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1 Introduction

1 Introduction
solve integrable systems, physics problems such as Schrödinger equation.

Bessel equation
z2y′′ + zy′ + (z2 − ν2)y = 0

where ν ∈ C.
Airy

y′′ = zy

Gauss equation

z(1− z)y′′ + (γ − (α+ β + 1)z)y′ − αβy = 0

where α, β, γ ∈ C.
The Bessel equation occurs in solving the Laplace equation ∇ϕ = 0, and the

Gauss equation occurs when solving the Schrödinger equation.
More generally, using the notation y(m) = dmy

dzm , a linear ODE of order m has
the form

y(m) + a1(z)y
(m−1) + · · ·+ am(z)y = b(z).

As we will see, this is a special case of a system of ODEs

dy

dz
=

 a11(z) · · · a1m(z)
...

...
an1(z) · · · anm(z)


︸ ︷︷ ︸

A(z)

y

and y can be either a vector or a matrix. This is a linear system of order 1.
What if the matrix is not analytic? That is, if the aij ’s have poles in the

complex plane? The question is

• locally, how to represent the solutions closed to singularities?

• globally, how to connect the solutions around different singularities?

Another theme is the study of monodromy propertie: if we take a solution
and take a loop around a singularity, the solution will transform under y(z) 7→
y(z)Mγ , where Mγ is the monodromy matrix. We will see the result depends
only on the homotopy class of the path, and can be described by the monodromy
group.

If we have an ODE where the matrix depends on parameters

dY

dz
= A(z, t1, . . . , tp)Y,

then not only will the solution Y (z, t) depends on the parameters t, but also
will the singularities and the monomromy matrix Mγ(t). We will in particular
study monodromy “data” that do not depend on t. This is called monodromy
preserving deformation.

We may also require

∂Y

∂tj
= Ωj(z, t)Y, j = 1, . . . , p.
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1 Introduction

subject to the compatibility conditions

∂2Y

∂tj∂tk
=

∂2Y

∂tk∂tj

∂2Y

∂z∂tj
=

∂2Y

∂tj∂z

These compatibilities are nonlinear differential equations for A and Ωj ’s.
These compatibilies arise naturally in physics problems, such as

• the Painlevé equations,

• structure of manifolds (Dubrovin-Frobenius manifolds),

• random matrices

• nonlinear PDEs such as KdV and KP

1.1 Preliminaries
If f is holomorphic on a domain B then f is smooth. The reason is Cauchy
integral formula

f(z) =
1

2πi

∮
γ

f(z′)

z′ − z
dz′

for γ a simple counterclockwise path around z, and if w(z′) is continuous on γ,
let

Fm(z) =

∫
w(z′)

(z′ − z)m
dz′

2πi

for m ≥ 1, then Fm(z) is homolomorphic inside (resp. outside) γ if z is inside
(resp. outside), and

dFm
dz

= mFm+1(z).

Together we have given f holomorphic then

dmf

dzm
=

m!

2πi

∫
f(z′)

(z′ − z)m+1
dz

and if f is holomorphic on the ball of radius R centred at z0 then f(z) =∑
ck(z−z0)k absolutely convergent in any ball |z−z0| ≤ r ≤ R, a Taylor series

with radius of convergence R. Because of this we say f is analytic, meaning
there exists a Taylor series with finite radius, and holomorphic is the same as
analytic. The real counterpart is obviously false by considering the smooth
function f(x) = e−1/x2

, x ∈ R which does not have a Taylor series with positive
radius of convergence at the origin.

1.2 Convergence in the space of holomorphic functions
Let H(B) be the space of functions f : B → C analytic. Given a sequence of
functions {fn}n∈N where fn ∈ H(B), what does it mean that fn → f ∈ H(B)?
The correct notion is locally uniform convergence.

Recall that if K ⊆ C is compact then (C(K), ‖·‖∞) is complete.
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1 Introduction

Lemma 1.1. Let B ⊆ C be a domain. There exists a sequence {Kn}n∈N of
compact sets contained in B such that

1. B =
⋃∞
n=0Kn,

2. Kn is contained in the interior of Kn+1,

3. for all K ⊆ B compact, exists m such that K ⊆ Km.

Lemma 1.2. Let (X, d) be a metric space. Define

µ : X ×X → [0, 1)

(x, y) 7→ d(x, y)

1 + d(x, y)

then µ is a distance and d, µ define the same topology on X.

For f, g ∈ C(B), define dm(f, g) = ‖f − g‖Km,∞, then

ρ(f, g) =

∞∑
n=0

2−n
dn(f, g)

1 + dn(f, g)
.

Theorem 1.3. (C(B), ρ) is a complete metric space. Given {fm} ⊆ C(B),
fm → f in metric ρ if and only if fm → f uniformly on every compact
subset of B, or equivalently on every Kn.

Theorem 1.4 (Weierstrass). H(B) ⊆ C(B) is closed in C(B). In particular
it is complete.

1.3 Systems of ODEs
Let D ⊆ Cn+1 be a domain. We denote a point in D by (z, y1, . . . , yn) and write
an analytic function fj : D → C as fj(z, y1, . . . , yn) or simply fj(z, y).

Definition (system of ODEs). A system of ODEs of the first order and
dimension n

y′ = f(z, y),

meaning

y1 = f1(z, y1, . . . , yn)

...
yn = fn(z, y1, . . . , yn)

is the problem of finding a domain B ⊆ C and y : B → Cn analytic such
that

1. (z, y(z)) ∈ D and
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1 Introduction

2. y′(z) = f(z, y(z)).

Definition (initial value problem). Let (z0, y0) ∈ D. An initial value prob-
lem (ivp) is the problem of finding B 3 z0 and a solution y(z) such that
y(z0) = y0. It is usually written as

y′ = f(z, y), y(z0) = y0.

Remark. Suppose y = (y1, . . . , yn). Then

|y| =
n∑
j=1

|yj |

is a norm.

1.4 Existence and uniqueness theorem

Theorem 1.5 (existence and uniqueness theorem). Suppose f : D → Cn is
a vector valued function on a domain that is analytic and bounded, where

D = {(z, y) ∈ Cn+1 : |z − z0| < a, |y − y0| < b}

is a polydisc. Let M = supz∈D |f(z)|. The the ivp

y′ = f(z, y), y(z0) = y0

has a unique solution y(z) analytic on Uα(z0) = {z ∈ C : |z−z0| < α} where
α = min{a, b/M}.

Exercise. Let y(z) = y0 +
∫ z
z0
f(ζ, y(ζ))dζ.

1. If y(z) is an anlytic solution of the ivp then it also solves I.

2. Conversely if y(z) is an analytic solution of I then it also solves the ivp.

Proof. The proof uses Picard’s method of successive approximation: let

y0(z) = y0

ym+1(z) = y0 +

∫ z

z0

f(ζ, yn(ζ))dζ.

We first show yn(z) is analytic on Uα(z0). y1 is analytic because the integrand
is analytic (does not depend on the path) and

|y1(z)− y0| ≤
∫ z

z0

|f(ζ, y0)|d|ζ| ≤M · |z − z0| < b.

Inductively yn is analytic and |yn(z)− y0(z)| ≤M |z − z0| < b.
Next for every K ⊆ D compact, the partial derivatives ∂fi(z,y)

∂yj
are bounded

on K. Then f is Lipschitz continuous with respect to y, i.e. exists k > 0 such
that

|f(z, y)− f(z, ỹ)| ≤ k|y − ỹ|.

6



1 Introduction

Let K(ε) = {|z − z0| ≤ α− ε}. Then

|yn(z)− y0| ≤M |z − z0| ≤ b− εM.

Now using telescopic sum

ym(z) = y0 +

m−1∑
j=0

(yj+1(z)− yj(z))

We can estimate the sum by

|y2 − y1| ≤
∫ z

z0

|f(ζ, y1(ζ)− f(ζ, y0)|d|ζ|

≤ k

∫ z

z0

|y1(ζ)− y0)d|ζ|

≤ kM

∫ z

z0

|ζ − z0|d|ζ|

=
M

k

k2|z − z0|2

2

using Lipschitz continuity. By induction we can show the sum coverges. Thus
on K(ε), ym(z) converges uniformly to some y(z).

Next we show y(z) on K is an analytic solution of the ivp, or equivalently
the corresponding integral equation

y(z) = y0 +

∫ z

z0

f(ζ, y(ζ))dζ.

For reality check, note that |y(z)− y0| = limn→∞ |yn(z)− y0| < b so the expres-
sion f(z, y(z)) makes sense. By uniform convergence

lim
n→∞

f(z, yn(z)) = f(z, y(z))

so

y(z) = lim
n→∞

yn+1(z)

= y0 + lim
n→∞

∫ z

z0

f(ζ, yn(ζ))dζ

= y0 +

∫ z

z0

lim
n→∞

f(ζ, yn(ζ))dζ uniform convergence

= y0 +

∫ z

z0

f(ζ, y(ζ))dζ

For unqiueness, suppose Y (z) is another solution defined on }|z − z0| ≤
α − ε − ε′} such that (z, Y (z)) ∈ D. We show that on this domain Y (z) =
limn→∞ yn(z). This can be done using the integral equation to estimate |Y (z)−
yn(z)| inductively and show the limit is zero. Thus y(z) and Y (z) conincides on
|z − z0| ≤ α− ε− ε′, so y(z) is the analytic continuation of Y (z).
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1 Introduction

To move from compact subsets to the entire domain, let {εm} be a decreasing
sequence converging to 0 and let Km = {|z − z0| ≤ α − εm}. Then {Km} is a
candidate for the sets in lemma 1. By construction

yKm
n (z) = yKm+1

n (z)|Km

so as n→ ∞,
yKm(z) = yKm+1 |Km

so yKm+1 is the analytic continuation of yKm to Km+1. Thus

yn+z(z) = y0 +

∫ z

z0

f(ζ, yn(ζ))dζ

converges on each Km uniformly, so by lemma 3 it converges to an analytic
solution y(z). Thus y(z) is the unique solution on Uα(z0).

8



2 Linear systems of ODEs

2 Linear systems of ODEs
Consider a matrix-valued functions

A : Ua(z0) = {z ∈ C : |z − z0| < a} → Mat(n,C)
b : Ua(z0) → Cn

with each entry analytic. We are interested in a linear system of ODEs

y′(z) = A(z)y + b(z)︸ ︷︷ ︸
f(z,y)

.

We use the matrix norm |A| =
∑

|Aij | which can be easily checked to satisfy
|Ay| ≤ |A||y|.

Lemma 2.1. Suppose A, b : B → C be analytic and K ⊆ B compact. Then
f(z, y) is bounded on K and Lipschitz continuous with respect to y.

Proof.

|f(z, y(z))− f(z, ỹ(z))| = |A(z)(y − ỹ)| ≤ |A(z)||y − ỹ| ≤ k|y − ỹ|.

Theorem 2.2. Suppose A, b are analytic on Ua(z0). Then the ivp

y′ = A(z)y + b(z), y(z0) = y0

where y0 is any complex number, has a unique analytic solution in Ua(z0).

The proof is essentially the same, but note that there is no bound on y0, and
the domain of the solution has the same radius as the domain of A and b. This
is because f is analytic on D = {z : |z − z0| < α} × C so there is no bound on
the second variable.

Theorem 2.3. Let A, b be analytic on B, a simply connected domain. Then
the ivp

y′ = A(z)y + b(z), y(z0) = y0

has unique solution y(z) analytic on B.

Suppose f1 : U1 → C, f2 : U2 → C are analytic, U1∩U2 6= ∅ and f1(z) = f2(z)
for z ∈ U1 ∩ U2 then f2 is the analytic continuation of f1 on U2.

Suppose f : U → C is anlytic and γ is a path from z0 ∈ U to z̃. Then we say
f has an analytic continuation along γ if we can cover γ with a finite number
of open balls such that f has analytic continuation on the union of the balls.

Theorem 2.4 (monodromy theorem). Suppose B is a connected domain.
Suppose f is analytic on an open ball U ⊆ B. Assume that f has analytic
continuation along any curve in B. Then if γ1 and γ2 are two homotopic
path from z0 ∈ U to z̃ then the analytic continuations fγ1 , fγ2 agree on a
neighbourhood of z̃.

9



2 Linear systems of ODEs

In particular if in addition B is simply connected then f has a unique
analytic continuation on the whole B.

Proof of Theorem 2.3. Suppose z̃ ∈ B and take a path γ from z0 to z̃. Note
that as B is open there exists ε > 0 such that B(z, ε) ⊆ B for all z ∈ im γ. Cover
the compact path γ with finitely many open balls and for sufficiently small ε′
we can solve the ivp on B(z′, ε′). The solution is unique

2.1 Homogeneous system
A homogeneous system is one in which b = 0, i.e. y′ = A(z)y. Let us asume that
A is analytic on B simply connected. Then the system defines a linear operator

E : H(B) → H(B)

y 7→ y′ −A(z)y

Then the space of solutions to the ODEs is kerE.

Theorem 2.5. If the system has dimension n then dimkerE = n.

Proof. Let v1, . . . , vn be a basis of Cn. Define yi(z) to be the unique analytic
solution on B of yi(z0) = vi. kerE is spanned by yi’s. Linear independence can
be checked at z0.

y1(z), . . . , yn(z) are called a fundamental system. We define Y (z) to be the
matrix whose columnes are yi(z). Then

dY

dz
= [

dy1
dz

| · · · |dyn
dz

] = [Ay1| · · · |Ayn] = A[y1| · · · |yn] = A(z)Y (z).

Y (z) is called a fundamental matrix solution.

Corollary 2.6. Analytic continuation along any curve preservse linear in-
dependence.

In other words, detY (z0) 6= 0 implies detY (z) 6= 0 for all z ∈ B. Suppose
we have another fundamental matrix solution

Ỹ (z) = [ỹ1(z)| · · · |ỹn(z)] = [
n∑
k=1

ck1yk(z)| · · · |
n∑
k=1

cknyk(z)] = Y (z)C

where C = (cij) nonsingular.
One application: suppose we have a homogeneous ODE of order n

u(n) + p1(z)u
(n−1) + · · ·+ pn(z)u = 0

where u is a scalar and pi : B → C analytic. Then this can be recast into a
linear ODE by setting y1 = u, y2 = y′ etc:

y′ =


0 1

0 1
...

