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0 Introduction

0 Introduction
Throughout this course we will highlight similarities between algebraic geometry
and differential geometry.

Recall that a quasiprojective variety is a locally closed set in Zariski topology
of a projective space Pn. Let X ⊆ Pn be a quasiprojective variety and ϕ : X →
Pmk be a map. ϕ is a morphism if ϕ is continuous and for all U ⊆ Pmk open, for
all regular function (which is defined below) f on U , f ◦ϕ is regular on ϕ−1(U)
is also regular.

Exercise.

1. Let X,Y be smooth manifolds, ϕ : X → Y a continuous map. Then ϕ
is smooth if and only if for all U ⊆ Y open, for all f ∈ C∞(U), f ◦ ϕ ∈
C∞(ϕ−1(U)).

2. The same statement with smooth replaced by holomorphic.

Let D(f) ⊆ Ank be principal open. A function g : D(f) → k is said to be
regular if exists h ∈ k[x1, . . . , xn] and r ≥ 0 such that g = h

fr .
Suppose X ⊆ Ank is locally closed. g : U → K is regular if locally in the

Zariski topology it extends to a regular function on a principal open in Ank . For
X ⊆ Pn locally closed, g : X → k is regular if g|X∩Ui is regular for i = 0, . . . , n.

In each of the cases (smooth manifolds, complex manifolds, quasiprojective
variety), we have a topological space and for each open set an associated set of
regular functions.

The shift from varieties to schemes brings forth the possibility of nilpotent
regular functions. Case in point: the intersection of a parabola and a tangent.
In fact this is a familiar idea: suppose f is a continuous real function defined
on a neighbourhood of the origin. Then we may expand

f(t) = a0 + a1t+O(t2)

where O(t2) denotes terms of order at least 2. The algebraic way to write this
is to consider the function as an element of R[t]/t2.
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1 Sheaves & Schemes

1.1 Sheaves
First notice that in each of the cases, regular function is a local notion: suppose
U ⊆ X open, {Vi}i∈I an open cover of U then f ∈ C∞(U) if and only if
f |Vi
∈ C∞(Vi) for all i ∈ I. In other words, given fi ∈ C∞(Vi) such that for all

i, j, fi|Vi∩Vj
= fj |Vi∩Vj

then exists a unique f ∈ C∞(U) such that f |Vi
= fi.

Moreover if f, g are regular then so if f + g, fg and f/g if g does not vanish.

Definition ((pre)sheaf). Let X be a topological space. A sheaf of sets F
on X is

1. for every U ⊆ X open, a set F(U),

2. for every V ⊆ U ⊆ X open, a map F(U) → F(V ) called the restric-
tion, sometimes denoted rUV , and sometimes we denote rUV (f) by
f |V for f ∈ F(U),

such that

1. (presheaf) for every W ⊆ V ⊆ U ⊆ X open, we have rUW = rVW ◦
rUV ,

2. for U ⊆ X open, for every open cover {Vi}i∈I of U , for all fi ∈ F(Vi)
such that fi|Vi∩Vj = fj |Vi∩Vj for all i, j, then exists a unique f ∈ F(V )
such that f |Vi = fi.

A sheaf of rings is the same with every instance of “set” replaced by
“ring”, and “map” replaced by “ring homomorphism”. Similarly for abelian
groups, modules, algebras etc.

Exercise. If F is a sheaf on X then F(∅) is the singleton set/zero ring/zero
module etc.

Definition (ringed space). A ringed space is a pair (X,OX) where X is a
topological space and OX is a sheaf of rings.

Example.

• Let X be a topological space, and OX the sheaf of continuous functions
to R,C or any topological ring.

• Let X be a smooth manifold, and OX the sheaf of smooth functions.
Similarly for complex manifolds and varieties.

A ringed space allows us to add, subtract and multiply functions. To do
division, i.e. inverting a function, we must be able to tell its “vanishing set” and
invert it away from the locus. However, unlike in the motivating examples, it
makes no sense to talk about a function being “nonzero”, or indeed taking any
value at all. We have to do a bit more work.
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Definition (stalk). Let X be a topological space and F a presheaf of sets
on X, p ∈ X. The stalk of F at p, denoted Fp, is the quotient set

{(U, f) : U 3 p open neighbourhood, f ∈ F(U)}/ ∼

where (U, f) ∼ (V, g) if and only if exists W ⊆ U ∩ V open neighbourhood
of p such that f |W = g|W .

Exercise. If F is a sheaf of rings/modules etc then so is F .

Definition (locally ringed space). A locally ringed space is a ringed space
(X,OX) such that for every p ∈ X, the stalk OX,p is a local ring.

Definition (residue field). Let (X,OX) be a locally ringed space. The
residue field at p is

κ(p) = OX,p/mX,p.

For U an open neighbourhood of p and f ∈ OX(U), we define the value of
f at p to be f(p) = [(U, f)] ∈ κ(p).

Exercise. Show D(f) = {p ∈ U : f(p) 6= 0} is open in U .

Example. Fix a field k. let Dk be the following ringed space: as a space Dk is
a singleton and

ODk
(Dk) = k[t]/(t2) ∼= k ⊕ kt.

This is a locally ringed space with κ(pt) = k.

Definition (morphism of (pre)sheaves). Let X be a topological space and
F ,G presheaves on X. A morphism of presheaves ϕ : F → G is the data
for aevery U ⊆ X open a map ϕ(U) : F(U) → G(U) such that for all
V ⊆ U ⊆ X the following diagram commutes

F(U) G(U)

F(V ) G(V )

ϕ(U)

rUV rUV

ϕ(V )

A morphism of sheaves is a morphism of presheaves between sheaves.

Example. Suppose M is a smooth manifold. Let Ap be the sheaf of p-forms.
Then exterior derivative d : Ap → Ap+1 is a morphism of sheaves.

Exercise. If ϕ : F → G is a morphism of sheaves, for all p ∈ X it induces
ϕp : Fp → Gp.

Definition. A morphism of sheaves ϕ : F → G is injective/surjective if for
every p ∈ X, the map ϕp : Fp → Gp is injective/surjective.
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Lemma 1.1. ϕ is injective if and only if for all U ⊆ X open, ϕ(U) :
F(U)→ G(U) is injective. ϕ is surjective if and only if for all U ⊆ X open,
for all g ∈ G(U), exists {Vi} an open cover of U and fi ∈ F(Vi) such that
ϕ(Vi)(fi) = g|Vi

.

Proof. Exercise.

Proposition 1.2. ϕ is injective and surjective if and only if for all U ⊆ X
open, ϕ(U) : F(U)→ G(U) is bijective.

Proof. Need to show ϕ(U) is surjective. Suppose g ∈ G(U) and take an open
cover {Vi} and fi ∈ F(Vi) such that ϕ(fi) = g|Vi

. Then

ϕ(fi|Vi∩Vj
− fj |Vi∩Vj

) = ϕ(fi)|Vi∩Vj
− ϕ(fj)|Vi∩Vj

= g|Vi∩Vj
− g|Vi∩Vj

= 0

so by injectivity fi|Vi∩Vj
= fj |Vi∩Vj

. Use sheaf axioms.

Definition. Suppose ϕ : F → G is a morphism of sheaves of abelian groups.
Define

(kerϕ)(U) = kerϕ(U)

(imϕ)(U) = {g ∈ G(U) : exists cover {Vi} of U,
fi ∈ F(Vi) such that ϕ(fi) = g|Vi}

Exercise. kerϕ and imϕ are sheaves and kerϕp = (kerϕ)p, imϕp = (imϕ)p.

Example. ker(d : Ap → Ap+1) is the sheaf of closed p-forms. By Poincaré
lemma, imd is the sheaf of closed (p+ 1)-forms.

Definition (sheafification). Let X be a topological space and F a presheaf
on X. There exists a sheaf F+ and a morphism of presheaves θ : F → F+

such that for every sheaf G on X and every ϕ : F → G, exists a unique
morphism ϕ+ : F+ → G such that ϕ = ϕ+◦θ. F+ is called the sheafification
of F .

Exercise. Follow the hint and prove the existence of F+: let F =
∐
p∈X Fp.

There is a natural map π : F → X. Define

F+(U) = {s : U → F : π ◦ s = idU , locally induced by F},

i.e. exists {Vi} an open cover of U and fi ∈ F(Vi) such that for all p ∈ Vi,
s(p) = (Vi, fi).

Exercise. Let X be a topological space and A an abelian group. The constant
presheaf is given by U 7→ A for all U open and idA for all restrictions. Then its
sheafification is the constant sheaf A, given by

A(U) = {U → A locally constant}.

Show further that PA is the inverse image presheaf A on Y = {pt}.

5



1 Sheaves & Schemes

Definition (pushforward/pullback of sheaves). Let α : X → Y be a con-
tinuous map of topological spaces, F a sheaf on X, G a sheaf on Y . The
pushforward α∗F of F is defined by

(α∗F)(V ) = F(α−1(V ))

for V ⊆ Y open. The pullback α−1G of G is defined by the sheafification of
the presheaf given by

U 7→ lim−→
V open in Y
V⊇α(U)

G(V )

Exercise. α∗F is a sheaf on Y and α−1G is a sheaf on X.

Proposition 1.3.

1. For all p ∈ X, (α−1G)p is canonically isomorphic to Gα(p).

2. There is a canonical bijection

HomShX
(α−1G,F) ∼= HomShY

(G, α∗F).

In other words α−1 is left adjoint to α∗.

Definition (morphism of ringed space). A morphism of ringed spaces (X,OX)→
(Y,OY ) is (f, f#) where f : X → Y is a continuous map and f# : OY →
f∗OX is a morphism of sheaves.

Remark. A morphism of ringed spaces induces for every p ∈ X a morphism of
rings

OY,f(p) → OX,p
[(V, g)] 7→ [(f−1(V ), f#(g))]

Definition (morphism of locally ringed space). A morphism of locally ringed
spaces is a morphism of ringed spaces such that for all p ∈ X, the map
f# : OY,f(p) → OX,p is a local homomorphism, i.e. f#(mf(p)) ⊆ mp or
equivalently, it induces a homomorphism of residue fields κ(f(p))→ κ(p).

Remark. The category of locally ringed spaces is not a full subcategory of the
category of ringed spaces.

Given a sheaf F on X and an open subset i : U → X, we define F|U = i−1F .
Stalks of F|U and F are naturally isomorphic.

Lemma 1.4. If (X,OX) is a locally ringed space then (U,OX |U ) is a locally
ringed space for all U ⊆ X open.

If k is a field, a locally ringed k-space or a locally ringed space over k is a
locally ringed space (X,OX) such that OX is a sheaf of k-algebras.
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Exercise.

1. Let (X,OX) be a locally ringed space. To give it a structure over k is the
same as giving OX(X) a structure of k-algebras.

2. If X is a locally ringed space over k then for all p ∈ X, the field κ(p) is
an extension of k.

Definition (spectrum). Let k be a field. Define Spec k, the spectrum of k,
is the locally ringed space of a singleton with structure sheaf k.

Exercise. If (X,OX) is a locally ringed space, to give it a structure of k-algebra
is the same as giving a morphism (X,OX)→ Spec k.

1.2 Affine schemes
Aim: associate to each ring A a locally ringed space SpecA such that for all
locally ringed space (X,OX) there exists a natural bijection

HomLRS(X, SpecA) ∼= HomRing(A,OX(X)).

Then a scheme is defined to be a locally ringed space locally isomorphic to the
spectrum of some ring.

Definition (spectrum). Given a ring R, define a locally ringed space SpecR
as follow. As a set, it is the set of prime ideals in R. The topology on
SpecR, the Zariski topology, is defined by requiring that a basis is given by
principlal open sets, i.e. D(f) = {p prime ideals : f /∈ p} for f ∈ R. The
structure sheaf is given on the basis by O(D(f)) = Rf and restriction maps
are localisations.

It is a standard result that given a basis B of a topological space X, the
forgetful functor ShX → B-ShX is an equivalence of categories. An explicit
description of the structure sheaf is given by Corollary 5.3.

Lemma 1.5. The stalk of SpecR at p is OSpecR,p
∼= Rp.

Example.

1. (Spec k,OSpec k) is a locally ringed space and we have recovered the pre-
vious definition.

2. SpecZ/6Z = {(2), (3)}. The topology is discrete. The computation of the
structure sheaf is left as an exercise.
More generally, Spec(R1 ×R2) = SpecR1 q SpecR2 as a scheme.

3. SpecC[t] = {0} ∪ {(t − λ) : t 6= 0}. Nonempty open sets have the form
U ∪ {0} where U is a cofinite subset of C.

4. For any ring R we define the affine n-space to be AnR = SpecR[x1, . . . , xn].
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1.3 Zariski topology
Let X = SpecA be an affine scheme. In this scection we discuss some properties
of the topological space underlying SpecA. By the definition of Zariski toplogy,
a subset U ⊆ X is open if and only if it is the union of D(f)’s. Conversely
C ⊆ X is closed if and only if exists S ⊆ A such that

C =
⋂
f∈S

Z(f) = {p : p ⊇ S} = Z(S) = Z(I(S)).

Also note that for an ideal I ⊆ A, Z(I) = Z(
√
I).

Lemma 1.6. There is a bijection between closed subsets of X and radical
ideals in A.

Proof. The assignments I 7→
√
I, C 7→

⋂
p∈C p are inverses to each other.

Corollary 1.7. If A is a noetherian ring then X = SpecA is a noetherian
topological space.

Recall that a topological space X is noetherian if every descending chain of
closed subsets stabilises.

Corollary 1.8. If A is noetherian then every open subset of X is quasi-
compact.

Proposition 1.9. Let π : A → B be a ring homomophism. Let X =
SpecA, Y = SpecB. Let ϕ : Y → X be the induced morphism. If π is
injective then ϕ(Y ) is dense in X and ϕ# : OX → ϕ∗OY is injective.

Proof. Want to show for every f ∈ A such that D(f) 6= ∅, D(f) 6= ∅ then
D(f) ∩ ϕ(Y ) 6= ∅. But ϕ−1(D(f)) = D(π(f)). D(f) = D(

√
(f)) = ∅ precisely

when f is nilpotent. The second statement follows from the fact that Af →
Bπ(f) is injective.

Digression on non-closed points Let X = SpecR where R is a finitely
generated k-algebra for some algebraically closed field k. Let Y ⊆ X be the
subset of closed points. Let i : Y → X. Then i−1 : {open subsets of X} →
{open subsets of Y } is a bijection that respects inclusion, intersection and open
covers (the only nontrivial step is to prove injectivity, for which one uses noethe-
rianness of R). As a corollary, i∗ : ShY → ShX , and hence its adjoint i−1, is
an equivalence of categories.

We also note here the topological construction that reverses the above pro-
cess. To go from X to Y one simply takes the closed points. Conversely,
starting with a space Y , one can construct a space X by adding a point ηZ for
each Z ⊆ Y closed irreducible (that is not a singleton). The topology on X is
determined by

1. the subspace topology on Y is Y ,

2. {ηZ} ∩ Y = Z.

8
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This in turn implies that {ηZ} = {ηW :W ⊆ Z closed irreducible}.
Exercise. Let X be a topological space and x ∈ X such that Z = {x}. Then
Z is closed and irreducible. Such an x is called a generic point of Z.

Even if the topological data can be recovered from the closed point in the
case of a k-finitely generated algebra, it is not a good idea to just with the closed
points as there may be different structure sheaves. Indeed, that is the whloe
point of inventing locally ringed space. For example, note that for any local
ring R that is a domain, SpecR contains only two points: a generic point and
a closed point. If we only look at the closed point then there is no data other
than a singleton. For example let R = k[t](t), S = k[[t]]. There is a natural map
R→ S that induces a homeomorphism SpecS → SpecR (which is of course not
an isomorphism of ringed spaces).
Exercise. Determine Spec k[t]/(tn) and show that lim←−n k[t]/(t

n) = k[[t]].

Theorem 1.10. Let (X,OX) be a locally ringed space and A be a ring.
Then the naural map

HomLRS(X, SpecA)→ HomRing(A,OX(X))

is a bijection.

Proof. We will construct an inverse. Suppose given a ring map ϕ# : A →
OX(X), we want to construct a morphism (ϕ,ϕ#) : X → SpecA such that
ϕ#(SpecA) = ϕ#. For any x ∈ X the composition

A→ OX(X)→ OX,x → κ(x)

has image a domain so the kernel is a prime ideal p. We define ϕ(x) to be p.
To show ϕ is continuous, suffice to show ϕ−1(D(f)) is open in X. For x ∈ X,
ϕ(x) ∈ D(f) if and only if ϕ#(f) 6= 0 ∈ κ(x), since the bottom row of this
commutative diagram is an injection

A OX(X)

κ(p) κ(x)

ϕ#

To define ϕ#, by an argument similar to the construction of the structure
sheaf OSpecA before, we only need to give it on D(f). Let g = ϕ#(f). Then
ϕ−1(D(f)) = D(g). Thus we need to define a ring map OSpecA(D(f)) = Af →
OX(D(g)). We have the following claim whose proof is left as an exercise: let
(X,OX) be a locally ringed space, U ⊆ X open and g ∈ OX(U). Then g is
invertible on U if and only if for all x ∈ U , [(U, g)] is invertible in OX,x. Since
ϕ#(f) is invertible in OX(D(g)), the diagonal map in the following commutative
diagram factors through Af by universal property of localisation.

