, vector R-
symmetry and axial R-symmetry,

U(1)p : 9% — eFpt, g7 — g
Uy : g% = eyt 57— e
U(1)a: 9™
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4 String theory

D-term: d43 is invariant under U(1)g x U(1)y xU(1) 4. For K, qy =0,q4 =
0. If K = f(@l@i) it is invariant for all gy and g4. For the F-term, d?6 has
U(1)y charge gy = —2. W must have gy = +2.

W(A%9') = NW(¢"),

quasiholomorphic function of degree 2. d?6 has U(1)4 charge ga = 0.
If the measure of the path integral is not invariant but S is then it is called
an anomaly in physics. This is related to index theorey.

4.2 Simplified SUSY model
Take

= /T @i, Doty + YDz )
where D, = 8, + A,, Dz = 05 + Az. In order for S to be invariant, we take
Yr €T E®SL), ¢, € T(T? E* @ T1S4)
where FE is a complex vector bundle. Then

K = indD = dimker D5 — dimker D,

| a®

since the connection is flat so the Todd class is trivial. Thus thE difference
between the number of zero states of ¢~ and psi_ is K. Same for ¢, and ..
The measure is

which by index theorem is

K o
— a ,—(0)a n)—(n
DDy = [[ de®@aw T delst” .
a=1 n=1

qa=2K U(1)—invariant

Thus for N' = (2, 2) nonlinear sigma model,
/ d%(—%gﬂiﬁgwi +..)
T2

the kinetic term.
U € (g (TYOM)), B = " (TX0M).

K= [ el @M) = (o(TM), ou(T%).
To preserve U(1)4 symmetry, the target manifold M need not only be Kahler
but also ¢1(T'M) = 0. These two requirements are equivalently to saying M is
Calabi-Yau.
Why is it so important to preserve R-symmetry? They are needed to define
topological twists. For example for

§e=C¢Q_ - Qt+...
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4 String theory

SUSY requires existence of trivial sections of the spin bundle, which holds for
R? and T2. If we want to formulate a SUSY model of maps from a general
surface . For a general ¥, the spin bundles S, = K'/2,§_ =~ K~1/2 do
not admit sections. This is where the R-symmetry bundles come to rescue.
Topological twists gives redefinition of spin connection with the connection of
the U(1) R-symmetry bundle

W =w+ AR

where w is the spin connection and A® is the R-symmetry connection. There
are two choices:

1. A-model uses vector R-symmetry,
2. B-model uses axial R-symmetry.

From N = (2,2) NLSM one can define two distinct topological string models.
We will study fixed points of A- and B-supersymmetry. They are also called
BPS solutions.

Example. Gradient flow lines satisfy Ssgoar > |h(z;)—h(x;)| which is saturated
by ’
¢* — g70;h = 0.

Topological twist: A-model
U(1) = diag(U(1)g x U(1)y)

B-model

U(1)g = diag(U(1)p x U(1)4)
so V = 0+ w + AR, This changes the representation of SUSY charges and
fields...

4.3 Scalar SUSY

A-model: Q,,@Jr are scalars. For B-model, @7,@+ (one form SUSY: Q_,Q+
and Q_, Q4 respectively). We can define dcohomologies arising from

Qa=Q,+Q ,Qp=0Q, +Q_.
We will strudy
1. fixed points of Q 4, @5,
2. cohomology of Q4, Q5.

Point 1 identifies the BPS solutions and their moduli spaces, while 2 gives the
observables, the intersection theory on Mpgpg.

Remark.

1. A model is defined for all Kahler manifold and also for symplectic ones.
Instead B model requires M to be Calabi-Yau. Indeed U(1) is only pre-
served on CYs.
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2. Topological models on noncompact target spaces have W(¢) # 0. This is
called the Landau-Ginzburg model.

For N' = (2,2) SUSY,
00 = (C+Q- —(-Q1 — (,Q_ +(_Q,)2.

In components

) — . ) : 1 5
O = 26_0z¢" + & (T vl — 59" 05W)
Sh_ =

For A model W =0,&, =1,6 =1,6_ = 0,6, =0
Fixed points:

Qapt=0 = 9" =0
Qapl =0 = 0.5 =0

So BPS solutions of A model are holomorphic maps.
Sa= / ©*(w) =27mn
b
where n is the degree of the holomorphic map ¢. Then

Mpps = [[Mn(2,M).

For the B-model W = O,E+ =1,-C_=1,(; =0,(_ =0. The fixed points
are
QB(pi = 07 QB@Z = ﬁza
Q7 =0,Qp0; =0
Qpp'

which is equivalent to say ¢ is constant. Note that the B model depends on the
complex structure of M. The A and B models are exchanged by Zy automor-
phism of N = (2,2) algebra.

