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0 Introduction

0 Introduction

Throughout this course we fix a base field k = k. All schemes will be k-schemes
and morphisms k-morphisms. By algebra we mean k-algebra. For a scheme X
by a point we mean a morphism x : Spec k → X or equivalently κ(x) = k as
k-algebra.

Motivation: a scheme X is determined up to canonical isomorphism by its
functor of points on Affop. In fact many moduli schemes are defined this way.
For example if X is a projective scheme and F is a coherent sheaf on X one
defines the quotient scheme QuotX(F) by its associated functor of points

S 7→ {G ⊆ p∗XF : F ∈ Coh(X × S), p∗XF/G flat over S},

give a morphism f : S1 → S, it induces (f × idX)∗G ⊆ p∗XF (we have inclusion
because of flatness). Grothendieck proved that QuotX(F) is a disjoint union of
countably many projective schemes. The special case HilbX = QuotX(OX) can
be defined also by

S 7→ {Z ⊆ X × S closed subscheme : Z flat over S}

with morphisms defined by pullback

f∗Z = Z ×X×S X × S1 ⊆ X × S1.

Infinitesimal deformation means studying the restriction of the functor of
points to the subcategories of Aff of fat points, i.e. schemes S of finite type
such that Sred = Spec k. In other words, there is no topological information
and everything is about algebra. Since such S has only one nonempty open set,
it must be affine, say A. Then A/

√
0 = k. Thus the nilradical must be the

(necessarily unique) maximal ideal mA ⊆ A.

Proposition 0.1. Let A be a finitely generated local k-algebra. Then TFAE

1. SpecA is a fat point.

2. A is finite-dimensional as a k-vector space.

3. A/mA = k and elements of mA are nilpotent.

4. A/mA = k and mA is nilpotent.

5. A/mA = k and A is artinian.

Recall

Proposition 0.2 (Nakayama’s lemma). Let R be a local ring and M a
finitely generated R-module. If mRM =M then M = 0.

Proof. The discussion before the statement of the proposition shows 1 ⇐⇒ 3.
3 =⇒ 4 since A is noetherian, and 4 =⇒ 3 trivially. If A is finite-dmimensional
then A/mA is finite-dimensional over k so must be k since k is algebraically
closed. Also any descending chain of ideals must stabilise. This shows 2 =⇒ 5.
5 =⇒ 4 by Nakayama since the chain

mA ⊇ m2
A ⊇ · · ·

2



0 Introduction

must stabilise. Finally 4 =⇒ 2 since

dimA =
∑

dimmi
A/m

i+1
A .

Definition. We denote by Art or Artk the category of algebra satisfying
any of the equivalent conditions. Its is opposite to the category of fat points.

Remark. k is both an initial and final object in Art. Thus each A in Art is
canonically isomorphic to k ⊕mA.

Corollary 0.3. Let F : Art → Set be a functor. Then F =
∐

x∈F (k) Fx

where
Fx(A) = {a ∈ F (A) : F (π)(a) = x}

where π : A→ k. In particular if X is a scheme thn hX =
∐

x∈X hX,x where

hX,x(A) = {ϕ : SpecA→ X : (imϕ)red = x}.

Example. Let An = k[t]/tn+1, Sn = SpecAn.The natural surjections An →
An−1 induces closed embeddings Sn−1 ↪→ Sn. We want to study a scheme X
near a point p by solving the following question: given p : S0 → X, does ϕ1

exist? If so how many choices are there? What about ϕ2 etc?

S0 X

S1

S2

p

ϕ1

ϕ2

We will work out the caseX = SpecR whereR = k[x, y]/f where f(0, 0) = 0.
Let p# : R→ k. We will look at the locus of the following four equations:

1. y2 − x3 − x,

2. y2 − x3 − x2,

3. y2 − x3,

4. y2 − x2.

Giving ϕ1 is the same as giving

ϕ#
1 : k[x, y]→ k[t]/t2

x 7→ a1t

y 7→ b1t

such that f(at, bt) = 0 ∈ k[t]/t2. For 1, for example, we need

(b1t)
3 − (a1t)

3 − a1t = 0.
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0 Introduction

Using t2 = 0 we get a1 = 0 and there is no restriction on b1. For 2, 3, 4 one can
check any choice of a1, b1 works. Geometrically, this is because the tangent at
the origin is the y-axis for 1, and the entire plane for 2, 3, 4.

ϕ2 is given by

φ#2 (x) = a1t+ a1t
2, ϕ#

2 (y) = b1t+ b2t
2.

One find in each case

1. given a1 = 0, any choice b1 lifts to ϕ#
2 and one requires a2 = b21. Similar

to before, there is a family of lifts from ϕ1 to ϕ2.

2. not solvable unless a21 = b21, in which case any a2, b2 works.