A OX(X)

Af OX(D(g))

ϕ#

9
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Corollary 1.11. If A,B are rings then there exists a natural bijection

HomRing(A,B) ∼= HomLRS(SpecB, SpecA).

Example.

1. Suppose X is a k-locally ringed space. Then

Homk-LRS(X,Ank ) = Homk-LRS(X, Spec k[x1, . . . , xn])
∼= Homk(k[x1, . . . , xn],OX(X))
∼= OX(X)n

so Ank represents n-tuples of global sections. Comparing this with smooth
manifold: C∞(M,Rn) ∼= C∞(M)n (or holomorphic functions for complex
manifold), we see that Ank plays the same role as Rn (or Cn).

2. For a finitely generated k-algebra A = k[x1, . . . , xn]/I, we can interpret
the bijection as

Homk-LRS(X, SpecA)
∼= Homk(A,OX(X))

= {ϕ ∈ Homk(k[x1, . . . , xn],OX(X)) : ϕ(I) = 0}
= {(g1, . . . , gn) ∈ OX(X) : f(g1, . . . , gn) = 0 for all f ∈ I}

Since A is noetherian, we can express these using finitely many conditions.

3. Spec k[t]/(t2) represents X 7→ {g ∈ OX(X) : g2 = 0}.

Definition (scheme). An affine scheme is a locally ringed space isomorphic
to SpecR for some ring R. A scheme is a locally ringed space with an open
cover by affine schemes.

Definition ((locally) of finite type). If k is a scheme, a k-scheme is locally
of finite type over k if it has an open cover by affines which are spectra of
finitely generated k-algebras. It is of finite type if there exists a finite such
cover.

Definition ((locally) noetherian). A scheme is locally noetherian if it has
an open cover by spectra of noetherian rings. It is noetherian if there exists
a finite such cover.

Lemma 1.12. An affine scheme is (quasi)compact.

10



1 Sheaves & Schemes

Proof. We may start with an open cover by principal opens. Let X = SpecA
be an affine scheme. We want to know given S ⊆ A, when is {D(f)}f∈S an
open cover of X. X =

⋃
f∈S D(f) if and only if

∅ =
⋂
f∈S

Z(f) =
⋂
f∈S

{p ∈ SpecA : p 3 f} = {p : p ⊇ S},

i.e. there does not exist a prime ideal containing I(S), the ideal generated by
S, if and only if I(S) = A, i.e. exists f1, . . . , fn ∈ S, a1, . . . , an ∈ A such that

1 =
∑

aifi.

Thus

X =
⋃
f∈S

D(f) =

n⋃
i=1

D(fi) = X.

Lemma 1.13. Let X = SpecA be an affine scheme, U = SpecB an open
affine subscheme of A. Then exist f1, . . . , fn ∈ A such that U =

⋃n
i=1DX(fi)

and for each i, DX(fi) = DU (fi|U ).

Proof. U ⊆ X open can be written as a union of principal opens. Since U
is quasicompact this can be written as a finite union. This proves the first
statement. As DX(f) = {x ∈ X : f(x) 6= 0},

DX(f) ∩ U = {x ∈ U : f(x) 6= 0} = {x ∈ U : f |U (x) 6= 0} = DU (f |U ).

Exercise (Hartshorne, Ex II.2.16). Let X be a scheme, f ∈ OX(X). By the
general result on locally ringed space we know f |D(f) is invertible. Thus we
have a map α : OX(X)f → OX(D(f)). Show

1. if X is quasicompact then α is injective.

2. if X has a finite affine cover {Ui} such that Ui ∩ Uj is quasicompact for
all i, j then α is surjective.

Proof.

1. Suppose g
fr ∈ kerα so g|D(f) = 0. We would like to show that exists

s ≥ 0 such that fN = 0 ∈ OX(X), i.e. fNg = 0 ∈ OX,x for all x ∈ X.
If x ∈ D(f) then g|D(f) = 0 so g = 0 ∈ OX,x. If x /∈ D(f) then let
U = SpecA be an affine neighbourhood of x in X. Then g|DU (f |U ) = 0.
As OU (DU (f |U )) = Af |U , this means exists n such that f |nU = 0 on U .
By quasicompactness we can find a finite affine cover {U1, . . . , Um} of X,
n1, . . . , nm ≥ 0 such that f |ni

Ui
· g = 0 on Ui. Take N = max{n1, . . . , nm}

so fNg = 0.

11



1 Sheaves & Schemes

2. Given g ∈ OX(D(f)), we seek N ≥ 0 such that fN |D(f) ·g is the restriction
to D(f) of an element of OX(X). On each Ui this is true, i.e. exists
mi ≥ 0 such that fmig ∈ Ui ∩ D(f) is the restriction of an element of
OX(Ui). Let m = max{mi} so exists hi ∈ OX(Ui) such that hi = fmg ∈
OX(Ui ∩D(f)). Pass to intersections Uij = Ui ∩ Uj , we have

hi = fmg = hj ∈ OX(Uij ∩D(f))

so by injectivity exists nij ≥ 0 such that fnijhi = fnijhj on Uij . Let
N = max{nij} so fNhi = fNhj on Uij . Exists h̃ ∈ OX(X) such that
h̃|Ui

= fNhi. h̃ = fN+mg on Ui ∩ D(f). As {Ui} is a cover of X,
{Ui ∩D(f)} is an open cover of D(f) so h̃|D(f) = fN+m|D(f) · g.

Proposition 1.14 (Hartshorne, Ex II.2.17). Let X be a scheme. Assume
f1, . . . , fn ∈ OX(X) such that (f1, . . . , fn) = OX(X) and such that D(fi) is
affine for all i. Then X is affine.

Proof. Let Ui = D(fi). Note

Ui ∩ Uj = {x ∈ Ui : fj(x) 6= 0} = DUi(fj |Ui)

is affine. Thus by exercise for all f ∈ OX(X), OX(X) ∼= OX(D(f)). Let
A = OX(X) so OX(D(fi)) ∼= Afi . The identity map A → OX(X) corresponds
to a morphism ϕ : X → SpecA. For all i, let ϕ−1(DSpecA(fi)) = DX(fi).
The morphism ϕ|Ui

: Ui → Vi, where Vi = DSpecA(fi) between affine schemes
correspond to a map

ϕ# : OVi
(Vi)→ OUi

(Ui).

But LHS is OSpecA(Vi) = Afi and RHS is OX(DX(fi)) = Afi . One can check
that by our construction of the maps, ϕ# is exactly the map α in the above
exercise. Thus ϕ|UI

: Ui → Vi is an isomorphism. The result can then be
deduced from the following exercise: let ϕ : X → Y be a morphism of locally
ringed spaces. If exists an open cover {Vi} of Y such that ϕ : ϕ−1(Vi) → Vi is
an isomorphism then ϕ is an isomorphism.

Definition (affine morphism). Let ϕ : X → Y be a morphism of schemes.
We say ϕ is affine if for every V ⊆ Y open affine, ϕ−1(V ) is affine.

Exercise.

1. Composition of affine morphisms is affine.

2. Let X be a scheme, f ∈ OX(X), U = D(f) and i : U → X the inclusion.
Then i is affine.

Proposition 1.15. Let ϕ : X → Y be a morphism of schemes. Then ϕ is
affine if and only if there exists an affine open cover {Vi} of Y such that for
every i, ϕ−1(Vi) is affine.

12



1 Sheaves & Schemes

Proof. Only need to prove if. Let V ⊆ Y affine and let U = ϕ−1(V ). Fix i ∈ I
and we can write V ∩ Vi ⊆ Vi as a union of principal opens in Vi. Ui = ϕ−1(Vi)
is affine so we can cover V with open affines {Wj} whose inverse images are
also affines. Cover each Wj with open affines which are principal in both V
and in Wj . Thus we can find a cover of V by principal affines, which can be
taken to be a finite collection {D(fm)}, such that each ϕ−1(D(fm)) is affine.
Let gm = ϕ#(fm) where ϕ# : OY (V ) → OX(U). Since

∑
amfm = 1 for some

am,
∑
ϕ#(am)gm = 1. U is affine by the proposition we have just shown.

This shows that the property of a morphism being affine is local on the base.
This generalises to Grothendieck topologies.

1.4 Subschemes

Lemma 1.16. If (X,OX) is a scheme, U ⊆ X open then (U,OX |U ) is a
scheme.

Proof. Suppose {Vi} is an affine open cover of X. Then U has an open cover
{Vi ∩ U}, so it suffices to do the case where X is affine. If X = SpecA is
affine then U has an open cover by principal open subsets. But for f ∈ A,
(D(f),OX |D(f)) ∼= SpecAf which is affine.

Definition (open and closed embedding). A morphism ϕ : Y → X is an
open embedding if ϕ(Y ) is open in X and ϕ : Y → ϕ(Y ) is an isomorphism.

A morphism ϕ : Y → X is a closed embedding if ϕ(Y ) is closed, ϕ is a
homeomorphism onto its image and ϕ# : OX → ϕ∗OY is surjective.

Our aim of this section is to show that closed immersions are locally modelled
on morphisms induced by surjective ring maps. Of course we have to first prove
that they are indeed closed embeddings.

Lemma 1.17. Let X = SpecA, Y = SpecB, π : A → B a morphism
inducing the morphism ϕ : Y → X. If π is surjective then ϕ is a closed
embedding.

Proof. Let I = kerπ and let C = φ(Y ). By ideal correpondence ϕ is continuous
and bijective. Thus to show it is a homeomorphism onto its image suffice to
show it is open. Given g ∈ B, by surjectivity of π we can find f ∈ A a preimage
of g. Then

ϕ(D(g)) = {p ∈ X : p ⊇ I, g /∈ π(p)} = {p ∈ X : p ⊇ I, f /∈ p} = D(f) ∩ C

which is open in C.
To show ϕ# is surjective it suffices to show that for all f ∈ A, ϕ#(D(f)) :

Af → Bπ(f) is surjective. Given b
π(f)n ∈ Bπ(f), take a such that π(a) = b. Then

π( afn ) =
b

π(f)n .

Exercise.

1. If ϕ : Y → X and ϕ : Z → Y are closed embeddings then so is ϕ ◦ ψ :
Z → X.

13



1 Sheaves & Schemes

2. If ϕ : Y → X is an isomorphism then it is both a closed and open embed-
ding.

3. Let ϕ : Y → X be a morphism. Then ϕ is a closed embedding if and
only if exists an open cover {Ui} of X such that ϕ|Vi : Vi → Ui is a closed
embedding for all i where Vi = ϕ−1(Ui). (hint: C ⊆ X is closed if and
only if exists an open cover {Ui}, C∩Ui is closed in Ui. Also if ϕ : Y → X
is a morphism of locally ringed space then ϕ# is surjective if and only if
exists an open cover Vi such that ϕ#|Vi

is surjective).

4. Prove 3 by replacing “exists” by “for every”, i.e. this is a property local
on basis.

Proposition 1.18. Let X = SpecA be an affine scheme and ϕ : Y → X a
closed embedding. Then

1. if Y = SpecB then ϕ# : A→ B is surjective.

2. Y is affine.

Thus the only closed subscheme structures on X are induced by surjective
ring maps.

Proof. First suppose Y = SpecB. Let π : A → B be the induced map with
kernel I. Let C = SpecA/I. Then ϕ(Y ) ⊆ C and by injectivity of A/I → B,
is dense in C. ϕ(Y ) being closed in X and dense in C and C being closed in Y
imply that ϕ(Y ) = C so Y → C is a closed embedding.

A B Y X

A/I C

ϕ

closed

dense
closed

Thus we may assume that π is injective, i.e. C = X and ϕ : Y → X is a
homeomorphism. ϕ# : OX → ϕ∗OY is surjective since ϕ is a closed embedding,
and is injective by a result proven earlier. Thus ϕ is an isomoprhism.

To show Y is affine, let I = ker(I → OY (Y )) and let C = SpecA/I. Then
we have the same factorisation Y → C → X of ϕ and by the same argument
C is the image of ϕ. Cover Y by open affines, whose images under ϕ are opens
in C, which can be covered by principal opens in X. Thus we can find a finite
open cover of principal opens {D(fi)} of X such that ϕ−1(D(fi)) = D(ϕ#(fi))
is open affine in Y for all i. Then ϕ#(fi) generate OY (Y ) so Y is affine by our
affine criterion.

Theorem 1.19. Let ϕ : Y → X be a morphism of schemes. Then TFAE:

1. ϕ is a closed embedding.

2. ϕ is affine and for all U = SpecA open affines in X, let B =
OY (ϕ−1(U)). Then ϕ# : A→ B is surjective.

14



1 Sheaves & Schemes

3. ϕ is affine and we can cover Y by open affines Ui such that ϕ#(U) :
OX(U)→ OY (ϕ−1(U)) is surjective.

Proof.

• 1 =⇒ 2: closed embedding is local on base by exercise 3.

• 2 =⇒ 3: obvious.

• 3 =⇒ 1: being a topological closed embedding is local on base.

Note that it is possible to have non-isomorphic closed subschemes with the
same closed subset, for example Spec k[t]/(tn)→ A1

k. This leads to the question
whether any of them is more “natural” than others.

Definition (reduced scheme). A scheme X is reduced if for all U ⊆ X open
the ring OX(U) is has no nilpotents.

Exercise.

1. Let X = SpecA. Then X is reduced if and only if A is reduced.

2. A scheme X is reduced if and only if there exists/for every affine open
cover {Ui}, each Ui is reduced.

Theorem 1.20. Let X be a scheme. Then exists a closed embedding i :
Xred → X such that i is a homeomorphism and Xred is reduced. It has the
universal property that all morphisms ϕ : Y → X from reduced scheme Y
factorise through Xred.

Proof. If X = SpecA then Xred = SpecA/
√
(0). For a general scheme X cover

X by open affines and glue.
Note that if i : Xred → X has been constructed and U ⊆ X open, then Ured =

(U,OXred
|U ) with morphism j : Ured → U given by identity on topological space

and j# : OU → OUred
given by restricting i# to U .

1.5 Locally closed embedding

Definition (locally closed embedding). A morphism of schemes f : X → Y

is a locally closed embedding if it factors as X i−→ U
j−→ Y with i a closed

embedding and j an open embedding.

15



2 Gluing in algebraic geometry

2 Gluing in algebraic geometry
There are two types of gluing. We start from gluing sheaves.

Exercise. Let X and Y be topological spaces. For U ⊆ X open, define
FY (U) = {ϕ : U → Y cont} with restriction of functions. Show that FY is
a sheaf of sets.

Lemma 2.1. Let X be a toplogical space and A,B sheaves of rings on X.
Then

F(U) = HomShRing(A|U ,B|U )

is a sheaf of sets on X.

Proof. Restriction is restriction of sheaf morphisms and it is easy to see F
is a presheaf. Let {Ui} be an open cover and let Uij = Ui ∩ Uj . Assume
ϕi : A|Ui

→ B|Ui
is such that ϕi|Uij

= ϕj |Uij
then we want to show there

exists a unique ϕ : A → B restricting to ϕi. For all V ⊆ X open, define
ϕ(V ) : A(V )→ B(V ) as follow. Since ϕ|Ui = ϕi, we set

ϕ(a)|Ui∩V = ϕi(a|Ui∩V ) =: bi

Let Vi = Ui ∩ V and {Vi} is an open cover of V . Since Vij = V ∩ Uij ,

bi|Vij
= ϕi(a|Vij

) = ϕj(a|Vij
) = bj |V ij .

Thus we are forced to set ϕ(a) = b where b ∈ B(V ) is uniquely specified by
b|Vi

= bi. Check that ϕ is compatible with restriction and ϕ(V ) is a ring map
using sheaf axioms.

Exercise. Show that ifA,B are sheaves of sets (resp.R-modules) thenHom(A,B)
is a sheaf of sets (resp. R-modules).

Corollary 2.2. Let X,Y be locally ringed spaces. Then the assignment

FY (U) = HomLRS(U, Y )

defines a sheaf of sets on X.

Proof. Exercise. Need ϕ : U → Y continuous map and ϕ# : ϕ−1OY → OU
local homomorphism of sheaves of rings.

There is another kind of gluing, namely gluing like stacks. Suppose X is
a topological space with open cover {Ui}i. Suppose Ai is a sheaf of rings on
Ui. Assume that for all i, j there is we are given ϕij : Ai|Uij → Aj |Uij an
isomorphism of sheaves of rings. We ask

1. is there a sheaf of rings A on X and isomorphisms ϕi : A|Ui
→ Ai such

that ϕij = ϕj |Uij
◦ ϕj |−1

Uij
?

2. is (A, {ϕi}) is unique?