4.4 Chiral ring

The chiral ring is the ring of observables of topological A and B modesl. Recall
that the observables are in bijection with cohomology of @4 or @ 5. The coho-
mologies are different but they are exchanged by the Z/2-automorphism which
we call mirror symmetry.
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Q-invariant operators from superfields Let us focus on the B model.

chiral multiplet is a field ® such that
Di® =0.
The lowest component of ®, which we call ¢, is invariant under Q:

@i@ :Qi¢|9i:0~

Note
— 0
Qi=——"— eiai

T
— 0 4
Dy=—-——+ 0= 04
00
SO

QL =Dy —20%0,.

Substitute in and use the condition that & is chiral,

@f/’ =0.
Since Qp = @+ + Q_, it follows that
QRey =0.

They form a ring by Leibnitz rule, ergo the name chiral ring.

Exercise. Show that the lowest component of a twisted chiral superfield is

annihilated by Q4.

Topological observables The correlators of the observables O do not depend

on the insertion point on the source X of the map:
(0:0-+) =0
as a consequence of SUSY algebra.
Proof. Write 0z = %(82 —1401). Then
0z0 =[H+ P,O]

=[{Q+.Q.}. 0]
={[Q+,0],Q,} +{Q+,[Q+, 0]}
={@+.01,Q,} —{Q+,[Q_, 0L}
using [@p,0] =0,(Q,,0] = —[Q_,0]
={[Q+,0},0,} - [{Q+,Q_}, 01 +{Q_,[Q+, O]}
={@s,[Q+, 01}

Similarly

2.0 ={Q5,[Q-,0]}.

Recall that upon B twist, @4 is antiholomorphic one form. Thus (7)
correlator is independent of insertion point.
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Descent equations From the derivation above we get

do© — {Qs, o

where
oW = dz[Q_, 0]+ dz[Q4, 0.
Continuing,
doW ={Qp, 0%
where

0@ = dzdz{Q,[Q-, 0]}

Of course it stops here and dO®) = 0.

We have seen that the chiral ring observables do not depend on the metric
of the source . What about the target?

A variation of the Kéahler potential gives

/ d*0AK ~{Q,,[Q_, / POAKY 5 5

up to a coboundary because (?) @, = —8% +079,. Then RHS is

{§+7[@77/d29AK]}‘§:§_:0

so chiral ring does not depend on Kéhler structure of the target M.
For variation by a twisted chiral superpotential, Q LAW =0so

/ A22Vhdotdl AW ~ {Q,.[Q_,AW]}

~1{Q+,[Qz, AW]}
= —{Qp.[Q1, AW]} +0

since @, = 0 (no boundary on ¥ and Z* = 0 (since we assume the twisted
central charge is 0). This shows that the chiral ring does not depend on twisted
chiral deformations.

Independence on antichiral deformations

Dependence on chiral deformation:

[ #oaw ~ @4 Q- AWl ~ AW
so-called marginal deformation.
Exercise. Repeat the computation for the A model.

Ring structure Choose a basis {¢;}, of the cohomology of Q. We have
structure constants

k
bip; = Cy; bk
up to a coboundary term. Chiral ring is an unital associative commutative
algebra over C. In terms of structure constant this is saying

mol
Crct, = ..
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To compute the structure constants,
Cijr = (9idjdr)o
where the subscript 0 denotes integration over maps from genus 0 surface to M.

($ijdr)o = ($iClpde) = = Cli(dicoe)

(¢ide) is a topological metric 7.
C;ji depends only holomorphically on the chiral parameters (since antichiral
deformation is trivial). More precisely

0e(Pidjdr)o = <¢z’¢j¢k/2@£2)>

(?)

0¢Cijr = 0;Cyji
leading to WDV'V equation. The symmetry of C;;j together with WDVV im-
plies the existence of F, called prepotential, such that

Ciji = 0:0;0,F.

This makes the algebra of chiral ring a Frobenius algebra.
For A model with W =0,

Qap' =X Qap' =X’
Qax'=0,Qax" =0
Qapl = 0=¢0" + Tl plx*

Qapt = O + I'pply*

The @ a-cohomology in the zero forms. Q aw = 0 if and only if w is closed with

respect to de Rham differential. Similar for exact forms. Thus Q4 =d = 9+ 9.

Thus the chiral ring for A-model as a vector space is isomorphic to Hjy (M).
For B model, the chiral ring is isomorphic to @ H%? (M, \? T*°M).

Landau-Ginzburg B model Observables correspond to holomorphic func-
tions.

{OLG} = C[@la L) @n]/(ajw)

4.5 CY moduli spaces

Recall that we define a CY manifold to be a Kéhler manifold with ¢;(T'M) = 0.
The second condition can be equivalently stated as holonomy SU(n) or trivial
canonical bundle. This means h™? = 1. We also assume the manifold is simply
connected so h''* = h%! = 0. We will focus on n = 3 so by Serre duality
h?0 = p%2 = 0. Thus the Hodge diamond is determined except for h!!, which
is associated with Kahler moduli, and h?!, which is associated with the complex
structure.
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For A model, the Kahler metric gives a form w'!. The Kéahler cone is the
set of w € H(M) such that

3
/wZO,/ wm"zz,/ oo >0,

It is a cone of dimension hll.
For B model,

60 = Q + wiQupdz?dzbdz°

w € HY(M,TM) infinitesimal deformations. A theorem of Tian-Todorov states
that the deformation is unobstructed, so

dim M¢ = h*! + 1

where the number 1 comes from overall scaling of w. Thus M is a projective
space.

