SCUOLA INTERNAZIONALE
SUPERIORE DI STUDI
AVANZATI

GEOMETRY AND MATHEMATICAL PHYSICS

Infinitesimal Deformation
Theory

January, 2021

Lectures by
BARBARA FANTECHI

Notes by
QIANGRU KUANG


mailto:qk206@cam.ac.uk

Contents

Contents

0 Introduction
1 Linearisation
2 Formal power series

3 Small extensions

3.1 Exact sequences of groups and sets . . . . . . ...

3.2 Example of tangent and obstruction computations

Index

12
13
18

21



0 Introduction

0 Introduction

Throughout this course we fix a base field k = k. All schemes will be k-schemes
and morphisms k-morphisms. By algebra we mean k-algebra. For a scheme X
by a point we mean a morphism z : Speck — X or equivalently k(z) = k as
k-algebra.

Motivation: a scheme X is determined up to canonical isomorphism by its
functor of points on Aff°P. In fact many moduli schemes are defined this way.
For example if X is a projective scheme and F is a coherent sheaf on X one
defines the quotient scheme Quot y (F) by its associated functor of points

S+ {G Cp%F:F € Coh(X xS5),p%F/G flat over S},

give a morphism f :S; — S, it induces (f x idx)*G C p%F (we have inclusion
because of flatness). Grothendieck proved that Quoty (F) is a disjoint union of
countably many projective schemes. The special case Hilbx = Quot yx (Ox) can
be defined also by

S+ {Z C X x S closed subscheme : Z flat over S}
with morphisms defined by pullback
7 =Z xxxs X xS CX xS;.

Infinitesimal deformation means studying the restriction of the functor of
points to the subcategories of Aff of fat points, i.e. schemes S of finite type
such that Sp.q = Speck. In other words, there is no topological information
and everything is about algebra. Since such S has only one nonempty open set,
it must be affine, say A. Then A/v/0 = k. Thus the nilradical must be the
(necessarily unique) maximal ideal my4 C A.

Proposition 0.1. Let A be a finitely generated local k-algebra. Then TFAE
1. Spec A is a fat point.
2. A is finite-dimensional as a k-vector space.
3. A/ma =k and elements of ma are nilpotent.
4. Ajma =k and my is nilpotent.
5. Ajmy =k and A is artinian.

Recall

Proposition 0.2 (Nakayama’s lemma). Let R be a local ring and M a
finitely generated R-module. If mgM = M then M = 0.

Proof. The discussion before the statement of the proposition shows 1 < 3.
3 = 4since A isnoetherian, and 4 = 3 trivially. If A is finite-dmimensional
then A/my is finite-dimensional over k so must be k since k is algebraically
closed. Also any descending chain of ideals must stabilise. This shows 2 = 5.
5 = 4 by Nakayama since the chain

my Om% D



0 Introduction

must stabilise. Finally 4 = 2 since

dim A = Z dimm’y /m’.

Definition. We denote by Art or Art; the category of algebra satisfying
any of the equivalent conditions. Its is opposite to the category of fat points.

Remark. k£ is both an initial and final object in Art. Thus each A in Art is
canonically isomorphic to & @ m4.

Corollary 0.3. Let F : Art — Set be a functor. Then F = cheF(k) F,
where

Fy(A) = {a € F(A) : F(r)(a) = 2}

where w: A — k. In particular if X is a scheme thn hx = Hmex hx . where

hx z(A) ={p:SpecA = X : (Im @) eq = z}.

Example. Let A, = k[t]/t""1, S, = Spec A,,.The natural surjections A, —
A, _1 induces closed embeddings S,_1 — S,. We want to study a scheme X
near a point p by solving the following question: given p : Sy — X, does 3
exist? If so how many choices are there? What about (o etc?