16



2 Gluing in algebraic geometry

For Q1, there is a clear necessary conidition. Let Uijk = Ui ∩Uj ∩Uk be the
triple intersection. Then on Uijk we need

ϕjk ◦ ϕij = ϕik.

For Q2, there is a trivial way in which it is not unique: just take any Ã
isomorphic to A with ϕ̃i composition with the isomorphism. But this is as but
as it goes.

Theorem 2.3. Let Ai, ϕij be as before. Suppose for all i, j, k we have on
Uijk

ϕjk ◦ ϕij = ϕik

and ϕii = id (called the cocycle condition). Then exists a (A, {ϕi}) as
required. Furthermore it is unique in the sense that if (Ã, {ϕ̃i}) is another
solution then exists a unique isomorphism α : Ã → A such that ϕ̃i =
ϕi ◦ α|Ui

.

Proof. Exercise. To get start with, define

A(V ) = {(ai) ∈
∏
Ai(V ∩ Ui) : ϕij(ai) = aj}.

Then use cocycle condition to show it is a sheaf.

17



3 Fibre products

3 Fibre products
Note that in general fibre products do not exist: suppose X = {0}, Y = R2, Z =
R, f(x) = x, g(x, y) = xy, then X×ZY is not a manifold. It turns out this works
if at least one of f, g is a submersion (to prove this need structure theorem for
submersions).

Definition (cartesian diagram). A commutative diagram

W Z

X Y

q

p g

f

is cartesian if for every W ′ making the outer square commute there is a
unique W ′ →W making the diagram commute

W ′

W Z

X Y

∃!h

Exercise. In the category of sets the above diagram is cartesian if and only
if W → X ×Y Z = {(x, z) ∈ X × Z : f(x) = g(z)} is bijective. Similar
for topological spaces where X ×Y Z is given the subspace topology and h a
homeomorphism.

Theorem 3.1. Let f : X → Y, g : Z → Y be a morphism of schemes. Then
exists W a cartesian diagram of schemes.

Definition (fibred product). We say W is a fibred product of X and Z over
Y and denote it by X ×Y Z. Some other names inclue pullback, cartesian
diagram, or that p is obtained from g via base change f .

We first show that if f : X → Y is an open immersion, let U = f(X) ⊆ Y ,
then W = g−1(U) ⊆ Z with q :W → Z the inclusion and p = f−1 ◦ g :W → X
is cartesian. Hint: show that

Hom(S,X)→ {ϕ ∈ Hom(S,Z) : ϕ(S) ⊆ U}
ϕ 7→ f ◦ ϕ

is a bijection for all schemes S.
Next, we show the special case X = SpecA, Y = SpecB,Z = SpecC, set

W = SpecA⊗B C. Use that the diagram

B C

A A⊗B C

18



3 Fibre products

is co-cartesian in the categroy of rings and the adjunction between global sec-
tions and Spec.

Proposition 3.2. Let f : X → Y, g : Z → Y be morphisms of schemes. Let
{Ui} be an open cover of X. Assume Ui ×Y Z exists for all i then X ×Y Z
exists.

Sketch proof. Define Wi = Ui ×Y Z,Wij = Uij ×Y Z and let ϕij : Wij → Wji

be the isomorphism. Use cocycle conditions to glue.

In the same spirit we have

Proposition 3.3. Let f : X → Y and g : Z → Y be morphisms of schemes.
Assume there exists a cover {Ui} of Y such that Xi ×Yi Zi exists for all i
where Xi = f−1(Ui), Zi = g−1(Ui). Then X ×Y Z exists.

The we can show the fibre product X ×Y Z exists by showing the existence
in the increasingly more general cases:

1. X,Y, Z are affine.

2. Y, Z are affine: cover X by open affines. Use 1 and glue.

3. Y affine: cover Z by open affines. Use 2 and glue.

4. general case: cover Y by open affines. Use 3 and glue.

We will see a more concrete constructions for schemes locally of finite type
over an algebraically closed field.

Property local on base A property P of morphism of schemes is local on
base if for all morphisms of schemes f : X → Y , f has P if and only only for
all open cover {Ui} of Y , for all i, g−1(Ui)→ Ui has P .

Exercise. Show that if f : X → Y has a property which is local on base then
for all U ⊆ Y , g−1(U)→ U has the same property.

Definition (property stable under base change). Let P be a propery of
morphisms. We say P is stable under base change if for any g : Z → Y with
P and any morphism f : X → Y , q : X ×Y Z → X has P .

Example. Examples of properties stable under base change include: open im-
mersion, affine morphism, closed immersion. For example for closed immersion,
affine morphism is stable under base change, and tensor product is right exact
so preserves surjection of rings, which are local models of closed immersions.

Note that if a property P is local on base and stable under base change then
a morphism f : X → Y has P if and only if exists an open cover {Ui} of Y such
that for all i, f−1(Ui)→ Ui has P .
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4 Separated and proper schemes

4 Separated and proper schemes
To motivate the definition of separated and proper schemes, prove the following
statements:

1. X is a Hausdorff if and only if ∆X : X → X ×X is closed.

2. X compact if and only if for all Y , X × Y → Y is closed.

Let f : X → Y be a morphism of schemes. Then the commutative diagram

X X

X Y

f

f

induces a morphism ∆X : X → X ×Y X.

Exercise. If X is a manifold and f : X → ∗ then ∆X : X → X × X is the
diagonal map.

Lemma 4.1. Let ϕ : X → Y be a morphism of affine schemes. Then
∆ : X → X ×Y X is a closed embedding.

Proof. Let X = SpecB, Y = SpecA. Then ∆# : B ⊗A B → B, b1 ⊗ b2 7→ b1b2
is surjective.

Corollary 4.2. Let ϕ : X → Y be a morphism of schemes. Then ∆ : X →
X ×Y X is a locally closed embedding.

Proof. First show as an exercse that exists an affine cover {Ui} ofX and an affine
cover {Vi} of Y such that ϕ(Ui) ⊆ Vi for all i. Let Wi = Ui ×Y Ui = Ui ×Vi

Ui.
Then ∆−1(Wi) = Ui. Let W =

⋃
Wi ⊆ Y open. Then ∆ factors as

X
α−→W ↪→ X ×Y X.

α is a closed embedding since α−1(Wi) = Ui is affine and Ui → Wi is a closed
embedding by the lemma.

Definition (separated morphism). A morphism ϕ : X → Y is separated if
∆ is a closed embedding.

Definition. Let X be a scheme and U ⊆ X open. U is dense in X if there
does not exists a proper closed subscheme such that U ↪→ X factors through
Z.

Example. Let X = SpecA where A is a domain. Then every nonempty U ⊆ X
is dense: indeed suffice to show this for nonempty D(f), i.e. f 6= 0. Let Z =
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4 Separated and proper schemes

SpecA/I be a proper subscheme where I 6= 0. But there does not exists a map
A/I → Af making the following diagram commute

A Af

A/I

inj

not inj
?

The same argument shows that for any reduced scheme X, an open subset
U ⊆ X is dense if and only if it is topologically dense.

Example. Let A = k[x, y]/(xy, y2). X = SpecA is the line with thickening
at the origin. Let B = Ax = k[x, x−1]. Then U = D(x) ⊆ X is not dense as
it factors through Z = SpecA/(y). Note however U is dense as a topological
space.

Proposition 4.3. Let ϕ : X → Y be separated. Let S be a scheme and
U ⊆ S dense. Let f1, f2 : S → X such that ϕ ◦ f1 = ϕ ◦ f2 and f1|U = f2|U
then f1 = f2. In other words, in the following commutative square

U X

S Y

h

ϕ
f

g

there exists at most one f making the diagram commute.

Proof. Consider
U

S̃ X

S X ×Y X

h

h̃

α ∆

(f1,f2)

where the lower square is cartesian. ∆ is a closed embedding and so is α. Since
U is dense in S, α is an isomophism so f1 = h̃ ◦ α−1 = f2.

Example. Let k = k, U1 = Spec k[t], U2 = Spec k[s]. Let U12 = D(t) ⊆ U1 =
Spec[t, t−1], U21 = D(s) ⊆ U2 = Spec k[s, s−1]. Let ϕ12 : U12 → U21 be the
isomorphism given by ϕ#

12(s) = t. Glue U1 and U2 along ϕ12 to obtain X.
X ×k X is covered by four copies of A2

k, Wij = Ui ×k Uj . ∆X is closed in
W11 ∪W22, but the closure of ∆X in X ×Y X is ∆X ∪ {(01, 02), (02, 01)} (do it
locally on W12, then W21 by symmetry). Thus X → Spec k is not separated.

This is also witnessed by the lifting property: consider U = A1
k \ {0} ⊆ S =

A1
k. Then we can set f1(0) = 01, f2(0) = 02.

Note that the example works for any choice of schemes U1
∼= U2 and U12 ⊆ U1

open dense subscheme. In fact, this can be used to test separatedness.
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4 Separated and proper schemes

Theorem 4.4 (valuative criterion for separatedness). Let ϕ : X → Y be a
morphism of schemes. Then ϕ is separated if and only if for every commu-
tative square

U X

S Y

ϕ
f

there exists at most one f making the diagram commute. Here S is the
spectrum of a valuation ring and U ⊆ S its generic point.

There is another version that holds for ϕ of finite type over an alge-
braically closed field k, where S is a reduced irreducible nonsingular curve
over k and U = X \ {p} where p is a closed point.

We will prove the second version later. Note that it can be written as S =
SpecOC,p with C a nonsingular reduced irreducible curve over k and p ∈ C a
closed point, U = SpecK(OC,p) the quotient field. OC,p is a (discrete) valuation
ring.

Exercise. Use the valuative criterion to show that composition of separated
schemes is separated, and ϕ : X → Y is separated if and only if ϕred : Xred →
Yred is separated.

Another way to show that the composition X → Y → Z of two separated
morphisms is separated is to show that the square in the below diagram is
cartesian

X X ×Y X X ×Z X

Y Y ×Z Y

∆h

∆f

∆g

Lemma 4.5. Suppose f : X → Y, g : Y → Z are morphisms of schemes
and h = g ◦ f . If h and g are separated then f is separated.

Proof. Using the same diagram, since the base change of ∆h is a closed embed-
ding, ∆f is closed so a closed embedding.

Example.

1. Construct the differential geometric analogue of the line with two origins
using U1 = U2 = R, U12 = U21 = R\{0} and ϕ12 = id. Show the resulting
space X is a manifold except that it is not Hausdorff.

2. Show that ifX is a manifold except perhaps not Hausdroof thenX is Haus-
dorff if and only if every sequence {xn}n has at most one limit. Rephrase
to look like the valuative criterion with Y = ∗, U = { 1n : n ∈ N} ⊆ R and
S = {0} ∪ U .
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4 Separated and proper schemes

Definition (universally closed morphism). A morphism of schemes is uni-
versally closed if every base change is closed.

Example. Let X = Spec k[t] where k = k. Let Y = Spec k. ϕ : X → Y induced
by k ↪→ k[t]. Then ϕ is closed but not universally closed. Take Z = Spec k[s]
and ψ : Z → Y induced by k ↪→ k[s]. U = Spec k[s, t]/(st − 1) is closed in
X ×Y Z but q(U) = Z \ {0} is not closed.

Let i : U → Z be the restriction of q. Show i is an open embedding. Let
h : U → X be the restriction of p : X ×Y Z → X. Show that there does not
exist f : Z → X making the diagram commute

U X

Z Y

h

i ϕ
f

Theorem 4.6 (valuative criterion for universally closed morphism). Let
ϕ : X → Y be a morphism of schemes. Then ϕ is separated if and only if
for every commutative diagram

U X

S Y

ϕ
f

there exists a morphism f making the diagram commute. Here S is the
spectrum of a valuation ring and U ⊆ S its generic point.

There is another version that holds for ϕ of finite type over an alge-
braically closed field k, where S is a reduced irreducible nonsingular curve
over k and U = X \ {p} where p is a closed point.

Exercise. Again with the manifold analogy, let U = { 1n}, S = U ∪ {0}. Show
that a smooth map ϕ : X → Y of manifolds is proper in the topological sense if
for all commutative diagrams of continuous maps

U X

S Y

h

ϕ

g

there exist an infinite subset U1 ⊆ U and a continuous map f : S1 := U1∪{0} →
X such that ϕ ◦ f = gS1 , ϕ|U1 = h|U1 .

U1 U X

S1 S Y

h

ϕ
f

g

Note that in algebraic geometry there is also a valuative criterion that looks like
this.
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4 Separated and proper schemes

Proposition 4.7. Let f : X → Y, g : Y → Z be morphisms of schemes and
h = g ◦ f . If h is unviersally closed and g is separated then f is universally
closed.

Proof. Let ϕ : S → Y and ψ = g ◦ϕ : S → Z. We have a commutative diagram
with cartesian squares

X ×Y S Y

X X ×Z S Y ×Z Y

Z S

∆g

h

(f,ϕ)

ψ

Exercise. To remember the hyposthesis and conclusion of the proposition, show
that any continuous map from a (quasi)compact topological space X to a Haus-
dorff space Y is universally closed.

Definition (proper morphism). A morphism ϕ : X → Y of schemes is
proper if it is separated and universally closed.

Lemma 4.8. Let f : X → Y, g : Y → Z be morphisms of schemes and
h = g ◦ f . If h is proper and g is separated then f is proper.

In complex manifolds, the best examples of compact ones that are closed
submanifolds of CPn. Fact: they are all algebraic varieties!

Definition (projective space). Let A be a ring and n ≥ 1. We define the
projective n-space PnA as follows. Let Ui = SpecA[xi0, . . . , x

i
n]/(x

i
i− 1) ∼= AnA

for 0 ≤ i ≤ n. Let Uij ⊆ Ui be D(xij). Let ϕij : Uij → Uji by

ϕ#
ij(x

j
m) =

xim
xij

for 0 ≤ m ≤ n. Note ϕ#
ij(x

j
j) = 1, ϕ#

ij(x
j
i ) =

xi
i

xi
j
= 1

xi
j

is invertible so ϕ#
ij

is well-defined. The data {Ui, ϕij} satisfies the cocycle conditions and the
glued scheme is called PnA.

By convention we define P0
A = SpecA = U0 = SpecA[x00]/(x

0
0 − 1).

Exercise. Let A be a ring and n ∈ N. Define a morphism π : PnA → SpecA by
defining πi : Ui → SpecA to be the morphism given by π#

i : A ↪→ A[xi0, . . . , x
i
n]/(x

i
i−

1). Show that πi’s are compatible and hence glue to give π.
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4 Separated and proper schemes

Definition. Let X a scheme. We define

PnX = PnZ ×SpecZ X

and π : PnX → X the projection.

Exercise. Show there is a canonical isomorphism PnSpecA ∼= PnA that is compat-
ible with π.
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5 Sheaves of modules

5 Sheaves of modules
The differential geometric analogue of the subject of this chapter is vector bun-
dle. For E a vector bundle over a manifold M , let E be the sheaf of sections of
E. Then for all U ⊆ M open, E(V ) is a sheaf over C∞(U). Furthermore the
module map is compatible with restrictions of sheaves.

Definition (sheaf of modules). Let (X,OX) be a ringed space. A sheaf
of OX-module is a sheaf of abelain groups F on X plus OX(U)-module
structure on F(U) for all U ⊆ X open, such that if V ⊆ U then for all
f ∈ OX(U), s ∈ F(U), (f · s)|V = f |V · s|V .

Example. OX is a sheaf of OX -modules. If F ,G are sheaf of OX -modules then
so is F ⊕ G. In particular O⊕r

X is a sheaf of OX -module.

Definition (morphism of sheaf of modules). A morphism of OX-modules
ϕ : F → G is a morphisms of sheaves such that for all U ⊆ X open,
F(U)→ G(U) is a morphism of OX(U)-modules.

Example. If ϕ is a morphism of sheaf of OX -modules then kerϕ, imϕ and
cokerϕ are sheaves of OX -modules.

Remark. If (X,OX) is a ringed spae and F a sheaf of OX -module, then for all
U ⊆ X open F|U is a sheaf of OX |U -module.

Exercise. Let X be a ringed space, F a sheaf of OX -modules. Show that the
map

HomOX
(OX ,F)→ F(X)

ϕ 7→ ϕ(X)(1)

is bijective.

Definition ((locally) free sheaf). Let (X,OX) be a locally ringed space, F
a sheaf of OX -module. F is free of rank r if it is isomorphic to O⊕r

X . It is
locally free of rank r if exists an open cover {Ui} of X such that F|Ui

is free
of rank r for all i.

Exercise. Let M be a manifold and E a rank r vector bundle on M . Then

1. E is locally free of rank r.

2. If E is locally free of rank r then exists E a vector bundle of rank r on M
such that E ∼= F .

3. E is free of rank r if and only if E is trivial.

The aim of this chapter is to show
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5 Sheaves of modules

Theorem 5.1. Let A be a ring, M an A-module. Then there exists a sheaf
of abelian groups M̃ on the topological space of X = SpecA such that

1. M̃(D(f)) ∼=Mf ,

2. M̃p
∼=Mp,

3. M̃ is a sheaf of OX-modules,

4. ModA →ModOX
,M 7→ M̃ defines a fully faithul exact functor.

Let A be a ring and X = SpecA as a topological space. Given M an A-
module, we define a presheaf M by

U 7→
∏
p∈U

Mp

and the restriction maps projections.