4.6 Mirror symmetry
Mirror symmetry is the automorphism
Q- < Q_,Fy < Fa

thus exchanging A and B model. Using the unique (n,0)-form we can write the
B-model chiral ring as HP*?(M). Thus B model chiral ring describes complex
structure deformations of Mp. For NLSM with compact CY3 target, mirror
symmetry exchanges H'!(M,) and H?1(Mp).

Example. Consider a torus of raius Ry and Rs. The Kéhler form is Q =

RiR5df,df;. The Kahler modulus is R; Ry = A.

The complex structure 7 = i%. The complex modulus is %. Mirror

symmetry exchanges A and N, equivalent to invert of radius of one of the
circles (Rg — R%. This is related to T-duality symmetry.

4.7 Topological A-model

S > fz ©*(w+1B),
Q a-fixed point:

0, gpz = 0,%-¢" = 0 holomorphic maps
D' =0,Dsp' =0 TM
D;EZ =0, D9~ = 0 obstruction
Then upon localising,
/ oDYDUeS — / dmdyy@dgp V=5
D M ker(D-,D})
For the bosonic part, there is a stratification

My(M,C) =] My (M, B)
d
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4 String theory

where d € N2(M) and 8 = ¢,(5,) € Ho(M;Z). Give an integral basis {s;}
of Hy(M;Z) and write B = >, d;[S;]. Then d = {d;} is the degree of the
holomorphic map. Then

e Ju ¥ (we) — qﬁ = qudi

where g; = e~ for t; the complex Kihler moduli.
For fermions there is an anomaly (which is related to the virtual dimension

of the moduli space):

#© — 45®

By Hirzebruch-Riemann-Roch

indD, = /
b

Remark. The index is the virtual dimension of the moduli space. If g = 0
and M is CY then it is positive so we need to integrate over some forms (in
physics language, inserting observables). If g = 1 and M is CY then the virtual
dimension is 0. For g > 1, the virtual dimension is negative, meaning that there
is no solution. This suggests we should integrate also over the moduli space of
complex structures on 3,. In physics language it is topological gravity. The
(real) dimension of moduli space of complex structure on genus g surface is
6g — 6 so after taking it into account the virtual dimension becomes

=indD,.

ch(g* (TM) td(Tx) = dime M(1 — g) + / o (e1(Tar)

g9 29

dime M(1—g)+ / " (e1(Tar)) +3(g—1) = (dime M—3)(1—g) + / o*(c1(Tar))

which is zero for M CY3. Non trivial topological string amplitudes at all genera.

What is to come: schematically
(JIO0@)a=2_ "N
k B

RHS is called the Gromouv-Witten invariants, informally the “number” of holo-
morphic maps of degree 3 from X, to M.

4.8 Evaluation of observables

Generic case: Ind = K > 0,#@(0) = 0. Let O;(z;) be the pullback of w; €
H*(M) via the evaluation map at P, € &

ev; : My(M,B) - M
@ = o(P)
Then
(O1(Py) - On(Py)) = Zqﬂ/ eviwy A+ Aeviw,
T Imne)

is called the Gromov-Witten invariants and denoted N, f . If [wy] is the Poincaré
dual of D; then

Ngﬁ(Dl -+ Dy,) = #{holomorphic maps ¢ such that o(F;) € D;, p.(X) = 5}.
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N, gﬁ € Q in general because of nontrivial automorphism group on the moduli
space of stable maps.
The simplest example is 5 = 0 so ¢.(X) is a point. Then

Mg=o(M,0) = M

and ev; = idys for all P;. Then
(O1(P1) - On(P))5 = / WL A A,
M
“recovering” intersection theory on M. For example for M CY3,
CPst = (0,0,0,) ™" = / Wa ANwp Awe = #(D, - Dy - D).
M

Topological metric
Nab = <6a6b> = / Wa N Wp.
M

4.9 nongeneric case

HY(S, K ® ¢*(T3;)) # 0, which we assume to have constant dimension ¢. This
the rank of the obstruction bundle Oy;. Then when integrating there is an extra
insertion e(Oyy), an (¢, £)-form:

(O1(P1) - On(Pn))p :/ eviwy - - Aeviw, Ae(Opr).
Mg (M,B)
Take derivative with respect to Kdhler moduli,

9

7:(0.0,0) = (00,04 [ O)
by

4.10 Example of topological A model

We consider maps S = P! — P!, The cohomology of @ 4 is the same as the de
Rham cohomology, which is C in degree 0 and 2. The observables of A model
are generated by P and @ in H® and H'. From intersection theory we know

H=1
Pt

for H € H?(PP') the hyperplane class. This corresponds to the topological metric
npQ =nep =1

and 0 otherwise.
Three point correlator: a priori

(QRQ) =Y _(QQQ)y.