SOLX

o
YL 7,
oy
PO

We will work out the case X = Spec R where R = k[z,y]/f where f(0,0) = 0.
Let p# : R — k. We will look at the locus of the following four equations:

3

1. y? — a3 -z,
2. y? —a® — 22,
3. 4% — a3,
4. 4% — 22

Giving ¢ is the same as giving

of « klw,y] — K[t/
T — ait
Y = b1t

such that f(at,bt) = 0 € k[t]/t2. For 1, for example, we need

(blt)s - (alt)?’ — alt =0.
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Using t? = 0 we get a; = 0 and there is no restriction on b;. For 2, 3, 4 one can
check any choice of aq,b; works. Geometrically, this is because the tangent at
the origin is the y-axis for 1, and the entire plane for 2, 3, 4.

g is given by

OF () = art + art?, ¢F (y) = byt + bat*.
One find in each case

1. given a; = 0, any choice b lifts to cp# and one requires as = b?. Similar
to before, there is a family of lifts from 1 to @o.

2. not solvable unless a? = b?, in which case any as, by works.
3. not solvable unless b; =0
4. Same as 2.

Geometrically for 2 and 4 there are two distinguished tangent direction. For 3
the tangent direction is the horizontal axis.
As an exercise, work out 3.
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Let f : X — Y be a morphism of schemes, z € Y,y = f(z). We want to
compute {27(z) (to be defined soon) in terms of hx , and hy,,.

Convention: let X be a scheme and x € X, F a quasicoherent sheaf on X.
We denote by F, the stalk of F at « and

]:(JZ) =Fu ®0x,z K‘(m) = -Fx/mﬂc]:xa

the fibre of F at . If F is coherent then F; is a finitely generated Ox ;-module
so F(x) is a finite-dimensional k-vector space. In fact by Nakayama, uq, ..., u,
generate F, as an Ox ;-modules if and only if their images generate F(z) as a
k-vector space.

Recall that Qy = A*Zx,x«, x which is a coherent sheaf on X (assuming
locally of finite type). It is local in both X and Y and when X = SpecS,Y =
Spec R and f is induced by R — S, we have Qf(X) = Qg/g. If S has presenta-
tion S = R[x1,...,2,]/(f1,..., fr) then we have an exact sequence

@::1sz L) @?:1 Sd$1 —_— QS/R — 0

where

of;
alf;) = Y[z,
Thus for p € X there is a presentation

% (p) = @ e/ (3 52 ().

We denote by Vect the category of finite-dimensional k-vector spaces with
k-linear maps.

Lemma 1.1. There exists a fully faithful functor Vect — Art sending V
to k @&V with multiplication

(a,v) - (b,w) = (ab, aw + bv).
In other words k &V = €D,,5, Sym" V/ D, 5, Sym" V.

Remark. The image of the functor is {A : m% = 0}. It has a left adjoint
A my/my.

Theorem 1.2. Let X be a scheme, x € X, A € Art such that m% = 0.
Then there is a natural bijection

Homk(QX(x),mA) — hx’m(A)

Proof. wlog we may assume X = Spec R and z corresponds to a maximal ideal
m;. Then
hxz(A)={p:R— A:kermop=m,}.
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In other words ¢ makes the following diagram commutes

R—" R/m,

J{s@ =

A" A/mA

Write A = k@ my and ¢(f) = (F(f), A(f)). Then one can check that ¢ is a
ring map if and only if A € Derg(R, my) where the R-module structure on my,
is via restriction of scalars along 7. Thus we have bijections

hx 5 (A) = Derg(R,m4) = Homp(Qgr, ma).
Since m4 is a R/m, = k-module,
Homp(Qg, ma) = Homy (Qr/m,Qr, mu).
O

Note that the isomorphism is natural in both X and A. The next result says
that by transport of structure the tangent space T, X can be “read off” hx ;.

Corollary 1.3. Let D = k[e]/e?, Dy = kle1,2]/(e3,6162,¢3). Let X be a
scheme and © € X. Then T, X := Qx(x)V is canonically isomorphic to the
k-vector space V' defined as

o asasetV =hx,(D).

o given X\ € k, multiplication by X is induced by hx ,(ay) where ay :
D — D is multiplication by A.

e define maps

Pi, T D2 — D
pPitEj — (52‘]‘8
Ty — £
Then
hx.o(Da) L by o(D) % hxo(D) =V x V

is a bijection and the sum on V is the composition

V xV = hx (D) = hx (D) =V.
Proof. Exercise. O

Proposition 1.4. Let ¢ : X — Y be a morphism, v € X,y = p(z). Then
Ty := Qo (x)Y is naturally isomorphic to the kernel of the map

hx (D) = hyy (D).
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Proof. The exact sequence of modules