3. not solvable unless b1 = 0

4. Same as 2.

Geometrically for 2 and 4 there are two distinguished tangent direction. For 3
the tangent direction is the horizontal axis.

As an exercise, work out ϕ3.
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1 Linearisation

1 Linearisation
Let f : X → Y be a morphism of schemes, x ∈ Y, y = f(x). We want to
compute Ωf (x) (to be defined soon) in terms of hX,x and hY,x.

Convention: let X be a scheme and x ∈ X, F a quasicoherent sheaf on X.
We denote by Fx the stalk of F at x and

F(x) = Fx ⊗OX,x
κ(x) = Fx/mxFx,

the fibre of F at x. If F is coherent then Fx is a finitely generated OX,x-module
so F(x) is a finite-dimensional k-vector space. In fact by Nakayama, u1, . . . , ur
generate Fx as an OX,x-modules if and only if their images generate F(x) as a
k-vector space.

Recall that Ωf = ∆∗IX/X×Y X which is a coherent sheaf on X (assuming
locally of finite type). It is local in both X and Y and when X = SpecS, Y =
SpecR and f is induced by R→ S, we have Ωf (X) = ΩS/R. If S has presenta-
tion S = R[x1, . . . , xn]/(f1, . . . , fr) then we have an exact sequence⊕r

i=1 S · fi
⊕n

i=1 Sdxi ΩS/R 0α

where
α(fj) =

∑
[
∂fj
∂xi

]dxi.

Thus for p ∈ X there is a presentation

Ωf (p) =
⊕

kdxi/〈
∑ ∂fj

∂xi
(p)dxi〉.

We denote by Vect the category of finite-dimensional k-vector spaces with
k-linear maps.

Lemma 1.1. There exists a fully faithful functor Vect → Art sending V
to k ⊕ V with multiplication

(a, v) · (b, w) = (ab, aw + bv).

In other words k ⊕ V =
⊕

n≥0 Sym
n V/

⊕
n≥2 Sym

n V .

Remark. The image of the functor is {A : m2
A = 0}. It has a left adjoint

A 7→ mA/m
2
A.

Theorem 1.2. Let X be a scheme, x ∈ X, A ∈ Art such that m2
A = 0.

Then there is a natural bijection

Homk(ΩX(x),mA)→ hX,x(A).

Proof. wlog we may assume X = SpecR and x corresponds to a maximal ideal
mx. Then

hX,x(A) = {ϕ : R→ A : kerπ ◦ ϕ = mx}.
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In other words ϕ makes the following diagram commutes

R R/mx

A A/mA

π

ϕ ∼=

π

Write A = k ⊕ mA and ϕ(f) = (π(f), λ(f)). Then one can check that ϕ is a
ring map if and only if λ ∈ Derk(R,mk) where the R-module structure on mk

is via restriction of scalars along π. Thus we have bijections

hX,x(A) ∼= Derk(R,mA) ∼= HomR(ΩR,mA).

Since mA is a R/mx = k-module,

HomR(ΩR,mA) ∼= Homk(ΩR/mxΩR,mA).

Note that the isomorphism is natural in both X and A. The next result says
that by transport of structure the tangent space TxX can be “read off” hX,x.

Corollary 1.3. Let D = k[ε]/ε2, D2 = k[ε1, ε2]/(ε
2
1, ε1ε2, ε

2
2). Let X be a

scheme and x ∈ X. Then TxX := ΩX(x)∨ is canonically isomorphic to the
k-vector space V defined as

• as a set V = hX,x(D).

• given λ ∈ k, multiplication by λ is induced by hX,x(αλ) where αλ :
D → D is multiplication by λ.

• define maps

ρi, π : D2 → D

ρi : εj 7→ δijε

π : εj 7→ ε

Then
hX,x(D2)

(ρ1,ρ2)−−−−→ hX,x(D)× hX,x(D) = V × V

is a bijection and the sum on V is the composition

V × V → hX,x(D2)
π−→ hX,x(D) = V.

Proof. Exercise.

Proposition 1.4. Let ϕ : X → Y be a morphism, x ∈ X, y = ϕ(x). Then
Txϕ := Ωϕ(x)

∨ is naturally isomorphic to the kernel of the map

hX,x(D)→ hY,y(D).

6



1 Linearisation

Proof. The exact sequence of modules

ϕ∗ΩY ΩX Ωϕ 0

pulls back to

ΩY (y) ΩX(x) Ωϕ(x) 0
dF (x)

Dualise to get

0 Txϕ TxX TyY

hX,x(D) hY,y(D)

dF (x)∨

To complete the proof, one check that by the remark on naturality dF (x)∨ is
equal to hX,x → hY,y induced by ϕ.

Remark. Note that if we define a tangent sheaf by TX := Hom(ΩX ,OX) then
in general TX(x) 6= TxX. As an exercise, compute both for k = C (or any field
whose characteristic is not 2), X = Spec k[u, v, w]/(uv − w2),mx = (u, v, w).