Exercise. Show that M is a sheaf of A-modules on X.

Definition. We define the presheaf (which is a sheaf of OX -modules) M̃ to
be

U 7→
{

(mp) ∈M(U): for all p ∈ U , exists m ∈M,f ∈ A
such that f /∈ p and for all q ∈ U ∩D(f), mq = m

f

}
.

Exercise.

1. Show M̃(U) is an A-submodule of M(U).

2. Show the restriction map M(U)→M(V ) maps M̃(U) to M̃(V ).

3. Show M̃ is a subsheaf of A-module of M. In particular M̃ is a sheaf.

4. Let g ∈ A and B = Ag, Y = D(g) = SpecB,N =Mg. Show that there is
a natural isomorphism M̃ |Y → Ñ induced by Mp

∼= Np.

5. There exists a homomorphism of A-modules M → M̃(U),m 7→ (mp)
where mp = m

1 which is compatible with restriction.

Theorem 5.2.

1. The natural map M → M̃(X) is an isomorphism of A-modules.

2. For all g ∈ A, exists a natural isomorphism of Ag-modules Mg →
M̃(D(g)) that is compatible with the map in 1.

3. For all q ∈ X,

M̃q →Mq

(U, (mp)) 7→ mq
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5 Sheaves of modules

is an isomorphism of A-modules.

Proof.

1. Let the map in 1 be α. Suppose m ∈ kerα, so for all p exists f /∈ p such
that fm = 0. Consider

I = {f ∈ A : fm = 0} = Ann(m)

Then I * p for all p so I = A and it follows that m = 0.

To show surjectivity, let (mp) ∈ M̃(X). We can cover X by opens
D(f1), . . . , D(fn) such that exists m1, . . . ,mn ∈ M with mp = mi

fi
for

all p ∈ D(fi). For all i, j, mi

fi
=

mj

fj
∈ Mfifj (by injectivity of α) so can

find s large enough such that

fsj f
s
i (fimj − fjmi) = 0

in M for all i, j. Let gi = fs+1
i , m̃i = fsimi so gim̃j = gjm̃i and mi

fi
= m̃i

gi
.

Note D(gi) = D(fi), and D(fi)’s cover X so exists a1, . . . , an such that∑
aig

i = 1. Let m =
∑
aim̃i. Then

gim =
∑

ajgim̃j =
∑

ajgjm̃i = m̃i

so α(m) is the given section.

2. Follows from exercise 4.

3. Let the map in 3 be β. We construct an inverse γ: for m
f ∈Mq, let γ(mf ) =

(D(f), α(mf )). β(γ(
m
f )) =

m
f by definition. Let u = (D(f), (mp)) ∈ M̃q.

Exist g such that q ∈ D(g) and u = (D(fg), α( m
frgr )) so

γ(β(u)) = γ(
m

frgr
) = (D(fg), α(

m

frgr
)) = u.

Exercise. Show that Ã is a sheaf of A-algebra.

Corollary 5.3. We define the structure sheaf OX to be Ã.

Proposition 5.4. For every A-module M , M̃ is a sheaf of OX-modules.

Definition (quasicoherent sheaf). A sheaf F of OX -modules on a scheme
X is quasicoherent if for every U = SpecA ⊆ X affine open, there exists an
A-module M such that F|U ∼= M̃ .
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5 Sheaves of modules

Lemma 5.5. Let X be a scheme, F a quasicoherent sheaf of OX-module.
Let Y ⊆ X be open. Then F|Y is also quasicoherent.

Proposition 5.6. Let X = SpecA be affine, F a sheaf of OX-module. Let
M = F(X). Then exists a natural morphism M̃ → F .

Sketch proof. It is enough to define the morphism ϕ : M̃ → F on D(f). Suppose
u = m

fr ∈ M̃(D(f)). Let ϕ(u) = 1
fr ·m|D(f).

Corollary 5.7. Let X be a scheme, F a sheaf of OX-module. If exists
an open cover {Ui} of X such that each F|Ui

is quasicoherent then F is
quasicoherent.

Proof. Suffice to show for the case X = SpecA and Ui = D(fi). Let M =

ker(
∏
F(D(fi)) ⇒

∏
F(D(fifj))). Claim that M̃ ∼= F : by sheaf axiom we

have an exact sequence

0 F(Df )
∏
F(Df ∩D(fi))

∏
F(Df ∩D(fi) ∩D(fj))

But since each F|D(fi) is quasicoherent, F(Df∩D(fi)) = F(D(fi))f so F(Df ) ∼=
Mf .

Proposition 5.8. Let F ,G be quasicoherent sheaves on a scheme X. Then
F⊕G is quasicoherent. Moreover for any morphism α : F → G, kerα, imα, cokerα
are quasicoherent and the functor ·̃ : ModA →ModOSpecA

is exact.

Proof. It is enough to assume X = SpecA. Then the first statement follows
from

M̃ ⊕ Ñ = M̃ ⊕N.

For the second statement, let ϕ : M → N be induced by α. Let K = kerϕ.
Then the natural homomorphism K̃ → kerϕ is an isomorphism since it is an
isomorphism on all stalks. Same for image and cokernel.

Corollary 5.9. Every locally free sheaf is quasicoherent.

Proposition 5.10. Let X be a scheme and F a sheaf of OX-module. Then
F is quasicoherent if and only if for all U ⊆ X open and for all f ∈ OX(U),
F(U)f → F(V ) is an isomorphism where V = {x ∈ U : f(x) 6= 0}.

Proof.

• ⇐= : for U ⊆ X open affine, let M = F(U). Then M̃(D(f)) ∼= F(D(f))

is an isomorphism for all f ∈ OX(U) so F|U ∼= M̃ .
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5 Sheaves of modules

• =⇒ : let U ⊆ X open and take an open affine cover {Ui} of U . Let
{Wijk} be an open affine cover of Ui ∩ Uj . Sheaf axiom says that

0 F(U)
∏
i F(Ui)

∏
i,j,k F(Wijk)

is exact. Localisation is exact so the sequence remains exact after applying
−⊗OX(U) OX(U)f .

Proposition 5.11. Let X = SpecA be an affine scheme. Then ·̃ gives a
fully faithful essentially surjective exact functor ModA → Qcoh(X).

Proof. The map

α : Hom(M,N)→ Hom(M̃, Ñ)

ϕ 7→ ((mp) 7→ (ϕp(mp)))

has a left inverse β by taking global section. To show β is injective, if β(ψ) = 0
then for all f ∈ X, ψ(D(f)) : Mf → Nf is zero so ψ is zero. Exactness can be
checked on stalks.

Definition (coherent sheaf). Let X be a locally noetherian scheme. A
quasicoherent sheaf F on X is coherent if and only if exists an open cover
{Ui}, where Ui = SpecAi with Ai noetherian, such that F|Ui

∼= M̃i where
Mi is a finitely generated Ai-module.

Note that we only defined coherent sheaf on a locally noetherian scheme
here. There is a more general definition of coherent sheaf for ringed spaces (see
e.g. EGA), which reduces to our definition in locally noetherian scheme case.
The reason we avoid mentioning this definition here is that they don’t behave
well in the nonnoetherian case, and we rarely, if ever, encounter such a scheme
in this course.

Proposition 5.12. Let X = SpecA where A is noetherian and F a sheaf
of OX-module. Then F is coherent if and only if F = M̃ with M a finitely
generated A-module.

Proposition 5.13. Let X = SpecA and F a sheaf of OX-module, M =
F(X) and {Ui = D(fi)} a finite open cover. If F|Ui is quasicoherent for all
i then F is quasicoherent. If A is Noetherian and F|Ui is coherent for all i
then F is coherent.

Proof. 1 has been proven in proposition Proposition 5.10. For 2 let Mi = F(Ui).
Since the cover is finite and each Mi is finitely generated, we can find finitely
many elements in M that generate all Mi. Then they generate all stalks.
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5 Sheaves of modules

Lemma 5.14. Let X = SpecA where A is noetherian. Let M be an A-
module. Then M̃ is coherent if and only if M is finitely generated.

Proof. For the nontrivial direction, need to show M̃(D(f)) is finitely generated
as Af -module for all f . Let A⊕r �M . Use exactness of localisation.

Exercise. Let X be a locally noetherian scheme. Assume we have an exact
sequence

0 F1 F2 F3 0

of quasicoherent sheaves. Then if any two of them are coherent then so is the
third.

Let ϕ : X → Y be a morphism of schemes. Suppose F be a sheaf of OX -
module. Then ϕ# makes ϕ∗F a sheaf of OY -modules.

Proposition 5.15. In this setup if F is quasicoherent then so is ϕ∗F .

Proof. Let G = ϕ∗F . Let V ⊆ Y open and f ∈ OY (V ). Let V1 = {y ∈
V : f(y) 6= 0}. We would like to show G(V )f → G(V1) is an isomorphism.
Let U = ϕ−1(V ) and U1 = {x ∈ U : g(x) 6= 0} where g = ϕ#(f). Then
U1 = ϕ−1(V1). We have a commutative diagram

F(U)g F(U1)

G(V )f G(V1)

=

∼=

=

where for the vertical arrow on the left we use the fact if M a B-module and
A→ B is a ring map such that f 7→ g, then

(AM)f →Mg

m

fn
7→ m

gn

is an isomorphism of abelian groups.

One might expect the same to work with coherent sheaves, but this fails in
general. Consider the following example. If X = Spec k for k is a field then
a sheaf of OX -module is exactly a k-vector space. Every sheaf of OX -module
is quasicoherent, and is coherent if and only if it is finite dimesional. However
consider ϕ : Ank → Spec k. Then ϕ∗(OAn

k
) is not coherent because k[x1, . . . , xn]

is not a finite dimensional k-vector space if n ≥ 1.

5.1 Ideal sheaf and closed subscheme
We have defined closed embedding but have not define closed subscheme. We
will do so via quasicohernet sheaves.

Definition (ideal sheaf). Let X be a scheme and ϕ : Y → X a closed
embedding. We define the ideal sheaf to be the kernel of ϕ# : OX → ϕ∗OY .
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It is denoted by Iϕ, IY/X or IY .

Lemma 5.16. If X is locally noetherian then so is Y and IY is coherent.

Proof. Cover X by Ui = SpecAi where Ai is noetherian. Let Vi = ϕ−1(Ui)
where Vi = SpecBi. As ϕ# : Ai � Bi, Bi is also noetherian. IY (Ui) is an ideal
in a noetherian ring so finitely generated.

Proposition 5.17. Let X be a scheme and I ⊆ OX a quasicoherent sub-
sheaf. Then exists a closed embedding ϕ : Y → X such that IY = I.

Sketch proof. As a set let

Y = {x ∈ X : Ix → OX,x not an isomorphism}

with induced topology. Let ϕ : Y → X be inclusion. Let OY = ϕ−1(OX/I).

Lemma 5.18. Let A,B,C be rings, ϕ : A → B,ψ : A → C surjective ring
maps. Then α : B → C such that ψ = α ◦ ϕ is unique if it exists. It exists
if and only if kerϕ ⊆ kerψ.

Corollary 5.19. Let X,Y, Z be closed schemes, ϕ : Y → X,ψ : Z → X
closed embeddings. Then α : Z → Y such taht ψ = ϕ ◦ α is unique if it
exists, it exists if and only if IY ⊆ IZ .

Corollary 5.20. Two closed embedding are isomorphic if and only if IY ∼=
IZ .

Definition (closed subscheme). A closed subscheme of X is an isomorphism
class of closed embeddings. Equivalently it is a quasicoherent ideal sheaf on
X.

Definition (closed subscheme image). Let ϕ : Y → X be a morphism of
schemes. The closed subscheme image of ϕ is the subscheme defined by
Iϕ = ker(ϕ# : OX → ϕ∗OY ).

Exercise. It is the smallest closed subscheme Z ↪→ X such that there exists a
commutative diagram (necessarily unique)

Y X

Z

ϕ

i.e. if ϕ factors through another closed embedding W ↪→ X then there is a
unique morphism Z →W .

(? Y is dense in Z and contains a dense open subset. Constructible set)
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Proposition 5.21. Let ϕ : Y → X be a locally closed embedding, i.e. it is
of the form Y

closed−−−−→ U
open−−−→ X. Let Z be the closed subscheme image of

ϕ. Then the diagram
Y U

Z X

is cartesian. In particular Y ↪→ Z is open and ϕ can be written as Y open−−−→
Z

closed−−−−→ X.

Proof. Let W = U ∩ Z = U ×X Z so we have a commutative diagram

Y W U

Z X

closed

For all V ⊆ U open we have

IW/U (V )

0 IZ/X(V ) OX(V ) OY (ϕ−1(V ))

0 IY/U (V ) OU (V ) OY (ϕ−1(V ))

where one can verify that IZ/X |U = IW/U . It follows that IW/U ∼= IY/U so
Y ∼=W .

Exercise. Conversely, let Z ↪→ X be a closed embedding and Y ↪→ Z be an
open embedding. Then Y ↪→ Z ↪→ X is locally closed.

Corollary 5.22. Let ϕ : Y → X be a locally closed embedding. Then it is
a closed embedding if and only if ϕ(Y ) is a closed subet of X.

Lemma 5.23. Let X be a scheme, S an affine scheme and ϕ : X → S a
separated morphism. If U, V ⊆ X are open affines then so is U ∩ V .

“separated scheme over affine schemes are analogous to Hausdorff spaces”

Proof. Have
U ∩ V = U ×X V = (U ×S V )×X×SX X

∆ is closed so U ×X V → U ×S V is a closed embedding. U ×S V is affine and
hence so is U ×X V .
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Example. For an example of a scheme X with open affines U, V whose inter-
section is not affine, do the following: glue two copies of A2

k along A2
k \{0} using

identity to obtain the plane with two origins. Take U and V to be the affine
plane containing each origin. Show their intersection A2

k \ {0} is not affine by
showing O(A2)→ O(A2−{0}) is an isomorphism (cover A2−{0} by D(x) and
D(y) and use sheaf axioms).

5.2 Global Spec
Recall that if ϕ : X → Y is a morphism of schemes then A = ϕ∗OX is a
quasicoherent sheaf of algebras on Y . If Y = SpecB is affine then A ∼= Ã where
A = A(Y ) = OX(X). Let Z = SpecA and π : Z → Y induced by B → A.

Exercise. Show exists a unique ψ : X → Z such that ϕ = π ◦ψ and ψ# is idA.
Show that if ϕ factors as X ψ1−−→ Z1

π1−→ Y with π1 affine then exists a unique
α : Z → Z1 such that π = π1 ◦ α, ψ1 = α ◦ ψ.

Theorem 5.24. Let Y be a scheme, A a quasicoherent sheaf of algebras
on Y . Then exists a unique scheme X = SpecA and an affine morphism
π : X → Y together with an isomorphism γ : π∗OX → A.

Proof. Uniqueness is local on Y so we may reduce to the case Y affine, which
is the exercise. For existence, cover Y by affines {Yi}. Let Xi = SpecA(Yi)
and πi : Xi → Yi the map induced by OY → A. Let Yij = Yi ∩ Yj and
Xij = π−1

i (Yij) ⊆ Xi. Then by uniqueness there exists a canonical isomorphism
ψij : Xij → Xji inducing the isomorphism

OYi
(Yij)→ A(Yij)← OYj

(Yij).

They satisfy the cocycle conditions and glue to a scheme X and π : X → Y .

5.3 Operations on sheaves of modules
Morally every operation we can do with modules, such as direct sum, tensor
product, taking kernels etc have an analogue for sheaves of modules.

Suppose F ,G are sheaves of OX -modules. We define a sheaf Hom(F ,G) of
OX -modules by

U 7→ HomOU
(F|U ,G|U ).

Exercise. Show that it is a sheaf of OX -modules. Show that if F ,G are both
quasicoherent then so is Hom(F ,G). Show that if X is locally noetherian and
F ,G are coherent then so is Hom(F ,G).

Given a sheaf of modules F , we define its dual to be

F∨ = Hom(F ,OX).

Exercise. If E ,F are locally free (of finite rank), show that there is a natural
isomorphism of locally free sheaves

Hom(E ,F)→ Hom(F∨, E∨).
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We define F ⊗OX
G to be the sheaf associated to the presheaf

U 7→ F(U)⊗OX(U) G(U).

If F ,G are quasicoherent then so is F ⊗OX
G and for all U ⊆ X affine

F(U)⊗OX(U) G(U)→ (F ⊗OX
G)(U)

is an isomorphism.

Exercise. Show that if X is locally noetherian, F ,G are coherent then F⊗OX
G

is coherent.