©*Qy Qx Q, 0
pulls back to
dF(z)
Qy(y) — Qx(z) — Qu(z) — 0

Dualise to get

0 Ty 7,x 2@

hX,a:(D) hY,y(D)

T,Y

Yy

To complete the proof, one check that by the remark on naturality dF(z)Y is
equal to hx ; — hy, induced by . O

Remark. Note that if we define a tangent sheaf by Tx := Hom(Qx,Ox) then
in general Tx(x) # T,X. As an exercise, compute both for k = C (or any field
whose characteristic is not 2), X = Spec k[u, v, w]/(uv — w?),m, = (u,v,w).

Proof. Let R = klu,v,w]/(uv — w?). Qx(z) has a presentation by tensoring
with k the exact sequence

Ru,v,72w R3 QR 0

so dim T, X = dim Qx(z) = 0.
On the other hand Tx (z) does not have a “nice” presentation since upon
taking dual we get a sequence that is in general only exact on the left

0 —— Hom(Qp,R) —— R> —— R

and tensor product is right exact. Nevertheless we can proceed as below. Let
S = k[u,v] and then R = S @ Sw. Then an element of Hom(Qg, R) can be
expressed as
(fi + wg1, fo +wgs, f3 +wygs)
with f;, g;’s in S, subjecting to
v(f1 +wg1) + ulfe + wga) — 2w(fs +wgs) = 0.

Collecting terms, we get

vf1 + ufo = 2uvgs

vg1 +uge =2f3
so we deduduce u | f1,v | fo. Write f1 = u]?h fo= 7)]?2, we can then express f3
and g3 in terms of f1, f2, 91, g2:

1
3= 5(”91 + ugo)

g3 = %(J?H-J%)
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In other words, Hom (g, R) is generated as an S-module by

(1,0, 5), (0,0, 5), (1,0, ), (0., 5

2 2 )
It is easy to check that there are no relations among them. Hence Tx (x) has
dimension 4. O

Exercise. Let X be a scheme and x € X. Show T, X is naturally isomorphic
to (my;/m2)V (hint: use the adjunction below Lemma 1.1).

Proposition 1.5. Let X be a scheme locally of finite type over k and
x € X. Then dimy T, X is finite, and is the smallest n such that exists an
open netghbourhood U of x and a closed embedding U — M with M smooth
over k of dimension n.

The proposition says that if we want to embedding x locally in a smooth
scheme M then the dimension of M has to be at least dim 7T, X .

Proof. wlog X = Spec R where R = k[z1,...,2n]|/(f1,..., fr). Qg is finitely
generated so Qx (z) is finite-dimensional.

Suppose U is an open neighbourhood of x and U — M a closed embedding
with M smooth of dimension n. Then O, — Oy, s0 My, — My, SO
Qpr(x) = Qu(z). Since M is smooth of dimension n, dim 7, X = dim7T,U <
dim T, M = n.

Left to show if dim7,X = n then we can find such U and M of dimen-
sion n. Recall that Qx(x) = coker(a : k" — k®N) where « is the Jaco-
bian at x. Up to linear transformations we can express a = (16” 8). Let
Y = kl[z1,...,2n]/(f1,..., fr) in the new generators and equations. Let g =
det(ng;). Then g(x) = 1. We have closed embedding X — Y. M :=Y N D(g)

is smooth of dimension n and z € U := X N D(g). O
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2 Formal power series

Let P = k[z1,...,2,). We define the power series ring P = k[[z1, ..., 2,]]-
Formally P = [[;cp» k- t! with product t/ -t/ = t/T7. For f € P we write f(0)
for its constant term.

Proposition 2.1. There is a k-algebra homomorphism
Pk
f = f(0)

which has kernel mp = (21,...,2y,). Furthermore P is local.

Proof. The map is obviously a homomorphism. To show the kernel is generated
by x1,...,2, induct on n. For n = 1if f = 3 fia® € mp then fo = 0 so
f=a> fix""1. For general n, write f = g + h where g = Yol —0 fraz’. Then
9 € M[[ay,....z,_,)) a0d h is a multiple of z,,. Finally to show P is local use the

fact that any power series with nonzero constant term has an inverse (informally
l-—2)t=1+a+22+..). O

Let P; C P be the vector space of homogeneous polynomials of degree d.

