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0 Introduction

0 Introduction
Examples of derived functors:

• cohomology theory: eg sheaf cohomology, group cohomology, Lie algebra
cohomology (the latter two are deeply related to extension problems).

• Ext functor, higher direct images.

They generalise to hyperderived functors and spectral sequences and ulti-
mately, derived categories.

0.1 Categorical preliminaries
An additive category is an Ab-enriched category with all finite biproducts. An
additive category is an abelian category if

• for every morphism f : A → B, ker f and coker f exists.

• every monomorphism (resp. epimorphism) is a kernel (resp. cokernel).

Example. ModR is an abelian category. An example that is not abelian:
VectX , the category of vector bundles over X. Then “kernel” of f may not be
a vector bundle.

For simplicity of argument, we will not be using generalised element to do
diagram chasing in this course. Instead, we will pretend that our categories of
interests are concretisable. This is justified by

Theorem 0.1 (Freyd-Mitchell). If A is a small abelian category there exists
an unital ring R and an exact fully faithful functor A → ModR.

0.2 Homological algebra preliminaries
Let A be an abelian category. A short exact sequence is the data of morphism
A′′ i−→ A

p−→ A′ in which i is monic, p is epic and ker p = im i. We write

0 A′′ A A′′ 0i p

An additive functor F : A → B is exact if it preserves short exact sequences.
More generally we have a left-exact sequence

0 A A′ · · ·

and similarly right-exact sequence.

Example. Let A = ModR. Suppose there is an exact sequence

0 M ′ M M ′′ 0

Fix an R-module N and define an endofunctor F : M 7→ M ⊗A N . Then in
general we only have a sequence on the right

M ′ ⊗N M ⊗N M ′′ ⊗N 0
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0 Introduction

Proposition 0.2 (snake lemma). Given a commutative diagram with exact
rows

M ′ M M ′′ 0

0 N ′ N N ′′

f g h

then exists a morphism kerh → coker f making the snake sequence exact

ker f ker g kerh

M ′ M M ′′ 0

0 N ′ N N ′′

coker f coker g cokerh

f g h

Definition (differential object). In an abelian cateogry A, a differential
object is a pair (A, d) where A ∈ Ob(A), d : A → A with d2 = 0.

We define Z(A) = ker d to be (co)cycles and B(A) = im d to be (co)bound-
aries. Since d2 = 0, B(A) is a subject of Z(A) and we call H(A) =
Z(A)/B(A) the (co)homology of A.

A morphism of differential objects f : (A, d) → (B, d′) is a morphism
f : A → B such that d′ ◦ f = f ◦ d.

Denote by Diff(A) the category of differential objects in A.

Given a morphism f : (A, d) → (B, d′), we have f(Z(A)) ⊆ Z(B), f(B(A)) ⊆
B(B) (here “⊆” means being a subobject) and hence there is an induced mor-
phism H(f) : H(A) → H(B). In other words, H : Diff(A) → A is a functor.

long exact sequence of cohomology (triangle) Given a short exact se-
quence of differential objects

0 A B C 0i p

we call
H(A) H(B)

H(C)

H(i)

H(p)
δ

an exact triangle. The construction of the morphism δ is a standard exercise.
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1 Derived functors

1.1 Complexes

Definition (differential complex). A (differential) complex in A is a col-
lection of objects {An}n∈N and {dn : An → An+1}n∈N with dn+1dn = 0.
Define Zn(A) = ker dn, B

n(A) = im dn−1 and Hn(A) = Zn(A)/Bn(B).
A morphism of complexes f : (A•, d) → (B•, d′) (of degree 0) is a collec-

tion f = {fn : An → Bn such that for each n ∈ N, d′n ◦ fn = fn+1 ◦ dn.
Denote by Ch(A) the category of complexes of objects in A.

Note that given a morphism f : A• → B•, we have morphisms Hn(f) :
Hn(A) → Hn(B) for all n ∈ N.

Example (de Rham cohomology). Let X be a smooth manifold and Ωk(X) the
collection of differential k-forms on X. Then exterior derivative d : Ωk(X) →
Ωk+1(X) satisfies d2 = 0. We call the cohomology of the complex (Ω•(X),d)
the de Rham cohomology of X, Hk

dR(X) = Hk(Ω•(X),d).
Suppose X = U ∪ V where U, V are open. Then

0 Ωk(X) Ωk(U)⊕ Ωk(V ) Ωk(U ∩ V ) 0

ω (ω|U , ω|V )

(ν, τ) ν|U∩V − τ |U∩V

is exact for all k.

We say a sequence of morphisms of complexes A• → B• → C• is exact if for
each n the sequence An → Bn → Cn is exact.

Theorem 1.1. If

0 (A•, d′) (B•, d) (C•, d′′) 0

is exact, we have a long exact sequence

· · · Hn(A) Hn(B) Hn(C) Hn+1(A) · · ·

Example (Mayer-Vietoris sequence). The short sequence of de Rham com-
plexes in the previous example gives

0 H0
dR(X) H0

dR(U)⊕H0
dR(V ) H0

dR(U ∩ V )

H1
dR(X) · · ·

1.2 Homotopics of complexes
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1 Derived functors

Definition (chain homotopy). Two chain maps f, g : (A•, d) → (B•, d′) are
chain homotopic if there exists zn : An → Bn−1 such that

fn − gn = zn+1 ◦ dn + dn−1 ◦ zn.

Proposition 1.2. If f and g are chain homotopic then Hn(f) = Hn(g).

Definition (homotopic complex). Two complexes A• and B• are homotopic
if there exists f : A• → B•, g : B• → A• such that g◦f ' idA• , f ◦g ' idB• .

Proposition 1.3. Homotopic complexes have isomrphic cohomologies.

Definition (quasi-isomorphism). We say a map between two complexes
f : A• → B• is a quasi-isomorphism Hn(f) is an isomorphic for all n.

Proposition 1.4. Given a complex A•, if idA• ' 0 then Hn(A) = 0. In
other words if the identity is null-homotopic then it is acyclic.

More generally, if a complex A• has null-homotopic identity from degree n0

then Hn(A) = 0 for all n ≥ n0.

Proposition 1.5 (Poincaré lemma). Hk
dR(Rn) = 0 for k > 0.

Proof. Recall Hk
dR(M) = Hk((Ω•(M),d)). We must find z : Ωk(Rn) → Ωk−1(Rn)

such that. Given ω ∈ Ωk(Rn), write

ω =
∑

i1<···<ik

ωi1···ikdx
i1 ∧ · · · ∧ dxik

Set

(zkω)(x) =
∑

i1<···<ik

k∑
p=1

(−1)p−1

(∫ 1

0

tk−1ωi1···ik(txdt)

)
xipdxi1∧· · · ˆdxip∧· · · dxix

Integration by parts gives the desired result.

1.3 Left and right exact functors
Left and right derived functors are dual to each other so it suffices to deal with
one of them.

Definition (left exact functor). An additive functor F : A → B between
abelian categories is left exact if given an exact sequence

0 A′ A A′′ 0

in A,
0 F (A′) F (A) F (A′′)
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1 Derived functors

is exact in B.
Example.

1. Given B ∈ A, Hom(B,−) : A → Ab is left exact. So is Hom(−, B) :
Aop → Ab.

2. Given M ∈ ModR, −⊗R M is right exact.

1.4 Resolution
We will define right derived funcotrs RiF of a left exact functors F are defined
using injective resolutions.

Definition (resolution). Suppose A ∈ A. A resolution of A is a pair (L•, ε)
where L• ∈ Ch(A) and ε : A → L0 a morphism such that the sequence

0 A L0 L1 · · ·ε d0

is exact.