Proof. Let R = k[u, v, w]/(uv − w2). ΩX(x) has a presentation by tensoring
with k the exact sequence

R R3 ΩR 0
u,v,−2w

so dimTxX = dimΩX(x) = 0.
On the other hand TX(x) does not have a “nice” presentation since upon

taking dual we get a sequence that is in general only exact on the left

0 Hom(ΩR, R) R3 R

and tensor product is right exact. Nevertheless we can proceed as below. Let
S = k[u, v] and then R = S ⊕ Sw. Then an element of Hom(ΩR, R) can be
expressed as

(f1 + wg1, f2 + wg2, f3 + wg3)

with fi, gi’s in S, subjecting to

v(f1 + wg1) + u(f2 + wg2)− 2w(f3 + wg3) = 0.

Collecting terms, we get

vf1 + uf2 = 2uvg3

vg1 + ug2 = 2f3

so we deduduce u | f1, v | f2. Write f1 = uf̃1, f2 = vf̃2, we can then express f3
and g3 in terms of f̃1, f̃2, g1, g2:

f3 =
1

2
(vg1 + ug2)

g3 =
1

2
(f̃1 + f̃2)
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In other words, Hom(ΩR, R) is generated as an S-module by

(u, 0,
w

2
), (0, v,

w

2
), (w, 0,

v

2
), (0, w,

u

2
).

It is easy to check that there are no relations among them. Hence TX(x) has
dimension 4.

Exercise. Let X be a scheme and x ∈ X. Show TxX is naturally isomorphic
to (mx/m

2
x)

∨ (hint: use the adjunction below Lemma 1.1).

Proposition 1.5. Let X be a scheme locally of finite type over k and
x ∈ X. Then dimk TxX is finite, and is the smallest n such that exists an
open neighbourhood U of x and a closed embedding U ↪→M with M smooth
over k of dimension n.

The proposition says that if we want to embedding x locally in a smooth
scheme M then the dimension of M has to be at least dimTxX.

Proof. wlog X = SpecR where R = k[x1, . . . , xN ]/(f1, . . . , fr). ΩR is finitely
generated so ΩX(x) is finite-dimensional.

Suppose U is an open neighbourhood of x and U ↪→M a closed embedding
with M smooth of dimension n. Then OM,x � OU,x so mM,x � mU,x so
ΩM (x) � ΩU (x). Since M is smooth of dimension n, dimTxX = dimTxU ≤
dimTxM = n.

Left to show if dimTxX = n then we can find such U and M of dimen-
sion n. Recall that ΩX(x) = coker(α : k⊕r → k⊕N ) where α is the Jaco-
bian at x. Up to linear transformations we can express α =

(
Im 0
0 0

)
. Let

Y = k[x1, . . . , xN ]/(f1, . . . , fr) in the new generators and equations. Let g =
det( ∂fi

∂xj
). Then g(x) = 1. We have closed embedding X ↪→ Y . M := Y ∩D(g)

is smooth of dimension n and x ∈ U := X ∩D(g).
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2 Formal power series

2 Formal power series

Let P = k[x1, . . . , xn]. We define the power series ring P̂ = k[[x1, . . . , xn]].
Formally P̂ =

∏
I⊆Nn k · tI with product tI · tJ = tI+J . For f ∈ P̂ we write f(0)

for its constant term.

Proposition 2.1. There is a k-algebra homomorphism

P̂ → k

f 7→ f(0)

which has kernel mP̂ = (x1, . . . , xn). Furthermore P̂ is local.

Proof. The map is obviously a homomorphism. To show the kernel is generated
by x1, . . . , xn induct on n. For n = 1 if f =

∑
fix

i ∈ mP̂ then f0 = 0 so
f = x

∑
fix

i−1. For general n, write f = g + h where g =
∑

I:in=0 fIx
I . Then

g ∈ mk[[x1,...,xn−1]] and h is a multiple of xn. Finally to show P̂ is local use the
fact that any power series with nonzero constant term has an inverse (informally
(1− x)−1 = 1 + x+ x2 + . . .).

Let Pd ⊆ P be the vector space of homogeneous polynomials of degree d.
We then have

P =
⊕
d≥0

Pd, P̂ =
∏
d≥0

Pd

and
mP̂ =

∏
d≥1

Pd,m
a
P̂
=

∏
d≥a

Pd,
⋂

ma
P̂
= 0.

For every d ∈ N, P ↪→ P̂ induces an isomorphism P/md+1
P → P̂ /md+1

P̂
. It is also

worth noting that P̂ = lim←−P/m
d
P .