neN

41



4 String theory

For ¢ of degree n, let 3 = ¢, (P') = n[H]. The expected dimension of Mg (P!, 3)
is

dim¢ PY(1 — g) +/

©*(cr(Tp)) =1 +/ ©*(2H) =1+ 2n.
]P)l

Pl

The axial R-symmetry charge R = (#x’,x*) is 6 and must equal to twice
the expected dimension, so the only contribution is from n = 1 maps. Recall
(QQQ); is the “number” of holomorphic maps from the source P! to the target
P! with degree 1 and mapping 3 fixed points of the source P? to 3 fixed points
of the target P'. There is only one such map. Thus

(QQQ) ="
The quantum cohomology we get is
Cppg =npqg =1,Cppp =0,Cpoq =0,Cqqq = €'

in which we get a correction by the Kahler moduli. The prepotential is

1

F=—vit+et

21) +e
where v is associated to HY and ¢ is associated to H2. One can check 0;0;0LF =
Cijk-
Remark. F' can also be obtained as 7-function of estended Toda hierarchy. C.f.

Carlet-Dubrovin-Zhang, Okounkov-Pandhariphande

4.11 Local P!

P! is not CY so we want to locally embed it in a CY3 and consider its tubular
neighbhourhood. Total space of a rank 2 vector bundle £, & Lo — P! with
L; = O(—n;). The condition that this is CY is equivalent to n; +ns —2 = 0.

Example. The conifold Tot(O(—1) @ O(—1)) which is the crepant resolution
of conifold singularity ab — cd = 0.

P! — O(—=1)®O(—1) isolated rational curve in the target. Multiple covering
maps are known explicitly:
P! — P!
Zu
(z,y) = (s,1)

For d =1, u = %% is determined by the three points. For d > 1,

cz+d
s Y aiyl
t S iy
so My(B) = P2a+L,

2

Cabe(t) = lea) Nles] Ve + > %qk

E dlk
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4.12 Topological Landau-Ginzburg B-model

We assume the critical points y1, . . .

0r) =Y filva)-

{ya}

<Of1 s ya)(deta 9; W)g

For a sphere (g = 0 the topological metric is

fif;
My =D = et 00, Ya)
{ya}
The three point function is
B fifile
Cljk - det 8i8jW (ya)'
{ya}

Example. Sine-Gordon model: §? — C*, W =z + e~
1

generated by 1,z subject to 22 = e~ (since W' =1 — e

,yn are isolated. The chiral ring is C[p!

H(ya)

The chiral ring is
= 0. The critical

points are z* = +e~*/2. The Hessian is
ot
20,(20, W) = (24 — )|+ = +2¢71/2,
z
Correlator
1 1
(111) = e 1/2 + Ry =0
o—t/2 et/2
(z)o = 2e—1/2 + “9e—t/2
et et
(1zz)g = 20t + sy 0
etz ez
(z22)0 = 2e~t/2 + —2e-t/2

This is the same as A-model on P! target upon identification P with 1 and
@ with z. It comes from mirror symmetry. One can prove that the mirror of
A-model on P! is indeed Landau-Ginzburg B-model on C* with Sine-Gordon

superpotential.

4.13 B-model on compact CY

Fixed locus are constant maps and the moduli space is M. The observables are

generated by the chiral ring

q
@ HOP(M, \TM).
p,q

The virtual dimension is dim¢ M (1 — g) =n(1 — g). On a CY3,

q

HOP(M, \TM) = H"=%"(M).
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Vector R-symmetry: > . p; = >, ¢;.

We require
S

> i+ ) =2n(1 - g).

i=1
For g =0 we need > . p; =Y ¢; = n.
(0,0,0.) = / WhWIWEQ A Q2
M

Choose a basis for Hz(M) az, 3! for I =0,..., h*! such that
ar N ﬂ‘] = 5}]

Let 2! = Jo, w:Gr = fﬁf Q.

0 :/ Q%Q Hodge-Riemann
M 0z

Z/Q 8kQ—/8kQ/Q
ay B a 87

) )
= / (z'A; — GBY) /[,J @(ZIA, -Gl - / ?(zIAI — G,BI)/ (zTA; — Grph)
ag @y

/A1:5{,/ Bl = 4!
ay 87

Using

we get

0 1
Gy = @(ZJGJ) -GGy = §a‘,(;/c:])
Define G = 2'Gy, we get 2G; = 9;G. Multiply by 27 and sum over .J,
0
J _

This shows that G is a homogeneous polynomial of z! of degree 2. This is the
prepotential.

C]JK = a]aJaKG

zI:/ Q,a—c’;:/ Q.
al 0z B

Special geometry:
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5 Linear sigma models

5 Linear sigma models

Let ¢, i =1,...,n be scalar fields and consider the Lagrangian
1 i\2
L==5 (0,6 = U(®).

2

For example U(¢) = %(Zi(qbif —7)2. The lowest energy field configurations
are those with ¢* constant. If » < 0 then the unique mimimum is given by
¢* =0 for all 5. If » > 0 then the mumimum is given by

D @)=

which is a sphere. We thus define
Mc={(¢") €R": ) () =r} =51,

At each point of M. the gradient of U is zero, with Hessian 9;0;U symmetric
tensor in R™. It can be diagonalised by an orthogonal transformation with all
eigenvalues nonnegative (since it is a minimum).