Example. By Poincaré lemma, (Ω•, ε) is an resolution of R, where ε is the
inclusion of smooth functions.

In an abelian category A, the following diagram is a pushout

A B

C B ⊕ C/ im(f,−g)

f

g

Proposition 1.6. Given a short exact sequence in A

0 A′ A A′′ 0i p

then TFAE:

1. i has a retraction,

2. p has a section,

3. A ∼= A′ ⊕A′′, with i inclusion in the first factor and p projection onto
the second factor.

If any of these conditions hold then the short exact sequence is said to split.

Proposition 1.7. Let I ∈ A. Then TFAE:

1. Hom(−, I) is exact,

2. if i : A′ → A is monic then for all f : A′ → I exists g : A → I such

6



1 Derived functors

that g ◦ i = f

0 A′ A

I

i

f
g

3. every short exact sequence

0 I A A′′ 0

splits.

If any of these conditions holds then I is called an injective object of A.

Proof.

• 1 ⇐⇒ 2: given an exact sequence

0 A′ A A′′ 0
j q

Hom(A, I)
i∗−→ Hom(A′, I) → 0 is exact if and only if 2 holds.

• 1 =⇒ 3: applying the exact functor Hom(−, I) to the exact sequence,
we can find f ∈ Hom(A, I) such that f ◦ i = idI .

• 3 =⇒ 1: assuming all such exact sequences split, we prove j∗ : Hom(A, I) →
Hom(A′, I) is surjective. Form the pushout P

0 A′ A

0 I P

j

f g

h

Since the top row is monic, so is the bottom row. We can find a retraction
h : P → I. Then f = h ◦ g ◦ j = j∗(h ◦ g).

As a first example, recall that an abelian group A ∈ A is divisible if for all
a ∈ G and all n ∈ Z there exists h ∈ G such that g = nh.

Theorem 1.8. Divisible groups are injectives in Ab.

Proof. Exercise.

Example. Q is divisible and

0 Z Q Q/Z 0

is an injective resolution of Z.
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1 Derived functors

Definition (have enough injectives). An abelian category A is said to have
enough injectives if for all A ∈ A there exists a mono A → I where I is
injective.

Exercise.

1. Show that every abelian group embeds in a divisible group, thus Ab has
enough injectives.

2. Show the extension of scalars of an injective module is injective, so ModR

has enough injectives.

3. A has enough injectives if and only if every object has an injective reso-
lution.

Now we can start constructing right derived functors of a left exact functor.
Suppose F : A → B is a left exact functor between abelian categories and we
assume A has enough injectives. Given A ∈ A, we take an injective resolution
A → I•. F (I•) is a chain complex but not exact in general.

Definition (right derived functor). We defined the right derived functors
of F to be

RnF (A) = Hn(F (I•))

for n ≥ 0.

This really should be done in the derived category where there will be no
ambiguity on choices. Unfortunately for now we will stick to the classical for-
malism and instead will show RnF is well-defined up to isomoprhism, because
any two injective resolutions of an object A are homotopy equivalent.

Note that there is a natural isomorphism R0F ∼= F . For example we will
later see that the 0th sheaf cohomology is isomorphic to global sections.

Lemma 1.9. Given an abelian category A, two injective resolutions of an
object A ∈ A are homotopy equivalent.

This in turn follows from the lifting propery: suppose A → L• is an injective
resolution and

B I0 I1 · · ·η d0

is a complex with I∗’s injective. Then a morphism f : A → B lifts to a morphism
of complexes L• → I•. Moreover any two such lifts are homotopy equivalent.

Given this, we can also finish the definition of RnF as a functor defining
the map on morphisms: given a morphism f : A → B and injective resolutions
A → I•, B → J•, f lifts to g : I• → J•. Then we define

RnF (f) = Hn(F (g)) : RnF (A) = Hn(F (I•)) → Hn(F (J•)) = RnF (B).

Again this is well-defined.

Example. Suppose A is an abelian category with enough injectives and A ∈ A.
We have seen HomA(A,−) : A → Ab is left exact. We define the Ext functors
to be

ExtiA(A,−) = Ri HomA(A,−).

8



1 Derived functors

The first Ext functor Ext1 is related to the extension problem: given A,C ∈∈
A, can we find B ∈ A and an exact sequence

0 A B C 0

In this case B is called an extension of C by A. One can show that there is
a bijection between Ext1(C,A) and the equivalence classes of extensions under
the relation B and B′ are equivalent if there is a commutative diagram

B

0 A C 0

B′

f

By five lemma f is an isomorphism. This is an equivalence relation.

Example. Here is an example that illustrates the duality principle. Recall
that −⊗R M : ModR → ModR is right-exact. The category of R-modules has
enough projectives. Thus we define

Tori(−,M) = F i(−⊗R M).

In more detail, for N an R-module, take a projective resolution P • → N and
we define Tori(N,M) = Hi(P • ⊗M).

Example: Lie algebra cohomology

Definition (Lie algebra and representation). A Lie algebra g over a ring R
is a R-module with a skew bilinear operation [·, ·] : g× g → g satisfying the
Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ g.
A representation of g is a pair (M,ρ) where M is an R-module and

ρ : g → EndR(M) preserves the Lie bracket, i.e.

ρ[x, y] = [ρ(x), ρ(y)].

If (M, g) is representation, we define the invariant submodule to be

Mg = {m ∈ M : ρ(x)(m) = 0 for all x ∈ g}.

Rep(g) is abelian. If it has enough injectives then we can derive the left-exact
functor (−)g : Rep(g) → ModR and we can define Lie algebra cohomology to
be

Hi(g,M) = Ri(−)g(M) = RiMg.

To show Rep(g) has enough injectives, define the universal enveloping alge-
bra of g to be

U(g) = T (g)/I

9



1 Derived functors

where I is the two-sided ideal generated by elements of the form x⊗ y− y⊗x−
[x, y]. Then by the universal property of U(g), Rep(g) ∼= ModU(g).

It can be computed using Chevalley-Eilenberg complex (C•, d) where Ci =
HomR(Λ

ig,M). When g is free over R,

Hi
CE(g,M) = Hi(g,M).

1.5 Long exact sequence of a derived functor
Suppose F : A → B is a left exact functors between abelian categories where
A has enough injectives. Suppose we have an exact sequence

0 A′ A A′′ 0

We will show there exists a long exact sequence

0 R0F (A′) R0F (A) R0F (A′′)

R1F (A′) R1F (A) R1F (A′′)

R2F (A′) · · ·

δ0

δ1

Recall that R0F ∼= F , this makes precise the statement that right derived
functors measure the failure the extent to which a left exact functor fails to be
exact.

To derive this long exact sequence we want to construct a short exact se-
quence of complexes.

Lemma 1.10 (horseshoe lemma). Given a short exact sequence in A in
which there is enough injectives, we can fit it into a commutative diagram

0 0 0

0 A′ A A′′ 0

0 I0 J0 K0 0

0 I1 J1 K1 0

...
...

...

where the columns are injective resolutions and all rows are exact.

Proof. Take injective resolutions A′ → I•, A′′ → J•. Let Jn = In⊕Kn. Clearly
they are injective objects. We construct arrows A → J0 and Jn → Jn+1 so

10



1 Derived functors

that J• is a chain complex making the above diagram commute, and it follows
from the long exact sequence induced from short exact sequences that it is a
resolution.

As usual induction on n. For n = −1 by injectivity of I0 there is a lift
A → I0 which composes to give A → J0.

0 A′ A A′′ 0

0 I0 J0 K0 0

By five lemma, the cokernels of the vertical maps also form a short exact se-
quence so apply the above the above procedure to the cokernels.