Lemma 2.2. For any A in Art there is a bijection

Homk-alg(P̂ , A)→ hAn,0(A)

ϕ 7→ ϕ|P

Proof. We first check the map is well-defined. hAn,0(A) = {ψ : P → A :

ψ−1(mA) = mP }. Given ϕ : P̂ → A, we have

P̂ /ϕ−1(mA) ↪→ A/mA = k

which must be equality so ϕ−1(mA) = mP̂ . Thus ϕ|
−1
P (mA) = mP̂ ∩ P = mP so

defines an element of hAn,0(A).
To show it is a bijection, note that md+1

A = 0 for some d, so md+1

P̂
⊆ kerϕ

(resp. md+1
P ⊆ kerψ). Thus ϕ induces P̂ /md+1

P̂
→ A (resp. P/md+1

P → A). But
P/md+1

P
∼= P̂ /md+1

P̂
.
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2 Formal power series

Proposition 2.3. Let I ⊆ mP be an ideal in P and Î = P̂ I the ideal it
generates in P̂ . Let R = P/I, R̂ = P̂ /Î, X = SpecR ⊆ An. Then the
bijection in the previous lemma induces a bijection

Homk-alg(R̂, A)→ hX,0(A).

For f ∈ P̂ = k[[x1, . . . , xn]], we denote by fd its component in Pd and f≤d

its image in P̂ /md+1

P̂
= P≤d.

Lemma 2.4. Let N ≥ 0, u1, . . . , uN ∈ mP̂ , f ∈ k[[y1, . . . , yN ]]. Then there
exists a unique g ∈ P̂ such that g≤d = (f≤d(u1, . . . , uN ))≤d ∈ P≤d. We
denote this g by f(u1, . . . , uN ).

Proof. The condition ui ∈ mP̂ ensures that fd(u1, . . . , uN ) ∈ P̂ (well-defined as
fd is a polynomial) is in md

P̂
. Thus

f≤d(u1, . . . , uN ) = f≤d−1(u1, . . . , uN ) (mod md−1

P̂
)

i.e. defines the same element in P≤d−1. As P̂ = lim←−P≤d they determine a unique
element in P̂ .

Remark. ∂
∂xi

: P≤d → P≤d determines a unique map ∂
∂xi

: P̂ → P̂ . If we
identify P≤d’s with subalgebras of P̂ then it satisfies

πd−1 ◦
∂

∂xi
=

∂

∂xi
◦ πd.

Concretely
∂

∂xi
(
∑
I

fIx
I) =

∑
J

fJ+ei(Ji + 1)xJ .

In particular ∂f
∂xi

(0) = fei .

Theorem 2.5 (implicit function theorem). Let n ≥ 1, P̂ = k[[x1, . . . , xn]], Q̂ =
k[[x1, . . . , xn, y]], f ∈ mQ̂ such that ∂f

∂y (0) 6= 0. Then exists a unique g ∈ mP̂

and u ∈ Q̂ \mQ̂ such that f = u(y − g).

Proof. wlog assume ∂f
∂y (0) = 1. Write f = y+ yf̃ +h with f̃ ∈ mQ̂ and h ∈ mP̂ .

Claim we can find unique ui ∈ Qi, gi ∈ Pi such that for all d,

π≤d(f) = π≤d(u0 + · · ·+ ud−1)(y + g0 + . . . gd).

Induction on d. For d = 0 have f0 = 0 so g0 = 0. For d = 1

f1 = u0(y + g1)

is uniquely solved by u0 = 1 and g1 = f1−y. Suppose the result holds for d−1.
Then we need to solve

fd = [(u0 + · · ·+ ud−1)(y + g1 + · · ·+ gd)]d

= [(u0 + · · ·+ ud−2)(y + g1 + · · ·+ gd−1)]d + ud−1(y + g1) + gd

which can be solved uniquely.
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2 Formal power series

Corollary 2.6 (inverse function theorem). There exists a unique g ∈ mP̂
such that f(x1, . . . , xn, g) = 0.

Proof. Let h ∈ mP̂ . Then f(xi, h) = u(xi, h) · (h− g). Note

u(xi, h)(0) = u(0, . . . , 0, h(0)) = u(0, . . . , 0) 6= 0

so v = u(xi, h) is a unit and f(xi, h) = 0 if and only if h = g.
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3 Small extensions
Let π : A→ B be a surjection of artinian algebras. We say it is a small extension
if I = kerπ satisfies mA · I = 0, i.e. if the A-module structure on I is induced
by the k-vector space structure via A→ A/mA

∼= k.

Example.

1. If V is a finite-dimensional vector space then k ⊕ V → k is a small exten-
sion.

2. For any n ≥ 1, k[t]/tn+1 → k[t]/tn is a small extension.

3. For any scheme X locally of finite type, x ∈ X, n ≥ 1, then OX,x/m
n+1
x →

OX,x/m
n
x is a small extension.