We then have R
P= @ P, P= H P,
d>0 d>0

mp = HPd,maﬁ = HPd,ﬂm‘;;:O.

d>1 d>a

and

For every d € N, P < P induces an isomorphism P/m%t — lg/mdﬁ"'l. It is also

worth noting that P = @P/mdp.

Lemma 2.2. For any A in Art there is a bijection

Homy,a1g(P, A) — han o(A)
o olp

Proof. We first check the map is well-defined. hano(4) = {¢p : P — A :
= H(my) =mp}. Given p: P — A, we have

Plo Hmy) = Ajmy =k

which must be equality so ¢~!(m4) = mp. Thus olpt(ma) = mp NP =mp so
defines an element of han o(A).
d+1

To show it is a bijection, note that m‘fjl = 0 for some d, so m C kerp

(resp. mB! C kerp). Thus ¢ induces ﬁ/mdgl — A (resp. P/m%4 — A). But

d+1 ~ D /ad+1
P/m% _P/mﬁ . O
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Proposition 2.3. Let I C mp be an ideal in P and I = PI the ideal it
generates in P. Let R = P/I, R = P/I X = SpecR C A". Then the
bijection in the previous lemma induces a bijection

Homy a1g(R, A) — hx o(A).
For f € P = k[[z1,...,2s]], we denote by fy4 its component in P, and f<q4

its image in P/md+1 Peg.

Lemma 2.4. Let N >0, uy,...,uy € mp, f € k[[y1,...,yn]]. Then there

exrists a unique g € P such that 9<d = (f<a(u1,...,un))<q € P<q. We
denote this g by f(u1,...,un)-

Proof. The condition u; € mp ensures that fq(ui,...,un) € P (well-defined as
fa is a polynomial) is in m%. Thus

f<alur,...,un) = fea—1(ui,...,un) (mOdmd Y

i.e. defines the same element in P<g_1. As P= L m P<g they determine a unique

element in P. O
Remark. % P<; — P<q determines a unique map z - . P = P. If we
identify P<4’s with subalgebras of P then it satisfies
0 o
Mg—10 — = — O mq.
=1 8%1 8(,62 d

Concretely
9 1 J
871-(% fra’) = EJ frte(Ji+ Dz

In particular gii (0) = fe,-

Theorem 2.5 (implicit function theorem). Letn > 1, P = k[[z1, ..., zn]],Q =
kllz1, ..., 20, y]], f € mg such that af( 0) # 0. Then exists a unique g € mp

and u € @\m@ such that f=uly—g).
Proof. wlog assume 2—5(0) = 1. Write f = y+yf+h with f € mg and h € mp.
Claim we can find unique u; € Q;, g; € P; such that for all d,
m<a(f) = m<a(uo + -+ ug—1)(y + 9o + .. ga).
Induction on d. For d =0 have fy =0s0 gy =0. Ford=1
fi=uo(y+g1)

is uniquely solved by ug = 1 and g1 = f1 —y. Suppose the result holds for d — 1.
Then we need to solve

Ja=1[(uo+ - +us-1)(y+g1+-+ga)la
=[(up+ - +ua—2)(y+91+ -+ gi-1)la + ua—1(y + 91) + ga

which can be solved uniquely. O

10
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Corollary 2.6 (inverse function theorem). There exists a unique g € mp
such that f(x1,...,2,,9) =0.

Proof. Let h € mp. Then f(x;,h) = u(x;, h) - (h — g). Note
u(zs, h)(0) = w(0,...,0,h(0)) = u(0,...,0) #0

so v = u(z;, h) is a unit and f(x;,h) =0 if and only if h = g.

11
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3 Small extensions

Let 7 : A — B be a surjection of artinian algebras. We say it is a small extension
if I = kerw satisfies my4 - I = 0, i.e. if the A-module structure on I is induced
by the k-vector space structure via A — A/my = k.

Example.