−pn −pn−1 · · · −p1

 y.

This is called the companion matrix. u1(z), . . . , un(z) is a fundamental system.

10



2 Linear systems of ODEs

2.2 Inhomogeneous system
We will see that it suffices to study homogeneous case when studying linear
systems. Suppose we have an inhomogeneous problem y′ = A(z)y+ b(z), where
A, b are analytic on a simply connected domain B. Then in matrix form it is

dW

dz
= A(z)W + [b(z)| · · · |b(z)]

where W is an (unknown) n× n matrix. Of course it is a special case of

dW

dz
= A(z)W + [b(z)| · · · |b(z)] (NH)

where F is analytic and matrix valued. We call dY
dz = A(z)Y the associated

homogeneous system, and let its fundamental matrix system be Y (z) with
detY (z) 6= 0.

Theorem 2.7. All solutions of (NH) are

W (z) = Y (z)[C +

∫ z

z0

Y −1(ζ)F (S)dζ]

where Y (z) is a fundamental solution of the homogeneous system.
The ivp W (z0) =W0 has solution obtained with C = Y (z0)

−1W0.

Proof. Differentiate the purported solution,

W ′ = Y ′[C +

∫ z

z0

Y −1(ζ)F (ζ)dζ] + Y (z)Y −1(z)F (z)

= A(z)Y (z)[C +

∫ z

z0

Y −1(ζ)F (ζ)dζ] + F (z)

= A(z)W (z) + F (z)

Every solution of (NH) is obtained from some ivp W0, from which we derive
C = Y (z0)

−1W0. Therefore we obtain every solution.

The formula is obtained by “variation of parameter”. In fact it is in-
structive to do the following easy exercise: we seek a solution of the form
W (z) = Y (z)C(z) . Substitute into (NH), we will get C ′(z) = Y −1(z)F (z).
Integrate to get the desired solution in the theorem.

Now back to the homogeneous problem dY
dz = A(z)Y . Suppose A is holo-

morphic on B. Take z0 ∈ B, r > 0 maximal such that Ur(z0) ⊆ B. In partic-
ular A is holomorphic in the ball Ur(z0). A has a power series representation
A(z) =

∑
Aj(z − zo)

j convergent uniformly in every compact subset of Ur(z0)
and the radius of convergence is r. What we know is that

1. there exists a unique solution to the ivp Y (z0) = Y0.

2. Y (z) is analytic in Ur(a).

11



2 Linear systems of ODEs

Thus Y (z) =
∑
Yk(z − z0)

k for |z − z0| < r. Substitute into the equation,

∞∑
k=1

kYk(z − z0)
k−1 =

∞∑
j=0

∑
k=0

AjYk(z − z0)
j+k

i.e.
∞∑
m=0

(m+ 1)Ym+1(z − zm0 =

∞∑
m=0

(

m∑
k=0

Am−kYk)(z − z0)
m.

We get the recurrence relation

(m+ 1)Ym =

m∑
k=0

Am−kYk

with (arbitrary) initial condition Y0. Up to order M , the solution has local
representation

Y (z) =

M∑
k=0

Yk(z − zk0 +O((z − z0)
M+1).

12



3 Singularities and monodromies

3 Singularities and monodromies

3.1 Classification of isolated singularities
Suppose f : B \ {a} → C is holomorphic where B is a domain. Then a is called
an isolated singularity. By basic complex analysis a is one of the below

1. a is a removable singularity if |f(z)| is bounded in some Ur(a) \ {a}, in

which case the limit limz→a f(z) exists, and f̃(z) =

{
f(z) z 6= a

limz→a f(z) z = a

is holomorphic on B.

2. a is a pole if limz→∞ |f(z)| = ∞, in which case exists r such that f(z) =
g(z)

(z−a)m , where g is holomorphic on Ur(a) and g(a) 6= 0 and m ≥ 1. m is
called the order of the pole. f(z) has a Laurent exptension at z = a.

3. a is an essential singularity if limz→a |f(z)| does not exist, in which case
f(z) takes all possible complex values except possibly one (called the la-
cunary value) in a neighbourhood of a.

3.2 Singularities of linear systems
Now consider y′ = A(z)y+b(z) where A, b are analytic on B \{a0, . . . , am}. Let
C = C∪ {∞}. Then for a function f(z) defined on C, we can consider ∞ as an
isolated singularity and use the classification before.

We call a1, . . . singularities of the linear differential system.

Theorem 3.1. Given a solution y(z) of a linear system, the set of singu-
larities of y is a subset of the singularities of the equation.

Proof. If A, b are analytic in a ball (which is simply connected) then all y(z) are
analytic there too. If z = a is a singularity of y(z), then necessarily z = a is a
singularity of either A(z) or b(z).

Remark.

1. The converse to the theorem is false. Consider y′ = µ
z−ay where µ ∈ C.

The solution y = c(z − a)µ is

(a) regular at z = a if µ ∈ N,
(b) a pole if µ ∈ {−1,−2, . . . },
(c) a branch point if µ ∈ C \ Z.

2. Note that if we consider A, b as functions defined on C, then z = ∞ can be
a singularity of the solution even if it is not a singularity of the equation
(i.e. A, b have a removable singularity at ∞). For example consider y′ = y:
solution y(z) = cez. z = ∞ is a singularity.

3. The theorem only applies to linear ODEs. Consider for example y′ = −y2.
Solution y(z) = 1

z−a . z = a is a pole of y(z) but not a singularity of the
equation.

13



3 Singularities and monodromies

3.3 Monodromy for homogeneous systems
Consider the homogeneous problem dY

dz = A(z)Y where A : B \ {a} → C ana-
lytic. We have seen that analytic continuation along ` from z0 to z′ defines y(z)
analytic in a neighbourhood of z′. Take another path ˜̀which is not homotopic
to ` and analytic continuation along `′ defines ỹ(z).

Note that if B is a disc, we can take a branch cut L from a to the boundary
of B, and then B \ L is simply connected. y, ỹ are analytic on B \ L. y, ỹ are
called branches of each other. Let γ = `−1 · ˜̀, then travelling along γ transforms
y to ỹ. ỹ is an analytic continuation of y.

If there are more than one singularity {a1, . . . , am} in B, we can do a branch
cut Li from each ai, and y, ỹ are analytic on B \ {L1, . . . , Lm}.

For a homogeneous system dY
dz = A(z)Y , we proved that there exsits a

fundamental solution Y (z) = [y1(z)| · · · |yn(z)] analytic on C \ {L1, . . . , Ln}. If
we take another path we get Ỹ (z). But columns of Y form a basis, we can
express

Ỹ (z) = [
∑

mi1yi| · · · |
∑
i

mniyi] = Y (z)Mγ ,

where Mγ = (mij) is called the monodromy matrix of Y (z) associated to (the
homotopy class) of γ.

Recall from algebraic topology that π1(C{a1, . . . , am,∞}, z0) is the free
group generated by γ1, . . . , γm. Also there is an automorphism given by conju-
gations

π(C \ {a1, . . . , am,∞}, z0) → π(C \ {a1, . . . , am,∞}, z1)
γ 7→ λγλ−1

where λ is a path from z1 to z0. Now suppose Y (z1) is the analytic continuation
of Y (z0) along λ−1. Then obviously the analytic continuations of Y (z0) along
γ · λ−1 and along λ−1 · (λ · γ · γ−1) yields the same result

Y (z0) Y (z0)Mγ

Y (z1) Y (z1)Mγ

γ

λ−1 λ−1

λγλ−1

But the bottom row is precisely the monodromy transformation associated to
λγλ−1 so we have Y (z)Mγ = Y (z)Mλγλ−1 . Since Y (z) is invertible, Mλγλ−1 =
Mγ .

Theorem 3.2. Let z0, Y0 be given (detY0 6= 0) and let Y (z) be the unique
fundamental matrix solution analytic in C \ {L1, . . . , Lm} solving the ivp.

φ : π1(C \ {a1, . . . , am,∞), z0) → GL(n,C)
γ 7→Mγ

this is called the monodromy representation of π1. This is an anti-representation.

Proof. Exercise.
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3 Singularities and monodromies

γ1, . . . , γm generates the group M = 〈Mγ1 , . . . ,Mγn〉, the monodromy group
associated with the ivp Y (z0) = Y0.

If we have another ivp Y (z0) = Ŷ0, ther is a unique solution Ŷ (z) defined
on C \ {L1 ∪ · · ·Lm}. The two solutions are related by Ŷ (z) = Y (z)C where
C = Y −1

0 Ŷ0 ∈ GL(n,C). Thus along the path γ,

Ŷ (z) = Y (z)C 7→ Y (z)Mγ · C = Y (z)C · C−1MγC︸ ︷︷ ︸
M̂γ

.

Thus from the data of A(z), we get 〈C−1Mγ1C, . . . , C
−1MγnC〉 for all C ∈

GL(n,C). This is an equivalence relation on monodromy groups.

Definition (direct monodromy map). Fix points a1, . . . , am ∈ C. The direct
monodromy map is the map

{A(z) isolated singularities a1, . . . , am,∞} → {monodromy group}/conjugation.

It is worth remarking here the opposite problem, that is, given monodromy
groups up to conjugation, can we determine the differential system? This is
called the inverse monodromy problem or Riemann-Hilbert problem.

3.4 Solutions on universal covers
Fix a base point z0. Analytic continuation gives a function Y (z) = ”y(z, `)”
that depends on (the homotopy class of) the path `. Define an equivalence
relation (z, `) ∼ (z′, `′) if and only if z = z′, ` ' `′. The the set of equivalence
classes is in bijection with the universal cover. The fundamental group acts on
the universal cover by deck transformation. If there is no chance of confusion
we denote a point [(z, `)] by z̃.

The analytic continuation of Y (z) along any path ` gives a function Y on the
universal convering so, defines a function Y(z̃) is a function of z̃ on the universal
cover. Y (z) is a branch of Y(z̃).

We have seen that π1(C \ {0,∞}; z0) ∼= Z. A point [(z, `)] ∈ ˜C \ {0,∞} can
be represented by (z, `m = γm · `) where m ∈ Z and ` is a path from z0 to z.
We give the another presentation. Take a branch cut (−∞, 0] in the complex
domain and consider the principal branch of logarithm, defined so that ln z ∈ R
for z > 0. Then z 7→ ln z represents this: ln z = ln |z|+ i arg z. If a path crosses
the branch cut m times, the arg z is transformed to arg z + 2πm. In this case
the universal covering is the exponential map

exp : ˜C \ {0,∞} → C \ {0,∞}
ln z + 2πim 7→ z

For this reason ˜C \ {0,∞} is called the Riemann surface of the logarithm. By a
slightly confusing change of notation, we can represent a point in the universal
cover by z̃ = |z|ei arg z, where the exponential is a formal symbol (so |z|ei arg z
and |z|ei arg z+2πim are different points). The advantage of this notation is that
monodromy can be computed easily just by symbolic manipulation. For example

z̃c = ec ln z̃ = |z|ceic arg z

15



3 Singularities and monodromies

whose meaning is that if the locally defined function z 7→ zc transforms with a
multiple of e2πic when taken along the path that loops around the origin once.

16



4 Classification of isolated singularities

4 Classification of isolated singularities

4.1 Matrix exponential and logarithm
We endow Mat(n,C) with the matrix norm |A| =

∑
|Aij |. It is a complete

metric space. Then

eA =

∞∑
k=0

Ak

k!

is convergent. Similarly for f analytic, we can define

eA·f(z) =
∞∑
k=0

Akf(z)k

k!

which is locally uniformly convergent so analtyic. As a special case, take the
principal branch of logarithm and we can define

zA = eA log z.

Example. If going along a path transforms z 7→ z · e2πi then

zA = eA ln z 7→ e2πiAzA

and indeed e2πiA is the monodromy matrix. We can think of this as defined on
the universal covers by z̃A = |z|AeAi arg z, where the formal exponential helps
us keep track of monodromy actions.
Exercise. Matrix exponential has the following properties:

1. if A = GBG−1 for some G ∈ GL(n,C) then eA = GeBG−1. It follows
that zA = GzBG−1.

2. If [A,B] = 0 then eA+B = eAeB .

3. det eA = etrA. In particular det eA 6= 0 (hint: put into Jordan form).

4. d
dz e

Af(z) = Af ′(z)eAf(z) so d
dz z

A = A
z · zA. Thus dY

dz = A
z Y has a funda-

mental solution Y (z) = zA. As usual we write Y(z̃) = z̃A for the function
defined on the universal cover.
For k ≥ 2, dY

dz = A
zk
Y has solution Y (z) = exp(− A

k−1
1

zk−1 ). On the other
hand dY

dz = zkAY for k ≥ 0 has solution Y (z) = exp( A
k+1z

k+1).

5. If [Ai, Aj ] = 0 then

dY

dz
= (

A1

z − a1
+ · · ·+ Am

z − am
)Y

has a solution just as if they are numbers: Y (z) = (z−a1)A1 · · · (z−am)Am .

6. Suppose all matrices commute and h ≥ 0, k ≥ 2, then
dY

dz
= (

1

zk
(A0 +A1z+ · · ·+Ak−2z

k−2)+
B

z
+ zh(C0 +

C1

z
+ · · ·+ Ch

zh
))Y

has solution

Y(z̃) = z̃B exp(
A0

1− k

1

zk−1
+· · ·+Ak−2

−z
) exp(

C0

h+ 1
zh+1+· · ·+Chz) = Φ(z)z̃B .

17



4 Classification of isolated singularities

Definition. A logarithm of A, where detA 6= 0, written L = lnA, is a
matrix such that eL = A.

Matrix logarithm is not unique: suppose there exists an L, then L+ 2πikI
is also a logarithm.

