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1 Introduction

1 Introduction

solve integrable systems, physics problems such as Schrédinger equation.
Bessel equation
ZQy// + zy’ 4 (22 _ I/2)y =0

where v € C.
Airy

Gauss equation
21=2)y"+(y—(a+B+1)2)y —aBy =0

where «, 8,7 € C.
The Bessel equation occurs in solving the Laplace equation Ve = 0, and the
Gauss equation occurs when solving the Schrodinger equation.
More generally, using the notation y("™) = Cdlz—,ff, a linear ODE of order m has
the form
Y™ a1 (2)y ™Y - 4 an(2)y = b(2).

As we will see, this is a special case of a system of ODEs

a11(z) a1m(2)

an1(z) o apm(2)

A(z)

and y can be either a vector or a matrix. This is a linear system of order 1.
What if the matrix is not analytic? That is, if the a;;’s have poles in the
complex plane? The question is

¢ locally, how to represent the solutions closed to singularities?
e globally, how to connect the solutions around different singularities?

Another theme is the study of monodromy propertie: if we take a solution
and take a loop around a singularity, the solution will transform under y(z) —
y(z)M,, where M, is the monodromy matriz. We will see the result depends
only on the homotopy class of the path, and can be described by the monodromy

group.
If we have an ODE where the matrix depends on parameters
dY
— = Az, t1,...,t,)Y,
dz (27 1, 5 p) )

then not only will the solution Y'(z,t) depends on the parameters ¢, but also
will the singularities and the monomromy matrix M, (). We will in particular
study monodromy “data” that do not depend on t. This is called monodromy
preserving deformation.

We may also require

oy _
oty



1 Introduction

subject to the compatibility conditions

o’y %Y
Ot;0t,  Otyot;
oy 0%V

9z0t;  Ot;0z

These compatibilities are nonlinear differential equations for A and €;’s.
These compatibilies arise naturally in physics problems, such as

e the Painlevé equations,
o structure of manifolds (Dubrovin-Frobenius manifolds),
o random matrices

« nonlinear PDEs such as KdV and KP

1.1 Preliminaries

If f is holomorphic on a domain B then f is smooth. The reason is Cauchy
integral formula
1 f(Z
fz) = = L)

= . —
21 L2 =z

dz'

for v a simple counterclockwise path around z, and if w(2’) is continuous on ,

let N gy
Fm(z):/(w(z) <

2 — 2)™m 2mi

for m > 1, then F,,(z) is homolomorphic inside (resp. outside) ~ if z is inside

(resp. outside), and
dF,,

dz
Together we have given f holomorphic then

dmf  ml / )

dzm — 2mi ) (2 — z)mHl :

=mF+1(2).

and if f is holomorphic on the ball of radius R centred at zo then f(z) =
3" ex(z — 20)* absolutely convergent in any ball |z — 29| < r < R, a Taylor series
with radius of convergence R. Because of this we say f is analytic, meaning
there exists a Taylor series with finite radius, and holomorphic is the same as
analytic. The real counterpart is obviously false by considering the smooth
function f(z) = e 1/ ””2, x € R which does not have a Taylor series with positive
radius of convergence at the origin.

1.2 Convergence in the space of holomorphic functions

Let H(B) be the space of functions f : B — C analytic. Given a sequence of
functions {f,}nen where f,, € H(B), what does it mean that f, — f € H(B)?
The correct notion is locally uniform convergence.

Recall that if K C C is compact then (C(K), ||||o) is complete.
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compact sets contained in B such that
1. B=U," o Kn,

2. K, is contained in the interior of K1,

3. for all K C B compact, exists m such that K C K,,.

Lemma 1.2. Let (X,d) be a metric space. Define

pw:X xX —[0,1)

d(z,y)

(@, y) = 1+ d(z,y)

For f,g € C(B), define d,,(f,9) = ||f — 9llx,.,00, then

. dn(f,9)
(fg) =3 2 tL9)
PAI-g nz:% 1+dn(f.9)

subset of B, or equivalently on every K,.

it is complete.

1.3 Systems of ODEs

Let D C C"*! be a domain. We denote a point in D by (z,y1, - . .

then p is a distance and d, v define the same topology on X.

Lemma 1.1. Let B C C be a domain. There exists a sequence {K,}nen of

Theorem 1.3. (C(B),p) is a complete metric space. Given {fn} C C(B),
fm — [ in metric p if and only if f, — f uniformly on every compact

Theorem 1.4 (Weierstrass). H(B) C C(B) is closed in C(B). In particular

,Yn) and write

an analytic function f; : D — C as f;(2z,y1,...,yn) or simply f;(z,y).

dimension n
¥ = f(z,9),

meaning

1= f1(z,91,- -, Yn)

Yn = fn(z7y1,"'ayn>

that

1. (z,y(2)) € D and

Definition (system of ODEs). A system of ODEs of the first order and

is the problem of finding a domain B C C and y : B — C™ analytic such
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|2 9(2) = fzu(2)).

Definition (initial value problem). Let (z29,y0) € D. An initial value prob-
lem (ivp) is the problem of finding B 5 zp and a solution y(z) such that
y(20) = yo. It is usually written as

y/ = f(Z,y)7y(ZO) = Yo-

Remark. Suppose y = (y1,...,Yn). Then

n
yl = > Iyl
j=1

is a norm.
1.4 Existence and uniqueness theorem

Theorem 1.5 (existence and uniqueness theorem). Suppose f: D — C™ is
a vector valued function on a domain that is analytic and bounded, where

D ={(2,y) € C"" : [z — 2| < a,|y — yo| < b}
is a polydisc. Let M = sup,cp |f(z)|. The the ivp
v = f(z,9),y(20) = o

has a unique solution y(z) analytic on Uy(z0) = {z € C : |z— 29| < a} where
a = min{a,b/M}.

Exercise. Let y(z) = yo + fzzo J (¢ y(¢))dc.

1. If y(z) is an anlytic solution of the ivp then it also solves I.

2. Conversely if y(z) is an analytic solution of I then it also solves the ivp.

Proof. The proof uses Picard’s method of successive approximation: let
Yo(2) = Yo
imi1(2) =10+ [ £ (O
20

We first show y,,(2) is analytic on U,(z0). y1 is analytic because the integrand
is analytic (does not depend on the path) and

ly1(2) — 90| < / F(Coyo)ldIC] < M- |z — 20| < b.

Inductively v, is analytic and |y, (2) — yo(z)| < M|z — 20| < b.

Next for every K C D compact, the partial derivatives w are bounded

J
on K. Then f is Lipschitz continuous with respect to y, i.e. exists k > 0 such
that
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Let K(¢) = {|z — 20| < @ —¢}. Then
|Yn(2) = yol < M|z — zo| <b—eM.

Now using telescopic sum

We can estimate the sum by
2= wl < [ 1£Gu(O - FGwldi
<k [ )~ i

< kM/ ¢ — zoldlc]
20

_%k2|Z—ZQ|2
ok 2

using Lipschitz continuity. By induction we can show the sum coverges. Thus
on K(g), ym(z) converges uniformly to some y(z).

Next we show y(z) on K is an analytic solution of the ivp, or equivalently
the corresponding integral equation

y(2) = o + / O,

For reality check, note that |y(z) — yo| = limy— e |Yn(2) — yo| < b so the expres-
sion f(z,y(z)) makes sense. By uniform convergence

Jim f(z,ya(2)) = f(2,9(2))
SO
y(2) = lim yni1(2)
=yo+ nlijgo/ (¢ yn(€))dC

=1Yo +/ 1i_>m f (¢, ¥ (¢))d¢ uniform convergence
20 n o0

= +/Zf(C,y(C))dC

For ungiueness, suppose Y (z) is another solution defined on }|z — zg| <
a —e — €'} such that (2,Y(z)) € D. We show that on this domain Y (z) =
lim,, 00 Yn(z). This can be done using the integral equation to estimate |Y (z) —
yn(2)| inductively and show the limit is zero. Thus y(z) and Y'(z) conincides on
|z — 20| < @ —e—¢, s0 y(z) is the analytic continuation of Y (z).
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To move from compact subsets to the entire domain, let {¢,,} be a decreasing
sequence converging to 0 and let K, = {|z — 20| < a — e }. Then {K,,} is a
candidate for the sets in lemma 1. By construction

U " (2) = Y (2) |k,

SO as n — o0,
me (z) _ me+1 |Km

so y®&m+1 is the analytic continuation of y®= to K, ;. Thus

pie(2) = w0+ [ CF Gl

converges on each K, uniformly, so by lemma 3 it converges to an analytic
solution y(z). Thus y(z) is the unique solution on U, (zp). O



2 Linear systems of ODEs

2 Linear systems of ODEs

Consider a matrix-valued functions

A:Uy(z0) ={2€C:|z— 2| < a} - Mat(n,C)
b: UG(ZO) —-C"

with each entry analytic. We are interested in a linear system of ODFEs

y'(2) = A(2)y +b(2) .
f(zy)

We use the matrix norm |A| = > |A;;| which can be easily checked to satisfy
[ Ayl < [Allyl-

Lemma 2.1. Suppose A,b: B — C be analytic and K C B compact. Then
f(z,y) is bounded on K and Lipschitz continuous with respect to y.

Proof.
1f(z,y(2)) = f(z,9(2))] = [A(2)(y = 9)| < [A(2)[ly — 9] < kly —g].

Theorem 2.2. Suppose A, b are analytic on U,(29). Then the ivp
y' = A(2)y + b(2),y(20) = yo
where yo is any complex number, has a unique analytic solution in Uy(zp).

The proof is essentially the same, but note that there is no bound on yg, and
the domain of the solution has the same radius as the domain of A and b. This
is because f is analytic on D = {z : |z — 29| < a} x C so there is no bound on
the second variable.

Theorem 2.3. Let A,b be analytic on B, a simply connected domain. Then
the ivp
y' = A(2)y +b(2),y(20) = yo

has unique solution y(z) analytic on B.

Suppose f1 : Uy = C, fo : Uy — C are analytic, U1NUs # @ and f1(z) = fa(z)
for z € Uy NUs then fs is the analytic continuation of f; on Us.

Suppose f : U — C is anlytic and -y is a path from zy € U to zZ. Then we say
f has an analytic continuation along vy if we can cover « with a finite number
of open balls such that f has analytic continuation on the union of the balls.

Theorem 2.4 (monodromy theorem). Suppose B is a connected domain.
Suppose [ is analytic on an open ball U C B. Assume that f has analytic
continuation along any curve in B. Then if v and 2 are two homotopic
path from zy € U to Z then the analytic continuations f.,, fy, agree on a
neighbourhood of Z.
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In particular if in addition B is simply connected then f has a unique
analytic continuation on the whole B.

Proof of Theorem 2.3. Suppose Z € B and take a path v from zy to Z. Note
that as B is open there exists € > 0 such that B(z,¢e) C B for all z € im~. Cover
the compact path + with finitely many open balls and for sufficiently small &’
we can solve the ivp on B(z,¢’). The solution is unique O

2.1 Homogeneous system

A homogeneous system is one in which b = 0, i.e. y' = A(2)y. Let us asume that
A is analytic on B simply connected. Then the system defines a linear operator

E:H(B) — H(B)
y =y —Al2)y
Then the space of solutions to the ODEs is ker E.

| Theorem 2.5. If the system has dimension n then dimker £ = n.

Proof. Let vy,...,v, be a basis of C". Define y;(z) to be the unique analytic
solution on B of y;(z9) = v;. ker E is spanned by y;’s. Linear independence can
be checked at zj. O

y1(2),...,yn(z) are called a fundamental system. We define Y (z) to be the
matrix whose columnes are y;(z). Then

A dn | do,
dz ~ ‘dz dz

Y (2) is called a fundamental matriz solution.

I =[Ay|- - [Aya] = Alpa| - - [yn] = A(2)Y (2).