T M, corresponds to zero eigenspace, while NM,,. are the positive ones.
Physically, fields with positive eigenvalues are massive. One can study effective
theory of massless modes only. Thus the linear o-model reduces to nonlinear
o-model of maps to Myse =2 S™ 1.

This generalises to the construction of M,. as quotient spaces. Standard
example: CPY~!. One can consider CPV~! as the quotient of S?N—1 C CN
under the action of U(1). Physically, we can consider the Langrangian of N
complex fields

L==3 IDutil* —U(9)
where we identify
(¢1(2), -, on (@) ~ (€701(2), ..., €T on (2))
and the covariant derivative
Dyu¢; = Oudpi + \/jlvn@

where v,dz* is the connection one form of the U(1)-bundle. One checks that
under ¢; > eV (@) vy > vy — Oy 80 Dy = ei’YDHd)i. and the Lagrangian is
invariant under U(1).

One defines
Mvac = {(¢1) : Z ‘¢i|2 = T}/U(l) = CPN_l.

To find the mimimum set gf = 0, from which we get
"

S " (Dybiti — 6:Duti) =0

K2

which is solved by

I i 20i(Fi0udi — (9#51-01-).
S I SHPAE
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This is the Fubini-Study metric on CPV 1!

N-1 N-1 =
grs = iz |dzf” _Zizl |Zidzi|*
1+ 2N 2 L+ X aP)?

The standard procedure for reducing to NLSM: One takes tangent vectors
in CV, imposes the condition QU = 0 (i.e. orthogonality to orbits) to obtain
tangent space to the quotient target space Myac.

C.f. Hitchin-Karlhede-Lindstrom-Rocek, HyperKé&hler metrics and SUSY.

5.1 SUSY gauged linear sigma model

Recall that we have met chiral superfield with Lagrangian (in flat space)
L= / d*0pe.

We want a gauge theory for the transformation ¢ — e“¢. First note that
A itself must be a chiral superfield. To make the Lagrangian invariant, we
introduce a new real superfield V' which transforms as

Vs V+i(A- A

The modified Lagrangian is defined to be
L= / d*0ge" ¢
which is now invariant. Expressed in terms of components,

V=00 (vo—v)+ 9+§+(v0 +v1)
=00 0-09 4

=+~ 07 (0

this is the supersymmetrization of the gauge connection. V is the connection
superfield.
The curvature superfield is

S=D.D.V
which is a twisted chiral superfield. ¥ is invariant under V + V +i(4 — A) so
D,Y=D_¥=0.
In terms of components,
S = o(§) + 070, (7) — 0 A_(5) + 070 (D) — iver] ()

where vg; = Ogv1 — O1vg is the curvature of v. This is the supersymmetrisation
of the curvature.
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The SUSY Lagrangian is
L = [ 656
— —D¥@D, o+ i_Dztp
+ i, D.apy + Do
+|F]? = |of|g]?
— oy — T
— A PN
+ip A —ip_Aig

Note Dz is the U(1)-covariant derivative, not to be confused with D, the auxil-
lary derivative for superfield.

‘Cgaugc = L/délaiz

2¢2

1 -~ —
= 52 (-0"70, +iA-0A- +ir 0N + 2, + D?).

Finally there is the twisted superpotential
WFI,@ = —tX

where ¢t = r — 16.
1 ~
Lr1p = 5(—t/d26‘2 +cc) =rD + vg;.

The two terms on the far right side are called Fayet-Iliopoules term and #-angle.
The full Lagrangian is

_ 1 — 1 ~
I P Ve 4 Lo 2
C—/d 0(Pe’ @ 26222)4-2( t/d 0% + cc).

The potential is

2
U(é,0) = oIl + S (18] - v)*.

Remark. Recall that we have R-symmetry U(1)y x U(1)4. £ is invariant if
we assign (0,2) to ¥. We can then generalise to multiple bundles: Consider

H’;zl U(1). ®; “matter chiral fields” transform as
B, s i Quidap,.

The Lagrangian is then

k
= o - 1 ~
L= /d4(9§ D@V P, — 5oz Za¥h) + 5(/&“9} (—taZa)).
i a,b a

a,b=1

We can add a superpotential term

£W = /dQGW((I)Z) + cc
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The full potential term is

U Z|Q1a0a| |¢1|2 ‘¢z‘2_va)(sz|¢z| _Ub +Z‘

Example (SUSY CPV—1).

2
U= loPloil? + S (3 I62 —r)?

For r > 0, the extrema is given by o =0, |¢;|*> =

Myae = CPY L = {(41,...,0n) : Z |p:i|? =7}/ U(1).

The “effective” Lagrangian for TM,,. turns out to be the NLSM of R2 —
CPN-L,

Equation of motion for fermions:
D it =0, P = 0.