1. If V is a finite-dimensional vector space then £k ® V — k is a small exten-
sion.

2. For any n > 1, k[t]/t"*! — k[t]/t" is a small extension.

3. For any scheme X locally of finite type, z € X, n > 1, then Ox ,/mi T —
Ox /m} is a small extension.

It is easy to see that any surjection of artinian algebras can be written as
the composition of small extensions.
Lemma 3.1. Let P =k[[t,,... t,]], A artinian. Then there is a bijection
Homk_alg(ﬁ, A) — mf"
@ = (p(x1), .- o(xn))

Proof. Follows from Lemma 2.2. O
Corollary 3.2. Let m: A — B be a surjection of Artinian rings. Then for

any homomorphism ¢ : P — B there exists (U P — A such that p=mo.
We call 3 a lifting of .

Iheorem 3.3. Let m: A — B be a smallA extension with kernel I. Let
P = k[[z1,...,z,]],J C m% an ideal, ¢ : P — B a homomorphism with

J Ckery. Let 1) : P Abea lifting of ¢. Let

w = | € Homp(J, I) = Homy(J/mzJ, ).

Then w is independent of the choice of ¥ and only depends on w and .

Proof. Note that as v lifts ¢, ¥(J) C I. The Hom sets are identified because
msl =mal =0.

Suppose 7 : P — A is a different lifting. Then for all i, U(x;) —n(z;) € 1.
Hence for all f € mp,

Y(fri) —n(fzi) = f((xi) —n(xi)) = 0.

As J C m% and x;’s generate m 5, any f € J can be written as linear combina-
tions of fx; where f € mp. O

12



3 Small extensions

Definition (obstruction). Let 7 : A — B be a small extension with kernel
I'and ¢ : P/J — B with J € m%4. We call w € Homy(J/mpJ, 1) the

B
obstruction to lifting ¢ to a homomorphism ¢ : P/J — A and denote it by
ob,(¢).

Remark. ob,(y) is the obstruction to lift to ¢ : P — B in the sense that given
alift ¢ : P — A, J Cker if and only if |y : J — T is zero.

Remark. The obstruction is functorial in small extensions. That is given a

commutative diagram of artinian algebras

A—T" B

[P

T

A T B

where the rows are small extensions with kernels I and I’; and ¢ : P /J — A
with J C m% then

0 0by (i9) = obr (B 0 ).

Proposition 3.4. Let X be a scheme, m : A — B a small extension with
kernel I. Let F : Spec B — X be a morphism of scheme, = F|gpeck € X.
Then the set _ _

{F :SpecA — X : FlspecB = F'},

if nonempty, s a principal homogeneous space for Homy(Qx (z), I).

Smoetimes we say an action of G on S is simply transitive if S is a principal
homogeneous space for G.

Proof. wlog X = Spec R and F' is induced by ¢ : R — B. Suppose g : R — A
is a lifting of A. Then there is a bijection

{liftings of ¢} <— Dery(R,I)
V=1 =1

Note that all we used here is I? = 0 (instead of the stronger condition of small
extension) so I is a B-module and ¢ makes I into an R-module. O

3.1 Exact sequences of groups and sets

Let Ay, As be abelian groups, S, S2 be sets. We say

0 A —2 s L5, oby A,

is a sequence of groups and sets if a is an action of A; on S1, f and ob are maps
such that for all s € Sy, for all g € A; we have f(s) = f(g-s) and obof is the
Zero map.

13
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Example. If

0 A1 ? 51 SQ A2

is a complex of ableian groups then we can make it into a sequence of groups
and sets by defining the action of A; on S; to be a-s = s+ @(a).

Definition. A sequence of groups and sets

0 A —* 5 T 5, oby A,

is called
e czact at Ay if the action of Ay on Sy has no fixed points.

o ezact at Sy if for all s, s’ € Sy such that f(s) = f(s) then exists g € A;
with ' = ¢g-s. This is equivalent to A; acts transitively on nomempty
fibres of f.

o exact at Sy if for all sy € Sy, f~1(s2) # () if and only if ob(sz) = 0.

Exercise. Show that in the previous example exactness of as a sequence of
abelian groups is the same as that as a sequence of groups and sets.