Corollary 2.6. Analytic continuation along any curve preservse linear in-
dependence.

In other words, det Y (z) # 0 implies det Y (z) # 0 for all z € B. Suppose

we have another fundamental matrix solution
n n
Y(2) = [71(2)] - 100 (2)] = D enmr (@) 1D crnyr(2)] = Y(2)C
k=1 k=1

where C' = (¢;;) nonsingular.

One application: suppose we have a homogeneous ODE of order n

ul™ 4+ pi(2)ul" ™ 4 4 pa(2)u =0

where u is a scalar and p; : B — C analytic. Then this can be recast into a
linear ODE by setting i1 = u,y2 = ¢ etc:

0 1
) 0 1
Yy = Y
~Pn —Pn-1 0 TP
This is called the companion matriz. uq(z),...,u,(2) is a fundamental system.

10



2 Linear systems of ODEs

2.2 Inhomogeneous system

We will see that it suffices to study homogeneous case when studying linear
systems. Suppose we have an inhomogeneous problem y' = A(2)y + b(z), where
A, b are analytic on a simply connected domain B. Then in matrix form it is

%V — AW + [b(2)] - b(=)]

where W is an (unknown) n x n matrix. Of course it is a special case of

aw

O = AW + ()] [b(2) (NH)

where F' is analytic and matrix valued. We call % = A(2)Y the associated
homogeneous system, and let its fundamental matrix system be Y (z) with
detY(z) # 0.

Theorem 2.7. All solutions of (NH) are
W (z) C’+/ Y- S)d(]

where Y (z) is a fundamental solution of the homogeneous system.
The ivp W (29) = Wy has solution obtained with C =Y (z9) ™' Wj.

Proof. Differentiate the purported solution,
W' =Y'| C+/ Y HOF()dC] + Y (2)Y H(2)F(2)

C+/Y (€)d¢] + F(2)
= A()W (2) + F(2)

Every solution of (NH) is obtained from some ivp Wy, from which we derive
C =Y (29)"'Wp. Therefore we obtain every solution. O

The formula is obtained by “variation of parameter”. In fact it is in-
structive to do the following easy exercise: we seek a solution of the form
W(z) = Y(2)C(2) . Substitute into (NH), we will get C’(z) = Y~1(2)F(2).
Integrate to get the desired solution in the theorem.

Now back to the homogeneous problem % = A(2)Y. Suppose A is holo-
morphic on B. Take zg € B,r > 0 maximal such that U,.(z9) C B. In partic-
ular A is holomorphic in the ball U,.(z9). A has a power series representation
A(z) =Y Aj(z — 2,)7 convergent uniformly in every compact subset of U, (zp)
and the radius of convergence is r. What we know is that

1. there exists a unique solution to the ivp Y (zp) = Yo.

2. Y () is analytic in U,(a).

11



2 Linear systems of ODEs

Thus Y (2) = Y. Yi(z — 20)" for |z — 29| < 7. Substitute into the equation,

i kYi(z = 20)" ' = i D AV (z = 2T
k=1

7j=0 k=0
i.e.
o o m
Z (m + I)Ym+1(2’ - Z Z Z m— kYk Z = ZO)m
m=0 m=0 k=0

We get the recurrence relation

m

(m+1)Y,, = Z Am—rYx
k=0

with (arbitrary) initial condition Yy. Up to order M, the solution has local
representation

M
2) =3 Yilz— 2§ +O((z — 20)M*).

k=0

12



8 Singularities and monodromies

3 Singularities and monodromies

3.1 Classification of isolated singularities

Suppose f : B\ {a} — C is holomorphic where B is a domain. Then « is called
an isolated singularity. By basic complex analysis a is one of the below

1. a is a removable singularity if |f(z)| is bounded in some U, (a) \ {a}, in
f(2) z#a

which case the limit lim,_,, f(z) exists, and f(z) =<’
lim, ,, f(z) z=a

is holomorphic on B.

2. ais a pole if lim,_,« | f(2)| = oo, in which case exists r such that f(z) =

9=) _ where g is holomorphic on U,(a) and g(a) # 0 and m > 1. m is

(Z_a)7n, )
called the order of the pole. f(z) has a Laurent exptension at z = a.

3. a is an essential singularity if lim,_,, |f(2)| does not exist, in which case
f(2) takes all possible complex values except possibly one (called the la-
cunary value) in a neighbourhood of a.

3.2 Singularities of linear systems

Now consider y' = A(z)y+b(z) where A, b are analytic on B\ {aq,...,an}. Let
C = CU{o0o}. Then for a function f(z) defined on C, we can consider co as an
isolated singularity and use the classification before.

We call ay, ... singularities of the linear differential system.

Theorem 3.1. Given a solution y(z) of a linear system, the set of singu-
larities of y is a subset of the singularities of the equation.

Proof. If A,b are analytic in a ball (which is simply connected) then all y(z) are
analytic there too. If z = a is a singularity of y(z), then necessarily z = a is a
singularity of either A(z) or b(z). O

Remark.

1. The converse to the theorem is false. Consider y' = —*—y where u € C.
The solution y = ¢(z — a)* is

(a) regular at z =a if p € N,
(b) apoleif pe{-1,-2,...},
(c) a branch point if € C\ Z.
2. Note that if we consider A, b as functions defined on C, then z = oo can be
a singularity of the solution even if it is not a singularity of the equation

(i.e. A, b have a removable singularity at co). For example consider ' = y:
solution y(z) = ce®. z = oo is a singularity.

3. The theorem only applies to linear ODEs. Consider for example 3/ = —y2.
Solution y(z) = Zia. z = a is a pole of y(z) but not a singularity of the
equation.

13



8 Singularities and monodromies

3.3 Monodromy for homogeneous systems

Consider the homogeneous problem 42X = A(z)Y where A : B\ {a} — C ana-
lytic. We have seen that analytic continuation along £ from 2o to 2’ defines y(z)
analytic in a neighbourhood of z’. Take another path ¢ which is not homotopic
to ¢ and analytic continuation along ¢’ defines §(z).

Note that if B is a disc, we can take a branch cut L from a to the boundary
of B, and then B\ L is simply connected. y, ¢ are analytic on B\ L. y, 7 are
called branches of each other. Let v = ¢! -7, then travelling along ~y transforms
y to §. y is an analytic continuation of y.

If there are more than one singularity {a1,...,a,} in B, we can do a branch
cut L; from each a;, and y, ¢ are analytic on B\ {L1,..., L}

For a homogeneous system ‘% = A(2)Y, we proved that there exsits a
fundamental solution Y (2) = [y1(2)| - - - |yn(2)] analytic on C\ {Lq,...,L,}. If
we take another path we get f/(z) But columns of Y form a basis, we can

express

Y(2) =Y mayil-| meyz'] =Y(2)M,,

where M, = (m;;) is called the monodromy matriz of Y (z) associated to (the
homotopy class) of .

Recall from algebraic topology that m(C{ay,...,am,00},20) is the free
group generated by v1,...,7m,. Also there is an automorphism given by conju-
gations

7(C\{a1,...,am,x},z0) = 7(C\ {a,...,am,x}, 21)
v AyAT!
where A is a path from z; to zp. Now suppose Y'(z1) is the analytic continuation

of Y (z) along A~!. Then obviously the analytic continuations of Y (zo) along
v-A71 and along A=! - (X -7 -~471) yields the same result

Y (20) —— Y (20) M,

b b

Ayat
Y(z1) 255 Y (1) M,

But the bottom row is precisely the monodromy transformation associated to
MA! so we have Y (2)M, = Y (2) M., x-1. Since Y (z) is invertible, My \-1 =
M

v

Theorem 3.2. Let zp,Yy be given (det Yy # 0) and let Y (2) be the unique
fundamental matriz solution analytic in C\ {L1,..., Ly} solving the ivp.

¢ : ﬂ_1(@\ {alv' < ,am,OO),Zo) — GL(H, C)
v = M,

this is called the monodromy representation of 1. This is an anti-representation.

Proof. Exercise. O

14



8 Singularities and monodromies

1.+, Ym generates the group M = (M., ..., M,, ), the monodromy group
associated with the ivp Y (z9) = Yp.

If we have another ivp Y (zp) = Yo, ther is a unique solution Y'(z) defined
on C\ {L;U---Ly,}. The two solutions are related by Y (z) = Y (2)C where
C= Yo_lf/o € GL(n,C). Thus along the path ~,

Y(2)=Y(2)C = Y()M,-C=Y(2)C-C~'M,C.
—_———
e
Thus from the data of A(z), we get (C'M,,C,...,C~'M,, C) for all C €
GL(n,C). This is an equivalence relation on monodromy groups.

Definition (direct monodromy map). Fix points ay, ..., a,, € C. The direct
monodromy map is the map

{A(z) isolated singularities ay, ..., am, 0} — {monodromy group}/conjugation.

It is worth remarking here the opposite problem, that is, given monodromy
groups up to conjugation, can we determine the differential system? This is
called the inverse monodromy problem or Riemann-Hilbert problem.

3.4 Solutions on universal covers

Fix a base point zg. Analytic continuation gives a function Y (z) = "y(z,¢)”
that depends on (the homotopy class of) the path ¢. Define an equivalence
relation (z,£¢) ~ (2/,¢') if and only if z = 2/,¢ ~ ¢'. The the set of equivalence
classes is in bijection with the universal cover. The fundamental group acts on
the universal cover by deck transformation. If there is no chance of confusion
we denote a point [(z,£)] by Z.

The analytic continuation of Y'(z) along any path ¢ gives a function Y on the
universal convering so, defines a function Y(Z) is a function of Z on the universal
cover. Y (z) is a branch of Y(Z2).

We have seen that 1 (C \ {0,00}; 20) & Z. A point [(2,£)] € C\ {0,000} can
be represented by (z,¢,, = ¥™ - £) where m € Z and ¢ is a path from zj to z.
We give the another presentation. Take a branch cut (—oo,0] in the complex
domain and consider the principal branch of logarithm, defined so that Inz € R
for z > 0. Then z — In z represents this: Inz = In|z| +iarg z. If a path crosses
the branch cut m times, the argz is transformed to arg z + 2wm. In this case
the universal covering is the exponential map
exp: C\ {0,00} — C\ {0,00}
Inz + 2mim — 2

—_—~—

For this reason C \ {0, 00} is called the Riemann surface of the logarithm. By a
slightly confusing change of notation, we can represent a point in the universal
cover by Z = |z]e?®8% where the exponential is a formal symbol (so |z|e! 8>
and |z|e?ar8#+2mim are different points). The advantage of this notation is that
monodromy can be computed easily just by symbolic manipulation. For example

3¢ — clnz

e _ |Z|ceicargz

15



8 Singularities and monodromies

whose meaning is that if the locally defined function z — z¢ transforms with a
multiple of e?™% when taken along the path that loops around the origin once.

16



4 Classification of isolated singularities

4 Classification of isolated singularities

4.1 Matrix exponential and logarithm

We endow Mat(n,C) with the matrix norm |A] = ) |A4;;|. It is a complete
metric space. Then
o0
Y
N k!
k=0
is convergent. Similarly for f analytic, we can define

A () — i Akf(z)k

k!
k=0

which is locally uniformly convergent so analtyic. As a special case, take the
principal branch of logarithm and we can define

ZA — eAlogz.

Example. If going along a path transforms z + z - 2™ then

ZA _ BA Inz N 627”AZA

and indeed e2™*4 is the monodromy matrix. We can think of this as defined on

the universal covers by 4 = |z|4e4?%8% where the formal exponential helps
us keep track of monodromy actions.

Exercise. Matrix exponential has the following properties:

1. if A= GBG™! for some G € GL(n,C) then e* = GePG~1. Tt follows
that 24 = GzBG~ 1.