Exercise. Let X be a ringed space, E ,F ,G sheaves of OX -modules. Show that
there is a natural homomorphism

Hom(E ,F)⊗OX
Hom(F ,G)→ Hom(E ,G)

given by composition.

Exercise.

1. Let X be a ringed space, r ≥ 1. Show that for every sheaf of OX -module
F , the presheaf

U 7→ F(U)⊗OX(U) O⊕r
X (U) ∼= F(U)⊕r

is a sheaf.

2. Let E be a locally free sheaf of rank r. Show its dual E∨ is locally free of
rank r. Show that there exists a natural homomorphism E∨ ⊗ E → OX ,
which is an isomorphism if r = 1.

Definition (invertible sheaf). Let X be a ringed space. An invertible sheaf
on X is a locally free sheaf of rank 1.

Definition (Picard group). The Picard group Pic(X) of X is the set of
isomorphism classes of invertible sheaves on X.

Exercise. Pic(X) is an abelian group with multiplication given by tensor prod-
uct and identity OX .

Definition (effective Cartier divisor). Let X be a scheme. An effective
Cartier divisor on X is a closed subscheme D such that ID is an invertible
sheaf. We denote OX(−D) = ID and OX(D) = I∨D.

Exercise. If D is an effective Cartier divisor on a scheme X, show that the
inclusion ID → OX induces a morphism OX → OX(D) and hence a section
sD ∈ Γ(X,OX(D)).
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Definition (simple cyclic cover). Let X be a scheme, L an invertible sheaf,
n ≥ 1, s ∈ Γ(X, (L∨)⊗n) corresponds to ϕ : L⊗n → OX , which is assumed to
be injective. Let Ai = L⊗i and A =

⊕n−1
i=0 Ai. Make A into a Z/nZ-graded

algebra with product

L⊗i ⊗ L⊗j →

{
L⊗(i+j) i+ j < n

L⊗(i+j) ϕ⊗id−−−→ OX ⊗ L⊗i+j−n ∼= L⊗(i+j−n) i+ j ≥ n

Let D ⊆ X be the effective Cartier divisor such that ID = ϕ(L⊗n). The
scheme Y = SpecA is called the (simple) cyclic cover of order n of X with
branch divisor D.

5.4 Line bundles and divisors

Definition (Krull dimension). The Krull dimension of a topological space
X is the supremum of n such that there is a chain of irreducible closed
subsets

Z0 ( Z1 ( · · ·Zn ⊆ X.

Example. For Ank we have

{0} ( A1
k ( A2

k ( · · · ( Ank

so dimAnk ≥ n. Using Noether normalisation one can show dimAnk = n. By
going up/down every chain of irreducible closed subsets can be extended to one
of length n.

Example.

1. LetX = Ank where k = k. Then a prime divisor is precisely Spec k[x1, . . . , xn]/(f)
where f 6= 0 is irreducible. To see this since k[x1, . . . , xn] is a UFD, (f)
is prime if and only if f is irreducible. If f 6= 0 is irreducible then it has
height one: if 0 ⊆ p ⊆ (f) then for all g ∈ p, (g) ⊆ (f) so either g = 0 or
equality. Conversely if p has height 1 then choose g ∈ p nonzero. Then
exists an irreducible factor f of g such that f ⊆ p, so equality.

2. LetX = Pnk where k = k. Then a prime divisor is precisely Proj k[x0, . . . , xn]/(f)
(consider moving this elsewhere) where f ∈ k[x0, . . . , xn] irreducible ho-
mogeneous.

Proof. Every closed subset of X can be described as
⋂
Z(gi) for some

g1, . . . , gr homogeneous. f irreducible if and only if all dehomogenisation
is either irreducible or constant. Being reduced, irreducible and dimen-
sion are local properties. Conversely, suppose Z is an effective prime
divisor and wlog D(x0)∩Z 6= ∅. Then Z ∩D(x0) = Spec k[x01, . . . , x

0
n]/(g)

where g is irreducible. Let f be the homogenisation of g and W =
Proj k[x0, . . . , xn]/(f). W is reduced and irreducible and W ∩ D(x0) =
Z ∩ D(x0). Thus W = W ∩D(x0) = Z ∩D(x0) = Z where both have
the reduced closed subscheme structure (why does this hold topologi-
cally?)
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LetX be a reduced irreducible separated noetherian scheme. Let n = dimX.
Let η ∈ X be the generic point and K(X) = OX,η be its function field.

Definition (effective prime divisor). An (effective) prime divisor is a closed
reduced irreducible subscheme of X of dimension n− 1.

Assumption: every effective prime divisor on X is Cartier. For example from
above it is true for Ank and so it is true for every X with a cover by Ank .

Definition (divisor, effective divisor). Let X be a scheme. The group of
divisors on X, Div(X), is the free abelian group generated by prime divisors.
An element D =

∑
aiDi ∈ Div(X) is called a divisor, and is effective if

ai ≥ 0 for all i.

The assignment on prime divisors

Div(X)→ Pic(X)

D 7→ OX(D)

extends uniquely to a group homomorphism.
Assumption: for all D ⊆ X prime divisor with generic point ηD, we require

OX,ηD to be a DVR. Then we have a valuation vD : K(X)∗ → Z and

OX,ηD = {f ∈ K(X)∗ : vD(f) ≥ 0} ∪ {0}
mηD = {f ∈ K(X)∗ : vD(f) > 0} ∪ {0}

Lemma 5.25. Let f ∈ K(X)∗. Then there are only finitely many prime
divisors such that vD(f) 6= 0 is finite.

Proof. As X is noetherian it has a finite cover by open affines. If U ∩X is open
then there is a bijection

{D ⊆ X prime divisor, D ∩ U 6= ∅} ↔ {DU ⊆ U prime divisor}
D 7→ D ∩ U

DU ← [ DU

so it is enough to prove in case X affine. Let X = SpecA so K(X) = K(A). As
if f = g

h ∈ K(A)∗ then D(f) = vD(g) − vD(h), it is enough to assume f ∈ A.
Note vD(f) 6= 0 if and only if f(ηD) = 0 if and only if D ⊆ Z(f). If f 6= 0 then
Z(f) ( X so D ⊆ Z(f) ( X implies D is an irreducible component of Z(f). A
is noetherian implies that Z(f) has finitely many irreducible components.

We can thus define a group homomorphism

div : K(X)∗ → Div(X)

f 7→
∑

D prime
vD(f) · [D]
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Definition. Let O∗
X be the sheaf

U 7→ {f ∈ OX(U) : f(p) 6= 0 for all p ∈ U}.

Example. O∗
An

k
(Ank ) = k∗.

Theorem 5.26. Let X be a scheme satisfying all assumptions so far. Then
we have an exact sequence of abelian groups

0 O∗
X(X) K(X)∗ Div(X) Pic(X) 0div OX(−)

Proof. We introduce another group

P̃ic(X) = {(L, s) : L line bundle, s ∈ Lη \ {0}}/ ∼

where (L, s) ∼ (L′, s′) if and only if exists an isomorphism ϕ : L → L′ such
that ϕ(s) = s′. It is a group via tensor product. Claim the natural map
π : P̃ic(X) → Pic(X) is surjective: take a nonempty open U ⊆ X with a
trivialisation α : L|U ∼= OU . Then α induces Lη ∼= Oη and α−1(1) ∈ L \ {0}.
Note that α is unique up to O∗

η = K(X)∗.
On the other hand

ker p = {(OX , s) : exists ϕ : OX → OX such that ϕ(1) = s}/ ∼
= O∗

η/{s ∈ O∗
X,η : (OX , s) ∼= (OX , 1)}.

A morphism ϕ : OX → OX is the same as (multiplication by) a global section f ,
and is an isomorphism when it induces isomorphisms on all stalks, i.e. f(x) 6= 0
for all x ∈ X. Thus f ∈ O∗

X and kerπ = K(X)∗/O∗
X(X).

It is then left to show Div(X) ∼= P̃ic(X). If D is a prime divisor then by
assumption we have a nonzero section sD ∈ Γ(X,OX(D)). Then we extend the
map D 7→ (OX(D), (sD)η) to a homomorphism Div(X)→ P̃ic(X). Conversely,
suppose (L, s) ∈ P̃ic(X). Fix D a divisor. Choose an trivialising open subset
U such that U ∩D 6= ∅. Let ϕ|U : L|U → OU be the trivialisation. We define
vD(s) = vD(ϕU (s)). Check this is well-defined and we define

P̃ic(X)→ Div(X)

(L, s) 7→
∑

D prime
vD(s) · [D]

As before this is a finite sum.
We show the composition gives identity on P̃ic(X). Note first that given

(L, s) ∈ P̃ic(X), the argument above shows that it has precisely one automor-
phism, given by 1 ∈ K(X)∗ (while an invertible sheaf has non trivial automor-
phism, if we fix a stalk then it has none). Thus given (L, s), (L′, s′) ∈ P̃ic(X) an
isomorphism between them is unique. Thus it suffcies to give local isomorphism
(L, s)→ (

⊗r
i=1OX(Di)

⊗ai ,
⊗r

i=1 t
⊗ai
i ), and they glue.

We may thus assume X = SpecA and L|X is trivial, i.e. L|X ∼= OX and
s = f

g ∈ K(X)∗. By Krulls’ principal ideal theorem Z(f), Z(g) are unions of
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5 Sheaves of modules

prime divisors. Let D1, . . . , Dr be all such divisors. wlog IDi
is freely generated

by fi ∈ A \ {0}. Let bi = vDi
(f), ci = vDi

(g). Claim f = u ·
∏r
i=1 f

bi
i with

u invertible (by Krull), g = v
∏r
i=1 f

ci
i . Up to isomorphism we may assume

u = v = 1. Finally check.

Corollary 5.27.

1. Pic(AnK) = 0 so a prime divisor is exactly a prime ideal.

2. Pic(Pnk ) = Z.

5.5 Split sequence

Definition ((locally) split sequence of quasicoherent sheaves). Let X be a
scheme. An exact sequence of quasicoherent sheaves

0 F1 F2 F3 0
f g

splits if exists an isomorphism ϕ : F2 → F1 ⊕ F3 such that ϕ ◦ f is the
inclusion of the first factor and g is the composition of ϕ and projection to
the second factor. It splits locally if exists an open cover of X on which the
sequence split.

Lemma 5.28. If F3 is locally free then the sequence is splits locally

Lemma 5.29. Let A be a ring, g : M2 → M3 a surjection between free
modules of rank n and r respectively, then M1 = ker g is locally free of rank
n− r.

Sketch proof. Fix isomorphisms M2
∼= A⊕n,M3

∼= A⊕r. Then g is given by an
(n × r) matrix (gij). For each I = (1 ≤ i1 < · · · < ir ≤ n), let aI ∈ A be the
determinant of the corresponding minor. g is surjective so for all p ∈ SpecA the
localisation is surjection, and remains so after tensoring with κ(p). Thus eixsts
I such that aI ∈ κ(p) is nonzero. On D(aI), g splits so its kernel is free.

Corollary 5.30. Let X be a scheme. Suppose in the short exact sequence
of quasicoherent sheaves

0 F1 F2 F3 0

F2 and F3 are locally free of rank n and r respectively. Then the sequence
splits locally and F1 is locally free of rank n− r.

Lemma 5.31. Let X be a scheme. Suppose

0 F1 F2 F3 0

is an exact sequence of locally free sheaves. Then
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5 Sheaves of modules

1. for every G quasicoherent

0 F1 ⊗ G F2 ⊗ G F3 ⊗ G 0

is exact and splits locally.

2. for every morphism ϕ : Y → X

0 ϕ∗F1 ϕ∗F2 ϕ∗F3 0

is exact and splits locally.

Proof. Cover X by affine opens on which the original sequence splits and is
free.
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6 Differentials

6 Differentials

Definition (Kähler differential). Let ϕ : A → B be a morphism of rings.
We define ΩB/A, the module of Kähler differentials to be the free B-module
generated by db, b ∈ B subject to the relations

d(fg) = fdg + gdf

d(f + g) = df + dg

d(ϕ(a)) = 0 for a ∈ A

Definition (derivation). Let M be a B-module. An A-derivation δ : B →
M is an A-linear map such that

δ(fg) = fδ(g) + gδ(f).

We denote the space of such derivations by DerA(B,M).

Exercise.

1. DerA(B,M) is a B-submodule of HomA(B,M).

2. For any M there is a natural bijection

DerA(B,M)→ HomB(ΩB/A,M)

δ 7→ (db 7→ δ(b))

3. Let Pn = A[x1, . . . , xn]. Define δi = ∂
∂xi

. Show Pn ∈ DerA(Pn, Pn).

4. Show that ΩPn/A is generated by dx1, . . . , dxn.

Lemma 6.1. ΩPn/A is the free Pn-module generated by dx1, . . . , dxn.

Proof. They are generators by exercise 4. If there is a relation
∑
fidxi = 0

then applying δi shows fi = 0.

Proposition 6.2. Suppose A → B
π−→ C are ring homomorphisms with π

surjective with kernel I. Then there is an exact sequence of C-modules

I ⊗B C ΩB/A ⊗B C ΩC/A 0.α β

Proof. Define

α : f⊗g 7→ df ⊗ g
β : df ⊗ g 7→ gdπ(g)

Check these are well-defined. β is surjective since π is. Exactness at the second
term is left as an exercise.

Note as C = B/I, we can write the C-module I⊗PC as I/I2. In this notation
α(f) = df ⊗ 1. One can check α(f1f2) = 0 for f1, f2 ∈ I and α(gf1) = gα(f1).
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Corollary 6.3. If R = A[x1, . . . , xn]/I then we have an exact sequence

I/I2
⊕n

i=1Rdxi ΩR/A 0.

Proposition 6.4. Let R be a finitely generated A-algebra. Write R ∼=
P1/I1 ∼= P2/I2 with P1, P2 free polynomial A-algebra. Let K1,K2 be defined
by the exact sequence

0 Ki Ii/I
2
i ΩPi/A ⊗Pi R ΩR/A 0

Then K1 is canonically isomorphic to K2.

Proof. Suppose P1 = A[x1, . . . , xn], P2 = A[y1, . . . , ym], then there is a natural
surjection P3 = A[x1, . . . , xn, y1, . . . , ym] → R and we will show both K1 and
K2 are isomorphic to K3. To show this it suffices to show it for polynomial ring
with one more variable. Namely we want to prove the following: if π : P =
A[x1, . . . , xn]→ R surjective with kernel I, choose r ∈ R and define

π′ : P ′ = A[x1, . . . , xn, y]→ R

xi 7→ π(xi)

y 7→ r

Let I ′ = kerπ′. Then we want to show K ∼= K ′.
As π is surjective can find g ∈ P such that π(g) = r, and then g−y ∈ kerπ′.

As a P -module I ′ = (g − y)P ′ ⊕ I so I ′/(I ′)2 = (g − y)P ′/I ′ ⊕ I/I2. Then we
have a commutative diagram

0 K I/I2
⊕n

i=1Rdxi

0 K ′ I/I2 ⊕R · (g − y)
⊕n

i=1Rdxi ⊕Rdy

α

(id,0) (id,0)(
α ∗
0 id

)

and it follows that the kernels are naturally isomorphic.

In fancier language, we have proved that I/I2 → ΩP/A ⊗A R is well-defined
up to a canonical quasi-isomorphism, so defines an object in D(ModR). This
is the naïve cotangent complex.

Definition (smooth homomorphism). A ring homomorphism A → R is
smooth if it is finitely presented, K = 0 and Ω̃R/A is locally free (i.e. ΩR/A
is finite projective).

Example.

1. A→ A[x1, . . . , xn] is smooth.

2. C→ C[x, y]/(xy − 1) = R is smooth:

R · (xy − 1) Rdx⊕Rdy ΩR/C 0α
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As a vector space R ∼= C⊕xC[x]⊕yC[y]. Suppose f = a+xb(x)+yc(y) ∈ R
is such that f(xy − 1) ∈ kerα. Then fxdy = fydx = 0. This is the same
as

ax+ x2b(x) + c(y) = 0

ay + b(x) + y2c(y) = 0

so b(x) = c(y) = 0 and it follows that f = 0. Thus α is an isomorphism
onto its image, which is {fdx+ fdy : f ∈ R} so ΩR/C is free of rank 1.

Exercise. Determine if C→ C[x, y]/(xy) is smooth.

Proposition 6.5. Let A be a ring, B a finitely presented A-algebra. Then

1. If S ⊆ A is multiplicative and B is smooth over A then S−1B is smooth
over S−1A.

2. Let f1, . . . , fn ∈ A such that {D(fi)} covers SpecA. Then if for all i,
Bfi is smooth over Afi then B is smooth over A.

3. Let g ∈ B. If B is smooth over A then so is Bg.

4. Let g1, . . . , gm ∈ B such that {D(gi)} covers SpecB. Then if for all
j, Bgj is smooth over A then B is smooth over A.

Proof. Write B = P/I where P = A[x1, . . . , xN ].