In other words, ¢+ = (Yit,;,) is tangent to >, |#:|> = r as in NLSM and
orthogonal to U(1)-orbit 6(¢;, ¢;) = (i¢;, —ib;).
Vector multiplet equation:

) Zi(aiau(bi - au%ﬁbi) Z 1/%#/’1—.

1
Ty R SRS SATHE

Substitute in this solution v, = vy
four fermion terms.
Recall the complexified Kéhler modulus consists of two parts

we get r times Fubini-Study metric. o gives

wrs + 185,

where B is the pullback via ¢ of curvature 2-form of the U(1)-connection on
CP™!. Indeed vy, is the pullback via ¢ of a U(1) connection A on My, dA =

5. Then
= *A
(/m 2ﬂ/d /¢

which is the B-field coupling if we set B = gwpg.

(] — ilB] = o lwrs]

where t is the twisted superpotential parameter ¢ = r—if. Thus the complexified
Kaéhler class is a twisted chiral parameter.
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5.2 Toric manifolds

To work with toric manifolds we work with U(1)*. Same as before we introduce
N fields @4, ..., Py with charges Q;, where 1 <i < N,1 < a < k. The coupling
constants are

1 1
S = 5ab7-
a,b €a

The potential is thus

2
€
U:Z|Qia0a|2|¢i‘2+25 ZQia|¢i|2_ra .
The moment maps are indexed by a
Ha = ZQza|¢z|2 —Ta

and the potential is minimised at p, = 0.
Choose r, such that U = 0 implies o, = 0 for all a. Then

Xr = {(®1,...,®n) s o = 0}/ U(L)* = u71(0)/ U(L)"*

is a symplectic quotient.
X, also has a complex structure, namely that inherited from CV. Indeed we
can regard X, as the quotient

X, = (€Y - P)/(C*)"

where P is the locus of CV whose (C*)*-orbits do not contain solutions to
e = 0. This depends on the choice of r,’s. With respect to this complex
structure the symplectic form is Ké&hler. This whose discussion is related to
Marsden-Weinstein theorem relating GIT and symplectic quotient.

The natural torus action on CV descends to a (C*)N~* action on X,. This
action is free and transitive on an open dense submanifold, making X, a toric
variety.

The specific X, depends on {r,}. Given X,,, the region of {r,} such that
X, =2 X, is the Kdhler cone.

There is a geometric interpretation

Qia = c1(Hj)og

where a,,1 < a < k generate Ho(X,,Z) and H; is the line bundle over X,
admitting ¢; as a global section.

c1(Hi) =Y Qiac1(La)

where L, is the line bundle over X, defined by
(CY = P) x C)/(C*)*

with action (A1,...,Ag) : ¢ = Aqc.
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ot = MY Qu(6i0ubi — 0u8,6)

is the pullback via ¢ of the connection 1 form of £,. Here M is the inverse of
Mgy, = Zi QiaQib~
Using the change of basis

a1 (Xp) = Z a(H;) = Z D Qiacr(La) =D braci(La)

(the first equality comes from the SES

0 Ok H® --®Hy — Tx, —— 0

) where b1, = ), Qia. The condition X, begin CY is equivalently to by, = 0.

Example. Gauge linear sigma model allows us to connect different models.
We examine Opn-1(—N). Consider U(1) gauge group with IV chiral superfields
with charge 1 and 1 chiral superfield with charge —N. Take r > 0, the My, is
the total space of O(—N) over PY~1. For r < 0,

Mvac - {N|p‘2 = |T’| + Z ‘¢1|2}/U(1)

Since |p| # 0, either not all ¢;’s are zero, CV /ZN.
Example. Consider Opi(—1) & Op1(1). There are four fields with charge
(1,1,-1,-1).

=01 + 162l — ds]” — |al* — 7.

For r > 0 and r < 0, the moduli space is the total space of Op1(—1) & Op1(1)
(note the symmetry). For r = 0, we have a conifold singularity zw = yz by
letting

T =103,y = P14, 2 = P23, W = P204.

The total space of the bundle gives a crepant resolution of the conifold singu-
larity. c.f. Witten, Phases of two-dimension SUSY theories.

5.3 T-duality

Consider maps z : R x S' — Sk. We can think of = as a function x(t, s) where
t is the time parameter and x is 27 periodic in s. The action is

_ 1 _ 1 2 2
S = 5 _/zLdtdS_ 47T/E((8tm) (0sx)=)dtdt.

m
The Euler-Lagrange equation asserts that the equation of motion is

9? ok
(52 = 5:2)" =0

which has well-known solution

x(t,s) = ft—s)+g(t+s).
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5 Linear sigma models

By periodicity
x(t,s+2m) = x(t, s) + 2rmR.
m € Z = m;(S') is called the winding modes.
We can expand z in the Fourier modes of the target space S}%, which have

momentum p = %. After quantisation there are two quantum numbers, result-
ing in a direct sum decomposition

H= D Hem
(e,m)ez?

and we label the eigenstates by |¢,m). The solution of the Euler-Lagrange
equation can then be expressed as

-z 1

xr(t—s) = Zo . Lo ﬁ(t — 5)Pg + oscillationsg
— 1

xp(t—s) = To— %o —(t — s) P, + oscillationsy,

2 B

where z is the zero mode (?) and [z, po] =4
14
po |€,m) = = |¢,m) ,wo [£,m) = mR|l,m)

and

pr = —=(po — wo),pr. = —=(po + wo).