Lemma 1.11. If

0 B′ B B′′ 0

is a split short exact sequence in A and F : A → B is left exact then

0 F (B′) F (B) F (B′′) 0

is short exact in B.

Proof. Let s : B′′ → B be a section of p : B → B′′. Then by functoriality
F (p) ◦ F (s) = idF (B′′) so F (p) is epic.

Given this, we can take a short exact sequence of injective resolutions

0 I• J• K• 0

which splits in Ch(A) as I• is an injective object. This gives a short sequence
in ChB

0 F (I•) F (J•) F (K•) 0

It induces a long exact sequence and by definition Hn(F (I•)) = RnF (A′) etc.

1.6 Acyclic resolution
Let F : A → B be a left exact functor between abelian categories and A has
enough injectives.

Definition (acyclic object, acyclc resolution). An object C ∈ A is F -acyclic
if RiF (C) = 0 for all i > 0. A resolution L• of A is F -acyclic if all Ln’s are
F -acyclic.

Note that if L• is any resolution of A, there always exist morphisms Hn(F (L•)) →
RnF (A).

Proposition 1.12. If L• is an acyclic resolution of A then Hn(F (L•)) →
RnF (A) is an isomorphism for all n ≥ 0. Moreover this isomorphism
is natural in the sense that if f : A → A′ lifts to F -acyclic resolutions

11



1 Derived functors

g : L• → H• then the following diagram commutes

Hn(F (L•)) Hn(F (H•))

RnF (A) RnF (A′)

∼=

Hn(F (g))

∼=
Rn(f)

Proof. Write Zn = ker(dn : Ln → Ln+1) ∼= im(dn−1 : Ln−1 → Ln). Then the
acyclic resolution is equivalent to the following short exact sequences

0 A L0 Z1 0

0 Zn Ln Zn+1 0

for n ≥ 0. As Ln is acyclic, we have exact sequences

0 F (A) F (L0) F (Z1) R1F (A) 0

0 Ri−1F (Z1) RiF (A) 0

for i > 0. Similarly the followings are exact

0 F (Zn) F (Ln) F (Zn+1) R1F (Zn) 0

0 Ri(Zn+1) Ri+1(Zn) 0

so

RiF (A) ∼= Ri−1F (Z1)
∼= · · ·
∼= R1F (Zi−1)

∼=
F (Zn)

imF (Li−1)

∼=
ker(F (Li) → F (Zi+1))

imF (Li−1)

∼=
ker(F (Li) → F (Li+1))

imF (Li−1)

∼= Hi(F (L•))

Naturality can be checked by noting that all morphisms involved are func-
torial.

Example.

1. A sheaf F on X is flasque if for all U ⊆ X open, F(X) → F(U) is sur-
jective. Flasque sheaves are acyclic so we may compute sheaf cohomology
using flasque sheaves.

2. Free modules are projective so we may compute right derived functors
using free resolutions.

12



1 Derived functors

1.7 δ-functors
Properties of (right) derived functors: the right derived functors RiF : A → B
of a left exact functor F : A → B has the following properties:

1. given a short exact sequence, there are connecting morphism δ’s that fit
into a long exact sequence.

2. naturality.

There are the properties we would like to extract. We thus define

Definition (δ-functor). A δ-functor A → B is a collection {T i}i∈N of ad-
ditive functors T i : A → B such that

1. for any exact sequence

0 A′ A A′′ 0

in A, there are morphisms δi : T
i(A′′) → T i+1(A′) such that there is

a long exact sequence

0 T 0(A′) T 0(A) T 0(A′′)

T 1(A′) T 1(A) · · ·
δ0

2. For every morphisms of exact sequences there are commutative dia-
grams

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

δi

δi

Remark. T 0 is left exact.

Definition (effaceable). A functor F : A → B of abelian categories is
effaceable if for all A ∈ A there is a monomorphism g : A → A′ such that
F (g) = 0.

Lemma 1.13. If A has enough injectives and F (I) = 0 for all injective
objects I ∈ A then F is effaceable.

Proof. Take a monomorphism 0 → A → I and apply F .

Definition (universal δ-functor). A δ-functor {T i, δi} is universal if for any
other δ-functor {Si, σi} with a morphism f0 : T 0 → S0, there are unique

13



1 Derived functors

morphisms f i : T i → Si such that

T i(A′′) T i+1

Si(A′′) Si+1(A′)

δi

σi

commute for all exact sequences

0 A′ A A′′ 0

Theorem 1.14. A δ-functor {T i, δi} such that T i is effaceable for all i > 0
is universal.

It follows that unviersal δ-functors {T i, δi} and {Si, σi} such that T 0 ∼= S0

are isomorphic via a unique isomorphism.

Corollary 1.15. Let F : A → B be a left exact functor. Assume A has
enough injectives. Then {RiF, δi} is a universal δ-functor. In particular if
{T i, σi} is a universal δ-functor such that T 0 ∼= F then T i ∼= RiF .

Proof. From the observation at the beginning of the section {RiF, δi} is a δ-
functor. It is also effaceable since 0 → I → I → 0 is an injective resolution.

Applications: on paracompact space Čech cohomology is the same as sheaf
cohomology: proof by showing Čech cohomology is a universal δ-functor, and
0th Čech cohomology is exactly global sections.
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2 Sheaves

2 Sheaves

2.1 Presheaves
If X is a topological space, form the category of open sets Op(X) of X. Its
objects are open subsets of X and the morphisms are inclusions. A presheaf of
abelian groups on X is a contravariant functor P : Op(X) → Ab. A morphism
of presheaves is a morphism of functors.

Example.

1. Constant presheaf: fix an abelian group G and define the constant presheaf
by U 7→ G and all morphisms to be idG.

2. The sheaf of continuous functions.

For x ∈ X, the set of open neighbourhoods ordered by reverse inclusion is a
directed set. Thus if P is a presheaf on X, we define the stalk of P at x to be

Px = lim−→
U3x

P(U).

Elements of Px are called germs (of sections of P at x).

2.2 Sheaves

Definition (sheaf). A sheaf F is a presheaf satisfying the sheaf axioms

1. if U is an open set, {Vi} is an open cover of U and s ∈ F(U) is such
that s|Vi = 0 for all i then s = 0.

2. if U is an open set, {Vi} is an open cover of U and si ∈ F(Vi) are such
that si|Ui∩Uj

= sj |Ui∩Uj
for all i, j such that Ui ∩ Uj 6= ∅ then exists

s ∈ P(U) such that s|Vi
= si.

Remark. If both axioms hold then S1 implies that the s in S2 is unique.

Example.

1. The constant presheaf does not satisfy S2.

2. Let X be a differentiable manifold. Define a presheaf by U 7→ H1
dR(U).

Choose U such that H1
dR(U) 6= 0. We can cover U by contractible Vi’s.

Thus we can find nonzero ξ ∈ H1
dR(U) such that ξ|Vi = 0 for all i. Thus

it does not satisfy S1. Note the stalk at every point is 0. We will see its
associated sheaf is 0.

Exercise. If F is a sheaf on X such that Fx = 0 for all x ∈ X then F = 0.

2.3 Sheafification
Given a presheaf P on X, we construct the étalé space P =

∐
x∈X Px together

with a natural map π : P → X. If U ⊆ X open and s ∈ P(U) then

s : U → P
x 7→ sx

15
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defines a section of π. Topologise P by giving a basis {s(U) : U ⊆ X open, s ∈
P(U)}. Then π is continuous (in fact this topology is the weakest topology for
which π is continuous). We then define the sheafification of P , P \, to be the
presheaf

U 7→ {continuous sections U → P},

which is a sheaf since continuity is a local property.
The natural map i : P → P\ induces an isomorphism on all stalks.

