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0 Why 3?

0 Why 3?

0.1 Motivation
Poincare conjecture (1904) Question: how can we distinguish 𝑆3 fom other
3-manifolds? The strategy is to find an invariant that distinguishes 𝑆3. The frst
guess is homology but

Theorem 0.1 (Poincare). There exists a closed oriented 3-manifold 𝑃 with
𝐻∗(𝑃 ) ≃ 𝐻∗(𝑆3) but with 𝑃 ≇ 𝑆3.

Notation. We use ≅ to denote homeomorphism and ≃ to denote isomorphism.

This is proven in the following way: first invent the fundamental group 𝜋1,
then construct 𝑃, which is now known as (-1)-Dehn surgery on left-handed
trefoil knot 𝐾𝑇 ⊆ 𝑆3. Finally show that |𝜋1(𝑃 )| = 120, |𝜋1(𝑆3)| = 1 and
𝐻∗(𝑃 ) ≃ 𝐻∗(𝑆3).

0.2 Homotopy
Review of homotopy theory homotopy, fundamental groups and higher
homotopy groups, homotopy equivalence, weak homotopy equivalence

Homotopy vs. homology Let 𝑋 and 𝑌 be path-connected topological spaces.

Theorem 0.2 (Hurewicz).

1. 𝐻1(𝑋,Z) ≃ 𝜋1(𝑋)/[𝜋1(𝑋), 𝜋1(𝑋)].

2. If 𝜋𝑖(𝑋) = 1 for 𝑖 = {1, … , 𝑛} then

𝐻𝑖(𝑋) = 0 for 𝑖 ≤ 𝑛, 𝑖 ≠ 0
𝐻𝑛+1 ≃ 𝜋𝑛+1(𝑋)

Theorem 0.3 (Whitehead). If 𝑋, 𝑌 are CW complexes. Then a weak
homotopy equivalence of 𝑋 and 𝑌 is also a homotopy equivalence.

Theorem 0.4 (Whitehead-homology variant). Suppose 𝑋, 𝑌 are simply-
connected CW complexes. If the induced homomorphisms 𝑓∗ ∶ 𝐻𝑘(𝑋;Z) →
𝐻𝑘(𝑌 ;Z) are isomorphisms for all 𝑘 ≤ dim𝑋 then 𝑓 ∶ 𝑋 → 𝑌 is a homotopy
equivalence.

Theorem 0.5. Any homotopy equivalence 𝑓 ∶ 𝑋 → 𝑌 induces isomorphisms
on homology, cohomology, cohomology ring structure (for any coefficients).

0.3 *Simplifications in higher dimension
Let 𝒞 be the smooth category when 𝑛 ≥ 5 and topological category 𝑛 ≥ 4.
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0 Why 3?

Theorem 0.6 (Whitney trick). Suppose dim𝑋 = 𝑛 where 𝑛 ≥ 4 and
𝑃 , 𝑄 ⊆ 𝑋 are C-embedded submanifolds and dim𝑃 + dim𝑄 = dim𝑋. Then
𝑃 , 𝑄 can be locally 𝒞-isotoped so that the geometric intersection number equal
to the absolute value of algebraic intersection of 𝑃 , 𝑄. Note that algebraic
intersection number is signed while teh geometric counterpart is not.

Convention. When we say topological embeddings we always mean locally flat
embeddings, which will be defined later in the course.

Definition (ℎ-cobordism). Let 𝑊 with 𝜕𝑊 = 𝑋1 ⨿𝑋2 be a cobordism from
𝑋1 to 𝑋2. 𝑊 is an ℎ-cobordism if the embeddings 𝑋𝑖 ↪ 𝑊 are homotopy
equivalences.

Convention. All manifolds are compact connected and oriented unless otherwise
stated.

Theorem 0.7 (ℎ-cobordism). Suppose dim𝑋𝑖 = 𝑛, dim𝑊 = 𝑛 + 1, 𝑊 is a
ℎ-cobordism from 𝑋1 to 𝑋2. If 𝜋1(𝑋𝑖) = 𝜋1(𝑊) = 1 and 𝑛 ≥ 4 then 𝑊 is
𝒞-isomorphic to 𝑋1 × [0, 1].