2. If [A, B] = 0 then e85 = e4eB.
3. dete?t = ¢4, In particular dete? # 0 (hint: put into Jordan form).

4. d%eAf(z) = Af'(2)e ) so 44 = 4. 24, Thus ar — éY has a funda-
mental solution Y (z) = z4. As usual we write Y(2) = 24 for the function

defined on the universal cover.
For k > 2, 4¥ = ZA,CY has solution Y (z) = exp(—ﬁzk%l). On the other
hand 42X = zFAY for k > 0 has solution Y (z) = exp(ﬁzk“).

5. If [A;, A;] = 0 then

v A A,

2 Y

dz (zfa1+ +zfam)
has a solution just as if they are numbers: Y(2) = (z—a1)? - (z—a,, ).

6. Suppose all matrices commute and A > 0,k > 2, then
dYy 1 B C Cy,
S (T (AL A o d A oy 2 o 2L Ry
e (zk( ot+tAiz+--+ A2z )+Z+Z( 0+z+ +zh))
has solution
A 1 Ap_

Y(3) = B exp(] _Ok ot f; ) exp(hif)lzh+1+~ - COhz) = D(2)ZB.

17



4 Classification of isolated singularities

Definition. A logarithm of A, where det A # 0, written L = In A, is a
matrix such that eX = A.

Matrix logarithm is not unique: suppose there exists an L, then L + 2mwikl]
is also a logarithm.

We can compute matrix logarithm by making a series of reductions. Assum-
ing everything exists, note

—1
elnA — A= GJG—I _ GeInJG—l _ eGanG

so we can let In A = GIn JG~! (up to some issue of determinancy). Thus it is
left to define and compute In J.

Exercise. Check that exp preserves block-diagonal form. Conversely suppose
4 is block-diagonal then A is also block diagonal.

Write A = GJG~! where J is the Jordan normal form with Jordan blocks
Ji, ..., Js. Write J; = \;I; + H; where \; is the eigenvalue of J; and H =

01
< 0 .1 ) The size of Jordan block J; is m;. We define

H;
(Zi

=In(M\L;) +In

as H; is nilpotent.
Again note that In J; is defined up to integer multiples of 27il;.

4.2 Local structure of fundamental matrices at isolated
singularities

Consider ¥ = A(2)Y where A(z) is analytic on U(a) \ {a}. The universal
covering can be represented by logarithm

In(z —a) =In|z —a| + iarg(z — a).
We do the following steps:
1. take a branch cut, define a fundamental solution Y'(z).
2. Take a loop so (2 — a) — (Z — a)e®*™, and the branch Y (z) — Y (2) M.

3. Y(2) = Y(2)M* (i.e. defined on all branches). Note that M is also the
action of an element of the fundamental group on Y (in deck transforma-
tion).

18



4 Classification of isolated singularities

Theorem 4.1. Given the system ‘% = A(2)Y where A(z) is analytic on

U(a) \ {a}, for all Z € U(a/)\\/{a}, we have the following representation
Y(2) = 0(2) - (2 - )"

where L = 3—=In M. ®(z) is single valued on U(a) \ {a}, det ®(z) # 0 for
z # a.

Proof. Define ®(Z) = Y(2)(2 — a) L. It is single valued as when taken along a
path,

B(2) = YE)M-e 2™z —a) F =Y(2)(2 - a)" L = ®(3).
M-1
Also det ®(2) = det Y(2) det(Z — a)~L # 0. O
Example. The last exercise of the previous section is put in this form.
Now let’s do some computation. Write L = GJG~! and so
Y(2) = ®(2)(2 — a)* = ®(2)G(Z — a)/ G
(z)

Then Y(2) = GY(Z) is another fundamental solution with structre

Y(2) = U(2)(2 —a)’.
For simplicity suppose a = 0, then

(In 7)2 (Inz)™i—1
S e

1 Inz W

1 Inz

4.3 Regular singularities

Definition (regular singularity). Given f : U,.(a) \ {a} — C analytic, z =a
is a regular singularity if exists m € Ry such that
lim (Z—a)"f(z)=0

Z—a
a<arg(z—a)<pf

for all 8 — a < 27. Otherwise z = a is an irreqular singularity.

Easy to see that if f, g has regular singularity at z = a then so do f 4+ g and
fy.

Example.
1. f(z) = (pr_(i))r where 9(z) is analytic at z = a, r € R has a regular
singularity.

19



4 Classification of isolated singularities

2. f(z) = (2 —a)*In(Z — a)” where p, v € C has a regular singularity.

3. f(z) = exp( (Eja)”) where p € C has an irregular singularity.

4. The solution Y(z) = ®(z)(Z — a)’, (suppose (Z — a)” is regular) depends
on ®(z). For example if z = a a removable singularity or a pole of ®(z)
then z = a is regular for Y(Z).

Definition. z = a is a regular singularity for ‘% = A(2)Y if exists a

z
fundamental solution Y(Z) such that z = a is regular for Y(Z).

Remark. Every other fundamental solution can be given by Y(Z)C for det C' #
0 so this is well-defined.

Theorem 4.2. Suppose z = a is regqular for % = A(2)Y. Then in Y(2) =
®(2)(2 —a)l, 2 = a is a removable singularity or a pole for ®(z), or a pole

for A(z).

Proof. ®(z) = Y(2)(2—a)~% so z = a is regular for ®(z). Unpack the definition,
we can find m € N such that
Zh_rg(z —a)"®(z) =0
for < Z—a < . But both (z — a)™ and ®(z) are single valued so we can
cover the entire disc by sectors and remove the condition o < Z —a < 8. Thus
d(z) = m - (2 —a)™®(z) has at most a pole at z = a.
For the other condition,

_dY(9)

At = Ty
= L@ E-a)") (2 a)ta(:)
) p1(2) 4 a) L0
$0 z = a is a pole. O

Example. Consider

0= D+ )

Write the solution as Y (2) = (y1,y2)7, then we have

;1 ;1
Yy = Zzy27y2 - Zy2~

Solve to get y1(2) = Colnz+ C1,y2(2) = Caz. We choose (c1,c2) = (1,0),(0,1)
to get the fundamental solution

Y(3) = <é hj)

20



4 Classification of isolated singularities

The monodromy associated to z — ze?™ is

Y(2) (é Mjm) —v(z) - (67%") = p(2)(80)

where ® = (}Y) and det ®(z) # 0 for z # 0.

4.4 Singularities of the first and second kind

Given the system 2¥ = A(2)Y where A : U,(a) \ {a} — Mat(n,C) analytic
and z = a is an isolated singularity of A that is not an essential singularity.

This means we can write A(z) = % where A is analytic on Ug(a) and
A(z) # 0.

Definition (Fuchsian singularity). If = 0 then z = a is called a singularity
of the first kind (name used by Coddington-Levinson/Balsen-Jurkat-Lutz)
or Fuchsian singularity. If » > 1 then z = a is called a singularity of the
second kind, or occassionally (and confusingly) called a irregular singularity.
If » < —1 then it is not a singularity.

Theorem 4.3. If z = a is a Fuchsian singularity then z = a is a reqular
singularity.

Note that the converse is not true, as for example in the example above there
is a pole of second order.
We can similarly classify singularities at inﬁnity Suppose A(z) is analytic

for [2| > R. Make the change of variable z = 1 so &L = —¢24 ' we have

dy A1/ t)

et _ %

dt t2
Thus A, (t) = A(}) is analytic for 0 < [¢| < & and t = 0is an isolated singularity.
Write — A ) = ﬁif

A (t) = —t7THLA®) = —2" LA/ (2)

so for r = 0 we call it a Fuchsian singularity and similarly for » > 1 and r» < —1.

4.5 Linear systems with rational coefficients

Now suppose A(z) is defined on C\ {a1, ..., a,,, o0} and suppose aj, ..., ay,, 00

are at most poles. The locally around z = a; we can write A(z) = AU)(z) +

reg(z — a;) where the regular part is analytic at z = a; and reg(z — a;) = O(1)
as z — a;. In detail

AG () {W(Agﬂ) + APz —aj) 4+ AP (2 —ay)9) 20

O ’I“j < -1

and for z = oo write A(z) = A (2) + reg(L) where reg(1) = O({) and

(c0) (o0)
AC9) — {Zmﬂ(Aém) A ) e 2
0
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4 Classification of isolated singularities

| Lemma 4.4. A(z) is rational.

Proof. A(z) — . AU (z) — A®)(2) is analytic on C and tends to 0 as z — oo,
so by Liouville is constant. O

Definition (Poincaré rank). r;’s and 7 are called Poincaré ranks of the
singularities.

4.6 Holomorphic and meromorphic equivalence

Suppose G : U(a)\{a} — GL(n,C) analytic with z = a at most a pole. Consider
a system 42X = A(2)Y. Given a gauge transformation Y = G(2)Y,
i
dz

_1dG(z), &

(G ARGE) - GE) )Y

A2)

(we assume G(z) is invertible away from z = a).

Definition (holomorphic/meromorphic equivalence). We say two systems

% = A(2)Y, ‘g = A(2)Y, where A, A are analytic on U(a) \ {a} with
at most a pole at z = a, are holomorphic equivalent (resp. meromorphic
equivalent) at z = a if exists G(z) invertible in U(a) (resp. U(a) \ {a})

which transforms one system into the other.

One checks that this is an equivalence relation.

Theorem 4.5. If z = a is a reqular singularity of % = A(2)Y then it is a

meromorphic equivalent to a Fuchsian system % =Ly,

Proof. Relabel the solution
Y(2) = ®(2) (2 - )"
—~ ——
G(2) Y(z)
and Y(z) is a fundamental solution of the required system. O

We can also consider formal equivalence. Consider the formal series
1 (oo}
_ Nk
A(z) = o ,;,0 Ap(z —a)

o0

i) = —— S Az —a)t
(z —a) prs

Glz) = ﬁ S Gz — a)*
k=0

where det Gy # 0. If formally A and A are related by the equation for gauge
transformation above then the systems are formally meromorphic equivalent.
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4 Classification of isolated singularities

Remark. G has a formal inverse
Gz) ' = (z=a)"™(Go+ )Y Gilz=—k)") !
k=1

=(z—a)"(I+) Gy'Gr(z—a)¥)7'Gy!

k=1

=(z—a)"(I+ ) (-)"(Q_ Gg'Gil=— a)")")Gy"
k=1

n=1
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5 Structure offundamental matriz at a Fuchsian singularity

5 Structure offundamental matrix at a Fuchsian
singularity

In this chapter we study the local structure of fundamental solution by doing
example computations. Throughout consider the system ‘Z—Y = ( AQy Where
A holomorphic at z = 0 and A(0) # 0. Write A(z) = Ao + > oy A z'. Let
J = GalAOGO be the Jordan normal form.

The constant gauge transformation Y (z) = GoY (z) gives

% -1
AV _ Gy'A()Goy

dz z
SO -
A(z) = T+ (G AiGp)2!
i=1
Suppose we have put Ag into Jordan normal form, i.e. % = A(ZZ)Y, A(z) =

J+ 302 Azt = >0 Aiz'. We seek a gauge transformation G(z) such that
% = @ff where R(z) = Y ;o R;z" is “as simple as possible” so that we can
solve for Y.

The condition can be expressed as the expression

A .
GV + a7 = A gy
W—/ z
2y
so we aim to “solve”
2G'+ GR = A(2)G, (%)

a system for (G(z), R(z)). Formally this means we are looking for series G(z) =
Yoo Giz  A(z) = Yog Aiz', R(z) = Y oo Ri2" that satisfy (). After some

manipulations we get

;)KGH—ZOG iRe_j) :ZZA@ _;
= J

¢=0 j=0

so for ¢ = 0 we have G(]R(] = A()G()., i.e. G()R() = JG(]. We choose G() = I, RO =
J. For ¢ > 1 we have

£—1
Ge(l-I+J)—JGr=(> (A jG G R, ])JrAg) Ry M
1

j
for (G, Ry).