Example.

1. The sheafification of the presheaf U 7→ H1
dR(U) in the previous section is

the zero sheaf as all stalks are zero.

2. The sheafification of a constant preseheaf is the constant sheaf , whose
sections are locally constant functions.

Proposition 2.1. For a presheaf P on X, sheafification i : P → P\ has
the following universal property: for any sheaf F on X, any morphism of
presheaves f : P → F factorises uniquely through i.

P F

P\

f

i
∃!

Thus given a morphism of presheaves f : P → Q, there is a natural map
f \ : P\ → Q\, so sheafification defines a functor.

2.4 Exact sequences of presheaves and sheaves
If A is an abelian category then for any category B, [B,A] is naturally an
abelian category. One readily checks that a sequence of presheaves

0 P ′ P P ′′ 0

is short exact if and only if

0 P ′(U) P(U) P ′′(U) 0

is short exact for all U .
Given a morphism of sheaves f : F → G, the presheaf ker f is always a sheaf

but this need not be the case for coker f . For example let X be a complex
manifold. Then

0 Z OX O∗
X

exp

is not exact on the right as presheaves, as exp(f)(z) = exp2πif(z) is not surjective
on some open sets U ⊆ X. However every x ∈ X has a neighbourhood U on
which exp is surjective, so the sequence is exact on the stalks.

16



2 Sheaves

Definition (exact sequence of sheaves). A sequence of sheaves

0 F ′ F F ′′ 0

is exact if it is exact on all stalks.

Example. Let X be a smooth manifold. Let Ωp
X be the sheaf of p-forms on X.

Then exterior derivative d : Ωp
X → Ωp+1

X defines sheaf morphisms and gives rise
to a complex

C∞ Ω1
X · · · Ωn

X 0

This is called the de Rham complex. It is exact in positive degrees by Poincaré
lemma. This gives a resolution of the constant sheaf R. Note that as presheaves,

Hk(Ω•
X)(U) = Hk

dR(U).

2.5 Some constructions of sheaves

Definition (pushforward). Let f : X → Y be a continuous map. We define
functors

• f∗ : ShX → ShY by

f∗F : U 7→ F(f−1(U)).

It is left exact.

• f−1 : ShY → ShX by defiing f−1G to be the sheafification of the
presheaf

U 7→ lim−→
V⊇f(V )

G(V ).

It preserves stalks so it is exact.

Proposition 2.2. f−1 is left adjoint to f∗, i.e. there are natural isomor-
phisms

1ShY
→ f∗f

−1, f−1f∗ → 1ShX
,

or equivalently, there are natural isomorphisms

HomShX
(f−1G,F) ∼= HomShY

(G, f∗F).

2.6 Sheaf of modules

Definition (ringed space). A ringed space is a pair (X,OX) where X is a
topological space and OX is a sheaf of rings on X.

A morphism of ringed spaces (f, f#) : (X,OX) → (Y,OY ) where f :
X → Y is a continuous map and f# : OY → f∗OX is a morphism of
sheaves of rings.

17
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Definition (sheaf of module). Let (X,OX) be a sheaf of modules. An OX-
module is a sheaf of abelian groups M on X such that each M(U) is an
OX(U)-module and restrictions are compatible with module maps.

A morphism of sheaf of OX -modules φ : M → N is a morphism of
sheaves φ such that φU : M(U) → N (U) is a morphism of OX(U)-modules
compatible with restriction maps.

Proposition 2.3. ModOX
is an abelian category.

Example. Consider the ringed space (X,OX) where X is a complex manifold
and OX is the sheaf of holomorphic functions on X. Let π : E → X be a
holomorphic vector bundle. Then we can define the sheaf E of sections of E by

U 7→ {s : U → E : s holomorphic, π ◦ s = idU}.

Then E is an OX -module.

Example. Given any topological space X, consider the ringed space (X,ZX)
where ZX is the constant sheaef Z. Then an ZX -module is exactly a sheaf on
X.

Definition. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
We define functors

• f∗ : ModOX
→ ModOY

by

f∗M : U 7→ M(f−1(U))

where RHS is regarded as an OY (U)-module via OY (U) → f∗OX(U).
It is left exact.

• f∗ : ModOY
→ ModOX

by defining f∗N to be the sheafification of
the presheaf

U 7→ f−1N (U)⊗(f−1OY )(U) OX(U)

where f−1OY → OX is obtained from f# : OY → f∗OX using ad-
junction. It is right exact. f is said to be flat if f∗ is exact.

(? Claims f is flat if and only if OX,x is a flat OY,f(x)-module for all x.
Check this)

Proposition 2.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed
spaces. Then f∗ is left adjoint to f∗.

Sketch proof. This follows from tensor-Hom adjunction: let R,S be rings, Y
an R-module, Z an S-module and X and (R,S)-bimodule. Then there is a
bijection

HomS(Y ⊗R X,Z) ∼= HomR(Y,HomS(X,Z)).

18
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Globalise to get

HomX(f∗G,F) = HomX(f−1G ⊗f−1OY
OX ,F)

= HomY (f
−1G,HomX(OX ,F))

= HomY (f
−1G,F)

= HomY (G, f∗F)

Let (X,OX) be a ringed space. For OX -sheaves M and N , we define a
preshaef HomX(M,N ) by

U 7→ HomU (M|U ,N|U ).

This is a sheaf of OX -module.

Exercise. Let M be an OX -module. Show

HomX(M,−) : ModOX
→ Ab

HomX(M,−) : ModOX
→ ModOX

are both left exact HomX(M,−) = Γ(X,−) ◦ HomX(M,−). Upon showing
the category of sheaves has enough injectives, we can then define right derived
functors

ExtiX(M,−) = Ri HomX(M,−)

ExtiX(M,−) = RiHomX(M,−)

The two are thus related by a spectral sequence.

Let M,N be OX -modules, We define M ⊗OX
N to be the sheaf of OX -

module obtained by sheafifying

U 7→ M(U)⊗OX(U) N (U).

The functor −⊗OX
M : ModOX

→ ModOX
is right exact.

Proposition 2.5. We have

(M⊗OX
N )x ∼= Mx ⊗OX,x

Nx

for all x ∈ X.
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3 Čech cohomology
Let X be a topological space and P a presheaf on X. Let U = {Ui} be an
open cover of X where I is totally ordered. Suppose i0 < · · · < ip, we use the
notation

Ui0···ip = Ui0 ∩ · · · ∩ Uip .

For p ≥ 0, we define the Čech complex (C•(U ,P), δ) where

Cp(U ,P) =
∏

i0<···<ip

P(Ui0···ip)

and δ : Cp(U ,P) → Cp+1(U ,P) is given by

(δα)i0···ip+1
=

p+1∑
k=0

(−1)kαi0···̂ik···ip+1
|Ui0···ip+1

.

One can check that δ2 = 0. We then define Čech cohomology of U with coeffi-
cients in P to be

Hk(U ,P) = Hk((C•(U ,P), δ)).

Proposition 3.1. If F is a sheaf then H0(U ,F) ∼= F(X).

Proof. Suppose α ∈ H0(U ,F) = ker(δ : C0(U ,F) → C1(U ,F)). Then αi|Uij =
αj |Uij

for all i, j so exists a unique α̃ ∈ F(X) such that α̃|Ui
= αi. This defines

a map H0(U ,F) → F(X). It has an obvious inverse.