We can compute matrix logarithm by making a series of reductions. Assum-
ing everything exists, note

elnA = A = GJG−1 = Geln JG−1 = eG ln JG−1

so we can let lnA = G ln JG−1 (up to some issue of determinancy). Thus it is
left to define and compute ln J .

Exercise. Check that exp preserves block-diagonal form. Conversely suppose
eA is block-diagonal then A is also block diagonal.

Write A = GJG−1 where J is the Jordan normal form with Jordan blocks
J1, . . . , Js. Write Ji = λiIi + Hi where λi is the eigenvalue of Ji and H =(

0 1
0 1

. . .

)
. The size of Jordan block Ji is mi. We define

ln Ji = ln(λiIi(Ii +
Hi

λi
))

= ln(λiIi) + ln(Ii +
Hi

λi
)

= (lnλi)Ii +

∞∑
k=0

(−1)k+1

λi
(
Hi

λi
)k

= (lnλi)Ii +

mi−1∑
k=0

(−1)k+1

λi
(
Hi

λi
)k

as Hi is nilpotent.
Again note that ln Ji is defined up to integer multiples of 2πiIi.

4.2 Local structure of fundamental matrices at isolated
singularities

Consider dY
dz = A(z)Y where A(z) is analytic on U(a) \ {a}. The universal

covering can be represented by logarithm

ln(z − a) = ln |z − a|+ i arg(z − a).

We do the following steps:

1. take a branch cut, define a fundamental solution Y (z).

2. Take a loop so (z̃ − a) 7→ (z̃ − a)e2πi, and the branch Y (z) 7→ Y (z)M .

3. Y(z̃) = Y (z)Mk (i.e. defined on all branches). Note that M is also the
action of an element of the fundamental group on Y (in deck transforma-
tion).

18



4 Classification of isolated singularities

Theorem 4.1. Given the system dY
dz = A(z)Y where A(z) is analytic on

U(a) \ {a}, for all z̃ ∈ ˜U(a) \ {a}, we have the following representation

Y(z̃) = Φ(z) · (z̃ − a)L

where L = 1
2πi lnM . Φ(z) is single valued on U(a) \ {a}, detΦ(z) 6= 0 for

z 6= a.

Proof. Define Φ(z̃) = Y(z̃)(z̃ − a)−L. It is single valued as when taken along a
path,

Φ(z̃) 7→ Y(z̃)M · e−2πiL︸ ︷︷ ︸
M−1

(z̃ − a)−L = Y(z̃)(z̃ − a)−L = Φ(z̃).

Also detΦ(z̃) = detY(z̃) det(z̃ − a)−L 6= 0.

Example. The last exercise of the previous section is put in this form.

Now let’s do some computation. Write L = GJG−1 and so

Y(z̃) = Φ(z)(z̃ − a)L = Φ(z)G︸ ︷︷ ︸
Ψ(z)

(z̃ − a)JG−1

Then Ỹ(z̃) = GY(z̃) is another fundamental solution with structre

Ỹ(z̃) = Ψ(z)(z̃ − a)J .

For simplicity suppose a = 0, then

z̃Ji = zλi


1 ln z (ln z)2

2! . . . (ln z)mi−1

(mi−1)!

1 ln z
...

. . . 1


4.3 Regular singularities

Definition (regular singularity). Given f : ˜Ur(a) \ {a} → C analytic, z = a
is a regular singularity if exists m ∈ R+ such that

lim
z→a

α<arg(z̃−a)<β
(z̃ − a)mf(z) = 0

for all β − α < 2π. Otherwise z = a is an irregular singularity.

Easy to see that if f, g has regular singularity at z = a then so do f + g and
fg.

Example.

1. f(z) = ψ(z̃)
(z̃−a)r where ψ(z) is analytic at z = a, r ∈ R has a regular

singularity.
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4 Classification of isolated singularities

2. f(z) = (z̃ − a)µ ln(z̃ − a)ν where µ, ν ∈ C has a regular singularity.

3. f(z) = exp( 1
(z̃−a)µ ) where µ ∈ C has an irregular singularity.

4. The solution Y(z) = Φ(z)(z̃ − a)L, (suppose (z̃ − a)L is regular) depends
on Φ(z). For example if z = a a removable singularity or a pole of Φ(z)
then z = a is regular for Y(z̃).

Definition. z = a is a regular singularity for dY
dz = A(z)Y if exists a

fundamental solution Y(z̃) such that z = a is regular for Y(z̃).

Remark. Every other fundamental solution can be given by Y(z̃)C for detC 6=
0 so this is well-defined.

Theorem 4.2. Suppose z = a is regular for dY
dz = A(z)Y . Then in Y(z̃) =

Φ(z)(z̃ − a)L, z = a is a removable singularity or a pole for Φ(z), or a pole
for A(z).

Proof. Φ(z) = Y(z̃)(z̃−a)−L so z = a is regular for Φ(z). Unpack the definition,
we can find m ∈ N such that

lim
z→a

(z − a)mΦ(z) = 0

for α < z̃ − a < β. But both (z − a)m and Φ(z) are single valued so we can
cover the entire disc by sectors and remove the condition α < z̃ − a < β. Thus
Φ(z) = 1

(z−a)m · (z − a)mΦ(z) has at most a pole at z = a.
For the other condition,

A(z) =
dY(z̃)
dz

Y(z̃)−1

=
d

dz
(Φ(z)(z̃ − a)L) · (z̃ − a)−LΦ(z)−1

=
dΦ(z)

dz
Φ−1(z) + Φ(z)

L

z − a
Φ(z)−1

so z = a is a pole.

Example. Consider

A(z) =
1

z2

(
0 1
0 0

)
+

1

z

(
0 0
0 1

)
Write the solution as Y (z) = (y1, y2)

T , then we have

y′1 =
1

z2
y2, y

′
2 =

1

z
y2.

Solve to get y1(z) = C2 ln z+C1, y2(z) = C2z. We choose (c1, c2) = (1, 0), (0, 1)
to get the fundamental solution

Y(z̃) =
(
1 ln z̃
0 z

)
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4 Classification of isolated singularities

The monodromy associated to z 7→ ze2πi is

Y(z̃) 7→
(
1 ln z̃ + 2πi
0 z

)
= Y(z̃) · e

(
0 2πi
0 0

)
= Φ(z)z

(
0 1
0 0

)

where Φ = ( 1 0
0 z ) and detΦ(z) 6= 0 for z 6= 0.

4.4 Singularities of the first and second kind
Given the system dY

dz = A(z)Y where A : Ur(a) \ {a} → Mat(n,C) analytic
and z = a is an isolated singularity of A that is not an essential singularity.
This means we can write A(z) = Ã(z)

(z−a)r+1 where Ã is analytic on UR(a) and
Ã(z) 6= 0.

Definition (Fuchsian singularity). If r = 0 then z = a is called a singularity
of the first kind (name used by Coddington-Levinson/Balsen-Jurkat-Lutz)
or Fuchsian singularity. If r ≥ 1 then z = a is called a singularity of the
second kind, or occassionally (and confusingly) called a irregular singularity.
If r ≤ −1 then it is not a singularity.

Theorem 4.3. If z = a is a Fuchsian singularity then z = a is a regular
singularity.

Note that the converse is not true, as for example in the example above there
is a pole of second order.

We can similarly classify singularities at infinity. Suppose A(z) is analytic
for |z| > R. Make the change of variable z = 1

t so d
dz = −t2 ddt , we have

dY

dt
= −A(1/t)

t2
Y.

Thus A∗(t) = A( 1t ) is analytic for 0 < |t| < 1
R and t = 0 is an isolated singularity.

Write −A∗(t)
t2 = Ã(t)

tr+1 so

A∗(t) = −t−r+1Ã(t) = −zr−1Ã′(z)

so for r = 0 we call it a Fuchsian singularity and similarly for r ≥ 1 and r ≤ −1.

4.5 Linear systems with rational coefficients
Now suppose A(z) is defined on C \ {a1, . . . , am,∞} and suppose a1, . . . , am,∞
are at most poles. The locally around z = aj we can write A(z) = A(j)(z) +
reg(z − aj) where the regular part is analytic at z = aj and reg(z − aj) = O(1)
as z → aj . In detail

A(j)(z) =

{
1

(z−aj)rj+1 (A
(j)
0 +A

(j)
1 (z − aj) + · · ·+A

(j)
rj (z − aj)

rj ) rj ≥ 0

0 rj ≤ −1

and for z = ∞ write A(z) = A(∞)(z) + reg( 1z ) where reg( 1z ) = O( 1z ) and

A(∞) =

{
zr∞−1(A

(∞)
0 +

A
(∞)
1

z + · · ·+ A
(∞)
r∞−1

zr∞−1 ) r∞ ≥ 1

0 r∞ ≤ 0
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4 Classification of isolated singularities

Lemma 4.4. A(z) is rational.

Proof. A(z)−
∑
A(j)(z)− A(∞)(z) is analytic on C and tends to 0 as z → ∞,

so by Liouville is constant.

Definition (Poincaré rank). rj ’s and r∞ are called Poincaré ranks of the
singularities.

4.6 Holomorphic and meromorphic equivalence
Suppose G : U(a)\{a} → GL(n,C) analytic with z = a at most a pole. Consider
a system dY

dz = A(z)Y . Given a gauge transformation Y = G(z)Ỹ ,

dỸ

dz
= (G(z)−1A(z)G(z)−G(z)−1 dG(z)

dz
)︸ ︷︷ ︸

Ã(z)

Ỹ

(we assume G(z) is invertible away from z = a).

Definition (holomorphic/meromorphic equivalence). We say two systems
dY
dz = A(z)Y, dỸdz = Ã(z)Y , where A, Ã are analytic on U(a) \ {a} with
at most a pole at z = a, are holomorphic equivalent (resp. meromorphic
equivalent) at z = a if exists G(z) invertible in U(a) (resp. U(a) \ {a})
which transforms one system into the other.

One checks that this is an equivalence relation.

Theorem 4.5. If z = a is a regular singularity of dY
dz = A(z)Y then it is a

meromorphic equivalent to a Fuchsian system dỸ
dz = L

z−a Ỹ .

Proof. Relabel the solution

Y(z̃) = Φ(z)︸︷︷︸
G(z)

(z̃ − a)L︸ ︷︷ ︸
Ỹ(z)

and Ỹ(z) is a fundamental solution of the required system.

We can also consider formal equivalence. Consider the formal series

A(z) =
1

(z − a)p+1

∞∑
k=0

Ak(z − a)k

Ã(z) =
1

(z − a)q+1

∞∑
k=0

Ãk(z − a)k

G(z) =
1

(z − a)m

∞∑
k=0

Gk(z − a)k

where detG0 6= 0. If formally A and Ã are related by the equation for gauge
transformation above then the systems are formally meromorphic equivalent.
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4 Classification of isolated singularities

Remark. G has a formal inverse

G(z)−1 = (z − a)m(G0 +

∞∑
k=1

Gk(z − k)k)−1

= (z − a)m(I +

∞∑
k=1

G−1
0 Gk(z − a)k)−1G−1

0

= (z − a)m(I +

∞∑
n=1

(−1)n(

∞∑
k=1

G−1
0 Gk(z − a)k)n)G−1

0
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5 Structure offundamental matrix at a Fuchsian singularity

5 Structure offundamental matrix at a Fuchsian
singularity

In this chapter we study the local structure of fundamental solution by doing
example computations. Throughout consider the system dY

dz = A(z)
z Y where

A holomorphic at z = 0 and A(0) 6= 0. Write A(z) = A0 +
∑∞
i=1Aiz

i. Let
J = G−1

0 A0G0 be the Jordan normal form.
The constant gauge transformation Y (z) = G0Ŷ (z) gives

dŶ

dz
=
G−1

0 A(z)G0

z
Ŷ

so

Â(z) = J +

∞∑
i=1

(G−1
0 AiG0)z

i.

Suppose we have put A0 into Jordan normal form, i.e. dYdz = A(z)
z Y , A(z) =

J +
∑∞
i=1Aiz

i =
∑∞
i=0Aiz

i. We seek a gauge transformation G(z) such that
dỸ
dz = R(z)

z Ỹ where R(z) =
∑∞
i=0Riz

i is “as simple as possible” so that we can
solve for Ỹ .

The condition can be expressed as the expression

G′(z)Ỹ +G(z)Ỹ ′︸ ︷︷ ︸
R(z)

z Ỹ

=
A(z)

z
G(z)Ỹ

so we aim to “solve”
zG′ +GR = A(z)G, (∗)

a system for (G(z), R(z)). Formally this means we are looking for series G(z) =∑∞
i=0Giz

i, A(z) =
∑∞
i=0Aiz

i, R(z) =
∑∞
i=0Riz

i that satisfy (∗). After some
manipulations we get

∞∑
`=0

(`G` +
∑̀
j=0

GjR`−j)z
` =

∞∑
`=0

(
∑̀
j=0

A`−jGj)z
`

so for ` = 0 we have G0R0 = A0G0., i.e. G0R0 = JG0. We choose G0 = I,R0 =
J . For ` ≥ 1 we have

G`(` · I + J)− JG` = (

`−1∑
j=1

(A`−jGj −GjR`−j) +A`)−R` (†)

for (G`, R`).

5.1 Case of diagonalisable A0

Theorem 5.1. If J = Λ then the system dY
dz = A(z)

z Y is holomorphically
equivalent through G0G(z) to

dỸ

dz
=

1

z
(Λ +R1z + · · ·+Rkz

k)Ỹ (‡)
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5 Structure offundamental matrix at a Fuchsian singularity

where (R`)ij 6= 0 only if λi − λj = ` ≥ 1 integer. This is called the normal
form of the system. In particular if no difference λi−λj is a non-zero integer
then dỸ

dz = Λ
z Ỹ .

Proof. We show formal equivalence only and defer convergence to Theorem 5.5.
Equation (†) reads for ` = 1

G1Λ− ΛG1 +G1 = A1 −R1.