5.1 Case of diagonalisable A

Theorem 5.1. If J = A then the system % = Aiz)Y is holomorphically

equivalent through GoG(z) to

av 1 s
E:;(A+Rlz+-~-+sz’€)y 1)
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5 Structure offundamental matriz at a Fuchsian singularity

where (Re)i; # 0 only if \; — Aj = £ > 1 integer. This is called the normal
form of the system. In particular if no difference A\;—\; is a non-zero integer

then ‘g = %}7

Proof. We show formal equivalence only and defer convergence to Theorem 5.5.
Equation (}) reads for £ =1

GiA— NG+ Gy = A, — R;.
Taking (¢, 7) component,

(G1)ij(Aj — Ai +1) = (A1)ij — (R1)ij

so if A; — A; # 1 then choose Ry = 0 and (G1),;; = Afég\):il. If s —Aj =1 then
(Rl)ij = (Al)ij and (Gl)ij is arbitrary.
Similarly for £ > 1 in general

GiA — NGy +1Gy = () — Ry
0
(Go)i(Aj = Ai +0) = (- )ij — (Re)ij-
If A\; — A\;j # € then choose (Ry);; = 0 and (Gy);j = 7,\j(;;{3+g~ If \i — Aj = £ then
we choose (Ry)i; = (---)i; and (Gy),; is arbitrary.

Since there are only finitely many A; — A;, the system is of the form required.
O

Corollary 5.2. The system, if Ay is diagonalisable, has a fundamental
solution
Y (2) = GoG(2)z 2R

where R = Ry + -+ + Ry (which is nilpotent). In particular z = 0 is a
Fuchsian singularity so regular (because det G(z) #0).

Proof. We know Y (z) = GoG(2)Y (z) where Y (z) satisfies (1). Claim that
Y (2) = 222" is a fundamental solution:

d A 1
7(ZAZR) = —zAR 4 ZAEZR =-(A+ ZAszA)zAZR
dZ z 2 P
and
eRi‘ Ni— N =(>1
(ZARZ_A)ij = z)‘i_/\jRZ_j = z ( Z) J J bl
0 Ni— N AL>1
so indeed it is a fundamental solution. 0

Definition (resonance). If \; —\; € Z\ {0} we say the system is resonant
at z = 0.

Exercise. Use the same strategy to prove
627TiAR _ ReQﬂ'iA’
which implies that

eQTrzAZR — ZRGQT”A.
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5 Structure offundamental matriz at a Fuchsian singularity

The monodromy of the solution is given by
Y(Z) _ G()G(Z)ZAZR — GOG(Z)ZA627riAZR627riR — GOG( )ZAZR e27rzA 27rzR
Y () M

We can reduce this further: write A\; = d; + p; where d; € Z,0 < Rep; <1
so A = D + S where both D and S and diagonal and D has integer entries.
Then [D, S] = 0. Also [R, S] = 0 since

(R, Slij = (pj — pi)Rij
so either \; —\; € Zso pj —p; =0, 0r \; — \; ¢ Zso R;; =0. Thus

Y(Z) :G()G(Z) D+S R =G G( )ZDZSZR GOG( ) D R+S el G( )
P(z)

where L = R + S. But this has exactly the form Y (z) = ®(z) - 2% where
® = GG (2)zP is single valued with a pole at z = 0. In this representation the
monodromy matrix is simply M = e?™L,

Let’s discuss for a moment the freedom in the solution.

1. In Gy' 4Gy = J, Gy has freedom Go — GoAg where Ay ' JAg = J

2. Fix Gy and A. Recall that G, contains a finite number of arbitrary pa-
rameters.

3. Also R is fixed. Suppose
Y(2) =Go(I + Zszj)zDzL.
Suppose we can find

4. Freedom in R. The system may be put in two different normal forms with
same A. Two such solutions Y andY are related by a gauge transformation
Y = A(2)Y.
A(z) = Ag(T+ Ayz+ -+ Ag2h)

where (Ag);; # 0 only if \; —A;¢>1and i

5.2 Case of general Ay

In general, any Ap can be written in Jordan normal form J = diag(Jy, ..., Js)
where Jy — A\eIy + Hy where Hy has only entries 1 right above the diagonal.
We can then partition Ry into blocks and the the problem effectively becomes
solving the system of equations

XA-BX=C
where Aism xm, X isn xm, Bisn xn and C' is m x m. Then

1. XA — BX = 0 has nontrivial solution if and only if A, B have a common
eigenvalue.

2. XA — BX = C with C given has a unique solution X if and only if A, B
hasve non common eigenvalues.

26



5 Structure offundamental matriz at a Fuchsian singularity

3. XA — BX = C, with both X,C unknown and A, B with at least one
common eigenvalue, always has a solution.

All these can be proven by regarding X and C' as vectors and consider the
linear system Dz = c¢. Then det D # 0 if and only if A, B have no common
eigenvalues. See Wasow.

Subsequently we can divide into cases according to if A; — A\; = €. Thus we
have the following more general theorem

% = @Y is holomorphically equivalent

Theorem 5.3. The system
through GoG(z) to

a 1 .
E:;(J+R1z+~~+szk)Y (1)

where (Ry)ij # 0 only if i — A\j = £ > 1 integer.

Let A\; = d; + r; as before and write S = J — D = diag(S1,...,Ss) where
Sj=pjl; + Hj. Let L= R+ S where R =Ry +---+ R,.

A(z)
z

Corollary 5.4. The system % = Y has a fundamental solution

Y (2) = GoG(2)2P 2

where G(z) = I + 372 G2/

5.3 Convergece of formal solution

We now prove covergence. Recall (x)
2G'+ GR(z) = A(2)G,

assume R(z) is a polynomial, A(z) analytic at z = 0. Construct y = (G11,...,Gun)?,
(*) becomes
2y = F(2)y
where F'(z) is analytic in a ball U,.(0) around z = 0 so can be locally written as
a convergent power series.

Theorem 5.5. Suppose zy' = F(z)y has a formal solution y(z) = > ¢;27.
Then the series converges locally uniformly on U.(0) and thus defines an
analytic function in U,(0).

Note this is really a property of Fuchsian singularity as if we change LHS to
2Py’ where p > 1 then the conclusion does not hold.

Proof. Recall from complex analysis that if f(z) is holomorphic on U,.(0) then
f(z) = cpz* where

fo) 1 f(©)

KL 2w Jop,, CFF

d¢

Cp =
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5 Structure offundamental matriz at a Fuchsian singularity

so we can estimate

1 Ry
o < 5 . e < g

Conversely given Y cxz", assuming exists M such that |cx| < %, then the
1

series is uniformly convergence on |z| < Ry for all Ry < Ry, i.e. it defines an
analytic function on Ug, (0).
Now given a formal solution y = )" ¢;27, substitute into the equation to get

ZjCij = ZF]'CJ'ZH_J
ij
SO

4
S owCit =Y (> Fi;Ch)at
£ j=0

SO
(éI - Fo)Cg =FCo+ Fp_1C1+ -+ F1Cy_1.

For ¢ > N sufficiently large such that @ < 1, then (/I — Fy) has an inverse
and we can solve for Cy. We can esimate

Fy|*
|cz|_éz' (FICH|+ -+ Fil|Cer)

1 1
. _(IF|Co| 4+ |F||Co
Zl—|f0|/£(‘ €|| 0| ‘ 1|| l 1\)

C
z(|F£||Co\ + o+ 1| Cy))

IN

We know that F' is analytic in U,.(0) so |Fj| < 4. Thus

MC | |C C
|CZ|<7(M+ {—

|C'o| Co—1
MC .
R ) S MO I TR,

)

If ¢ < N —1(?) we can always choose P > 0 such that [Cy| < (& ) Prove
that for all £, |Cy < (P/R;)*: assume this is true up to £ — 1 and prove it for /.
|CO\ Co_q MC

MCP' -1
C <M A Pll PZQ . 1) =
e < odfel o+ Gty < B+ +) = F T

PY P -1 - MC) > 0 this is possible, provided that P is sufficiently large.
Thus |Cy| < ... 50 3. |Cy||z|* < oo provided |z| < £, so y(2) is an analytic

solution for |z| < £, From general theory we can analytlcally continue y(z) as

analytic solution in ball |z] < r. O

Thus every time we have a Fuchsian singularity, all formal computation are
actual (meaning analytic) computation.
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5 Structure offundamental matriz at a Fuchsian singularity

5.4 Completely Fuchsian system

We have studied the local theory of a Fuchsian system. In this section we study
the behaviour if the a general system in which all the singularities in the complex
plane are Fuchsian. Recall A(z) is rational so necessarily such a system has the
form oy 4 4

dz z—a Z— Qm

where A;’s are constant matrices. At z = oo,
1 — 1
Alz) = 2 ZAJ' + O(;)
j=1
which is convergent for |z| > R. Substitute z = %, the system becomes

Y Lady- %(— > A +O0M)Y.

For each singularity a;, we know from local theory that there exists a neigh-
bourhood U(a;) on which

Yj(2) = Gj(2)(2 — ;)™ (z — aj) "7
Suppose A; has eigenvalues )\gj), . ~/\7(%) and )\g) = d,(fj) + pqu). Similar for
z = o0o: in a neighbourhood of t = 0,

Yoo (2) = Y (1) = Goo (1) tP=tE= = G ()2 Pz Lee
where G (2) is analytic at z = oo.

Remark. To talk about the local solutions we must select a sheet of the uni-
versal cover. It is given as follow. Choose parallel branch cuts L; which are rays
from a;’s in direction 7, such that no ay, is contained L; for j # k. Then we stip-
ulate that either n—27 < arg(z—a;) < n for |z—a;| small, or n—27 < argz <7
for |z| large.

Remark. Note that from definition A, + Z;’;l A; = 0. Taking the trace, we
get

n
SO AT A A = 0.
k=1

This interdependence of eigenvalues is called Fuchs identity.

Since each one of Y;(z) and Y, (z) is a fundamental solution, we can relate
them by Y (2) = Y;(2)C; where C; nonsingular is called the connection ma-
triz. For computation, G;(2), Goo(2), Dj, Lj, Doo, Loo are algebraic functions of
Ay, ..., Ay so we can compute them. However C;’s are transcendental functions
of A;’s.

Note C; = Yj(20) ™ Yoo (20) for zo & {a1,...,am,00} and we know each Y;(z)
only locally so the study of the global Fuchsian system is reduced to asking how
to compute Y;(2p), Yoo(20) when zy ¢ U(a1) or zg ¢ U(oo). This is called the
connection problem.
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5 Structure offundamental matriz at a Fuchsian singularity

In several cases (n = 2) this can be solved (using linear special function
theory such as Bessel, Airy, hypergeometric functions). The general strategy is
as follow: for the (a,b) entry we write

(Y (2))as = / G (2, 5)ds

~

called integral representation. Then

(Yj(zo))abZ/d)ab(zo,s)ds

ol

which is computable in terms of classical special functions.

Monodromy of global Fuchsian system We know the monodromy of the
local solutions: for |z — a;| small, if we take the loop 7; that goes around a;
counterclockwise once we have

Y;(2) = Y (2)ei0.
For Y,,, we take big |z| and loop around oo clockwise to get
Yoo (2) = Yoo (2)e?™ilee,
Combining the local monodromy with connection matrices,

Yoo (2) =Y;(2)C; s Yj(z)e%iLjOj =Yoo(2) Oj—lezm'LjCj
N——

M;
so the monodromy (anti)representation is given by
o — Mj — C«j—ngﬂ'iLj Oj

Note that v1 Y2 - Ym = Y} 80 Moo = (M, - M1)~!. Again we stress that
the difficulty lies in finding C}.
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6 Linear equations of order n

6 Linear equations of order n

Consider the scalar ODE of order n
U(n) + al(z)u(n_l) 4+ 4+ an(z)u =0

where z = 0 is an isolated singularity of a;(z). a;(z) are analytic the we can
express the solutions in Taylor series. For the simplest case a; € C, we can solve
the indicial equation

S

fo(d) = A" +a1)\n—1 +---+a, = H()\_ )\j)mj

=1
and Y%, zei% ... 2™ leN® for j =1,..., s is a fundamental system.
As another example
a a
u(n) + Ju("—l) 4o =0
z "

where a; € C. This is called the Euler equation. For z # 0 multiply by 2" to
get
E(u)=0

where F = z”;‘% + -+ + a,. Define the FEuler operator § = z% and define
0lx =606—-1)---(6—k+1)

and a quick calculation shows [0]; = zk% 0
E = [5]71 +a1[5]n_1 + - +a25+a1

and we have another indicial equation

S

foN) = W+ arNu1 +--- +an = [J(X = 2)™

j=1

where \;’s are distinct. They are called indices or characteristic exponents.