0.4 Generalised Poincare conjecture
Poincare conjecture: if 𝑆 is compact oriented 3-manifold homotopy equivalent
to 𝑆𝑛, then does 𝑆 ≅ 𝑆𝑛?

Generalised Poincare conjecture: if 𝑆 is compact oriented 𝑛-manifold homo-
topy equivalent to 𝑆𝑛, then does 𝑆 ≅ 𝑆𝑛?

It turns out for 𝑛 ≥ 4, the generalised Poincare conjecture is a corollary
of ℎ-cobordism theorem. Sketch of proof for 𝑛 ≥ 5: suppose 𝑆 is homotopy
equivalent to 𝑆𝑛, Then 𝜋∗(𝑆) ≃ 𝜋∗(𝑆𝑛), 𝐻∗(𝑆) ≃ 𝐻∗(𝑆𝑛). Delete two balls
from 𝑆 to obtain 𝑊 ≅ 𝑆 \ 𝐵̊𝑛

1 ⨿ 𝐵̊𝑛
2 . Claim that 𝑊 is a ℎ-cobordism: apply

Mayer-Vietoris with 𝐴 = 𝑊, 𝐵 = 𝐵𝑛
1 ⨿ 𝐵𝑛

2 . Then 𝐴 ∩ 𝐵 = 𝑆𝑛−1 ⨿ 𝑆𝑛−1 =htp
𝑊 ⨿ {0, 1}, 𝐴 ∪ 𝐵 = 𝑆, 𝐴 ⨿ 𝐵 = 𝑊.

𝐻𝑛(𝑆𝑛−1 ⨿ 𝑆𝑛−1) 𝐻𝑛(𝑊 ⨿ {0, 1}) 𝐻𝑛(𝑆)

𝐻𝑛−1(𝑆𝑛−1 ⨿ 𝑆𝑛−1) 𝐻𝑛−1(𝑊 ⨿ {0, 1}) 𝐻𝑛−1(𝑆)

The first term vanishes because of dimension, the second term vanishes
because 𝑊 is not closed. By homotopy equivalence we get

0 Z Z ⊕ Z 𝐻𝑛−1(𝑊 ⨿ {0, 1}) 0

We can compute that 𝐻𝑛−1(𝑊 ⨿ {0, 1}) ≃ Z. It is an exercise to show that there
is an induced isomorphism on homology 𝐻𝑘(𝑆𝑛

𝑖 ) → 𝐻𝑘(𝑊) for each 𝑘. Moreover
𝜋1(𝑊) = 1 so 𝑆𝑛

𝑖 → 𝑊 are homotopy equivalent.
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0 Why 3?

Therefore 𝑊 ≅ 𝑆𝑛−1 × [0, 1] So 𝑆 ≅ 𝐵𝑛
1 ∪ 𝑊 ∪ 𝐵𝑛

2 . By Alexander trick
map on a 𝑆𝑛−1 can be extended topologically to a map on 𝐵𝑛 with 𝜕𝐵𝑛 = 𝑆𝑛.
Extends this homeomorphism over the two balls.

Note that this only applies to topological category and smooth generalised
Poincare conjecture is still open in 𝑛 ≥ 4.

0.5 Why not higher than 5?
Moral: homotopy-theoretic techniques can be used to answer most/many ques-
tions about topology or smooth structures in dimension ≥ 5.
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1 Lecture 2: Why 3-manifolds? + Embeddings/Knots

1 Lecture 2: Why 3-manifolds? + Embeddings/Knots

Active research areas
1. An interaction with 4-dimensional manifolds (smooth/symplectic/complex

structures)

(a) Dimension reduction reduces 4-dimensional invariant to 3-dimensional
ones (that are fancier “categorified”) and maps induced by cobordisms.

(b) symplectic form 𝜔 on 𝑋4 ⟹ contact structure 𝜉 on 𝑌 = 𝜕𝑋.
(c) Stein structure (complex/symplectic structure) on 𝑋 ⟹ Stein-

fillable contact structure.
(d) Normal complex structure sin (𝑋, 0) is a real cone over 𝑌 =Linkm(X,

0.

2. Geometric group theory: fundamental groups, especially of 3-manifolds:
prime, atoroidal non lens space 3 manifolds ⟺ fundmental groups of
such 3-manifolds.