Taking (i, j) component,

(G1)ij(λj − λi + 1) = (A1)ij − (R1)ij

so if λi − λj 6= 1 then choose R1 = 0 and (G1)ij =
(A1)ij
λj−λi+1 . If λi − λj = 1 then

(R1)ij = (A1)ij and (G1)ij is arbitrary.
Similarly for ` ≥ 1 in general

G`Λ− ΛG` + `G` = (· · · )−R`

so
(G`)ij(λj − λi + `) = (· · · )ij − (R`)ij .

If λi − λj 6= ` then choose (R`)ij = 0 and (G`)ij =
(··· )

λj−λi+`
. If λi − λj = ` then

we choose (R`)ij = (· · · )ij and (G`)ij is arbitrary.
Since there are only finitely many λi−λj , the system is of the form required.

Corollary 5.2. The system, if A0 is diagonalisable, has a fundamental
solution

Y (z) = G0G(z)z
ΛzR

where R = R1 + · · · + Rk (which is nilpotent). In particular z = 0 is a
Fuchsian singularity so regular (because detG(z) 6= 0).

Proof. We know Y (z) = G0G(z)Ỹ (z) where Ỹ (z) satisfies (‡). Claim that
Ỹ (z) = zΛzR is a fundamental solution:

d

dz
(zΛzR) =

Λ

z
zΛzR + zΛ

R

z
zR =

1

z
(Λ + zΛRz−Λ)zΛzR

and

(zΛRz−Λ)ij = zλi−λjRij =

{
z`(R`)ij λi − λj = ` ≥ 1

0 λi − λj 6= ` ≥ 1

so indeed it is a fundamental solution.

Definition (resonance). If λi − λj ∈ Z \ {0} we say the system is resonant
at z = 0.

Exercise. Use the same strategy to prove

e2πiΛR = Re2πiΛ,

which implies that
e2πiΛzR = zRe2πiΛ.
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5 Structure offundamental matrix at a Fuchsian singularity

The monodromy of the solution is given by

Y (z) = G0G(z)z
ΛzR 7→ G0G(z)z

Λe2πiΛzRe2πiR = G0G(z)z
ΛzR︸ ︷︷ ︸

Y (z)

e2πiΛe2πiR︸ ︷︷ ︸
M

.

We can reduce this further: write λj = dj + ρj where dj ∈ Z, 0 ≤ Re ρj < 1
so Λ = D + S where both D and S and diagonal and D has integer entries.
Then [D,S] = 0. Also [R,S] = 0 since

[R,S]ij = (ρj − ρi)Rij

so either λi − λi ∈ Z so ρj − ρi = 0, or λi − λj /∈ Z so Rij = 0. Thus

Y (z) = G0G(z)z
D+SzR = G0G(z)z

DzSzR = G0G(z)z
DzR+S = G0G(z)z

D︸ ︷︷ ︸
Φ(z)

zL

where L = R + S. But this has exactly the form Y (z) = Φ(z) · zL where
Φ = G0G(z)z

D is single valued with a pole at z = 0. In this representation the
monodromy matrix is simply M = e2πiL.

Let’s discuss for a moment the freedom in the solution.

1. In G−1
0 A0G0 = J , G0 has freedom G0 7→ G0∆0 where ∆−1

0 J∆0 = J .

2. Fix G0 and Λ. Recall that G` contains a finite number of arbitrary pa-
rameters.

3. Also R is fixed. Suppose

Y (z) = G0(I +
∑

Gjz
j)zDzL.

Suppose we can find

4. Freedom in R. The system may be put in two different normal forms with
same Λ. Two such solutions Ỹ and˜̃Y are related by a gauge transformation
˜̃Y = ∆(z)Ỹ .

∆(z) = ∆0(I +∆1z + · · ·+∆kz
k)

where (∆`)ij 6= 0 only if λi − λj` ≥ 1 and i

5.2 Case of general A0

In general, any A0 can be written in Jordan normal form J = diag(J1, . . . , Js)
where J` − λ`I` + H` where H` has only entries 1 right above the diagonal.
We can then partition R` into blocks and the the problem effectively becomes
solving the system of equations

XA−BX = C

where A is m×m, X is n×m, B is n× n and C is m×m. Then

1. XA−BX = 0 has nontrivial solution if and only if A,B have a common
eigenvalue.

2. XA−BX = C with C given has a unique solution X if and only if A,B
hasve non common eigenvalues.
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5 Structure offundamental matrix at a Fuchsian singularity

3. XA − BX = C, with both X,C unknown and A,B with at least one
common eigenvalue, always has a solution.

All these can be proven by regarding X and C as vectors and consider the
linear system Dx = c. Then detD 6= 0 if and only if A,B have no common
eigenvalues. See Wasow.

Subsequently we can divide into cases according to if λi − λj = `. Thus we
have the following more general theorem

Theorem 5.3. The system dY
dz = A(z)

z Y is holomorphically equivalent
through G0G(z) to

dỸ

dz
=

1

z
(J +R1z + · · ·+Rkz

k)Ỹ (‡)

where (R`)ij 6= 0 only if λi − λj = ` ≥ 1 integer.

Let λj = dj + rj as before and write S = J − D = diag(S1, . . . , Ss) where
Sj = ρjIj +Hj . Let L = R+ S where R = R1 + · · ·+Rr.

Corollary 5.4. The system dY
dz = A(z)

z Y has a fundamental solution

Y (z) = G0G(z)z
DzL

where G(z) = I +
∑∞
j=0Gjz

j.

5.3 Convergece of formal solution
We now prove covergence. Recall (∗)

zG′ +GR(z) = A(z)G,

assumeR(z) is a polynomial, A(z) analytic at z = 0. Construct y = (G11, . . . , Gnn)
T ,

(∗) becomes
zy′ = F (z)y

where F (z) is analytic in a ball Ur(0) around z = 0 so can be locally written as
a convergent power series.

Theorem 5.5. Suppose zy′ = F (z)y has a formal solution y(z) =
∑
cjz

j.
Then the series converges locally uniformly on Ur(0) and thus defines an
analytic function in Ur(0).

Note this is really a property of Fuchsian singularity as if we change LHS to
zpy′ where p > 1 then the conclusion does not hold.

Proof. Recall from complex analysis that if f(z) is holomorphic on Ur(0) then
f(z) =

∑
ckz

k where

ck =
f (k)(0)

k!
=

1

2πi

∮
CR1

f(ζ)

ζk+1
dζ
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5 Structure offundamental matrix at a Fuchsian singularity

so we can estimate

|ck| ≤
1

2π

∮
CR1

|f(ζ)
|f |k+1

d|ζ| ≤ M(R1)

Rk1
.

Conversely given
∑
ckz

k, assuming exists M such that |ck| ≤ M
Rk

1
, then the

series is uniformly convergence on |z| ≤ R2 for all R2 ≤ R1, i.e. it defines an
analytic function on UR1(0).

Now given a formal solution y =
∑
cjz

j , substitute into the equation to get∑
jCjz

j =
∑
ij

FjCjz
i+j

so ∑
`C`z

` =
∑
`

(
∑̀
j=0

F`−jCj)z
`

so
(`I − F0)C` = F`C0 + F`−1C1 + · · ·+ F1C`−1.

For ` ≥ N sufficiently large such that |F0|
` ≤ 1, then (`I−F0) has an inverse

and we can solve for C`. We can esimate

|C`| ≤
1

`

∞∑
k=0

|F0|k

`k
(|F`||C0|+ · · ·+ |F1||C`−1|)

=
1

`

1

1− |f0|/`
(|F`||C0|+ · · ·+ |F1||C`−1|)

≤ C

`
(|F`||C0|+ · · ·+ |F1||C`−1|)

We know that F is analytic in Ur(0) so |Fk| ≤ M
Rk

1
. Thus

|C`| ≤
MC

`
(
|C0|
R`1

+ · · ·+ C`−1

R1
) ≤MC(

|C0|
R`1

+ · · ·+ C`−1

R1
)

If ` ≤ N − 1 (?) we can always choose P > 0 such that |C`| ≤ ( RR1
)`. Prove

that for all `, |C` ≤ (P/R1)
`: assume this is true up to `− 1 and prove it for `.

|C`| ≤MC(
|C0|
R`1

+ · · ·+ C`−1

R1
) ≤ MC

R`1
(P `−1 + P `−2 + · · ·+ 1) =

MC

R`1

P ` − 1

P − 1

P `−1(P − 1−MC) ≥ 0 this is possible, provided that P is sufficiently large.
Thus |C`| ≤ . . . so

∑
|C`||z|` < ∞ provided |z| ≤ R1

P , so y(z) is an analytic
solution for |z| ≤ R1

P . From general theory we can analytically continue y(z) as
analytic solution in ball |z| < r.

Thus every time we have a Fuchsian singularity, all formal computation are
actual (meaning analytic) computation.
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5 Structure offundamental matrix at a Fuchsian singularity

5.4 Completely Fuchsian system
We have studied the local theory of a Fuchsian system. In this section we study
the behaviour if the a general system in which all the singularities in the complex
plane are Fuchsian. Recall A(z) is rational so necessarily such a system has the
form

dY

dz
= (

A1

z − a1
+ · · ·+ Am

z − am
)Y

where Aj ’s are constant matrices. At z = ∞,

A(z) =
1

z

m∑
j=1

Aj +O(
1

z2
)

which is convergent for |z| > R. Substitute z = 1
t , the system becomes

dY

dt
= − 1

t2
A(

1

t
)Y =

1

t
(−
∑

Aj︸ ︷︷ ︸
A∞

+O(t))Y.

For each singularity aj , we know from local theory that there exists a neigh-
bourhood U(aj) on which

Yj(z) = Gj(z)(z − aj)
Dj (z − aj)

Lj .

Suppose Aj has eigenvalues λ(j)1 , · · ·λ(j)m and λ
(j)
k = d

(j)
k + ρ

(j)
k . Similar for

z = ∞: in a neighbourhood of t = 0,

Y∞(z) = Y (t) = G̃∞(t)tD∞tL∞ = G∞(z)z−D∞z−L∞

where G∞(z) is analytic at z = ∞.

Remark. To talk about the local solutions we must select a sheet of the uni-
versal cover. It is given as follow. Choose parallel branch cuts Lj which are rays
from aj ’s in direction η, such that no ak is contained Lj for j 6= k. Then we stip-
ulate that either η−2π < arg(z−aj) < η for |z−aj | small, or η−2π < arg z < η
for |z| large.

Remark. Note that from definition A∞ +
∑m
j=1Aj = 0. Taking the trace, we

get
n∑
k=1

(λ
(1)
k + λ

(2)
k + · · ·+ λ

(m)
k + λ

(∞)
k ) = 0.

This interdependence of eigenvalues is called Fuchs identity.

Since each one of Yj(z) and Y∞(z) is a fundamental solution, we can relate
them by Y∞(z) = Yj(z)Cj where Cj nonsingular is called the connection ma-
trix. For computation, Gj(z), G∞(z), Dj , Lj , D∞, L∞ are algebraic functions of
A1, . . . , Am so we can compute them. However Cj ’s are transcendental functions
of Ai’s.

Note Cj = Yj(z0)
−1Y∞(z0) for z0 /∈ {a1, . . . , am,∞} and we know each Yj(z)

only locally so the study of the global Fuchsian system is reduced to asking how
to compute Yj(z0), Y∞(z0) when z0 /∈ U(a1) or z0 /∈ U(∞). This is called the
connection problem.
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5 Structure offundamental matrix at a Fuchsian singularity

In several cases (n = 2) this can be solved (using linear special function
theory such as Bessel, Airy, hypergeometric functions). The general strategy is
as follow: for the (a, b) entry we write

(Yj(z))ab =

∫
γ

φab(z, s)ds

called integral representation. Then

(Yj(z0))ab =

∫
γ

φab(z0, s)ds

which is computable in terms of classical special functions.

Monodromy of global Fuchsian system We know the monodromy of the
local solutions: for |z − aj | small, if we take the loop γj that goes around aj
counterclockwise once we have

Yj(z) 7→ Yj(z)e
2πiLj .

For Y∞, we take big |z| and loop around ∞ clockwise to get

Y∞(z) 7→ Y∞(z)e2πiL∞ .

Combining the local monodromy with connection matrices,

Y∞(z) = Yj(z)Cj 7→γj Yj(z)e
2πiLjCj = Y∞(z)C−1

j e2πiLjCj︸ ︷︷ ︸
Mj

so the monodromy (anti)representation is given by

γj 7→Mj = C−1
j e2πiLjCj

Note that γ1 · · · γ2 · · · γm = γ−1
∞ so M∞ = (Mm · · ·M1)

−1. Again we stress that
the difficulty lies in finding Cj .
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6 Linear equations of order n

6 Linear equations of order n

Consider the scalar ODE of order n

u(n) + a1(z)u
(n−1) + · · ·+ an(z)u = 0

where z = 0 is an isolated singularity of aj(z). aj(z) are analytic the we can
express the solutions in Taylor series. For the simplest case aj ∈ C, we can solve
the indicial equation

f0(λ) = λn + a1λ
n−1 + · · ·+ an =

s∏
j=1

(λ− λj)
mj

and eλjz, zeλjz, . . . , zmj−1eλjz for j = 1, . . . , s is a fundamental system.
As another example

u(n) +
a1
z
u(n−1) + · · ·+ an

zn
u = 0

where aj ∈ C. This is called the Euler equation. For z 6= 0 multiply by zn to
get

E(u) = 0

where E = zn dn

dzn + · · ·+ an. Define the Euler operator δ = z d
dz and define

[δ]k = δ(δ − 1) · · · (δ − k + 1)

and a quick calculation shows [δ]k = zk dk

dzk
so

E = [δ]n + a1[δ]n−1 + · · ·+ a2δ + a1

and we have another indicial equation

f0(λ) = [λ]n + a1[λ]n−1 + · · ·+ an =

s∏
j=1

(λ− λj)
mj

where λi’s are distinct. They are called indices or characteristic exponents.