Exercise. Compute H∗(U ,R) for X = S1 where U consists of three arcs that
intersect pairwise but has empty triple intersection. The result is isomorphic to
H∗

dR(X).

Suppose
0 P ′ P P ′′ 0

is a short exact sequence of presheaves on X. Then for all coverings U we have
a short exact sequence of complexes

0 C•(U ,P ′) C•(U ,P) C•(U ,P ′′) 0

which gives rise to a long exact sequence

0 H0(U ,P ′) H0(U ,P) H0(U ,P ′′)

H1(U ,P ′) H1(U ,P) · · ·

We would like to remove the dependency on the choice of open covering. Par-
tially order the open covers of X by refinement so they form a filtered category.
Then define

Ȟi(X,P) = lim−→
U

Hi(U ,P).
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Exercise. A presheaf is separated if it satisfies sheaf axiom 1. Show that if P
is a separated presheaf then Ȟ0(X,P) = P\(X).

As filtered colimit commutes with finite limits (and certainly colimits) in
Ab, taking direct limit is exact so we have a long exact sequence

0 Ȟ0(X,P ′) Ȟ0(X,P) Ȟ0(X,P ′′)

Ȟ1(X,P ′) Ȟ1(X,P) · · ·

3.1 Čech cohomology for paracompact spaces

Lemma 3.2. Let X be a paracompact topological space and P a presheaf
on X such that P \ = 0. Let U be an open cover of X and α ∈ Ck(U ,P).
Then there is a refinement V of U such that τ(α) = 0 where τ : C•(U ,P) →
C•(V,P).

Proof. Hirzebruch, Topological methods in algebraic geometry, lemma 2.9.2.

For any presheaf P, the morphism P → P\ induces a morphism

Ȟ•(X,P) → Ȟ•(X,P\). (∗)

Proposition 3.3. Let P be a sheaf on a paracompact space X, then (∗) is
an isomorphism.

Proof. Let Q1, Q2 be the kernel and cokernel of the presheaf morphism P → P \.
Then Q\

1 = Q\
2 = 0 so Ȟ•(X,Q1) = Ȟ•(X,Q2) = 0. We have two short exact

sequences
0 Q1 P Z 0

0 Z P\ Q2 0

By considering the long exact seqeuence of cohomology we get

Ȟ•(X,P) ∼= Ȟ•(X,Z) ∼= Ȟ•(X,P\).

Corollary 3.4. Let X be a paracompact space. Then a short exact sequence
of sheaves

0 F ′ F F ′′ 0
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induces a long exact sequence of Čech cohomology groups

0 Ȟ0(X,F ′) Ȟ0(X,F) Ȟ0(X,F ′′)

Ȟ1(X,F ′) Ȟ1(X,F) · · ·

Proof. Let Q be the presheaf cokernel of F ′ → F so Q\ ∼= F ′′. Apply Ȟ•(X,Q) ∼=
Ȟ•(X,F ′′) to the long exact sequence of cohomology groups of presheaves.

Theorem 3.5. If X is paracompact then Ȟi(X,−) : ShX → Ab together
with the connecting morphisms previously defined is a δ-functor.

Proof. We need to prove that for any commutative diagrams with exact rows

0 F ′ F F ′′ 0

0 G′ G G′′ 0

we have for every i ≥ 0 commutative diagrams

Ȟi(X,F ′′) Ȟi+1(X,F ′)

Ȟi(X,G′′) Ȟi+1(X,G′)

δi

δi

Again we replace F ′′ and G′′ by the respectively presheaf cokernels P and Q.
Then we have a morphism of long exact sequences of Čech cohomology groups.
In particular

Ȟi(X,F ′′) Ȟi(X,P) Ȟi+1(X,F ′)

Ȟi(X,G′′) Ȟi(X,Q) Ȟi+1(X,G′)

∼=

∼=

Definition (skyscraper sheaf). Let X be a topological space, x ∈ X and G
an abelian group. The skyscraper sheaf of G at x is

G(x) : U 7→

{
G x ∈ U

0 x /∈ U

Exercise. G(x)y = 0 if y /∈ {x}.
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Proposition 3.6. ModOX
has enough injectives.

Proof. Let F be an OX -module. Then Fx is an OX,x-module so we can find an
injective OX,x-module Ix such that Fx ↪→ Ix. For x ∈ X, let jx : {x} → X.
Define

I =
∏
x∈X

jx,∗Ix.

By adjunction we have

HomOX
(F , jx,∗Ix) ∼= HomOX,x

(Fx, Ix)

so we obtain an injective morphism g : F ↪→ I.
Now we show I is an injective OX -module. Let Sx : ModOX

→ ModOX,x
,F 7→

Fx which is exact. Then

HomOX
(F , I) =

∏
x∈X

HomOX,x
(Sx(F), Ix).

As
HomOX

(−, I) =
∏
x∈X

HomOX,x
(−, Ix) ◦ Sx

is a composition of exact functors it is also exact.

In particular if we equip a topological space X with the constant structure
sheaf ZX then ShX has enough injectives.

Note that in general, given a ringed space (X,OX), the categories ModOX

and ShX have different injective objects.

ModOX
Γ(X,OX)-Mod

ShX Ab

Γ

Γ

We look for Γ-acyclic sheaves whose definition is the same in both, which will
be flasque sheaves. After that we show any injective OX -module is flasque and
hence acyclic so the right derived functors of these two coincide.

Definition (flasque sheaf). A sheaf F is flasque if for all U ⊆ X open,
F(X) → F(U) is surjective.

Do flasque sheaves exist in general? Recall that F ∼= F \, which is defined
as the sheaf of continuous sections of its étalé space F . We define the flasque
envelope of F to be the sheaf G0(F) of all sections of F , which is flasque. One
then obtains the Godemont resolution of F as follow. Let Q0 = G0(F)/F .
Take the flasque envelope of Q0 and call it G1(F). Then there is a morphism
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G0(F) → G1(F). Continuing this way one get a flasque resolution of F .

0

0 F G0(F) Q0 0

G0(Q0) = G1(F)

0 Q1 G0(Q1) = G2(F)

. . .

We would like to show that flasque sheaves are Γ-acyclic

Lemma 3.7. If

0 F ′ F F ′′ 0

is an exact sequence of sheaves and F ′ is flasque then

0 F ′(U) F(U) F ′′(U) 0

is exact for every open U .

Proof. Only need to show the last map is surjective. Suppose s ∈ F ′′(U).
Consider the collection

{(V, t) : t ∈ F(V ), g(t) = s|V }

partially ordered by (V, t) ≤ (V ′, t′) if V ⊆ V ′ and t′|V = t. As Fx → F ′′
x is

surjective for any x ∈ U it is nonempty and by Zorn’s lemma there is a maximal
element (V, t). Now we show V = U . Suppose not, then let x ∈ U ⊇ V . By
surjectivity on stalks can find W a neighbourhood of x and t′ ∈ F(W ) such
that g(t′) = s|W . Then t|W∩V − t′|W∩V ∈ ker g so it can be written as f(r) for
some r ∈ F ′(W ∩V ). Since F ′ is flasque, r extends to a r̃ ∈ F ′(W ). Then t and
f(r̃) + t′ glue to a section of F(W ∪ V ), contradicting maximality of (V, t).

Lemma 3.8. A quotient of flasque sheaves is flasque.

Proof. For any U ⊆ X we have a commutative diagram with exact rows

0 F ′(X) F(X) F ′′(X) 0

0 F ′(U) F(U) F ′′(U) 0

The composition F(X) → F(U) → F ′′(U) is surjective and hence F ′′(X) →
F ′′(U) is surjective too.
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Proposition 3.9. Every injective OX-module is flasque.