Theorem 3.5. Let P = k[[xy,...,a,]], J C mzﬁ an ideal, R = ﬁ/J Let

X = Spec R. Let0 € X be the point corresponding to mgp, the image of
mp. Then for every small extension m: A — B with kernel I we have an
ezact sequence of groups and sets functorial in 7, i.e. given a commutative
diagram of artinian algebras

A—T"- B

[« ]

AT B
where the rows are small extensions with kernels I and I', we have a com-
mutative diagram of sequence of groups and sets with exact rows

0 —— ToX @ I —— hg o(A) —— hg o(B) —22 Homy(J/mpJ, )

)

| l ! |

ob_/

0 —— ToX @ I' — hg ((A) —— hg ((B') = Homy(J/mpJ, I')

Proof. We have done most of the work and are merely left to expound the nota-
tions. The action in each sequence is defined the same way as in Proposition 3.4
and the other two maps in the sequence are the obvious ones. Then exactness at
ToX ® I and hg ((A) is just Proposition 3.4, and exactness at hg ((B) follows
from the remark after the definition of obstruction.

The commmutativity of the diagram means that

14
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o hgo(A) = hg , intertwines the actions of ToX ® I where it acts on the
second set via the first vertical map,

e commutativity as sets for the second and third square.

which follows from functoriality of each map. O

Theorem 3.6. Let F : Art — Set be A — Hom(ﬁ, A). Then for every
small extension A — B with kernel I there is an exact sequence

0 — DI F(A) F(B) — Homy(J/mzJ,I)

Theorem 3.7. Let P = k[z1,...,z,),J = (f1,..-, fr) Cmp = (21,...,ZTp).
Let R = Spec P/J, X = Spec R. For every small extension w: A — B with
kernel I, there exists an exact sequence of groups and sets

0 —— ToX @I — hxo(A) — hxo(B) =25 ToX'® 1

functorial with respect to m, where ToX and To X are defined by the exact
sequence

0 ToX ToAT —2— (J/mpJ)V TIX 0

where « is the dual of
J/mpJ — QAn(O)
of

Note that if J C m?g then all derivatives at the origin vanish and o = 0 so
we get the previous theorem.

Proof. The only thing new here is the construction of the obstruction map.
Given ¢ : R — B, ie. ¢ : P — B such that J C kery, we can lift it to
¥ : P — A, thus defining an element ¢|; € Homp(J,I) = Homg(J/mpJ, I).
The element depends on the choice of ¢ and the dependency is described by
Proposition 3.4. In other words we get a well-defined element

ob(y) € Homy(J/mpJ, I)/ Homy (24 (0), I).
Since [ is finite-dimensional so flat we get the desired map. O

Exercise. Given P, J, R as in the previous theorem, show exists R in theorem
1 and an equivalence of functors hxo — hg , inducing isomorphism T X ®

kO™ TEX = (J/mJ)V. Hint: use hx,o = hg where S = kl[z1,...,2n]]/JS and
apply inplicit function theorem for formal power series (induction on dim J/(mJ)
(? this step is to verify if J C m?).

15
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Definition (pro-representable functor). Let F': Art — Set be a functor
such that F(k) is a singleton. We say F' is pro-representable if exists n,

JC m% and an equivalence of functors Hom(P/.J,—) — F.

Exercise. Show F is pro-representable if and only if for all N > 0 the restriction
of F to Arty is representable, where Arty is the full subcategory of artinian
rings A such that m% = 0.

Definition (tangent space and obstruction space to a functor). Let F :
Art — Set be a functor with F(k) a singleton. Let TF,T'F be k-vector
spaces. We say that TF is the tangent space to F and T'F is an obstruction
space to F' if, for every small extension w : A — B with kernel I, we are
given an exact sequence

TF®I F(A) F(B) — T'F®I

functorial in the small extensions, and such that 0 - TF ® I — F A is also
exact if B = k.

Theorem 3.8. F is pro-representable if and only if exists finite-dimensional
TF,T'F such that

0 —— TF®I — F(A) F(B) T'F&l

is exact for all small extensions A — B.

The only if direction is same as theorem. We will not prove the other direc-
tion.

Theorem 3.9. Assume F' has finite-dimensional tangent and obstruction
space. Then the tangent space is unique up to a canonical isomorphism, and
exists a minimal obstruction space TV Foiy such that every obstruction space
is induced by T' Fopyn — T'F.

Proof. Uniqueness of TF: we say how to recover TF from TF|ayt,. Arty is
equivalent to finite-dimensional vector space. We can show TF — F(k[e]/€?) is
a bijection.