Frobenius method A computation shows

so z” is an eigenfunction so

E(2*) = fo(\)2*.

Thus if A;’s are the solutions of the indicial equation then z*¢’s are solutions to
the Euler equation.

Since
A — 25
WZ (log 2)"27,
it follows that
o' " 0 0" A ‘ ¢ dka()\) 0—k A
B = 55 BE) = ) =30 () S log 242



6 Linear equations of order n

If A; is a root of fo with multiplicity m; then E(%e/\zf) =0 for £ <m; so

Nnz- 2, 2N (Ing)™i !
form a fundamental system.
In this example the companion system is
0 1
dy 0 1
P . Y
Am __ a1
Tzm z

for which z = 0 is a singularity of second kind if m > 2. In addition we know
this is a regular singularity from the fundamental system above. It is not clear,

however, that this system is a priori regular.
We can make this more lucid by making the substituion

(n=1)
SO
y§-={

so the system is

/ n—1
Y1 =U, Y2 = 22U y ..., Yp = 2 u

(7 = Vy; +yj+1) j<n-1

(n=Dyn — (a1yn+---+any1)) j=n

W=

0 1
. 1 1
1 2 1
dz 2 4
—Qp —0Gp_1 —as n—1—a

and it is obvious that z = 0 is a Fuchsian singularity.
Call the constant matrix Ay so from general theory of Fuchsian singularity

Y(2) = 2% = Goz' Gyt
Omne can also check det(A — Ag) = fo(A). Note that the original system has
Poincaré rank n — 1, while after sustituion it has Poincaré rank 0. The solutions

are related by a meromorphic tranformation

1

W=

-

Zn—1

This is called a shearing transformation.
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6 Linear equations of order n

6.1 Series solution

Consider A R

=0
where @;(z) analytic at z = 0. The only difference between this and the Euler

equation is that the coefficients are not constant. Write E(u) = 0. Use the
Frobenius method with a pertubation by substituting

o0
u(z) = 2* Z cpz¥
v=0

EQ ez =3B =Y o (A + vl + a1 (2)[ + Npot + -+ + @n(2)) 27
v=0 v=0 v=0

Substitute a;(z) = > o, ag)zf, we can write (e) as

Z feA+v)2*
=0
for some f;. Thus
E(Z e, 2" = Z cofeN+ )"t = Z (Z Cofm—wA+1))2" m=v+4¢
v v, m=0 v=0

so for E = 0 we reuire all coefficients of z™ to vanish, so we get recurrence
relations

cofo(A) =0
cifoA+1) +cofi(A) =0
cmfo(A+m)+ -+ cofm(N)

c

Write fo(X) = [[(A—=A;)™s. If A = \; then ¢y is arbitrary. If in addition \; +m
is not a root then we can determine all ¢, in terms of ¢y and A;.

u(z) = P (co+ ZCV(CO7 Aj)z").

In summary, if fo(A) has n distinct roots Aq1,..., A, not differing by integers
then we have a fundamental system

u(z); = 29 (e + D P2).
v=1

If some m; > 2, i.e. multiple roots, or if A\; + m is also a root, we can
implement Frobenius method to get 2% (In z)*. For reference see Ince.
A few more words on where In z comes from
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6 Linear equations of order n

Similar as before we can reduce the ODE to a linear system by subsituting

y1 =u,y2 = 2, ..., yn = 2" ("D and consider the system
0 1
1 1
dy 1 2 1
dz =z Y
n—2 1
—hatan(z) —ap-1(2) -+ —a1(z)+n-1

and it is obvious that z = 0 is a Fuchsian singularity, ergo the name. Since a(z)
is analytic at z = 0, write a(z) = > o, agj)zz. Then we find

0 1
1 1
2 1
Ay = A(0) =
n—2 1
—a(()n) —a(()n_l) e —a(()l) +n—1

and we can check det(A — Ap) = fo(N).

We know that exists fundamental solution Y'(2) = G(2)2P29+F where G is
holomorphically invertible at z =0, D+ .S = J, the Jordan normal form of Ay,
and R nilpotent. Suppose the first row of Y (2) is (u1(2),...,us(2)), which are
solutions to the ODE. Then u; containes terms 2**(In z)P where 1 < k < s and
p < my — 1.

Remark. The solutions obtained by Frobenius method converge because the
companion system is Fuchsian. Thus the formal solutions are actual solutions.

A converse to proposition to Theorem 4.3:

Theorem 6.1. For an ODE, z = 0 is Fuchsian if and only if it is a reqular
singularity.

Proof. Only need to prove only if. Induction on the order of the ODE n. For
n = 1, suppose z = 0 is a regular singularity of v’ + a1(z)u = 0 and u(z) is a
solution. Then it has monodromy

u(ze?™) = pu(z) = e u(2)

where p € C\ {0} and X is defined up to integers. Then u(z)z~* is single valued
so z = 0 is regular, so z = 0 is at most a pole. Choose \ so that f(z) = u(z)z~*
is analytic at z = 0 and f(0) # 0. Then

which has a pole of order 1.
We do the induction step for n = 2, consider u” +a; (z)u' +az(z)u = 0 where
z = 0 is regular. Exists u;(2),us(z) linearly independent such that (uy,us) has
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6 Linear equations of order n

monodromy matrix M. By a linear transformation wlog M is upper trianglular
so uy(z€2™) = pyui(2) so as before ui(z) = f(z)z* where f(z) analytic and
f(0) # 0. We seek another solution u(z) = uy(2z)v(z). Substitute the ansatz
into the equation to get the condition

2uq(2)

u1(z)

v+ ( +a1(2))v =0,

a first order ODE in v’. Since z = 0 is regular, v'(z) has a regular singularity
in 2 = 0 so the first step applies to v’ and conclude that

2u)(2) 2\, 2f'(2)
wz) T TS Ty Tl
has at most a simple pole at z = 0. It remains to compute as(z):
oy up . AMA=1) A 2f i i
az(z) = 7(171 + alui) = *(T + ;(7 +a1(z)) + N + 01(2)7)
S0 a(z) has at most a pole of order 2 at z = 0. O

We can also define Fuchsian singularity at co by settting ¢t = % and consider
the behaviour at ¢t = 0.

Proposition 6.2. z = oo is Fuchsian if and only if a;(z) = ‘Z—j where
» )
a;(z) = ay + DOy aZ[iZ is analytic at z = co.
Proof. u™ +ay(2)u™ Y+ .. +a,(2)u = 0. Put a;(z) = aiz) (we do not know

zJ

the analytic property of @;). Multiply by 2™ and substitute z = %, note
z d
d=z—=—t— = -9
T lat T ™

so [8]x = (—1)*(8¢)x where
[5t]k = 6t((5t + 1) s ((St +n— 1)
Then the system is
_ 1 ne 1
el = a1 () [0en-1 + -+ (=1)"an ()
so t = 0 is Fuchsian if and only if a;($) is analytic at ¢ = 0. O

6.2 Completely Fuchsian ODE of order n

Suppose z = ai,..., 0y, 0 are poles of the a;(z)’s, which have the correct
order.

Proposition 6.3. The system is completely Fuchsian if and only if

pj(z)
G—) - (z—am)

a;j(z) =

where P; is a polynomial of degree < j-m — j.
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6 Linear equations of order n

Proof. At z = ay,
reg(z — ag)
G~ T e

and at z = o0,
z]aj(z) ~ gitdeg Pj—j-m

O

By partial fractions we can find the explicit forms of all completely Fuchsian
system. As an example calculation, take n = 2 and consider the equation

u’ +av +ayu=0

Then
A A
al(z):z 1a +”.+z «
— &g - &m
- B, Cj
@) =Y (ot o)
j=1 J J

where A;, Bj,C; € C and we can show 7", Cj = 0.
e For m = 1 there is only one equation u” = 0.

e For m =2,

A B
u” 4 L+ L _u=0,
z2— (z —aq)?
the Euler equation.
e For m =3,
Aq Az B, By 1 1
" / C — 07
Y +(z — oq+z—a3)u +((z—a1)2 (z —a2)2+ 1(2— a1+z—o¢2))u

the Riemann hypergeometric equation. As an exercise, show fo(A) = A(A—
1)+ aél))\ + a(()2).
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7 Hypergeometric equation

7 Hypergeometric equation

7.1 Riemann hypergeometric equation

A Riemann hypergeometric equation

Al A3 /
z—a1+z—a3)u +((z—a1)

u//+(

has indicial equations are
Z:OZ12>\2+(A171))\+31 =0
z=0ag: N+ (A — DA+ By =0
Z:OOI)\2+(1—A1—A2))\+Bl+32+(0[1—0[2)0126

Ay, As, By, Bs, C determine the exponents )\ji. Conversely,
A;=1-20) 2@
B; = AP\D

AN (B + By)
a1 — Qo

C; =

Theorem 7.1. The Riemannian equation is completely determined by the
seven parameters aq, s and the exponents (note that the exponents sum up
to 1), which is typically presented as

[e5] a2 oo

AL AP A

AL 2@ \(e0)
and is called a Riemann scheme. The collection of all solutions to the
Riemann equations is called the Riemann symbol, denoted by

o a9 o0

(1) 3 (2) y(o0) |
P )\+ )\Jr >\+ 1

AL A (o0

7.1.1 Modbius transformation
Recall that a Mobius transformation is an automorphism of C of the form

az+b
—
cz+d

where a,b,c,d € C,ad — be # 0. This is an action by GL(n,C) with kernel the
scalar matrices so is an action by PSL(2, C).

Theorem 7.2. Characteristic exponents are invariant under Mobius tran-
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7 Hypergeometric equation

formation, i.e.
a1 az o0 h(a1) h(az) h(co)
P )\3_1) )\f) /\100) iz _ P )‘S}) A(Jrz) )\S»oc) ;t:h(z) .
AL AE N AL A@ 5\

Proof. For simplicity we prove the result for t = h(z) = Z=%L 50 z = a1, @3, 00

corresponds to ¢t = 0, 1, co. e
d__1 4
dz a9 —aqdt
SO
d2u A1 AQ du Bl B2 1 1
— +(— —+(=+— —a1)Ci(=——))u=0
e e Dl ey G DS e DAL

The indicial equations at ¢ = 0,1 are the same so )\gt1 ), )\;2 ) are the same. For
t = oo, note that
(0=1)(a2 —a1) =a; —ag

so again it is the same. O

Corollary 7.3. We can always reduce a Riemann hypergeometric equation
to the form
0 1 0o
p( A5
)\(U) )\(1) )\(00)

7.1.2 Gauge transformation
Consder the gauge transformation u(z) = 2P(1 — z)%v(z),p, ¢ € C that changes
the exponent:
u(z) = A reg(z) — v(z) = A reg(z)
u(z) = (1 — 2 reg(z — 1) s 0(z) = (1 — 2)M “reg(z — 1)

() 1 () 1
u(z) = 27 reg(=) = w(z) = 27N TP Tlreg(-)
z z

SO

oy ) © @ (

0) (1) y(c0) . 0) 1) o0) .