We introduce a construction that will be used in the proof. Suppose U ⊆ X
open, F an OU -module. Let j : U ↪→ X. We define extension by zero j!F an
OX -module by

V 7→

{
F(V ) V ⊆ U

0 V * U

Proof. Let O(U) = j!OU as an OX -module. Suppose I is an injective OX -
module and suppose V ⊆ U . Then we have an injection O(V ) ↪→ O(U). Apply
HomOX

(−, I), we get

I(U) = HomOX
(O(U), I) � HomOX

(O(V ), I) = I(V ).

Remark. In particular injective sheaves are flasque.

Theorem 3.10. Flasque sheaves are acyclic for sheaf cohomology.

Proof. Suppose F is a flasque OX -module. Inject F into an injective OX -module
I and let Q = I/F which is flasque. Taking sheaf cohomology, we get an exact
sequence

0 H0(X,F) H0(X, I) H0(X,Q) H1(X,F) 0

and Hi(X,Q) ∼= Hi+1(X,F) for i ≥ 1. As F , I and Q are flasque the first three
terms are already exact so H1(X,F) = 0. This holds for all flasque sheaves F
so inductively Hi(X,F) = 0 for all i > 0.

Corollary 3.11. If F is any OX-module and

0 F F0 F1 · · ·

is a flasque resolution then

Hi(Γ(X,F•)) ∼= Hi(X,F)

for all i ≥ 0.

In particular we can take any Godemant resolution G•(F).

3.2 Higher direct image
Suppose f : (X,OX) → (Y,OY ) is a morphism of ringed spaces. We can take the
right derived functors of f∗ : ModOX

→ ModOY
, called higher direct images

and denoted Rif∗. Similarly we can consider the higher direct image between
categories of sheaves.

Suppose F is an OX -module. Then we define a sheaf of OY -modules Si
f (F)

on Y by the associated sheaf of

U 7→ Hi(f−1(U),F).
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Exercise.

1. {Si
f} defines a δ-functor.

2. This δ-functor is universal (this follows immediately from effaceability).

3. Show S0
f (F) = f∗F so Si

f
∼= Rif∗.

3.3 Comparison theorem of Čech cohomology
Let U be an open cover of X and F a sheaf on X. We construct morphisms
Hi(U ,F) → Hi(X,F). The strategy is to promote Čech cochain to a complex
of sheaves, and then lift the identity on the global sections to a morphism to
injective resolution.

Let ji0···ip : Ui0··· ,ip ↪→ X. We define a sheaf

Čp(U ,F) =
∏

i0<···<ip

(ji0···ip)∗F|Ui0···ip

and define δ : Čp(U ,F) → Čp+1(U ,F) in the usual way. We then get the Čech
sheaf complex (Č•(U ,F), δ).

Proposition 3.12.

1. For V ⊆ X open we have

Čp(U ,F)(V ) =
∏

i0<···<ip

F(V ∩ Ui0···ip)

and in particular Γ(X, Čp(U ,F)) = Cp(U ,F).

2. There is a a sheaf morphism ε : F → Č0(U ,F) defined by F(V ) 3 t 7→
(t|V ∩Ui0

).

3. We have a resolution of F

0 F Č0(U ,F) Č1(U ,F) · · ·ε δ0

Proof. ε is injective by the first sheaf axiom. ker δ0 = im ε ∼= F by the second
sheaf axiom. To show the complex is exact in positive degree if suffice to check
exactness on stalks by exhibiting a null homotopy. Define K : Čp(U ,F)x →
Čp−1(U ,F)x as follows. Suppose sx ∈ Čp(U ,F) is represented by (V, s) where
wlog V ⊆ Uj for some j. Then define

(Ksx)i0,...,ip−1 = (−1)σsi0···j···ip−1

where σ is the sign of the permutation (j, i0, . . . , ip−1) 7→ (i0, . . . , j, ip−1).

Now take an injective resolution 0 → F → I• and we can extend identity to
a morphism of resolutions

0 F Č•(U ,F)

0 F I•
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Taking global sections, taking cohomology and passing to direct limit we thus
get Ȟ•(X,F) → H•(X,F).

In general this morphism is not an isomorphism. But we can say in general

• in degree 0 both groups are Γ(X,F), so an isomorphism,

• in degree 1 it is always an isomorphism,

• in degree 2 it is always an injection.

Example (from Tohoku paper). Let X be an irreducible topological space. Let
Y1, Y2 be two irreducible closed subsets such that Y1 ∩ Y2 = {p, q}. Take the
constant sheaf kY on Y1 ∪ Y2. Then Ȟ2(Y, kY ) 6= H2(Y, kY ).

What we want to show is

1. if X is paracompact then for all F , Ȟ•(X,F) ∼= H•(X,F).

2. if X is a noetherian separated scheme and F a quasicoherent OX -module
then for U an affine open cover H•(U ,F) ∼= H•(X,F).

The second can be be used to show Pic(X) ∼= H1(X,O∗
X).

Lemma 3.13. If F is flasque and U is an open cover of X then Hi(U ,F) = 0
for i > 0 and so Ȟi(X,F) = 0.

Proof. If F is flasque then the sheaves Čp(U ,F) are flasque.

Theorem 3.14. When X is paracompact then δ-functor Ȟi(X,−) : ShX →
Ab is universal.

Proof. Injective sheaves are flasque so Ȟi(X, I) = 0 for all I injective and all
i > 0 so Ȟi(X,−) is effaceable.

Corollary 3.15. When X is paracompact the natural morphisms Ȟi(X,−) →
Hi(X,−) are isomorphisms.

Lemma 3.16. If X is a noetherian affine scheme and

0 F ′ F F ′′ 0

is an exact sequence of OX-modules and F ′ is quasicoherent then the se-
quence is exact also as a sequence of presheaves.

3.4 Leray’s theorem
Let X be a topological space and F a sheaf on X. Then the theorem roughly
says that Hi(U ,F) ∼= Hi(X,F) for all i ≥ 0 whenever U is “fine enough” to
ensure that F has no cohomology on the intersections Ui0···ip .
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Theorem 3.17. Assume there is an integer n such that Hi(Ui0···ip ,F) = 0
for all 1 ≤ i ≤ n for all intersections Ui0···ip . Then Hi(U ,F) ∼= Hi(X,F)
for all 1 ≤ i ≤ n.

Since for a separated scheme intersections of affines are affine and quasico-
hernet sheaves on noetherian affine schemes are acyclic, the second comparison
theorem thus follows.

3.5 Comparison with de Rham cohomology

Theorem 3.18. If X is a differentiable manifold then

Hi(X,R) ∼= Hi
dR(X)

for all i ≥ 0.

Definition (support of a sheaf, support of a section). If F is a sheaf on X
then its support is

supp(F) = {x ∈ X : Fx 6= 0}.

If s ∈ F(U) then its support is

supp(s) = {x ∈ U : sx 6= 0}.

Exercise.

1. Show supp(s) is closed.

2. Find an example where supp(F) is not closed (hint: consider j!F).

Definition (fine sheaf). A sheaf of rings F on a topological space X is fine
if it admits a partition of unity subordinated to any locally finite open cover,
i.e. if {Ui}i∈I is a locally finite cover then there exists a family {ρi ∈ F(X)}
such that

1. supp(ρi) ⊆ Ui for all i,

2.
∑

i∈I ρi = 1.

Theorem 3.19. If F is a fine sheaf of rings on a paracompact topological
space X and M is an F-module then Hi(U ,M) = 0 for i > 0 when U is a
locally finite open cover. Then Hi(X,M) = 0.

In other words on a paracompact space, sheaves of module over a fine sheaf
of rings are acyclic.