T'F is not unique: suppose T'F is an obstruction space. Chgf)se a linear
embedding T'F — TlF, then T'F ® I <—>~T1F ® I. Define ob to be the
composition of this inclusion with ob. Then T'F is also an obstruction space.

Note that this does not prove the existence of T Fpniy. O

Why didn’t we define obstruction space to be T Fpin? This is because in
practice, one can compute obstruction spaces but it is unknown if they are
minimal, or we do not known how to compute the minimal obstruction space
sitting inside a

As a corollary, if we have equalities in both inequalities, i.e. 0 is an obstruc-
tion space they we know X is smooth (in fact the converse is also true, which
we will prove if we have time)

If instead we have equality on the first inequality then we know the particular
TF is minimal.

16



3 Small extensions

Proposition 3.10. Let X = Speck[z1,...,x,]/J where J Cmp = (z1,...,2,).
Then
(T hx p)min = coker((J/mJ)Y — Qun(p)Y).

Proof et P = P, = Oan . Then we have natural maps P — P — P. Let
J—Jp ,J=JP,R=,R=. Then we have R — R — R. We have

P—— Qp =@ Pdx;

| |

P @ P,
P ——— @ Pdx;
|50
@ kdl’l = QAH (O)
We have J — Q4n(0) etc. By Leibniz rule it factorises as
J/mpJ — J/mJ — j/mlgf

and we are going to show they are both isomorphisms. Note if fi,. .., f. generate
J, they also generate J and J so left to show injectivity.
To show J/mJ — J/m.J is injective, let f € J such that £ L e m.J. Werite

where a; € m. We can find v € R\ mp such that ua; = a; € mp,u
To prove the injectivity of the second map we show exists N such that

ay s J/mJ = J+m /mJ + m?

is an isomorphism It is certainly surjective Let Ly = keray, @ P /m Pj with
maximal ideal ms . Let p: P Q be the natural map. By Krull’s intersection

theorem
N _
N
Then

@(mj—km =P r m )=p 1(@):mj.
The same proof shows that J/mJ — J +m®Y /mJ + m¥ is an isomorphism.
f.‘.or the general dcase reduce to this by implicit function theorem and induc-
tion on rank Q4 (0) — JmJ. O
Two things to remember:

1. Krull’s intersection theorem: if A is a noetherian local ring or a noetherian
domeain and I a proper ideal then ()~ I N = 0. This implies for example

Ox p — Ox p is injective.

17



3 Small extensions

2. P/mJ — P/J should be “test small extension” but not in Art. By Krull
intersection theorem, we can divide by m¥ without changing the kernel if
N> 0.

3.2 Example of tangent and obstruction computations

As a general remark, for any functor F' : Sch®® — Set, we can consider its
restriction to affine schemes. We can restrict it to Art, which then decomposes
as coproduct of F), for p € F(k).

Definition (flatness). Let 7 : X — Y be a morphism, F a sheaf of Ox-
modules. Then F is flat over Y if for all z € X, F, is a flat Oy r(;)-module.

Remark. If X is locally noetherian and F is coherent then F is flat (over X)
if and only if it is locally free.

Let X be a projective scheme over k and £ a coherent sheaf on X. Fix a
very ample line bundle Ox (1) (i.e. an embedding X — P%). Define a functor

Q¢ : Sch®®? — Set
S = {F C px& : F coherent, p:E/F flat over S}/ =

This implies that F is flat over S.
For example let X = Speck,& = Ox. Then for S = Specklt], F = Zy C
Ogxx = Og for some ideal sheaf Z.

Theorem 3.11. Let X = Speck,& =V, a finite-dimensional vector space.
Then there is a canonical isomorphism

dim V'
Qv (S) = Hom(S, [ Gr(r,V)),

r=0

i.e. Qv 1is represented by ]_[fi%v Gr(r,V).

Theorem 3.12 (Grothendieck). Q¢ splits as [ | peqyy QF where for a scheme
S
QE(S) = {F € Q¢(S) with Hilbert polynomial P}.