3. 2-dimensional structure

(a) contact stucture: 𝜉 everywhere nonintegrable 2-lane field. “tight”
contact structure classification

(b) minimal genus representatives of embedded surfaces, or knot genus.
This is better understood. Thurston norm. The 4-dimensional ana-
logue is still open.

(c) Foliations. Taut folations classification. Seifert fibered

4. 1-dimensional structure: knots and links

(a) embedddings ⨿𝑖𝑆1
𝑖 ↪ 𝑆3. Every 3-manifold can be realised as Dehn

surgery on a link 𝐿 ↪ 𝑆3. Thus the theory of knot theory is richer
that of 3-manifold. We study 3-manifolds via knot invariants (WIlten-
Reshetikhin-Turaev invariant).

(b) Relations to other areas
i. Chern-Simons knot invarints: 𝐾 ⊆ 𝑆3 ⟺ Gromov-Witten

invariants on 𝑂(−1) ⊕⏟
CP1

𝑂(−1).

ii. Homfly homology of 𝑛str braids ⟺ DC sheaves on HIlb𝑛(C).
iii. Khovanov homology of links in 𝑆3 ⟺ DC sheaves on other

spaces.

1.1 Course themes
1. Decompositions/Constructions of 3-manifolds.

(a) surface decompositions/constructures
i. prime decomposition — cut along essential 𝑆2

ii. JSJ decomposition — cut along essential 𝑇.
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1 Lecture 2: Why 3-manifolds? + Embeddings/Knots

iii. Mapping tori ⟺ surface fibrations.
(b) quotient spaces

i. Hyperbolic quotients
ii. quotients of 𝑆7. Seifert fibration
iii. Morse theoretic

A. handle decomposition
B. Heegaard splittings/diagrams

iv. Dehn surgery on links

2. Structure + Invariants for 3-manifolds

(a) Knots & links
i. complement 𝑆3 \ 𝐾
ii. 𝜋1(𝑆3 \ 𝐾)
iii. Alexander polynomials + Turaev torsion

(b) Essential/incompressible embedded surfaces, Thurston norm
(c) Foliations
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2 Embeddings

2 Embeddings

Definition (link). A link is an embedding 𝐿 = ⨿𝑖𝑆1
𝑖 ↪ 𝑆3 considered up

to isotopy. This embedding is either smooth or topoogical and locally flat.
These two notions are equivalent.

Let 𝑋 and 𝑌 be topological manifolds.

Definition (topological embedding). A topological embedding 𝑋 ↪ 𝑌 is a
map 𝑋 ↪ 𝑌 which is a homeomorphism onto its image.

Definition (immersion). If 𝑋 and 𝑌 are also smooth then a map 𝑓 ∶ 𝑋 → 𝑌
is an immersion if 𝑑𝑥𝑓 ∶ 𝑇𝑥𝑋 → 𝑇𝑓(𝑥)𝑌 is injective for all 𝑥 ∈ 𝑋.

As a consequence of inverse function theorem, any immersion is locally an
embedding.

Definition (smooth embedding). A smooth embedding is a topological
embedding that is also an immersion.

Corollary 2.1. If 𝑋, 𝑌 are smooth compact then any bijective immersion is
an embedding.

Theorem 2.2 (Moise). There is a canonical correpondence between topolog-
ical structures and smooth structures on 3-manifolds.

Thus 3-manifolds up to homeomorphism bijects to 3-manifolds up to diffeo-
morphism.

Definition (local flatness). A topologically embedded submanifold 𝑋 ⊆
𝑌 is locally flat at 𝑥 ∈ 𝑋 if 𝑥 has a neighbourhood 𝑥 ∈ 𝑈 ⊆ 𝑌 with
homeomorphisms (𝑈 ∩ 𝑋, 𝑈) ≅ (Rdim 𝑋,Rdim 𝑌).

A locally flat embedding is locally flat everywhere.

Convention. From now on any embedding is smooth or locally flat.

Definition (regular neighbourhood). A regular neighbourhood of an embed-
ded submanifold 𝑋 ⊆ 𝑌 is a tubular/collar neighbourhood if the embedding
is smooth/topologically flat.