P A A AT 5% | = 2P(1 — 2)IP| A P A —a A Hetaz |
A©@ \D y(o) A —p AW —g A ppig

Thus we can always reduce to the form

0 1 00
P( 0 0 o ;z)
1=y y—a=-8 B8
whose correspondig equation is

u//+(l+a+/875+1

1
/ —_— = =
z z—1 Ju Jr046(2—1 z)u 0

ie.
2(1=2)u" + (y = (@ + B+ 1)2)u' — afu=0.

This is called the Gauss hypergeometric equation.
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7 Hypergeometric equation

7.2 Gauss hypergeometric equation

7.2.1 Local representation of solutions

We look for a series solution first at z = 0. /\(f) = 0 so we expect a Taylor series
u(z) = Y07 ¢n2™. Substitute to get the recurrence relation

(m +a)(m+ )
Chnt1 = 77~ Cn
(n+1)(n+7)
where we require v # 0, —1,—2, ... so that Frobenius method works. Then
e, = (a n(ﬂ)nCO
nl(Y)n

where the subscript n is the Pochhammer symbol and is defined as

(@)o=1,(a)p=a(a+1) - (a+n—1).

Note that (a), =0 for a =0,—1,...,—n+ 1. Set ¢g = 1, we get
O,y _ (@)
ul (Z) - 2F1 Ba’Ya Z ('Y nn' 7

convergent for |z| < 1, called the hypergeometric series.
To get the second solution: use gauge u = z' Vv so

0 1 o0 0 1 e}
P( 0 0 e ;z) = 21_7P< 0 0 a—vy+1 ;z)
1=y vy—a=8 B =1 y—a=B B—y+1

so the other solution is
uf)(z) = 2 o Fi(a— v+ 1,8 -7+ 1,2 — 7;2)

where v #£ 2,3, .. ..
To get the solution at 1, apply the Mo6bius transformation ¢ =1 — z so

0 1 00 0 1 o
P( 0 0 a;z):P( 0 0 a;l—z)
1=y y—a=8 B y—a—=B1-v B

so by a change of variable y —a— 8 =1—71,a1 = a, 1 = 3, from the solutions
at z =0 we get

ugl)(z):F(a,ﬁ,a+6—7+l;1—z) y—a—pB#1,2,...,]1-2|<1

u?)(z):(1—z)""“‘ﬁ;gFl(v—ﬂ,v—a,l—I—fy—oz—ﬁ;l—z) ay—a—pF#—-1,-2,...

To get the solution at co we use z = % and after another computation

1
w2 =2 Rl b a1 ta=fi2) a-fA-1-2. > 1

) - 1
u&%@zzﬂzmw4+ﬁ—%1—a+&;>a—ﬂ#lawu
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7 Hypergeometric equation

7.2.2 Integral representation

Recall the gamma function is defined by the Euler integral

I'(p) = / tP~tetdt
0

for Rep > 0. Also Beta function

1
B(p,q)= [ "1 —t)""dt
0

for Rep > 0,Req > 0,argt = 0,arg(l — ¢t) = 0 which satisfies

L(p)L'(q)

Blp.g) = L(p+aq)

Proposition 7.4. Suppose Rey > Re 8 > 0, |z| < 1, we have the following
integral representation of hypergeometric function:

o 1 :L ' B=1(1 _ \7=B=1(1 _ )~
2Fife, B,7:2) F(B)F(’Y_ﬁ)/o (1 —1) (1 —zt)~%dt

where argt = 0,arg(1 —t) =0, |arg(1 — 2t)| < § for 0 <t < 1. This is the
Euler representation of hypergeometric functions.

Proof.
2Fi(a, 73 2) = Z(; (aizn!zn
_ (NT(B +n) (a)nz"
_Z (B)L(y+n) nl
L'(y) B(n+8,7v—8)
T(B)  T(—B)

F(( Z/ pm-L( t)751<_na>(_z)ndt
(

ZIW;(?—@/Otﬁl ”512< ) "dt oas|z| <1

=(1—tz)—«

where the expansion for (1 —t¢z)~% is valid for 0 < 2t < 1 and z real. ... O

In the Euler representation of 1F5, the integrand has a branch point at
z = % for 0 <t < 1. In the z-plane, as t varies, the locus of % is the real axis
greater than 1. Thus we can analytically continue 2Fj to C\ [1, 00).
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7 Hypergeometric equation

7.2.3 Solution to connection problem

Suppose Re(y —a — ) > 0,Rey > Re8 > 0. Then

2F1(0¢,ﬁ,’y; 1) = 1_‘(6)1_‘1_‘((:};)_@/0 tﬁ—l(l _ t)»y_a_ﬁ_ldt
___T0 B(Ary - a— f)

I —a—B)
I'(y—a)l(y = p)
This is called the Gauss-Kummer formula. This formula holds by analytic
continuation with v #0,-1,-2,...and vy —a— 8 #0,—1,....
Recall that we have the fundamental solution to the Gauss hypergeometric

equation. We write them in row matrices [ugo),ugo)] = Y© etc. The main
problem is to compute the connection matrices Cy; and Cpee where Y =
YN Cyy, YO =y (=)Cy.. We choose branch cuts so |arg z| < =, | arg(1 — 2)| <
7. As an example computation, suppose Cp; = (¢ 7). Then
ui” (2) = aui®) (2) + bug” (2).
Substitute z = 1 into the equation and we get
2F1(047577;1) =a- 2Fl(aaﬂaa+ﬂfpy+l;0)+b'0

=1

where for the last term to be 0 we require Re(y — a — 8) > 0. Apply Gauss-
Kummer we can find a. By substituting z = 0 we get

l=a- oFi(--- ;1) + b1 =07 PR (---;1).

Note as z — 1, 1 — z — 0 so arg(1 — z) — 0 so the exponential term goes to 1.
In this way we can solve for b.

This illustrates the general strategy of solving the connection problem: we
find an integral representation for the solutions, analytically continue them and
evaluate them in some “common point” zg.

7.2.4 Monodromy

Since the connection matrices are known, we can compute monodromy using

27l

from local representations: under z — ze*™ " recall that ugo) has no monodromy

and uéo) has the exponential term z!~7, we have

1
YO s y© ( e_m)

Similarly

1
Y 1 Y 1
@) = ) ( eZﬂi(’YﬂtL))

o o eQTria
v v >< e%iﬂ)
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7 Hypergeometric equation

Denote the local monodromy matrices by M, etc, we have that for Y(© the
monodromy matrices are

My = My, My = C5y* My Co1, Moo = Cyt Moo Cone -

We present here another approach that works for Gauss hypergeometric

equations. Choose as fundamental system u(10)7 ugl) (they are linearly indepen-

dent). Then immediately we know the monodromy matrices have the form

1 0
= (o )= ()

Recall that the exponents are 1 —y at z=0and v — «a — § at z =1, we have

1 x e2mi(y—a=B)
Mo = <0 62”(1_’7)> My = ( y 1

for some = and y. As My My = MZ' and MZ' has eigenvalues e =27 =278,
taking trace we can find zy (in terms of «, 8 and ~). Note that this is all we

can extract: if we change the fundamental system by a linear transformation to

[ru(()o), su(®] then the monodromy matrix M; transforms to

() ()=

Thus the invariant is zy and z,y individually have freedom (by diagonal
conjugation). We conclude by the following “rigidity” property of the Gauss
hypergeometric equation: the equation is equivalent to the characteristic expo-
nents, and the characteristic exponent determines monodromy (up to diagonal
conjugation) and vice versa. Thus in turn the equation and the monodoromy
determine each other.

equation <> characteristic exponent <+ monodromy

7.3 Some further results

Companion system Let y = (y1,y2)7 where 41 = u,y2 = (z — 1)u’. Then y

satisfies the following system

dy(l( 0 0 >+ 1 <0 1 ))
Az ‘z\-af —+) z-1\0 y—a-8)"
—_———— —_————

AO Al

The eigenvalues of Ay are 0, —v, the eigenvalues of A; are 0,7 — a — v and the
eigenvalues of Ao, = —Ay — A are «, 8

Monodromy

Theorem 7.5. Any irreducible representation
1 (@\ {07 1, OO}) — GL(2> (C)

is realised by the Guass equation.
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7 Hypergeometric equation

Theorem 7.6. Any irreducible represdentation is realised by the monodromy
of

dy 1 (% x 1 x %

ﬂ_(; (0 *)+zl (0 *>)y

Theorem 7.7. Any 2 x 2 Fuchsian system

dy Ao A
@_(z +z—1

)y

with an irreducible monodromy is meromophically equivalent to the Gauss
equation.
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8 Poincaré asymptotics

8 Poincaré asymptotics

As a motivating example, consider the system, which is confusingly also called

the Euler equation,
, 1 1
Y+ y=-.
z z
Note that z = 0 is non-Fuchsian. It has homogeneous solution y,(z) = cel/.

By variation of parameters, subsitute y,(z) = c(z)e'/# into the equation and

solve to get
z efl/s g
c(z) 7/2: S—ds

0

so by a change of variable
1/z0 ,—t
yp(2) = el/z/ € ar.
1/z t
We can take z > zg > 0. If we take the limit zg — 07, we get
oo 67t
y(z) = el/z/ —dt
1/z 3

which is real for z > 0 and can be analytically continued to Rez > 0. We call

the integral
oo e—t

the ezponential integral. The solution y(z) = e'/2 Ei(2) is called Euler function
and is denote by E(z).

We look for a formal solution ys(z) = Y.~ cmz™. Substitute into the
equation and solve to get

yr(z) = z:(—l)mm!zmJrl

which is divergent. But E(z) ~ ys(z) when z — 0 in =3 < argz < 3T,
meaning that | Zﬁ:o em2™ — E(2)] is

o small for |z| small and N fixed, and

o small for large N and |z| fixed.

Poincaré posed the following problem. Take as example two series

>, 1000" X n!
nz::o n! ; 1000"

The first is convergence while the second is convergent. The question is: suppose
we want to compute the partial sum of the first, say, 1000 terms. However terms
do we need to sum so that the error is within 1076? In other words for what

N <1000 we have
1000 N

Z Sp — an < 10797
n=0 n

=0
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8 Poincaré asymptotics

With the help of Stirling formula
m! ~m"™2rme™ ™,

for the first series we need N = 1000 but for the second we need N = 3. Thus
Poincaré said that the second series, although divergent for mathematicians, is
“convergent” for astronomers.

Let s(a, 8) = {z € C\ {0} : @ < argz < [} be an open sector (with vertex
z=0or z = 00). We can also define analogously a closed sector 5(«, ) by
using nonstrict inequalities.

Definition (asymptotic series). Let S be a sector with vertex at z = 0. Let
f:S — C be a function and Y-, arz” be a formal series. We say f(z) is
asymptotic to the formal series, written f(z) ~ > po agz®, for z — 0 in S if
for every closed subsector S’ C S and for every m € N, exists C'(m,S’) > 0
such that

1f(2) = > arz®] < C(m, 8|2
k=0

for all z € 5.

We say the asymptotic series is uniform in S if C(m, S") does not depend
on S’

Of course if S is closed then we only need to check S’ = S. The key point is
that if the sector is open then C(m,S’) may depend on S’ as S’ “approaches”
S.

Exercise. Verify that the definition above is equivalent to saying that for every
closed S’ C S,

L) =Y a) =0
k=0

as z — 0in 9.

At 2 = o0, we say f(2) ~ Y pegarz " as z — oo in S if for every closed
S’ C S and every m € N, exists C'(m,S’) > 0 such that

m
[47% C(m, S/)
() =D <
z Ed
k=0
for z € S".
Some properties of asymptotic series:

1. if f has asymptotic expansion then it is unique. This is guaranteed by the
uniqueness of limit as ap = lim,_,0 ,cs’ = ap and inductively all a,,’s are

uniquely determined.
2. not all functions have asymptotic expansion in a given sector. For example
T T

consider f(z) = e'/# and consider for example the sector S (=%, %) Then
f(z) > 00asz—0.