Frobenius method A computation shows

[δ]kz
λ = [λ]kz

λ

so zλ is an eigenfunction so

E(zλ) = f0(λ)z
λ.

Thus if λi’s are the solutions of the indicial equation then zλi ’s are solutions to
the Euler equation.

Since
∂`

∂λ`
zλ = (log z)`zλ,

it follows that

E(
∂`zλ

∂λ`
) =

∂`

∂λ`
E(z`) =

∂`

∂λ`
(f0(λ)z

λ) =
∑̀
k=0

(
`

k

)
dkf0(λ)

dλk
(log z)`−kzλ.
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6 Linear equations of order n

If λj is a root of f0 with multiplicity mj then E(∂
`z`

∂λ` ) = 0 for ` < mj so

zλj , ln z · zλ1 , . . . , zλj (ln z)mj−1

form a fundamental system.
In this example the companion system is

dY

dz
=


0 1

0 1
...

−am
zm −a1

z

 y

for which z = 0 is a singularity of second kind if m ≥ 2. In addition we know
this is a regular singularity from the fundamental system above. It is not clear,
however, that this system is a priori regular.

We can make this more lucid by making the substituion

y1 = u, y2 = zu′, . . . , yn = zn−1u(n−1)

so

y′j =

{
1
z ((j − 1)yj + yj+1) j ≤ n− 1
1
z ((n− 1)yn − (a1yn + · · ·+ any1)) j = n

so the system is

dY

dz
=

1

z


0 1

1 1
2 1

...
−an −an−1 · · · −a2 n− 1− a

 y

and it is obvious that z = 0 is a Fuchsian singularity.
Call the constant matrix A0 so from general theory of Fuchsian singularity

Y (z) = zA0 = G0z
JG−1

0 .

One can also check det(λ − A0) = f0(λ). Note that the original system has
Poincaré rank n−1, while after sustituion it has Poincaré rank 0. The solutions
are related by a meromorphic tranformation

1
1
z

1
z2

. . .
1

zn−1


This is called a shearing transformation.
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6 Linear equations of order n

6.1 Series solution
Consider

u(n) +
â1(z)

z
u(n−1) + · · ·+ ân(z)

zn
(u) = 0

where âj(z) analytic at z = 0. The only difference between this and the Euler
equation is that the coefficients are not constant. Write E(u) = 0. Use the
Frobenius method with a pertubation by substituting

u(z) = zλ
∞∑
ν=0

cνz
ν

E(

∞∑
ν=0

cνz
ν+λ) =

∞∑
ν=0

cνE(zν+λ) =

∞∑
ν=0

cν ([λ+ ν]n + â1(z)[ν + λ]n−1 + · · ·+ ân(z))︸ ︷︷ ︸
•

zν

Substitute âj(z) =
∑∞
`=0 a

(j)
` z`, we can write (•) as

∞∑
`=0

f`(λ+ ν)z`

for some f`. Thus

E(
∑
ν

cνz
ν+λ) =

∑
ν,`

cνf`(λ+ ν)zν+` =
∑
m=0

(

m∑
ν=0

cνfm−ν(λ+ ν))zm m = ν + `

so for E = 0 we reuire all coefficients of zm to vanish, so we get recurrence
relations

c0f0(λ) = 0

c1f0(λ+ 1) + c0f1(λ) = 0

cmf0(λ+m) + · · ·+ c0fm(λ) = c

Write f0(λ) =
∏
(λ−λj)mj . If λ = λj then c0 is arbitrary. If in addition λj+m

is not a root then we can determine all cm in terms of c0 and λj .

u(z) = zλj (c0 +

∞∑
ν=1

cν(c0, λj)z
ν).

In summary, if f0(λ) has n distinct roots λ1, . . . , λn not differing by integers
then we have a fundamental system

u(z)j = zλj (c
(j)
0 +

∞∑
ν=1

c(j)ν zν).

If some mj ≥ 2, i.e. multiple roots, or if λj + m is also a root, we can
implement Frobenius method to get zλj (ln z)k. For reference see Ince.

A few more words on where ln z comes from
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6 Linear equations of order n

Similar as before we can reduce the ODE to a linear system by subsituting
y1 = u, y2 = zu′, . . . , yn = zn−1u(n−1), and consider the system

dy

dz
=

1

z



0 1
1 1

2 1
. . .

n− 2 1
−hatan(z) −ân−1(z) · · · −â1(z) + n− 1


y

and it is obvious that z = 0 is a Fuchsian singularity, ergo the name. Since â(z)
is analytic at z = 0, write â(z) =

∑∞
`=0 a

(j)
` z`. Then we find

A0 = A(0) =



0 1
1 1

2 1
. . .

n− 2 1

−a(n)0 −a(n−1)
0 · · · −a(1)0 + n− 1


and we can check det(λ−A0) = f0(λ).

We know that exists fundamental solution Y (z) = G(z)zDzS+R where G is
holomorphically invertible at z = 0, D+ S = J , the Jordan normal form of A0,
and R nilpotent. Suppose the first row of Y (z) is (u1(z), . . . , un(z)), which are
solutions to the ODE. Then uj containes terms zλk(ln z)p where 1 ≤ k < s and
p ≤ mk − 1.

Remark. The solutions obtained by Frobenius method converge because the
companion system is Fuchsian. Thus the formal solutions are actual solutions.

A converse to proposition to Theorem 4.3:

Theorem 6.1. For an ODE, z = 0 is Fuchsian if and only if it is a regular
singularity.

Proof. Only need to prove only if. Induction on the order of the ODE n. For
n = 1, suppose z = 0 is a regular singularity of u′ + a1(z)u = 0 and u(z) is a
solution. Then it has monodromy

u(ze2πi) = µu(z) = e2πiλu(z)

where µ ∈ C\{0} and λ is defined up to integers. Then u(z)z−λ is single valued
so z = 0 is regular, so z = 0 is at most a pole. Choose λ so that f(z) = u(z)z−λ

is analytic at z = 0 and f(0) 6= 0. Then

a1(z) = −u
′

u
= −λ

z
+
f ′(z)

f(z)

which has a pole of order 1.
We do the induction step for n = 2, consider u′′+a1(z)u′+a2(z)u = 0 where

z = 0 is regular. Exists u1(z), u2(z) linearly independent such that (u1, u2) has
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6 Linear equations of order n

monodromy matrix M . By a linear transformation wlog M is upper trianglular
so u1(ze

2πi) = µ1u1(z) so as before u1(z) = f(z)zλ where f(z) analytic and
f(0) 6= 0. We seek another solution u(z) = u1(z)v(z). Substitute the ansatz
into the equation to get the condition

v′′ + (
2u1(z)

′

u1(z)
+ a1(z))v

′ = 0,

a first order ODE in v′. Since z = 0 is regular, v′(z) has a regular singularity
in z = 0 so the first step applies to v′ and conclude that

2u′1(z)

u1(z)
+ a1(z) =

2λ1
z

+
2f ′(z)

f(z)
+ a1(z)

has at most a simple pole at z = 0. It remains to compute a2(z):

a2(z) = −(
u′′1
u1

+ a1
u′1
u1

) = −(
λ(λ− 1)

z2
+
λ

z
(
2f ′

f
+ a1(z)) +

f ′′

f
+ a1(z)

f ′

f
)

so az(z) has at most a pole of order 2 at z = 0.

We can also define Fuchsian singularity at ∞ by settting t = 1
z and consider

the behaviour at t = 0.

Proposition 6.2. z = ∞ is Fuchsian if and only if aj(z) =
ãj
zj where

ãj(z) = ã
(j)
0 +

∑∞
`=1

ã
(j)
`

z`
is analytic at z = ∞.

Proof. u(n)+a1(z)u(n−1)+ · · ·+an(z)u = 0. Put aj(z) = ãj(z)
zj (we do not know

the analytic property of ãj). Multiply by zn and substitute z = 1
t , note

δ = z
z

dz
= −t d

dt
= −δt

so [δ]k = (−1)k(δt)k where

[δt]k = δt(δt + 1) · · · (δt + n− 1).

Then the system is

[δt]n − ã1(
1

t
)[δt]n−1 + · · ·+ (−1)nãn(

1

t
)

so t = 0 is Fuchsian if and only if ãj( 1t ) is analytic at t = 0.

6.2 Completely Fuchsian ODE of order n

Suppose z = α1, . . . , αm,∞ are poles of the aj(z)’s, which have the correct
order.

Proposition 6.3. The system is completely Fuchsian if and only if

aj(z) =
pj(z)

(z − α1)j · · · (z − αm)j

where Pj is a polynomial of degree ≤ j ·m− j.
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6 Linear equations of order n

Proof. At z = αk,

aj(z) ∼
reg(z − αk)

(z − αk)j

and at z = ∞,
zjaj(z) ∼ zj+degPj−j·m.

By partial fractions we can find the explicit forms of all completely Fuchsian
system. As an example calculation, take n = 2 and consider the equation

u′′ + a1u
′ + a2u = 0

Then

a1(z) =
A1

z − α1
+ · · ·+ Am

z − αm

a2(z) =

m∑
j=1

(
Bj

(z − αj)2
+

Cj
z − αj

)

where Aj , Bj , CJ ∈ C and we can show
∑m
j=1 Cj = 0.

• For m = 1 there is only one equation u′′ = 0.

• For m = 2,
u′′ +

A1

z − α1
u′ +

B1

(z − α1)2
u = 0,

the Euler equation.

• For m = 3,

u′′+(
A1

z − α1
+

A3

z − α3
)u′+(

B1

(z − α1)2
+

B2

(z − α2)2
+C1(

1

z − α1
+

1

z − α2
))u = 0,

the Riemann hypergeometric equation. As an exercise, show f0(λ) = λ(λ−
1) + a

(1)
0 λ+ a

(2)
0 .

36



7 Hypergeometric equation

7 Hypergeometric equation

7.1 Riemann hypergeometric equation
A Riemann hypergeometric equation

u′′+(
A1

z − α1
+

A3

z − α3
)u′+(

B1

(z − α1)2
+

B2

(z − α2)2
+C1(

1

z − α1
+

1

z − α2
))u = 0,

has indicial equations are

z = α1 : λ2 + (A1 − 1)λ+B1 = 0

z = α2 : λ2 + (A2 − 1)λ+B2 = 0

z = ∞ : λ2 + (1−A1 −A2)λ+B1 +B2 + (α1 − α2)C1 = c

A1, A2, B2, B2, C1 determine the exponents λj±. Conversely,

Aj = 1− λ
(j)
+ − λ

(j)
−

Bj = λ
(j)
+ λ

(j)
−

Cj =
λ
(∞)
+ λ

(∞)
− − (B1 +B2)

α1 − α2

Theorem 7.1. The Riemannian equation is completely determined by the
seven parameters α1, α2 and the exponents (note that the exponents sum up
to 1), which is typically presented as(

α1 α2 ∞
λ
(1)
+ λ

(2)
+ λ

(∞)
+

λ
(1)
− λ

(2)
− λ

(∞)
−

)

and is called a Riemann scheme. The collection of all solutions to the
Riemann equations is called the Riemann symbol, denoted by

P

(
α1 α2 ∞
λ
(1)
+ λ

(2)
+ λ

(∞)
+ ;z

λ
(1)
− λ

(2)
− λ

(∞)
−

)

7.1.1 Möbius transformation

Recall that a Möbius transformation is an automorphism of C of the form

z 7→ az + b

cz + d

where a, b, c, d ∈ C, ad − bc 6= 0. This is an action by GL(n,C) with kernel the
scalar matrices so is an action by PSL(2,C).

Theorem 7.2. Characteristic exponents are invariant under Möbius tran-
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7 Hypergeometric equation

formation, i.e.

P

(
α1 α2 ∞
λ
(1)
+ λ

(2)
+ λ

(∞)
+ ;z

λ
(1)
− λ

(2)
− λ

(∞)
−

)
= P

(
h(α1) h(α2) h(∞)

λ
(1)
+ λ

(2)
+ λ

(∞)
+ ;t=h(z)

λ
(1)
− λ

(2)
− λ

(∞)
−

)
.

Proof. For simplicity we prove the result for t = h(z) = z−α1

α2−α1
so z = α1, α2,∞

corresponds to t = 0, 1,∞.

d

dz
=

1

α2 − α1

d

dt

so
d2u

dt2
+ (

A1

t
+

A2

t− 1
)
du

dt
+ (

B1

t2
+

B2

(t− 1)2
+ (α2 − α1)C1(

1

t
− 1

t− 1
))u = 0.

The indicial equations at t = 0, 1 are the same so λ(1)± , λ
(2)
± are the same. For

t = ∞, note that
(0− 1)(α2 − α1) = α1 − α2

so again it is the same.

Corollary 7.3. We can always reduce a Riemann hypergeometric equation
to the form

P

(
0 1 ∞
λ
(0)
+ λ

(1)
+ λ

(∞)
+ ;z

λ
(0)
− λ

(1)
− λ

(∞)
−

)
.

7.1.2 Gauge transformation

Consder the gauge transformation u(z) = zp(1− z)qv(z), p, q ∈ C that changes
the exponent:

u(z) = zλ
(0)
± reg(z) 7→ v(z) = zλ

(0)
± −p reg(z)

u(z) = (1− z)λ
(1)
± reg(z − 1) 7→ v(z) = (1− z)λ

(1)
± −q reg(z − 1)

u(z) = z−λ
(∞)
± reg(

1

z
) 7→ v(z) = z−λ

(∞)
± −p−q reg(

1

z
)

so

P

(
0 1 ∞
λ
(0)
+ λ

(1)
+ λ

(∞)
+ ;z

λ
(0)
− λ

(1)
− λ

(∞)
−

)
= zp(1− z)qP

(
0 1 ∞

λ
(0)
+ −p λ(1)

+ −q λ(∞)
+ +p+q ;z

λ
(0)
− −p λ(1)

− −q λ(∞)
− +p+q

)
.