1. Localisation is exact and preserves local freeness. In fact this holds for
any flat base change.

2. (kerα)fi = 0 for all i implies kerα = 0.

3. Bg ∼= B[y]/(yg − 1) ∼= A[x1, . . . , xN , g]/J where J = (I, yg − 1). Note

J/J2 = (I/I2)⊗B Bg ⊕Bg(yg − 1).

Then we have a commutative diagram

I/I2 ⊗B Bg
⊕N

i=1Bgdxi ΩB/A ⊗B Bg

(I/I2)⊗B Bg ⊕Bg · (g − y)
⊕N

i=1Bgdxi ⊕Bgdy ΩBg/A

αg

(id,0) (id,0)

β=
(αg ∗

0 g

)

As g is a unit in Bg,

kerβ = kerαg = 0,ΩBg/A = cokerβ = cokerαg = ΩB/A ⊗B Bg.

4. (kerα)gi = 0 for all i by 3.
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Definition (relative dimension, étale morphism). Let A be a ring, B an
A-algebra. We say B is smooth A of relative dimension n if it is smooth
over A and Ω̃B/A is locally free of rank n.

As a special case, B is étale over A if it is smooth of relative dimension
zero.

Definition (smooth morphism). A morphism ϕ : X → Y of schemes is
smooth (resp. smooth of relative dimension n, étale) if we can cover Y by
open affines Vi such that for each i we can cover ϕ−1(Vi) by open affines Uj
such that OX(Uj) is smooth (resp. smooth of relative dimension n, étale)
over OY (Vi).

Corollary 6.6. ϕ : X → Y is smooth (resp. smooth of relative dimension
n, étale) if and only if for all V ⊆ Y open affine, for all U ⊆ ϕ−1(V ) affine
such that OX(U) is smooth (resp. smooth of relative dimension n, étale)
over OY (V ).

Proof. For the nontrivial direction, cover V by principal open affines which are
also principal open in some Vi. Same for U . Now apply Proposition 6.5.

Exercise. Open embeddings are étale.
Fact: any smooth morphism is open.

Definition (standard smooth). Let A be a ring, B an A-algebra. Then B is
standard smooth overA if exists a presentationB ∼= A[x1, . . . , xn]/(f1, . . . , fr)

such that det
(
∂fi
∂xj

)
1≤i,j≤r

maps to a unit in B.

Claim (Stacks 10.136)
1. If B is standard smooth over A, then B is smooth over A and ΩB/A is

freely generated by dxr+1, . . . , dxn.

2. If B is smooth over A we can cover SpecB by D(h) such that Bh is
standard smooth over A.

Example. AnX and PnX are smooth of relative dimension n over X. Suffice to
check this for X = SpecA affine, in whice case AnX = SpecA[x1, . . . , xn] and
one easily checks it is smooth of relative dimension X. PnA has an affine cover
by AnA.

Fact: let X be a scheme smooth over Spec k where k is algebraically closed.
Then X is reduced. If X is irreducible then every prime divisor D is Cartier.
(smooth over a field implies locally factorial, implying every Weil divisor is
Cartier)

Idea of proof: enough to show that for all p ∈ D such that κ(p) = k (because
our scheme is locally finite type over a field, such points are dense) , ID,p is a free
module of rank 1. Let ÔX,p = lim←−OX,p/m

N
p
∼= k[[x1, . . . , xn]]. Every minimal

nonzero prime ideal in ÔX,p is principal, ÔX,p is faithfully flat over OX,p.
so enough to show ID,p is principal.
ÎD,p ⊆ ÔX,p has a generator u in OX,p, i.e. u : OX,p → ID,p such that

passing to formal completion is surjective.
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Corollary 6.7. Suppose f ∈ S = k[x0, . . . , xn] is homogenous of degree e.
Let X = ProjS/(f). Let Y =

⋂n
i=0 Z(

∂f
∂xi

). Then X \Y is a quasiprojective
variety over k smooth of relative dimension over Spec k.

Proof. Before we start the proof note the identity

ef =

n∑
i=0

xi
∂f

∂xi

which can be easily checked using linearity and induction. Take p ∈ U0 ∩X =
Spec k[y1, . . . , yn]/g where g = f(1, y1, . . . , yn). Then ∂g

∂yj
= ∂f

∂xj
(1, y1, . . . , yn).

Suppose p /∈ Y , so exists some j such that ∂f
∂xi

(p) 6= 0. Claim that we can take
j 6= 0, as otherwise

0 = ef(p) = x0(p)
∂f

∂x0
(p) 6= 0.

Let h = ∂g
∂yj

. Then p ∈W = X ∩ U0 ∩ {h 6= 0} and W has presentation

Spec k[y1, . . . , yn, yn+1]/(g, yn+1h− 1)

so by rearranging the variables, we see(
∂g
∂yj

∂g
∂yn+1

∂(yn+1h−1)
∂yj

∂(yn+1h−1)
∂yn+1

)
=

(
h 0
∗ h

)
has unit determinant in W .

Theorem 6.8. Let ϕ : X → Y be a smooth morphism (resp. smooth of
relative dimension n, étale) of schemes. Then any base change of ϕ is also
smooth (resp. smooth of relative dimension n, étale).

Proof. Being smooth is local on both source and target so we can assume Y =
SpecA and X = SpecB where B is a smooth A-algebra. After localising we can
further assume B is standard smooth over A, say B = A[x1, . . . , xn]/(f1, . . . , fr).

LetA′ be anyA-algebra and defineB′ = B⊗AA′. ThenB′ = A′[x1, . . . , xn]/(f̃1, . . . , f̃r)

where f̃i is the image of fi in A′[x1, . . . , xn]. ∂fi
∂xj

is mapped to ∂f̃i
∂xj

. It is then
enough to note that B → B′, as any ring map, maps invertible elements to
invertible elements.

Exercise. Give an alternative proof using the definition of smoothness. Hint:

0 I/I2 ΩP/A ⊗P B ΩB/A 0

splits locally and I/I2 is locally free.

To summarise, let ϕ : X → Y be a morphism of schemes. For any U =
SpecB ⊆ X,V = SpecA ⊆ Y such that ϕ(U) ⊆ V , we have an induced
quasicoherent sheaf on U , namely Ω̃B/A. We showed that ΩB/A commutes with
localisation in both A and B. We want to prove that there is a (unique up to
isomorphism) way to define a quasicoherent sheaf Ωϕ or ΩX/Y together with a
morphism d : OX → ΩX/Y of sheaves of ϕ−1(OY )-modules such that
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1. (local on source) for every U ⊆ X, let ϕ̃ = ϕ|U . Then there is an isomor-
phism Ωϕ|U ∼= Ωϕ̃ such that

OX |U Ωϕ|U

OU Ωϕ̃

d|U

∼=

d

commutes.

2. (local on target) if V ⊆ Y is open and ϕ(X) ⊆ V , let ψ : X → V be the
induced morphism. Then there is an isomorphism Ωϕ ∼= Ωψ such that

OX Ωϕ

Ωψ

d

d ∼=

commutes.

3. (agree with Kähler differentials for affines) if X = SpecB, Y = SpecA,
then there is an isomorphism ΩX/Y ∼= Ω̃B/A such that

OX(X) ΩX/Y (X)

B ΩB/A

d

∼=

d

commutes.

Note that the isomorphisms are unique if they exist, since the image of B
under d generates ΩB/A.

If such an object exists then we immediately know that

Corollary 6.9. Suppose f : X → Y, g : Y → Z are morphisms of schemes.
Then there is a natural exact sequence

f∗ΩY/Z ΩX/Z ΩX/Y 0

If f is a closed embedding then exists a natural exact sequence

f∗IX/Y f∗ΩY/Z ΩX/Z 0d

There are two ways to prove this:

1. mimic the definition of M̃ on SpecA. Afterall we know that Ωϕ(U) should
be for every U ⊆ X open affine such that ϕ(U) is contained in an open
affine in Y .

2. via normal bundle of diagonal.
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Lemma 6.10. Let f : Z →W be a locally closed embedding. Write f = h◦g
where g : Z → U closed embedding, h : U → W open embedding. Then
g∗IZ/U is well-defined. We write it as f∗IZ/W .

Proof. Use closed subscheme image... g∗IZ/U = g∗h∗IZ/W = f∗IZ/W .

Definition (sheaf of Kähler differentials). Let ϕ : X → Y be a morphism
of schemes. Define

ΩX/Y = ∆∗
ϕIX/X×YX .

For f ∈ OX(U), define

df = ∆∗
ϕ(π

∗
1f − π∗

2f)

where π1, π2 : X ×Y X → X are the natural projections.

Exercise. This satisfies the desired properties.

How to think about this: for smooth maps, dualising the second exact se-
quence in the corollary gives interpretation in terms of normal bundle.

6.1 Another interpretation for smoothness
Let (A,m) be a local ring with maximal ideal. Assume

⋂
n≥0 m

n = 0. Define
the completion of A to be

Â = lim←−
n

A/mn.

Exercise.

1. Suppose A = k[x1, . . . , xn](x1,...,xn). Then Â = k[[x1, . . . , xn]].

2. If f1, . . . , fr ∈ (x1, . . . , xn) andB = A/(f1, . . . , fr)A then B̂ = k[[x1, . . . , xn]]/(f1, . . . , fr).

3. Implicit function theorem holds for k[[x1, . . . , xn]].

4. k[x1, . . . , xn]/(f1, . . . , fr) is smooth of relative dimension (n− r) near the
origin if and only if k[[x1, . . . , xn]]/(f1, . . . , fr) ∼= k[[t1, . . . , tn−r]].

5. Â is a faithfully flat A-algebra.

Let ϕ : X → Y be a morphism of schemes locally of finite type over an
algebraically closed field k. Let p ∈ X be a closed point. Then ϕ is smooth
of relative dimension r at p ant t1, . . . , tr ∈ OX,p are such that Ωϕ,p is the free
module generated by dti if and only if ϕ# induces an isomorphism

ÔY,ϕ(p)[[z1, . . . , zr]]→ ÔX,p
zi 7→ ti

Fact: if X is a scheme smooth over a field k then every prime divisor is
Cartier.
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Definition (tangent space). Suppose X is a scheme locally of finite type
over an algebraically closed field k and p ∈ X a closed point. The tangent
space of X at p is

TpX = Derk(OX,p, κ(p))
= HomOX,p

(ΩX/k,p, κ(p))

= Homk(ΩX/k,p ⊗OX,p
κ(p), κ(p))

Proposition 6.11. There is a natural bijection

TpX ←→ {ϕ : Spec k[ε]/ε2 → X : ϕt=0 = p}.

Proof. The statement is local on X so suppose X = SpecR. A closed point p
gives an R-algebra structure to k = κ(p). Note k[ε]/ε2 = k ⊕ kε as a vector
space map. One can check a k-linear map

ϕ : R→ k[ε]/ε2

f 7→ f(p) + λ(f)ε

is a homomorphism if and only if λ is a derivation.

Corollary 6.12.
dimTpX = dimΩX,p ⊗ κ(p).

Proposition 6.13. Let X be a scheme locally of finite type over k, Y ⊆ X
a closed subscheme such that IY/X is principal. Then for all p ∈ Y closed,

dimTpX ≥ dimTpY ≥ dimTpX − 1.

Proof. wlog X = SpecR, Y = SpecR/(f). Let i : Y → X be the closed
embedding. In the short exact sequence

i∗IY/X i∗ΩX/k ΩY/k 0

taking stalk at p and tensoring κ(p) we get

i∗IY/X,p ⊗ κ(p) (TpX)∨ (TpY )∨ 0

Since the leftmost vector space has dimension 1 the result follows.

Example. We give an example of a prime divisor which is not Cartier. Let
X = SpecC[x, y, z]/(xy − z2), Y = SpecC[x, y, z]/(x, z). Let p be the origin.

TpX = ker(TpA3 d(xy−z2)−−−−−−→ C) = TpA3. TpY = 〈 ∂∂y 〉 which is one-dimensional.
cf 2-Cartier
Another way to see X is integral: action of Z/2 on C[U, V ] via U 7→ −U, V 7→

−V . The invariants are C[U2, V 2, UV ]. Can check the only relation is the
obvious one. Being a subring of a domain, it is a domain. In terms of functions,
this
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Exercise: do for nth root of unity acting on A2. a(u, v) = (au, av). Invariant
polynomial ring generated by homogeneous monomials of degree n. Projective
this is Veronese embdding of P1 in Pn.

Another action is a(u, v) = (au, a−1v). Invariants are generated by un, vn, uv.
xy = zn. This action is in SL(2,C). Related to Gorenstein singularity.

Note µn is a group scheme. However if p = char k divides n. µn is not
reduced.

fact: in characteristic zero, group schemes are reduced, and in fact smooth
over the base field.

In general if a group G acts on a ring R, we would like to define SpecR/G
to be SpecRG, the invariant subring. In general the question of quotiening
schemes by groups is very difficult. cf GIT
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7 Projective schemes and morphisms
Recall that a morphism Y → X of schemes induces a cartesian diagram.

PnY PnY

Y X

Definition (strictly projective and locally projective morphism). A mor-
phism of schemes ϕ : X → Y is called strictly projective if it factors as
X

i−→ PnY
π−→ Y with i a closed embedding. It is locally projective if exists an

open cover {Vi} of Y such that ϕ|ϕ−1(Vi) : ϕ
−1(Vi)→ Vi is strictly projective

for all i.

Exercise. Show that both properties are stable under base change.

Definition. A morphism ϕ : X → Y is called strictly quasiprojective if it
factors as X i−→ PnY

π−→ Y with i a locally closed embedding.

Exercise. Define locally quasiprojective morphism and show both are stable
under base change.

Theorem 7.1. Given a scheme X and n ≥ 1, the morphism π : PnX → X
is proper.

Note that as properness is preserved under base change, we only have to
prove the result for affine schemes. If time permits we will discuss the proof.

Corollary 7.2.

1. Every locally projective morphism is proper.

2. Every locally quasiprojective morphism is separated.

Chow’s lemma gives a sort of converse to the first statement, which says that
under some favourable circumstances a proper morphism can be turned into a
locally projective morphism by modifying the source slightly. Thus the intuition
for properness is projectiveness.

Proof. We prove 2 and 1 follows from the same argument. Locally closed em-
bedding is separated (one way to see is that open embedding is separated and
closed embedding is affine). Separatedness is local on base so we may assume
ϕ : X → Y is strictly quasiprojective, which is a composition of two separated
morphisms.

Classical algebraic geometry is concerned with quasiprojective schemes over
algebraically closed field k. Note that for k a field ϕ : X → Spec k is strictly
(quasi)projective if and only if it is locally (quasi)projective. Also X is (locally)
of finite type (since closed embedding is affine so of finite type, open embedding
is locally of finite type and Pnk → Spec k is of finite type) so (locally) noetherian.
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Proposition 7.3. Let ϕ : X → Y be locally (resp. strictly) quasiprojective.
Then it is locally (resp. strictly) projective if and only if it is proper.

In particular a quasiprojective variety is proper if an only if it is projective.

Proof. The composition X → PnY → Y is proper and PnY → Y is separated so
X → PnY is universally closed so closed. Thus it is a closed embedding.

Corollary 7.4. If X and Y are quasiprojective over Spec k the any mor-
phism X → Y over k is separated.

Corollary 7.5. Let ϕ : X → Y be a morphism of projective schemes over
k. Let Z be the closed subscheme image of ϕ(X) in Y . Then ϕ : X → Z is
surjective.

Corollary 7.6. If X is projective over k, Y quasiprojective over k then any
k-morphism X → Y is proper.

Corollary 7.7. Let X be a reduced proper scheme over an algebraically
closed field k. If X is connected then the natural map k → OX(X) is an
isomorphism.

Proof. There is a natural bijection OX(X) ∼= Homk(X,A1
k). Let i : A1

k ↪→ P1
k.

Let ϕ : X → A1
k be a morphism induced by f ∈ OX(X). Then the image of

i ◦ ϕ is closed and connected in P1
k. It is not P1

k so must be a k-point (here
we used k = k). As X is reduced i ◦ ϕ factors through the reduced structure
Spec k ↪→ A1.

Example. We verify a special case of valuative criterion. Let R be a DVR,
say with uniformiser t. Let K be its field of fractions. Then we would like to
show that there exists exactly one dotted arrow making the following diagram
commute

SpecK PnY

SpecR Y

wlog suppose the image of SpecK is in U0. Then since R → K is a monomor-
phism there is at most one such morphism.

K A[x0i ]/(x
0
0 − 1)

R

Let fi be the image of x0i in K. Then either fi = 0 or fi = tmigi where mi is
the order of vanishing of fi. If all fi’s are zero then of course we can extend so
suppose not, and wlog m1 ≤ mi for all i such that fi 6= 0. Looking at the chart
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7 Projective schemes and morphisms

U1, the morphism SpecK → U01 → U10 (where U01 ⊆ U0 and U10 ⊆ U1 are
isomorphic) gives

(x10)
−1 7→ x01 7→ f1

so f1 ∈ K is invertible and hence is nonzero. The we can define a morphism
U1 → SpecR by

x1i 7→ fi · f−1
1 = tmi−m1gig

−1
1 ∈ R

since mi −m1 ≥ 0.