3. Y apz® can be (is) asymptotic expansion of infinitely many functions.
For example the zero formal series is asymptotic to f(z) = e ™ ~0in

—5- <argz < 5= for all 0 > 0, as lim % = 0 for all m in the sector.
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8 Poincaré asymptotics

Proposition 8.1. Suppose f(z) ~ > 1o, apz® in S. If the opening angle is
> 2w and f is single-valued at z = 0 then the series converges.

Proof. We know ap = lim,_,0 es f(z). The limit is along any direction in
C\ {0}, so z = 0 is a removable singularity. Thus f is holomorphic at z = 0 so
has a convergent Taylor expnansion which necessarily coincide with the given
series. O

Wasow: Asymptotic expansions for ODE
Algebraic properties

L. Let f(2) ~ Y peganz®, g(z) ~ > pegbrz® as z — 0in S. Let o, 8 € C,

then
af(z) + B9(z) ~ Y _(aax + Bby)2*
k=0
0o ¢
F(2) - g(2) ~ 33 anbei)2!
£=0 k=0

1
ﬂ ~ g cx2® if ag % 0, where E apz" - g 2t =1
z
k=0

2. Suppose f ~ > az* in Sy, g(z) = SbrzF in S, Let f(2) = f(z) —ag ~
e agz®. Assume f(Sf) € Sy. Then

g(f(2) ~ Y bu(Yawz*)"
h=0 k=1

in Sf.
Analytic properties:
1. Suppose f is holomorphic in S with centre z = 0 and f(z) ~ > ar2z* in
S. Then ; :
- kg~ _ Ak k+1
/0 F(Q)dc Zak/o chag =y
in S.
If f(z) ~ > % as z — oo then
? a1 > “d¢ = a -k
J @ == a0~ Y [ G =3

o0

as z — oo in S.

2. Suppose f(z) is holomorphic on S at z = 0 and f(z) ~ Y. axz® in S, a
sector with interior (i.e. not a ray). Then

df (2)

~ kakzkfl
dz

in every closed subsector S’ C S.
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8 Poincaré asymptotics

3. Note that if we add the condition that f(z) has a uniform asymptotic

series, it is not true that we get a uniform asymptotic for %.

4. Suppose f(z) ~ Y. arz* as z — 0 in S, a sector with interior. Then the
limit lim,_,o f*) (2) exists and equals to klay in every S’ C S.

5. Suppose f(z) is holomorphic in S and assume lim, o f*)(2) = f. Then

CI =

asz€0in S.

Theorem 8.2 (Borel-Ritt). For every formal series > po, arz" and every
sector S (open or closed) at z = 0, there exists f(z) holomorphic in S such
that f(z) ~ > arz® in S.

example of computation of asymptotic expansion Recall the exponen-
tial integral

Proposition 8.3. The exponential integral defines an analytic function in
{z € C\ {0} : =7 < argz < w}. It is real for z > 0 and

(_1)n+1

Ei(z) =—lnz—v — Z Wz”
n=1 :

where In z is the principal branch, i.e. Inz € R for z > 0, v is the Euler-

Mascheroni constant, and the series converges uniformly in every compact
subset of C.

Proof.

z _—t 1 _—t
Ei(z):/1 erH/ ert
1 nin—1
_ (=1)"t
= +/Z Z o dt

0
1 o 1
dt = / 1
= — " dt
o+ / ROl
& _1)n+1 prg
=cy—Inz+ —
ot n! n

so Ei(z) + Inz is analytic at z = 0. As Ei(z) € R for z > 0, Inz takes the
principal branch.
To find cg, integrate by parts



8 Poincaré asymptotics

SO

oo (o)
BT . T -z —t _ —t
cy = ll_r)%(El(Z) +Inz) = ;1_1%[(1 e *Inz) —|—/Z e~ Intdt] /0 e ‘Int
which we call —v. O

Exercise. Show
dinT’ i
= ni(z)‘zzl7—’y: / e_t In tdt.
dZ 0

From the expression we also know that the analytic continuation of Ei(z) on
C\ {0} has monodromy

Ei(ze*™) = Ei(z) — 2mi.

Proposition 8.4. Ei(z) defined on C\ {0} has the following asymptotic
representation:

o0

ze* Ei(z) ~ Z(—l)"n!z_"

n=0

asz o0 in S ={z€C\{0}: -3 <argz < 3.

Proof.
oo —t —z oo _—t
/ Coar=5 - / £ _at
L.t z L 12
e e o0 gt
— — 2 —dt
z 22 + /Z t3
m
e % (=1)™n! o0 gzt
= —1)m+t 1)! / dt
S S s [
Ry, (2)
S0
. " (=1)"n!
“Ri(z) =Y 2 4 R(2),
ze® Ei(2) nzzo o + R.(2)

Check |R,,(2)] < C(m)|z|™+1:

[Bon(2)] = (m +1)!]2|

e e} ez—t
/z tm+2 dt‘
1 oo ezft

ee} ezft
/z tm+3 dt‘

= (m+ 1)Yz|

<(m+Dz7™ "+ (m+2)!
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8 Poincaré asymptotics

For z > 0, we have estimate
/OO ez—t dt - /OO dt _ Z—m—Q
B N

|Rin(2)] < 2(m 4 1)!2|7" !
as desired. |

SO

Exercise. Show the asymptotic series is valid on —7 < arg g < 7, by deriving
[Rin(2)] < (2(m+ 1)1+ (m+ 2)m) |2 7™

extension of asymptotics outside —7 < argz < m We have asymptotic
series for

e*Ei(z), —m <argz<m
e* Bi(ze*™), - 3r < argz < —7

e? Ei(ze*%i),w <argz <3m
Note that the domains overlap. Recall
¢* Ei(z) = € Bi(ze?™) 4 2mie?
Finally note that e* ~ 0 as z — oo in § + 2kw < argz < 37” + 2km. Thus
e* Ei(z) — ¢* Bi(ze**™) ~ 0

in the sector. Set £k = 0 and —1 and apply to the three expansions, we get the
sector —37“ <argz < 37”

Note. Note the error term

|Rin(2)] < (2(m + 1) + (m + 2)m) [2] 77
Ch

is typical of asymptotic expansions:

1. ..
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9 Singularities of the second kind

9 Singularities of the second kind

We will assume the singularity is at z = 0o so we study the system

dy

_ rflA
5, =2 Ay

where A(z) is holomorphic for |z| > R and A(z) = 34t for |2| > R. If r = 0
then it is a Fuchsian singularity, if » > 1 then it is a singularity of the seoncd
kind. We assume A(z) ~ > 72, ‘;‘— in S = S(a, ) and |z| > R. The object we
are dealing with in tis chapter is the solution

y(2) = G(2)z" exp(A(2))

where G(z) is analytic in a sector at oo and has an asymptotic expansion in
271 A(z) is a polynomial in z.

9.1 Formal simplification

Suppose A(z) = 37, ‘2{ where Aj has at least two distinct eigenvalues. Divide
the eigenvalues of Ay in two sequences (A1,...,Ap), (Apt1,---,An) which are
disjoint. We can find Gy invertible such that G| 1 A9GY is block diagonal with
each block having the respective sequence of eigenvalues. We look for a gauge
transformation Y (z) = G(2)Y (2), G(z) = I + > 5=y Gjz~7 such that

dy

a = ZrilB(Z)i/

which is “simpler”.
Substitute into the differential equatation, we get

G'j+GY' =2 "1AGY,

ie.

277G+ GB = AG.
Substitute G = Y. G2 ", A=Y A;27", B=) B;z"",
e {=0: set Gy =1,By = Ay,
e 1<0<r A= Gp—Gedo = (521G Be—y — A jGy) — Ad) + By
e rH1< 0 A—Go—GeAo = (_1(GiBij— ArjGj) — (L—7)Gy_,) + By
Thus the recurrence relation for Gy, By is
AoGy — GpAg = K¢+ By

where K is known from previous steps.
Recall
‘ ¢
oy (5 2%
0 +) B \mlh Bl
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9 Singularities of the second kind

etc so we get Sylvester equation
(0) ~(&) (€) 4(0) Q) ©
A“- Gij —Gij Aj]- = Kij —I—Bij .

For i = j, take Bi(f) = —Ki(f). Then Ggf) is the solution of a homogeneous
equation so has a nontrivial solution (we can choose Gz(f) =0). For i # j, take
ng) =0. As AZ(-Q) and Agg) do not have common eigenvalues, there is a solution

G 1
In conclusion, we can find gauge transformation G(z) such that Y (z) =
GoG(2)Y (2) satisfies
dy
dz
where B(z) is block diagonal.
The block diagonal system admits fundamental matrix solution

Yie) = (ﬁéz) o)

dy;
dz

= 2""1B(2)Y (2)

and

= Zr_lBii(Z)Y;

We can repeat the above computation for Y; if Bi(? ) has at least two distinct
eigenvalues. By repeated applications we conclude that the following holds:

Theorem 9.1. If Ay has s < n distinct eigenvalues A1,...,\s, we can
formally determine G(z) such that Y = GoG(2)Y gives

dy

E = Zr_lB(Z)Y/

where B(z) is block diagonal with s blocks.

Analytic issue of the solution is addressed by Malmquist (1944) and Sibuya
(1962) (see Wasow). We present an easier result.

Theorem 9.2.

1. Let A(z) be analytic for |z| > R with Taylor series > -, Aiz~", abso-
lutely convergent on |z| > p > R.

2. It suffices to suppose that A(z) is analytic in a sector S for opening
angle < T, |z| > R with A(z) ~ Y] Aiz7" in S as z — co.

Suppose Ay has eigenvalues divided into two disjoint sequences. Then exists
R1 > R and actual solutions G(z), B(z) to

277G+ GB = A(2)G

analytic for |z| > Ry in S with opening < T.

o1



9 Singularities of the second kind

Remark. Sibuya proved that the result holds for S with opening = + ¢ for
e > 0.

Now suppose Ap has pairwise distinct eigenvalues Ay,..., A,,. Then Gy L40Go =
A =diag(M\1,. .., An), B(2) = diag(by(2), .. ., ba(2)) is diagonal, by (z) ~ 365" 2~
with bék) = A\ in some S. Then the sysmte

dy .
E = ZrilB(Z)Y
so exists a fundamental matrix solution Y (z) = diag(y1(2), . .., ym(2)): by sep-

aration of variables

o) = el [ ¢ (o)

a

where the integration should be taken on a path that lies in S.

/ t"1o(t)dt = / " (bo + b% +o %’j)dt +/ " (b(t) — b—jf) dt
a a a ]:O
: r—1 - b]
=q(2) + bp(2) + const + [ "7 (b(t) — 7)dt

The term (o) vanishes in S as ;5. Thus the limit of the integral as z — oo exists,

SO
r

[ eten - a=c+ [rom -y a

j=0 oo j=0

h(2)

and

o= bt o [7 bey — Doy
T T T
h(z) ~ / Z P dt = Z/ Y] dt = e

0 =1 =17 =1
Thus in conclusion,

y(z) — const - Zbreq(Z)eh(Z) — f(z)zbre‘I(Z)

wher f(z) is analytic in S. We can choose f(z) ~1+ Y 7o frz"* and

fi(2)
Y (2) = Go G(2) 2BreQ(2)
fn(2)
G(=)
where B B
Qz) = —22"+ ——+ -+ B, 12
T r—1

G(2) ~F(z) =T+, Tk asz—0.
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9 Singularities of the second kind

Definition (formal fundamental solution). Yr(z) = GoF(2)zPreQ®) is
called the formal fundamental solution.