In 3-dimensions normal bundles are trivial so a regular neighbourhood 𝜈(𝑋)
is just 𝐷2 × 𝑋 ↪ 𝑌 if dim𝑋 = 1 and 𝐷1 × 𝑋 ↪ 𝑌 if dim𝑌 = 2.

In particular, neighbourhood of a not 𝐾 ↪ 𝑆3 is just a solid torus 𝐷2 ×𝑆1 ↪
𝑆3.
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3 Lecture 3: Link diagrams & Alexander Skein relations

3 Lecture 3: Link diagrams & Alexander Skein
relations

Example. Wild knot: not locally flat embedding

Definition (isotopy). An isotopy in category 𝒞 from 𝑓1 to 𝑓2 ∶ 𝑋 → 𝑌 is a
homotopy through maps of type 𝒞.

The point is, all knots (including wild knot) are isotopic through non-locally
flat embeddings to an unknot, and all knots are homotopic to an unknot so we
want to exclude the “bad” homotopies where a knot can cross itself.

3.1 Knot and link diagrams

Definition (link). A link is an (oriented) embedding 𝜄 ∶ ∐𝑖 𝑆1
𝑖 ↪ 𝑆3 of

(oriented circles), considered up to isotopy.

Definition (link projection). A link projection is an immersion 𝐿 ↬ Γ ↪ R2,
induced by

𝐿 𝑆3 \ {𝑥0} R3 R2 × R

Γ R2

𝑝|𝐿

≅ ≅

𝑝

such that 𝑥0 ∉ 𝐿 and 𝑝|𝐿 is an embedding except at double point singularities.

This aweful looking definition is just a formalisation of a familiar concept
that facilitates the study of knots:

Definition (link diagram). A link diagram 𝐷 = (Γ, crossing(𝐷)) of a link
𝐿 ⊆ 𝑆3 is an embedded graph Γ ↪ R2 from a link projection of 𝐷, together
with decorations at double points to label crossings. We draw a gap in the
lower strand.

Theorem 3.1 (Reidemeister moves). Let 𝐷1 and 𝐷2 be link diagrams for
respective links 𝐿1, 𝐿2 ⊆ 𝑆3. Then 𝐿1 and 𝐿2 are isotopic if and only if 𝐷1
and 𝐷2 are related by some combination of the fuollowing moves:

It is more important to know that such moves exist than what they actually
are.

3.2 Alexander Skein relation
To compute the alexander polynomial, you first choose an orientation for the
link 𝐿 ⊆ 𝑆3. However, the resulting polynomial is independent of choice of
orientation for knots.
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3 Lecture 3: Link diagrams & Alexander Skein relations

Theorem 3.2 (Alexander). The Alexander polynomial

Δ ∶ {link diagram} → Z[𝑡−1/2, 𝑡1/2]

is specified by 2 conditions:

1. normalisation: Δ(𝑢) = 1 where 𝑢 is the unknot.

2. Skein relation: Δ(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔)−Δ(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔) = Δ(𝑜𝑟𝑖𝑒𝑛𝑡𝑒𝑑𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)(𝑡−1/2−
𝑡1/2) for all 𝑐 ∈ crossing(𝐷).

Δ(𝐷1) = Δ(𝐷2) if 𝐷1 and 𝐷2 are diagrams for isotopic links.

Theorem 3.3 (equivalence of Alexander polynomial). Later we will define
an Alexander polynomial for 3-manifolds with 𝑏1 > 0. With respect to this
definition,

Δlink(𝐿) = Δ3-manifold(𝑆3 \ 𝐿)

for any link 𝐿 ⊆ 𝑆3.
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4 Handle decompositions from Morse Singularities

4 Handle decompositions from Morse Singulari-
ties

Handles: index 𝑘-handles are tubular neighbourhood of 𝑘-cell CW complex, also
are neighbourhoods of Morse critical points.

4.1 Morse functions
Let 𝑋 → R be a smooth function on a smooth manifold 𝑋.

Definition (Hessian, critial point). Hess𝑝(𝑥) is the Hessian of 𝑓 at 𝑝, which
is local coordintes is

( 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝐽

|𝑥=𝑝)
𝑖𝑗

.

crit𝑓 is the set of critical points of 𝑓, i.e. {𝑝 ∈ 𝑋 ∶ 𝜕𝑓
𝜕𝑥𝑖

= 0 for all 𝑖}, or
more invariantly, 𝑑𝑓 = 0.