Thus we can always reduce to the form

P
( 0 1 ∞

0 0 α ;z
1−γ γ−α−β β

)
whose correspondig equation is

u′′ + (
γ

z
+
α+ β − β + 1

z − 1
)u′ + αβ(

1

z − 1
− 1

z
)u = 0

i.e.
z(1− z)u′′ + (γ − (α+ β + 1)z)u′ − αβu = 0.

This is called the Gauss hypergeometric equation.
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7.2 Gauss hypergeometric equation
7.2.1 Local representation of solutions

We look for a series solution first at z = 0. λ(0)+ = 0 so we expect a Taylor series
u(z) =

∑∞
n=0 cnz

n. Substitute to get the recurrence relation

cn+1 =
(m+ α)(m+ β)

(n+ 1)(n+ γ)
cn

where we require γ 6= 0,−1,−2, . . . so that Frobenius method works. Then

cn =
(α)n(β)n
n!(γ)n

c0

where the subscript n is the Pochhammer symbol and is defined as

(α)0 = 1, (α)n = α(α+ 1) · · · (α+ n− 1).

Note that (α)n = 0 for α = 0,−1, . . . ,−n+ 1. Set c0 = 1, we get

u
(0)
1 (z) = 2F1(α, β, γ; z) =

∞∑
n=0

(α)n(β)n
(γ)nn!

zn,

convergent for |z| < 1, called the hypergeometric series.
To get the second solution: use gauge u = z1−γv so

P
( 0 1 ∞

0 0 α ;z
1−γ γ−α−β β

)
= z1−γP

( 0 1 ∞
0 0 α−γ+1 ;z

γ−1 γ−α−β β−γ+1

)
so the other solution is

u
(0)
2 (z) = z1−γ 2F1(α− γ + 1, β − γ + 1, 2− γ; z)

where γ 6= 2, 3, . . ..
To get the solution at 1, apply the Möbius transformation t = 1− z so

P
( 0 1 ∞

0 0 α ;z
1−γ γ−α−β β

)
= P

( 0 1 ∞
0 0 α ;1−z

γ−α−β 1−γ β

)
so by a change of variable γ−α−β = 1−γ1, α1 = α, β1 = β, from the solutions
at z = 0 we get

u
(1)
1 (z) = F (α, β, α+ β − γ + 1; 1− z) γ − α− β 6= 1, 2, . . . , |1− z| < 1

u
(2)
1 (z) = (1− z)γ−α−β ;2 F1(γ − β, γ − α, 1 + γ − α− β; 1− z) aγ − α− β 6= −1,−2, . . .

To get the solution at ∞ we use z = 1
t and after another computation

u
(∞)
1 (z) = z−α 2F1(α, 1 + α− γ, 1 + α− β;

1

z
) α− β 6= −1,−2, . . . , |z| > 1

u
(∞)
1 (z) = z−β 2F1(β, 1 + β − γ, 1− α+ β;

1

z
) α− β 6= 1, 2, . . .
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7 Hypergeometric equation

7.2.2 Integral representation

Recall the gamma function is defined by the Euler integral

Γ(p) =

∫ ∞

0

tp−1e−tdt

for Re p > 0. Also Beta function

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt

for Re p > 0,Re q > 0, arg t = 0, arg(1− t) = 0 which satisfies

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

Proposition 7.4. Suppose Re γ > Reβ > 0, |z| < 1, we have the following
integral representation of hypergeometric function:

2F1(α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−αdt

where arg t = 0, arg(1− t) = 0, | arg(1− zt)| < π
2 for 0 < t < 1. This is the

Euler representation of hypergeometric functions.

Proof.

2F1(α, β, γ; z) =

∞∑
n=0

(β)n
(γ)n

(α)nz
n

n!

=
∑
n

Γ(γ)Γ(β + n)

Γ(β)Γ(γ + n)︸ ︷︷ ︸
Γ(γ)
Γ(β)

B(n+β,γ−β)
Γ(γ−β)

(α)nz
n

n!

=
Γ(γ)

Γ(β)Γ(γ − β)

∑
n

∫ 1

0

tβ+m−1(1− t)γ−β−1

(
−α
n

)
(−z)ndt

=
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1
∑
n

(
−α
n

)
(−tz)n︸ ︷︷ ︸

=(1−tz)−α

dt as |z| < 1

where the expansion for (1− tz)−α is valid for 0 < zt < 1 and z real. ...

In the Euler representation of 1F2, the integrand has a branch point at
z = 1

t for 0 ≤ t ≤ 1. In the z-plane, as t varies, the locus of 1
t is the real axis

greater than 1. Thus we can analytically continue 2F1 to C \ [1,∞).
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7.2.3 Solution to connection problem

Suppose Re(γ − α− β) > 0,Re γ > Reβ > 0. Then

2F1(α, β, γ; 1) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−α−β−1dt

=
Γ(γ)

Γ(β)Γ(γ − β)
B(β, γ − α− β)

=
Γ(γ)

Γ(β)Γ(γ − β)

Γ(β)Γ(γ − α− β)

Γ(β + γ − α− β)

=
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

This is called the Gauss-Kummer formula. This formula holds by analytic
continuation with γ 6= 0,−1,−2, . . . and γ − α− β 6= 0,−1, . . ..

Recall that we have the fundamental solution to the Gauss hypergeometric
equation. We write them in row matrices [u

(0)
1 , u

(0)
2 ] = Y (0) etc. The main

problem is to compute the connection matrices C01 and C0∞ where Y (0) =
Y (1)C01, Y

(0) = Y (∞)C0∞. We choose branch cuts so | arg z| < π, | arg(1−z)| <
π. As an example computation, suppose C01 = ( a cb d ). Then

u
(0)
1 (z) = au

(1)
1 (z) + bu

(1)
2 (z).

Substitute z = 1 into the equation and we get

2F1(α, β, γ; 1) = a · 2F1(α, β, α+ β − γ + 1; 0)︸ ︷︷ ︸
=1

+b · 0

where for the last term to be 0 we require Re(γ − α − β) ≥ 0. Apply Gauss-
Kummer we can find a. By substituting z = 0 we get

1 = a · 2F1(· · · ; 1) + b(1− 0)γ−α−β 2F1(· · · ; 1).

Note as z → 1, 1− z → 0 so arg(1− z) → 0 so the exponential term goes to 1.
In this way we can solve for b.

This illustrates the general strategy of solving the connection problem: we
find an integral representation for the solutions, analytically continue them and
evaluate them in some “common point” z0.

7.2.4 Monodromy

Since the connection matrices are known, we can compute monodromy using
from local representations: under z 7→ ze2π1, recall that u(0)1 has no monodromy
and u

(0)
2 has the exponential term z1−γ , we have

Y (0) 7→ Y (0)

(
1

e−2πiγ

)
Similarly

Y (1) 7→ Y (1)

(
1

e2πi(γ−β−a)

)
Y (∞) 7→ Y (∞)

(
e2πiα

e2πiβ

)
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7 Hypergeometric equation

Denote the local monodromy matrices by M̃0 etc, we have that for Y (0) the
monodromy matrices are

M0 = M̃0,M1 = C−1
01 M̃1C01,M∞ = C−1

0∞M̃∞C0∞.

We present here another approach that works for Gauss hypergeometric
equations. Choose as fundamental system u

(0)
1 , u

(1)
1 (they are linearly indepen-

dent). Then immediately we know the monodromy matrices have the form

M0 =

(
1 ∗
0 ∗

)
,M1 =

(
∗ 0
∗ 1

)
Recall that the exponents are 1− γ at z = 0 and γ − α− β at z = 1, we have

M0 =

(
1 x
0 e2πi(1−γ)

)
,M1 =

(
e2πi(γ−α−β) 0

y 1

)
for some x and y. As M1M0 = M−1

∞ and M−1
∞ has eigenvalues e−2πiα, e−2πiβ ,

taking trace we can find xy (in terms of α, β and γ). Note that this is all we
can extract: if we change the fundamental system by a linear transformation to
[ru

(0)
0 , su(u)] then the monodromy matrix Mj transforms to(

r
s

)−1

Mj

(
r

s

)
=

(
∗ ∗ rs
∗ sr ∗

)
Thus the invariant is xy and x, y individually have freedom (by diagonal

conjugation). We conclude by the following “rigidity” property of the Gauss
hypergeometric equation: the equation is equivalent to the characteristic expo-
nents, and the characteristic exponent determines monodromy (up to diagonal
conjugation) and vice versa. Thus in turn the equation and the monodoromy
determine each other.

equation ↔ characteristic exponent ↔ monodromy

7.3 Some further results
Companion system Let y = (y1, y2)

T where y1 = u, y2 = (z − 1)u′. Then y
satisfies the following system

dy

dz
= (

1

z

(
0 0

−αβ −γ+

)
︸ ︷︷ ︸

A0

+
1

z − 1

(
0 1
0 γ − α− β

)
︸ ︷︷ ︸

A1

)y

The eigenvalues of A0 are 0,−γ, the eigenvalues of A1 are 0, γ − α− γ and the
eigenvalues of A∞ = −A0 −A1 are α, β

Monodromy

Theorem 7.5. Any irreducible representation

π1(C \ {0, 1,∞}) → GL(2,C)

is realised by the Guass equation.
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7 Hypergeometric equation

Theorem 7.6. Any irreducible represdentation is realised by the monodromy
of

dy

dz
= (

1

z

(
∗ ∗
0 ∗

)
+

1

z − 1

(
∗ ∗
0 ∗

)
)y.

Theorem 7.7. Any 2× 2 Fuchsian system

dy

dz
= (

A0

z
+

A1

z − 1
)y

with an irreducible monodromy is meromophically equivalent to the Gauss
equation.
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8 Poincaré asymptotics

8 Poincaré asymptotics
As a motivating example, consider the system, which is confusingly also called
the Euler equation,

y′ +
1

z2
y =

1

z
.

Note that z = 0 is non-Fuchsian. It has homogeneous solution yh(z) = ce1/z.
By variation of parameters, subsitute yp(z) = c(z)e1/z into the equation and
solve to get

c(z) =

∫ z

z0

e−1/s

s
ds

so by a change of variable

yp(z) = e1/z
∫ 1/z0

1/z

e−t

t
dt.

We can take z > z0 > 0. If we take the limit z0 → 0+, we get

y(z) = e1/z
∫ ∞

1/z

e−t

t
dt

which is real for z > 0 and can be analytically continued to Re z > 0. We call
the integral

Ei(z) =

∫ ∞

z

e−t

t
dt

the exponential integral. The solution y(z) = e1/2 Ei(z) is called Euler function
and is denote by E(z).

We look for a formal solution yf (z) =
∑∞
m=0 cmz

m. Substitute into the
equation and solve to get

yf (z) =
∑
m

(−1)mm!zm+1

which is divergent. But E(z) ∼ yf (z) when z → 0 in − 3π
2 < arg z < 3π

2 ,
meaning that |

∑N
m=0 cmz

m − E(z)| is

• small for |z| small and N fixed, and

• small for large N and |z| fixed.

Poincaré posed the following problem. Take as example two series
∞∑
n=0

1000n

n!
,

∞∑
n=0

n!

1000n
.

The first is convergence while the second is convergent. The question is: suppose
we want to compute the partial sum of the first, say, 1000 terms. However terms
do we need to sum so that the error is within 10−6? In other words for what
N ≤ 1000 we have

1000∑
n=0

sn −
N∑
n=0

sn < 10−6?
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With the help of Stirling formula

m! ∼ mm
√
2πme−m,

for the first series we need N = 1000 but for the second we need N = 3. Thus
Poincaré said that the second series, although divergent for mathematicians, is
“convergent” for astronomers.

Let s(α, β) = {z ∈ C̃ \ {0} : α < arg z < β} be an open sector (with vertex
z = 0 or z = ∞). We can also define analogously a closed sector s(α, β) by
using nonstrict inequalities.

Definition (asymptotic series). Let S be a sector with vertex at z = 0. Let
f : S → C be a function and

∑∞
k=0 akz

k be a formal series. We say f(z) is
asymptotic to the formal series, written f(z) ∼

∑∞
k=0 akz

k, for z → 0 in S if
for every closed subsector S′ ⊆ S and for every m ∈ N, exists C(m,S′) > 0
such that

|f(z)−
m∑
k=0

akz
k| ≤ C(m,S′)|z|m+1

for all z ∈ S′.
We say the asymptotic series is uniform in S if C(m,S′) does not depend

on S′.

Of course if S is closed then we only need to check S′ = S. The key point is
that if the sector is open then C(m,S′) may depend on S′ as S′ “approaches”
S.

Exercise. Verify that the definition above is equivalent to saying that for every
closed S′ ⊆ S,

1

zm
(f(z)−

m∑
k=0

akz
k) → 0

as z → 0 in S′.

At z = ∞, we say f(z) ∼
∑∞
k=0 akz

−k as z → ∞ in S if for every closed
S′ ⊆ S and every m ∈ N, exists C(m,S′) > 0 such that

|f(z)−
m∑
k=0

ak
zk

| ≤ C(m,S′)

|z|m+1

for z ∈ S′.
Some properties of asymptotic series:

1. if f has asymptotic expansion then it is unique. This is guaranteed by the
uniqueness of limit as a0 = limz→0,z∈S′ = a0 and inductively all am’s are
uniquely determined.

2. not all functions have asymptotic expansion in a given sector. For example
consider f(z) = e1/z and consider for example the sector S(−π

4 ,
π
4 ). Then

f(z) → ∞ as z → 0.

3.
∑
akz

k can be (is) asymptotic expansion of infinitely many functions.
For example the zero formal series is asymptotic to f(z) = e−

1
zσ ∼ 0 in

− π
2σ < arg z < π

2σ for all σ > 0, as lim f(z)
zm = 0 for all m in the sector.
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Proposition 8.1. Suppose f(z) ∼
∑∞
k=0 akz

k in S. If the opening angle is
> 2π and f is single-valued at z = 0 then the series converges.

Proof. We know a0 = limz→0,z∈S f(z). The limit is along any direction in
C \ {0}, so z = 0 is a removable singularity. Thus f is holomorphic at z = 0 so
has a convergent Taylor expnansion which necessarily coincide with the given
series.