Remark. G(z) ~ F(z) asymptotically so Y (2)z~Bre=Q%) ~ GoF(z). By abuse
of notation we will write Y (z) ~ Yr(z).
Proposition 9.3.

e Suppose A has been fixed. Then By = A, Bi,...,B, are uniquely
determined.

o Suppose A and Gy have been fized. Then Yr(z) is uniquely determined.
Proof. Any formal solution has the form Yr(z) - C. Then
Yr(2)C = Go(I + Zsz_k)zB"‘eQ(z)C
k=1

=Go(I+ Zszfk)CzC_lBTCec_lQ(z)C
k=1

o0
= GoC(I + Y CT R0z 7). 8O RC
k=1

We are requiring that C"'AC = A. Since A has distinct eigenvalues, this is
equivalent to C' being diagonal so C‘lBjC = Bj for j =1,...,r. This proves
the first statement.

If in addition Gy is fixed, GoC = Gy so C = 1. O

Now we adpot a different notation. Let By = Aq,..., B, = A,. Then
A,
2BreR2) = exp(—z"+ -+ A_1z+ A Inz) = M2
r
Remark. Though Yz is unique, this is not the case for Y (z). In Wasow, the

sector opening < T. If we increase the opening we can prove uniqueness.

Proposition 9.4. Two systems

av
dz

dX

= Zrl_lA]_(Z)}/, E

= 22 Ay (2)X

are formally holomorphically equivalent if and only if 71 = 7o and they have

the same A, Ay, ..., A, where A is a digonal form of both A(()l) and A(()Q).
These are called formal invariants.

Proof. Suppose they have the same formal invariants. Then

A
Yr(z) = Gél)Fl(z) exp(r—z’”1 +-+A,Inz)
1

A
Xr(z) = G(()2)F2(z) exp(r—z” +--+A,Inz)
1
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9 Singularities of the second kind

Then Xp(z) = H(2)Yr(z) where H(z) = GéZ)FQ(z)(Gél)Fl(z))_l.
Conversely suppose X (z) = H(z)Y (z) wher det Hy # 0. Let A be a diagonal
form of Aél). Then exists

A
Yr(z) = Gél)Fl(z) exp(r—z’“1 +--+A,Inz)
1
so by assumption
_ (1) Ao
Xr(z) = H.(2)Gy ' Fi(2) exp(r—z +--+ A Inz).
—_— 1
F(2)

The equation for X is

dXp dF __, . Apy oo ~ _ AP
= (——F HFA T ) F X = 2 (FoAF ! L)X
dz (dz +F(Az + +z) )X =2 (L,O_/+ZZZ)F
AP
SO Aéz) has diagonal form A, ro = 1 and also Aq,..., A, are the same. O

9.2 Case of non-distinct eigenvalues

Theorem 9.5. If A(z) is holomorphic in S, A(z) ~ > A;2* then for every
“sufficiently small” subsector of S there is fundamental matriz solution

Y (2) = G(2)zLe?®

where Q(z) is diagonal polynomial in YN for some natural number N, L

is inte general not diagonal, G(z) ~ zFo/ > j—o i/~ n some small sector

for ko € Z. In general det Fy = 0. z = 0o is called a ramified singularity.

Example: Airy equation The Airy equation is the equation
u’ = zu.

By a substitution

(0 e D)

By the gauge transformation y = (9 § )y1, we write

diy 0 1\ 1/0 0
d Z((o 0) t2 (1 0>)y1
from which we see that there are two identical eigenvalues A1 = Ao = 0.
If we apply the shearing transformation y; = ((1J Zfi /2 )yg SO

dys 1y, (0 1 1 (0 0
-7 Uy o) tamrle 1)ve
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9 Singularities of the second kind

so at the cost of a fractional power we now have two distinct eigenvalues. Let
t=cz'/? sodi: 2%%. Set ¢ = 21/3
z )

c”
2
dY, 5 (0 1\  1/0 0

This has Poincaré rank 3. Eigenvalues of the term in the parethesis is

1
+1+ BYE] + O(tiﬁ)
SO A A
Ya(2) = GoG ()" exp(St + =2)
3 2t
SO

0 1 1 0 — 1 2 1 0
Y(z)= <1 0) (0 z_1/2> (’y?l zz) G(zl/2)24lexp(—§z3/2 <O _1>).

9.3 Stokes phenomenon

Now back to the case Ay with distinct eigenvalues. Suppose Y (z) ~ Yr(z) in
S. We can extend asympototics to S D S’ but in general we meet “separating
rays” beyond which the asymptotics no longer holds. This is called Stokes
phenomenon. The ray is called Stokes ray.

Exercise. As z — oo,

~1 Rez <0
f(2) =14¢€* = { oscilates Rez =0
00 Rez >0

Consider the A-plane. Choose 1 € R such that arg(A; — A\x) # n (mod ).
This is called an admissible direction in the A-plane. Take any determination of
arg(\; — Ag), for example n — 27 < afg(\; — Ap) <1 for j # k.

Definition (Stokes ray). The Stokes rays associated with (Aj, Ag);«k are
infinitely many rays in C\ {0} such that

Re((Aj — Ak)z™) = 0,im((A; — Ax)2") < 0.

Proposition 9.6. To (\;, \) the associated rays are

N
argz = 0, + 271'7

for all N € Z, 0, = 1(35 — afg(\; — \p)).

Proof. Exercise. O
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9 Singularities of the second kind

There is an even number 24 of possible values of afg(A; —Ag). Label atg(\; —
Ar) with nz for 0 <o < 2u — 1. If 5 is an admissible direction in A-plane,

N>Ng >N > ... —T >0, > > 071 >10— 2T,

Let m = 37” — . Stokes rays have directions 75 = (‘%’T — n;)% and they satisfy

™

2w
<7 < <Topr1 < T+ —.
2 T

T<To<T < <Tp1<T+
7 is called admissible direction in the z-plane.
From the proposition all Stokes rays are 7, = 75 +
express all Stokes rays by

2N7
T

. In fact, we can

™
To+Np = Tp +N;

for0<v<pu—1.
One can also conclude that a section not containing a Stokes ray has opening
<

313

Lemma 9.7. Suppose Y(z) is a fundamental matriz solution such that
Y(2)Yr(2) as z — oo in S. Assume exists S that does not contain Stokes
rays and SNS # 0, then Y (z) ~ Yr(2) in SUS.

Proof. S has central opening < *. By Wasow exists (2) ~ Yp(z) in S. Then
Y (z) = Y (2)C for some C. As Y (2) = GoG(2)e®), Y (2) = GoG(2)er?) so

eA(z)Ce—A(z) — g(z)—lg(z)

but G and G has exactly the same same asymptotic expansion in SN S so RHS
~ I as z — oo. Then

VA (x Ai— A, 1

eAl( )—A( )C” = exp <7“JZ (1 + O(z))> Oij ~ 51’]’- (*)

By hypothesis in S N S there are no Stokes rays so the sign of Re(\; — Aj)z" is
fixed in S NS, and also in S. Thus (*) holds in S and

G(2) = G(z) 2P Ce AR
~I

so the asymptotic expansion holds in S U S. O

As a corollary we have
Theorem 9.8 (extension). Let Y (2) be a fundamental matriz solution which
by Wasow’s result satisfies Y(z) ~ Yr(z) in an S containing a set of basic

Stokes rays. Then Y (z) ~ Yr(z) in an open sector S containing S. S
extending up to the nearest Stokes rays outside S.
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9 Singularities of the second kind

Theorem 9.9 (uniqueness). Let Y (z) be a fundamental matriz solution
such that Y(z) ~ Yp(2) in a sector containing a set of basic Stokes rays.
Then Y (z) is unique.

Proof. Suppose exists Y (z) ~ Yg(z) in the sector. Then as usual Y (z) = Y (2)C
and
ME 0™ = G(2)71G(2) ~ T
S0
eAi(Z)iAj(z)Cij ~ 613 (*)

Since the sector contains basic rays, Re(A; — Aj)z"™ changes signas z varies in
the sector. Thus there exists a subsector where e(*i=2)%" — 50 as z — o0, so
(%) holds if and only if C;; = d;; so C = 1I. O

Remark. We can take the sector to be S in the extension theorem.

9.4 Stokes matrix

Let Yi(z), Y2(2) are fundamental solutions such that Y;(z) ~ Yr(2) in S; such
that the opening of S; > Z. Suppose S1 N Sy # () and does not contain Stokes
rays.

Definition (Stokes matrix). The Stokes matriz is the connection matrix S
defined by
Ya(z) = Y1(2)S

for z € §1 NSy (and analytically exnteded in z).

Exercise. Consider Stokes rays associated with (A;, A\x). Prove that for argz =
0jx + 22X + 6, 6 € R (taken modulo 2%),

T

<0 -7 <0<0
Re(Aj = Ap)z" (=0 6=0,+£%
>0 0<d6< ™

Definition. If in an open sector Re(A; — A;)2z"™ > 0 we write A; > A; and
say A; is dominant. If Re(A; — Ag)z™ < 0 then write A; < A.
If S does not contain Stokes rays then < defines an ordering in {A1, ..., A, }.

Proposition 9.10. Suppose Yo = Y1.S for some Stokes matrix S in S1NSs.
Then S has the following form: S;; =1 for all j, Sj. =0 for A; = A; in
S1NS,,

Proof. As usual write Y, (2) = GoGa(2)e*). Then
AR QNI PRP IS

This holds if and only if S;; = 1 and S, = 0 for Re(\; — Ax)2z"™ > 0, which is
precisely the definition of A; = Ay (5% can be any number for Re(A; — Ag)z™ <
0). O
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9 Singularities of the second kind

Let S, = S(7y—pu, Tv+1) be the open sector containing basic rays 7,— 41, . . ., To.
Let Sy4p = S(7u, Tugpu+1) and so on. On each sector Syyny, h € Z, exists a
unique solution Y, p,z) ~ YF(2). There are Stokes matrices relating overlap-
ping sector, which we label using

Yot 1)u(2) = YosnuSpushp-

Exercise. Show that (S,);z = 0 if and only if (S,1,);x = 0, if and only if
(Sv—u)kj = 0 (so they are upper/lower triangular alternating in v).
9.5 Monodromy

Consider the formal solution Yi(2) = GoF(2)e**). As A(z) can be written as
a polynomial plus A, log z,

YF (Z62wi> _ GOF(Z)eA(z)eZﬂ-iAT )

We call e2™*Ar formal monodroms.
Given z € Sy, 2y = Zyt2ru = 20 - et ¢ Svtorp-

Theorem 9.11.
1. Yoioru(Zogony) = Yo (2,) - €270

2. YV+2T}L(Z) = YU(Z)SVSVJr;L e Sl/+(2r—1)/u

3. Yy (2€27) = Y, (2)eX" A (S, - S,y 2 1)u) "L = Yo (2) ML

Proof. 1 follows from formal monodromy and uniqueness of asymptotics. 2 is
repeated application of Stokes matrix. Combining them gives 3. O

Proposition 9.12. For every v € Z, we have the relation

—2miA,. 2w,
Syyory =€ S,e .

Proof.
Yyt 2riyu (ot @rinn) = Yoru(Zopp) e
= YU(ZU)SV . 627TiA7.
LHS can also be expressed as

2mil,. S

YV+2T‘H (zy+(2r+1)p,)sl/+2ru = YV(ZIJ)e v+2rp-

Theorem 9.13.
1. Ary Sy Sty -5 Snger—1)u generated Sy py, for all h € Z.

2. They are sufficient to compute the monodromy at oo of every Y, 4n,-
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9 Singularities of the second kind

Definition (complete set of Stokes matrices). S,,...,S,4(2r—1), is called
a complete set of Stokes matrices. S,,...,Sny@r—1)u, A are called mon-
odromy data at z = oco.

Theorem 9.14. 42X = >7"14(2)Y, % = 2" YA(2)Y are holomorphically

equivalent if and only if = 7, have the same A, A1, ..., A, and for some vy
they have the same Sy, . .., Syy+(2r—1)u (this is true for all v).
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