Proof. The second statement follows from the first since paracompactness im-
plies that locally finite covers are cofinal in all covers. For the first we show
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C•(U ,M) is acyclic by constructing a null homotopy. Suppose α ∈ Cp(U ,M),
we set

(Kα)i0···ip−1
=

p∑
k=0

(−1)k
∑

ik−1<j<ik

ρjαi0···ik−1jik+1···ii−1
.

Recall the de Rham complex

0 R Ω0
X Ω1

X · · · Ωn
X 0

which, by the result we have just shown, is an acyclic resolution of R so it follows
that

Hi(X,R) ∼= Hi((Ω•(X),d)) = Hi
dR(X).

There is a parallel result in complex geometry using the Dolbeault complex.
Let X be a complex manifold. Then there is a sheaf morphism ∂ : Ωp,q

X → Ωp,q+1
X

such that ∂
2
= 0. For a fixed p ≥ 0, the ∂-Poincaré lemma says that

0 Ωp
X Ωp,0

X Ωp,1
X Ωp,2 · · ·∂ ∂

is exact, where Ωp
X is the sheaf of holomorphic p-forms. More over each Ωp,0

X is
a C∞

X -module so acyclic. Thus

Hq(X,Ωp
X) ∼= Hq((Ωp,•(X), ∂)) = Hp,q

∂
(X),

where RHS is the Dolbeault cohomology.

3.6 Cohomology of a good cover

Definition (good cover). Let X be a differentiable manifold. An open cover
{Ui} of X is good if all nonempty intersections Ui0···ip are homeomorphic to
Rn (where n = dimX).

All differentiable manifold admits a good cover. To see this one picks a
Riemannian metric on X and takes geodesic balls of sufficiently small radius
For details see volume II of Kobayashi-Narimen.

For a good cover {Ui},

Hk(Ui0...ip ,R) = Hk
dR(Ui0···ip) = 0

for k > 0 so
Hk(U ,R) ∼= Hk(X,R) ∼= Hk

dR(X)

for all k ≥ 0 by Leray’s theorem. Note that since Ui0...ip is connected, the
information associated to this cover is essentially combinatorial.
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4 Spectral sequences

4 Spectral sequences
We consider a collection of complexes {(Ek, dk)}k∈Z where Ek+1 is the coho-
mology of (Ek, dk). When this goes well the sequence stabilises so Ek

∼= Ek+1

for all k ≥ k0.
For simplicity we work in the category of R-module, but the discussion

applies to all abelian categories with all coproducts.

4.1 Filtered complex
Suppose {Kn}n∈N is a complex with differential d. Assume there is a filtration
in subcomplexes

K = K0 ⊇ K1 ⊇ K2 ⊇ · · · ,

meaning that d(Kp) ⊆ Kp. Write Kn
p = Kp ∩ Kn. Consider the associated

graded module Gr(K) =
⊕

p∈Z Kp/Kp+1 (we set Kp = K for p ≤ 0).
A double complex gives a natural filtered complex. What we consider be-

low is called first quadrant double complex. Consider {Kp,q}p,q∈N with two
differentials δ1 : Kp,q → Kp+1,q, δ2 : Kp,q → Kp,q+1 which anticommute, i.e.
δ1δ2 + δ2δ1 = 0, δ21 = δ22 = 0. Consider the total complex associated to the
double complex

(Tn =
⊕

p+q=n

Kp,q, d = δ1 + δ2).

Example (Čech-de Rham double complex). Let X be a differentiable manifold
and U an open cover. Let Kp,q = Cp(U ,Ωq

X). Let δ : Kp,q → Kp+1,q, d :
Kp,q → Kp,q+1. They commute so we set δ1 = δ, δ2 = (−1)pd.

The total complex of a double complex has two natural filtrations: the fil-
tration by columns is given by Tp =

⊕
n≥p
q≥0

Kn,q. Then Gr(T )p =
⊕

q≥0 K
p,q.

Analogously we have filtration by rows T ′
q =

⊕
p≥0
n≥q

Kp,n and Gr(T ′)q =
⊕

p≥0 K
p,q.

Definition (regular filtration). A filtration K• of a complex (K•, d) is reg-
ular if for every n the filtration

Kn = Kn
0 ⊇ Kn

1 ⊇ Kn
2 ⊇ · · ·

is finite, i.e. there is a number `(n) such that Kn
p = 0 for p > `(n).

Both filtration of Tn by rows and columns are regular since the double
complex is first quadrant.

Now we begin the construction of the spectral sequence. We forget for a
second the grading. Let (K, d) be a complex and consider a filtration

K = K0 ⊇ K1 ⊇ . . .

Let G =
⊕

p∈Z Kp, which is naturally a differential object. The inclusion
Kp+1 → Kp induces a morphism i : G → G with coker i ∼= Gr(K) =: E.
Then we have an exact sequence of differential modules

0 G G E 0i
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4 Spectral sequences

giving an exact triangle
H(G) H(G)

H(E)

i

j
k

We assume the filtration is regular, i.e. of finite length `. We have the
following sequence (not exact!)

0 H(K`) H(K`−1) · · · H(K1) H(K) H(K−1) · · ·

whose direct sum we call G1. As the filtration is compatible with the differential,
i : G → G induces H(Kp) → H(Kp+1) which we also call i. Then in the
following sequence

0 i(H(K`)) · · · i(H(K1)) H(K) H(K−1) · · ·

i(H(K1)) → H(K) is an inclusion so injective. We call the direct sum G2.
Iteratively we apply i and at each step we call Gk the sum of the terms in the
sequence. Eventually we get

0 i`(H(K`)) · · · i(H(K1)) H(K) H(K−1) · · ·

where all arrows are injective so can be regarded as a decreasing filtration Fp =
ip(H(Kp)) of H(K). The sequence then stabilises: Gr+1

∼= Gr whenever r ≥
`+ 1. We thus define G∞ = G`+1 =

⊕
p∈Z Fp.

Let E1 = H(E) and we can rewrite the above exact triangle as

G1 G1

E1

i1

j1
k1

We define a differential d1 : E1 → E1 by d1 = j1 ◦ k1. Let E2 = H(E1, d1).
Recall that G2 is the image of i1 : G1 → G1. We define morphisms such that
the triangle

G2 G2

E2

i2

j2
k2

is exact:

• i2 is induced by i1 by letting i2(i1(x)) = i1(i1(x)).

• j2 is induced by j1 by letting j2(i1(x)) = [j1(x)]E2 .

• k2 is induced by k1 by letting k2([y]) = k1(y).

Check these are well-defined and give the desired exact triangle.
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4 Spectral sequences

Iterate this process and we get a sequence of derived triangles. For r ≥ `+1
the morphism ir becomes injective so Er stabilises and kr = 0. As i∞ is injective,
the exact triangle

G∞ G∞

E∞

i∞

j∞
k∞

becomes a short exact sequence

0 G∞ G∞ E∞ 0
i∞ j∞

so E∞ =
⊕

p≤` Fp/Fp+1.

Definition (spectral sequence). A sequence of differential modules {(Ek, dk)}
such that H(Ek, dk) ∼= Ek+1 is called a spectral sequence. If the modules Ek

becomes stationary, we call the stationary value E∞. If E∞ is isomorphic
to the graded module associated to some filtered module H, we say that the
spectral sequence converges to H.

Thus in our motivating example the spectral sequence converges to H(K).

Remark. If {K•} has length ` but {E•} stablises at some k0 < `, we say that
the spectral sequence degenerates at r0. In particular dr = 0 for r ≥ r0.