Wasow: Asymptotic expansions for ODE
Algebraic properties

1. Let f(z) ∼
∑∞
k=0 akz

k, g(z) ∼
∑∞
k=0 bkz

k as z → 0 in S. Let α, β ∈ C,
then

αf(z) + βg(z) ∼
∞∑
k=0

(αak + βbk)z
k

f(z) · g(z) ∼
∞∑
`=0

(
∑̀
k=0

akb`−k)z
`

1

f(z)
∼

∞∑
k=0

ckz
k if a0 6= 0, where

∑
akz

k ·
∑

ckz
k = 1

2. Suppose f ∼
∑
akz

k in Sf , g(z) =
∑
bkz

k in Sg. Let f̃(z) = f(z)− a0 ∼∑∞
k=1 akz

k. Assume f̃(Sf ) ⊆ Sg. Then

g(f̃(z)) ∼
∞∑
h=0

bh(

∞∑
k=1

akz
k)h

in Sf .

Analytic properties:

1. Suppose f is holomorphic in S with centre z = 0 and f(z) ∼
∑
akz

k in
S. Then ∫ z

0

f(ζ)dζ ∼
∑

ak

∫ z

0

ζkdζ =
∑ ak

k + 1
zk+1

in S.
If f(z) ∼

∑ ak
zk

as z → ∞ then∫ z

∞
(f(ζ)− a0 −

a1
ζ
dζ) ∼

∞∑
k=2

ak

∫ z

∞

dζ

ζk
=

∞∑
k=2

ak
1− k

z1−k

as z → ∞ in S.

2. Suppose f(z) is holomorphic on S at z = 0 and f(z) ∼
∑
akz

k in S, a
sector with interior (i.e. not a ray). Then

df(z)

dz
∼ kakz

k−1

in every closed subsector S′ ⊆ S.
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3. Note that if we add the condition that f(z) has a uniform asymptotic
series, it is not true that we get a uniform asymptotic for df(z)

dz .

4. Suppose f(z) ∼
∑
akz

k as z → 0 in S, a sector with interior. Then the
limit limz→0 f

(k)(z) exists and equals to k!ak in every S′ ⊆ S.

5. Suppose f(z) is holomorphic in S and assume limz→0 f
(k)(z) = fk. Then

f(z) ∼
∑ fk

k!
zk

as z ∈ 0 in S.

Theorem 8.2 (Borel-Ritt). For every formal series
∑∞
k=0 akz

k and every
sector S (open or closed) at z = 0, there exists f(z) holomorphic in S such
that f(z) ∼

∑
akz

k in S.

example of computation of asymptotic expansion Recall the exponen-
tial integral

Ei(z) =

∫ ∞

z

e−t

t
dt, z > 0.

Proposition 8.3. The exponential integral defines an analytic function in
{z ∈ C \ {0} : −π < arg z < π}. It is real for z > 0 and

Ei(z) = − ln z − γ −
∞∑
n=1

(−1)n+1

n · n!
zn

where ln z is the principal branch, i.e. ln z ∈ R for z > 0, γ is the Euler-
Mascheroni constant, and the series converges uniformly in every compact
subset of C.

Proof.

Ei(z) =

∫ z

1

e−t

t
dt+

∫ 1

z

e−t

t
dt

= c1 +

∫ 1

z

∞∑
0

(−1)ntn−1

n!
dt

= c1 +

∫ 1

z

dt

t
+

∞∑
n=1

(−1)n

n!

∫ 1

z

tn−1dt

= c2 − ln z +

∞∑
n=1

(−1)n+1

n!

zn

n

so Ei(z) + ln z is analytic at z = 0. As Ei(z) ∈ R for z > 0, ln z takes the
principal branch.

To find c2, integrate by parts

Ei(z) = −e−z ln z +
∫ ∞

z

e−t ln dt
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so

c2 = lim
z→0

(Ei(z) + ln z) = lim
z→0

[(1− e−z ln z) +

∫ ∞

z

e−t ln tdt] =

∫ ∞

0

e−t ln t

which we call −γ.

Exercise. Show

−γ =
d ln Γ(z)

dz
|z=1,−γ =

∫ ∞

0

e−t ln tdt.

From the expression we also know that the analytic continuation of Ei(z) on
C̃ \ {0} has monodromy

Ei(ze2πi) = Ei(z)− 2πi.

Proposition 8.4. Ei(z) defined on C̃ \ {0} has the following asymptotic
representation:

zez Ei(z) ∼
∞∑
n=0

(−1)nn!z−n

as z → ∞ in S = {z ∈ C̃ \ {0} : − 3π
2 < arg z < 3π

2 .

Proof. ∫ ∞

z

e−t

t
dt =

e−z

z
−
∫ ∞

z

e−t

t2
dt

=
e−z

z
− e−z

z2
+ 2

∫ ∞

z

e−t

t3
dt

= · · ·

=
e−z

z
[

m∑
n=0

(−1)nn!

zn
+ (−1)m+1(m+ 1)!z

∫ ∞

z

ez−t

tm+2
dt︸ ︷︷ ︸

Rm(z)

]

so

zez Ei(z) =

m∑
n=0

(−1)nn!

zn
+Rm(z).

Check |Rm(z)| ≤ C(m)|z|m+1:

|Rm(z)| = (m+ 1)!|z|
∣∣∣∣∫ ∞

z

ez−t

tm+2
dt

∣∣∣∣
= (m+ 1)!|z|

∣∣∣∣ 1

zm+2
− (m+ 2)

∫ ∞

z

ez−t

tm+3
dt

∣∣∣∣
≤ (m+ 1)!|z|−m−1 + (m+ 2)!

∣∣∣∣∫ ∞

z

ez−t

tm+3
dt

∣∣∣∣
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8 Poincaré asymptotics

For z > 0, we have estimate∣∣∣∣∫ ∞

z

ez−t

tm+3
dt

∣∣∣∣ ≤ ∫ ∞

z

dt

tm+3
=
z−m−2

m+ 2

so
|Rm(z)| ≤ 2(m+ 1)!|z|−m−1

as desired.

Exercise. Show the asymptotic series is valid on −π ≤ arg g ≤ π, by deriving

|Rm(z)| ≤ (2(m+ 1)! + (m+ 2)π)|z|−m−1.

extension of asymptotics outside −π ≤ arg z ≤ π We have asymptotic
series for

ez Ei(z),− π ≤ arg z ≤ π

ez Ei(ze2πi),− 3π ≤ arg z ≤ −π
ez Ei(ze−2πi),π ≤ arg z ≤ 3π

Note that the domains overlap. Recall

ez Ei(z) = ez Ei(ze±2πi)± 2πie2

Finally note that ez ∼ 0 as z → ∞ in π
2 + 2kπ < arg z < 3π

2 + 2kπ. Thus

ez Ei(z)− ez Ei(ze±2πi) ∼ 0

in the sector. Set k = 0 and −1 and apply to the three expansions, we get the
sector − 3π

2 < arg z < 3π
2 .

Note. Note the error term

|Rm(z)| ≤ (2(m+ 1)! + (m+ 2)π)︸ ︷︷ ︸
Cn

|z|−m−1.

is typical of asymptotic expansions:

1. ...
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9 Singularities of the second kind

9 Singularities of the second kind
We will assume the singularity is at z = ∞ so we study the system

dy

dz
= zr−1A(z)y

where A(z) is holomorphic for |z| ≥ R and A(z) =
∑ Ai

zi for |z| ≥ R. If r = 0
then it is a Fuchsian singularity, if r ≥ 1 then it is a singularity of the seoncd
kind. We assume A(z) ∼

∑∞
i=0

Ai

zi in S = S(α, β) and |z| > R. The object we
are dealing with in tis chapter is the solution

y(z) = G(z)zB exp(Λ(z))

where G(z) is analytic in a sector at ∞ and has an asymptotic expansion in
z−1, Λ(z) is a polynomial in z.

9.1 Formal simplification
Suppose A(z) =

∑∞
i=0

Ai

zi where A0 has at least two distinct eigenvalues. Divide
the eigenvalues of A0 in two sequences (λ1, . . . , λp), (λp+1, . . . , λm) which are
disjoint. We can find G0 invertible such that G−1

0 A0G
0 is block diagonal with

each block having the respective sequence of eigenvalues. We look for a gauge
transformation Y (z) = G(z)Ỹ (z), G(z) = I +

∑∞
j=1Gjz

−j such that

dỸ

dz
= zr−1B(z)Ỹ

which is “simpler”.
Substitute into the differential equatation, we get

G′ỹ +GỸ ′ = zr−1AGỸ ,

i.e.
z1−rG′ +GB = AG.

Substitute G =
∑
Giz

−i, A =
∑
Aiz

−i, B =
∑
Biz

−i,

• ` = 0: set G0 = I,B0 = A0,

• 1 ≤ ` ≤ r: A−G` −G`A0 = (
∑`−1
j=1(GjB`−j −A`−jGj)−A`) +B`

• r+1 ≤ `: A−G`−G`A0 = (
∑`−1
j=1(GjB`−j−A`−jGj)− (`−r)G`−r)+B`

Thus the recurrence relation for G`, B` is

A0G` −G`A0 = K` +B`

where K` is known from previous steps.
Recall

A0 =

(
∗ 0
0 ∗

)
, B` =

(
B

(`)
11 B

(`)
12

B
(`)
21 B

(`)
22

)
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9 Singularities of the second kind

etc so we get Sylvester equation

A
(0)
ii G

(`)
ij −G

(`)
ij A

(0)
jj = K

(`)
ij +B

(`)
ij .

For i = j, take B
(`)
ii = −K(`)

ii . Then G
(`)
ii is the solution of a homogeneous

equation so has a nontrivial solution (we can choose G(`)
ii = 0). For i 6= j, take

B
(`)
ij = 0. As A(0)

ii and A(0)
jj do not have common eigenvalues, there is a solution

G
(`)
ij .

In conclusion, we can find gauge transformation G(z) such that Y (z) =
G0G(z)Ỹ (z) satisfies

dỸ

dz
= zr−1B(z)Ỹ (z)

where B(z) is block diagonal.
The block diagonal system admits fundamental matrix solution

Ỹ (z) =

(
Ỹ1(z) 0

0 Ỹ2(z)

)
and

dỸi
dz

= zr−1Bii(z)Ỹi.

We can repeat the above computation for Ỹi if B(0)
ii has at least two distinct

eigenvalues. By repeated applications we conclude that the following holds:

Theorem 9.1. If A0 has s ≤ n distinct eigenvalues λ1, . . . , λs, we can
formally determine G(z) such that Y = G0G(z)Ỹ gives

dỸ

dz
= zr−1B(z)Ỹ

where B(z) is block diagonal with s blocks.

Analytic issue of the solution is addressed by Malmquist (1944) and Sibuya
(1962) (see Wasow). We present an easier result.

Theorem 9.2.

1. Let A(z) be analytic for |z| > R with Taylor series
∑∞
i=0Aiz

−i, abso-
lutely convergent on |z| ≥ ρ > R.

2. It suffices to suppose that A(z) is analytic in a sector S for opening
angle < π

r , |z| > R with A(z) ∼
∑
Aiz

−i in S as z → ∞.

Suppose A0 has eigenvalues divided into two disjoint sequences. Then exists
R1 ≥ R and actual solutions G(z), B(z) to

z1−rG′ +GB = A(z)G

analytic for |z| ≥ R1 in S with opening < π
r .
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9 Singularities of the second kind

Remark. Sibuya proved that the result holds for S with opening π
r + ε for

ε > 0.

Now supposeA0 has pairwise distinct eigenvalues λ1, . . . , λn. ThenG−1
0 A0G0 =

Λ = diag(λ1, . . . , λn), B(z) = diag(b1(z), . . . , bn(z)) is diagonal, bk(z) ∼
∑
b
(k)
` z−`

with b
(k)
0 = λk in some S. Then the sysmte

dỸ

dz
= zr−1B(z)Ỹ

so exists a fundamental matrix solution Ỹ (z) = diag(y1(z), . . . , ym(z)): by sep-
aration of variables

y(z) = exp(

∫ z

a

tr−1b(t)dt)

where the integration should be taken on a path that lies in S.∫ z

a

tr−1b(t)dt =

∫ z

a

tr−1(b0 +
b1
t
+ · · ·+ bn

tn
)dt+

∫ z

a

tr−1(b(t)−
r∑
j=0

bj
tj
)︸ ︷︷ ︸

•

dt

= q(z) + bn(z) + const +

∫ z

a

tr−1(b(t)−
r∑
j=0

bj
tj
)dt

The term (•) vanishes in S as 1
t2 . Thus the limit of the integral as z → ∞ exists,

so ∫ z

a

tr−1(b(t)−
r∑
j=0

bj
tj
)dt = C +

∫ z

∞
tr−1(b(t)−

r∑
j=0

bj
tj
)︸ ︷︷ ︸

h(z)

dt

and

h(z) ∼
∫ z

∞

∞∑
`=1

b`+r
t`+1

dt =

∞∑
`=1

∫ z

∞

b`+r
t`+1

dt =

∞∑
`=1

b`+r
−`z`

Thus in conclusion,

y(z) = const · zbreq(z)eh(z) = f(z)zbreq(z)

wher f(z) is analytic in S. We can choose f(z) ∼ 1 +
∑∞
k=1 fkz

−k and

Y (z) = G0G(z)

f1(z) . . .
fn(z)


︸ ︷︷ ︸

G(z)

zBreQ(z)

where
Q(z) =

B0

r
zr +

B1

r − 1
+ · · ·+Br−1z.

G(z) ∼ F (z) = I +
∑∞
k=1

Fk

zk
as z → 0.
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9 Singularities of the second kind

Definition (formal fundamental solution). YF (z) = G0F (z)z
BreQ(z) is

called the formal fundamental solution.

Remark. G(z) ∼ F (z) asymptotically so Y (z)z−Bre−Q(z) ∼ G0F (z). By abuse
of notation we will write Y (z) ∼ YF (z).