It is easy to see that any surjection of artinian algebras can be written as
the composition of small extensions.

Lemma 3.1. Let P̂ = k[[t1, . . . , tn]], A artinian. Then there is a bijection

Homk-alg(P̂ , A)→ m⊕n
A

ϕ 7→ (ϕ(x1), . . . , ϕ(xn))

Proof. Follows from Lemma 2.2.

Corollary 3.2. Let π : A→ B be a surjection of Artinian rings. Then for
any homomorphism ϕ : P̂ → B there exists ψ : P̂ → A such that ϕ = π ◦ ψ.
We call ψ a lifting of ϕ.

Theorem 3.3. Let π : A → B be a small extension with kernel I. Let
P̂ = k[[x1, . . . , xn]], J ⊆ m2

P̂
an ideal, ϕ : P̂ → B a homomorphism with

J ⊆ kerϕ. Let ψ : P̂ → A be a lifting of ϕ. Let

ω = ψ|J ∈ HomP̂ (J, I) = Homk(J/mP̂J, I).

Then ω is independent of the choice of ψ and only depends on π and ϕ.

Proof. Note that as ψ lifts ϕ, ψ(J) ⊆ I. The Hom sets are identified because
mP̂ I = mAI = 0.

Suppose η : P̂ → A is a different lifting. Then for all i, ψ(xi) − η(xi) ∈ I.
Hence for all f ∈ mP̂ ,

ψ(fxi)− η(fxi) = f(ψ(xi)− η(xi)) = 0.

As J ⊆ m2
P̂
and xi’s generate mP̂ , any f ∈ J can be written as linear combina-

tions of fxi where f ∈ mP̂ .

12



3 Small extensions

Definition (obstruction). Let π : A→ B be a small extension with kernel
I and ϕ : P̂ /J → B with J ⊆ m2

P̂
. We call ω ∈ Homk(J/mP̂J, I) the

obstruction to lifting ϕ to a homomorphism ψ : P̂ /J → A and denote it by
obπ(ϕ).

Remark. obπ(ϕ) is the obstruction to lift to ϕ : P̂ → B in the sense that given
a lift ψ : P̂ → A, J ⊆ kerψ if and only if ψ|J : J → I is zero.

Remark. The obstruction is functorial in small extensions. That is given a
commutative diagram of artinian algebras

A B

A′ B′

π

α β

π′

where the rows are small extensions with kernels I and I ′, and ϕ : P̂ /J → A
with J ⊆ m2

P̂
then

α ◦ obπ(ϕ) = obπ′(β ◦ ϕ).

Proposition 3.4. Let X be a scheme, π : A → B a small extension with
kernel I. Let F : SpecB → X be a morphism of scheme, x = F |Spec k ∈ X.
Then the set

{F̃ : SpecA→ X : F̃ |SpecB = F},

if nonempty, is a principal homogeneous space for Homk(ΩX(x), I).

Smoetimes we say an action of G on S is simply transitive if S is a principal
homogeneous space for G.

Proof. wlog X = SpecR and F is induced by ϕ : R→ B. Suppose ψ0 : R→ A
is a lifting of A. Then there is a bijection

{liftings of ϕ} ←→ Derk(R, I)

ψ 7→ ψ − ψ0

Note that all we used here is I2 = 0 (instead of the stronger condition of small
extension) so I is a B-module and ϕ makes I into an R-module.

3.1 Exact sequences of groups and sets
Let A1, A2 be abelian groups, S1, S2 be sets. We say

0 A1 S1 S2 A2
a f ob

is a sequence of groups and sets if a is an action of A1 on S1, f and ob are maps
such that for all s ∈ S1, for all g ∈ A1 we have f(s) = f(g · s) and ob ◦f is the
zero map.

13



3 Small extensions

Example. If

0 A1 S1 S2 A2
ϕ

is a complex of ableian groups then we can make it into a sequence of groups
and sets by defining the action of A1 on S1 to be a · s = s+ ϕ(a).

Definition. A sequence of groups and sets

0 A1 S1 S2 A2
a f ob

is called

• exact at A1 if the action of A1 on S1 has no fixed points.

• exact at S1 if for all s, s′ ∈ S1 such that f(s) = f(s′) then exists g ∈ A1

with s′ = g ·s. This is equivalent to A1 acts transitively on nomempty
fibres of f .

• exact at S2 if for all s2 ∈ S2, f−1(s2) 6= ∅ if and only if ob(s2) = 0.

Exercise. Show that in the previous example exactness of as a sequence of
abelian groups is the same as that as a sequence of groups and sets.