Definition (Morse function). A smooth function 𝑓 ∶ 𝑋 → R on an 𝑛-
manifold 𝑋 is Morse if

1. every critical point of 𝑓 is isolated. (If 𝑋 is compact then this implies
that critical points are finite)

2. Hess𝑝𝑓 is nongenerate at each 𝑝 ∈ crit𝑓, if and only if det ≠ 0, if and
only if has all nonzero eigenvalues.

4.2 Morse singularities
A list of descriptions of Morse functions:

1. If 𝑓 ∶ 𝑋 → R is Morse, then a Taylor series expansion around a critical
point 𝑝 ∈ crit𝑓 looks like

𝑓(𝑥) = 𝑓(𝑝) + 1
2

∑ 𝑥𝑖𝑥𝑗
𝜕2𝑓

𝜕𝑥𝑖𝑥𝑗
∣
𝑝

+ higher order terms

2. Hess𝑝𝑓 is nondegenerate means that we can rescale coordinates so that all
eigenvalues are ±1.

3. Since partial derivatives commute, Hess𝑝𝑓 is symmetric. Thus by linear
algebra it is diagonalisable and we can write

𝑓(𝑥) = 𝑓(𝑝) −
𝑘

∑
𝑖=1

𝑥2
𝑖 +

𝑛
∑

𝑖=𝑘+1
𝑥2

𝑖 + higher order terms.
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4 Handle decompositions from Morse Singularities

Lemma 4.1 (Morse lemma). Let 𝑋 be a smooth manifold and 𝑓 ∶ 𝑋 → R
Morse. One can choose coordinates 𝑥 centred at 𝑝 ∈ crit𝑓 such that

𝑓(𝑥) = 𝑓(𝑝) − 𝑠𝑢𝑚𝑘
𝑖=1𝑥2

𝑖 +
𝑛

∑
𝑖=𝑘+1

𝑥2
𝑖 .

Proof. Use implicit function theorem.

Definition (index). The index ind𝑝 𝑓 of a Morse function 𝑓 ∶ 𝑋 → R at a
critical point 𝑝 is

ind𝑝 𝑓 = # negative eigenvalues of Hess𝑝,

which is the 𝑘 above.

Thus Morse lemma says that index is the (only?) invariant of Morse functions.
Moral: there is a standard local model for each index 𝑘 Morse critical point.
See printed notes

Definition (𝑘-handle). An index 𝑘-handle, or just 𝑘-handle, or 𝑛-dimensional
𝑘-handle is the closure of a tubular neighbourhood of an index 𝑘 critical
point. 𝐻𝑚

𝑘 ≅ 𝜈(𝑥) ≅ 𝐷𝑘 × 𝐷𝑛−𝑘 ⊇ 𝐵̊𝑘.

Note that the corners in 𝐷𝑘 and 𝐷𝑛−𝑘 are different
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5 Lecture 5: Handles from cells, Heegard diagrams

5 Lecture 5: Handles from cells, Heegard dia-
grams

Cell ecomplex interpretation

Definition (handle, core, cocore). An 𝑛-dimension 𝑘-handle 𝐻𝑛
𝑘 or index

𝑘-handle is a product decomposition

𝐻𝑛
𝑘 ≅ 𝐷𝑘 × 𝐷𝑛−𝑘 ≅ 𝐵𝑛

of the closed 𝑛-ball into a 𝑘-dimensional 𝑘-cell core 𝐷𝑘 and cocore 𝐷𝑛−𝑘.

If you choose a metric, the core 𝐷𝑘 is fat and the cocore 𝐷𝑛−𝑘 is thin.