S
N

The oscillation part is

0SCR = E 71n (t—s)

n;éO

oscy, = fz

n#0

71n(tfs)

The associated Hamiltonian is

Hp == (H P) fPR—i—Za Oy + = Zn

HL:;(H+P fPL+Za nlin + = Zn

Using (-regularisation, we identify

1
= —]_ = ——.
don=¢-1)=-15
Now we compute the partition function
’I‘I"H 6_5H.

Instead of considering the source as a torus with sides § and 27, we consider
the more general situation 7 = 7 + 75 and the torus has lengths 277y, 2775.
We consider

Z(Ta F) = T‘I‘H QHR A
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5 Linear sigma models

2miT

where ¢ = ¢ . In our case

oo
2(r.7) = (@ [] e gt gt Y0 i
n=1 (¢,m)€z?

The first two lines are

= 1
QO n\k _
tryn g => (¢") e
k=0
> 1
Fndn _ N (Fn)k _
try L q = Z(q )¥ = T—7
k=0
oo
1 2 1 2
(@) ] | -]
}1 1—gn n(7)

where 7 is the Dedekind n-function, a modular function. Under the transfor-

. afB+b
mation 7 > p

A+ 1) = () n(—) = (=) ().

Z(7,7) is invariant under exchanging momentum ¢ and winding modes m.
In other words, we can exhange R <> %, { <> m. This is called T-duality.

NLSM on 72 Consider T2 = S}%l X 5}22. It has Kéahler moduli

and complex moduli

Suppose we perform T-duality on the second cirle, namely Ry — R%, then we
exchange the two parameters.

Exercise. Compute the partition function with target space T? with B-field
(p= £ +iA) and show that it is invariant under p > 0.

T-duality in the path integral formalism Consider maps ¢ : ¥ — Sk and
action

1
S, =— / R2h* 9,00, oV hd*o
471' »
where h is a metric on X. Intoduce a one-form B on ¥ and consider

1 1 i
S =— | —nw¥B,B,Vhd? —/B/\d .
27r/22R2 wBoVhdo + o . v

One can do two things with S*

1. either take derivative with respect to B to get S, with target space Sll%,
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5 Linear sigma models

2. or take derivative with respect to ¢ to get another action gg with target
St
1/R

For 1, the equation of motion is B = iR? *y, dy and
S/‘B:iR2*z;dap = S<p~

For 2, the equation of motion for ¢ implies B is a closed one form on ¥ so

we write
29

B =dfy + Zaiwi

i=1

where w; is a basis of harmonic forms of H*(X;R). Choose v; € H1(X < 7Z)

such that
/ w]‘ = 513
Vi

/ w' A wj = JY,
by
a unimodular matrix.

The key observation is that the equation of motion of ¢ also imposes con-
straints on a;. By periodicity

Note

dy = dpo + Z 2mnw’.

Then
/B ANdp = ZWZaiJijnj
.
so € will contain ef =i %73
over j imposes the condition

For the action to be single-valued, summing

a; = 2Tm;.

This shows B = df where 6 is a periodic variable of period 27. Plug back into

S’ one sees

~ 1 1
S| B=dg = Sp = E/ ?h’“’aﬁ&,&\/ﬁdzm
>

a NLSM with target space 5’11 /R In summary, upton the substitution Rdy =

L % df, S, becomes Se.

5.4 Strategy for constructive proof of mirror symmetry

We will prove mirror symmetry for toric varieties. Toric varieties as target
spaces can be realised from GLSM N = (2,2) with suitable complex superfields
®; and supercharges (using U(1) representation). The phase of ®; is S!, to
which we will apply T-duality. This produces a LG model W, the mirror to the
toric variety. If it is CY then we can solve it for a geometric model.

For each chiral superfield ®; we get Y;, a neutral (U(1)-invariant) superfield
with twisted chiral superpotential.
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5 Linear sigma models

GLSM
/ x@jality
NLSM with toric target LG model
X X

T-duality for SUSY sigma model Consider the case where the target is
C* =R x S§. Let B be a real superfield, © twisted chiral superfield.

2
Ly = /d‘*@(%B‘Z - %(@ +9)B).

As before we can apply either equations of motion for B or for ©, getting mirrors
of each other. The equation for ©,© implies that

D.D_B=0,D,D_B=0

which is solved by
B=o+ 9.

Substituting back one gets

2 2
Lo = /d‘*a%(qw@? = /d%}%q@.

This is the Lagrangian for a o-model of maps into a cylinder R x Sk.

On the other hand the eom for B implies

1

B 2

(©6+0).
Substituting back into £1 gives

L3 = /d‘*a(—#@é),

a o-model of maps onto cylinder R x Sll R
One thus gets T-dual models, which satisfy

R*(®+®)=0+06.