The next step is to switch the grading on. Everything we have done so far
is compatible with grading so we just need to carefully track them through the
calculation.

Theorem 4.1. Let (K•, d) be a complex with a compatible regular filtration.
Then there is a spectral sequence {(Ek, dk)} where each Ek is graded, which
converges to the graded module associated to some filtration on H•(K, d).

Proof. Gr is graded by degree: Gr =
⊕

n∈Z G
n
r where Gn

r =
⊕

p∈Z i
r−1(Hn(Kp)).

For every n if r ≥ `(n) + 1 then ir : Gn
r → Gn

r is injective, so kr : Gn
r → Gn+1

r

is zero. Thus in every degree the derived triangle stabilises and we get a short
exact sequence

0 Gn
∞ Gn

∞ En
∞ 0

i∞

Fn
p = i`(n)(Hn(Kp)) gives a filtration of Hn(Kp) and En

∞ =
⊕

p F
n
p /F

n
p+1.

4.2 Bidegree
In our previous example we can write

Kp/Kp+1 =
⊕
q∈Z

Kq
p/K

q
p+1 =

⊕
q∈Z

Kp+q
p /Kp+q

p+1

then E is actually bigraded:

E =
⊕
p∈Z

Kp/Kp+1 =
⊕
p,q∈Z

Kp+q
p /Kp+q

p+1 .
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4 Spectral sequences

We let Ep,q
0 = Kp+q

p /Kp+q
p+1 . The natural grading on E can then be seen as the

grading of the total complex of the double complex by total degree, i.e.⊕
p+q=n

Ep,q
0 =

⊕
p+q=n

Kp+q
p /Kp+q

p+1 =
⊕
p

Kn
p /K

n
p+1 = En.

As d : Kp+q
p → Kp+q+1

p , it descends to d0 : Ep,q
0 → Ep,q+1

0 . We let

Ep,q
1 = Hq(Ep,•

0 , d0) = Hp+q(Kp/Kp+1)

Then by construction

E1 = H(E0, d0) =
⊕
p,q

Ep,q
1

so it is also bigraded.
Claim that d1 : Ep,q

1 → Ep+1,q
1 : for x ∈ Ep,q

1 = Hp+q(Kp/Kp+1), write
x = [y] for y ∈ Kp/Kp+1. Then

d1(x) = j1(k1(x)) = j1(k(y)) ∈ Hp+q+1(Kp+1/Kp+2) = Ep+1,q
1

since k shifts degree by 1 (so k1 : Hp+q(Kp/Kp+1) → Hp+q+1(Kp+1)).
Set Ep,q

2 = Hp(E•,q
1 , d1) and d2 : Ep,q

2 → Ep+2,q−1
2 : denote by [−]r the

cohomology class in Er of a cocycle in Er−1... (?computation postponed)

Theorem 4.2 (five term exact sequence). Assume that Kn
p = 0 for p > n.

Then there is an exact sequence

0 E1,0
2 H1(K) E0,1

2 E2,0
2 H2(K)

d2

The remaining three nontrivial arrows are called edge morphisms.

The existence of the edge morphisms is the content of the following lemmas.

Lemma 4.3. For every r ≥ 1 there are canonical morphisms Hq(K) →
E0,q

r .

Proof. K0 = K so
E0,q

∞ = F q
0 /F

q
1 = Hq(K)/F q

1

so there is a surjective morphism Hq(K) → E0,q
∞ .

On the other hand for r ≥ 1 a nonzero class in E0,q
2 cannot be a boundary

as E−r,q+r−1
r = 0, so cohomology classes are cycles. But cohomology classes are

elements in E0,q
r+1 so E0,q

r ⊇ E0,q
r+1 ⊇ · · · ⊇ E0,q

∞ . Composing these two maps give
the desired morphism.

Lemma 4.4. Assume Kn
p = 0 for p > n. Then for every r ≥ 2 there is a

morphism Ep,0
r → Hp(K).
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Proof. Kn
p = 0 for p > n implies that for q ≤ 0,

Ep,q
0 = Kp+q

p /Kp+q
p+1 = Kp+q

p

so for r ≥ 1, Ep,q
0 = for q < 0. Thus for r ≥ 2 each element in Ep,0

r is a
boundary so we have surjections Ep,0

r � Ep,0
r+1 � · · · � Ep,0

∞ . Again due to the
fact Kn

p = 0 for p > n, Hn(Kp) = 0 so

Ep,0
∞ = F p

p /F
p
p+1 = F p

p

so Ep,0
∞ ⊆ Hp(K). Combining these two gives the desired morphism.

4.3 Spectral sequences associated with a double complex
Let K be a (first quadrant) double complex with two differentials δ1 : Kp,q →
Kp+1,q, δ2 : Kp,q → Kp,q+1 that anticommute. Let (T, d = δ1 + δ2) be the total
complex graded by total degree. The filtration by columns is given by

Tp =
⊕

n≥p,q∈Z
Kn,q.

As before from this filtered graded complex we form

Gn =
⊕
p

Tn
p =

⊕
p

n−p⊕
j=0

Kn−j,j .

In fact G is bigraded: if we set

Gp,q = T p+q
p =

q⊕
j=0

Kp+q−j,j

then ⊕
p+q=n

Gp,q = Gn.

One can check
Ep,q

0 = T p+q
p /T p+q

p+1 = Kp,q

and d0 : Ep,q
0 → Ep,q+1

0 is δ2, so Ep,q
1 = Hq(Ep,•

0 , δ2). Ep,q
1 = Hp+q(Tp/Tp+1).

On the other hand Tp/Tp+1 =
⊕

q K
p,q. So (?) d1 = δ1. Thus Ep,q

2 =

Hp(E•,q
1 , δ1).

If we use filtration by rows then ′Kp,q = Kq,p and
′Ep,q

1 = Hq(K•,p, δ1),
′Ep,q

2 = Hp(′E•,q
1 , δ2).

The upshot is that under our assumptions, both spectral sequences converge to
H•(T ).

Example (Čech-de Rham theorem). Let X be a differentiable manifold with a
good cover U . Define a double complex by

Kp,q = Cp(U ,Ωq
X) =

∏
i0<···<ip

Ωq
X(Ui0···ip),
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4 Spectral sequences

δ1 the Čech differential and δ2 = (−1)pd. This gives Ep,q
0 = Kp,q. Apply column

filtration first, we have

Ep,q
1 = Hq(Cp(U ,Ω•

X),d) =
∏

i0<···<ip

Hq
dR(Ui0...ip) =

{
Cp(U ,R) q = 0

0 q > 0

where in the last equality we used U is a good cover. Thus in E1, everything
other than the first row is 0. Thus to compute E2 suffices to compute

Ep,0
2 = Hp(E•,0

1 , δ) = Hp(C•(U ,R), δ) = Hp(U ,R).

As d2 = 0, the spectral sequence degenerates at the second page so E∞ = E2.
As En

∞ has only one nonzero graded piece En,0
∞ , so does Hn(T ) so Hn(T ) ∼=

En,0
∞ = Hp(U ,R).

Now take the row filtration,

′Ep,q
1 = Hq(K•,p, δ) = Hq(C•(U ,Ωp

X)) =

{
Ωp(X) q = 0

0 q > 0

since Ωp is acyclic and

′Ep,0
2 = Hp(Ω•(X),d) = Hp

dR(X)

and again the spectral sequence degenerates at the second page so ′E∞ = ′E2 =
H(T ). Thus

H•(U ,R) ∼= H•(T ) ∼= H•
dR(X).

Now take a direct limit of good coers, LHS also equals to H•(X,R). Later we
will generalise this to Čech spectral sequence.
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