7.1 Proj construction
Before proving (a special case of) the theorem, we give a different construction
of PnA for A a ring, similar to SpecA. Let R =

⊕
n≥0Rn be a graded ring.

We will define a ringed space ProjR, prove it is a scheme, and give a canonical
isomorphism ProjA[x0, . . . , xn] ∼= PnA where deg xi = 1 and deg a = 0 for a ∈ A.

As a set

ProjR = {p ⊆ R : p homogeneous prime, p +
⊕
n≥1

Rn}.

Recall that an ideal I ⊆ R is homogeneous if it is generated by homogeneous
elements, or equivalently for every f ∈ I, each homogeneous component of f is
in I.

⊕
n≥1Rn is called the irrelevant ideal.

(over k[x0, . . . , xn] where k is infinite, t · p = p for all t ∈ k∗ if and only if p
is homogeneous).

ProjR is given the Zariski topology, namely the closed subsets are

Z(f) = {p ∈ ProjR : f ∈ p} =
deg f⋂
i=0

Z(fi).

In other words a basis of the toplogy is {D(f) = {p : f /∈ p}} for f ∈ R
homogeneous.

For the structure sheaf, those pullback to regular functions under π : An+1
k \

{0} → Pnk . We define OProjR to be the sheaf

U 7→ invariant

For f ∈ R homogeneous of degree a, let Rf =
⊕

i∈Z(Rf )i where the g
fr has

degree m− ra if g has degree m. Then

OProjR(D(f)) = (Rf )0.

Proposition 7.8. This gives a unique defined structure sheaf OProjR.

The proof is a tedious check which we omit.

Theorem 7.9. If R = A[x0, . . . , xn] then ProjR ∼= PnA.
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7 Projective schemes and morphisms

Sketch proof. The isomorphism is given its restriction to D(xi) and Ui. We take
as example i = 0. On the level of rings there are two maps which are inverses
to each other

(A[x0, . . . , xn]x0
)0 ←→ A[x00, . . . , x

0
n]/(x

0
0 − 1)

The map goes from left to right is “dehomogenisation”: an element of LHS can
be written as a sum of f

xdeg f
0

where f is homogeneous, so can be written as a
sum of monomial. Thus

f

xdeg f0

= F (
x1
x0
, . . . ,

xn
x0

)

and we send it to F (x01, . . . , x0n). Conversely given G of RHS we send it to its
homogenisation

xdegG0 G(
x1
x0
, . . . ,

xn
x0

)

of degree 0.
One then checks that for f homogeneous D(f) ∩ U0 = D(F ) and satisfies

cocycle conditions so glue to an isomorphism.

Lemma 7.10. Let ϕ# : R→ S be a homomorphism of graded rings surjec-
tive in degree ≥ 1. Then it induces a morphism ϕ : ProjS → ProjR.

The condition on surjectivity is to ensure that the pullback of an ideal
does not contain the irrelevant ideal. For example the inclusion k[x0, x1] →
k[x0, x1, x2] fails to define a morphism P2

k → P1
k since (x0, x1) pulls back to the

irrelevant ideal. Geometrically, the point [0, 0, 1] has nowhere to go since [0, 0]
is not a point on P1

k.

Proof. On points we define ϕ(p) = ϕ−1(p). Surjectivity in degree ≥ 1 implies
ϕ(p) ∈ ProjR. It is continuous because ϕ−1(D(f)) = D(ϕ#(f)). It induces
a homomorphism ϕ# : OProjR → ϕ∗OProjS because for f ∈ Rd, ϕ# : R → S
induces Rf → Sϕ#(f), which we take to be ϕ#(D(f)).

Exercise. Show that there is a group homomorphism from GL(n + 1, A) to
the automorphism group of PnA with kernel the multiples of the identity matrix
(hint: the corresponding graded ring homomorphism is exactly what one would
expect). (check: We will later see these are the only morphisms commuting
with projection)

7.2 Line bundles on Pn

It is not difficult to deduce from the proof of Theorem 5.24 that for ϕ : X → Y
a morphism, ψ : Z → Y an affine morphism, there is a bijection

{α : X → Y such that ψ◦α = ϕ} ←→ {ψ∗OZ → ϕ∗OX morphism of OY -algebras}.

Goal: do something similar with Proj. Key missing step: we need an invertible
sheaf. (?check this statement)
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7 Projective schemes and morphisms

Consider the inclusion Hn = Pn−1
A ↪→ PnA induced by killing off xn. One can

check that

IHn
|Ui

=

{
xiOUi

i 6= n

OUi i = n

so a rank 1 locally free sheaf and an effective Cartier divisor. Similary we may
define Hj for 0 ≤ j ≤ n.

Lemma 7.11. There exists an isomorphism OPn
A
(−Hi) ∼= OPn

A
(−Hn) in-

duced by xi

xn
.

Definition. We let OPn
A
(1) = OPn

A
(Hn).

The isomorphism in lemma implies that each Hi defines a section si ∈
Γ(PnA,O(1)).

Theorem 7.12. There is a natural isomorphism of graded A-algebras

A[t0, . . . , tn]→
⊕
d≥0

Γ(PnA,O(d))

ti 7→ si

54
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8 Group schemes

Definition (group scheme). A group scheme G over X is a scheme G over
X together with

• m : G×X G→ G multiplication morphism,

• e : X → G identity morphism,

• i : G→ G inverse morphism

such that all these are morphisms over X and

• m is associative

G×X G×X G G×X G

G×X G G

(m,idG)

(idG,m) m

m

• e is left and right identity, i.e. both compositions

G×X X

G G×X G G

X ×X G

idG ×e∼=

∼=

m

e×idG

are idG.

• i is left and right inverse, i.e. both compositions

G×X G

G G×X G G

G×X G

m

∆

i×idG

idG ×i m

are G→ X
e−→ G.

Example.

1. Let A be a ring. Define

GL(n,A) = D(det) ⊆ SpecA[aij ] :=M

where 1 ≤ i, j ≤ n. Let G = GL(n,A). Then G is a group scheme over
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8 Group schemes

X = SpecA. m is given by matrix multiplication, i.e.

A[aij ]→ A[bij , cij ]

aij 7→
n∑
k=1

bikckj

which restricts to a morphism m : G×G→ G. e is induced by aij 7→ δij
and i is induced by mapping aij to the (i, j)th entry of the inverse of a
matrix, which we know can be expressed as a rational function.

2. In the above example if n = 1 then we write Gm,X = GL(1, A) =
SpecOX [t, t−1].

3. SL(n,A) = SpecA[aij ]/(det−1) ⊆ M as a closed subscheme is a group
scheme.

4. AnA is a group scheme. If n = 1 then we write Ga,X = A1
A = SpecOX [t].

Definition (group action). Let G be a group scheme over X and Y a scheme
over X. A (left) action of G on Y over X is a morphism a : G ×X Y → Y
over X such that

1. commutes with multiplication:

G×X G×X Y G×X Y

G×X Y Y

m×idY

idG ×a a

a

2. identity acts trivially, i.e. the following composition is idY

Y X ×X Y G×X Y Y
∼= e×idY a

Example.

1. Projection to Y gives the trivial action for any group scheme G.

2. G acts on itself via m.

Example. Let A =
⊕

d≥0Ad be a graded algebra, X = SpecA0, Y = SpecA.
Then G = Gm,X acts on Y via

A→ A⊗A0
A0[t, t

−1] = A[t, t−1]

f 7→ tdf

if f ∈ Ad.

Exercise. Set A0 = k,A = k[x1, . . . , xn] with deg xi = 1. Then the action is
just the diagonal action by the torus t(x1, . . . , xn) = (tx1, . . . , txn).

Exercise. Show GL(n,A) acts on AnA.
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8 Group schemes

Definition (equivariant morphism). Let G be a group scheme over X acting
on Y1 and Y2 via a1, a2. A morphism f : Y1 → Y2 over X is G-equivariant
if the following diagram commutes:

G×X Y1 G×X Y2

Y1 Y2

idG ×f

a1 a2

f

Lemma 8.1. Suppose G = Gm,A acts on Y1 = SpecB, Y2 = SpecC where
B and C are graded A-algebras (the action induced by grading). Then
ϕ : Y1 → Y2 is Gm-equivariant if and only if ϕ# : C → B is a homomorphism
of graded A-algebra.

Proof. On the level of rings

C C[t, t−1]

B B[t, t−1]

For f ∈ Cd, let g = ϕ#(f) =
∑r
i=0 gi where gi’s are homogeneous. Then

f tdf

∑
gi

∑
tigi

so td
∑
gi =

∑
tigi so g is homogeneous of degree d.

Corollary 8.2. An endormorphism ϕ : AnA → AnA is Gm-equivariant if and
only if it is linear, i.e. xi 7→

∑
j aijxj for a unique choice of aij ∈ A.

Definition (vector bundle). Let X be a scheme. A trivial vector bundle on
X is a scheme π : E → X with a Gm,X action which is Gm,X -isomorphic to
ArX . A vector bundle of rank r on X is a scheme E → X with a Gm,X such
that there exists an open cover {Ui} such that E|Ui

→ Ui is trivial.

What is implied in this definition is that group actions are stable under base
change.

Remark. It is a theorem that a vector bundle is the same as one that is locally
trivial over the étale site or other flat sites.

More generally
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Definition (principal bundle/torsor). Let X be a scheme and G a group
scheme over X. A trivial principal G-bundle (or trivial G-tosor) is a scheme
Y over X with a G-action which is G-isomorphic to G. A principal G-bundle
(or G-torsor) is a scheme that is locally a trivial principal G-bundle.

Proposition 8.3. There is an equivalence of categories

{rank r vector bundle on X}/ ∼=←→ {principal GL(r)-bundle}

Remark. If E is locally free of rank r then
∧r E is locally free of rank 1, a

line bundle which we call det E . Then by the correspondence between bector
bundles and locally free sheaves in the next section, there is an equivalence of
categories between

{rank r vector bundle with trivial det}←→ {principal SL(r)-bundle}.

8.1 Correspondence between vector bundles and locally
free sheaves

Let π : E → X be a rank r vector bundle, A = π∗OE . Then on a trivialising
neighbourhood U , A|U ∼= OU [x1, . . . , xr] so A is a quasicoherent sheaf of OX -
modules. On intersection Ui∩Uj , the lemma in the previous section states that
different trivialisations induce the same grading. Thus there is a gobal grading
A =

⊕
d≥0Ad on X.

For any graded algebra there is a map Sym∗A1 → A. In general this map
is neither injective nor surjective, but in our case it is (locally so globally) an
isomorphism and A1 is locally free of rank r.

Thus we have constructed an equivalence of categories

{vector bundle of rank r} ←→ {locally free sheaves of rank r}
E 7→ (π∗OE)1

Spec Sym∗ F ← [ F

Definition (abelian cone). Let X be a locally noetherian scheme. An
abelian cone over X is a scheme A → X with a Gm-action such that
π∗OA =

⊕
d≥0Ad with

1. OX → A0 is an isomorphism,

2. A1 is coherent,

3. Sym∗A1 → A is an isomorphism.

Exercise. Show that this is equivalent to saying that A is the kernel of a
morphism of vector bundles on X, i.e. the fibre product

A X

E F

0

for some Gm-equivariant morphism E → F .
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Remark. A cone is one where one replaces isomorphism in 3 by surjective.
They define global Proj.

What is ProjA in this language? Assume A =
⊕

d≥0Ad is a quasicoherent
sheaf of graded OX -algebra satisfying the definition of a cone. Then we have
a closed embbedding SpecA → Spec Sym∗A1. C = SpecA is called a cone
over X, and it is a subscheme of A(C), called the associated abelian cone,
that is invariant under Gm. Conversely every cone is a Gm-equivariant closed
subscheme of an abelian cone.

In this language, ProjA is the quotient of SpecA minus the zero section by
Gm-action. The zero section is a closed subscheme X0 ↪→ C (isomorphic to X)
obtained by ...

Quotient: SpecA \X0 → ProjA is a principal Gm-bundle, where the prin-
cipal opens are D(f) where f homomogeneous for f ∈ A1(U).

Exists an equivalence of categories

{abelian cones over X with Gm-equivariant morphism}←→ {coherent sheaf on X}.

In particular if X → Y a morphism locally of finite type of locally noetherian
schemes, then ΩX/Y is coherent. There are two natural candidates for the
“tangent bundle” of X over Y : one may take the dual sheaf

ΘX/Y = Hom(ΩX/Y ,OX).

In general we lose torsion information in this process. A more refined approach
is to use the cone over X

TX/Y = Spec Sym∗ ΩX/Y .

18/12/20
If the cone has a zero section s0 : X → C induced by

0
⊕

d≥1A1 A OX 0
s#0

then C \ s0(X)→ ProjA is a principal Gm-bundle.

Example (projective bundle). Let A = Sym∗ E where E is a locally free sheaf.
Then we define P(E) = Proj(A). Let E = Spec Sym∗ E , then we have a principal
Gm-bundle E \ s0(X) → P(E). Thus P(E) parameterises lines in fibres of E.
Sometimes we also denote it by P (E) (note E is a locally free sheaf while E is
a vector bundle).

Theorem 8.4 (Bertini). Let X ⊆ Pnk be a closed subscheme smooth of
dimension d over Spec k, an algebraically closed field. Let P̌n be the scheme
parameterising hyperplanes in Pn. Then there exists a nonempty open U ⊆
P̌n such that for every a ∈ U(k), we have X ∩Ha is smooth of dimension
(d− 1).

Analogue of Sard’s theorem: take incidence correspondence

Γ = {(p, `) ∈ Pn × P̌n : p ∈ `}.

Then Bertini’s theorem says that the generic fibre of Γ ∩ (X × P̌n) → P̌n is
smooth.
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Sketch proof. Let p ∈ X(k). Then locally near p, we can findA = k[t1, . . . , td+r]/(f1, . . . , fr)
standard smooth of dimension d. ΩX(p) has dimension d with basis dtd+1, . . . , dtd+r.
Let ` ∈ S1. We want to know when is A/` nonsinglar at p. Restruct to U , ` is
a regular function. Then `|U = g ∈ k[t1, . . . , td+r]. Then X ∩Z(`) is smooth at
p of dimension d− 1 if and only if d`(p) 6= 0 ∈ ΩX(p).

To take care of all points at the same time, we consider

Γ = {(p, `) : d`(p) = 0 ∈ ΩX(p), `(p) = 0} ⊆ X × P̌n.

Then

Γ = {(p, `) : X ∩ Z(`) not smooth of dimension d− 1 at p}.

We have projections α : Γ → X,β : Γ → P̌n. Then Bertini’s theorem asserts
that P̌n \β(Γ) contains nonempty open subset in P̌n. To do so we show β(Γ) is
closed in P̌n of dimension < n.

Claim α : Γ→ X is a projective bundle associated to a bundle of rank n−d.
This implies Γ is proper so β(Γ) is closed. To find the dimension, locally Γ is
the product of X and Pn−d−1. Since Γ → X is smooth of relative dimension
n− d− 1, Γ is smooth of dimension n− 1. Thus dimβ(Γ) ≤ n− 1.

Since the two vector bundles have rank n and rank d respectively,

0 N∨
X/Pn ΩPn |X ΩX → 0

N∨
X/Pn is locally free of rank n − d. Check Γ = P (NX/Pn(1)). For example on

U0 = {x0 6= 0},

S1 → OU0

` 7→ `

x0

Corollary 8.5. Let X ⊆ Pn as before. Fix e a positive integer and let Se
be the set of homogeneous polynomials of degree e in S = k[x0, . . . , xn]. Let
P (Se) = Se \ {0}/k∗. Then exists U ⊆ P (Se) nonempty open such that for
all f ∈ U , X ∩ Z(f) is nonsingular of dimension dimX − 1.

Sketch proof. Consider the subring S′ =
⊕

a≥0 Sad with grading S′
a = Sad. One

way to think about S′ are the invariant subring under µd = Spec k[t]/(td − 1)
(µd is smooth if and only if char k does not divide d). S′ is generated as a
k-algebra by monomials of degree d, i.e. there is a surjection of graded algebra
R = k[y0, . . . , YN ] � S′ where N =

(
n+d+1

d

)
− 1. Then we have an embedding

ProjS′ ∼= Pn ↪→ ProjR = PN , which is the Veronese embedding of Pn of degree
d sending (x0, . . . , xn) to the tuple of all monomials of degree d (with a chosen
ordering).

A hyperplane in PN is the same as a linear combination of degree d mono-
mials in xi. Thus if v(Pn) ∩H = Z(f) where f is a polynomial in x0, . . . , xn,
then X ∩ Z(f) ∼= v(X) ∩H via v.
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Remark. We can apply this repeatedly, starting with X = Pn. Then for generic
fi ∈ Sei , Y =

⋂r
i=1 Z(fi) is smooth of dimension n − r. Such a Y is called a

complete intersection of degree (e1, . . . , er). In particular if r = 1, Y is called a
smooth hypersurface of degree e1.