Definition (attaching region, belt region). The boundary 𝜕𝐻𝑛
𝑘 of an 𝑛-

dimensional 𝑘-handle decomposes as

𝜕𝐻𝑛
𝑘 ≅ 𝜕(core × cocore)

≅ 𝜕(core) × cocore ∪ core × 𝜕(cocore)
≅ 𝜕𝐷𝑘 × 𝐷𝑛−𝑘⏟⏟⏟⏟⏟

attaching region
∪ 𝐷𝑘 × 𝜕𝐷𝑛−𝑘⏟⏟⏟⏟⏟

belt region

In a cell complex, we attach a 𝑘-cell 𝐷𝑘 by gluing its boundary 𝜕𝐷𝑘 ≅ 𝑆𝑘−1

to the cell-complex we have built so far.

attaching region(𝐻𝑛
𝑘 ) ≅ 𝜈(𝜕𝐷𝑘) ≅ 𝜈𝑆𝑘−1 ≅ 𝜕𝐷𝑘 × 𝐷𝑛−𝑘

Definition (handle attachment). The attachment of a 𝑘-handle 𝐻𝑛
𝑘 to an 𝑛-

manifold 𝑋 to product an 𝑛-manifold 𝑋′ is induced by a 𝑘-handle attachment
cobordism 𝑍 from −𝜕𝑋 to 𝜕𝑋′.

𝑍 = (𝜕𝑋 × 𝐼) ∪a.r. 𝐻𝑛
𝑟 .

We have
𝜕𝑋′ ≅ (𝜕𝑋 \ a.r.(𝐻𝑛

𝑘 )) ∪ (b.r.(𝐻𝑛
𝑘 )).

As 𝜕𝑋 × 𝐼 deformation retracts to 𝜕𝑋, we have

𝑋′ ≅ 𝑋 ∪ 𝑍 ≅ 𝑋 ∪ 𝐻𝑛
𝑘 .

Convention. We usually say that we attach a handle along the core of the
attaching region.

Definition (attaching/belt sphere).

attaching region(𝐻𝑛
𝑘 ) ≅ core(attaching region(𝐻𝑛

𝑘 ))
≅ core(𝜕𝐷𝑘 × 𝐷𝑛−𝑘)
≅ 𝜕𝐷𝑘

12



5 Lecture 5: Handles from cells, Heegard diagrams

belt region(𝐻𝑛
𝑘 ) ≅ core(belt region(𝐻𝑛

𝑘 ))
≅ 𝜕𝐷𝑛−𝑘

Convention reexpressed: to attach a 𝑘-handle, we specify where the attaching
sphere will be glued.

Morse interpretation, revisited

Definition (gradient). Choose a Riemannian metric 𝑔 on a smooth 𝑛-
manifold 𝑋. Let 𝑓 ∶ 𝑋 → R be a smooth function. the gradient grad 𝑓 ∈
Γ(𝑇 𝑋) of 𝑓 is the vector field satisfying

𝑔(grad 𝑓, 𝑉 ) = 𝑑𝑓(𝑉 )

for 𝑉 ∈ Vect𝑋 = Γ(𝑇 𝑋). Locally,

𝑔𝑥((grad 𝑓)𝑥, 𝑉𝑥) = 𝑑𝑓𝑥(𝑉𝑥).

In local coordinates,
grad 𝑓 = ∑ 𝑔𝑖𝑘 𝜕𝑓

𝜕𝑥𝑘 𝑒𝑖

where 𝑒𝑖 = 𝜕
𝜕𝑥𝑖 .

Idea: invariant object from partials of 𝑓, 𝑑𝑓 = ∑ 𝜕𝑓
𝜕𝑥𝑖 𝑑𝑥𝑖. To get a vector

field, need a bilinear form to dualise 𝑑𝑓. grad 𝑓 comes from bilinear form (metric),
and Hamiltonian vector field 𝑓 comes from symplectic form.

Moral (Morse theorey intepretation)
Q: In what sense 𝐻𝑛

𝑘 ≅ 𝜈(𝑥), 𝑥 ∈ crit𝑓, ind𝑥𝑓 = 𝑘?
A: Gradient flow at the boundary of 𝐻𝑛

𝑘 : grad 𝑓 flows into attaching region
𝐻𝑛

𝑘 , into 𝑥 ∈ crit𝑓 in 𝑘 directions. grad 𝑓 flows out of belt region 𝐻𝑛
𝑘 , out of 𝑥

in 𝑛 − 𝑘 directions.
For example, for

𝑓 = −
𝑘

∑
𝑖=1

𝑥2
𝑖 +

𝑛
∑

𝑗=𝑘+1
𝑥2

𝑗
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