Proposition 9.3.

• Suppose Λ has been fixed. Then B0 = Λ, B1, . . . , Br are uniquely
determined.

• Suppose Λ and G0 have been fixed. Then YF (z) is uniquely determined.

Proof. Any formal solution has the form YF (z) · C. Then

YF (z)C = G0(I +

∞∑
k=1

Fkz
−k)zBreQ(z)C

= G0(I +

∞∑
k=1

Fkz
−k)CzC

−1BrCeC
−1Q(z)C

= G0C(I +

∞∑
k=1

C−1FkCz
−k)zC

−1BrCeC
−1Q(z)C

We are requiring that C−1ΛC = Λ. Since Λ has distinct eigenvalues, this is
equivalent to C being diagonal so C−1BjC = Bj for j = 1, . . . , r. This proves
the first statement.

If in addition G0 is fixed, G0C = G0 so C = I.

Now we adpot a different notation. Let B1 = Λ1, . . . , Br = Λr. Then

zBreQ(z) = exp(
Λr
r
zr + · · ·+ Λr−1z + Λr ln z) =: eΛ(z).

Remark. Though YF is unique, this is not the case for Y (z). In Wasow, the
sector opening < π

r . If we increase the opening we can prove uniqueness.

Proposition 9.4. Two systems

dY

dz
= zr1−1A1(z)Y,

dX

dz
= zr2−1A2(z)X

are formally holomorphically equivalent if and only if π1 = π2 and they have
the same Λ,Λ1, . . . ,Λr where Λ is a digonal form of both A

(1)
0 and A

(2)
0 .

These are called formal invariants.

Proof. Suppose they have the same formal invariants. Then

YF (z) = G
(1)
0 F1(z) exp(

Λ

r1
zr1 + · · ·+ Λr1 ln z)

XF (z) = G
(2)
0 F2(z) exp(

Λ

r1
zr1 + · · ·+ Λr1 ln z)
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9 Singularities of the second kind

Then XF (z) = H(z)YF (z) where H(z) = G
(2)
0 F2(z)(G

(1)
0 F1(z))

−1.
Conversely suppose X(z) = H(z)Y (z) wher detH0 6= 0. Let Λ be a diagonal

form of A(1)
0 . Then exists

YF (z) = G
(1)
0 F1(z) exp(

Λ

r1
zr1 + · · ·+ Λr1 ln z)

so by assumption

XF (z) = Hz(z)G
(1)
0 F1(z)︸ ︷︷ ︸

F(z)

exp(
Λ

r1
zr1 + · · ·+ Λr1 ln z).

The equation for XF is

dXF

dz
= (

dF
dz

F−1+F(Λzr1−1+· · ·+Λr1
z

)F−1)XF = zr1−1(F0ΛF−1
0︸ ︷︷ ︸

A
(2)
0

+
∑ A

(2)
i

zi
)XF

so A(2)
0 has diagonal form Λ, r2 = r1 and also Λ1, . . . ,Λr are the same.

9.2 Case of non-distinct eigenvalues

Theorem 9.5. If A(z) is holomorphic in S, A(z) ∼
∑
Aiz

i then for every
“sufficiently small” subsector of S there is fundamental matrix solution

Y (z) = G(z)zLeQ(z)

where Q(z) is diagonal polynomial in z1/N for some natural number N , L
is inte general not diagonal, G(z) ∼ zk0/N

∑∞
j=0

Fj

zj/N
in some small sector

for k0 ∈ Z. In general detF0 = 0. z = ∞ is called a ramified singularity.

Example: Airy equation The Airy equation is the equation

u′′ = zu.

By a substitution

dy

dz
=

(
0 1
z 0

)
y = z(

(
0 0
1 0

)
+

1

z

(
0 1
0 0

)
)y.

By the gauge transformation y = ( 0 1
1 0 )y1, we write

dy1
dz

= z(

(
0 1
0 0

)
+

1

z

(
0 0
1 0

)
)y1

from which we see that there are two identical eigenvalues λ1 = λ2 = 0.
If we apply the shearing transformation y1 =

(
1 0
0 z−1/2

)
y2 so

dy2
dz

= z1/2(

(
0 1
1 0

)
+

1

2z3/2

(
0 0
0 1

)
)y2
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9 Singularities of the second kind

so at the cost of a fractional power we now have two distinct eigenvalues. Let
t = cz1/2 so d

dz = c2

2
1
t
d
dt . Set c = 21/3,

dY2
dt

= t2(

(
0 1
1 0

)
+

1

t3

(
0 0
0 1

)
)y2

This has Poincaré rank 3. Eigenvalues of the term in the parethesis is

±1 +
1

2t3
+O(

1

t6
)

so
Y2(z) = G0G(t)t

Λ3 exp(
Λ

3
t3 +

Λ1

2t
)

so

Y (z) =

(
0 1
1 0

)(
1 0
0 z−1/2

)(
−γ1 γ2
γ1 γ2

)
G(z1/2)z

1
4 I exp(−2

3
z3/2

(
1 0
0 −1

)
).

9.3 Stokes phenomenon
Now back to the case A0 with distinct eigenvalues. Suppose Y (z) ∼ YF (z) in
S. We can extend asympototics to S ⊇ S′ but in general we meet “separating
rays” beyond which the asymptotics no longer holds. This is called Stokes
phenomenon. The ray is called Stokes ray.

Exercise. As z → ∞,

f(z) = 1 + ez =


∼ 1 Re z < 0

oscilates Re z = 0

∞ Re z > 0

Consider the λ-plane. Choose η ∈ R such that arg(λj − λk) 6= η (mod π).
This is called an admissible direction in the λ-plane. Take any determination of
arg(λj − λk), for example η − 2π < ˆarg(λj − λk) < η for j 6= k.

Definition (Stokes ray). The Stokes rays associated with (λj , λk)j 6=k are
infinitely many rays in C̃ \ {0} such that

Re((λj − λk)z
n) = 0, im((λj − λk)z

n) < 0.

Proposition 9.6. To (λj , λk) the associated rays are

arg z = θjk + 2π
N

r

for all N ∈ Z, θjk = 1
r (

3π
2 − ˆarg(λj − λk)).

Proof. Exercise.
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9 Singularities of the second kind

There is an even number 2µ of possible values of ˆarg(λj−λk). Label ˆarg(λj−
λk) with ην̃ for 0 ≤ ν̃ ≤ 2µ− 1. If η is an admissible direction in λ-plane,

η > η0 > η1 > . . . η − π > ηµ > · · · > ·2π−1 > η − 2π.

Let π = 3π
2 − η. Stokes rays have directions τν̃ = ( 3π2 − ην̃)

1
r and they satisfy

τ < τ0 < τ1 < · · · < τµ−1 < τ +
π

2
< τµ < · · · < τ2π−1 < τ +

2π

r
.

τ is called admissible direction in the z-plane.
From the proposition all Stokes rays are τν = τν̃ + 2Nπ

r . In fact, we can
express all Stokes rays by

τν̃+Nµ := τν̃ +N
π

r

for 0 ≤ ν̃ ≤ µ− 1.
One can also conclude that a section not containing a Stokes ray has opening

< π
r .

Lemma 9.7. Suppose Y (z) is a fundamental matrix solution such that
Y (z)ỸF (z) as z → ∞ in S. Assume exists S̃ that does not contain Stokes
rays and S ∩ S̃ 6= ∅, then Y (z) ∼ YF (z) in S ∪ S̃.

Proof. S̃ has central opening < π
r . By Wasow exists (̃z) ∼ YF (z) in S̃. Then

Y (z) = Ỹ (z)C for some C. As Y (z) = G0G(z)eΛ(z), Ỹ (z) = G0G̃(z)eΛ(z) so

eΛ(z)Ce−Λ(z) = G̃(z)−1G(z)

but G and G̃ has exactly the same same asymptotic expansion in S ∩ S̃ so RHS
∼ I as z → ∞. Then

eΛi(z)−Λj(z)Cij = exp

(
λi − λj

r
zr(1 +O(

1

z
))

)
Cij ∼ δij . (∗)

By hypothesis in S ∩ S̃ there are no Stokes rays so the sign of Re(λi − λj)z
r is

fixed in S ∩ S̃, and also in S̃. Thus (∗) holds in S̃ and

G(z) = G̃(z) eΛ(z)Ce−Λ(z)︸ ︷︷ ︸
∼I

so the asymptotic expansion holds in S ∪ S̃.

As a corollary we have

Theorem 9.8 (extension). Let Y (z) be a fundamental matrix solution which
by Wasow’s result satisfies Y (z) ∼ YF (z) in an S containing a set of basic
Stokes rays. Then Y (z) ∼ YF (z) in an open sector S containing S. S
extending up to the nearest Stokes rays outside S.
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9 Singularities of the second kind

Theorem 9.9 (uniqueness). Let Y (z) be a fundamental matrix solution
such that Y (z) ∼ YF (z) in a sector containing a set of basic Stokes rays.
Then Y (z) is unique.

Proof. Suppose exists Ỹ (z) ∼ YF (z) in the sector. Then as usual Y (z) = Ỹ (z)C
and

eΛ(z)Ce−Λ(z) = G̃(z)−1G(z) ∼ I

so
eΛi(z)−Λj(z)Cij ∼ δij . (∗)

Since the sector contains basic rays, Re(λi − λj)z
n changes signas z varies in

the sector. Thus there exists a subsector where e(λi−λj)z
r → ∞ as z → ∞, so

(∗) holds if and only if Cij = δij so C = I.

Remark. We can take the sector to be S in the extension theorem.

9.4 Stokes matrix
Let Y1(z), Y2(z) are fundamental solutions such that Yj(z) ∼ YF (z) in Sj such
that the opening of Sj > π

r . Suppose S1 ∩ S2 6= ∅ and does not contain Stokes
rays.

Definition (Stokes matrix). The Stokes matrix is the connection matrix S
defined by

Y2(z) = Y1(z)S

for z ∈ S1 ∩ S2 (and analytically exnteded in z).

Exercise. Consider Stokes rays associated with (λj , λk). Prove that for arg z =
θjk +

2πN
r + δ, δ ∈ R (taken modulo 2π

r ),

Re(λj − λk)z
n


< 0 −π

r < δ < 0

= 0 δ = 0,±π
r

> 0 0 < δ < π
r

Definition. If in an open sector Re(λj − λk)z
n > 0 we write λj � λk and

say λj is dominant. If Re(λj − λk)z
n < 0 then write λj ≺ λk.

If S does not contain Stokes rays then ≺ defines an ordering in {λ1, . . . , λn}.

Proposition 9.10. Suppose Y2 = Y1S for some Stokes matrix S in S1∩S2.
Then S has the following form: Sjj = 1 for all j, Sjk = 0 for λj � λk in
S1 ∩ S2,

Proof. As usual write Ya(z) = G0Ga(z)eΛ(z). Then

eΛj(z)−Λk(z)Sjk ∼ δjk

This holds if and only if Sjj = 1 and Sjk = 0 for Re(λj − λk)z
n ≥ 0, which is

precisely the definition of λj � λk (Sjk can be any number for Re(λj −λk)zn <
0).
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9 Singularities of the second kind

Let Sν = S(τν−µ, τν+1) be the open sector containing basic rays τν−µ+1, . . . , τν .
Let Sν+µ = S(τν , τν+µ+1) and so on. On each sector Sν+hµ, h ∈ Z, exists a
unique solution Yν+hµ(z) ∼ YF (z). There are Stokes matrices relating overlap-
ping sector, which we label using

Yν+(h+1)µ(z) = Yν+hµSµ+hµ.

Exercise. Show that (Sν)jk = 0 if and only if (Sν+µ)jk = 0, if and only if
(Sν−µ)kj = 0 (so they are upper/lower triangular alternating in ν).

9.5 Monodromy
Consider the formal solution YF (z) = G0F (z)e

Λ(z). As Λ(z) can be written as
a polynomial plus Λr log z,

YF (ze
2πi) = G0F (z)e

Λ(z)e2πiΛr .

We call e2πiΛr formal monodromy.
Given z ∈ Sν , zν 7→ zν+2rµ = zν · e2πi ∈ Sν+2rµ.

Theorem 9.11.

1. Yν+2rµ(zν+2πµ) = Yν(zν) · e2πiΛr .

2. Yν+2rµ(z) = Yν(z)SνSν+µ · · ·Sν+(2r−1)µ.

3. Yν(ze2πi) = Yν(z)e
2πiΛr (Sν · · ·Sν+(2r−1)µ)

−1 = Yν(z)[M
(ν)
∞ ]−1.

Proof. 1 follows from formal monodromy and uniqueness of asymptotics. 2 is
repeated application of Stokes matrix. Combining them gives 3.

Proposition 9.12. For every ν ∈ Z, we have the relation

Sν+2rµ = e−2πiΛrSνe
2πiΛr .

Proof.

Yν+(2r+1)µ(zν+(2r+1)µ) = Yν+µ(zν+µ)e
2πiΛr

= Yν(zν)Sν · e2πiΛr

LHS can also be expressed as

Yν+2rµ(zν+(2r+1)µ)Sν+2rµ = Yν(zν)e
2πiΛrSν+2rµ.

Theorem 9.13.

1. Λr, Sν , Sν+µ, . . . , Sn+(2r−1)µ generated Sν+hµ for all h ∈ Z.

2. They are sufficient to compute the monodromy at ∞ of every Yν+hµ.
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9 Singularities of the second kind

Definition (complete set of Stokes matrices). Sν , . . . , Sν+(2r−1)µ is called
a complete set of Stokes matrices. Sν , . . . , Sn+(2r−1)µ,Λr are called mon-
odromy data at z = ∞.

Theorem 9.14. dY
dz = zr−1A(z)Y, dỸdz = zr̃−1Ã(z)Ỹ are holomorphically

equivalent if and only if = r̃, have the same Λ,Λ1, . . . ,Λr, and for some ν0
they have the same Sν0 , . . . , Sν0+(2r−1)µ (this is true for all ν).
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