Fact: In Bertini’s theorem, if we assume X is irreducible and dimX > 1
then X ∩ Z(`) is also irreducible.

More examples can be obtained by generalising the result to other spaces.
For example complete intersection in products of projective spaces, in weighted
projective spaces.

8.2 Another way to construct new smooth varieties
Simple cyclic covering

Let X be a scheme, L ∈ PicX and s ∈ Γ(X,L⊗n) for some n ≥ 2. Let
A = OX ⊕ L∨ ⊕ · · · ⊕ (L∨)⊗(n−1) which is locally free sheaf of rank n. It
can be made into a Z/nZ-graded algebra. In local coordinates where L ∼= OX
generated by t, A = OX [t]/(tn − s). Then we have a surjection Sym∗(L∨)→ A
with kernel generated by u − s(u) ∈ (L∨)⊗n ⊕ OX . Then we have a closed
embedding X̃ = SpecA ↪→ L = Spec Sym∗ L∨. We ask when is X̃ the simple
cyclic cover branched on S also smooth?

(taking nth root of unity)

Exercise. We get isomorphic X̃ if we replace s by us where u ∈ Γ(X,O∗
X), so

the construct descends to D, the effective Cartier divisor associated to s.

D is called the branched divisor , and D̃ = (π−1(D))red is called the ramifi-
cation divisor .

Claim: If X is smooth and n is coprime to char k then X̃ is smooth if and
only if D is smooth: smoothness is local so we can assume X = SpecA,L ∼= OX
where A = k[x1, . . . , xd+r]/(f1, . . . , fr) is standard smooth. Then hte cover X̃
is given by

SpecA[t]/(tn − s) = Spec Ã

where Ã = A[x1, . . . , xd+r, t]/(f1, . . . , fr, t
n− s). s is nonzero implies that t 6= 0

so ∂(tn−s)
∂t = ntn−1 6= 0.

What happens on the branch divisor, i.e. s = 0? This is the same as t = 0.
Our only hope is to use ∂s

∂xj
. We seek (r + 1) variables among xi such that...

In conclusion: X̃ is smooth of dimensionequals to dimX if and only if char k
is coprime to n and D is smooth of dimension dimX − 1.

Typical application: construct a smooth projective genus 3 curve. Tkae a
degree 4 hypersurface in P2, or double cover (n = 1) of P1 branched on 8 points.
In fact these are all the possibilities for genus 3!

c.f. unirationality of moduli space

61
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9 Sheaf cohomology
We recall some vanishing theorems in algebraic geometry:

1. (Grothendieck) If X is affine and F ∈ Qcoh(X) then Hi(X,F) = 0 for
all i > 0. Intuition: Γ(X,−) : Qcoh(X)→ModA is exact.

2. Let X be a smooth manifold. Then for each F sheaf of C∞
X -modules,

Hi(X,F) = 0 for i > 0.

3. (Serre vanishing) Let A be a noetherian ring, N ≥ 0, X ⊆ PNA a closed
subscheme and F ∈ Coh(X). Then exists n0 such that for all n ≥ n0, for
all i > 0, Hi(X,F(n)) = 0 where F(n) = F⊗(OPN

A
(n)|X). The analogous

result for complex manifolds is Kodaira vanishing.

Computationally we use Cech cohomology. The comparison theorem for us
is

Theorem 9.1 (Leray). Let X be a topological space, U = {Ui}i∈I an open
cover and F a sheaf such that for all p ≥ 0, for all i0 < · · · < ip, for all
n > 0,

Hn(Ui0 ∩ · · · ∩ Uip ,F|Ui0
∩···∩Uip

) = 0.

Then Ȟi(U ,F) is canonically isomorphic to Hi(X,F) for all i ≥ 0.

Example. Let X = P1
k, U0 = Spec k[t], U1 = Spec k[s], U01 = Spec k[t, s]/(ts −

1). Let F = OP1(−m) be the ideal sheaf of regular functions vanishing at origin
to order m. F(U0) = tmk[t] with basis {tm, tm+1, . . . }. F(U1) = k[s] with basis
{1, s, s2, . . . } and F(U01) = k[t, s]/(ts − 1) with basis {1, t, s, t2, s2, . . . }. Then
Ȟ1(U ,O(−m)) has basis {t, t2, . . . , tm−1}. Thus dimH1(P1,O(−m)) = m− 1.

This shows that Serre vanishing for OP1 on P1, where n0 = −1.
By the same argument for all m ≥ 0, H1(P1,O(m)) = 0.

Remark. In general, if a schemeX is separated over an affine scheme and has an
open affine by N affines then Hi(X,F) = 0 for all i ≥ N for all F quasicoherent.
This implies that if X is projective then Hi(X,F) for all i > dimX for all F
quasicoherent.

Fact: If we denote hi(X,F) = dimkH
i(X,F), then we have the following

results: for any N ≥ 0,m ∈ Z, i ≥ 0, we have hi(PN ,O(m)) = 0 except

h0(PN ,O(m)) =

(
N + 1

m

)
for m ≥ 0 and

hN (PN ,O(m)) = dimh0(PN ,O(−m−N − 1)

for m ≤ −(n+ 1). This is a special case of Serre duality:
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Theorem 9.2. Let X be a smooth connected projective scheme of dimension
d over an algebraically closed field k. Then there is a natural isomorphism

Hd(X,ΩdX) ∼= k

where ΩdX =
∧
ΩX/k = detΩX/k, the canonical sheaf or the dualising sheaf.

Moreover for all F locally free of rank r, there is a perfect pairing for all
0 ≤ i ≤ d

Hi(X,F)×Hd−i(X,F∨ ⊗ ΩdX)→ Hd(X,ΩdX) ∼= k.

It admits a generalisation to “slightly singular” schemes. Let i : X ↪→ Pnk be
a closed embedding. We assume i is a regular embedding of codimension n− d,
i.e. i∗IX/Pn

k
is locally free of rank n− d, X is d-dimensional and

0 i∗IX/Pn
k

ΩPn
k/k
|X ΩX/k 0

exact. Then Serre vanishing holds with ωX in place of ΩdX , where ωX is the
dualising sheaf defined by

ωX = det(ΩPn
k/k
|X)⊗ det(i∗IX/Pn

k
)∨.

9.1 Cohomology of complex manifolds
Let X be an n-dimensional complex manifold, OX the sheaf of holomorphic
functions and Ap,q the sheaf of (p, q)-forms. We have two differentials ∂ : Ap,q →
Ap+1,q, ∂ : Ap,q → Ap,q+1.

We have a complex

0 OX A0,0 A0,1 · · · A0,n 0∂

which is a resolution of OX since A0,0 is the sheaf of C-valued smooth functions,
and those f such that ∂f = 0 are precisely those satisfying the Cauchy-Riemann
equation so is holomorphic. Note that in fact this is a sheaf of OX -modules as

∂(fα) = f∂α+ ∂f ∧ α = f∂α

for f holomorphic.
Let E be a locally free sheaf of OX -modules of rank r, i.e. the holomorphic

sections of a rank r holomorphic bundle E. Tensoring with E is exact so we get
an exact sequence

0 E A0,0(E) A0,1(E) · · · A0,n(E) 0∂

where Ap,q(E) = Ap,q ⊗OX
E .

Note also that A0,0 admits a partition of unity, so all A0,0-modules are
acyclic. Thus Hq(X, E) can be calculated as ∂-closed (0, q)-forms with valued
in E modulo exact forms. This is called Dolbeault cohomology.

We will now interpret Serre duality in the context of complex geometry. By
discussion above Hn(X,ΩnX) is A0,n-forms (automatically ∂-closed) with values
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in An,0 module exact forms, so An,n-forms modulo ∂ An,n−1-forms. As X is
compact, integration gives a map to C.

Given two locally free sheaves E ,F , we obtain the map

Hp(X, E)⊗Hq(X,F)→ Hp+q(X, E ⊗ F)

via wedge on forms and tensor product on locally free sheaves, i.e.

(α⊗ e) · (β ⊗ f) 7→ (α ∧ β)⊗ (e⊗ f).

It is easy to check that this is well-defined and descends to cohomologies.
One can use analysis to prove holomorphic Serre duality where X is a

closed complex submanifolds of PN . To connect this back to algebraic geom-
etry, we use the GAGA principle. Let X be a smooth closed subscheme of
PN . As X is smooth over C, it can be locally expressed as the spectrum of
C[x1, . . . , xn+r]/(f1, . . . , fr) so by implicity function theorem defines locally a
complex manifold Xan ⊆ Cn+r. The “transition functions” are rational func-
tions so holomorphic. A theorem of Chow says that all ? closed submanifolds
of projective spaces arise this way.

Given a rank r locally free bundle E → X, we can define a vector bundle
Ean → Xan. Serre’s GAGA says that there is a canonical isomorphism

Hi(X, E)→ Hi(Xan, Ean)

for all i ≥ 0.

Theorem 9.3 (Riemann-Roch). Let C be a smooth projective connected
curve over k = k. Let L ∈ Pic(C) with degree d (i.e. the degree of the
corresponding divisor). Let g be the genus of C, defined by

h0(C,ΩC) = h0(C,KC) = h1(C,OC)

where the last equality comes from Serre duality.

1 = h0(C,OC) = h1(C,ΩC).

Then
χ(C,L) = deg(L) + 1− g.

In particular deg(KC) = 2g − 2.

To generalise a bit, if E is a locally free sheaf of rank r on C then

χ(E) = deg(det E) + r(1− g).
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For this section we work with k-schemes where k = k. We mean by a curve a
smooth projective connected scheme, a point a k-valued point, and morphisms
morphisms of k-schemes.

Recall that if C is a cruve then a prime divisor on C is a point. Smoothness
implies that every prime divisor is Cartier. We have a surjective map

Div(C)→ Pic(C)

D 7→ OC(D)

and a degree map deg : Div(C)→ Z.
We quote the fact that if X is a projective scheme, F ∈ Coh(X) then

Γ(X,F) is a finite-dimensional k-vector space. Moreover Hi(X,F) is finite-
dimensional for all i ≥ 0, whose dimension we denote by hi(X,F).

Theorem 10.1 (Riemann-Roch). Let D ∈ Div(C). Then

χ(O(D)) = deg(D) + χ(OC)

where χ(X,F) =
∑
i≥0(−1)ihi(X,F).

Proof. Let p ∈ C and let Op be the skyscraper sheaf. Given L ∈ Pic(C),
tensoring with Ip = OC(−p) ↪→ OC induces a SRS

0 L(−p) L Q 0

where Q is supported at p and is (non-canonically) isomorphic to Op.
We now show χ(Op) = 1. Cover C by two open affines (?) U, V . If p ∈

U, p /∈ V . Then Cech cohomology shows that h0 = 1, h1 = 0.
Now for any divisor D there is a short exact sequence

0 O(D − p) O(D) Op 0

so
χ(O(D − p)) = χ(O(D))− 1.

Finally we write D =
∑n
i=1 aipi where ai 6= 0 for all i. Induction on

∑
|ai|:

if
∑
|ai| = 0 then n = 0 and D = 0 so degD = 0 and O(D) = C . For induction

step, if a1 > 0 then set E = D − p1. Then the induction hypothesis for E as
well as the discussion above shows

χ(D) = χ(E) + 1 = degE + χ(OC) + 1 = deg(D) + χ(OC).

Same if a1 < 0.

Lemma 10.2. Let X be a projective n-dimensional scheme. Then exists an
open affine cover of X by (n+ 1) opens.
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Proof. Suppose X ⊆ PN is closed. Take H ⊆ PN a hyperplane. Then X −H ⊆
PN −H is affine. Then the problem is reduced to show there exist hyperplanes
H1, . . . , Hn+1 such that H1 ∩ · · · ∩Hn+1 ∩X = ∅.

Consider the dual projective space P̌N of hyperplanes in PN . Then exists
UX ⊆ P̌N nonempty open such that for all H ∈ UX such that dimH∩X ≤ n−1
(then equality by principal ideal theorem).

Proof. Induction on irreducible components of X. If X is irreducible then
dimX ∩ H = dimX if and only if H ⊇ X. The “wrong” hyperplanes are
give by

Γ(PN , IX(1)) ( Γ(PN ,O(1))
so defines a closed subset in P̌N . Call this closed subset ZX and its complement
UX .

Suppose X = X1 ∪ · · · ∪ Xr as irreducibles. Then UX = UX1 ∩ · · · ∩ UXr .
Any finite interesection of nonempty open is nonempty open.

Now induction on dimX. If dimX = 0 we can find H∩X = ∅. For induction
step, choose H1 such that dimX ∩H1 = dimX − 1.

Corollary 10.3. If X is a projective scheme of dimension d and F is a
quasicoherent sheaf then

Hi(X,F) = 0

for all i > d.

Remark. One can extend “easily” Riemann-Roch for curves to any coherent
sheaf F as follows:

χ(F) = degF + rkF · χ(OC)
where rkF = dimK(η) Fη where η is the generic point of C. There is a natural
short exact sequence

0 Ftors F F∨∨ 0

where Ftors is the sheaf

U 7→ {s ∈ F(U) : s = 0 in Fη}.

For a smooth curve C, F∨∨ is locally free and we define

degF = degF∨∨ + h0(Ftors)

and show h1(Ftors) = 0 (because Ftors has a filtration with quotients Opi).

Key idea: for a schemeX we can define theK-groopK0(X), the Grothendieck
group of coherent sheaves. Then we have a homomorphism χ : K0(X) → Z if
X is projective.

Note that if degL < 0 then Γ(C,L) = 0 (exist s ∈ Γ(OC(p)). If we can find a
section then tensoring gives a section Γ(C,L(dp)) where degL(dp) = 0. But the
only degree 0 invertible sheaf with nonzero global section is the strcture sheaf.
Thus L(dp) is trivial, so every nonzero section never vanishes so s vanishes at
p.

Combining this with Serre duality and Riemann-Roch we get
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Corollary 10.4. If degL > 2g − 2 = degKC then h0(L∨ ⊗KC)h
1(L) = 0

so
h0(L) = degL+ 1− g.

Theorem 10.5. Let ϕ : X → Y be a morphism of smooth projective schem.
Assume

1. ϕ injective on k-points,

2. ϕ injective on tangent space, i.e. for all p ∈ X, dϕ(p) : TpX → Tϕ(p)Y
injective.

Then Z = ϕ(X) (as closed subscheme image) then ϕ : X → Z is an
isomorphism.

Sketch proof.

Theorem 10.6. If g(C) = 1 then exists a closed embedding C ↪→ P2 as a
degree 3 curve.

Proof. degKC = 2g − 2 = 0. Thus if degL > 0 then

h0(L) = χ(L) = degL.

Let L = OC(3p). Let s0, s1, s2 be a basis of H0(C,L). Claim there exists
a unique morphism ϕ : C → P2 and isomorphism L ∼= ϕ∗OP2(1) such that
si = ϕ∗(xi). To show that ϕ exists, enough to show that for all q ∈ C exists i
such that si(q) 6= 0, since then we can define

ϕ(q) = [s0(q), s1(q), s2(q)].

To prove this we note the short exact sequence

0 O(3p− q) O(3p) O(3p)⊗ κ(q) 0

As degO(3p− q) = 2 > 0, we have h0(O(3p− q)) = 2, so the map

H0(OC(3p))→ H0(O(3p)⊗ κ(q))

is nonzero, i.e. we can find si ∈ Γ(C,OC(3p)) such that si(q) 6= 0. Show

1. injectivity: for all q1, q2, ϕ(q1) 6= ϕ(q2). Exists s =
∑
λisi ∈ Γ(C,O(3p))

such that s(q1) = 0, s(q2) = 0...
Thus we can find s ∈ Γ(C,O(3p− q1)) such that s(q2) 6= 0.

2. injectivity on tangent space: note that tangent vector is a morphism
Spec k[ε]/ε2 → C, and it is nonzero precisely when it is a closed em-
bedding....
Note that a k-algebra map A → k[ε]/ε2 is either surjective or factors
thorugh A→ k → k[ε]/ε2.
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Let ID be the ideal sheaf of D and we have a short exact sequence

0 ID Iq Oq 0

(since C is a smooth curve, OC,q is a DVR and ID,q = (t2) so ID =
OC(−2q)).
All we need to show is that there exists s ∈ Γ(c,O(3d)) such that s(q) = 0
but s|D 6= 0. But the proof is exactly the same as before:

0 O(3p− 2q) O(3p− q) O(3p)|D 0

This shows that there is an embedding C ↪→ P2. To check that the image has
degree 3, we can either show degϕ∗O(1) = 3, or use adjunction

degKC = degKP2 + degZ.

By a similar argument we can show if g(C) = 0 then taking p gives an
isomorphism C → P1. If g ≥ 2 then taking 3KC gives C ↪→ PN . In fact one
can show that either 2KC (in fact KC) gives a closed embedding, or KC gives
a two-to-one cover to a rational normal curve.
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