There exist projectives schemes Qu0t§ (€) representing QF .
Fix now a point Fy — &€ of Q¢ (Spec k) so we get a functor Q z, : Art — Set
Qr,(A) ={F CpXx&: coherent, px E/F flat over A, s;.F = Fo}

where sg : X — X4 := X X Spec A is induced by A — k. As a topological
space X 4 is just X and Ox, = Ox ®; A. Thus F € Coh(X,) if and only if
the pushforward of F along X4 — X is coherent, plus the structure of a sheaf
of A-modules. Also p% € = € ®;, A.

Let A — B be a small extension with kernel I, Fp € Qz,(B). Question:
can we lift this to A?

18



3 Small extensions

Let Qp be the quotient. As Qg is flat, — ®p I is exact. ...

If so, this implies Q4 ®4 B — Qp and Q4 ® k — Qo are isomorphisms
inducing a diagram with exact rows and columns.

Claim F4 is determined by its image in £ ® A/im 8 which is contained in
G = ker o/ im S3.

Claim exact sequence

Proof. O

Proof. There is a bijection

{Fa CE®A: induces red diagram} < {Fp — ker a/im 8 splitting *}

Proof.

Lemma 3.13. F4 so obtained gives rise to Q4 such that Qa ® 4 B = QB
and Qa @4k = Qq.

Proof. O

Proposition 3.14. An A-module M is A-flat if adn only if M ®4 B is
B-flat and (M ® B) ®p I — M s injective.

Proof. Omitted. O

Corollary 3.15. A lifting Fa of Fp exists if and only if (x) splits. If it
exists then the set of liftings is in bijection with the set of splittings.

It is a standard fact that * as an extension defines an element of
EXt}QXB (FB,Qo % [) = EXt}gx (Fo,Qo @i I) = EXt%QX (]:0, Qo) R 1.

and splits if and only if it is zero. If so then bijection with ...

In summary, one can prove (without knowing that Quot x (£) is representable)
that the induced functor Art — Set has tangent and obstruction space, repre-
sente by Home, (Fo, Qo) and Exty + (Fo, Qo) respectively.

Remark. There are cases in which Ext'(Fy, Qp) is not minimal as obstruc-
tion space. For example let X C ]P’% be a smooth quartic surface such that
(0,0,0,1) ¢ X. Let £ = 0%*,Qp = Ox(1) and £ — Qq given by (z,y, 2).

Minimal obstruction is 0. c.f. “unobstructed”

There is an obstruction because it “obstructs” a different more general prob-
lem (relative deformation problem)

def (X, €, Q) — “forget” def (X, E).

There are deformations of X on which £ extends (it’s trivial) buty Q doesn’t
by Hodge theory/topology (its first Chern class is not of type (1,1)).
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3 Small extensions

Example. We give an example of a similar problem. Fix C, V. Define a functor

M : Sch®® — Set
S +— Hom(S x C,V)

and morphisms are sent to compositions. If C,V are projective, claim M is an
open subfunctor of Hilb(C' x V): given a morphism v : S x C — V, consider
its graph I'y € S x C x V. I'y = S x C is an isomorphism so I', is flat over
S. Conversely a closed subscheme Z C S x C' x V is a graph if and only if
Z — S x C is an isomorphism. Assuming 7 is S-flat, claim

U={seS:Z; — {s} x C is isomorphism}

isopen in S and (U x C x V)N Z — U x C is an isomorphism.
Thus M is representable. The corresponding functor Fy : Art — Set asso-
ciated to f : Speck x C = C — V always has tangent and obstruction space.
Easiest case

Proposition 3.16. Suppose C is separated and V is smooth over k. Then
Fy has tangent and obstruction space equal to H(C, f*Tv) and H'(C, f*Tv).

Sketch proof. We first consider case V,C affine. If V is affine n-space then...
Next we consider smooth case.

Cover C,V by affines {C;},{V;} such that f: C; — V;. We get obstruction
in HY(C, f*Ty) as a Cech cocyle: giving fp : Spec B x C' — V is the same as
I f'0y = Oc @, B. By the affine case locally we can lift to f4 and get
them to agree on C; N C;. We get a cocycle by taking differences. One checks
that changing liftings changes cocyle by a coboundary. O

A different type of functor. We want to study moduli of proper schemes. De-
fine a module functor M sending S to isomorphism classes of { Xg — S flat proper,
plus assumptions on fibers that are open in S (for example dimension or types
of singularity allowed)
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