Theorem 3.5. Let P̂ = k[[x1, . . . , xn]], J ⊆ m2
P̂

an ideal, R̂ = P̂ /J . Let
X̂ = Spec R̂. Let 0 ∈ X̂ be the point corresponding to mR̂, the image of
mP̂ . Then for every small extension π : A → B with kernel I we have an
exact sequence of groups and sets functorial in π, i.e. given a commutative
diagram of artinian algebras

A B

A′ B′

π

α β

π′

where the rows are small extensions with kernels I and I ′, we have a com-
mutative diagram of sequence of groups and sets with exact rows

0 T0X̂ ⊗k I hX̂,0(A) hX̂,0(B) Homk(J/mP̂J, I)

0 T0X̂ ⊗k I
′ hX̂,0(A

′) hX̂,0(B
′) Homk(J/mP̂J, I

′)

obπ

obπ′

Proof. We have done most of the work and are merely left to expound the nota-
tions. The action in each sequence is defined the same way as in Proposition 3.4
and the other two maps in the sequence are the obvious ones. Then exactness at
T0X̂ ⊗ I and hX̂,0(A) is just Proposition 3.4, and exactness at hX̂,0(B) follows
from the remark after the definition of obstruction.

The commmutativity of the diagram means that

14



3 Small extensions

• hX̂,0(A) → hX̂,0 intertwines the actions of T0X̂ ⊗ I where it acts on the
second set via the first vertical map,

• commutativity as sets for the second and third square.

which follows from functoriality of each map.

Theorem 3.6. Let F : Art → Set be A 7→ Hom(R̂, A). Then for every
small extension A→ B with kernel I there is an exact sequence

0
⊕
I ∂
∂xi

F (A) F (B) Homk(J/mP̂J, I)

Theorem 3.7. Let P = k[x1, . . . , xn], J = (f1, . . . , fr) ⊆ mP = (x1, . . . , xn).
Let R = SpecP/J , X = SpecR. For every small extension π : A→ B with
kernel I, there exists an exact sequence of groups and sets

0 T0X ⊗ I hX,0(A) hX,0(B) T0X
1 ⊗ Iob

functorial with respect to π, where T0X and T 1
0X are defined by the exact

sequence

0 T0X T0An
k (J/mPJ)

∨ T 1
0X 0α

where α is the dual of

J/mPJ → ΩAn(0)

f 7→
∑ ∂f

∂xi
(0)dxi

Note that if J ⊆ m2
P then all derivatives at the origin vanish and α = 0 so

we get the previous theorem.

Proof. The only thing new here is the construction of the obstruction map.
Given ϕ : R → B, i.e. ϕ : P → B such that J ⊆ kerϕ, we can lift it to
ψ : P → A, thus defining an element ψ|J ∈ HomP (J, I) = Homk(J/mPJ, I).
The element depends on the choice of ψ and the dependency is described by
Proposition 3.4. In other words we get a well-defined element

ob(ϕ) ∈ Homk(J/mPJ, I)/Homk(ΩAn(0), I).

Since I is finite-dimensional so flat we get the desired map.

Exercise. Given P, J,R as in the previous theorem, show exists R̂ in theorem
1 and an equivalence of functors hX,0 → hX̃,0 inducing isomorphism T0X ⊗
k⊕n, T 1

0X
∼= (Ĵ/mĴ)∨. Hint: use hX,0

∼= hX̂ where Ŝ = k[[x1, . . . , xn]]/JŜ and
apply inplicit function theorem for formal power series (induction on dim Ĵ/(mĴ)

(? this step is to verify if Ĵ ⊆ m2).

15



3 Small extensions

Definition (pro-representable functor). Let F : Art → Set be a functor
such that F (k) is a singleton. We say F is pro-representable if exists n,
Ĵ ⊆ m2

P̂
and an equivalence of functors Hom(P̂ /Ĵ ,−)→ F .

Exercise. Show F is pro-representable if and only if for allN > 0 the restriction
of F to ArtN is representable, where ArtN is the full subcategory of artinian
rings A such that mN

A = 0.

Definition (tangent space and obstruction space to a functor). Let F :
Art → Set be a functor with F (k) a singleton. Let TF, T 1F be k-vector
spaces. We say that TF is the tangent space to F and T 1F is an obstruction
space to F if, for every small extension π : A → B with kernel I, we are
given an exact sequence

TF ⊗ I F (A) F (B) T 1F ⊗ I

functorial in the small extensions, and such that 0→ TF ⊗ I → FA is also
exact if B = k.

Theorem 3.8. F is pro-representable if and only if exists finite-dimensional
TF, T 1F such that

0 TF ⊗ I F (A) F (B) T 1F ⊗ I

is exact for all small extensions A→ B.

The only if direction is same as theorem. We will not prove the other direc-
tion.

Theorem 3.9. Assume F has finite-dimensional tangent and obstruction
space. Then the tangent space is unique up to a canonical isomorphism, and
exists a minimal obstruction space T 1Fmin such that every obstruction space
is induced by T 1Fmin ↪→ T 1F .