Since we are interested in gauge o-models, consider
1 —
L= /d49(62QV+B -5 (Y +Y)B)

where V' (superconnection) and B are real superfields, Y,Y are twisted chiral
superfields with Im(Y") periodic with period 27.
Same as before the eom of Y, Y demands

ﬁ_i_D_B == 07D+E_B = O
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5 Linear sigma models

which is solved by -
B=9v+4+V

where W is a chiral superfield with Im ¥ also 27-periodic. Substituting back we
get

Ly = / digerQV AT - / d*6ee*? @

where ® = Y.

The eom for B gives

Y
B = -2QV + log( i
Substituting back gives

— 1 — _

Ly = /d49[QV(Y +Y) = 5(V +Y)log(Y +Y)].
For D,Y =0,D_Y =0,

/d49VY = /d0+d§’(E+D,V)Y = /d2§2Y

where ¥ = D, D_V is the supercurvature. Thus the Lagrangian includes a
kinetic term for X:

L= /d49(—2—12§§] - %(Y +Y)log(Y +Y)) + /d2§EQ(Y —t)+cc
e
This is T-dual to
L= /d‘*@emv@ + z%iz — t/d2§QZ.
e

They satisfy - -
20e29Vd =Y +Y.

W(Y) = X(QY —t). So far everything is on classical level. Quantum effects

add a further term to W proportional to e™Y .
Sloos = o= [ Llpes = —= [ 2D oP 24 118,024 — (Fia+ D?)+i0F
bos = - TL|bos = R z|Dud|"+|od| +@| 0| ‘*‘@( 12+D7)+i0F1z

where
D = é*(|¢]* —ro)

where t = rg + 6.
The BPS solutions are

Fio = e*(|p|*> —70), Dz¢ = 0,0 = 0.

These are known as vortices. Why do they saturate the bounds? Recall that
in SQM we used squaring argument to find the mimimum. Substitute the BPS
solutions, we get

1 1 1
—/de\2D3¢|2 — F12|¢)? + = (Fia + D)*> — = DFj5 4+ i0F}5.
2 2 e?

e2
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5 Linear sigma models

Recall that D = —e?(|¢|?> — 19) so we can rewrite this as

1 1 t
771_ /d2$(|2DE¢|2 + 2762(F12 + D)z) — % /dQZFlg.

Thus Spes > tK where K is the first Chern class of the U(1)-bundle. One then
sees that the purported BPS solutions achieves the bound.

Vortices Work with complex coordinates z = x1 +izs. As z — o0, |(;5|2 —T0.
Let ¢ = /o6 s0 || — 1, thus mapping Sl — S They are classified by
k € Z = m S, called the charge of the vortex. For k = 1, ¢ — \/ﬁl—;
Vanishing of covariant derivative imposes as z — oo

A, — 0, arg(z).
One can then reparameterise the eom with f(w),w = |2|2:

z

ia= 10 By e /| T )

2 z z z|? 2w m
Plugging back to the BPS solution, we get an ODE for f

(:’2’!“0

wf’ = S2f + £, £(0) = 1, £(0) = 0.

There are approximate solutions in terms of modified Bessel functions of the
second kind (but we don’t need them).

For |z| > ﬁ, f o~ /m(z)e” ™ where m = e/2rg.

Fermionic part

~i(T_, \y) (2(;% e?f%) (K’;) +i(ty, A) (zfﬁ _1@) (ff)

For D=, D, apply index theorem to get

1
IndDg:—/Fm:Kzl.
2w

Are these (¢_,A}), (¥4, A_) zero modes? The answer is no. We have vanishing
theorem

_ 1 _
0= [ da(2Dot — 6% + 2% ol — SO
2 _
= [ oD + 260 P + S10F P + 675 P)

Remark. 3, A are commuting variables:

W@ =3 9P

n

where w,(LO ) is Grassmann odd.
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5 Linear sigma models

Thus the only zero modes in the K = 1 vortex background are I

—(0) 4 =—(0)
@000 = [ e T o061 ()0
Rewriting in twisted chiral variables
Vo =Y +Y

and expanding in components (Y has components (y, x+,x_), ® has compo-
nents (¢, ¥, 9-)),

X+ =209, X = =209
Since

Vool et ~eTYx X,

the vortex effects generate a potential W (V) = e~ .

In summary, we started with GLSM with ®;,Q; wrt U(1). This gives a
NLSM with toric variety Q;, which is T-dual to a LG model with Y; and super-

potential
N

N
widetildeW (Y;) = —X(t — Z Q;Y:) + Z o Yi
i=1 i=1

Example (CPV~!). The GLSM has ®; for i = 1,...,N and Q; = 1. The

mirror has W = X(Y; + -+ Yn) + >, e ¥i. The eom for ¥ is
Yi+...Yy=0

so one gets W=eY4 ... 4e W14 XY For N = 2, one gets CP! in
A-model has mirror with Sinh Gordon potential.
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