Proof. Uniqueness of TF : we say how to recover TF from TF |Art2 . Art2 is
equivalent to finite-dimensional vector space. We can show TF → F (k[ε]/ε2) is
a bijection.

T 1F is not unique: suppose T 1F is an obstruction space. Choose a linear
embedding T 1F ↪→ T̃ 1F , then T 1F ⊗ I ↪→ T̃ 1F ⊗ I. Define õb to be the
composition of this inclusion with ob. Then T̃ 1F is also an obstruction space.

Note that this does not prove the existence of T 1Fmin.

Why didn’t we define obstruction space to be T 1Fmin? This is because in
practice, one can compute obstruction spaces but it is unknown if they are
minimal, or we do not known how to compute the minimal obstruction space
sitting inside a

As a corollary, if we have equalities in both inequalities, i.e. 0 is an obstruc-
tion space they we know X is smooth (in fact the converse is also true, which
we will prove if we have time)

If instead we have equality on the first inequality then we know the particular
TF is minimal.

16



3 Small extensions

Proposition 3.10. Let X = Spec k[x1, . . . , xn]/J where J ⊆ mP = (x1, . . . , xn).
Then

(T 1hX,p)min = coker((J/mJ)∨ → ΩAn(p)∨).

Proof. Let P̃ = PmP
= OAn,0. Then we have natural maps P → P̃ → P̂ . Let

J̃ − JP̃ , Ĵ = JP̂ , R̃ =, R̂ =. Then we have R→ R̃→ R̂. We have

P ΩP =
⊕
Pdxi

P̃
⊕
P̃dxi

P̂
⊕
P̂dxi

⊕
kdxi = ΩAn(0)

f 7→f(0)

We have J → ΩAn(0) etc. By Leibniz rule it factorises as

J/mPJ � J̃/mJ → Ĵ/mP̂ Ĵ

and we are going to show they are both isomorphisms. Note if f1, . . . , fr generate
J , they also generate J̃ and Ĵ so left to show injectivity.

To show J/mJ → J̃/mJ̃ is injective, let f ∈ J such that f
1 ∈ mJ̃ . Werite

f

1
=

∑
ãig̃i

where ãi ∈ m. We can find u ∈ R \mP such that uãi = ai ∈ mP , u
To prove the injectivity of the second map we show exists N such that

αN : J̃/mJ̃ → J̃ +mN/mJ̃ +mN

is an isomorphism It is certainly surjective. Let LN = kerαN , Q̃ = P̃ /mP̃ J̃ with
maximal ideal mQ̃. Let ρ : P̃ → Q̃ be the natural map. By Krull’s intersection
theorem ⊕

N

mN
Q̃

= 0.

Then ⊕
(mJ̃ +mN ) =

⊕
ρ−1(mN

Q̃
) = ρ−1(

⊕
) = mJ̃ .

The same proof shows that Ĵ/mĴ → Ĵ +mN/mĴ +mN is an isomorphism.
...
For the general dcase reduce to this by implicit function theorem and induc-

tion on rank ΩAn(0)→ JmJ .

Two things to remember:

1. Krull’s intersection theorem: if A is a noetherian local ring or a noetherian
domeain and I a proper ideal then

⋂
N≥1 I

N = 0. This implies for example
OX,p → ÔX,p is injective.

17



3 Small extensions

2. P/mJ → P/J should be “test small extension” but not in Art. By Krull
intersection theorem, we can divide by mN

P without changing the kernel if
N � 0.

3.2 Example of tangent and obstruction computations
As a general remark, for any functor F : Schop → Set, we can consider its
restriction to affine schemes. We can restrict it to Art, which then decomposes
as coproduct of Fp for p ∈ F (k).

Definition (flatness). Let π : X → Y be a morphism, F a sheaf of OX -
modules. Then F is flat over Y if for all x ∈ X, Fx is a flat OY,π(x)-module.

Remark. If X is locally noetherian and F is coherent then F is flat (over X)
if and only if it is locally free.

Let X be a projective scheme over k and E a coherent sheaf on X. Fix a
very ample line bundle OX(1) (i.e. an embedding X → PN

k ). Define a functor

QE : Schop → Set

S 7→ {F ⊆ p∗XE : F coherent, p∗xE/F flat over S}/ ∼=

This implies that F is flat over S.
For example let X = Spec k, E = OX . Then for S = Spec k[t], F = I0 ⊆

OS×X = OS for some ideal sheaf I0.

Theorem 3.11. Let X = Spec k, E = V , a finite-dimensional vector space.
Then there is a canonical isomorphism

QV (S) ∼= Hom(S,

dimV∐
r=0

Gr(r, V )),

i.e. QV is represented by
∐dimV

r=0 Gr(r, V ).

Theorem 3.12 (Grothendieck). QE splits as
∐

P∈Q[t]Q
P
E where for a scheme

S
QP

E (S) = {F ∈ QE(S) with Hilbert polynomial P}.

There exist projectives schemes QuotPX(E) representing QP
E .

Fix now a point F0 ↪→ E of QE(Spec k) so we get a functor QF0
: Art→ Set

QF0
(A) = {F ⊆ p∗XE : coherent, p∗XE/F flat over A, s∗0F = F0}

where s0 : X → XA := X × SpecA is induced by A → k. As a topological
space XA is just X and OXA

= OX ⊗k A. Thus F ∈ Coh(XA) if and only if
the pushforward of F along XA → X is coherent, plus the structure of a sheaf
of A-modules. Also p∗XE = E ⊗k A.

Let A → B be a small extension with kernel I, FB ∈ QF0
(B). Question:

can we lift this to A?

18



3 Small extensions

Let QB be the quotient. As QB is flat, −⊗B I is exact. ...
If so, this implies QA ⊗A B → QB and QA ⊗ k → Q0 are isomorphisms

inducing a diagram with exact rows and columns.
Claim FA is determined by its image in E ⊗ A/ imβ which is contained in

G = kerα/ imβ.
Claim exact sequence

Proof.

Proof. There is a bijection

{FA ⊆ E ⊗A : induces red diagram} ↔ {FB → kerα/ imβ splitting ∗}

Proof.

Lemma 3.13. FA so obtained gives rise to QA such that QA ⊗A B
∼=−→ QB

and QA ⊗A k ∼= Q0.

Proof.

Proposition 3.14. An A-module M is A-flat if adn only if M ⊗A B is
B-flat and (M ⊗B)⊗B I →M is injective.

Proof. Omitted.

Corollary 3.15. A lifting FA of FB exists if and only if (∗) splits. If it
exists then the set of liftings is in bijection with the set of splittings.

It is a standard fact that * as an extension defines an element of

Ext1OXB
(FB , Q0 ⊗k I) ∼= Ext1OX

(F0, Q0 ⊗k I) ∼= Ext1OX
(F0, Q0)⊗k I.

and splits if and only if it is zero. If so then bijection with ...
In summary, one can prove (without knowing thatQuotX(E) is representable)

that the induced functor Art→ Set has tangent and obstruction space, repre-
sente by HomOX

(F0,Q0) and Ext1OX
(F0,Q0) respectively.

Remark. There are cases in which Ext1(F0,Q0) is not minimal as obstruc-
tion space. For example let X ⊆ P3

C be a smooth quartic surface such that
(0, 0, 0, 1) /∈ X. Let E = O⊕3

X ,Q0 = OX(1) and E → Q0 given by (x, y, z).
Minimal obstruction is 0. c.f. “unobstructed”
There is an obstruction because it “obstructs” a different more general prob-

lem (relative deformation problem)
def (X, E ,Q) → “forget” def (X, E).
There are deformations of X on which E extends (it’s trivial) buty Q doesn’t

by Hodge theory/topology (its first Chern class is not of type (1, 1)).
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3 Small extensions

Example. We give an example of a similar problem. Fix C, V . Define a functor

M : Schop → Set

S 7→ Hom(S × C, V )

and morphisms are sent to compositions. If C, V are projective, claim M is an
open subfunctor of Hilb(C × V ): given a morphism γ : S × C → V , consider
its graph Γγ ⊆ S × C × V . Γγ → S × C is an isomorphism so Γγ is flat over
S. Conversely a closed subscheme Z ⊆ S × C × V is a graph if and only if
Z → S × C is an isomorphism. Assuming Z is S-flat, claim

U = {s ∈ S : Zs → {s} × C is isomorphism}

is open in S and (U × C × V ) ∩ Z → U × C is an isomorphism.
Thus M is representable. The corresponding functor Ff : Art→ Set asso-

ciated to f : Spec k × C = C → V always has tangent and obstruction space.
Easiest case

Proposition 3.16. Suppose C is separated and V is smooth over k. Then
Ff has tangent and obstruction space equal to H0(C, f∗TV ) and H1(C, f∗TV ).

Sketch proof. We first consider case V,C affine. If V is affine n-space then...
Next we consider smooth case.

Cover C, V by affines {Ci}, {Vi} such that f : Ci → Vi. We get obstruction
in H1(C, f∗TV ) as a Cech cocyle: giving fB : SpecB × C → V is the same as
f#B : f−1OV → OC ⊗k B. By the affine case locally we can lift to f iA and get
them to agree on Ci ∩ Cj . We get a cocycle by taking differences. One checks
that changing liftings changes cocyle by a coboundary.

A different type of functor. We want to study moduli of proper schemes. De-
fine a module functorM sending S to isomorphism classes of {XS → S flat proper,
plus assumptions on fibers that are open in S (for example dimension or types
of singularity allowed)
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